prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" Tests for Series cumulative operations. See also -------- tests.frame.test_cumulative """ import numpy as np import pytest import pandas as pd import pandas._testing as tm methods = { "cumsum": np.cumsum, "cumprod": np.cumprod, "cummin": np.minimum.accumulate, "cummax": np.maximum.accumulate, } def _check_accum_op(name, series, check_dtype=True): func = getattr(np, name) tm.assert_numpy_array_equal( func(series).values, func(np.array(series)), check_dtype=check_dtype ) # with missing values ts = series.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) class TestSeriesCumulativeOps: def test_cumsum(self, datetime_series): _check_accum_op("cumsum", datetime_series) def test_cumprod(self, datetime_series): _check_accum_op("cumprod", datetime_series) @pytest.mark.parametrize("method", ["cummin", "cummax"]) def test_cummin_cummax(self, datetime_series, method): ufunc = methods[method] result = getattr(datetime_series, method)().values expected = ufunc(np.array(datetime_series)) tm.assert_numpy_array_equal(result, expected) ts = datetime_series.copy() ts[::2] = np.NaN result = getattr(ts, method)()[1::2] expected = ufunc(ts.dropna()) result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import statsmodels from matplotlib import pyplot from scipy import stats import statsmodels.api as sm import warnings from itertools import product import datetime as dt from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import kpss from pandas import DataFrame from pandas import concat from pandas import Series from math import sqrt from sklearn.metrics import mean_squared_error # convert series to supervised learning def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg data = pd.read_csv('Data/All_Merged.csv') # , parse_dates=[0], date_parser=dateparse data.isna().sum() # Inserting 0 for NA data.fillna(0, inplace=True) # plt.figure(figsize=[10,4]) # plt.title('BTC Price (USD) Daily') # plt.plot(data.price, '-', label='Daily') # Monthly data['date'] = pd.to_datetime(data['date']) data['date'] = data['date'].dt.tz_localize(None) data = data.groupby([pd.Grouper(key='date', freq='M')]).first().reset_index() data = data.set_index('date') data['price'].fillna(method='ffill', inplace=True) # Decomposition - only for price though! # decomposition = sm.tsa.seasonal_decompose(data.price) # # trend = decomposition.trend # seasonal = decomposition.seasonal # residual = decomposition.resid # # fig = plt.figure(figsize=(10,8)) # # plt.subplot(411) # plt.plot(data.price, label='Original') # plt.legend(loc='best') # plt.subplot(412) # plt.plot(trend, label='Trend') # plt.legend(loc='best') # plt.subplot(413) # plt.plot(seasonal,label='Seasonality') # plt.legend(loc='best') # plt.subplot(414) # plt.plot(residual, label='Residuals') # plt.legend(loc='best') # # fig.suptitle('Decomposition of Prices Data') # plt.show() # Setting the data structure reframed = series_to_supervised(data, 1, 1) # Also removing the lagged price, as this will be created in the ARIMA reframed.drop(reframed.columns[[0,8, 9, 10, 11, 12, 13]], axis=1, inplace=True) print(reframed.head()) # split data split_date = '2018-06-25' reframed_train = reframed.loc[reframed.index <= split_date].copy() reframed_test = reframed.loc[reframed.index > split_date].copy() # Prøver lige ARIMA på original data # Det her er en seasonal ARIMA, SARIMA, så nok ekstra resultat efter en regulær ARIMA # Hjælp til kommentering findes her: https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/ # Den fitter fint hvis man ikke opdeler i train og test.. # Initial approximation of parameters Qs = range(0, 2) qs = range(0, 3) Ps = range(0, 3) ps = range(0, 3) D=1 d=1 parameters = product(ps, qs, Ps, Qs) parameters_list = list(parameters) len(parameters_list) x_train = reframed_train.iloc[:,:-1].values y_train = reframed_train.iloc[:,-1] x_test = reframed_test.iloc[:,:-1].values y_test = reframed_test.iloc[:,-1] # Model Selection results = [] best_aic = float("inf") warnings.filterwarnings('ignore') for param in parameters_list: try: model=sm.tsa.statespace.SARIMAX(endog=y_train, exog=x_train, order=(param[0], d, param[1]), seasonal_order=(param[2], D, param[3], 12),enforce_stationarity=True, enforce_invertibility=True).fit(disp=-1) except ValueError: print('wrong parameters:', param) continue aic = model.aic if aic < best_aic: best_model = model best_aic = aic best_param = param results.append([param, model.aic]) # Best Models result_table = pd.DataFrame(results) result_table.columns = ['parameters', 'aic'] print(result_table.sort_values(by = 'aic', ascending=True).head()) print(best_model.summary()) # Residual plot of the best model fig = plt.figure(figsize=(10,4)) best_model.resid.plot() fig.suptitle('Residual Plot of the Best Model') print("Dickey–Fuller test:: p=%f" % sm.tsa.stattools.adfuller(best_model.resid)[1]) # Dickey–Fuller test:: p=0.xxx -> Residuals are stationary df_month2 = data[['price']] future = pd.DataFrame() df_month2 = pd.concat([df_month2, future]) df_month2['forecast'] = best_model.predict(start = len(x_train), end = len(x_train)+len(x_test)-1, exog=x_test) plt.figure(figsize=(8,4)) df_month2.price.plot() df_month2.forecast.plot(color='r', ls='--', label='Predicted Price') plt.legend() plt.title('Bitcoin Prices (USD) Predicted vs Actuals, by months') plt.ylabel('mean USD') plt.show() # Daily version df = pd.read_csv('Data/All_Merged.csv') df.isna().sum() # Inserting 0 for NA df.fillna(0, inplace=True) # Date type df['date'] = pd.to_datetime(df['date']) df['date'] = df['date'].dt.tz_localize(None) df = df.groupby([pd.Grouper(key='date', freq='D')]).first().reset_index() df = df.set_index('date') df['price'].fillna(method='ffill', inplace=True) # Setting the data structure daily_re = series_to_supervised(df, 1, 1) price = daily_re.iloc[:,0] da_price = daily_re.iloc[:,0] daily_re.drop(daily_re.columns[[0,8, 9, 10, 11, 12, 13]], axis=1, inplace=True) y = daily_re.iloc[:,-1] print(daily_re.head()) # split data split_date = '2018-07-11' daily_re_train = daily_re.loc[daily_re.index <= split_date].copy() daily_re_test = daily_re.loc[daily_re.index > split_date].copy() da_price = da_price.loc[da_price.index > split_date].copy() da_price = da_price.values # Som i boosting - men uden validation, kun med rolling window pred_day = 2901-16 # Predict for this day, for the next H-1 days. Note indexing of days start from 0. H = 30 # Forecast horizon, in days. Note there are about 252 trading days in a year train_size = int(365 * 0.75) # Use 3 years of data as train set. Note there are about 252 trading days in a year val_size = int(365 * 0.25) train_val_size = train_size + val_size # Size of train+validation set print("No. of days in train+validation set = " + str(train_val_size)) qs = range(0, 3) ps = range(1, 3) d = 1 parameters = product(ps, qs) parameters_list = list(parameters) len(parameters_list) # ARIMA igen, men ikke som seasonal og med Training og Test data, på daily niveau # Initial approximation of parameters pred = pd.DataFrame() while daily_re.index[pred_day] < daily_re.index[len(daily_re) - 1]: x_da_train = daily_re.iloc[pred_day - train_val_size:pred_day,:-1].values y_da_train = daily_re.iloc[pred_day - train_val_size:pred_day,-1] x_da_test = daily_re.iloc[pred_day:pred_day + H,:-1].values y_da_test = daily_re.iloc[pred_day:pred_day + H,-1] # Model Selection results = [] best_bic = float("inf") warnings.filterwarnings('ignore') for param in parameters_list: try: model=sm.tsa.ARIMA(endog=y_da_train, exog=x_da_train, order=(param[0], d, param[1])).fit(disp=-1) except ValueError: print('wrong parameters:', param) continue bic = model.bic if bic < best_bic: best_model = model best_bic = bic best_param = param results.append([param, model.aic]) # Best Models # result_table = pd.DataFrame(results) # result_table.columns = ['parameters', 'bic'] # print(result_table.sort_values(by = 'bic', ascending=True).head()) # print(best_model.summary()) append = best_model.predict(start = len(x_da_train), end = len(x_da_train)+len(x_da_test)-1, exog=x_da_test).T pred = pd.concat([pred, append], ignore_index=True) pred_day = pred_day + H pred_day = 2901-16 # Reset price2 = price.iloc[pred_day:] pred['prev_price'] = price2.values pred.index = price2.index pred['pred'] = pred.sum(axis=1) # price2 = price2.values # pred = pred.values # Residual plot of the best model # fig = plt.figure(figsize=(10,4)) # best_model.resid.plot() # fig.suptitle('Residual Plot of the Best Model') # print("Dickey–Fuller test:: p=%f" % sm.tsa.stattools.adfuller(best_model.resid)[1]) # Dickey–Fuller test:: p=0.001213 -> Residuals are stationary df_month2 = df[['price']] future = pd.DataFrame() df_month2 = pd.concat([df_month2, future]) yhat = (pred.T + price2).T.astype('float32') df_month2['forecast'] = pred['pred'] plt.figure(figsize=(8,4)) df_month2.price.plot() df_month2.forecast.plot(color='r', ls='--', label='Predicted Price') plt.legend() plt.title('Bitcoin Prices (USD) Predicted vs Actuals, by months') plt.ylabel('mean USD') plt.show() # RMSE y = y.iloc[pred_day:] yhat = pred['pred'] rmse = sqrt(mean_squared_error(y, yhat)) print('Test RMSE: %.3f' % rmse) # Only the forecast part da_fore = daily_re_test[['var1(t)']] future = pd.DataFrame() da_fore = pd.concat([da_fore, future]) da_fore['forecast'] = pred['pred'] plt.figure(figsize=(8,4)) da_fore['var1(t)'].plot() da_fore.forecast.plot(color='r', ls='--', label='Predicted Price') plt.legend() plt.title('Bitcoin Prices (USD) Predicted vs Actuals, by months') plt.ylabel('mean USD') plt.show() # Export predictions pred['pred'].to_csv(r'Data\ARIMA_Pred.csv') #### Appendix #### def descriptive_statistics(df, series): stats = df[series].describe() print('\nDescriptive Statistics for', '\'' + series + '\'', '\n\n', stats) def get_graphics(df, series, xlabel, ylabel, title, grid=True): plt.plot(pd.to_datetime(df.index), df[series]) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) plt.grid(grid) return plt.show() # stationary tests # unit root = statistical properties of series are not constant with time. # # In order to be stationary, series has to be constant with time. So if a series has a unit root, it is not stationary # # strict stationary = mean, variance, covariance are not function of time # trend stationary = no root unit, but has a trend. if you remove the trend, it would be strict stationary # difference stationary = series can be made strict stationary by differencing # ADF Augmented Dickey Fuller Test (unit root test) # null hypothesis = series has a unit root (a = 1) # alt hypothesis = series has no unit root # # accept null = t-score is greter than critical value (there is a unit root) # reject null = t-score is less than critical value (there is no unit root) # # accpet null = bad (not stationary) # reject null = good (stationary) # # adf can be interpreted as a difference stationary test def adf_test(df, series): results = adfuller(df[series]) output = pd.Series(results[0:4], index=['t-score', 'p-value', '# of lags used', '# of observations']) for key, value in results[4].items(): output['critical value (%s)' % key] = value # if t-score < critical value at 5%, the data is stationary # if t-score > critical value at 5%, the data is NOT stationary if output[0] < output[5]: print('\nADF: The data', '\'' + series + '\'', 'is STATIONARY \n\n', output) elif output[0] > output[5]: print('\nADF: The data', '\'' + series + '\'', 'is NOT STATIONARY \n\n', output) else: print('\nADF: There is something wrong with', '\'' + series + '\'', '\n\n', output) # KPSS Kwiatkowski-Phillips-Schmidt-Shin Test (stationary test) # null hypothesis = the series has a stationary trend # alt hypothesis = the series has a unit root (series is not stationary) # # accept null = t-score is less than critical value (series is stationary) # reject null = t-score is greater than the critical value (series is not stationary) # # accpet null = good (stationary) # reject null = bad (not stationary) # # kpss classifies a series as stationary on the absence of a unit root # (both strict stationary and trend stationary will be classified as stationary) def kpss_test(df, series): results = kpss(df[series], regression='ct') output =
pd.Series(results[0:3], index=['t-score', 'p-value', '# lags used'])
pandas.Series
""" Unit test suite for OLS and PanelOLS classes """ # pylint: disable-msg=W0212 from __future__ import division from datetime import datetime import unittest import nose import numpy as np from pandas import date_range, bdate_range from pandas.core.panel import Panel from pandas import DataFrame, Index, Series, notnull, datetools from pandas.stats.api import ols from pandas.stats.ols import _filter_data from pandas.stats.plm import NonPooledPanelOLS, PanelOLS from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from common import BaseTest _have_statsmodels = True try: import statsmodels.api as sm except ImportError: try: import scikits.statsmodels.api as sm except ImportError: _have_statsmodels = False def _check_repr(obj): repr(obj) str(obj) def _compare_ols_results(model1, model2): assert(type(model1) == type(model2)) if hasattr(model1, '_window_type'): _compare_moving_ols(model1, model2) else: _compare_fullsample_ols(model1, model2) def _compare_fullsample_ols(model1, model2): assert_series_equal(model1.beta, model2.beta) def _compare_moving_ols(model1, model2): assert_frame_equal(model1.beta, model2.beta) class TestOLS(BaseTest): # TODO: Add tests for OLS y predict # TODO: Right now we just check for consistency between full-sample and # rolling/expanding results of the panel OLS. We should also cross-check # with trusted implementations of panel OLS (e.g. R). # TODO: Add tests for non pooled OLS. @classmethod def setUpClass(cls): try: import matplotlib as mpl mpl.use('Agg', warn=False) except ImportError: pass if not _have_statsmodels: raise nose.SkipTest def testOLSWithDatasets(self): self.checkDataSet(sm.datasets.ccard.load(), skip_moving=True) self.checkDataSet(sm.datasets.cpunish.load(), skip_moving=True) self.checkDataSet(sm.datasets.longley.load(), skip_moving=True) self.checkDataSet(sm.datasets.stackloss.load(), skip_moving=True) self.checkDataSet(sm.datasets.copper.load()) self.checkDataSet(sm.datasets.scotland.load()) # degenerate case fails on some platforms # self.checkDataSet(datasets.ccard.load(), 39, 49) # one col in X all 0s def testWLS(self): X = DataFrame(np.random.randn(30, 4), columns=['A', 'B', 'C', 'D']) Y = Series(np.random.randn(30)) weights = X.std(1) self._check_wls(X, Y, weights) weights.ix[[5, 15]] = np.nan Y[[2, 21]] = np.nan self._check_wls(X, Y, weights) def _check_wls(self, x, y, weights): result = ols(y=y, x=x, weights=1/weights) combined = x.copy() combined['__y__'] = y combined['__weights__'] = weights combined = combined.dropna() endog = combined.pop('__y__').values aweights = combined.pop('__weights__').values exog = sm.add_constant(combined.values, prepend=False) sm_result = sm.WLS(endog, exog, weights=1/aweights).fit() assert_almost_equal(sm_result.params, result._beta_raw) assert_almost_equal(sm_result.resid, result._resid_raw) self.checkMovingOLS('rolling', x, y, weights=weights) self.checkMovingOLS('expanding', x, y, weights=weights) def checkDataSet(self, dataset, start=None, end=None, skip_moving=False): exog = dataset.exog[start : end] endog = dataset.endog[start : end] x = DataFrame(exog, index=np.arange(exog.shape[0]), columns=np.arange(exog.shape[1])) y = Series(endog, index=np.arange(len(endog))) self.checkOLS(exog, endog, x, y) if not skip_moving: self.checkMovingOLS('rolling', x, y) self.checkMovingOLS('rolling', x, y, nw_lags=0) self.checkMovingOLS('expanding', x, y, nw_lags=0) self.checkMovingOLS('rolling', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1, nw_overlap=True) def checkOLS(self, exog, endog, x, y): reference = sm.OLS(endog, sm.add_constant(exog, prepend=False)).fit() result = ols(y=y, x=x) # check that sparse version is the same sparse_result = ols(y=y.to_sparse(), x=x.to_sparse()) _compare_ols_results(result, sparse_result) assert_almost_equal(reference.params, result._beta_raw) assert_almost_equal(reference.df_model, result._df_model_raw) assert_almost_equal(reference.df_resid, result._df_resid_raw) assert_almost_equal(reference.fvalue, result._f_stat_raw[0]) assert_almost_equal(reference.pvalues, result._p_value_raw) assert_almost_equal(reference.rsquared, result._r2_raw) assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw) assert_almost_equal(reference.resid, result._resid_raw) assert_almost_equal(reference.bse, result._std_err_raw) assert_almost_equal(reference.tvalues, result._t_stat_raw) assert_almost_equal(reference.cov_params(), result._var_beta_raw) assert_almost_equal(reference.fittedvalues, result._y_fitted_raw) _check_non_raw_results(result) def checkMovingOLS(self, window_type, x, y, weights=None, **kwds): window = sm.tools.tools.rank(x.values) * 2 moving = ols(y=y, x=x, weights=weights, window_type=window_type, window=window, **kwds) # check that sparse version is the same sparse_moving = ols(y=y.to_sparse(), x=x.to_sparse(), weights=weights, window_type=window_type, window=window, **kwds) _compare_ols_results(moving, sparse_moving) index = moving._index for n, i in enumerate(moving._valid_indices): if window_type == 'rolling' and i >= window: prior_date = index[i - window + 1] else: prior_date = index[0] date = index[i] x_iter = {} for k, v in x.iteritems(): x_iter[k] = v.truncate(before=prior_date, after=date) y_iter = y.truncate(before=prior_date, after=date) static = ols(y=y_iter, x=x_iter, weights=weights, **kwds) self.compare(static, moving, event_index=i, result_index=n) _check_non_raw_results(moving) FIELDS = ['beta', 'df', 'df_model', 'df_resid', 'f_stat', 'p_value', 'r2', 'r2_adj', 'rmse', 'std_err', 't_stat', 'var_beta'] def compare(self, static, moving, event_index=None, result_index=None): index = moving._index # Check resid if we have a time index specified if event_index is not None: ref = static._resid_raw[-1] label = index[event_index] res = moving.resid[label] assert_almost_equal(ref, res) ref = static._y_fitted_raw[-1] res = moving.y_fitted[label] assert_almost_equal(ref, res) # Check y_fitted for field in self.FIELDS: attr = '_%s_raw' % field ref = getattr(static, attr) res = getattr(moving, attr) if result_index is not None: res = res[result_index] assert_almost_equal(ref, res) def test_ols_object_dtype(self): df = DataFrame(np.random.randn(20, 2), dtype=object) model = ols(y=df[0], x=df[1]) summary = repr(model) class TestOLSMisc(unittest.TestCase): ''' For test coverage with faux data ''' @classmethod def setupClass(cls): if not _have_statsmodels: raise nose.SkipTest def test_f_test(self): x = tm.makeTimeDataFrame() y = x.pop('A') model = ols(y=y, x=x) hyp = '1*B+1*C+1*D=0' result = model.f_test(hyp) hyp = ['1*B=0', '1*C=0', '1*D=0'] result = model.f_test(hyp) assert_almost_equal(result['f-stat'], model.f_stat['f-stat']) self.assertRaises(Exception, model.f_test, '1*A=0') def test_r2_no_intercept(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() x_with = x.copy() x_with['intercept'] = 1. model1 = ols(y=y, x=x) model2 = ols(y=y, x=x_with, intercept=False) assert_series_equal(model1.beta, model2.beta) # TODO: can we infer whether the intercept is there... self.assert_(model1.r2 != model2.r2) # rolling model1 = ols(y=y, x=x, window=20) model2 = ols(y=y, x=x_with, window=20, intercept=False) assert_frame_equal(model1.beta, model2.beta) self.assert_((model1.r2 != model2.r2).all()) def test_summary_many_terms(self): x = DataFrame(np.random.randn(100, 20)) y = np.random.randn(100) model = ols(y=y, x=x) model.summary def test_y_predict(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() model1 = ols(y=y, x=x) assert_series_equal(model1.y_predict, model1.y_fitted) assert_almost_equal(model1._y_predict_raw, model1._y_fitted_raw) def test_predict(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() model1 = ols(y=y, x=x) assert_series_equal(model1.predict(), model1.y_predict) assert_series_equal(model1.predict(x=x), model1.y_predict) assert_series_equal(model1.predict(beta=model1.beta), model1.y_predict) exog = x.copy() exog['intercept'] = 1. rs = Series(np.dot(exog.values, model1.beta.values), x.index) assert_series_equal(model1.y_predict, rs) x2 = x.reindex(columns=x.columns[::-1]) assert_series_equal(model1.predict(x=x2), model1.y_predict) x3 = x2 + 10 pred3 = model1.predict(x=x3) x3['intercept'] = 1. x3 = x3.reindex(columns = model1.beta.index) expected = Series(np.dot(x3.values, model1.beta.values), x3.index) assert_series_equal(expected, pred3) beta = Series(0., model1.beta.index) pred4 = model1.predict(beta=beta) assert_series_equal(Series(0., pred4.index), pred4) def test_predict_longer_exog(self): exogenous = {"1998": "4760","1999": "5904","2000": "4504", "2001": "9808","2002": "4241","2003": "4086", "2004": "4687","2005": "7686","2006": "3740", "2007": "3075","2008": "3753","2009": "4679", "2010": "5468","2011": "7154","2012": "4292", "2013": "4283","2014": "4595","2015": "9194", "2016": "4221","2017": "4520"} endogenous = {"1998": "691", "1999": "1580", "2000": "80", "2001": "1450", "2002": "555", "2003": "956", "2004": "877", "2005": "614", "2006": "468", "2007": "191"} endog = Series(endogenous) exog = Series(exogenous) model = ols(y=endog, x=exog) pred = model.y_predict self.assert_(pred.index.equals(exog.index)) def test_longpanel_series_combo(self): wp = tm.makePanel() lp = wp.to_frame() y = lp.pop('ItemA') model =
ols(y=y, x=lp, entity_effects=True, window=20)
pandas.stats.api.ols
#!/usr/bin/env python import os.path import os import sys import pandas as pd from schimpy.unit_conversions import * if sys.version_info[0] < 3: from pandas.compat import u from builtins import open, file, str else: u = lambda x: x import argparse from vtools.data.timeseries import * station_variables = ["elev", "air pressure", "wind_x", "wind_y", "temp", "salt", "u", "v", "w"] def staout_name(var): try: ndx = station_variables.index(var) return "staout_{}".format(ndx+1) except: raise ValueError("Input variable is not standard station variable: {}".format(var)) def read_staout(fname,station_infile,reftime,ret_station_in = False,multi=False,elim_default=False,time_unit='s'): """Read a SCHISM staout_* file into a pandas DataFrame Parameters ---------- fpath : fname Path to input staout file or a variable name in ["elev", "air pressure", "wind_x", "wind_y", "temp", "salt", "u", "v", "w"] whose 1-index will be mapped to a name like staout_1 for elev station_infile : str or DataFrame Path to station.in file or DataFrame from read_station_in reftime : Timestampe Start of simulation, time basis for staout file elapse time ret_station_in : bool Return station_in DataFrame for use, which may speed reading of a second file multi : bool Should the returned data have a multi index for the column with location and sublocation. If False the two are collapsed elim_default : bool If the MultiIndex is collapsed, stations with subloc "default" will be collapsed. Eg. ("CLC","default") becomes "CLC_default" time_unit : string Convertible to pandas frequency string, this is the timestamp of the file. Returns ------- Result : DataFrame DataFrame with hierarchical index (id,subloc) and columns representing the staout data (collapsed as described above Examples -------- >>> staout1,station_in = read_staout("staout_1","station.in",reftime=pd.Timestamp(2009,2,10), ret_station_in = True,multi=False,elim_default=True) >>> staout6 = read_staout("staout_6",station_in,reftime=pd.Timestamp(2009,2,10),multi=False,elim_default=True) """ if isinstance(station_infile,str): station_in = read_station_in(station_infile) else: station_in = station_infile station_index = station_in.index.copy() if station_index.duplicated().any(): print(station_index[station_index.duplicated()]) raise ValueError("Duplicate id/subloc pair in station.in file {}".format(station_infile)) staout = pd.read_csv(fname,index_col=0,sep="\s+",header=None) # todo: hardwire staout.mask(staout<=-999.,inplace=True) staout.columns = station_index elapsed_datetime(staout,reftime=reftime,inplace=True,time_unit=time_unit) staout.index = staout.index.round('s') if not multi: if elim_default: staout.columns = [f'{loc}_{subloc}' if subloc != 'default' else f'{loc}' for loc,subloc in staout.columns] else: staout.columns = [f'{loc}_{subloc}' for loc,subloc in staout.columns] f =
pd.infer_freq(staout.index)
pandas.infer_freq
from isitfit.cost.ec2_analyze import BinCapUsed import datetime as dt import pytest import pandas as pd @pytest.fixture def FakeMm(): class FakeMm: StartTime = dt.datetime(2019,1,15) EndTime = dt.datetime(2019,4,15) return FakeMm class TestBinCapUsedHandlePre: def test_preNoBreak(self, FakeMm): bcs = BinCapUsed() ret = bcs.handle_pre({'mainManager': FakeMm()}) assert ret is not None def test_3m(self, FakeMm): bcs = BinCapUsed() bcs.handle_pre({'mainManager': FakeMm()}) e = pd.DataFrame([ (dt.date(2019,1,31), 0, 0, 0, frozenset([]), dt.date(2019,1,31), dt.date(2019,1,1), ), (dt.date(2019,2,28), 0, 0, 0, frozenset([]), dt.date(2019,2,28), dt.date(2019,2,1), ), (dt.date(2019,3,31), 0, 0, 0, frozenset([]), dt.date(2019,3,31), dt.date(2019,3,1), ), (dt.date(2019,4,30), 0, 0, 0, frozenset([]), dt.date(2019,4,30), dt.date(2019,4,1), ), ], columns=['Timestamp', 'capacity_usd', 'used_usd', 'count_analyzed', 'regions_set', 'dt_start', 'dt_end'] ) for fx in ['Timestamp', 'dt_start', 'dt_end']: e[fx] = pd.to_datetime(e[fx]) e.set_index('Timestamp', inplace=True) pd.testing.assert_frame_equal(e, bcs.df_bins) class TestBinCapUsedPerEc2: def test_1m(self, FakeMm): # prepare input df1 = pd.DataFrame([ (dt.date(2019,1,15), 10, 50), (dt.date(2019,1,16), 12, 50), (dt.date(2019,1,17), 12, 50), ], columns=['Timestamp','capacity_usd','used_usd'] ) # calculate bcs = BinCapUsed() bcs.handle_pre({'mainManager': FakeMm()}) ctx = {'ec2_df': df1, 'ec2_dict': {'Region': 'us-west-2'}} bcs.per_ec2(ctx) bcs.per_ec2(ctx) # expected e = pd.DataFrame([ (dt.date(2019,1,31), 68, 300, 2, frozenset(['us-west-2']), dt.date(2019,1,15), dt.date(2019,1,17), ), (dt.date(2019,2,28), 0, 0, 0, frozenset([]), dt.date(2019,2,28), dt.date(2019,2, 1), ), (dt.date(2019,3,31), 0, 0, 0, frozenset([]), dt.date(2019,3,31), dt.date(2019,3, 1), ), (dt.date(2019,4,30), 0, 0, 0, frozenset([]), dt.date(2019,4,30), dt.date(2019,4, 1), ), ], columns=['Timestamp', 'capacity_usd', 'used_usd', 'count_analyzed', 'regions_set', 'dt_start', 'dt_end'] ) for fx in ['Timestamp', 'dt_start', 'dt_end']: e[fx] =
pd.to_datetime(e[fx])
pandas.to_datetime
import math import logging import re import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import pygest as ge from pygest.convenience import bids_val, dict_from_bids, short_cmp, p_string from pygest.algorithms import pct_similarity from scipy.stats import ttest_ind def mantel_correlogram(X, Y, by, bins=8, r_method='Pearson', fig_size=(8, 5), save_as=None, title='Mantel Correlogram', xlabel='distance bins', ylabel='correlation', logger=None): """ Return a Mantel correlogram between vector_a and vector_b, over by :param X: For our purposes, usually an expression vector. Can be any vector of floats :param Y: For our purposes, usually a connectivity vector. Can be any vector of floats :param by: For our purposes, usually a distance vector. Can be any vector of floats :param bins: The number of bins can be specified :param r_method: The correlation can be calculated as 'Pearson', 'Spearman', or 'Kendall' :param tuple fig_size: size of desired plot, in inches (width, height) :param save_as: A file name for saving out the correlogram :param title: The title of the plot :param xlabel: The x-axis (usually distance bins) label :param ylabel: The y-axis (X vs Y correlations) label :param logger: We can log notes to your logger or ours. :return: matplotlib (Figure, Axes) objects containing the correlogram plot """ # Attach to the proper logger if logger is None: logger = logging.getLogger('pygest') # Figure out the boundaries of the distance bins dist_min = math.floor(min(by)) - (math.floor(min(by)) % bins) dist_max = math.ceil(max(by)) + bins - (math.ceil(max(by)) % bins) dist_x_axis = np.arange(dist_min, dist_max, dist_max / bins) logger.info("({:0.2f} - {:0.2f}) -> ({} - {}), {}".format( min(by), max(by), dist_min, dist_max, dist_x_axis )) # Calculate correlations for each distance bin separately. ds = [] prs = [] ns = [] rlos = [] rhis = [] for a in dist_x_axis: # Create distance filters for this particular bin by_filter = np.logical_and(by >= a, by < a + dist_max / bins) logger.info(" {ts:,} of {all:,} distances are between {sm:0.1f} and {lg:0.1f}.".format( ts=np.count_nonzero(by_filter), all=len(by), sm=a, lg=a + dist_max / bins )) # Filter vectors for this bin. _Y = Y[by_filter] _X = X[by_filter] ns.append(len(_X)) logger.info(" using {:,} (in distance range) of the {:,} original values.".format( len(_Y), len(Y) )) # Calculate the correlations for this distance bin _r = ge.corr(_X, _Y, method=r_method) prs.append(_r) ds.append(a + dist_max / bins / 2) # Since r values are not going to be normally distributed (except maybe right at zero) # we need to transform them to Fisher's normal z' and back. z_prime = 0.50 * math.log((1 + _r) / (1 - _r)) z_se = 1 / math.sqrt(len(_X) - 3) z_lo = z_prime - z_se z_hi = z_prime + z_se r_lo = (math.exp(2 * z_lo) - 1) / (math.exp(2 * z_lo) + 1) r_hi = (math.exp(2 * z_hi) - 1) / (math.exp(2 * z_hi) + 1) rlos.append(r_lo) rhis.append(r_hi) logger.info(" r = {:0.4f} ({:0.3f} - {:0.3f}) for these {} sample-sample relationships.".format( _r, r_lo, r_hi, len(_X))) # Calculate an overall r for comparison r = ge.corr(X, Y, method=r_method) # Build the plot fig = plt.figure(figsize=fig_size) ax = fig.add_subplot(111) ax.axis([dist_min, dist_max, -1.0, 1.0]) ax.axhline(y=0, xmin=0, xmax=1, linestyle=':', color='gray') # ax.axhline(y=spearman, xmin=0, xmax=1, linestyle='--', color='green') # ax.axhline(y=kendall, xmin=0, xmax=1, linestyle='--', color='red') oline = ax.axhline(y=r, xmin=0, xmax=1, linestyle='--', color='black', linewidth=2) # sline, = ax.plot(ds, srs, linestyle='-', marker='o', color='green') # kline, = ax.plot(ds, krs, linestyle='-', marker='o', color='red') pline, = ax.plot(ds, prs, linestyle='-', marker='o', color='black', linewidth=2) ax.vlines(x=ds, ymin=rlos, ymax=rhis, linewidth=1, color='black') ax.hlines(y=rhis, xmin=[x - 1 for x in ds], xmax=[x + 1 for x in ds], linewidth=1, color='black') ax.hlines(y=rlos, xmin=[x - 1 for x in ds], xmax=[x + 1 for x in ds], linewidth=1, color='black') for i, n in enumerate(ns): ax.annotate('n=', (ds[i], -0.90), ha='center') ax.annotate(n, (ds[i], -0.97), ha='center') ax.legend((pline, oline), ('Pearson r', 'all distances'), loc='upper center') # ax.legend((pline, sline, kline, oline), ('Pearson r', 'Spearman r', 'Kendall tau', 'all distances')) ax.set_xticks(tuple(np.append(dist_x_axis, dist_max))) ax.set_title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if save_as is not None: fig.savefig(save_as) # fig.close() return fig, ax def conn_vs_expr_scatter(X, Y, xd, yd, save_as=None, title='Connectivity and Expression', xlabel='expression', ylabel='connectivity', logger=None): """ Scatter the many values for Y vs X in background and yd vs xd in foreground (darker). This is helpful to visualize connectivity values and expression values juxtaposed. Overlaying xd and yd can show how a subset of X and Y may lie in a particular area of the plot or have a slightly different correlation. :param X: A vector of expression correlations :param Y: A vector of connectivity values :param xd: A vector of expression correlations, a subset of X to call out :param yd: A vector of connectivity values, a subset of Y to call out :param save_as: The file name if you'd like to save the plot generated :param title: Override the default title :param xlabel: Override the default x label :param ylabel: Override the default y label :param logger: Catch logging output and divert it wherever you like :return: matplotlib (Figure, Axes) objects containing the regression plot """ # Attach to the proper logger if logger is None: logger = logging.getLogger('pygest') logger.info("Plotting {} foreground points over {} background points.".format( len(X), len(xd) )) fig = plt.figure(figsize=(8, 5)) ax = fig.add_subplot(111) ax.axis([min(X), max(X), -1.0, 1.0]) # Set the axes and plot the grid first ax.axis([0.6, 1.0, -0.4, 1.0]) ax.axhline(y=0, xmin=0, xmax=1, linestyle=':', color='gray') # plt.axvline(x=0, ymin=0, ymax=1, linestyle=':', color='gray') ax.title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) # Plot the points next ax.plot(X, Y, '.', color='lightblue') ax.plot(xd, yd, '.', color='gray') # And put the fit lines over the top of everything. m, b = np.polyfit(X, Y, 1) md, bd = np.polyfit(xd, yd, 1) ax.plot(X, m * X + b, '-', color='blue') ax.plot(xd, md * xd + bd, '-', color='black') # Add annotations r = np.corrcoef(X, Y)[0, 1] ax.annotate("all:", (0.61, 0.97), ha="left", va="top", color="blue") ax.annotate("m = {:0.3f}".format(m), (0.62, 0.91), ha="left", va="top", color="blue") ax.annotate("r = {:0.3f}".format(r), (0.62, 0.85), ha="left", va="top", color="blue") rd = np.corrcoef(xd, yd)[0, 1] ax.annotate("dist:", (0.61, 0.78), ha="left", va="top", color="black") ax.annotate("m = {:0.3f}".format(md), (0.62, 0.72), ha="left", va="top", color="black") ax.annotate("r = {:0.3f}".format(rd), (0.62, 0.66), ha="left", va="top", color="black") if save_as is not None: logger.info("Saving plot to {}".format(save_as)) fig.savefig(save_as) return fig, ax def heat_map(expression_df, title="Heat Map", fig_size=(5, 8), c_map="Reds", save_as=None, logger=None): """ Build, save, and return a heat map plot. :param pandas.DataFrame expression_df: A pandas DataFrame containing data for the plot :param str title: Override the default plot title with one of your choosing :param tuple fig_size: Dimensions (mostly relative) of figure generated :param str c_map: A seaborn color scheme string :param str save_as: If provided, the plot will be saved to this filename :param logging.Logger logger: If provided, logging will be directed to this logger :return fig, ax: matplotlib figure and axes objects """ # Attach to the proper logger if logger is None: logger = logging.getLogger('pygest') fig, ax = plt.subplots(figsize=fig_size) sns.set_style('white') sns.heatmap(expression_df, annot=False, ax=ax, cmap=c_map) ax.set_title(title) if save_as is not None: logger.info("Saving heat map to {}".format(save_as)) fig.savefig(save_as) return fig, ax def overlay_normal(ax, data, c="red"): """ Provide a normal distribution Axes for overlay onto existing plot, based on data's mean and sd :param matplotlib.Axes ax: The axes object to draw onto :param data: The original data for basing our normal distribution :param str c: A string referring to a seaborn color :return: The same axes passed as an argument, but with a normal curve drawn over it """ norm_data = np.random.normal(loc=np.mean(data), scale=np.std(data), size=2048) sns.kdeplot(norm_data, color=c, ax=ax) # ax.vlines(x=np.mean(data), ymin=0.0, ymax=1.0, linewidth=0.5, color=c) ax.vlines(x=np.mean(data) - (2 * np.std(data)), ymin=0, ymax=5.0, linewidth=0.5, color=c) ax.vlines(x=np.mean(data), ymin=0, ymax=5.0, linewidth=0.5, color=c) ax.vlines(x=np.mean(data) + (2 * np.std(data)), ymin=0, ymax=5.0, linewidth=0.5, color=c) return ax def distribution_plot(data, title="Distribution", fig_size=(5, 5), c="red", save_as=None, logger=None): """ Build, save, and return a heat map plot. :param pandas.DataFrame data: A pandas DataFrame containing data for the plot :param str title: Override the default plot title with one of your choosing :param tuple fig_size: Dimensions (mostly relative) of figure generated :param str c: A seaborn color string :param str save_as: If provided, the plot will be saved to this filename :param logging.Logger logger: If provided, logging will be directed to this logger :return fig, ax: matplotlib figure and axes objects """ # Density plots can take a long time to build with big samples; subsample if necessary max_density_length = 1024 # Attach to the proper logger if logger is None: logger = logging.getLogger('pygest') opp_c = "blue" if c == "red" else "red" fig, ax = plt.subplots(figsize=fig_size) sns.set_style('white') sub_data = data if len(data) <= max_density_length else np.random.choice(data, max_density_length) ax = overlay_normal(sns.distplot(sub_data, hist=True, rug=True, color=c), sub_data, c=opp_c) ax.set_title(title) if save_as is not None: logger.info("Saving distribution plot to {}".format(save_as)) fig.savefig(save_as) return fig, ax def heat_and_density_plot(value_matrix, density_position='top', title="Heat Map", fig_size=(6, 4), ratio=3, c_map="Reds", save_as=None, logger=None): """ Build, save, and return a heat map plot. :param value_matrix: A DataFrame or matrix containing data for the plot :param str density_position: Which edge gets the density_plot? :param str title: Override the default plot title with one of your choosing :param tuple fig_size: Dimensions (mostly relative) of figure generated :param integer ratio: This number-to-one heat map to density plot size :param str c_map: A seaborn color scheme string :param str save_as: If provided, the plot will be saved to this filename :param logging.Logger logger: If provided, logging will be directed to this logger :return fig: matplotlib figure object """ # Attach to the proper logger if logger is None: logger = logging.getLogger('pygest') fig = plt.figure(figsize=fig_size) if density_position == 'left': gs = plt.GridSpec(ratio, ratio + 1) ax_main = fig.add_subplot(gs[:, 1:]) ax_dens = fig.add_subplot(gs[:, 0]) go_vertical = True elif density_position == 'right': gs = plt.GridSpec(ratio, ratio + 1) ax_main = fig.add_subplot(gs[:, :-1]) ax_dens = fig.add_subplot(gs[:, -1]) go_vertical = True elif density_position == 'bottom': gs = plt.GridSpec(ratio + 1, ratio) ax_main = fig.add_subplot(gs[:-1, :]) ax_dens = fig.add_subplot(gs[-1, :]) go_vertical = False else: # density_position == 'top' or some invalid setting triggering 'top' default # GridSpec is set with nrows, ncols gs = plt.GridSpec(ratio + 1, ratio) # For a top-density, use [all rows after the 0th x all columns] for main ax_main = fig.add_subplot(gs[1:, :]) # For a top-density, use [0th row x all columns] for density plot ax_dens = fig.add_subplot(gs[0, :]) go_vertical = False # Density plots can take a long time to build with big samples; subsample if necessary max_density_length = 1024 if isinstance(value_matrix, pd.DataFrame): value_matrix = value_matrix.as_matrix() if value_matrix.shape[0] == value_matrix.shape[1]: value_vector = value_matrix[np.tril_indices(n=value_matrix.shape[0], k=-1)] else: value_vector = value_matrix.flatten() if len(value_vector) <= max_density_length: sub_vector = value_vector else: sub_vector = np.random.choice(value_vector, max_density_length) sns.set_style('white') c = c_map.lower()[:-1] sns.heatmap(value_matrix, annot=False, ax=ax_main, cmap=c_map, xticklabels=False, yticklabels=False) sns.set_style('white') ax_dens = overlay_normal(sns.distplot( sub_vector, hist=True, rug=True, color=c, ax=ax_dens, vertical=go_vertical ), sub_vector, c=c) ax_dens.set_title(title) if save_as is not None: logger.info("Saving heat map to {}".format(save_as)) fig.savefig(save_as) return fig def whack_a_probe_plot(donor, hemisphere, samples, conns, conss=None, nulls=None, fig_size=(16, 9), save_as=None, logger=None): """ Plot increasing correlations by different whack-a-probe algorithms. :param donor: The donor of interest :param hemisphere: The donor's hemisphere of interest :param samples: The subset (cor, sub, all) of donor's samples to represent :param conns: A list of tuples, each tuple (name, DataFrame), each DataFrame representing rising correlations :param conss: A list of tuples, each tuple (name, DataFrame), each DataFrame representing rising correlations :param nulls: A list of tuples, each tuple (name, DataFrame), each DataFrame representing rising correlations :param fig_size: The size, in inches, of the figure (width, height) :param str save_as: If provided, the plot will be saved to this filename :param logging.Logger logger: If provided, logging will be directed to this logger :return: matplotlib figure object """ if logger is None: logger = logging.getLogger("pygest") fig, ax = plt.subplots(figsize=fig_size) # Plot a single horizontal line at y=0 ax.axhline(0, 0, 17000, color='gray') # Finally, plot the real curves def plot_curves(the_curve, ls, lc): if 'max' in the_curve[0]: legend_label = "{}, max r={:0.3f}".format( the_curve[0][6:], max(list(the_curve[1]['r' if 'r' in the_curve[1].columns else 'b'])) ) elif 'min' in the_curve[0]: legend_label = "{}, min r={:0.3f}".format( the_curve[0][6:], min(list(the_curve[1]['r' if 'r' in the_curve[1].columns else 'b'])) ) else: legend_label = the_curve[0][6:] ax.plot(list(the_curve[1].index), list(the_curve[1]['r' if 'r' in the_curve[1].columns else 'b']), label=legend_label, linestyle=ls, color=lc) # Plot the nulls first, so they are in the background print("nulls = ".format(nulls)) if nulls is not None and len(nulls) > 0: for a_null in nulls: if 'smrt' in a_null[0]: plot_curves(a_null, ls=':', lc='lightgray') elif 'once' in a_null[0]: plot_curves(a_null, ls=':', lc='lightgray') else: plot_curves(a_null, ls=':', lc='yellow') # Also, plot the averaged null, our expected tortured r-value if we are only begging noise to confess def plot_mean_curves(mm, f, the_nulls): the_filter = [mm in x[0] for x in the_nulls] if sum(the_filter) > 0: the_nulls = [i for (i, v) in zip(the_nulls, the_filter) if v] mean_the_nulls = np.mean([x[1]['r' if 'r' in x[1].columns else 'b'] for x in the_nulls], axis=0) ll = "{}, mean {} r={:0.3f}".format('shuffled', mm, f(mean_the_nulls)) ax.plot(list(the_nulls[0][1].index), mean_the_nulls, linestyle=':', color='darkgray', label=ll) plot_mean_curves("max", max, nulls) plot_mean_curves("min", min, nulls) if conns is not None and len(conns) > 0: for a_real in conns: if 'smrt' in a_real[0]: plot_curves(a_real, ls='-', lc='black') elif 'once' in a_real[0]: plot_curves(a_real, ls='--', lc='black') else: plot_curves(a_real, ls='-', lc='yellow') if conss is not None and len(conss) > 0: for a_real in conss: if 'smrt' in a_real[0]: plot_curves(a_real, ls='-', lc='green') elif 'once' in a_real[0]: plot_curves(a_real, ls='--', lc='green') else: plot_curves(a_real, ls='-', lc='yellow') # Tweak the legend, then add it to the axes, too def leg_sort(t): """ Sort the legend in a way that maps to peaks of lines visually. """ score = 0 if 'smrt' in t[0]: score += 3 elif 'once' in t[0]: score += 2 else: score += 1 if 'max' in t[0]: score *= -1 elif 'min' in t[0]: score *= 1 return score handles, labels = ax.get_legend_handles_labels() # sort both labels and handles by labels labels, handles = zip(*sorted(zip(labels, handles), key=leg_sort)) ax.legend(handles, labels, loc=2) # Finish it off with a title ax.set_title("{}, {} hemisphere, {} set".format(donor, hemisphere, samples)) if save_as is not None: logger.info("Saving whack-a-probe plot to {}".format(save_as)) fig.savefig(save_as) return fig def light_dark_palettes(central_palette=None): """ Return two palettes, one lighter and one darker than central_palette, but with the same scheme. :param central_palette: A seaborn color palette, defaults to seaborn's colorblind palette. :returns light_palette, dark_palette: Two palettes, one lighter and one darker """ # Generate colorblind palette, then adjust intensity up and down slightly for light and dark versions # Seaborn handles palettes, strings, or even None to generate a palette. pal = sns.color_palette(central_palette) # Reduce the intensity of each color channel to darken the overall color pal_dark = [( c[0] - (c[0] / 3), c[1] - (c[1] / 3), c[2] - (c[2] / 3) ) for c in pal] # Increase the intensity of each color channel to lighten the overall color pal_light = [( c[0] + ((1.0 - c[0]) / 3), c[1] + ((1.0 - c[1]) / 3), c[2] + ((1.0 - c[2]) / 3) ) for c in pal] return pal_light, pal_dark def curve_properties(df, shuffle_name, palette="colorblind"): """ Return appropriate properties for curves and boxplots representing a given shuffle type. :param pandas.DataFrame df: A dataframe with a 'path' column holding paths to result files by 'shuf' :param str shuffle_name: The name of the shuffle type key :param palette: The name of the seaborn color palette to use :returns dict: dict with labelled properties of a curve """ # print("DEBUG: df, return value from curve_properties(df, {})".format(shuffle_name)) # print("df is {}; has {} {}-paths.".format(df.shape, df[df['shuf'] == shuffle_name].shape, shuffle_name)) # print(df.shape) # Generate color palettes pal_light, pal_dark = light_dark_palettes(palette) # 0: blue, 1: orange, 2: green, 3: red, 4: violet, 5: brown, 6: pink, 7: gray, 8: yellow, 9: aqua property_dict = { "files": list(df.loc[df['shuf'] == shuffle_name, 'path']), "shuf": shuffle_name, } if shuffle_name == "none": property_dict.update({"linestyle": "-", "color": "black", "light_color": "gray", }) elif shuffle_name.startswith("be"): property_dict.update({"linestyle": ":", "color": pal_dark[0], "light_color": pal_light[0], }) # 0 == blue elif shuffle_name == "dist": property_dict.update({"linestyle": ":", "color": pal_dark[3], "light_color": pal_light[3], }) # 3 == red elif shuffle_name == "agno": property_dict.update({"linestyle": ":", "color": pal_dark[6], "light_color": pal_light[6], }) # 6 == pink elif shuffle_name == "smsh": property_dict.update({"linestyle": ":", "color": pal_dark[5], "light_color": pal_light[5], }) # 5 == brown elif shuffle_name == "edge": property_dict.update({"linestyle": ":", "color": pal_dark[2], "light_color": pal_light[2], }) # 2 == green else: property_dict.update({"linestyle": ".", "color": pal_dark[7], "light_color": pal_light[7], }) # 7 == gray # print("DEBUG: property_dict, return value from curve_properties(df, {})".format(shuffle_name)) # print("property_dict has {} files for shuf {}".format(len(property_dict['files']), shuffle_name)) return property_dict def push_plot_via_dict(data, d): """ Use settings from a json file to specify a push plot. :param data: and instance of the pygest.Data object :param d: a dictionary specifying configuration for plot :return: 0 for success, integer error code for failure """ print("Pretending to make a plot from {}".format(d)) colormap = ['black', 'blue', 'red', 'green', 'gray', 'orange', 'violet'] plottables = [] for subgroup_spec in d['intra'].keys(): for i, subgroup in enumerate(d['intra'][subgroup_spec]): bids_filter = d['controls'].copy() bids_filter[subgroup_spec] = subgroup plottables.append({ 'files': data.derivatives(bids_filter), 'color': colormap[i % len(colormap)], 'linestyle': ':', 'label_keys': [subgroup_spec] }) for curve in plottables: print("Curves in {}".format(os.path.join(d['outdir'], d['filename']))) print(curve) fig, ax = push_plot(plottables, title=d['title']) fig.savefig(os.path.join(d['outdir'], d['filename'])) return 0 def push_vs_null_plot(data, donor, hem, samp, algo='smrt', comp='conn', mask='none', label_keys=None): """ Use reasonable defaults to generate a push_plot for a particular dataset. This function does all of the gathering of files and generation of lists for sending to push_plot. :param data: an instance of the pygest.Data object :param donor: a string representing the donor of interest :param hem: a single character representing left or right hemisphere :param samp: 'cor' or 'sub' to indicate which sample set to use :param algo: 'smrt' for the smart efficient algorithm, 'once' or 'evry' for alternatives :param comp: 'conn' for connectivity, or 'cons' for connectivity similarity comparisons :param mask: 'none' for full data, or 'fine', 'coarse' or an integer for masked data :param label_keys: A list of keys can limit the size of the legend :return figure: axes of the plot """ the_filters = {'sub': donor, 'hem': hem, 'samp': samp, 'algo': algo, 'comp': comp, 'mask': mask, 'adj': 'none', 'exclusions': ['test', 'NULL', ], } # Get results for actual values and three types of shuffles the_results = {} for result_type in ['none', 'agno', 'dist', 'edge', ]: # Ask Data for a list of files that match our filters the_results[result_type] = data.derivatives(the_filters, shuffle=result_type) print("Retrieved {} results for {} shuffles.".format(len(the_results[result_type]), result_type)) # Set up several sets of curves to be plotted plottables = [ {'files': the_results['agno'], 'color': 'gray', 'linestyle': ':', 'label': 'shuffle (n={})'.format(len(the_results['agno']))}, {'files': the_results['dist'], 'color': 'red', 'linestyle': ':', 'label': 'weighted (n={})'.format(len(the_results['dist']))}, {'files': the_results['edge'], 'color': 'blue', 'linestyle': ':', 'label': 'edges (n={})'.format(len(the_results['edge']))}, {'files': the_results['none'], 'color': 'black', 'linestyle': '-', 'label_keys': ['comp', ]}, ] the_title = "{}_{}_{}_{}_{} actual vs shuffling".format(donor, hem, samp, comp, mask) return push_plot(plottables, the_title, label_keys=label_keys, fig_size=(8, 5)) def push_plot(push_sets, title="Push Plot", label_keys=None, plot_overlaps=False, fig_size=(16, 12), save_as=None, push_x_to=None): """ Draw a plot with multiple push results overlaid for comparison. :param push_sets: a list of dicts, each dict contains ('files', optional 'color', optional 'linestyle') :param title: override the default "Push Plot" title with something more descriptive :param label_keys: if specified, labels will be generated from these keys and the files in push_sets :param plot_overlaps: If true, calculate pct_overlap for each group and annotate the plot with them :param fig_size: override the default (16, 9) fig_size :param save_as: if specified, the plot will be drawn into the file provided :param push_x_to: if specified, an optimization from (0 to 100) will plot as (push_x_to - 100 to push_x_to) :return: figure, axes of the plot """ fig, ax = plt.subplots(figsize=fig_size) fig.tight_layout() # Plot a single horizontal line at y=0 ax.axhline(0, 0, 17000, color='gray') if len(push_sets) == 0: return fig, ax # Plot each push_set ls = '-' lc = 'black' label = '' curve_list = [] for i, push_set in enumerate(push_sets): if 'linestyle' in push_set: ls = push_set['linestyle'] if 'color' in push_set: lc = push_set['color'] if 'label' in push_set: label = push_set['label'] if 'label_keys' in push_set: label_keys = push_set['label_keys'] if len(push_set) > 0: ax, df = plot_pushes(push_set['files'], axes=ax, label=label, label_keys=label_keys, linestyle=ls, color=lc, push_x_to=push_x_to) df['push_set'] = i if len(df) > 0: curve_list.append(df) all_curves = pd.concat(curve_list, axis=0, sort=True) # Append summary statistics to a label def label_add_summary(x, d): if (len(d) == 0) or (len(d['best_score']) == 0): return "{} empty".format(x) if plot_overlaps and (len(d['f']) > 1): return "{}={:0.2f} with {:0.1%} overlap (n={})".format( x, np.mean(d['best_score']), pct_similarity(d['f']), len(d.index) ) else: return "{}={:0.2f} (n={})".format( x, np.mean(d['best_score']), len(d.index) ) # Tweak the legend, then add it to the axes, too def legend_sort_val(t): """ Sort the legend in a way that maps to peaks of lines visually. """ val = re.compile(r"^.*r=(\S+) .*$").search(t[0]).groups()[0] # Return the negative so high values are first in the vertical legend. return float(val) * -1.0 max_handles = [] min_handles = [] max_labels = [] min_labels = [] null_handles = [] null_labels = [] handles, labels = ax.get_legend_handles_labels() # Add summary statistics to labels labels = [label_add_summary(x, all_curves[all_curves['group'] == x]) for x in labels] # sort both labels and handles by labels if len(labels) > 0 and len(handles) > 0: labels, handles = zip(*sorted(zip(labels, handles), key=legend_sort_val)) for i, l in enumerate(labels): if "max" in l: max_handles.append(handles[i]) max_labels.append(labels[i]) elif "min" in l: min_handles.append(handles[i]) min_labels.append(labels[i]) else: null_handles.append(handles[i]) null_labels.append(labels[i]) # Add a full legend (that will be emptied) and three separate legends with appropriate labels in each. ax.legend(handles, labels, loc=7) if len(max_labels) > 0: ax.add_artist(ax.legend(max_handles, max_labels, loc=2)) if len(null_labels) > 0: ax.add_artist(ax.legend(null_handles, null_labels, loc=6)) if len(min_labels) > 0: ax.add_artist(ax.legend(min_handles, min_labels, loc=3)) # Finish it off with a title ax.set_title(title) if save_as is not None: fig.savefig(save_as) return fig, ax def plot_pushes(files, axes=None, label='', label_keys=None, linestyle='-', color='black', push_x_to=None): """ Plot the push results from a list of tsv files onto axes. This plots as many curves as are in files, and is called repeatedly (each time with different curves) on a single figure by push_plot. :param list files: A list of full file paths to tsv data holding push results :param axes: matplotlib axes for plotting to :param label: if supplied, override the calculated label for use in the legend for this set of results :param label_keys: if supplied, calculated the label from these fields :param linestyle: this linestyle will be used to plot these results :param color: this color will be used to plot these results :param push_x_to: if specified, an optimization from (0 to 100) will plot as (push_x_to - 100 to push_x_to) :returns axes, pd.DataFrame: the axes containing the representations of results in files """ if axes is None: fig, axes = plt.subplots() if len(files) == 0: return axes, pd.DataFrame() # Remember values for duplicate labels so we can average them at the end if necessary. summary_list = [] # label_values = {} # label_files = {} for f in files: df = pd.read_csv(f, sep='\t', index_col=0) measure = 'r' if 'r' in df.columns else 'b' summary = {'f': f, 'measure': measure, 'tgt': bids_val('tgt', f)} if push_x_to is not None: # Shift indices higher to allow alignment of variable-length plots to the right side. df.index = df.index + (push_x_to - df.index.max()) if summary['tgt'] == 'max': the_best_score = df[measure].max() the_best_index = df[measure][5:].idxmax() elif summary['tgt'] == 'min': the_best_score = df[measure].min() the_best_index = df[measure][5:].idxmin() else: the_best_score = 0.0 the_best_index = 0 summary['best_score'] = the_best_score summary['best_index'] = the_best_index # If a label is not provided, create it, and in a way we can modify it later. # These labels are not tied to the axes, yet, and exist only in the local function if label == '': if label_keys is None: # default values, if they aren't specified label_keys = ['tgt', 'alg', 'msk', ] label_group = "_".join([short_cmp(bids_val(k, f)) for k in label_keys]) label_group = label_group + ", {} {}".format(bids_val('tgt', f), measure) # try: # label_values[label_group].append(best_score) # except KeyError: # # If the label_group does not yet appear in label_values, start the list # label_values[label_group] = [best_score, ] # try: # label_files[label_group].append(f) # except KeyError: # # If the label_group does not yet appear in label_files, start the list # label_files[label_group] = [f, ] else: label_group = label summary['group'] = label_group # Plot the curve on the axes real_handles, axes_labels = axes.get_legend_handles_labels() if label_group in [x.split("=")[0] for x in axes_labels]: # If a label already exists, just plot the line without a label. axes.plot(list(df.index), list(df[measure]), linestyle=linestyle, color=color) else: # If there's no label, make one and plot the line with it. axes.plot(list(df.index), list(df[measure]), linestyle=linestyle, color=color, label=label_group) summary_list.append(summary) summaries =
pd.DataFrame(summary_list)
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: li @file: factor_operation_capacity.py @time: 2019-05-30 """ import gc import sys sys.path.append('../') sys.path.append('../../') sys.path.append('../../../') import six, pdb import pandas as pd from pandas.io.json import json_normalize from utilities.singleton import Singleton # from basic_derivation import app # from ultron.cluster.invoke.cache_data import cache_data pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) @six.add_metaclass(Singleton) class FactorBasicDerivation(object): """ 基础衍生类因子 """ def __init__(self): __str__ = 'factor_basic_derivation' self.name = '基础衍生' self.factor_type1 = '基础衍生' self.factor_type2 = '基础衍生' self.description = '基础衍生类因子' @staticmethod def EBIT(tp_derivation, factor_derivation, dependencies=['total_profit', 'interest_expense', 'interest_income', 'financial_expense']): """ :name: 息税前利润(MRQ) :desc: [EBIT_反推法]息税前利润(MRQ) = 利润总额 + 利息支出 - 利息收入 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None func = lambda x: (x[0] + x[1] - x[2]) if x[1] is not None and x[2] is not None else (x[0] + x[3] if x[3] is not None else None) management['EBIT'] = management[dependencies].apply(func, axis=1) # management = management.drop(dependencies, axis=1) management = management[['EBIT']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EBITDA(tp_derivation, factor_derivation, dependencies=['total_profit', 'income_tax'], dependency=['EBIT']): """ :name: 息前税后利润(MRQ) :desc: 息前税后利润(MRQ)=EBIT(反推法)*(if 所得税&利润总额都>0,则1-所得税率,否则为1),所得税税率 = 所得税/ 利润总额 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management2 = factor_derivation.loc[:, dependency] management = pd.merge(management, management2, how='outer', on='security_code') management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: None if x[0] is None or x[1] is None or x[2] is None or x[1] == 0 else (x[0] * (1 - x[2] / x[1]) if x[1] > 0 and x[2] > 0 else x[0]) management['EBITDA'] = management[dependency].apply(func, axis=1) # management = management.drop(dependencies, axis=1) management = management[['EBITDA']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def DepAndAmo(tp_derivation, factor_derivation, dependencies=['fixed_assets_depreciation', 'intangible_assets_amortization', 'defferred_expense_amortization']): """ :name: 折旧和摊销(MRQ) :desc: 固定资产折旧 + 无形资产摊销 + 长期待摊费用摊销 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['DepAndAmo'] = management[dependencies].apply(func, axis=1) # management = management.drop(dependencies, axis=1) management = management[['DepAndAmo']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def FCFF(tp_derivation, factor_derivation, dependencies=['total_current_assets', 'cash_equivalents', 'total_current_liability', 'shortterm_loan', 'shortterm_bonds_payable', 'non_current_liability_in_one_year', 'total_current_assets_pre', 'cash_equivalents_pre', 'total_current_liability_pre', 'shortterm_loan_pre', 'shortterm_bonds_payable_pre', 'non_current_liability_in_one_year_pre', 'fix_intan_other_asset_acqui_cash', ], dependency=['EBITDA', 'DepAndAmo']): """ :name: 企业自由现金流量(MRQ) :desc: 息前税后利润+折旧与摊销-营运资本增加-资本支出 = 息前税后利润+ 折旧与摊销-营运资本增加-构建固定无形和长期资产支付的现金, 营运资本 = 流动资产-流动负债, 营运资金=(流动资产-货币资金)-(流动负债-短期借款-应付短期债券-一年内到期的长期借款-一年内到期的应付债券) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management2 = factor_derivation.loc[:, dependency] management = pd.merge(management, management2, how='outer', on='security_code') management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: x[0] + x[1] - (x[2] - x[3] - x[4] + x[5] + x[6] + x[7]) + (x[2] - x[3] - x[4] + x[5] + x[6] + x[7]) - x[8]if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None and \ x[5] is not None and \ x[6] is not None and \ x[7] is not None and \ x[8] is not None else None management['FCFF'] = management[dependency].apply(func, axis=1) management = management[['FCFF']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def FCFE(tp_derivation, factor_derivation, dependencies=['borrowing_repayment', 'cash_from_borrowing', 'cash_from_bonds_issue'], dependency=['FCFF']): """ :name: 股东自由现金流量(MRQ) :desc: 企业自由现金流量-偿还债务所支付的现金+取得借款收到的现金+发行债券所收到的现金(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management2 = factor_derivation.loc[:, dependency] management = pd.merge(management, management2, how='outer', on='security_code') management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: x[0] - x[1] + x[2] + x[3] if x[0] is not None and x[1] is not None and \ x[2] is not None and x[3] is not None else None management['FCFE'] = management[dependency].apply(func, axis=1) management = management[['FCFE']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NonRecGainLoss(tp_derivation, factor_derivation, dependencies=['np_parent_company_owners', 'np_cut']): """ :name: 非经常性损益(MRQ) :desc: 归属母公司净利润(MRQ) - 扣非净利润(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['NonRecGainLoss'] = management[dependencies].apply(func, axis=1) management = management[['NonRecGainLoss']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetOptInc(tp_derivation, factor_derivation, sw_industry, dependencies_er=['total_operating_revenue', 'total_operating_cost'], dependencies_yh=['commission_income', 'net_profit', 'other_business_profits', 'operating_cost'], dependencies_zq=['commission_income', 'net_profit', 'other_operating_revenue', 'operating_cost'], dependencies_bx=['operating_revenue', 'operating_cost', 'fair_value_variable_income', 'investment_income', 'exchange_income']): """ :name: 经营活动净收益(MRQ) :desc: 新准则(一般企业):营业总收入-营业总成本" :unit: 元 :view_dimension: 10000 """ industry2_set = ['430100', '370100', '410400', '450500', '640500', '510100', '620500', '610200', '330200', '280400', '620400', '450200', '270500', '610300', '280300', '360300', '410100', '370400', '280200', '730200', '710200', '720200', '640400', '270300', '110400', '220100', '240300', '270400', '710100', '420100', '420500', '420400', '370600', '720100', '640200', '220400', '330100', '630200', '610100', '370300', '410300', '220300', '640100', '490300', '450300', '220200', '370200', '460200', '420200', '460100', '360100', '620300', '110500', '650300', '420600', '460300', '720300', '270200', '630400', '410200', '280100', '210200', '420700', '650200', '340300', '220600', '110300', '350100', '620100', '210300', '240200', '340400', '240500', '360200', '270100', '230100', '370500', '110100', '460400', '110700', '110200', '630300', '450400', '220500', '730100', '640300', '630100', '240400', '420800', '650100', '350200', '620200', '210400', '420300', '110800', '360400', '650400', '110600', '460500', '430200', '210100', '240100', '250100', '310300', '320200', '310400', '310200', '320100', '260500', '250200', '450100', '470200', '260200', '260400', '260100', '440200', '470400', '310100', '260300', '220700', '470300', '470100', '340100', '340200', '230200'] dependencies = list(set(dependencies_er + dependencies_yh + dependencies_bx + dependencies_zq)) management = tp_derivation.loc[:, dependencies] management = management.fillna(0) management = pd.merge(management, sw_industry, how='outer', on='security_code').set_index('security_code') if len(management) <= 0: return None management_tm = pd.DataFrame() func = lambda x: x[0] + x[1] + x[2] - x[3] if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None else None # 银行 ['440100', '480100'] management_yh = management[management['industry_code2'].isin(['440100', '480100'])] management_yh['NetOptInc'] = management_yh[dependencies_yh].apply(func, axis=1) management_tm = management_tm.append(management_yh) # 证券['440300', '490100'] management_zq = management[management['industry_code2'].isin(['440300', '490100'])] management_zq['NetOptInc'] = management_zq[dependencies_zq].apply(func, axis=1) management_tm = management_tm.append(management_zq) func1 = lambda x: x[0] - x[1] - x[2] - x[3] - x[4] if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None else None # 保险['440400', '490200'] management_bx = management[management['industry_code2'].isin(['440400', '490200'])] management_bx['NetOptInc'] = management_bx[dependencies_bx].apply(func1, axis=1) management_tm = management_tm.append(management_bx) func2 = lambda x: None if x[0] is None else (x[0] if x[1] is None else x[0] - x[1]) management_er = management[management['industry_code2'].isin(industry2_set)] management_er['NetOptInc'] = management_er[dependencies_er].apply(func2, axis=1) management_tm = management_tm.append(management_er) dependencies = dependencies + ['industry_code2'] management_tm = management_tm[['NetOptInc']] factor_derivation = pd.merge(factor_derivation, management_tm, how='outer', on="security_code") return factor_derivation @staticmethod def WorkingCap(tp_derivation, factor_derivation, dependencies=['total_current_assets', 'total_current_liability']): """ :name: 运营资本(MRQ) :desc: 流动资产(MRQ)-流动负债(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['WorkingCap'] = management[dependencies].apply(func, axis=1) management = management[['WorkingCap']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TangibleAssets(tp_derivation, factor_derivation, dependencies=['equities_parent_company_owners', 'intangible_assets', 'development_expenditure', 'good_will', 'long_deferred_expense', 'deferred_tax_assets']): """ :name: 有形资产(MRQ) :desc: 股东权益(不含少数股东权益)- (无形资产 + 开发支出 + 商誉 + 长期待摊费用 + 递延所得税资产) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - (x[1] + x[2] + x[3] + x[4] + x[5]) if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None and \ x[5] is not None else None management['TangibleAssets'] = management[dependencies].apply(func, axis=1) management = management[['TangibleAssets']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def RetainedEarnings(tp_derivation, factor_derivation, dependencies=['surplus_reserve_fund', 'retained_profit']): """ :name: 留存收益(MRQ) :desc: 盈余公积MRQ + 未分配利润MRQ :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] if x[0] is not None and x[1] is not None else None management['RetainedEarnings'] = management[dependencies].apply(func, axis=1) management = management[['RetainedEarnings']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestFreeCurLb(tp_derivation, factor_derivation, dependencies=['bill_receivable', 'accounts_payable', 'advance_peceipts', 'salaries_payable', 'taxs_payable', 'accrued_expenses', 'other_payable', 'long_term_deferred_income', 'other_current_liability', ]): """ :name: 无息流动负债(MRQ) :desc: 无息流动负债 = 应收票据+应付帐款+预收款项+应付职工薪酬+应交税费+其他应付款+预提费用+递延收益+其他流动负债 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] if x[0] is not None or \ x[1] is not None or \ x[2] is not None or \ x[3] is not None or \ x[4] is not None or \ x[5] is not None or \ x[6] is not None or \ x[7] is not None or \ x[8] is not None else None management['InterestFreeCurLb'] = management[dependencies].apply(func, axis=1) management = management[['InterestFreeCurLb']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestFreeNonCurLb(tp_derivation, factor_derivation, dependencies=['total_non_current_liability', 'longterm_loan', 'bonds_payable']): """ :name: 无息非流动负债(MRQ) :desc: 非流动负债合计 - 长期借款 - 应付债券 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] - x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['InterestFreeNonCurLb'] = management[dependencies].apply(func, axis=1) management = management[['InterestFreeNonCurLb']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestBearingLiabilities(tp_derivation, factor_derivation, dependencies=['total_liability'], dependency=['InterestFreeCurLb', 'InterestFreeNonCurLb']): """ :name: 带息负债(MRQ) :desc: 负债合计-无息流动负债-无息非流动负债(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management1 = factor_derivation.loc[:, dependency] management = pd.merge(management, management1, how='outer', on="security_code") management = management.fillna(0) if len(management) <= 0: return None dependency = dependencies + dependency func = lambda x: x[0] - x[1] - x[2] if x[0] is not None and \ x[1] is not None and \ x[2] is not None else None management['InterestBearingLiabilities'] = management[dependency].apply(func, axis=1) management = management[['InterestBearingLiabilities']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetDebt(tp_derivation, factor_derivation, dependencies=['cash_equivalents'], dependency=['InterestBearingLiabilities']): """ :name: 净债务(MRQ) :desc: 净债务 = 带息债务(MRQ) - 货币资金(MRQ)。 其中,带息负债 = 短期借款 + 一年内到期的长期负债 + 长期借款 + 应付债券 + 应付利息 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management1 = factor_derivation.loc[:, dependency] management = pd.merge(management, management1, how='outer', on="security_code") management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['NetDebt'] = management[dependency].apply(func, axis=1) management = management[['NetDebt']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EquityPC(tp_derivation, factor_derivation, dependencies=['equities_parent_company_owners']): """ :name: 归属于母公司的股东权益(MRQ) :desc: 归属于母公司的股东权益(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None management = management.rename(columns={'equities_parent_company_owners': 'EquityPC'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalInvestedCap(tp_derivation, factor_derivation, dependencies=['total_owner_equities' ], dependency=['InterestBearingLiabilities']): """ :name: 全部投入资本(MRQ) :desc: 股东权益+(负债合计-无息流动负债-无息长期负债) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management1 = factor_derivation.loc[:, dependency] management = pd.merge(management, management1, how='outer', on="security_code") management = management.fillna(0) dependency = dependency + dependencies if len(management) <= 0: return None func = lambda x: x[0] + x[1] if x[0] is not None and x[1] is not None else None management['TotalInvestedCap'] = management[dependency].apply(func, axis=1) management = management[['TotalInvestedCap']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalAssets(tp_derivation, factor_derivation, dependencies=['total_assets']): """ :name: 资产总计(MRQ) :desc: 资产总计(MRQ) balance :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_assets': 'TotalAssets'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalFixedAssets(tp_derivation, factor_derivation, dependencies=['total_fixed_assets_liquidation']): """ :name: 固定资产合计(MRQ) :desc: 固定资产合计(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_fixed_assets_liquidation': 'TotalFixedAssets'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalLib(tp_derivation, factor_derivation, dependencies=['total_liability']): """ :name: 负债合计(MRQ) :desc: 负债合计(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_liability': 'TotalLib'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def ShEquity(tp_derivation, factor_derivation, dependencies=['total_owner_equities']): """ :name: 股东权益(MRQ) :desc: 股东权益(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_owner_equities': 'ShEquity'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def CashAndCashEqu(tp_derivation, factor_derivation, dependencies=['cash_and_equivalents_at_end']): """ :name: 期末现金及现金等价物(MRQ) :desc: 期末现金及现金等价物(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'cash_and_equivalents_at_end': 'CashAndCashEqu'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def SalesTTM(tp_derivation, factor_derivation, dependencies=['total_operating_revenue']): """ :name: 营业总收入(TTM) :desc: 根据截止指定日已披露的最新报告期“营业总收入”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_operating_revenue': 'SalesTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalOptCostTTM(tp_derivation, factor_derivation, dependencies=['total_operating_cost']): """ :name: 营业总成本(TTM) :desc: 根据截止指定日已披露的最新报告期“营业总成本”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_operating_cost': 'TotalOptCostTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def OptIncTTM(tp_derivation, factor_derivation, dependencies=['operating_revenue']): """ :name: 营业收入(TTM) :desc: 根据截止指定日已披露的最新报告期“营业收入”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'operating_revenue': 'OptIncTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def GrossMarginTTM(tp_derivation, factor_derivation, dependencies=['total_operating_revenue', 'total_operating_cost']): """ :name: 毛利(TTM) 营业毛利润 :desc: 根据截止指定日已披露的最新报告期“毛利”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: (x[0] - x[1]) / x[1] if x[1] != 0 and x[1] is not None else None management['GrossMarginTTM'] = management[dependencies].apply(func, axis=1) management = management[['GrossMarginTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def SalesExpensesTTM(tp_derivation, factor_derivation, dependencies=['sale_expense']): """ :name: 销售费用(TTM) :desc: 根据截止指定日已披露的最新报告期“销售费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'SALESEsale_expenseXPE': 'SalesExpensesTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def AdmFeeTTM(tp_derivation, factor_derivation, dependencies=['administration_expense']): """ :name: 管理费用(TTM) :desc: 根据截止指定日已披露的最新报告期“管理费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'administration_expense': 'AdmFeeTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def FinFeeTTM(tp_derivation, factor_derivation, dependencies=['financial_expense']): """ :name: 财务费用(TTM) :desc: 根据截止指定日已披露的最新报告期“财务费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'financial_expense': 'FinFeeTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def PerFeeTTM(tp_derivation, factor_derivation, dependencies=['sale_expense', 'administration_expense', 'financial_expense', ]): """ :name: 期间费用(TTM) :desc: 根据截止指定日已披露的最新报告期“期间费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['PerFeeTTM'] = management[dependencies].apply(func, axis=1) management = management[['PerFeeTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestExpTTM(tp_derivation, factor_derivation, dependencies=['interest_expense']): """ :name: 利息支出(TTM) :desc: 根据截止指定日已披露的最新报告期“利息支出”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'interest_expense': 'InterestExpTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def MinorInterestTTM(tp_derivation, factor_derivation, dependencies=['minority_profit']): """ :name: 少数股东损益(TTM) :desc: 根据截止指定日已披露的最新报告期“少数股东损益”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'minority_profit': 'MinorInterestTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def AssetImpLossTTM(tp_derivation, factor_derivation, dependencies=['asset_impairment_loss']): """ :name: 资产减值损失(TTM) :desc: 根据截止指定日已披露的最新报告期“资产减值损失”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'asset_impairment_loss': 'AssetImpLossTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetIncFromOptActTTM(tp_derivation, factor_derivation, dependencies=['total_operating_revenue', 'total_operating_cost']): """ :name: 经营活动净收益(TTM) :desc: 根据截止指定日已披露的最新报告期“经营活动净收益”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['NetIncFromOptActTTM'] = management[dependencies].apply(func, axis=1) management = management[['NetIncFromOptActTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetIncFromValueChgTTM(tp_derivation, factor_derivation, dependencies=['fair_value_variable_income', 'investment_income', 'exchange_income', ]): """ :name: 价值变动净收益(TTM) :desc: 公允价值变动净收益+投资净收益+汇兑净收益 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['NetIncFromValueChgTTM'] = management[dependencies].apply(func, axis=1) management = management[['NetIncFromValueChgTTM']] factor_derivation =
pd.merge(factor_derivation, management, how='outer', on="security_code")
pandas.merge
""" miscellaneous sorting / groupby utilities """ from collections import defaultdict from typing import ( TYPE_CHECKING, Callable, DefaultDict, Dict, Iterable, List, Optional, Tuple, Union, ) import numpy as np from pandas._libs import algos, hashtable, lib from pandas._libs.hashtable import unique_label_indices from pandas._typing import IndexKeyFunc from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_extension_array_dtype, ) from pandas.core.dtypes.generic import ABCMultiIndex from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algorithms from pandas.core.construction import extract_array if TYPE_CHECKING: from pandas import MultiIndex from pandas.core.indexes.base import Index _INT64_MAX = np.iinfo(np.int64).max def get_indexer_indexer( target: "Index", level: Union[str, int, List[str], List[int]], ascending: bool, kind: str, na_position: str, sort_remaining: bool, key: IndexKeyFunc, ) -> Optional[np.array]: """ Helper method that return the indexer according to input parameters for the sort_index method of DataFrame and Series. Parameters ---------- target : Index level : int or level name or list of ints or list of level names ascending : bool or list of bools, default True kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' na_position : {'first', 'last'}, default 'last' sort_remaining : bool, default True key : callable, optional Returns ------- Optional[ndarray] The indexer for the new index. """ target = ensure_key_mapped(target, key, levels=level) target = target._sort_levels_monotonic() if level is not None: _, indexer = target.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(target, ABCMultiIndex): indexer = lexsort_indexer( target._get_codes_for_sorting(), orders=ascending, na_position=na_position ) else: # Check monotonic-ness before sort an index (GH 11080) if (ascending and target.is_monotonic_increasing) or ( not ascending and target.is_monotonic_decreasing ): return None indexer = nargsort( target, kind=kind, ascending=ascending, na_position=na_position ) return indexer def get_group_index(labels, shape, sort: bool, xnull: bool): """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations, *as long as* this space fits within int64 bounds; otherwise, though group indices identify unique combinations of labels, they cannot be deconstructed. - If `sort`, rank of returned ids preserve lexical ranks of labels. i.e. returned id's can be used to do lexical sort on labels; - If `xnull` nulls (-1 labels) are passed through. Parameters ---------- labels : sequence of arrays Integers identifying levels at each location shape : sequence of ints Number of unique levels at each location sort : bool If the ranks of returned ids should match lexical ranks of labels xnull : bool If true nulls are excluded. i.e. -1 values in the labels are passed through. Returns ------- An array of type int64 where two elements are equal if their corresponding labels are equal at all location. Notes ----- The length of `labels` and `shape` must be identical. """ def _int64_cut_off(shape) -> int: acc = 1 for i, mul in enumerate(shape): acc *= int(mul) if not acc < _INT64_MAX: return i return len(shape) def maybe_lift(lab, size): # promote nan values (assigned -1 label in lab array) # so that all output values are non-negative return (lab + 1, size + 1) if (lab == -1).any() else (lab, size) labels = map(ensure_int64, labels) if not xnull: labels, shape = map(list, zip(*map(maybe_lift, labels, shape))) labels = list(labels) shape = list(shape) # Iteratively process all the labels in chunks sized so less # than _INT64_MAX unique int ids will be required for each chunk while True: # how many levels can be done without overflow: nlev = _int64_cut_off(shape) # compute flat ids for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype="i8") out = stride * labels[0].astype("i8", subok=False, copy=False) for i in range(1, nlev): if shape[i] == 0: stride = 0 else: stride //= shape[i] out += labels[i] * stride if xnull: # exclude nulls mask = labels[0] == -1 for lab in labels[1:nlev]: mask |= lab == -1 out[mask] = -1 if nlev == len(shape): # all levels done! break # compress what has been done so far in order to avoid overflow # to retain lexical ranks, obs_ids should be sorted comp_ids, obs_ids = compress_group_index(out, sort=sort) labels = [comp_ids] + labels[nlev:] shape = [len(obs_ids)] + shape[nlev:] return out def get_compressed_ids(labels, sizes): """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). Parameters ---------- labels : list of label arrays sizes : list of size of the levels Returns ------- tuple of (comp_ids, obs_group_ids) """ ids = get_group_index(labels, sizes, sort=True, xnull=False) return compress_group_index(ids, sort=True) def is_int64_overflow_possible(shape) -> bool: the_prod = 1 for x in shape: the_prod *= int(x) return the_prod >= _INT64_MAX def decons_group_index(comp_labels, shape): # reconstruct labels if is_int64_overflow_possible(shape): # at some point group indices are factorized, # and may not be deconstructed here! wrong path! raise ValueError("cannot deconstruct factorized group indices!") label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def decons_obs_group_ids(comp_ids, obs_ids, shape, labels, xnull: bool): """ Reconstruct labels from observed group ids. Parameters ---------- xnull : bool If nulls are excluded; i.e. -1 labels are passed through. """ if not xnull: lift = np.fromiter(((a == -1).any() for a in labels), dtype="i8") shape = np.asarray(shape, dtype="i8") + lift if not is_int64_overflow_possible(shape): # obs ids are deconstructable! take the fast route! out = decons_group_index(obs_ids, shape) return out if xnull or not lift.any() else [x - y for x, y in zip(out, lift)] i = unique_label_indices(comp_ids) i8copy = lambda a: a.astype("i8", subok=False, copy=True) return [i8copy(lab[i]) for lab in labels] def indexer_from_factorized(labels, shape, compress: bool = True): ids = get_group_index(labels, shape, sort=True, xnull=False) if not compress: ngroups = (ids.size and ids.max()) + 1 else: ids, obs = compress_group_index(ids, sort=True) ngroups = len(obs) return get_group_index_sorter(ids, ngroups) def lexsort_indexer( keys, orders=None, na_position: str = "last", key: Optional[Callable] = None ): """ Performs lexical sorting on a set of keys Parameters ---------- keys : sequence of arrays Sequence of ndarrays to be sorted by the indexer orders : boolean or list of booleans, optional Determines the sorting order for each element in keys. If a list, it must be the same length as keys. This determines whether the corresponding element in keys should be sorted in ascending (True) or descending (False) order. if bool, applied to all elements as above. if None, defaults to True. na_position : {'first', 'last'}, default 'last' Determines placement of NA elements in the sorted list ("last" or "first") key : Callable, optional Callable key function applied to every element in keys before sorting .. versionadded:: 1.0.0 """ from pandas.core.arrays import Categorical labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) keys = [ensure_key_mapped(k, key) for k in keys] for k, order in zip(keys, orders): cat =
Categorical(k, ordered=True)
pandas.core.arrays.Categorical
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import division import sys import glob import pandas as pd import numpy as np from ngskit.utils import dna #form dna_util import * from common import * # Pipelines def lentivirus_combine(data_path = '/home/ccorbi/Work/Beagle/optim_lib/Kim/demultpx_barcodeOnly/Sequences/', gaps='fill', fill_value=0, time_points=[0,3,7,14], cell_times = {'HEK293T':[0,1.8,3.9,9.4],'RWP1':[0,2.0,4.1,9.7]}): """Read data from the blast ouput files. Apply DESEQ normalization. Merge Replicas and average the reads, calc dropout score. One library at a time. :param str data_path: path with the where the files are located :param str gaps: Behaivor with the gaps, by default fill, fill the gaps with one read. :param func normfunction: Function to normalize the reads, by default log10 :param list time_points: list contain the time points info [0,1,4,10...] :param dict cell_times: Dictionary where key is the cell lines name and the values a list with the Double time of the cell line for each time point. [0,2.4,4.5,10] This must match the time points. :param bool normed: Divison all the time points by the biggest value in the time serie :param bool itemization: return slope for each time point and the dropscore :param int scalar: scalar to multiply dropscore [increse the signal] :returns: :rtype dict: The information for each lib and cell lines is merge toghether in a dataframe. Each DataFrame is placed in a dictionary with key [lib_cellline] """ alldata = dict() # Check if the number of times match the doubling times for times in cell_times.values(): assert len(times) == len(time_points) for cellline in cell_times.keys(): print('Reading {}'.format(cellline)) #get reads for all replicas in time point # init vars # DataFrame poll_of_replicas = pd.DataFrame(columns=['referenceId']) # recollect columns with reads info, for normalize columns_reads = list() # for group replicas (average) columns_replicas = dict() for t in time_points: # init dict timereplicas = glob.glob(data_path+'*%s*T%i*.out' % (cellline,t)) columns_replicas[t] = list() #Get reads for replica, normal and put it toghet # Read all replicas for a T point for replica in timereplicas: print('Parsing Time {} - replica {}'.format(t, replica)) # Read data for replica # No simple norm raw_data = read_bowtie(replica, norm=False) # Get name replica and label it name_replica = replica.split('/')[-1] columns_reads.append('Reads_{}'.format(name_replica)) columns_replicas[t].append('nReads_{}'.format(name_replica)) raw_data.rename(columns={'Reads':'Reads_{}'.format(name_replica)}, inplace=True) # 'nReads':'nReads_{}'.format(name_replica)}, inplace=True) # Join replicas poll_of_replicas =
pd.merge(poll_of_replicas, raw_data, on=['referenceId'], how='outer')
pandas.merge
###################################################################### ## DeepBiome ## - Reader ## ## July 10. 2019 ## Youngwon (<EMAIL>) ## ## Reference ## - Keras (https://github.com/keras-team/keras) ###################################################################### import os import sys import json import timeit import copy import numpy as np import pandas as pd from sklearn.model_selection import KFold, train_test_split # from sklearn.preprocessing import scale, minmax_scale, robust_scale from sklearn.preprocessing import MinMaxScaler from keras.utils import to_categorical # from keras.utils import to_categorical from . import logging_daily ######################################################################################################## # Base reader ######################################################################################################## class BaseReader(object): """Inherit from this class when implementing new readers.""" def __init__(self, log, verbose=True): # def __init__(self, log, path_info, network_info, verbose=True): self.log = log self.verbose = verbose def read_dataset(self, data_path): raise NotImplementedError() def get_dataset(self, train_index): return NotImplementedError() def get_training_validation_index(self, idx, validation_size=0.2): return train_test_split(idx, test_size = validation_size) ######################################################################################################## ### MicroBiome Reader ######################################################################################################## class MicroBiomeReader(BaseReader): def __init__(self, log, path_info, verbose=True): super(MicroBiomeReader,self).__init__(log, verbose) self.path_info = path_info # self.network_info = network_info def read_dataset(self, x_path, y_path, sim): # TODO fix without sim... if self.verbose: self.log.info('-----------------------------------------------------------------------') self.log.info('Construct Dataset') self.log.info('-----------------------------------------------------------------------') self.log.info('Load data') x = pd.read_csv(x_path) if y_path != None: y = pd.read_csv(y_path) # Normalize X with min-max normalization mat = np.matrix(x) prepro = MinMaxScaler() prepro.fit(mat) self.x_label = np.array(x.columns) x = pd.DataFrame(prepro.transform(mat), columns = list(x.columns)) self.x = np.array(x, dtype=np.float32) if y_path != None: try: y = pd.DataFrame(y.iloc[:, sim]) #.merge(pd.DataFrame(1-y.iloc[:, sim]), left_index = True, right_index = True) except: y = pd.DataFrame(y) #.merge(pd.DataFrame(1-y.iloc[:, sim]), left_index = True, right_index = True) self.num_classes, self.y = self._set_problem(y) # Covarates try: self.continuous_variabl_paths = [cov.strip() for cov in self.path_info['covariates_info']['continuous_variables'].split(',') if '.csv' in cov] except: self.continuous_variabl_paths = [] try: self.categorical_variable_paths = [cov.strip() for cov in self.path_info['covariates_info']['categorical_variables'].split(',') if '.csv' in cov] except: self.categorical_variable_paths = [] if len(self.continuous_variabl_paths) > 0: self.cov_conti = pd.DataFrame() for i in range(len(self.continuous_variabl_paths)): cov = pd.read_csv(self.continuous_variabl_paths[i]) cov.columns = [name.title() for name in cov.columns] self.cov_conti = self.cov_conti.join(cov, how='right') self.cov_conti = self.cov_conti.astype(np.float32) if len(self.categorical_variable_paths) > 0: self.cov_categorical = pd.DataFrame() for i in range(len(self.categorical_variable_paths)): cov = pd.read_csv(self.categorical_variable_paths[i]) cov_name = cov.columns[0] cov = to_categorical(cov, dtype='int32') cov =
pd.DataFrame(cov)
pandas.DataFrame
import numpy as np import pandas as pd def get_processed_data(sample): # loading raw_tb = pd.read_csv('data/fifa.csv') raw_tb = raw_tb[:sample] selected_columns = ['Age','Wage','Crossing', 'Finishing', 'BallControl','Curve','LongPassing', 'Agility','ShotPower','Stamina','LongShots','Aggression','Positioning', 'Marking'] #Crossing,Finishing,HeadingAccuracy,ShortPassing,Volleys,Dribbling,Curve,FKAccuracy,LongPassing,BallControl,Acceleration,SprintSpeed,Agility,Reactions,Balance,ShotPower,Jumping,Stamina,Strength,LongShots,Aggression,Interceptions,Positioning,Vision,Penalties,Composure,Marking,StandingTackle,SlidingTackle,GKDiving,GKHandling,GKKicking,GKPositioning,GKReflexes _tb = raw_tb[selected_columns] _tb.loc[:, 'Wage'] =
pd.to_numeric(_tb.loc[:, 'Wage'].str[3:-1])
pandas.to_numeric
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset =
pd.read_csv('mushrooms.csv')
pandas.read_csv
import numpy as np import pandas as pd from utils.random import scaled_inverse_chi_squared class ThompsonSamplingGaussianSicqPrior(object): def __init__(self, N, save_log=False): self.N = N self.ks = np.ones(N) self.mus = np.zeros(N) self.vs = np.ones(N) self.sigmas = np.ones(N) self.save_log = save_log self.variances = [] self.thetas = [] def initialize(self): self.ks = np.ones(self.N) self.mus = np.zeros(self.N) self.vs = np.ones(self.N) self.sigmas = np.ones(self.N) self.variances = [] self.thetas = [] def select_arm(self): return np.argmax(self.estimate_mean()) def estimate_mean(self): # For each arm i=1,...,N, sample random value from sicq distribution variance = [scaled_inverse_chi_squared(self.vs[i], self.sigmas[i]) for i in range(self.N)] # For each arm i=1,...,N, sample random value from normal distribution theta = [np.random.normal(self.mus[i], np.math.sqrt(variance[i] / self.ks[i])) for i in range(self.N)] if self.save_log: self.thetas.append(theta) self.variances.append(variance) return theta def update_param(self, arm_id, reward): sigma = self.sigmas[arm_id] v = self.vs[arm_id] mu = self.mus[arm_id] k = self.ks[arm_id] d = reward - mu # update parameter of sicq distribution self.sigmas[arm_id] = sigma * v / (v + 1.0) + d * d * k / ( (v + 1.0) * (k + 1.0)) self.vs[arm_id] = v + 1.0 # update parameter of normal distribution self.mus[arm_id] = (mu * k + reward) / (k + 1.0) self.ks[arm_id] = k + 1.0 def save(self, folder_name): if self.save_log: self.thetas =
pd.DataFrame(self.thetas)
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2:
pd.Timestamp("1961-03-01 00:00:00")
pandas.Timestamp
import pandas as pd import requests from bs4 import BeautifulSoup import time import random # create the progress bar function for use later during scraping (credit to github.com/marzukr) def progbar(curr, total, full_progbar): frac = curr/total filled_progbar = round(frac*full_progbar) print('\r', '#'*filled_progbar + '-'*(full_progbar-filled_progbar), '[{:>7.2%}]'.format(frac), end='') # randomly chooses an agent from a text file and returns it in the headers variable to avoid triggering spam detection def agent(txt): agentFile = open(txt, 'r') headersList = agentFile.readlines() randomAgent = headersList[random.randint(1,1000)] randomAgent = (randomAgent[0:len(randomAgent)-2]) headers = {'user-agent': randomAgent} return headers # creates blank list for use later when creating the data frame, we also created the user-agent header here records = [] # checks to see if we can even access the page page = '' while page == '': try: page = requests.get("http://services.runescape.com/m=itemdb_oldschool/viewitem?obj=13190", headers = agent('agentList.txt')) break except: print("Connection refused by server..") print("Retrying in 5 seconds..") time.sleep(5) continue # sets an item finds its value, recurses for every item item = 0 while item <= 21853: time.sleep(random.randint(0,3)) item = str(item) # finds price by entering the ID into the URL and scraping from the corresponding page r_price = requests.get("http://services.runescape.com/m=itemdb_oldschool/viewitem?obj="+item, headers = agent('agentList.txt')) priceSoup = BeautifulSoup(r_price.text, 'html.parser') # checks for a specific statement to see if an item can even have a price value checkForItem = priceSoup.find_all('h3') if checkForItem[0].text != "Sorry, there was a problem with your request.": # this url will be used to find the item name by using its ID r_name = requests.get("https://www.runelocus.com/item-details/?item_id="+item, headers = headers) nameSoup = BeautifulSoup(r_name.text, 'html.parser') nameResults = nameSoup.find_all('h2') # modifies nameList results to only show the name nameList = nameResults[0].text name = nameList[19:(len(nameList)-1)] # locates the span title containing the price and strips the span + assigns to variable priceResults = priceSoup.find_all('span') price = priceResults[4].text else: price = "NULL" if price != "NULL": # limits to 10k http requests before sleeping for 1 hour (sleep time may need to be altered depending on Jagex max request permissions if int(item)/10000 != 1 or int(item)/10000 != 2 or int(item)/10000 != 3: date = pd.datetime.now().date() date = str(date) # conversion to string needed to avoid list containing 'datetime.date(xxxx, x, x)' for date value records.append((date, name, price.strip())) # appends to record for use in creating pd data frame # converts item to an int for progress bar then back into a str item = int(item) progbar(item, 21853, 20) item = str(item) else: sleep(3600) item = int(item) item += 1 # create data frame with all items from records list df =
pd.DataFrame(records, columns=['date', 'item', 'price'])
pandas.DataFrame
from __future__ import absolute_import import collections import gzip import logging import os import sys import multiprocessing import threading import numpy as np import pandas as pd from itertools import cycle, islice from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) from data_utils import get_file logger = logging.getLogger(__name__) SEED = 2017 np.set_printoptions(threshold=np.nan) np.random.seed(SEED) def get_p1_file(link): fname = os.path.basename(link) return get_file(fname, origin=link, cache_subdir='Pilot1') def scale(df, scaling=None): """Scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to scale scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std') type of scaling to apply """ if scaling is None or scaling.lower() == 'none': return df df = df.dropna(axis=1, how='any') # Scaling data if scaling == 'maxabs': # Normalizing -1 to 1 scaler = MaxAbsScaler() elif scaling == 'minmax': # Scaling to [0,1] scaler = MinMaxScaler() else: # Standard normalization scaler = StandardScaler() mat = df.as_matrix() mat = scaler.fit_transform(mat) df =
pd.DataFrame(mat, columns=df.columns)
pandas.DataFrame
"""Top-level API, including the main LinkedDataFrame class""" import attr from collections import deque from deprecated import deprecated import numexpr as ne import numpy as np import pandas as pd from pandas import DataFrame, Series, Index, MultiIndex from typing import Any, Dict, Deque, Hashable, List, Optional, Set, Tuple, Type, Union from .constants import LinkageSpecificationError, LinkAggregationRequired from .missing_data import SeriesFillManager, infer_dtype, PandasDtype from ..parsing.constants import NAN_STR, NAN_VAL, NEG_INF_STR, NEG_INF_VAL from ..parsing.expressions import Expression from ..parsing.expr_items import EvaluationMode from ..utils import convert_series, to_numpy _LabelType = Union[str, List[str]] _NUMERIC_AGGREGATIONS = {'max', 'min', 'mean', 'median', 'prod', 'std', 'sum', 'var', 'quantile'} _NON_NUMERIC_AGGREGATIONS = {'count', 'first', 'last', 'nth'} _SUPPORTED_AGGREGATIONS = sorted(_NUMERIC_AGGREGATIONS | _NON_NUMERIC_AGGREGATIONS) _NUMERIC_TYPES = {PandasDtype.INT_NAME, PandasDtype.UINT_NAME, PandasDtype.FLOAT_NAME, PandasDtype.BOOL_NAME} class _IndexMeta: labels: List[str] = attr.ib(converter=lambda x: [x] if isinstance(x, str) else list(x)) from_row_labels: bool = attr.ib() def __init__(self, labels: Union[str, List[str]] = None, from_row_labels: bool = True): if isinstance(labels, str): labels = [labels] elif labels is None: from_row_labels = True self.labels = labels self.from_row_labels = from_row_labels def __str__(self): if self.from_row_labels: return f'From index: {self.labels}' return f'From columns: {self.labels}' def get_indexer(self, frame: DataFrame) -> Union[Index, MultiIndex]: if self.labels is None: return frame.index arrays = [] if self.from_row_labels: if len(self.labels) > frame.index.nlevels: raise LinkageSpecificationError('Cannot specify more levels than in the index') for label in self.labels: # `get_level_values` works on both Index and MultiIndex objects and accepts both # integer levels AND level names try: arrays.append(frame.index.get_level_values(label)) except KeyError: raise LinkageSpecificationError(f'Level `{label}` not in the index') else: for label in self.labels: if label not in frame: raise LinkageSpecificationError(f'Column `{label}` not in the columns') arr = to_numpy(frame[label]) arrays.append(arr) if len(arrays) == 1: name = self.labels[0] return Index(arrays[0], name=name) return MultiIndex.from_arrays(arrays, names=self.labels) def nlevels(self, frame: DataFrame) -> int: if self.labels is None: return frame.index.nlevels return len(self.labels) def validate(self, frame: DataFrame): if self.labels is None: return # Use the index, which is always available frame_items = set(frame.index.levels) if self.from_row_labels else set(frame.columns) item_name = 'index' if self.from_row_labels else 'columns' for name in self.labels: assert name in frame_items, f'Could not find `{name}` in the {item_name}' class _LinkMeta: owner: 'LinkedDataFrame' other: Union['LinkedDataFrame', DataFrame] _other_has_links: bool aggregation_required: bool self_meta: _IndexMeta other_meta: _IndexMeta flat_indexer: Optional[np.ndarray] other_grouper: Optional[np.ndarray] missing_indices: Optional[Union[np.ndarray, List]] @staticmethod def create(owner: 'LinkedDataFrame', other: Union['LinkedDataFrame', DataFrame], self_labels: Union[List[str], str], self_from_row_labels: bool, other_labels: Union[List[str], str], other_from_row_labels: bool, precompute: bool = True) -> '_LinkMeta': self_meta = _IndexMeta(self_labels, self_from_row_labels) other_meta = _IndexMeta(other_labels, other_from_row_labels) assert self_meta.nlevels(owner) == other_meta.nlevels(other) other_has_links = isinstance(other, LinkedDataFrame) link = _LinkMeta(owner, other, self_meta, other_meta, other_has_links) link._determine_aggregation(precompute) return link def __init__(self, owner, other, self_meta, other_meta, other_has_links): self.owner = owner self.other = other self.self_meta = self_meta self.other_meta = other_meta self._other_has_links = other_has_links self.aggregation_required = False self.flat_indexer = None self.other_grouper = None self.missing_indices = None def _determine_aggregation(self, precompute): self_indexer = self.self_meta.get_indexer(self.owner) other_indexer = self.other_meta.get_indexer(self.other) self_unique = self_indexer.is_unique other_unique = other_indexer.is_unique if self_unique and other_unique: flag = False elif self_unique: # Other is not unique flag = True elif other_unique: flag = False else: raise RuntimeError('Many-to-many links are not permitted') self.aggregation_required = flag if precompute: self._make_indexer(self_indexer, other_indexer) def _get_indexers(self) -> Tuple[Index, Index]: return self.self_meta.get_indexer(self.owner), self.other_meta.get_indexer(self.other) def _make_indexer(self, self_indexer: Index, other_indexer: Index): if self.aggregation_required: group_ints, group_order = other_indexer.factorize() self.other_grouper = group_ints self.flat_indexer, self.missing_indices = group_order.get_indexer_non_unique(self_indexer) else: # Performance-tuned fast paths for constructing indexers if self_indexer.equals(other_indexer): # Indexers are identical self.flat_indexer = np.arange(len(other_indexer)) self.missing_indices = np.array([], dtype=int) elif len(self_indexer.difference(other_indexer)) == 0: # No missing values # Taking the difference is faster than `all(.isin())` self.missing_indices = np.array([], dtype=int) self.flat_indexer = other_indexer.get_indexer(self_indexer) else: # All other cases self.flat_indexer, self.missing_indices = other_indexer.get_indexer_non_unique(self_indexer) @property def chained(self) -> bool: return self._other_has_links @property def indexer_and_missing(self) -> Tuple[np.ndarray, np.ndarray]: if (self.flat_indexer is None) or (self.missing_indices is None): self.precompute() return self.flat_indexer, self.missing_indices def precompute(self): """Top-level method to precompute the indexer""" self._make_indexer(*self._get_indexers()) def copy_meta(self) -> '_LinkMeta': copied = _LinkMeta(self.owner, self.other, self.self_meta, self.other_meta, self._other_has_links) copied.aggregation_required = self.aggregation_required return copied def copy(self, indices=None) -> '_LinkMeta': copied = self.copy_meta() if self.flat_indexer is not None: copied.flat_indexer = self.flat_indexer[indices] if indices is not None else self.flat_indexer if isinstance(self.missing_indices, list): copied.missing_indices = [] elif isinstance(self.missing_indices, np.ndarray): if (indices is not None) and (len(self.missing_indices) > 0): mask = np.isin(self.missing_indices, indices) copied.missing_indices = self.missing_indices[mask] else: copied.missing_indices = self.missing_indices[:] if self.other_grouper is not None: copied.other_grouper = self.other_grouper return copied class LinkedDataFrame(DataFrame): _links: Dict[str, _LinkMeta] _identified_links: Set[str] _class_filler: SeriesFillManager = SeriesFillManager() _instance_filler: SeriesFillManager _column_fills: dict # temporary properties _internal_names = DataFrame._internal_names + ['_links', '_identified_links', '_instance_filler', '_column_fills'] _internal_names_set = set(_internal_names) # normal properties _metadata = [] # region Static Readers @staticmethod def read_csv(*args, **kwargs) -> 'LinkedDataFrame': """Wrapper for pd.read_csv() that returns a LinkedDataFrame instead""" return LinkedDataFrame(
pd.read_csv(*args, **kwargs)
pandas.read_csv
#! -*- coding:utf-8 -*- import os import re import gc import sys import json import codecs import random import warnings import numpy as np import pandas as pd from tqdm import tqdm from random import choice import tensorflow as tf import matplotlib.pyplot as plt from collections import Counter from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.metrics import f1_score, accuracy_score from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split import keras.backend as K from keras.layers import * from keras.callbacks import * from keras.models import Model from keras.optimizers import Adam from keras.initializers import glorot_uniform from keras_bert import load_trained_model_from_checkpoint, Tokenizer tqdm.pandas() seed = 2019 random.seed(seed) tf.set_random_seed(seed) np.random.seed(seed) warnings.filterwarnings('ignore') ################################################################ data_path = '../../dataSet/' train = pd.read_csv(data_path + 'Round2_train.csv', encoding='utf-8') train2= pd.read_csv(data_path + 'Train_Data.csv', encoding='utf-8') train=pd.concat([train, train2], axis=0, sort=True) test = pd.read_csv(data_path + 'round2_test.csv', encoding='utf-8') train = train[train['entity'].notnull()] test = test[test['entity'].notnull()] train=train.drop_duplicates(['title','text','entity','negative','key_entity']) # 去掉重复的data print(train.shape) ###(10526, 6) print(test.shape) ####((9997, 4) def get_or_content(y,z): s='' if str(y)!='nan': s+=y if str(z)!='nan': s+=z return s #获取title+text train['content']=list(map(lambda y,z: get_or_content(y,z),train['title'],train['text'])) test['content']=list(map(lambda y,z: get_or_content(y,z),test['title'],test['text'])) def entity_clear_row(entity,content): entities = entity.split(';') entities.sort(key=lambda x: len(x)) n = len(entities) tmp = entities.copy() for i in range(n): entity_tmp = entities[i] #长度小于等于1 if len(entity_tmp)<=1: tmp.remove(entity_tmp) continue if i + 1 >= n: break for entity_tmp2 in entities[i + 1:]: if entity_tmp2.find(entity_tmp) != -1 and ( entity_tmp2.find('?') != -1 or content.replace(entity_tmp2, '').find(entity_tmp) == -1): tmp.remove(entity_tmp) break return ';'.join(tmp) train['entity']=list(map(lambda entity,content:entity_clear_row(entity,content),train['entity'],train['content'])) test['entity']=list(map(lambda entity,content:entity_clear_row(entity,content),test['entity'],test['content'])) test['text'] = test.apply(lambda index: index.title if index.text is np.nan else index.text, axis=1) train = train[(train['entity'].notnull()) & (train['negative'] == 1)] ### emotion = pd.read_csv('../../Emotion_Model/submit/emotion_voting_three_models.csv', encoding='utf-8') emotion = emotion[emotion['negative'] == 1] test = emotion.merge(test, on='id', how='left') ################################################################ train_id_entity = train[['id', 'entity']] train_id_entity['entity'] = train_id_entity['entity'].apply(lambda index: index.split(';')) id, entity = [], [] for index in range(len(train_id_entity['entity'])): entity.extend(list(train_id_entity['entity'])[index]) id.extend([list(train_id_entity['id'])[index]] * len(list(train_id_entity['entity'])[index])) train_id_entity = pd.DataFrame({'id': id, 'entity_label': entity}) test_id_entity = test[['id', 'entity']] test_id_entity['entity'] = test_id_entity['entity'].apply(lambda index: index.split(';')) id, entity = [], [] for index in range(len(test_id_entity['entity'])): entity.extend(list(test_id_entity['entity'])[index]) id.extend([list(test_id_entity['id'])[index]] * len(list(test_id_entity['entity'])[index])) test_id_entity = pd.DataFrame({'id': id, 'entity_label': entity}) train = train.merge(train_id_entity, on='id', how='left') train['flag'] = train.apply(lambda index: 1 if index.key_entity.split(';').count(index.entity_label) >= 1 else 0, axis=1) test = test.merge(test_id_entity, on='id', how='left') ################################################################ print(train.shape) print(test.shape) def extract_feature(data): data['sub_word_num'] = data.apply(lambda index: index.entity.count(index.entity_label) - 1, axis=1) data['question_mark_num'] = data['entity_label'].apply(lambda index: index.count('?')) data['occur_in_title_num'] = data.apply(lambda index: 0 if index.title is np.nan else index.title.count(index.entity_label), axis=1) data['occur_in_text_num'] = data.apply(lambda index: 0 if index.text is np.nan else index.text.count(index.entity_label), axis=1) data['occur_in_partial_text_num'] = data.apply(lambda index: 0 if index.text is np.nan else index.text[:507].count(index.entity_label), axis=1) data['occur_in_entity'] = data.apply(lambda index: 0 if index.text is np.nan else index.entity.count(index.entity_label) - 1, axis=1) data['is_occur_in_article'] = data.apply(lambda index: 1 if (index.occur_in_title_num >= 1) | (index.occur_in_text_num >= 1) else 0, axis=1) return data train = extract_feature(train) test = extract_feature(test) print(train.columns) train['entity_len'] = train['entity_label'].progress_apply(lambda index: len(index)) test['entity_len'] = test['entity_label'].progress_apply(lambda index: len(index)) train[train['entity_len'] == 1].shape train = train[train['entity_len'] > 1] test[test['entity_len'] == 1].shape test = test[test['entity_len'] > 1] train_feature = train[['sub_word_num', 'question_mark_num', 'occur_in_title_num', 'occur_in_text_num', 'is_occur_in_article', 'occur_in_entity', 'occur_in_partial_text_num']] test_feature = test[['sub_word_num', 'question_mark_num', 'occur_in_title_num', 'occur_in_text_num', 'is_occur_in_article', 'occur_in_entity', 'occur_in_partial_text_num']] # Normalization from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() train_feature = scaler.fit_transform(train_feature) test_feature = scaler.fit_transform(test_feature) def get_other_content(x,y): entitys=x.split(";") if len(entitys)<=1: return np.nan l=[] for e in entitys: if e!=y: l.append(e) return ';'.join(l) train['other_entity']=list(map(lambda x,y :get_other_content(x,y),train['entity'],train['entity_label'])) test['other_entity']=list(map(lambda x,y :get_other_content(x,y),test['entity'],test['entity_label'])) def get_content(x,y): if str(y)=='nan': return x y=y.split(";") y = sorted(y, key=lambda i:len(i),reverse=True) for i in y: x = '其他实体'.join(x.split(i)) return x train['text']=list(map(lambda x,y: get_content(x,y), train['text'], train['other_entity'])) test['text']=list(map(lambda x,y: get_content(x,y), test['text'], test['other_entity'])) maxlen = 509 # 序列长度 # 模型下载链接 tensorflow版:https://github.com/ymcui/Chinese-BERT-wwm#%E4%B8%AD%E6%96%87%E6%A8%A1%E5%9E%8B%E4%B8%8B%E8%BD%BD bert_path = '../../PreTrainModel/chinese_roberta_wwm_large_ext_L-24_H-1024_A-16/' config_path = bert_path + 'bert_config.json' checkpoint_path = bert_path + 'bert_model.ckpt' dict_path = bert_path + 'vocab.txt' token_dict = {} with codecs.open(dict_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token_dict[token] = len(token_dict) # 给每个token 按序编号 class OurTokenizer(Tokenizer): def _tokenize(self, text): R = [] for c in text: if c in self._token_dict: R.append(c) elif self._is_space(c): R.append('[unused1]') # space类用未经训练的[unused1]表示 else: R.append('[UNK]') # 剩余的字符是[UNK] return R tokenizer = OurTokenizer(token_dict) def seq_padding(X, padding=0): L = [len(x) for x in X] ML = max(L) return np.array([np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X]) class data_generator: def __init__(self, data, feature, batch_size=4, shuffle=True): self.data = data self.batch_size = batch_size self.shuffle = shuffle self.feature = feature self.steps = len(self.data) // self.batch_size if len(self.data) % self.batch_size != 0: self.steps += 1 def __len__(self): return self.steps def __iter__(self): while True: idxs = list(range(len(self.data))) if self.shuffle: np.random.shuffle(idxs) X1, X2, Y, Fea = [], [], [], [] for i in idxs: d = self.data[i] fea = self.feature[i] # add feature first_text = d[0] second_text = d[2][:maxlen - d[1]] x1, x2 = tokenizer.encode(first=first_text, second=second_text) # , max_len=512 y = d[3] Fea.append(fea) X1.append(x1) X2.append(x2) Y.append([y]) if len(X1) == self.batch_size or i == idxs[-1]: X1 = seq_padding(X1) X2 = seq_padding(X2, padding=1) Fea = seq_padding(Fea) Y = seq_padding(Y) yield [X1, X2, Fea], Y[:, 0, :] [X1, X2, Y, Fea] = [], [], [], [] from keras.metrics import top_k_categorical_accuracy from keras.metrics import categorical_accuracy def acc_top2(y_true, y_pred): return top_k_categorical_accuracy(y_true, y_pred, k=1) def f1_metric(y_true, y_pred): def recall(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision precision = precision(y_true, y_pred) recall = recall(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def build_bert(nclass): bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None) for l in bert_model.layers: # print(l) l.trainable = True x1_in = Input(shape=(None,)) x2_in = Input(shape=(None,)) x3_in = Input(shape=(train_feature.shape[1],)) feature = Dense(64, activation='relu')(x3_in) x = bert_model([x1_in, x2_in]) x = Lambda(lambda x: x[:, 0])(x) x = concatenate([x, feature]) p = Dense(nclass, activation='softmax')(x) model = Model([x1_in, x2_in, x3_in], p) model.compile(loss='categorical_crossentropy', optimizer=Adam(1e-5), # lr: 5e-5 3e-5 2e-5 epoch: 3, 4 batch_size: 16, 32 metrics=['accuracy', f1_metric]) # categorical_accuracy print(model.summary()) return model ################################################################ from keras.utils import to_categorical DATA_LIST = [] for data_row in train.iloc[:].itertuples(): DATA_LIST.append((data_row.entity_label, data_row.entity_len, data_row.text, to_categorical(data_row.flag, 2))) DATA_LIST = np.array(DATA_LIST) DATA_LIST_TEST = [] for data_row in test.iloc[:].itertuples(): DATA_LIST_TEST.append((data_row.entity_label, data_row.entity_len, data_row.text, to_categorical(0, 2))) DATA_LIST_TEST = np.array(DATA_LIST_TEST) ################################################################ f1, acc = [], [] def run_cv(nfold, data, feature_train, data_label, data_test, feature_test): kf = StratifiedKFold(n_splits=nfold, shuffle=True, random_state=seed).split(data, train['flag']) train_model_pred = np.zeros((len(data), 2)) # 2 test_model_pred = np.zeros((len(data_test), 2)) # 2 for i, (train_fold, test_fold) in enumerate(kf): X_train, X_valid, = data[train_fold, :], data[test_fold, :] X_train_fea, X_valid_fea = feature_train[train_fold, :], feature_train[test_fold, :] model = build_bert(2) # 2 early_stopping = EarlyStopping(monitor='val_acc', patience=2) # val_acc plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=1) checkpoint = ModelCheckpoint('./model/' + str(i) + '.hdf5', monitor='val_acc', verbose=2, save_best_only=True, mode='max',save_weights_only=True) train_D = data_generator(X_train, X_train_fea, shuffle=True) valid_D = data_generator(X_valid, X_valid_fea, shuffle=False) test_D = data_generator(data_test, feature_test, shuffle=False) model.fit_generator( train_D.__iter__(), steps_per_epoch=len(train_D), ## ?? ## epochs=10, validation_data=valid_D.__iter__(), validation_steps=len(valid_D), callbacks=[early_stopping, plateau, checkpoint], verbose=2 ) model.load_weights('./model/' + str(i) + '.hdf5') # return model val = model.predict_generator(valid_D.__iter__(), steps=len(valid_D),verbose=0) print(val) score = f1_score(train['flag'].values[test_fold], np.argmax(val, axis=1)) acc_score = accuracy_score(train['flag'].values[test_fold], np.argmax(val, axis=1)) global f1, acc f1.append(score) acc.append(acc_score) print('validate f1 score:', score) print('validate accuracy score:', acc_score) train_model_pred[test_fold, :] = val test_model_pred += model.predict_generator(test_D.__iter__(), steps=len(test_D),verbose=0) del model; gc.collect() K.clear_session() return train_model_pred, test_model_pred ################################################################ train_model_pred, test_model_pred = run_cv(10, DATA_LIST, train_feature, None, DATA_LIST_TEST, test_feature) print('validate aver f1 score:', np.average(f1)) print('validate aver accuracy score:', np.average(acc)) np.save('weights/bert_prob_train_binary_label_add_feature_extend_trainSet-PreProcess-roberta-large-wwm-ext.npy', train_model_pred) np.save('weights/bert_prob_test_binary_label_add_feature_extend_trainSet-PreProcess-roberta-large-wwm-ext.npy', test_model_pred) ################################################################ ################################################################ def return_list(group): return ';'.join(list(group)) sub = test.copy() sub['label'] = [np.argmax(index) for index in test_model_pred] test['prob'] = [index[1] for index in test_model_pred] sub = sub[sub['label'] == 1] key_entity = sub.groupby(['id'], as_index=False)['entity_label'].agg({'key_entity': return_list}) sub_id = set(test['id']) - set(key_entity['id']) sub_test = test[test['id'].isin(sub_id)] sub_test = sub_test.sort_values(by=['id', 'prob'], ascending=False).drop_duplicates(['id'], keep='first') sub_test['key_entity'] = sub_test['entity_label'] key_entity = pd.concat([key_entity, sub_test[['id', 'key_entity']]], axis=0, ignore_index=True) test_2 =
pd.read_csv(data_path + 'round2_test.csv', encoding='utf-8')
pandas.read_csv
import pandas as pd from django.shortcuts import render, redirect import os import pandas as pd from .associations import ( generate_associated_dt_annotation, generate_associated_coord_annotation, ) import json import logging from .form_population import Form from utils.cache_helper import cache_get, cache_set from .helper_functions import gen_samples from .one_primary_set import one_primary_set from django.views import View class Annotation(View): """View responsible for handling the annotations post and serving the form [get and post]""" def set_vars(self, uuid, col): self.uuid = uuid self.strftime_conversion = { "Y": "Year", "y": "Year", "m": "Month", "d": "Day", "j": "Day", "H": "Hour", "I": "Hour", "M": "Minute", "S": "Second", } self.col = col self.gc = self.get_gc() self.annotations = self.get_annotations() self.samples = self.get_samples() self.fp = f"data/{self.uuid}/annotations.json" self.context = {"uuid": self.uuid, "col": self.col} def date_association_post(self, post): """post handling if post has a dateAssociation""" col = self.col associations = {} if post.get("dateAssociation", False): for x in post: if x.find("associated_") != -1: associations[x] = post[x] if "primary_time" in post: pt = True else: pt = False associations[post.get("Time")] = col to_del = [] for x in associations: if associations[x] == "No Associable Column": to_del.append(x) for x in to_del: del associations[x] qualifies = None if "qualifyColumn" in post: qualifies = post.getlist("qualifyColumn") generated_annotations = generate_associated_dt_annotation( associations, col, pt, description=post["Description"], qualifies=qualifies, ) for x in generated_annotations.keys(): self.annotations[x] = generated_annotations[x] for y in self.annotations[x]["associated_columns"]: if x == self.annotations[x]["associated_columns"][y]: del self.annotations[x]["associated_columns"][y] self.associations = associations return True def clear_annotations(self): annotations, col, uuid = self.annotations, self.col, self.uuid if annotations.get(col, {}).get("dateAssociation", False): # Clear associated column for x in annotations.get(col, {}).get("associated_columns", []): if x != col: del annotations[x] if annotations.get(col, {}).get("Coord_Pair_Form", False): if annotations.get(annotations[col]["Coord_Pair_Form"], False): del annotations[annotations[col]["Coord_Pair_Form"]] logging.info(annotations) logging.info(col) if annotations.get(col): logging.info(f"deleteting {col}") del annotations[col] self.annotations = annotations self.save_annotations() return True def geo_pair_post(self, post): col = self.col if "isGeoPair" in post: other_col = post["Coord_Pair_Form"] if post["Geo"] == "Latitude": geo_type = "Longitude" elif post["Geo"] == "Longitude": geo_type = "Latitude" if "primary_geo" in post: pg = True else: pg = False other_anno = generate_associated_coord_annotation( other_col, geo_type, col, pg, description=post["Description"] ) for x in other_anno.keys(): self.annotations[x] = other_anno[x] def post(self, request, *args, **kwargs): """post handling for annotation""" self.set_vars(kwargs.get("uuid"), request.GET.get("col")) post = request.POST annotations, uuid, col = self.annotations, self.uuid, self.col if post.get("Clear", False): # handling for clear button self.clear_annotations() logging.info( f"{cache_get(uuid, 'logging_preface', None)} - Cleared annotations for col: {col}" ) return redirect(f"../{uuid}", request) # TODO annotations var replace logging_preface = cache_get(uuid, "logging_preface", None) logging.info(f"{logging_preface} - posted column: {col}") if post.get("primary_geo", False) and post.get("Geo", False): # write over existing primary_geo if new one is posted geo_type = post.get("Geo") if geo_type in ["Latitude", "Longitude", "Coordinates"]: to_del = [] for x in annotations: if annotations.get(x, {}).get("primary_geo", False): to_del.append(x) for x in to_del: del annotations[x]["primary_geo"] to_del = [] if annotations.get(col): # delete existing annotations for this col and associated ones if it is reposted to_del = [col] for x in annotations.get(col, {}).get("associated_columns", []): if annotations.get(x, False): to_del.append(x) for x in to_del: del annotations[x] to_write = {} self.annotations = annotations # Delete any other primary_time annotations; this happens when the user # ignores the warning. if post.get("primary_time", False): if cache_get(uuid, "primary_time", False): for x in annotations: if "primary_time" in annotations[x].keys(): del annotations[x]["primary_time"] cache_set(uuid, "primary_time_set", True) # Delete any other primary_geo - Geo combinations; this happens when the user # ignores the warning. if post.get("primary_geo", False) and post.get("Geo", False): session_key = None geo_type = post.get("Geo") if geo_type in ["Country", "ISO2", "ISO3"]: session_key = "primary_country_set" elif geo_type == "State/Territory": session_key = "primary_admin1_set" elif geo_type == "County/District": session_key = "primary_admin2_set" elif geo_type == "Municipality/Town": session_key = "primary_admin3_set" elif geo_type in ["Latitude", "Longitude", "Coordinates"]: session_key = "primary_coord_set" if session_key: # if request.session[session_key]: if cache_get(uuid, session_key, False): for x in annotations: if annotations.get(x).get("primary_geo", False): del annotations[x]["primary_geo"] self.annotations = annotations self.date_association_post(post) self.geo_pair_post(post) annotations = self.annotations for x in post: if x.find("csrfmiddle") == -1: if post[x] == "true": to_write[x] = True else: if x == "qualifyColumn": to_write[x] = post.getlist(x) else: to_write[x] = post[x] for x in post: if x.find("associated_") != -1: # don't write associated columns, that is handled in generate_associated_xyz del to_write[x] pruned_associations = { x.replace("associated_", ""): self.associations[x] for x in self.associations if x.find("_format") == -1 } if pruned_associations != {}: to_write["associated_columns"] = pruned_associations t_type = post["Time"] to_write["format"] = self.associations[f"associated_{t_type}_format"] to_del = [] if "associated_columns" in to_write: for x in to_write["associated_columns"]: if to_write["associated_columns"][x] == col: to_del.append(x) for x in to_del: del to_write["associated_columns"][x] # Handle aliases by generating a dictionary of key/values for each # current and new alias pairing. Then remove those keys from the annotations object # and add in an `aliases` key for the built dictionary. alias_indices = [int(x.split("-")[-1]) for x in post if "alias-current" in x] aliases = {} for i in alias_indices: aliases[post[f"alias-current-{i}"]] = post[f"alias-new-{i}"] del to_write[f"alias-current-{i}"] del to_write[f"alias-new-{i}"] to_write["aliases"] = aliases annotations[col] = to_write self.annotations = annotations self.save_annotations() one_primary_set(annotations, {"uuid": self.uuid}) return redirect(f"../{uuid}", request) def get_samples(self): """generate the samples for the ui if they are not present in the cache""" uuid = self.uuid if not cache_get(uuid, "new_samples", False): df = pd.read_csv(f"data/{uuid}/raw_data.csv", nrows=10000) gen_samples(uuid, df) cache_set(uuid, "new_samples", True) return cache_get(uuid, "annotation_samples") def get_gc(self): """get geotime classifications for this column""" with open(f"data/{self.uuid}/geotime_classification.json", "r") as infile: return json.load(infile) def save_annotations(self): """save annotations to file""" with open(self.fp, "w") as outfile: json.dump(self.annotations, outfile) return True def get_annotations(self): """get annotations from file""" if "annotations.json" in os.listdir(f"data/{self.uuid}"): with open(f"data/{self.uuid}/annotations.json", "r") as infile: annotations = json.load(infile) else: annotations = {} return annotations def get(self, request, *args, **kwargs): """logic responsible for building the necessary context and serving the form""" self.set_vars(kwargs.get("uuid"), request.GET.get("col")) context, annotations, uuid, col = ( self.context, self.annotations, self.uuid, self.col, ) email = cache_get(uuid, "email", None) logging_preface = cache_get(uuid, "logging_preface", None) logging.info(f"{logging_preface} - Viewing column: {col}") gc = self.gc redir_col = annotations.get(col, {}).get("redir_col", False) if redir_col: if annotations.get(redir_col, False): return redirect( f'../annotate/{uuid}?col={annotations[col]["redir_col"]}', request, ) # if not request.session.get("new_samples", False): samples = self.samples df =
pd.DataFrame(samples)
pandas.DataFrame
# Licensed to Modin Development Team under one or more contributor license # agreements. See the NOTICE file distributed with this work for additional # information regarding copyright ownership. The Modin Development Team # licenses this file to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # # This file is copied and adapted from: # http://github.com/modin-project/modin/master/modin/pandas/test/test_general.py import sys import pytest import pandas import numpy as np from numpy.testing import assert_array_equal import ray from ray.util.client.ray_client_helpers import ray_start_client_server modin_compatible_version = sys.version_info >= (3, 7, 0) modin_installed = True if modin_compatible_version: try: import modin # noqa: F401 except ModuleNotFoundError: modin_installed = False skip = not modin_compatible_version or not modin_installed # These tests are written for versions of Modin that require python 3.7+ pytestmark = pytest.mark.skipif(skip, reason="Outdated or missing Modin dependency") if not skip: from ray.tests.modin.modin_test_utils import df_equals import modin.pandas as pd # Module scoped fixture. Will first run all tests without ray # client, then rerun all tests with a single ray client session. @pytest.fixture(params=[False, True], autouse=True, scope="module") def run_ray_client(request): if request.param: with ray_start_client_server() as client: yield client else: # Run without ray client (do nothing) yield # Cleanup state before rerunning tests with client ray.shutdown() random_state = np.random.RandomState(seed=42) # Size of test dataframes NCOLS, NROWS = (2 ** 6, 2 ** 8) # Range for values for test data RAND_LOW = 0 RAND_HIGH = 100 # Input data and functions for the tests # The test data that we will test our code against test_data = { "int_data": { "col{}".format(int((i - NCOLS / 2) % NCOLS + 1)): random_state.randint( RAND_LOW, RAND_HIGH, size=(NROWS) ) for i in range(NCOLS) }, "float_nan_data": { "col{}".format(int((i - NCOLS / 2) % NCOLS + 1)): [ x if (j % 4 == 0 and i > NCOLS // 2) or (j != i and i <= NCOLS // 2) else np.NaN for j, x in enumerate( random_state.uniform(RAND_LOW, RAND_HIGH, size=(NROWS)) ) ] for i in range(NCOLS) }, } test_data["int_data"]["index"] = test_data["int_data"].pop( "col{}".format(int(NCOLS / 2)) ) for col in test_data["float_nan_data"]: for row in range(NROWS // 2): if row % 16 == 0: test_data["float_nan_data"][col][row] = np.NaN test_data_values = list(test_data.values()) test_data_keys = list(test_data.keys()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_isna(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) pandas_result = pandas.isna(pandas_df) modin_result = pd.isna(modin_df) df_equals(modin_result, pandas_result) modin_result = pd.isna(pd.Series([1, np.nan, 2])) pandas_result = pandas.isna(pandas.Series([1, np.nan, 2])) df_equals(modin_result, pandas_result) assert pd.isna(np.nan) == pandas.isna(np.nan) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_isnull(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) pandas_result = pandas.isnull(pandas_df) modin_result = pd.isnull(modin_df) df_equals(modin_result, pandas_result) modin_result = pd.isnull(pd.Series([1, np.nan, 2])) pandas_result = pandas.isnull(pandas.Series([1, np.nan, 2])) df_equals(modin_result, pandas_result) assert pd.isna(np.nan) == pandas.isna(np.nan) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notna(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) pandas_result = pandas.notna(pandas_df) modin_result = pd.notna(modin_df) df_equals(modin_result, pandas_result) modin_result = pd.notna(pd.Series([1, np.nan, 2])) pandas_result = pandas.notna(pandas.Series([1, np.nan, 2])) df_equals(modin_result, pandas_result) assert pd.isna(np.nan) == pandas.isna(np.nan) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notnull(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) pandas_result = pandas.notnull(pandas_df) modin_result = pd.notnull(modin_df) df_equals(modin_result, pandas_result) modin_result = pd.notnull(pd.Series([1, np.nan, 2])) pandas_result = pandas.notnull(pandas.Series([1, np.nan, 2])) df_equals(modin_result, pandas_result) assert pd.isna(np.nan) == pandas.isna(np.nan) def test_merge(): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col1": [0, 1, 2], "col2": [1, 5, 6]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["outer", "inner"] for how in join_types: # Defaults modin_result = pd.merge(modin_df, modin_df2, how=how) pandas_result = pandas.merge(pandas_df, pandas_df2, how=how) df_equals(modin_result, pandas_result) # left_on and right_index modin_result = pd.merge( modin_df, modin_df2, how=how, left_on="col1", right_index=True ) pandas_result = pandas.merge( pandas_df, pandas_df2, how=how, left_on="col1", right_index=True ) df_equals(modin_result, pandas_result) # left_index and right_on modin_result = pd.merge( modin_df, modin_df2, how=how, left_index=True, right_on="col1" ) pandas_result = pandas.merge( pandas_df, pandas_df2, how=how, left_index=True, right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col1 modin_result = pd.merge( modin_df, modin_df2, how=how, left_on="col1", right_on="col1" ) pandas_result = pandas.merge( pandas_df, pandas_df2, how=how, left_on="col1", right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col2 modin_result = pd.merge( modin_df, modin_df2, how=how, left_on="col2", right_on="col2" ) pandas_result = pandas.merge( pandas_df, pandas_df2, how=how, left_on="col2", right_on="col2" ) df_equals(modin_result, pandas_result) # left_index and right_index modin_result = pd.merge( modin_df, modin_df2, how=how, left_index=True, right_index=True ) pandas_result = pandas.merge( pandas_df, pandas_df2, how=how, left_index=True, right_index=True ) df_equals(modin_result, pandas_result) s = pd.Series(frame_data.get("col1")) with pytest.raises(ValueError): pd.merge(s, modin_df2) with pytest.raises(TypeError): pd.merge("Non-valid type", modin_df2) def test_pivot(): test_df = pd.DataFrame( { "foo": ["one", "one", "one", "two", "two", "two"], "bar": ["A", "B", "C", "A", "B", "C"], "baz": [1, 2, 3, 4, 5, 6], "zoo": ["x", "y", "z", "q", "w", "t"], } ) df = pd.pivot(test_df, index="foo", columns="bar", values="baz") assert isinstance(df, pd.DataFrame) with pytest.raises(ValueError): pd.pivot(test_df["bar"], index="foo", columns="bar", values="baz") def test_pivot_table(): test_df = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], } ) df = pd.pivot_table( test_df, values="D", index=["A", "B"], columns=["C"], aggfunc=np.sum ) assert isinstance(df, pd.DataFrame) with pytest.raises(ValueError): pd.pivot_table( test_df["C"], values="D", index=["A", "B"], columns=["C"], aggfunc=np.sum ) def test_unique(): modin_result = pd.unique([2, 1, 3, 3]) pandas_result = pandas.unique([2, 1, 3, 3]) assert_array_equal(modin_result, pandas_result) assert modin_result.shape == pandas_result.shape modin_result = pd.unique(pd.Series([2] + [1] * 5)) pandas_result = pandas.unique(pandas.Series([2] + [1] * 5)) assert_array_equal(modin_result, pandas_result) assert modin_result.shape == pandas_result.shape modin_result = pd.unique( pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")]) ) pandas_result = pandas.unique( pandas.Series([pandas.Timestamp("20160101"), pandas.Timestamp("20160101")]) ) assert_array_equal(modin_result, pandas_result) assert modin_result.shape == pandas_result.shape modin_result = pd.unique( pd.Series( [ pd.Timestamp("20160101", tz="US/Eastern"), pd.Timestamp("20160101", tz="US/Eastern"), ] ) ) pandas_result = pandas.unique( pandas.Series( [ pandas.Timestamp("20160101", tz="US/Eastern"), pandas.Timestamp("20160101", tz="US/Eastern"), ] ) ) assert_array_equal(modin_result, pandas_result) assert modin_result.shape == pandas_result.shape modin_result = pd.unique( pd.Index( [ pd.Timestamp("20160101", tz="US/Eastern"), pd.Timestamp("20160101", tz="US/Eastern"), ] ) ) pandas_result = pandas.unique( pandas.Index( [ pandas.Timestamp("20160101", tz="US/Eastern"), pandas.Timestamp("20160101", tz="US/Eastern"), ] ) ) assert_array_equal(modin_result, pandas_result) assert modin_result.shape == pandas_result.shape modin_result = pd.unique(pd.Series(pd.Categorical(list("baabc")))) pandas_result = pandas.unique(pandas.Series(pandas.Categorical(list("baabc")))) assert_array_equal(modin_result, pandas_result) assert modin_result.shape == pandas_result.shape def test_to_datetime(): # DataFrame input for to_datetime modin_df = pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) pandas_df = pandas.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) df_equals(pd.to_datetime(modin_df), pandas.to_datetime(pandas_df)) # Series input for to_datetime modin_s = pd.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 1000) pandas_s = pandas.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 1000) df_equals(pd.to_datetime(modin_s), pandas.to_datetime(pandas_s)) # Other inputs for to_datetime value = 1490195805 assert pd.to_datetime(value, unit="s") == pandas.to_datetime(value, unit="s") value = 1490195805433502912 assert pd.to_datetime(value, unit="ns") == pandas.to_datetime(value, unit="ns") value = [1, 2, 3] assert pd.to_datetime(value, unit="D", origin=pd.Timestamp("2000-01-01")).equals( pandas.to_datetime(value, unit="D", origin=pandas.Timestamp("2000-01-01")) ) @pytest.mark.parametrize( "data, errors, downcast", [ (["1.0", "2", -3], "raise", None), (["1.0", "2", -3], "raise", "float"), (["1.0", "2", -3], "raise", "signed"), (["apple", "1.0", "2", -3], "ignore", None), (["apple", "1.0", "2", -3], "coerce", None), ], ) def test_to_numeric(data, errors, downcast): modin_series = pd.Series(data) pandas_series =
pandas.Series(data)
pandas.Series
from itertools import product import numpy as np import pytest from pandas.core.dtypes.common import is_interval_dtype import pandas as pd import pandas._testing as tm # Each test case consists of a tuple with the data and dtype to create the # test Series, the default dtype for the expected result (which is valid # for most cases), and the specific cases where the result deviates from # this default. Those overrides are defined as a dict with (keyword, val) as # dictionary key. In case of multiple items, the last override takes precedence. test_cases = [ ( # data [1, 2, 3], # original dtype np.dtype("int32"), # default expected dtype "Int32", # exceptions on expected dtype {("convert_integer", False): np.dtype("int32")}, ), ( [1, 2, 3], np.dtype("int64"), "Int64", {("convert_integer", False): np.dtype("int64")}, ), ( ["x", "y", "z"], np.dtype("O"), pd.StringDtype(), {("convert_string", False): np.dtype("O")}, ), ( [True, False, np.nan], np.dtype("O"), pd.BooleanDtype(), {("convert_boolean", False): np.dtype("O")}, ), ( ["h", "i", np.nan], np.dtype("O"), pd.StringDtype(), {("convert_string", False): np.dtype("O")}, ), ( # GH32117 ["h", "i", 1], np.dtype("O"), np.dtype("O"), {}, ), ( [10, np.nan, 20], np.dtype("float"), "Int64", { ("convert_integer", False, "convert_floating", True): "Float64", ("convert_integer", False, "convert_floating", False): np.dtype("float"), }, ), ( [np.nan, 100.5, 200], np.dtype("float"), "Float64", {("convert_floating", False): np.dtype("float")}, ), ( [3, 4, 5], "Int8", "Int8", {}, ), ( [[1, 2], [3, 4], [5]], None, np.dtype("O"), {}, ), ( [4, 5, 6], np.dtype("uint32"), "UInt32", {("convert_integer", False): np.dtype("uint32")}, ), ( [-10, 12, 13], np.dtype("i1"), "Int8", {("convert_integer", False): np.dtype("i1")}, ), ( [1.2, 1.3], np.dtype("float32"), "Float32", {("convert_floating", False): np.dtype("float32")}, ), ( [1, 2.0], object, "Int64", { ("convert_integer", False): "Float64", ("convert_integer", False, "convert_floating", False): np.dtype("float"), ("infer_objects", False): np.dtype("object"), }, ), ( [1, 2.5], object, "Float64", { ("convert_floating", False): np.dtype("float"), ("infer_objects", False): np.dtype("object"), }, ), (["a", "b"], pd.CategoricalDtype(), pd.CategoricalDtype(), {}), ( pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]), pd.DatetimeTZDtype(tz="UTC"), pd.DatetimeTZDtype(tz="UTC"), {}, ), ( pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]), "datetime64[ns]", np.dtype("datetime64[ns]"), {}, ), ( pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]), object, np.dtype("datetime64[ns]"), {("infer_objects", False): np.dtype("object")}, ), (pd.period_range("1/1/2011", freq="M", periods=3), None, pd.PeriodDtype("M"), {}), ( pd.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)]), None, pd.IntervalDtype("int64", "right"), {}, ), ] class TestSeriesConvertDtypes: @pytest.mark.parametrize( "data, maindtype, expected_default, expected_other", test_cases, ) @pytest.mark.parametrize("params", product(*[(True, False)] * 5)) def test_convert_dtypes( self, data, maindtype, params, expected_default, expected_other ): warn = None if ( hasattr(data, "dtype") and data.dtype == "M8[ns]" and isinstance(maindtype, pd.DatetimeTZDtype) ): # this astype is deprecated in favor of tz_localize warn = FutureWarning if maindtype is not None: with tm.assert_produces_warning(warn): series = pd.Series(data, dtype=maindtype) else: series =
pd.Series(data)
pandas.Series
from __future__ import print_function, division import itertools from copy import deepcopy from collections import OrderedDict from warnings import warn import nilmtk import pandas as pd import numpy as np import metrics import matplotlib.pyplot as plt from hmmlearn import hmm from nilmtk.feature_detectors import cluster from nilmtk.disaggregate import Disaggregator # Python 2/3 compatibility from six import iteritems from builtins import range SEED = 42 # Fix the seed for repeatibility of experiments np.random.seed(SEED) def sort_startprob(mapping, startprob): """ Sort the startprob according to power means; as returned by mapping """ num_elements = len(startprob) new_startprob = np.zeros(num_elements) for i in range(len(startprob)): new_startprob[i] = startprob[mapping[i]] return new_startprob def sort_covars(mapping, covars): new_covars = np.zeros_like(covars) for i in range(len(covars)): new_covars[i] = covars[mapping[i]] return new_covars def sort_transition_matrix(mapping, A): """Sorts the transition matrix according to increasing order of power means; as returned by mapping Parameters ---------- mapping : A : numpy.array of shape (k, k) transition matrix """ num_elements = len(A) A_new = np.zeros((num_elements, num_elements)) for i in range(num_elements): for j in range(num_elements): A_new[i, j] = A[mapping[i], mapping[j]] return A_new def sort_learnt_parameters(startprob, means, covars, transmat): mapping = return_sorting_mapping(means) means_new = np.sort(means, axis=0) startprob_new = sort_startprob(mapping, startprob) covars_new = sort_covars(mapping, covars) transmat_new = sort_transition_matrix(mapping, transmat) assert np.shape(means_new) == np.shape(means) assert np.shape(startprob_new) == np.shape(startprob) assert np.shape(transmat_new) == np.shape(transmat) return [startprob_new, means_new, covars_new, transmat_new] def compute_A_fhmm(list_A): """ Parameters ----------- list_pi : List of PI's of individual learnt HMMs Returns -------- result : Combined Pi for the FHMM """ result = list_A[0] for i in range(len(list_A) - 1): result = np.kron(result, list_A[i + 1]) return result def compute_means_fhmm(list_means): """ Returns ------- [mu, cov] """ states_combination = list(itertools.product(*list_means)) num_combinations = len(states_combination) means_stacked = np.array([sum(x) for x in states_combination]) means = np.reshape(means_stacked, (num_combinations, 1)) cov = np.tile(5 * np.identity(1), (num_combinations, 1, 1)) return [means, cov] def compute_pi_fhmm(list_pi): """ Parameters ----------- list_pi : List of PI's of individual learnt HMMs Returns ------- result : Combined Pi for the FHMM """ result = list_pi[0] for i in range(len(list_pi) - 1): result = np.kron(result, list_pi[i + 1]) return result def create_combined_hmm(model): list_pi = [model[appliance].startprob_ for appliance in model] list_A = [model[appliance].transmat_ for appliance in model] list_means = [model[appliance].means_.flatten().tolist() for appliance in model] pi_combined = compute_pi_fhmm(list_pi) A_combined = compute_A_fhmm(list_A) [mean_combined, cov_combined] = compute_means_fhmm(list_means) # combined_model = hmm.GaussianHMM( # n_components=len(pi_combined), covariance_type='full', # startprob=pi_combined, transmat=A_combined) combined_model = hmm.GaussianHMM(n_components=len(pi_combined), covariance_type='full') combined_model.startprob_ = pi_combined combined_model.transmat_ = A_combined combined_model.covars_ = cov_combined combined_model.means_ = mean_combined return combined_model def return_sorting_mapping(means): means_copy = deepcopy(means) means_copy = np.sort(means_copy, axis=0) # Finding mapping mapping = {} for i, val in enumerate(means_copy): mapping[i] = np.where(val == means)[0][0] return mapping def decode_hmm(length_sequence, centroids, appliance_list, states): """ Decodes the HMM state sequence """ hmm_states = {} hmm_power = {} total_num_combinations = 1 for appliance in appliance_list: total_num_combinations *= len(centroids[appliance]) for appliance in appliance_list: hmm_states[appliance] = np.zeros(length_sequence, dtype=np.int) hmm_power[appliance] = np.zeros(length_sequence) for i in range(length_sequence): factor = total_num_combinations for appliance in appliance_list: # assuming integer division (will cause errors in Python 3x) factor = factor // len(centroids[appliance]) temp = int(states[i]) / factor hmm_states[appliance][i] = temp % len(centroids[appliance]) hmm_power[appliance][i] = centroids[ appliance][hmm_states[appliance][i]] return [hmm_states, hmm_power] class FHMM(Disaggregator): """ Attributes ---------- model : dict predictions : pd.DataFrame() meters : list MIN_CHUNK_LENGTH : int """ def __init__(self): self.model = {} self.predictions =
pd.DataFrame()
pandas.DataFrame
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from pandas._libs import lib from pandas._libs.tslibs import ( NaT, iNaT, ) import pandas as pd from pandas import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import pandas._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.isnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert isinstance(pydt, timedelta) and not isinstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert isinstance(td64, np.timedelta64) # this is NOT equal and cannot be roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert isinstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "minute", "min", "minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, pd.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).tolist()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).astype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").astype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").astype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").astype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"), Timedelta("-1 days 02:34:56.789123456"), ), ( "U", Timedelta("1 days 02:34:56.789123000"), Timedelta("-1 days 02:34:56.789123000"), ), ( "L", Timedelta("1 days 02:34:56.789000000"), Timedelta("-1 days 02:34:56.789000000"), ), ("S", Timedelta("1 days 02:34:57"), Timedelta("-1 days 02:34:57")), ("2S", Timedelta("1 days 02:34:56"), Timedelta("-1 days 02:34:56")), ("5S", Timedelta("1 days 02:34:55"), Timedelta("-1 days 02:34:55")), ("T", Timedelta("1 days 02:35:00"), Timedelta("-1 days 02:35:00")), ("12T", Timedelta("1 days 02:36:00"), Timedelta("-1 days 02:36:00")), ("H", Timedelta("1 days 03:00:00"), Timedelta("-1 days 03:00:00")), ("d", Timedelta("1 days"), Timedelta("-1 days")), ], ) def test_round(self, freq, s1, s2): t1 = Timedelta("1 days 02:34:56.789123456") t2 = Timedelta("-1 days 02:34:56.789123456") r1 = t1.round(freq) assert r1 == s1 r2 = t2.round(freq) assert r2 == s2 def test_round_invalid(self): t1 = Timedelta("1 days 02:34:56.789123456") for freq, msg in [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ]: with pytest.raises(ValueError, match=msg): t1.round(freq) def test_round_implementation_bounds(self): # See also: analogous test for Timestamp # GH#38964 result = Timedelta.min.ceil("s") expected = Timedelta.min + Timedelta(seconds=1) - Timedelta(145224193) assert result == expected result = Timedelta.max.floor("s") expected = Timedelta.max - Timedelta(854775807) assert result == expected with pytest.raises(OverflowError, match="value too large"): Timedelta.min.floor("s") # the second message here shows up in windows builds msg = "|".join( ["Python int too large to convert to C long", "int too big to convert"] ) with pytest.raises(OverflowError, match=msg): Timedelta.max.ceil("s") @pytest.mark.parametrize("n", range(100)) @pytest.mark.parametrize( "method", [Timedelta.round, Timedelta.floor, Timedelta.ceil] ) def test_round_sanity(self, method, n, request): val = np.random.randint(iNaT + 1, lib.i8max, dtype=np.int64) td = Timedelta(val) assert method(td, "ns") == td res = method(td, "us") nanos = 1000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "ms") nanos = 1_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "s") nanos = 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "min") nanos = 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "h") nanos = 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "D") nanos = 24 * 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit="d") + offsets.Hour(1) for v in [NaT, None, float("nan"), np.nan]: assert not (v in td) td = to_timedelta([NaT]) for v in [NaT, None, float("nan"), np.nan]: assert v in td def test_identity(self): td =
Timedelta(10, unit="d")
pandas.Timedelta
from numpy.ma import argmax from pandas import DataFrame from sklearn.model_selection import train_test_split from tensorflow.python.keras import Sequential from tensorflow.python.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.python.ops.confusion_matrix import confusion_matrix from audio_utils.utils.file_utils import save_object import numpy as np import pandas as pd from sounds import sounds_config from sounds.model_plotter import plot_history, plot_confusion_matrix class AudioFeaturesModel: def __init__(self, model_name, le, layers): self.le = le self.model = Sequential(name=model_name) # Builds layers based on the structure in model_structures for layer in layers: self.model.add(layer) def compile(self): """Compile the model and print the structure""" self.model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam') self.model.summary() def test_model(self, x_data, y_data): """Calculate the model's accuracy on the input dataset""" score = self.model.evaluate(x_data, y_data, verbose=0) accuracy = 100 * score[1] return accuracy def train_model(self, x_train, y_train, x_val, y_val): """Train and save the model""" early_stopping = EarlyStopping(monitor='val_loss', patience=sounds_config.patience, mode='min') checkpointer = ModelCheckpoint(filepath=f'{sounds_config.sounds_model_dir}/{self.model.name}.hdf5', verbose=1, save_best_only=True) history = self.model.fit(x_train, y_train, batch_size=sounds_config.num_batch_size, epochs=sounds_config.num_epochs, validation_data=(x_val, y_val), callbacks=[checkpointer, early_stopping], verbose=1) self.le.save(self.model.name) return history def calculate_confusion_matrix(self, x_test, y_test): """Calculate the probabilities required for the confusion matrix and create a dataframe""" y_pred = self.model.predict_classes(x_test) y_test = argmax(y_test, axis=1) con_mat = confusion_matrix(labels=y_test, predictions=y_pred).numpy() con_mat_norm = np.around(con_mat.astype('float') / con_mat.sum(axis=1)[:, np.newaxis], decimals=2) classes = self.le.inverse_transform(list(range(0, self.le.encoded_labels.shape[1]))) return pd.DataFrame(con_mat_norm, index=classes, columns=classes) def train_and_test_model(features, le, model): """Use the AudioFeaturesModel methods to train and test the model""" # Split the data into training,validation and testing x_train, x_test, y_train, y_test = train_test_split(features, le.encoded_labels, test_size=1 - sounds_config.train_ratio, random_state=44) x_cv, x_test, y_cv, y_test = train_test_split(x_test, y_test, test_size=sounds_config.test_ratio / ( sounds_config.test_ratio + sounds_config.validation_ratio), random_state=44) save_test_data(x_test, y_test, le, model.model.name) # Calculate pre trained accuracy pre_acc = model.test_model(x_test, y_test) print(f'Pre-trained accuracy = {pre_acc:.4f}') # Train the model and plot the learning curves plot_history(model.train_model(x_train, y_train, x_cv, y_cv)) # Test trained model on training, validation and test sets post_acc_train = model.test_model(x_train, y_train) print(f'Training accuracy = {post_acc_train:.4f}') post_acc_cv = model.test_model(x_cv, y_cv) print(f'Cross-validation accuracy = {post_acc_cv:.4f}') post_acc_test = model.test_model(x_test, y_test) print(f'Testing accuracy = {post_acc_test:.4f}') # Calculate and plot the confusion matrix plot_confusion_matrix(model.calculate_confusion_matrix(x_test, y_test)) def save_test_data(x_test, y_test, le, model_name): test_df =
DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 import pandas as pd from pandas.io.json import json_normalize import json import argparse import logzero import logging def get_args(): parser = argparse.ArgumentParser( description="Convert t-SNE matrix to HTML plot.") parser.add_argument( "--tissue-type", type=str, help="Tumor tissue type: ['Hematologic Malignancy', 'Solid Tumor', 'Brain Tumor']") parser.add_argument( "--debug", default=False, action="store_true", help="Debug the script.") parser.add_argument( "--subtype-file", type=str, help="Subtype definitions file" ) parser.add_argument( "--metadata-file", type=str, help="File containing metadata for the samples" ) parser.add_argument( "--tsne-file", type=str, help="File containing t-SNE matrix for the samples" ) args = parser.parse_args() if args.debug: logzero.loglevel(logging.DEBUG) else: logzero.loglevel(logging.INFO) return args def label_samples (row): if pd.isna(row['projects']) or row['projects'] == 'input': return 'user' else: return None if __name__ == "__main__": args = get_args() # Read t-SNE matrix matrix = pd.read_table(args.tsne_file) # Trim precision on x/y coordinates matrix = matrix.round({'t1': 2, 't2': 2}) # Read the metadata file metadata = pd.read_json(args.metadata_file) # Convert metadata JSON column 'properties' into a table. # Then combined with the rest of the metadata in a single dataframe. prop = json_normalize(metadata['properties']) metadata = metadata.drop(columns=['properties']) metadata = pd.concat([metadata, prop], axis=1, sort=False) combined = matrix.merge(metadata, left_on=['samples','projects'], right_on=['sample_name', 'sj_datasets'], how='left') # Get subtype group and label information for each disease code subtypes = pd.read_csv(args.subtype_file) # Add the subtype information to the dataframe combined = combined.merge(subtypes, left_on=['sj_diseases'], right_on=['sj_disease'], how="left") # Rename t-SNE coordinate columns to x & y. Rename subtype labels to group & label combined = combined.rename(columns={"t1":"x", "t2":"y", "t_SNE group": "group","t_SNE_label": "label"}) combined['highlight'] = combined.apply(lambda row: label_samples(row), axis=1) # Drop unneeded columns combined = combined.drop(columns=["id", "name", "folder", "sj_ega_accessions", "sj_access_unit", "data_access_level", "sj_dataset_accessions", "vendable", "file_state", "released", "sj_pmid_accessions", "file_type", "sj_embargo_date", "sj_pipeline_name", "sj_pipeline_version", "sj_pub_accessions", "sj_publication_titles", "projects"]) combined = combined.drop(columns=["sj_disease","sj_long_disease_name_y","diagnosis_group"]) # Copy user submitted sample names to the standard 'sample_name' column combined['sample_name'] = combined['sample_name'].fillna(combined['samples']) # Rename duplicated column from merge combined = combined.rename(columns={"sj_long_disease_name_x": "sj_long_disease_name"}) # Drop unneeded columns combined = combined.drop(columns=["samples", "classes", "diagnosisNames"]) combined = combined.fillna("unknown") # Split user samples from reference samples user_samples = combined.loc[combined.highlight=='user'] samples = combined.loc[combined.highlight!='user'] # Fill any samples that didn't get subtype information with sensible defaults samples.fillna({'group':'Other Cancer','label':samples['sj_long_disease_name']}, inplace=True) # Create dataframe with just unique diseases for ProteinPaint diseases = combined[['sj_diseases','color', 'attr_diagnosis_group', 'group', 'label']] diseases = diseases.drop_duplicates() diseases['attr_diagnosis_group'] =
pd.Categorical(diseases['attr_diagnosis_group'], ["Brain Tumor", "Solid Tumor", "Hematologic Malignancy", "Germ Cell Tumor"])
pandas.Categorical
# Databricks notebook source import pandas as pd import math import matplotlib.pyplot as plt import numpy as np # COMMAND ---------- # MAGIC %md # MAGIC #REGRESSION MODEL NOTES # MAGIC ## We Can Conduct a few different version of this regression model by changing the dependent and independent variables # MAGIC **Dependent Variable** # MAGIC We can elect to make the dependent variable round score or tournament score # MAGIC # MAGIC *Round Score* - would give us more data points, but could also cause higher variation # MAGIC # MAGIC *Tournament Score* - would seem to be the better fit, but we may not have enough data points # MAGIC # MAGIC The dependent variable can also refer to tournament score across all tournaments, or for a specific tournament # MAGIC # MAGIC **Independent Variables** # MAGIC # MAGIC 4 major groups of Independent Variables # MAGIC # MAGIC *Greens In Regulation* : Describes how frequently the player makes in to the green at least 2 strokes away from par based on a number of situation. Evaluates a players skill in the fairways/middle game # MAGIC # MAGIC Consists of ['GIR_PCT_FAIRWAY_BUNKER', 'GIR_PCT_FAIRWAY', 'GIR_PCT_OVERALL', 'GIR_PCT_OVER_100', 'GIR_PCT_OVER_200','GIR_PCT_UNDER_100', 'GREEN_PCT_SCRAMBLE_SAND', 'GREEN_PCT_SCRAMBLE_ROUGH'] # MAGIC # MAGIC *Tee Box*: Describes different elements of a players driving/tee shots. Evaluates a players skill off the tee/long game # MAGIC # MAGIC Consists of ['TEE_AVG_BALL_SPEED', 'TEE_AVG_DRIVING_DISTANCE', 'TEE_DRIVING_ACCURACY_PCT', 'TEE_AVG_LAUNCH_ANGLE', 'TEE_AVG_LEFT_ROUGH_TENDENCY_PCT', 'TEE_AVG_RIGHT_ROUGH_TENDENCY_PCT', 'TEE_AVG_SPIN_RATE'] # MAGIC # MAGIC *Putting*: Describes a players performance on the green. Evaluates a players putting skill/short game # MAGIC # MAGIC Consists of ['PUTTING_AVG_ONE_PUTTS', 'PUTTING_AVG_TWO_PUTTS','PUTTING_AVG_PUTTS','PUTTING_AVG_DIST_BIRDIE_INCH'] # MAGIC # MAGIC *Performance Based*: Descibes a players performance in terms of previous results and scores. Evaluates a players consistency and past performances # MAGIC # MAGIC Consists of ['Par3Average','Par4Average', 'Par5Average', 'HolesPerBirdie', 'HolesPerBogey','FINISHES_TOP10'] # MAGIC # MAGIC **Independence Between Variables** # MAGIC # MAGIC To avoid creating bias in the regression model, we should avoid using the following highly coorelated independent variables together in the same model # MAGIC # MAGIC *GIR*: (GIR_PCT_OVERALL: GIR_PCT_OVER_100, GIR_PCT_FAIRWAY) # MAGIC # MAGIC *Tee*: (TEE_AVG_BALL_SPEED: TEE_AVG_DRIVING_DISTANCE) # MAGIC # MAGIC *Putting*: (PUTTING_AVG_ONE_PUTTS: PUTTING_AVG_TWO_PUTTS : PUTTING_AVG_PUTTS) # MAGIC # MAGIC *Performance Based*: (Par4Average: HolesPerBogey) # COMMAND ---------- # Lets Start with the Dependent Variable as Round Score across all tournaments roundsDf = pd.read_csv("/dbfs/FileStore/karbide/RoundsReg.txt") playerStats = pd.read_csv("/dbfs/FileStore/karbide/PlayerStatsComplete.txt") roundsDf.drop(["Unnamed: 0"], axis = 1, inplace = True) playerStats.drop(["Unnamed: 0"], axis = 1, inplace = True) # COMMAND ---------- roundScores = roundsDf[["PlayerID","RoundScore"]] # COMMAND ---------- roundsReg = roundScores.merge(playerStats, how = "left", on = "PlayerID") # COMMAND ---------- roundsReg.corr() # none or the variables are highly coorelated with RoundScore but the performance based ones score the highest # COMMAND ---------- from sklearn.model_selection import train_test_split from sklearn import linear_model from sklearn.metrics import r2_score # COMMAND ---------- #selecting Independet Variables (X) X = roundsReg[["Par4Average","HolesPerBirdie","PUTTING_AVG_DIST_BIRDIE_INCH","PUTTING_AVG_PUTTS","TEE_AVG_DRIVING_DISTANCE","TEE_DRIVING_ACCURACY_PCT", "FINISHES_TOP10", "GIR_PCT_OVERALL", "GIR_PCT_FAIRWAY_BUNKER"]] Y = roundsReg[["RoundScore"]] # COMMAND ---------- X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.33) # COMMAND ---------- reg = linear_model.LinearRegression() reg.fit(pd.DataFrame(X_train),pd.DataFrame(Y_train)) # COMMAND ---------- pred = reg.predict(X_test) err = pd.Series(Y_test["RoundScore"]) - [p[0]for p in pred] # COMMAND ---------- display(err.hist(bins=100)) # seems we get some really crazy predictions # COMMAND ---------- predDf = pd.DataFrame(pred) predDf.describe() # COMMAND ---------- Y_test.describe() # COMMAND ---------- reg.score(pd.DataFrame(X_train), pd.DataFrame(Y_train)) # COMMAND ---------- #This shows the high variance I was worried about, Lets check accuracy r2_score(Y_test["RoundScore"],pred) # COMMAND ---------- import statistics as stats def rmse(errors): return(pow(stats.mean([pow(e,2) for e in errors]),0.5)) # COMMAND ---------- rmse(err) # COMMAND ---------- # seems we are way off, lets change the dependent variable to tournament score # COMMAND ---------- tournamentScore = roundsDf.groupby(["PlayerID","TournamentID"]).agg({"RoundScore":"sum"}) tournamentScore.reset_index(inplace = True) #since we doing this across all tournaments, we can drop tournament ID tournamentScore.drop(["TournamentID"],inplace = True, axis = 1) # COMMAND ---------- t_Reg = tournamentScore.merge(playerStats, how = "left", on = "PlayerID") # COMMAND ---------- t_Reg.corr() # our coorelation are still getting stronger, but still there is little that is very strongly coorelated # COMMAND ---------- X = t_Reg[["Par4Average","HolesPerBirdie","PUTTING_AVG_DIST_BIRDIE_INCH","PUTTING_AVG_PUTTS","TEE_AVG_DRIVING_DISTANCE","TEE_DRIVING_ACCURACY_PCT", "FINISHES_TOP10", "GIR_PCT_OVERALL", "GIR_PCT_FAIRWAY_BUNKER"]] Y = t_Reg[["RoundScore"]] X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2) reg = linear_model.LinearRegression() reg.fit(pd.DataFrame(X_train),pd.DataFrame(Y_train)) # COMMAND ---------- pred = reg.predict(X_test) err = pd.Series(Y_test["RoundScore"]) - [p[0]for p in pred] # COMMAND ---------- display(err.hist(bins=100)) # COMMAND ---------- predDf = pd.DataFrame(pred) print(predDf.describe()) print(Y_test.describe()) # COMMAND ---------- print ("R2 Train") print(reg.score(pd.DataFrame(X_train), pd.DataFrame(Y_train))) print("R2 Test") print(r2_score(Y_test["RoundScore"],pred)) print("RMSE") print(rmse(err)) # COMMAND ---------- def linearReg(ind,dep,split): X_train, X_test, Y_train, Y_test = train_test_split(ind,dep, test_size = split) reg = linear_model.LinearRegression() reg.fit(pd.DataFrame(X_train),pd.DataFrame(Y_train)) pred = reg.predict(X_test) err = pd.Series(Y_test["RoundScore"]) - [p[0]for p in pred] print ("R2 Train") print(reg.score(pd.DataFrame(X_train),
pd.DataFrame(Y_train)
pandas.DataFrame
import copy import csv import io import os from pathlib import Path import socket import tempfile import threading import unittest import pandas as pd import pyarrow as pa from pyarrow import csv as arrow_csv from cleanup import cleanup_on_shutdown, directories_to_delete import main from proto.aiengine.v1 import aiengine_pb2 from tests import common import train class TrainingLoopTests(unittest.TestCase): ALGORITHM = os.environ.get("ALGORITHM") IPC_PATH = Path("/", "tmp", "spice_ai_test_loop.sock") def setUp(self): # Preventing tensorflow verbose initialization os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" if self.ALGORITHM is None: self.ALGORITHM = "dql" # pylint: disable=invalid-name self.aiengine = main.AIEngine() self.trader_init_req = common.get_init_from_json( init_data_path="../../test/assets/aiengine/api/trader_init.json", pod_name="trader", ) with open("../../test/assets/data/csv/trader.csv", "r", encoding="utf8") as trader_data: self.trader_data_csv = trader_data.read() self.episode_results = [] self.original_post_episode_result = train.post_episode_result train.post_episode_result = ( lambda request_url, episode_data: self.episode_results.append( {"request_url": request_url, "episode_data": episode_data} ) ) self.original_end_of_episode = train.end_of_episode self.temp_dir = tempfile.mkdtemp(prefix='spice_test_') directories_to_delete.append(self.temp_dir) def tearDown(self): train.post_episode_result = self.original_post_episode_result train.end_of_episode = self.original_end_of_episode cleanup_on_shutdown() def init( self, init_req: aiengine_pb2.InitRequest, expected_error: bool = False, expected_result: str = "ok", ): resp = self.aiengine.Init(init_req, None) self.assertEqual(resp.error, expected_error) self.assertEqual(resp.result, expected_result) def add_data(self, pod_name: str, csv_data: str, should_error=False): table = arrow_csv.read_csv(io.BytesIO(csv_data.encode())) ready_barrier = threading.Barrier(2, timeout=2) ipc_thread = threading.Thread(target=self.ipc_server, args=(self.IPC_PATH, table, ready_barrier,)) ipc_thread.start() ready_barrier.wait() resp = self.aiengine.AddData( aiengine_pb2.AddDataRequest(pod=pod_name, unix_socket=str(self.IPC_PATH)), None ) ipc_thread.join() if not should_error: self.assertFalse(resp.error) return resp @staticmethod def ipc_server(ipc_path: Path, table: pa.Table, ready_barrier: threading.Barrier): with socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) as arrow_socket: if ipc_path.exists(): ipc_path.unlink() try: arrow_socket.settimeout(2) arrow_socket.bind(str(ipc_path).encode()) arrow_socket.listen(1) ready_barrier.wait() connection, _address = arrow_socket.accept() with connection: writer = pa.ipc.RecordBatchStreamWriter(connection.makefile(mode="wb"), table.schema) writer.write_table(table) except OSError as error: print(error) arrow_socket.shutdown(socket.SHUT_RDWR) ipc_path.unlink() def start_training( self, pod_name: str, flight: str = None, number_episodes: int = None, epoch_time: int = None, expected_error: bool = False, expected_result: str = "started_training"): train_req = aiengine_pb2.StartTrainingRequest( pod=pod_name, number_episodes=number_episodes, flight=flight, epoch_time=epoch_time, learning_algorithm=self.ALGORITHM, training_data_dir=self.temp_dir) resp = self.aiengine.StartTraining(train_req, None) self.assertEqual(resp.error, expected_error) self.assertEqual(resp.result, expected_result) def wait_for_training(self): self.assertIsNotNone(main.Dispatch.TRAINING_THREAD) main.Dispatch.TRAINING_THREAD.join() def inference(self, pod_name: str, tag: str, assertion_on_response=None): resp = self.aiengine.GetInference( aiengine_pb2.InferenceRequest(pod=pod_name, tag=tag), None ) self.assertFalse(resp.response.error) self.assertEqual(resp.tag, tag) if assertion_on_response is not None: assertion_on_response(resp) def validate_episode_data( self, pod_name, flight, number_episodes, num_actions, episode_results ): self.assertEqual(len(episode_results), number_episodes) index = episode_results[0]["episode_data"]["episode"] for episode_result in episode_results: episode_data = episode_result["episode_data"] self.assertEqual( episode_result["request_url"], f"http://localhost:8000/api/v0.1/pods/{pod_name}/training_runs/{flight}/episodes", ) self.assertEqual(episode_data["episode"], index) self.assertTrue(episode_data["start"]) self.assertTrue(episode_data["end"]) self.assertTrue(episode_data["score"]) actions_count = 0 for action_name in episode_data["actions_taken"]: actions_count += episode_data["actions_taken"][action_name] self.assertEqual(actions_count, num_actions) index += 1 def test_train_inference_loop(self): # Step 1, init the pod self.init(self.trader_init_req) # Step 2, load the csv data self.add_data("trader", self.trader_data_csv) flight = "1" number_episodes = 5 # Step 3, train self.start_training("trader", flight, number_episodes) self.wait_for_training() # Step 4, inference self.inference( "trader", "latest", lambda response: self.assertNotEqual(response.confidence, 0.0), ) # Validate the episode data self.validate_episode_data( "trader", flight, number_episodes, num_actions=50, episode_results=self.episode_results, ) def test_train_inference_loop_train_different_epoch(self): # Step 1, init the pod self.init(self.trader_init_req) # Step 2, load the csv data self.add_data("trader", self.trader_data_csv) flight = "1" number_episodes = 5 # Step 3, train self.start_training("trader", flight, number_episodes, 1626697490) self.wait_for_training() # Step 4, inference self.inference( "trader", "latest", lambda response: self.assertNotEqual(response.confidence, 0.0), ) # Validate the episode data self.validate_episode_data( "trader", flight, number_episodes, num_actions=49, episode_results=self.episode_results, ) def test_train_gap_in_data(self): with open("./tests/assets/csv/training_loop_gap_0.csv", "r", encoding="utf8") as data: gap_data_0 = data.read() with open("./tests/assets/csv/training_loop_gap_1.csv", "r", encoding="utf-8") as data: gap_data_1 = data.read() self.init(self.trader_init_req) self.add_data("trader", gap_data_0) self.add_data("trader", gap_data_1) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes) self.wait_for_training() self.validate_episode_data( "trader", flight, number_episodes, num_actions=50, episode_results=self.episode_results, ) gap_start = pd.to_datetime(1626697640, unit="s") gap_end = pd.to_datetime(1626697860, unit="s") table = main.data_managers["trader"].massive_table_sparse filled_table = main.data_managers["trader"]._fill_table(table) # pylint: disable=protected-access price = list(filled_table[gap_start:gap_start].coinbase_btcusd_close)[-1] # Validate the forward filling is working. current_time = gap_start while current_time < gap_end: next_price = list(filled_table[current_time:current_time].coinbase_btcusd_close)[ -1 ] self.assertEqual(price, next_price) price = next_price current_time += pd.to_timedelta(self.trader_init_req.granularity, unit="s") def test_data_added_after_training_starts(self): with open("./tests/assets/csv/training_loop_gap_0.csv", "r", encoding="utf-8") as data: gap_data_0 = data.read() with open("./tests/assets/csv/training_loop_gap_1.csv", "r", encoding="utf-8") as data: gap_data_1 = data.read() self.init(self.trader_init_req) self.add_data("trader", gap_data_0) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes) post_data_lock = threading.Lock() episode_5_lock = threading.Lock() episode_5_lock.acquire() # pylint: disable=consider-using-with def release_lock_on_episode_5(episode: int): if episode == 5 and episode_5_lock.locked(): episode_5_lock.release() post_data_lock.acquire() # pylint: disable=consider-using-with train.end_of_episode = release_lock_on_episode_5 # wait for episode 5 post_data_lock.acquire() # pylint: disable=consider-using-with episode_5_lock.acquire() # pylint: disable=consider-using-with print("Posting gap_data_1") self.add_data("trader", gap_data_1) post_data_lock.release() self.wait_for_training() episode_5_lock.release() post_data_lock.release() self.validate_episode_data( "trader", flight, number_episodes, num_actions=10, episode_results=self.episode_results, ) def test_epoch_earlier_than_data(self): self.init(self.trader_init_req) self.add_data("trader", self.trader_data_csv) self.start_training("trader", "1", 10, 1626697400, expected_error=True, expected_result="epoch_time_invalid") def test_epoch_offset_from_data(self): self.init(self.trader_init_req) self.add_data("trader", self.trader_data_csv) self.start_training("trader", "1", 1, 1626697485, expected_error=False, expected_result="started_training") self.wait_for_training() def test_epoch_after_latest_data(self): self.init(self.trader_init_req) self.add_data("trader", self.trader_data_csv) self.start_training( "trader", "1", 10, 1626699240, expected_error=True, expected_result="not_enough_data_for_training") def test_not_enough_data_for_training_no_data(self): self.init(self.trader_init_req) self.start_training("trader", "1", 10, expected_error=True, expected_result="not_enough_data_for_training") def test_not_enough_data_for_training_late_epoch(self): self.init(self.trader_init_req) self.add_data("trader", self.trader_data_csv) self.start_training( "trader", "1", 10, epoch_time=1626698020, expected_error=True, expected_result="not_enough_data_for_training") def test_invalid_reward_handled_gracefully(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.actions["buy"] = "foo" self.init( trader_init, expected_error=True, expected_result="invalid_reward_function", ) def test_no_rewards_handled_gracefully(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.actions.clear() self.init( trader_init, expected_error=True, expected_result="missing_actions", ) def test_no_fields_handled_gracefully(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.fields.clear() self.init( trader_init, expected_error=True, expected_result="missing_fields", ) def test_invalid_reward_post_error(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.actions["buy"] = "reward = foo" trader_init.actions["sell"] = "reward = foo" trader_init.actions["hold"] = "reward = foo" self.init(trader_init) self.add_data("trader", self.trader_data_csv) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes, 1626697490) self.wait_for_training() self.assertEqual(len(self.episode_results), 1) error_data = self.episode_results[0]["episode_data"] self.assertEqual(error_data["error"], "invalid_reward_function") self.assertEqual( error_data["error_message"], """NameError("name 'foo' is not defined")""" ) def test_unsafe_reward_error(self): trader_init = copy.deepcopy(self.trader_init_req) unsafe_action = "open('/tmp/FILE','w').write('this is unsafe!'); reward = 1" trader_init.actions["buy"] = unsafe_action trader_init.actions["sell"] = unsafe_action trader_init.actions["hold"] = unsafe_action self.init(trader_init) self.add_data("trader", self.trader_data_csv) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes, 1626697490) self.wait_for_training() self.assertEqual(len(self.episode_results), 1) error_data = self.episode_results[0]["episode_data"] self.assertEqual(error_data["error"], "invalid_reward_function") self.assertEqual( error_data["error_message"], """NameError("name 'open' is not defined")""" ) def test_invalid_law_post_error(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.laws[0] = "can I do this?" self.init(trader_init) self.add_data("trader", self.trader_data_csv) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes, 1626697490) self.wait_for_training() self.assertEqual(len(self.episode_results), 1) error_data = self.episode_results[0]["episode_data"] self.assertEqual(error_data["error"], "invalid_law_expression") self.assertEqual( error_data["error_message"], """SyntaxError('invalid syntax', ('<string>', 1, 5, 'can I do this?'))""", ) def test_invalid_datasource_action_post_error(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.datasources[0].actions[ "buy" ] = "local_portfolio_usd_balance1 -= coinbase_btcusd_close\nlocal_portfolio_btc_balance += 1" self.init(trader_init) self.add_data("trader", self.trader_data_csv) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes, 1626697490) self.wait_for_training() self.assertEqual(len(self.episode_results), 1) error_data = self.episode_results[0]["episode_data"] self.assertEqual(error_data["error"], "invalid_datasource_action_expression") self.assertEqual( error_data["error_message"], """NameError("name 'local_portfolio_usd_balance1' is not defined")""", ) def test_epoch_is_inferred_if_absent(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.epoch_time = 0 trader_init.period = 120 self.init(trader_init) now_unix_seconds = ( pd.Timestamp.now() - pd.Timestamp("1970-01-01") ) // pd.Timedelta("1s") csv_data = io.StringIO() headers = [ "time", "local_portfolio_usd_balance", "local_portfolio_btc_balance", "coinbase_btcusd_close", ] writer = csv.writer(csv_data) writer.writerow(headers) for unix_seconds in range(now_unix_seconds - 70, now_unix_seconds - 10, 10): row = [unix_seconds, None, None, 123] writer.writerow(row) self.add_data("trader", csv_data.getvalue()) flight = "1" number_episodes = 5 self.start_training("trader", flight, number_episodes, expected_error=False) # Counts will be unstable due to timing. The important thing is that we launch training with enough data. self.wait_for_training() def test_add_data_with_different_fields_fails(self): trader_init = copy.deepcopy(self.trader_init_req) trader_init.epoch_time = 0 trader_init.period = 120 self.init(self.trader_init_req) now_unix_seconds = ( pd.Timestamp.now() -
pd.Timestamp("1970-01-01")
pandas.Timestamp
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 import warnings from unittest import TestCase import pandas as pd from tsfresh.utilities import dataframe_functions import numpy as np import six class NormalizeTestCase(TestCase): def test_with_dictionaries_one_row(self): test_df = pd.DataFrame([{"value": 1, "id": "id_1"}]) test_dict = {"a": test_df, "b": test_df} # A kind is not allowed with dicts self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, "a kind", None) # The value must be present self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, "something other") # Nothing should have changed compared to the input data result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, "value") self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") six.assertCountEqual(self, list(test_dict.keys()), list(result_dict.keys())) self.assertEqual(result_dict["a"].iloc[0].to_dict(), {"value": 1, "id": "id_1"}) # The algo should choose the correct value column result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, None) self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") def test_with_dictionaries_two_rows(self): test_df = pd.DataFrame([{"value": 2, "sort": 2, "id": "id_1"}, {"value": 1, "sort": 1, "id": "id_1"}]) test_dict = {"a": test_df, "b": test_df} # If there are more than one column, the algorithm can not choose the correct column self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, None) # Sorting should work result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", "sort", None, "value") self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") # Assert sorted and without sort column self.assertEqual(result_dict["a"].iloc[0].to_dict(), {"value": 1, "id": "id_1"}) self.assertEqual(result_dict["a"].iloc[1].to_dict(), {"value": 2, "id": "id_1"}) # Assert the algo has found the correct column result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", "sort", None, None) self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") def test_with_dictionaries_two_rows_sorted(self): test_df = pd.DataFrame([{"value": 2, "id": "id_1"}, {"value": 1, "id": "id_1"}]) test_dict = {"a": test_df, "b": test_df} # Pass the id result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, "value") self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") self.assertEqual(result_dict["a"].iloc[0].to_dict(), {"value": 2, "id": "id_1"}) # The algo should have found the correct value column result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, None) self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") def test_with_df(self): # give everyting test_df = pd.DataFrame([{"id": 0, "kind": "a", "value": 3, "sort": 1}]) result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_df, "id", "sort", "kind", "value") self.assertEqual(column_id, "id") self.assertEqual(column_value, "value") self.assertIn("a", result_dict) six.assertCountEqual(self, list(result_dict["a"].columns), ["id", "value"]) self.assertEqual(list(result_dict["a"]["value"]), [3]) self.assertEqual(list(result_dict["a"]["id"]), [0]) # give no kind test_df = pd.DataFrame([{"id": 0, "value": 3, "sort": 1}]) result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_df, "id", "sort", None, "value") self.assertEqual(column_id, "id") self.assertEqual(column_value, "value") self.assertIn("value", result_dict) six.assertCountEqual(self, list(result_dict["value"].columns), ["id", "value"]) self.assertEqual(list(result_dict["value"]["value"]), [3]) self.assertEqual(list(result_dict["value"]["id"]), [0]) # Let the function find the values test_df = pd.DataFrame([{"id": 0, "a": 3, "b": 5, "sort": 1}]) result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_df, "id", "sort", None, None) self.assertEqual(column_id, "id") self.assertEqual(column_value, "_value") self.assertIn("a", result_dict) self.assertIn("b", result_dict) six.assertCountEqual(self, list(result_dict["a"].columns), ["_value", "id"]) self.assertEqual(list(result_dict["a"]["_value"]), [3]) self.assertEqual(list(result_dict["a"]["id"]), [0]) six.assertCountEqual(self, list(result_dict["b"].columns), ["_value", "id"]) self.assertEqual(list(result_dict["b"]["_value"]), [5]) self.assertEqual(list(result_dict["b"]["id"]), [0]) def test_with_wrong_input(self): test_df = pd.DataFrame([{"id": 0, "kind": "a", "value": 3, "sort": np.NaN}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", "sort", "kind", "value") test_df = pd.DataFrame([{"id": 0, "kind": "a", "value": 3, "sort": 1}]) self.assertRaises(AttributeError, dataframe_functions.normalize_input_to_internal_representation, test_df, "strange_id", "sort", "kind", "value") test_df = pd.DataFrame([{"id": np.NaN, "kind": "a", "value": 3, "sort": 1}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", "sort", "kind", "value") test_df = pd.DataFrame([{"id": 0}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", None, None, None) test_df = pd.DataFrame([{"id": 2}, {"id": 1}]) test_dict = {"a": test_df, "b": test_df} # If there are more than one column, the algorithm can not choose the correct column self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, None) test_dict = {"a": pd.DataFrame([{"id": 2, "value_a": 3}, {"id": 1, "value_a": 4}]), "b": pd.DataFrame([{"id": 2}, {"id": 1}])} # If there are more than one column, the algorithm can not choose the correct column self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, None) test_df = pd.DataFrame([{"id": 0, "value": np.NaN}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", None, None, "value") test_df = pd.DataFrame([{"id": 0, "value": np.NaN}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, None, None, None, "value") class RollingTestCase(TestCase): def test_with_wrong_input(self): test_df = pd.DataFrame({"id": [0, 0], "kind": ["a", "b"], "value": [3, 3], "sort": [np.NaN, np.NaN]}) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort="sort", column_kind="kind", rolling_direction=1) test_df = pd.DataFrame({"id": [0, 0], "kind": ["a", "b"], "value": [3, 3], "sort": [1, 1]}) self.assertRaises(AttributeError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="strange_id", column_sort="sort", column_kind="kind", rolling_direction=1) test_df = {"a": pd.DataFrame([{"id": 0}])} self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort=None, column_kind="kind", rolling_direction=1) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id=None, column_sort=None, column_kind="kind", rolling_direction=1) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort=None, column_kind=None, rolling_direction=0) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id=None, column_sort=None, column_kind=None, rolling_direction=0) def test_assert_single_row(self): test_df = pd.DataFrame([{"id": np.NaN, "kind": "a", "value": 3, "sort": 1}]) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort="sort", column_kind="kind", rolling_direction=1) def test_positive_rolling(self): first_class = pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "time": range(4)}) second_class = pd.DataFrame({"a": [10, 11], "b": [12, 13], "time": range(20, 22)}) first_class["id"] = 1 second_class["id"] = 2 df_full = pd.concat([first_class, second_class], ignore_index=True) correct_indices = (["id=1, shift=3"] * 1 + ["id=1, shift=2"] * 2 + ["id=1, shift=1"] * 3 + ["id=2, shift=1"] * 1 + ["id=1, shift=0"] * 4 + ["id=2, shift=0"] * 2) correct_values_a = [1, 1, 2, 1, 2, 3, 10, 1, 2, 3, 4, 10, 11] correct_values_b = [5, 5, 6, 5, 6, 7, 12, 5, 6, 7, 8, 12, 13] df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1) self.assertListEqual(list(df["id"]), correct_indices) self.assertListEqual(list(df["a"].values), correct_values_a) self.assertListEqual(list(df["b"].values), correct_values_b) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=None) self.assertListEqual(list(df["id"]), correct_indices) self.assertListEqual(list(df["a"].values), correct_values_a) self.assertListEqual(list(df["b"].values), correct_values_b) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=1) self.assertListEqual(list(df["id"]), correct_indices[3:]) self.assertListEqual(list(df["a"].values), correct_values_a[3:]) self.assertListEqual(list(df["b"].values), correct_values_b[3:]) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=2) self.assertListEqual(list(df["id"]), correct_indices[1:]) self.assertListEqual(list(df["a"].values), correct_values_a[1:]) self.assertListEqual(list(df["b"].values), correct_values_b[1:]) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=4) self.assertListEqual(list(df["id"]), correct_indices[:]) self.assertListEqual(list(df["a"].values), correct_values_a[:]) self.assertListEqual(list(df["b"].values), correct_values_b[:]) def test_negative_rolling(self): first_class = pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "time": range(4)}) second_class = pd.DataFrame({"a": [10, 11], "b": [12, 13], "time": range(20, 22)}) first_class["id"] = 1 second_class["id"] = 2 df_full =
pd.concat([first_class, second_class], ignore_index=True)
pandas.concat
""" Este script extrae información de los campos del HTML del cvlac a partir de una base de datos inicial de los perfiles """ # Importar librerias/Modulos import pandas as pd import numpy as np import requests from bs4 import BeautifulSoup from lxml import html import scrapy import time # Extrae metadatos de la página semilla def pag_principal(): n = 'todas' link = 'https://minciencias.gov.co/convocatorias/' + n #requests.packages.urllib3.disable_warnings() encabezados = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } resp = requests.get(link, headers=encabezados, verify=False) resp = resp.text #soup = get_Soup('https://minciencias.gov.co/convocatorias/todas') parser = html.fromstring(resp) return parser #Título def titulo(parser): titulo = parser.xpath('//table[@class="views-table cols-5"]/tbody/tr/td[@class="views-field views-field-title"]/a/text()') return titulo # Descripción def descripcion(parser): descripcion = [] for x in range(0,6): #descrip = parser.xpath('//table/tbody/tr[' + str(x) + ']/td[' + str(x) + ']/text()') descrip = parser.xpath('//table/tbody/tr['+str(x)+']/td[3]/text()') descripcion.append(descrip) decrip = [] for x in descripcion[1:6]: des = x[0].strip() decrip.append(des) return decrip #Presupuesto def cuantia(parser): cuantia = parser.xpath('//td[@class="views-field views-field-field-cuantia"]/text()') presupuesto = [] for x in cuantia: x = x.strip() presupuesto.append(x) return presupuesto #Fecha Apertura def fecha_apertura(parser): fecha_apertura = parser.xpath('//table/tbody/tr//td[@class="views-field views-field-field-fecha-de-apertura"]/span/text()') fe_aper = [] for x in fecha_apertura: x = x.strip() if x != '': fe_aper.append(x.strip()) if len(fe_aper) < 5: fecha_apertura = parser.xpath('//table/tbody/tr//td[@class="views-field views-field-field-fecha-de-apertura"]//text()') fe_aper = [] for x in fecha_apertura: x = x.strip() if x != '': fe_aper.append(x.strip()) if len(fe_aper) < 5: fe_aper = [] for x in range(0,6): fecha_apertura = parser.xpath('//table/tbody/tr[' + str(x) + ']/td[5]/text()') if len(fecha_apertura) == 0: x = '' else: for x in fecha_apertura: x = x.strip() #if x != '': fe_aper.append(x.strip()) return fe_aper #Links scrapy vertical def links_vertical(link): encabezados = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } resp = requests.get(link, headers=encabezados, verify=False) resp = resp.text response = scrapy.Selector(text=resp) final = response.xpath('//td[@class="views-field views-field-title"]/a/@href').getall() link = 'https://minciencias.gov.co' links = [] for x in final: if x.startswith('http://'): links.append(x) elif x.startswith('https://'): links.append(x) else: links.append(link+x) return links # Extrae última página def ult_page(url): encabezados = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } resp = requests.get(url, headers=encabezados, verify=False) resp = resp.text response = scrapy.Selector(text=resp) ult = response.xpath('//li[@class="pager-last last"]/a/@href').getall() ult2 = ult[0].split('=')[1] return ult2 ### Vertical def pag_vertical(link): try: encabezados = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } resp = requests.get(link, headers=encabezados, verify=False) resp = resp.text #soup = get_Soup('https://minciencias.gov.co/convocatorias/todas') parser = html.fromstring(resp) except: parser = 'http://www.rutanmedellin.org/es/actualidad/noticias/item/abierta-convocatoria-para-solucionar-retos-energeticos-empresariales' return parser #Extrae Objetivo def objetivo(parser): try: objetivo = parser.xpath('//div[@class="field-items"][2]/div[@class="field-item even"]/text()') objetivo_pro = objetivo[0].strip() except IndexError: objetivo_pro = '' except AttributeError: objetivo_pro = '' return objetivo_pro # Extrae Público Objetivo def publico_objetivo(parser): try: diri_a = parser.xpath('//div[@class="body2-convocatorias"]//div[@class="field-item even"]//text()') n=0 dirigido_a = '' for elemento in diri_a: elemento = elemento.strip() if elemento != '': dirigido_a = dirigido_a + ' ' + elemento n+=1 dirigido_a.strip() except AttributeError: dirigido_a = '' return dirigido_a # Extrae estado de la convocatoria def estado(parser): try: estado = parser.xpath('//div[@class="sub-sub-panel panel-state-tex"]/p/text()') estado = estado[0] + ' ' + estado[1] except IndexError: estado = '' except AttributeError: estado = '' return estado # Extrae Fecha de cierre def fechas_cierre(parser): try: marcas = parser.xpath('//tr/td[@class="views-field views-field-field-numero"]/text()') estados = [] fecha2 = '' for i in marcas: estados.append(i.strip()) for x in range(len(estados)): marca = parser.xpath('//tr/td[@class="views-field views-field-field-numero"][1]/text()')[x] if marca.strip() in estados: fecha = parser.xpath('//tr/td[@class="views-field views-field-body"]/text()')[x] if marca.strip() == 'Cierre': fecha2 = fecha.strip() break else: fecha2 = '' except IndexError: fecha2 = '' except AttributeError: fecha2 = '' return fecha2.strip() # Extrae fecha de Resultados preliminares def fechas_resultados_preliminares(parser): try: marcas = parser.xpath('//tr/td[@class="views-field views-field-field-numero"]/text()') estados = [] fecha2 = '' for i in marcas: estados.append(i.strip()) for x in range(len(estados)): marca = parser.xpath('//tr/td[@class="views-field views-field-field-numero"][1]/text()')[x] if marca.strip() in estados: fecha = parser.xpath('//tr/td[@class="views-field views-field-body"]/text()')[x] if marca.strip() == 'Publicación de resultados preliminares': fecha2 = fecha.strip() break else: fecha2 = '' except IndexError: fecha2 = '' except AttributeError: fecha2 = '' return fecha2.strip() #Extrae Fecha de públicación de resultados def fechas_publicacion_resultados_definitivos(parser): try: marcas = parser.xpath('//tr/td[@class="views-field views-field-field-numero"]/text()') estados = [] fecha2 = '' for i in marcas: estados.append(i.strip()) for x in range(len(estados)): marca = parser.xpath('//tr/td[@class="views-field views-field-field-numero"][1]/text()')[x] if marca.strip() in estados: fecha = parser.xpath('//tr/td[@class="views-field views-field-body"]/text()')[x] if marca.strip() == 'Publicación de resultados definitivos' or marca.strip() == 'Publicación de resultados definitivos': fecha2 = fecha.strip() break else: fecha2 = '' except IndexError: fecha2 = '' except AttributeError: fecha2 = '' return fecha2.strip() # Extrae links de pdfs def links_pdf(link): encabezados = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } resp = requests.get(link, headers=encabezados, verify=False) resp = resp.text response = scrapy.Selector(text=resp) links = response.xpath('//span[@class="file"]/a/@href').getall() urls = '' for link in links: urls = urls + ', ' + link urls = urls[2::] return urls # Extrae parser de página horizontal def pag_horizontal(link): encabezados = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } resp = requests.get(link, headers=encabezados, verify=False) resp = resp.text #soup = get_Soup('https://minciencias.gov.co/convocatorias/todas') parser = html.fromstring(resp) return parser """ Genera función integran de scrapy de colciencias (Colombia) """ # Función integradora def colombia(): # Página principal # Configuración colombia = pd.DataFrame() parser = pag_principal() # Extracción página principal tit = titulo(parser) desc = descripcion(parser) cuant = cuantia(parser) aper = fecha_apertura(parser) links = links_vertical('https://minciencias.gov.co/convocatorias/todas') #Vertical Primera página obj = [] pub_objetivo = [] est= [] fe_cierre = [] fe_preliminares = [] fe_definitivos = [] pdf = [] for link in links: parser = pag_vertical(link) obj.append(objetivo(parser)) pub_objetivo.append(publico_objetivo(parser)) est.append(estado(parser)) fe_cierre.append(fechas_cierre(parser)) fe_preliminares.append(fechas_resultados_preliminares(parser)) fe_definitivos.append(fechas_publicacion_resultados_definitivos(parser)) pdf.append(links_pdf(link)) # CSV colombia['Título'] = tit colombia['Descripción'] = desc colombia['Objetivo'] = obj colombia['Cuantia'] = cuant colombia['Fecha Apertura'] = aper colombia['Fecha Cierre'] = fe_cierre colombia['Fecha Resultados Preliminares'] = fe_preliminares colombia['Fecha Publicación Resultados Definitivos'] = fe_definitivos colombia['Link'] = links colombia['Público Objetivo'] = pub_objetivo colombia['Estado de la Convocatoria'] = est colombia['Links pdf'] = pdf #Horizontal ult = ult_page('https://minciencias.gov.co/convocatorias/todas?page=1') for pag in range(1, int(ult)): print(pag) url = 'https://minciencias.gov.co/convocatorias/todas?page=' + str(pag) horizontal =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """goog-stock-prediction.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1AKrijE9xS03KZo8MMsMxbTD9WkwisjYl #Stock Prediction Using LSTM <img src = 'https://www.usnews.com/dims4/USNEWS/85cf3cc/2147483647/thumbnail/640x420/quality/85/?url=http%3A%2F%2Fmedia.beam.usnews.com%2Fd8%2F17%2F754293f84bc69ddfbffaa5793cae%2F190411-stockmarket-stock.jpg' width="400"> In this project, a simple LSTM neural network will predict future change in the stock prices of Alphabet (GOOG). Long Short-Term Memory (LSTM) networks are a type of recurrent neural network capable of learning order dependence in sequence prediction problems. The stock dataset was obtained from [Kaggle](https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs). """ from google.colab import drive # for Google Colab drive.mount('/content/drive', force_remount=True) import numpy as np import random import pandas as pd import matplotlib.pyplot as plt from pandas import datetime import math, time from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler import itertools import datetime from operator import itemgetter from math import sqrt import torch import torch.nn as nn import os device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device """## Load Data""" dir = "/content/drive/MyDrive/Colab Notebooks/Data" def stocks_data(symbols, dates): df = pd.DataFrame(index=dates) for symbol in symbols: df_temp = pd.read_csv(dir + "/Stocks/{}.us.txt".format(symbol), index_col='Date', parse_dates=True, usecols=['Date', 'Close'], na_values=['nan']) df_temp = df_temp.rename(columns={'Close': symbol}) df = df.join(df_temp) return df dates = pd.date_range('2015-01-02', '2016-12-31', freq='B') symbols = ['goog', 'aapl', 'amzn', 'msft', 'tsla'] df = stocks_data(symbols, dates) df.fillna(method='pad') df.interpolate().plot() plt.show() df.head() dates = pd.date_range('2014-03-27', '2017-11-10', freq='B') df_date =
pd.DataFrame(index=dates)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.ensemble import GradientBoostingRegressor from sklearn.externals import joblib import warnings warnings.filterwarnings("ignore") # Choose GBDT Regression model as baseline # my_model = GradientBoostingRegressor() # Training Step def my_train_func(station): train_data = pd.read_csv('train-dataset/point_date_' + station + '.csv') train_data_Y = train_data['actualPowerGeneration'] # Drop some non-relative factors drop_columns = ['longitude', 'latitude', 'RadiationHorizontalPlane', 'Temperature', 'actualPowerGeneration', 'Humidity', 'atmosphericPressure', 'windDirection', 'scatteredRadiation'] train_data_X = train_data.drop(axis=1, columns=drop_columns) train_data_X['month'] = pd.to_datetime(train_data_X.Time).dt.month train_data_X['day'] = pd.to_datetime(train_data_X.Time).dt.day train_data_X['hour'] = pd.to_datetime(train_data_X.Time).dt.hour train_data_X = train_data_X.drop(axis=1, columns=['Time']) # Validation X_train, X_test, Y_train, Y_test = train_test_split(train_data_X, train_data_Y, test_size=0.2, random_state=40) myGBR = GradientBoostingRegressor(n_estimators=500,max_depth=7) myGBR.fit(X_train, Y_train) Y_pred = myGBR.predict(X_test) # Output model to global variation # my_model = myGBR _ = joblib.dump(myGBR, 'model/' + station + '_model.pkl', compress=9) print('Training completed. MSE on validation set is {}'.format(mean_squared_error(Y_test, Y_pred))) print('Factors below are used: \n{}'.format(list(X_train.columns))) def my_spredict_func(station, input_file, output_file): # Clean test data columns = 'Time,longitude,latitude,directRadiation,scatterdRadiation,windSpeed,airTransparency,airDensity' columns = list(columns.split(',')) test_data = pd.read_csv('test-dataset/' + input_file, names=columns) drop_columns = ['longitude', 'latitude', 'airTransparency', 'airDensity'] test_data = test_data.drop(axis=1, columns=drop_columns) test_data['month'] = pd.to_datetime(test_data.Time).dt.month test_data['day'] = pd.to_datetime(test_data.Time).dt.day test_data['hour'] = pd.to_datetime(test_data.Time).dt.hour test_data['min'] = pd.to_datetime(test_data.Time).dt.minute # Find the time point we need to start with test_data = test_data.sort_values(by='Time') # Find the latest time point time_point = test_data[test_data['hour'] == 0][test_data['min'] == 0].index.tolist()[0] start_point = test_data.loc[time_point]['Time'] observation_period = pd.date_range(start=start_point, periods=96, freq='15T').strftime("%Y-%m-%d %H:%M:%S").tolist() test_data = test_data.drop(axis=1, columns=['Time', 'min']) # Simply fill the NaN values, need more discussion test_data = test_data.fillna(method='ffill') test_data = test_data.fillna(0) test_data = test_data.iloc[time_point:time_point + 96] try: my_model = joblib.load('model/' + station + '_model.pkl') print('Find pretrained model!\n') except: print('Need train first!') exit(0) result = my_model.predict(test_data) # result = [at_least(x) for x in result] two_columns = ['Time', 'Short Predict'] result =
pd.DataFrame(data={two_columns[0]: observation_period, two_columns[1]: result})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Jun 23 11:32:40 2021 @author: bianca """ # +++ IMPLIED GROWTH RATES +++ # import pandas as pd import os import numpy as np from datetime import datetime ## select Merge File US Equity and WRDS df_assig3 = pd.read_csv("./data/external/assignment_3_sp500_constituents_with_daily_mdata.csv") df_assig3['date'] df_assig3.head(29) df_assig3.iloc[:] # S&P 500 Index SP500_avg = df_assig3.groupby(['date']).agg({ 'prc': 'mean' }) SP500_avg SP500_index = pd.DataFrame(SP500_avg, columns= ['prc']) SP500_index SP500_index.to_csv("./data/external/assignment_3_SP500_index.csv") # summarize data df2 = df_assig3.groupby(['date', 'comnam', 'permno', 'hsiccd', 'ticker', 'gvkey']).agg({ 'prc': 'mean' }) df2 df2.to_csv("./data/external/assignment_3_sp500_summary.csv") df_CAR_UE = pd.read_csv("./data/external/assign3_summary CAR UE.csv") df_CAR_UE['hsiccd'] type(['month']) df_CAR_UE['month'].astype(int) ## create 'month' and 'year' column
pd.Timestamp(df_CAR_UE['date'])
pandas.Timestamp
import cv2 from PIL import Image import numpy as np import pandas as pd import torch from torch import nn import torchvision from torchsat.transforms import transforms_seg import matplotlib.pyplot as plt from torchvision.transforms import transforms from torch.utils.data import Dataset import torch.nn.functional as F from tqdm.autonotebook import tqdm import time from sklearn.metrics import accuracy_score from sklearn.metrics import roc_curve, auc # this function came from https://www.kaggle.com/amalrda/imagesegmentation def decode_pixels(pix, rows=2100, cols=1400,label=255): """Encode the pixel location and length pairs into a mask. This function is derived from https://www.kaggle.com/amalrda/imagesegmentation (it's basically copied and pasted). Take in a row from the 'EncodedPixels' column of the train.csv dataframe and converts it to a mask. Parameters ---------- pix: list - This is split into pairs of starting pixels and lengths. These correspond to an pixels in a 1D array which is later reshaped into the appropriate width and height. rows: number of rows the encoded image should be reshaped to. Defaults to 2100. cols: number of columnss the encoded image should be reshaped to. Defaults to 1400. label: what value the masked pixels should be assigned. Defaults to 255 Returns ------- np.array - an array that contains the mask of the encoded pixels passed in. """ # if there is information in the pixel list, then parse it and make the (pixel, length) pairs if isinstance(pix,str): # coverting the string into a list of numbers rle_numbers = [int(num_string) for num_string in pix.split(' ')] # Coverting them into starting index and length pairs rle_pairs = np.array(rle_numbers).reshape(-1,2) # otherwise, then make the array of (pixel, length) pairs empty else: rle_pairs = np.array([]) # Creating a blank image in form of a single row array img = np.zeros(rows*cols, dtype=np.uint8) # Setting the segmented pixels in the img for ind, length in rle_pairs: ind -= 1 img[ind:ind+length] = label img = img.reshape(rows,cols)#,1) img = img.T return img class CloudData(Dataset): """This class is used for the cloud data""" def __init__(self, data_directory = None, mask_df = None, data_type = 'train', transform=None, output_width=256, output_height=256, normalize_func = None, preprocessing=None): """Instantiate the CloudData object. Arguments --------- data_directory (str) - path of where the images are saved. Defaults to None. mask_df (pd.DataFrame) - the dataframe of the training data image names and labels, and encoded pixels. Defaults to None. data_type (str) - whether the data is of type train or test. If it is test, there is no mask information and only the images are gathered. Defaults to "train". transform (torch.transforms) - pytorch transform(s) to have applied to the images. Defaults to BASIC_TRANSFORM which simply converts image to tensor. output_width (int) - the width to have the image tensor and masks outputted at. output_height (int) - the height to have the image tensor and masks outputted at. """ super(CloudData,self).__init__() # the Image_Label field in the mask_df is a string with format {image_name}_{image_label} and need to be broken into two pieces mask_df['Label'] = [parts[1] for parts in mask_df['Image_Label'].str.split('_')] mask_df['Image'] = [parts[0] for parts in mask_df['Image_Label'].str.split('_')] # we are only interested in having one item per unique image and the output for each image will be one mask per class self.unique_images = mask_df['Image'].unique() self.mask_df = mask_df # we need to know the list of unique classes self.classes = list(mask_df['Label'].unique()) self.data_type = data_type self.data_directory = data_directory self.transform = transform self.normalize_func = normalize_func self.preprocessing = preprocessing self.output_width = output_width self.output_height = output_height def __getitem__(self, idx): # get the image name image_name = self.unique_images[idx] idx_images = self.mask_df[self.mask_df['Image']==image_name] # decode the "EncodedPixels" into the mask for each of the classes masks = [] for c in self.classes: mask_subset = idx_images[idx_images['Label']==c] if mask_subset.shape[0] > 0: masks.append(torch.tensor(decode_pixels(mask_subset.iloc[0]['EncodedPixels'], label=1))) else: masks.append(torch.tensor(decode_pixels(np.nan))) # get the actual image image = Image.open(self.data_directory+'/train_images/'+image_name) image_tensor = torchvision.transforms.ToTensor()(image) del image # save memory resized_image = (F.interpolate(image_tensor.unsqueeze(0), (self.output_width, self.output_height))).squeeze(0).float() resized_mask = (F.interpolate(torch.stack(masks).unsqueeze(0), (self.output_width, self.output_height))).squeeze(0).float() if self.preprocessing: preprocessed = self.preprocessing(image=resized_image, mask=resized_mask) resized_img = preprocessed['image'] resized_mask = preprocessed['mask'] if self.transform is None: if self.normalize_func is None: return resized_image, resized_mask else: return_img, return_mask = self.normalize_func(resized_image, resized_mask) return return_img, return_mask.float() else: if self.normalize_func is None: return_img, return_mask = self.perform_transform(resized_image, resized_mask,self.transform) return return_img, return_mask.float() else: return_img, return_mask = self.perform_transform(resized_image,resized_mask,self.transform) return_img, return_mask = self.normalize_func(return_img, return_mask) return return_img, return_mask.float() def __len__(self): return len(self.unique_images) def perform_transform(self,img, mask, transform_list): img = (img.permute(1,2,0).numpy()*255).astype(np.uint8) mask = (mask.permute(1,2,0).numpy()*255).astype(np.uint8) transformed_img, transformed_mask = transforms_seg.Compose( transform_list )(img, mask) return torch.tensor(transformed_img/255,dtype=torch.float32).permute(2,0,1), torch.tensor(transformed_mask/255,dtype=torch.float32).permute(2,0,1) def show_image_and_masks(images_and_masks, class_labels = None, inches_per_image = 3): total_sets = len(images_and_masks) images_per_set = 1 + images_and_masks[0][1].shape[0] fig, ax = plt.subplots(total_sets,images_per_set) fig.set_size_inches((inches_per_image*images_per_set,inches_per_image*total_sets)) for i, set_of_images in enumerate(images_and_masks): ax[i][0].imshow(set_of_images[0].permute(1,2,0)) ax[i][0].axis('off') for j in range(1,images_per_set): ax[i][j].imshow(set_of_images[1][j-1,:,:]) ax[i][j].axis('off') # now go through each class and add it as a title in the first row of masks ax[0][0].set_title('Raw Image') for j in range(1,images_per_set): ax[0][j].set_title(class_labels[j-1]) fig.tight_layout() return fig, ax def show_predicted_masks(pred_masks,true_masks, original_images, inches_per_img=3, classes = None, cmap='coolwarm'): sigmoid_layer = nn.Sigmoid() # first, check to make sure there are the same number of pred and true masks if len(pred_masks) != len(true_masks): raise ValueError(f"There must be the same number of pred masks as true masks. There are {len(pred_masks)} pred masks and {len(true_masks)} true masks.") rows = len(pred_masks)*2 columns = pred_masks[0].shape[0] fig, ax = plt.subplots(rows,columns+1) fig.set_size_inches((columns*inches_per_img,rows*inches_per_img)) for r in range(int(rows/2)): for c in range(columns): ax[r*2][c+1].imshow(true_masks[r][c,:,:]) im = ax[r*2+1][c+1].imshow(sigmoid_layer(pred_masks[r][c,:,:]),cmap=cmap) if not cmap is None: fig.colorbar(im,ax=ax[r*2+1][c+1]) if c == 0: ax[r*2][c].set_ylabel('True Masks') ax[r*2+1][c].set_ylabel('Pred Masks') ax[r*2][0].imshow(original_images[r]) ax[r*2+1][0].imshow(original_images[r]) if not classes is None: for c in range(columns): ax[0][c+1].set_title(classes[c]) fig.tight_layout() return fig, ax """This function is copied from https://github.com/EdwardRaff/Inside-Deep-Learning/blob/main/idlmam.py""" def moveTo(obj, device): """ obj: the python object to move to a device, or to move its contents to a device device: the compute device to move objects to """ if hasattr(obj, "to"): return obj.to(device) elif isinstance(obj, list): return [moveTo(x, device) for x in obj] elif isinstance(obj, tuple): return tuple(moveTo(list(obj), device)) elif isinstance(obj, set): return set(moveTo(list(obj), device)) elif isinstance(obj, dict): to_ret = dict() for key, value in obj.items(): to_ret[moveTo(key, device)] = moveTo(value, device) return to_ret else: return obj """This function below is copied from https://github.com/EdwardRaff/Inside-Deep-Learning/blob/main/idlmam.py, but revised so that the score_funcs are calculated after each batch rather than at the end. Now, at the end, the scores from each batch are averaged. The reason for this change is for memory. Previously, the y_pred and y_true were being appended to a list after each batch which required much more space than I have available.""" def run_epoch(model, optimizer, data_loader, loss_func, device, results, score_funcs, prefix="", desc=None): """ model -- the PyTorch model / "Module" to run for one epoch optimizer -- the object that will update the weights of the network data_loader -- DataLoader object that returns tuples of (input, label) pairs. loss_func -- the loss function that takes in two arguments, the model outputs and the labels, and returns a score device -- the compute lodation to perform training score_funcs -- a dictionary of scoring functions to use to evalue the performance of the model prefix -- a string to pre-fix to any scores placed into the _results_ dictionary. desc -- a description to use for the progress bar. """ running_loss = [] # make a dictionary of empty lists for each score_func score_func_batch_results = {} for name, score_func in score_funcs.items(): score_func_batch_results[name] = [] start = time.time() for inputs, labels in tqdm(data_loader, desc=desc, leave=False): #Move the batch to the device we are using. inputs = moveTo(inputs, device) labels = moveTo(labels, device) y_hat = model(inputs) #this just computed f_Θ(x(i)) # Compute loss. loss = loss_func(y_hat, labels) if model.training: loss.backward() optimizer.step() optimizer.zero_grad() #Now we are just grabbing some information we would like to have running_loss.append(loss.detach().item()) if len(score_funcs) > 0 and isinstance(labels, torch.Tensor): #moving labels & predictions back to CPU for computing / storing predictions labels = labels.detach().cpu().numpy() y_hat = y_hat.detach().cpu().numpy() #add to predictions so far y_true = labels y_pred = y_hat # quick check for classification vs. regression, if len(y_pred.shape) == 2 and y_pred.shape[1] > 1: #We have a classification problem, convert to labels y_pred = np.argmax(y_pred, axis=1) #Else, we assume we are working on a regression problem # now going through each of the score functions and appending the score from this batch to it's list of values for name, score_func in score_funcs.items(): try: value = score_func(y_true, y_pred) score_func_batch_results[name].append(value) except: score_func_batch_results[name].append(float("NaN")) #end training epoch end = time.time() # now that the epoch is over, average the batch scores for each score function and add them to "results" df for name, score_func in score_funcs.items(): try: results[prefix + " " + name].append( np.mean(score_func_batch_results[name]) ) except: results[prefix + " " + name].append(float("NaN")) results[prefix + " loss"].append( np.mean(running_loss) ) return end-start #time spent on epoch """This is direct copy from https://github.com/EdwardRaff/Inside-Deep-Learning/blob/main/idlmam.py so that it references the new version of 'run_epoch' """ def train_network(model, loss_func, train_loader, val_loader=None, test_loader=None,score_funcs=None, epochs=50, device="cpu", checkpoint_file=None, lr_schedule=None, optimizer=None, disable_tqdm=False ): """Train simple neural networks Keyword arguments: model -- the PyTorch model / "Module" to train loss_func -- the loss function that takes in batch in two arguments, the model outputs and the labels, and returns a score train_loader -- PyTorch DataLoader object that returns tuples of (input, label) pairs. val_loader -- Optional PyTorch DataLoader to evaluate on after every epoch test_loader -- Optional PyTorch DataLoader to evaluate on after every epoch score_funcs -- A dictionary of scoring functions to use to evalue the performance of the model epochs -- the number of training epochs to perform device -- the compute lodation to perform training lr_schedule -- the learning rate schedule used to alter \eta as the model trains. If this is not None than the user must also provide the optimizer to use. optimizer -- the method used to alter the gradients for learning. """ if score_funcs == None: score_funcs = {}#Empty set to_track = ["epoch", "total time", "train loss"] if val_loader is not None: to_track.append("val loss") if test_loader is not None: to_track.append("test loss") for eval_score in score_funcs: to_track.append("train " + eval_score ) if val_loader is not None: to_track.append("val " + eval_score ) if test_loader is not None: to_track.append("test "+ eval_score ) total_train_time = 0 #How long have we spent in the training loop? results = {} #Initialize every item with an empty list for item in to_track: results[item] = [] if optimizer == None: #The AdamW optimizer is a good default optimizer optimizer = torch.optim.AdamW(model.parameters()) del_opt = True else: del_opt = False #Place the model on the correct compute resource (CPU or GPU) model.to(device) for epoch in tqdm(range(epochs), desc="Epoch", disable=disable_tqdm): model = model.train()#Put our model in training mode total_train_time += run_epoch(model, optimizer, train_loader, loss_func, device, results, score_funcs, prefix="train", desc="Training") results["epoch"].append( epoch ) results["total time"].append( total_train_time ) if val_loader is not None: model = model.eval() #Set the model to "evaluation" mode, b/c we don't want to make any updates! with torch.no_grad(): run_epoch(model, optimizer, val_loader, loss_func, device, results, score_funcs, prefix="val", desc="Validating") #In PyTorch, the convention is to update the learning rate after every epoch if lr_schedule is not None: if isinstance(lr_schedule, torch.optim.lr_scheduler.ReduceLROnPlateau): lr_schedule.step(results["val loss"][-1]) else: lr_schedule.step() if test_loader is not None: model = model.eval() #Set the model to "evaluation" mode, b/c we don't want to make any updates! with torch.no_grad(): run_epoch(model, optimizer, test_loader, loss_func, device, results, score_funcs, prefix="test", desc="Testing") if checkpoint_file is not None: torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'results' : results }, checkpoint_file) if del_opt: del optimizer return
pd.DataFrame.from_dict(results)
pandas.DataFrame.from_dict
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = ( "The default of the 'keep_tz' keyword in " "DatetimeIndex.to_series will change to True in a future " "release." ) assert msg in str(m[0].message) with tm.assert_produces_warning(FutureWarning): result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx") df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx) expected = DataFrame( { "idx": [ datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5), ], "a": range(5), "b": ["A", "B", "C", "D", "E"], }, columns=["idx", "a", "b"], ) expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_set_index_timezone(self): # GH 12358 # tz-aware Series should retain the tz idx = to_datetime(["2014-01-01 10:10:10"], utc=True).tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index") ) tm.assert_frame_equal(res, exp) # GH 12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_reset_index_with_intervals(self): idx = IntervalIndex.from_breaks(np.arange(11), name="x") original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]] result = original.set_index("x") expected = DataFrame({"y": np.arange(10)}, index=idx) tm.assert_frame_equal(result, expected) result2 = result.reset_index() tm.assert_frame_equal(result2, original) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) result = df.set_index(df.columns[0]) expected = df.iloc[:, 1:] expected.index = df.iloc[:, 0].values expected.index.names = [df.columns[0]] tm.assert_frame_equal(result, expected) def test_set_index_empty_column(self): # GH 1971 df = DataFrame( [ {"a": 1, "p": 0}, {"a": 2, "m": 10}, {"a": 3, "m": 11, "p": 20}, {"a": 4, "m": 12, "p": 21}, ], columns=("a", "m", "p", "x"), ) result = df.set_index(["a", "x"]) expected = df[["m", "p"]] expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"]) tm.assert_frame_equal(result, expected) def test_set_columns(self, float_string_frame): cols = Index(np.arange(len(float_string_frame.columns))) float_string_frame.columns = cols with pytest.raises(ValueError, match="Length mismatch"): float_string_frame.columns = cols[::2] def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo") df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.reindex(idx2) tm.assert_index_equal(df.index, idx2) # GH 11314 # with tz index = date_range( datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern" ) df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index) new_index = date_range( datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern" ) result = df.set_index(new_index) assert result.index.freq == index.freq # Renaming def test_rename(self, float_frame): mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} renamed = float_frame.rename(columns=mapping) renamed2 = float_frame.rename(columns=str.lower) tm.assert_frame_equal(renamed, renamed2) tm.assert_frame_equal( renamed2.rename(columns=str.upper), float_frame, check_names=False ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = DataFrame(data) renamed = df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["foo", "bar"])) renamed = df.rename(index=str.upper) tm.assert_index_equal(renamed.index, Index(["BAR", "FOO"])) # have to pass something with pytest.raises(TypeError, match="must pass an index to rename"): float_frame.rename() # partial columns renamed = float_frame.rename(columns={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.columns, Index(["A", "B", "foo", "bar"])) # other axis renamed = float_frame.T.rename(index={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.index, Index(["A", "B", "foo", "bar"])) # index with name index = Index(["foo", "bar"], name="name") renamer = DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["bar", "foo"], name="name")) assert renamed.index.name == renamer.index.name def test_rename_axis_inplace(self, float_frame): # GH 15704 expected = float_frame.rename_axis("foo") result = float_frame.copy() no_return = result.rename_axis("foo", inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) expected = float_frame.rename_axis("bar", axis=1) result = float_frame.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) def test_rename_axis_raises(self): # https://github.com/pandas-dev/pandas/issues/17833 df = DataFrame({"A": [1, 2], "B": [1, 2]}) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis({0: 10, 1: 20}, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=1) with pytest.raises(ValueError, match="Use `.rename`"): df["A"].rename_axis(id) def test_rename_axis_mapper(self): # GH 19978 mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) df = DataFrame( {"x": [i for i in range(len(mi))], "y": [i * 10 for i in range(len(mi))]}, index=mi, ) # Test for rename of the Index object of columns result = df.rename_axis("cols", axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="cols")) # Test for rename of the Index object of columns using dict result = result.rename_axis(columns={"cols": "new"}, axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="new")) # Test for renaming index using dict result = df.rename_axis(index={"ll": "foo"}) assert result.index.names == ["foo", "nn"] # Test for renaming index using a function result = df.rename_axis(index=str.upper, axis=0) assert result.index.names == ["LL", "NN"] # Test for renaming index providing complete list result = df.rename_axis(index=["foo", "goo"]) assert result.index.names == ["foo", "goo"] # Test for changing index and columns at same time sdf = df.reset_index().set_index("nn").drop(columns=["ll", "y"]) result = sdf.rename_axis(index="foo", columns="meh") assert result.index.name == "foo" assert result.columns.name == "meh" # Test different error cases with pytest.raises(TypeError, match="Must pass"): df.rename_axis(index="wrong") with pytest.raises(ValueError, match="Length of names"): df.rename_axis(index=["wrong"]) with pytest.raises(TypeError, match="bogus"): df.rename_axis(bogus=None) @pytest.mark.parametrize( "kwargs, rename_index, rename_columns", [ ({"mapper": None, "axis": 0}, True, False), ({"mapper": None, "axis": 1}, False, True), ({"index": None}, True, False), ({"columns": None}, False, True), ({"index": None, "columns": None}, True, True), ({}, False, False), ], ) def test_rename_axis_none(self, kwargs, rename_index, rename_columns): # GH 25034 index = Index(list("abc"), name="foo") columns = Index(["col1", "col2"], name="bar") data = np.arange(6).reshape(3, 2) df = DataFrame(data, index, columns) result = df.rename_axis(**kwargs) expected_index = index.rename(None) if rename_index else index expected_columns = columns.rename(None) if rename_columns else columns expected = DataFrame(data, expected_index, expected_columns) tm.assert_frame_equal(result, expected) def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) df = DataFrame([(0, 0), (1, 1)], index=index, columns=columns) # # without specifying level -> across all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar3")], names=["foo", "bar"] ) new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) tm.assert_index_equal(renamed.index, new_index) tm.assert_index_equal(renamed.columns, new_columns) assert renamed.index.names == df.index.names assert renamed.columns.names == df.columns.names # # with specifying a level (GH13766) # dict new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # function func = str.upper new_columns = MultiIndex.from_tuples( [("FIZZ1", "buzz1"), ("FIZZ2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "BUZZ1"), ("fizz2", "BUZZ2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # index new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar2")], names=["foo", "bar"] ) renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(renamed.index, new_index) def test_rename_nocopy(self, float_frame): renamed = float_frame.rename(columns={"C": "foo"}, copy=False) renamed["foo"] = 1.0 assert (float_frame["C"] == 1.0).all() def test_rename_inplace(self, float_frame): float_frame.rename(columns={"C": "foo"}) assert "C" in float_frame assert "foo" not in float_frame c_id = id(float_frame["C"]) float_frame = float_frame.copy() float_frame.rename(columns={"C": "foo"}, inplace=True) assert "C" not in float_frame assert "foo" in float_frame assert id(float_frame["foo"]) != c_id def test_rename_bug(self): # GH 5344 # rename set ref_locs, and set_index was not resetting df = DataFrame({0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]}) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) df = df.set_index(["a", "b"]) df.columns = ["2001-01-01"] expected = DataFrame( [[1], [2]], index=MultiIndex.from_tuples( [("foo", "bah"), ("bar", "bas")], names=["a", "b"] ), columns=["2001-01-01"], ) tm.assert_frame_equal(df, expected) def test_rename_bug2(self): # GH 19497 # rename was changing Index to MultiIndex if Index contained tuples df = DataFrame(data=np.arange(3), index=[(0, 0), (1, 1), (2, 2)], columns=["a"]) df = df.rename({(1, 1): (5, 4)}, axis="index") expected = DataFrame( data=np.arange(3), index=[(0, 0), (5, 4), (2, 2)], columns=["a"] ) tm.assert_frame_equal(df, expected) def test_rename_errors_raises(self): df = DataFrame(columns=["A", "B", "C", "D"]) with pytest.raises(KeyError, match="'E'] not found in axis"): df.rename(columns={"A": "a", "E": "e"}, errors="raise") @pytest.mark.parametrize( "mapper, errors, expected_columns", [ ({"A": "a", "E": "e"}, "ignore", ["a", "B", "C", "D"]), ({"A": "a"}, "raise", ["a", "B", "C", "D"]), (str.lower, "raise", ["a", "b", "c", "d"]), ], ) def test_rename_errors(self, mapper, errors, expected_columns): # GH 13473 # rename now works with errors parameter df = DataFrame(columns=["A", "B", "C", "D"]) result = df.rename(columns=mapper, errors=errors) expected = DataFrame(columns=expected_columns) tm.assert_frame_equal(result, expected) def test_reorder_levels(self): index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=["L0", "L1", "L2"], ) df = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=index) # no change, position result = df.reorder_levels([0, 1, 2]) tm.assert_frame_equal(df, result) # no change, labels result = df.reorder_levels(["L0", "L1", "L2"]) tm.assert_frame_equal(df, result) # rotate, position result = df.reorder_levels([1, 2, 0]) e_idx = MultiIndex( levels=[["one", "two", "three"], [0, 1], ["bar"]], codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=["L1", "L2", "L0"], ) expected = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=e_idx) tm.assert_frame_equal(result, expected) result = df.reorder_levels([0, 0, 0]) e_idx = MultiIndex( levels=[["bar"], ["bar"], ["bar"]], codes=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=["L0", "L0", "L0"], ) expected = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=e_idx) tm.assert_frame_equal(result, expected) result = df.reorder_levels(["L0", "L0", "L0"]) tm.assert_frame_equal(result, expected) def test_reset_index(self, float_frame): stacked = float_frame.stack()[::2] stacked = DataFrame({"foo": stacked, "bar": stacked}) names = ["first", "second"] stacked.index.names = names deleveled = stacked.reset_index() for i, (lev, level_codes) in enumerate( zip(stacked.index.levels, stacked.index.codes) ): values = lev.take(level_codes) name = names[i] tm.assert_index_equal(values, Index(deleveled[name])) stacked.index.names = [None, None] deleveled2 = stacked.reset_index() tm.assert_series_equal( deleveled["first"], deleveled2["level_0"], check_names=False ) tm.assert_series_equal( deleveled["second"], deleveled2["level_1"], check_names=False ) # default name assigned rdf = float_frame.reset_index() exp = Series(float_frame.index.values, name="index") tm.assert_series_equal(rdf["index"], exp) # default name assigned, corner case df = float_frame.copy() df["index"] = "foo" rdf = df.reset_index() exp = Series(float_frame.index.values, name="level_0") tm.assert_series_equal(rdf["level_0"], exp) # but this is ok float_frame.index.name = "index" deleveled = float_frame.reset_index() tm.assert_series_equal(deleveled["index"], Series(float_frame.index)) tm.assert_index_equal(deleveled.index, Index(np.arange(len(deleveled)))) # preserve column names float_frame.columns.name = "columns" resetted = float_frame.reset_index() assert resetted.columns.name == "columns" # only remove certain columns df = float_frame.reset_index().set_index(["index", "A", "B"]) rs = df.reset_index(["A", "B"]) # TODO should reset_index check_names ? tm.assert_frame_equal(rs, float_frame, check_names=False) rs = df.reset_index(["index", "A", "B"]) tm.assert_frame_equal(rs, float_frame.reset_index(), check_names=False) rs = df.reset_index(["index", "A", "B"]) tm.assert_frame_equal(rs, float_frame.reset_index(), check_names=False) rs = df.reset_index("A") xp = float_frame.reset_index().set_index(["index", "B"]) tm.assert_frame_equal(rs, xp, check_names=False) # test resetting in place df = float_frame.copy() resetted = float_frame.reset_index() df.reset_index(inplace=True) tm.assert_frame_equal(df, resetted, check_names=False) df = float_frame.reset_index().set_index(["index", "A", "B"]) rs = df.reset_index("A", drop=True) xp = float_frame.copy() del xp["A"] xp = xp.set_index(["B"], append=True) tm.assert_frame_equal(rs, xp, check_names=False) def test_reset_index_name(self): df = DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"], index=Index(range(2), name="x"), ) assert df.reset_index().index.name is None assert df.reset_index(drop=True).index.name is None df.reset_index(inplace=True) assert df.index.name is None def test_reset_index_level(self): df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"]) for levels in ["A", "B"], [0, 1]: # With MultiIndex result = df.set_index(["A", "B"]).reset_index(level=levels[0]) tm.assert_frame_equal(result, df.set_index("B")) result = df.set_index(["A", "B"]).reset_index(level=levels[:1]) tm.assert_frame_equal(result, df.set_index("B")) result = df.set_index(["A", "B"]).reset_index(level=levels) tm.assert_frame_equal(result, df) result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True) tm.assert_frame_equal(result, df[["C", "D"]]) # With single-level Index (GH 16263) result = df.set_index("A").reset_index(level=levels[0]) tm.assert_frame_equal(result, df) result = df.set_index("A").reset_index(level=levels[:1]) tm.assert_frame_equal(result, df) result = df.set_index(["A"]).reset_index(level=levels[0], drop=True) tm.assert_frame_equal(result, df[["B", "C", "D"]]) # Missing levels - for both MultiIndex and single-level Index: for idx_lev in ["A", "B"], ["A"]: with pytest.raises(KeyError, match="Level E "): df.set_index(idx_lev).reset_index(level=["A", "E"]) with pytest.raises(IndexError, match="Too many levels"): df.set_index(idx_lev).reset_index(level=[0, 1, 2]) def test_reset_index_right_dtype(self): time = np.arange(0.0, 10, np.sqrt(2) / 2) s1 = Series( (9.81 * time ** 2) / 2, index=Index(time, name="time"), name="speed" ) df =
DataFrame(s1)
pandas.DataFrame
import os import numpy as np import pandas as pd import framework.constants as cs from io import StringIO from framework.representations.embedding import Embedding from framework.util import scaleInRange from framework.util import drop_duplicates heads_vad = ['Word','Valence','Arousal','Dominance'] heads_be5 = ['Word','Joy','Anger','Sadness','Fear','Disgust'] #### ENGLISH def load_anew10(): anew = pd.read_csv(cs.anew10, sep = '\t') anew = anew[['Word','ValMn','AroMn','DomMn']] anew.columns = ['Word', 'Valence', 'Arousal', 'Dominance'] anew.set_index('Word', inplace=True) return anew def load_anew99(): anew=pd.read_csv(cs.anew99, sep='\t') anew.columns=heads_vad anew.set_index('Word', inplace=True) anew=drop_duplicates(anew) return anew def load_stevenson07(): stevenson07=pd.read_excel(cs.stevenson07) stevenson07=stevenson07[['word','mean_hap','mean_ang','mean_sad', 'mean_fear','mean_dis']] stevenson07.columns=['Word', 'Joy','Anger','Sadness','Fear','Disgust'] stevenson07.set_index('Word', inplace=True) return stevenson07 def load_warriner13(): warriner13 = pd.read_csv(cs.warriner13, sep=',') warriner13=warriner13[['Word','V.Mean.Sum', 'A.Mean.Sum', 'D.Mean.Sum']] warriner13.columns=heads_vad warriner13.set_index('Word',inplace=True) #print(warriner13.head()) #print(warriner13.shape) return warriner13 # #### SPANISH def load_redondo07(): redondo07=pd.read_excel(cs.redondo07) redondo07=redondo07[['S-Word','Val-Mn-All','Aro-Mn-All','Dom-Mn-All']] redondo07.columns = heads_vad redondo07.set_index('Word', inplace=True) #print(redondo07.head()) #print(redondo07.shape) return redondo07 def load_ferre16(): ferre16=pd.read_excel(cs.ferre16) ferre16=ferre16[['Spanish_Word','Hap_Mean','Ang_Mean','Sad_Mean', 'Fear_Mean','Disg_Mean']] ferre16.columns=heads_be5 ferre16.set_index('Word', inplace=True) #print(ferre16.head()) #print(ferre16.shape) return ferre16 # #### POLISH def load_riegel15(): riegel15=pd.read_excel(cs.riegel15) riegel15=riegel15[['NAWL_word','val_M_all','aro_M_all']] riegel15.columns=['Word','Valence','Arousal'] riegel15['Valence']=scaleInRange(riegel15['Valence'], oldmin=-3, oldmax=3, newmin=1, newmax=9) riegel15['Arousal']=scaleInRange(riegel15['Arousal'], oldmin=1, oldmax=5, newmin=1, newmax=9) riegel15.set_index('Word', inplace=True) return riegel15 def load_wierzba15(): wierzba15 = pd.read_excel(cs.wierzba15) wierzba15=wierzba15[['NAWL_word', 'hap_M_all', 'ang_M_all', 'sad_M_all', 'fea_M_all', 'dis_M_all']] wierzba15.columns=heads_be5 wierzba15.set_index('Word', inplace=True) ## rescaling basic emotions ## Scaling for cat in ['Joy', 'Anger', 'Sadness', 'Fear', 'Disgust']: wierzba15[cat] = [scaleInRange(x=x, oldmin=1., oldmax=7., newmin=1., newmax=5.) for x in wierzba15[cat]] # print(wierzba15.head()) # print(wierzba15.shape) return wierzba15 def load_imbir16(): imbir16 = pd.read_excel(cs.imbir16) imbir16 = imbir16[['polish word', 'Valence_M', 'arousal_M', 'dominance_M']] imbir16.columns=heads_vad imbir16.set_index('Word', inplace=True) # print(imbir16.head()) # print(imbir16.shape) return imbir16 # ### GERMAN def load_schmidtke14(lower_case=False): schmidtke14=pd.read_excel(cs.schmidtke14) # schmidtke14=schmidtke14[['Word','Valence','Arousal','Dominance']] schmidtke14=schmidtke14[['G-word', 'VAL_Mean', 'ARO_Mean_(ANEW)', 'DOM_Mean']] schmidtke14.columns=['Word', 'Valence', 'Arousal', 'Dominance'] # schmidtke14['Word']=schmidtke14['Word'].str.lower() schmidtke14.set_index('Word', inplace=True) if lower_case: schmidtke14.index=schmidtke14.index.str.lower() #schmidtke14=schmidtke14[~schmidtke14.index.duplicated(keep='first')] schmidtke14=drop_duplicates(schmidtke14) schmidtke14.Valence = [scaleInRange(x = x, oldmin = -3., oldmax = 3., newmin = 1., newmax=9.) for x in schmidtke14.Valence] # ### setting word column to lower case for compatiblity with briesemeister11 # # print(schmidtke14.head()) # # print(schmidtke14.shape) return schmidtke14 def load_briesemeister11(): briesemeister11=pd.read_excel(cs.briesemeister11) briesemeister11=briesemeister11[['WORD_LOWER', 'HAP_MEAN', 'ANG_MEAN', 'SAD_MEAN', 'FEA_MEAN', 'DIS_MEAN']] briesemeister11.columns=heads_be5 briesemeister11.set_index('Word', inplace=True) briesemeister11=drop_duplicates(briesemeister11) # print(briesemeister11.head()) # print(briesemeister11.shape) return briesemeister11 def load_hinojosa16(): hinojosa16a=pd.read_excel(cs.hinojosa16a) hinojosa16a=hinojosa16a[['Word','Val_Mn', 'Ar_Mn', 'Hap_Mn', 'Ang_Mn','Sad_Mn', 'Fear_Mn', 'Disg_Mn']] hinojosa16a.columns=['Word', 'Valence', 'Arousal', 'Joy','Anger','Sadness','Fear','Disgust'] hinojosa16a.set_index('Word', inplace=True) hinojosa16b=pd.read_excel(cs.hinojosa16b) hinojosa16b=hinojosa16b[['Word', 'Dom_Mn']] hinojosa16b.columns=['Word','Dominance'] hinojosa16b.set_index('Word', inplace=True) hinojosa=hinojosa16a.join(hinojosa16b, how='inner') hinojosa=hinojosa[['Valence', 'Arousal', 'Dominance', 'Joy', 'Anger', 'Sadness', 'Fear', 'Disgust']] return hinojosa def load_stadthagen16(): stadthagen16=pd.read_csv(cs.stadthagen16, encoding='cp1252') stadthagen16=stadthagen16[['Word', 'ValenceMean', 'ArousalMean']] stadthagen16.columns=['Word', 'Valence', 'Arousal'] stadthagen16.set_index('Word', inplace=True) return stadthagen16 def load_stadthagen17(): ''' Full lexicon including BE5 and VA ''' df=pd.read_csv(cs.stadthagen17, encoding='cp1252') df=df[['Word', 'Valence_Mean', 'Arousal_Mean', 'Happiness_Mean', 'Anger_Mean', 'Sadness_Mean', 'Fear_Mean', 'Disgust_Mean']] df.columns=['Word','Valence','Arousal', 'Joy','Anger', 'Sadness', 'Fear', 'Disgust'] df.set_index('Word', inplace=True) return df def load_kanske10(): with open(cs.kanske10, encoding='cp1252') as f: kanske10=f.readlines() # Filtering out the relevant portion of the provided file kanske10=kanske10[7:1008] # Creating data frame from string: #https://stackoverflow.com/questions/22604564/how-to-create-a-pandas-dataframe-from-string kanske10=pd.read_csv(StringIO(''.join(kanske10)), sep='\t') kanske10=kanske10[['word', 'valence_mean','arousal_mean']] kanske10.columns=['Word', 'Valence', 'Arousal'] kanske10['Word']=kanske10['Word'].str.lower() kanske10.set_index('Word', inplace=True) return kanske10 def load_vo09(): df=pd.read_csv(cs.vo09, sep=';') df=df[['WORD_LOWER', 'EMO_MEAN','AROUSAL_MEAN']] df.columns=['Word', 'Valence', 'Arousal'] df.set_index('Word', inplace=True) # usecols='WORD_LOWER', 'EMO_MEAN','AROUSAL_MEAN', '') df['Valence']=scaleInRange( x=df['Valence'], oldmin=-3, oldmax=3, newmin=1, newmax=9) df['Arousal']=scaleInRange( x=df['Arousal'], oldmin=1, oldmax=5, newmin=1, newmax=9) return df def load_guasch15(): guasch15=pd.read_excel(cs.guasch15) guasch15=guasch15[['Word','VAL_M', 'ARO_M']] guasch15.columns=['Word', 'Valence', 'Arousal'] guasch15.set_index('Word', inplace=True) return guasch15 def load_moors13(): # with open(cs.moors13) as f: # moors13=f.readlines() # moors13=moors13[1:] # moors13=pd.read_excel(StringIO(''.join(moors13))) moors13=pd.read_excel(cs.moors13, header=1) moors13=moors13[['Words', 'M V', 'M A', 'M P']] moors13.columns=heads_vad moors13.set_index('Word', inplace=True) # print(moors13) return moors13 def load_montefinese14(): montefinese14=pd.read_excel(cs.montefinese14, header=1) montefinese14=montefinese14[['Ita_Word', 'M_Val', 'M_Aro', 'M_Dom']] montefinese14.columns=heads_vad montefinese14.set_index('Word', inplace=True) return montefinese14 def load_soares12(): soares12=pd.read_excel(cs.soares12, sheetname=1) soares12=soares12[['EP-Word', 'Val-M', 'Arou-M', 'Dom-M']] soares12.columns=heads_vad soares12.set_index('Word', inplace=True) return soares12 def load_sianipar16(): sianipar16=pd.read_excel(cs.sianipar16) sianipar16=sianipar16[['Words (Indonesian)', 'ALL_Valence_Mean', 'ALL_Arousal_Mean', 'ALL_Dominance_Mean']] sianipar16.columns=heads_vad sianipar16.set_index('Word', inplace=True) #sianipar16=sianipar16[~sianipar16.index.duplicated(keep='first')] sianipar16=drop_duplicates(sianipar16) return sianipar16 def load_yu16(): ''' <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., … <NAME>. (2016). Building Chinese Affective Resources in Valence-Arousal Dimensions. In Proceedings of NAACL-2016. ''' yu16=pd.read_csv(cs.yu16) yu16=yu16[['Word', 'Valence_Mean', 'Arousal_Mean']] yu16.columns=heads_vad[:-1] yu16.set_index('Word', inplace=True) return yu16 def load_yu16_ialp_train_test(): train=pd.read_csv(cs.yu16) train=train[['No.', 'Word', 'Valence_Mean', 'Arousal_Mean']] train.columns=[['id', 'Word', 'Valence', 'Arousal']] # train.set_index('id', inplace=True) test=train.copy() train=train.loc[train.id.isin(range(1,1654))] test=test.loc[test.id.isin(range(1654,2150))] def __format__(df): return df[['Word', 'Valence', 'Arousal']].set_index('Word') test=__format__(test) train=__format__(train) return train,test def load_yao16(): ''' <NAME>., <NAME>., <NAME>., & <NAME>. (2016). Norms of valence, arousal, concreteness, familiarity, imageability, and context availability for 1,100 Chinese words. Behavior Research Methods. ''' with open(cs.yao16) as f: yao=f.readlines() yao16=
pd.DataFrame(columns=['Word','Valence','Arousal'])
pandas.DataFrame
""" A denoiser tries to cancel noise. (also water is wet) """ __docformat__ = "google" from scipy.spatial.distance import cdist import numpy as np import pandas as pd from nmoo.wrapped_problem import WrappedProblem class KNNAvg(WrappedProblem): """ Implementation of the KNN-Avg algorithm of Klikovits and Arcaini. See also: `Original KNN-Avg repository <https://github.com/ERTOMMSD/QUATIC2021-KNN-Averaging>`_ `KNN-Avg QUATIC2021 paper <https://raw.githubusercontent.com/ERATOMMSD/QUATIC2021-KNN-Averaging/main/KlikovitsArcaini-KNNAvgForNoisyNoisyMOO.pdf>`_ """ _distance_weight_mode: str _max_distance: float _n_neighbors: int def __init__( self, problem: WrappedProblem, max_distance: float, n_neighbors: int = 5, # KNN distance_weight_type: str = "uniform", *, name: str = "knn_avg", ): """ Constructor. Args: problem (:obj:`WrappedProblem`): Noisy problem. For memory optimization reasons, this should be a `WrappedProblem` as opposed to a pymoo `Problem`. distance_weight_type (str): Either "squared" or "uniform". max_distance (float): Distance cutoff. n_neighbors (int): Number of neighbors to consider (KNN). name (str): An optional name for this problem. This will be used when creating history dump files. Defaults to `knn_avg`. """ super().__init__(problem, name=name) if distance_weight_type not in ["squared", "uniform"]: raise ValueError( "Parameter distance_weight_type must be either 'squared' or " "'uniform'." ) self._distance_weight_mode = distance_weight_type if max_distance < 0.0: raise ValueError( "Parameter max_distance must either be 'None' or >= 0." ) self._max_distance = max_distance if n_neighbors <= 0: raise ValueError("Parameter n_neighbors must be >= 1.") self._n_neighbors = n_neighbors def _evaluate(self, x, out, *args, **kwargs): """ Applies the KNN-Avg algorithm to the wrapped (noisy) problem's output. """ self._problem._evaluate(x, out, *args, **kwargs) for i, sol in enumerate(x): # Store the solution history into a dataframe (note that we are # using the wrapped problem's history to make sure this dataframe # is never empty). x_hist =
pd.DataFrame(self._problem._history["X"])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In this notebook we try to practice all the classification algorithms that we learned in this course. # # We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods. # # Lets first load required libraries: # In[1]: import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter import pandas as pd import numpy as np import matplotlib.ticker as ticker from sklearn import preprocessing get_ipython().run_line_magic('matplotlib', 'inline') # ### About dataset # This dataset is about past loans. The __Loan_train.csv__ data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields: # # | Field | Description | # |----------------|---------------------------------------------------------------------------------------| # | Loan_status | Whether a loan is paid off on in collection | # | Principal | Basic principal loan amount at the | # | Terms | Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule | # | Effective_date | When the loan got originated and took effects | # | Due_date | Since it’s one-time payoff schedule, each loan has one single due date | # | Age | Age of applicant | # | Education | Education of applicant | # | Gender | The gender of applicant | # Lets download the dataset # In[2]: get_ipython().system('wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv') # ### Load Data From CSV File # In[3]: df = pd.read_csv('loan_train.csv') df.head() # In[4]: df.shape # ### Convert to date time object # In[5]: df['due_date'] = pd.to_datetime(df['due_date']) df['effective_date'] = pd.to_datetime(df['effective_date']) df.head() # # Data visualization and pre-processing # # # Let’s see how many of each class is in our data set # In[6]: df['loan_status'].value_counts() # 260 people have paid off the loan on time while 86 have gone into collection # # Lets plot some columns to underestand data better: # In[7]: # notice: installing seaborn might takes a few minutes get_ipython().system('conda install -c anaconda seaborn -y') # In[8]: import seaborn as sns bins = np.linspace(df.Principal.min(), df.Principal.max(), 10) g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2) g.map(plt.hist, 'Principal', bins=bins, ec="k") g.axes[-1].legend() plt.show() # In[9]: bins = np.linspace(df.age.min(), df.age.max(), 10) g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2) g.map(plt.hist, 'age', bins=bins, ec="k") g.axes[-1].legend() plt.show() # # Pre-processing: Feature selection/extraction # ### Lets look at the day of the week people get the loan # In[10]: df['dayofweek'] = df['effective_date'].dt.dayofweek bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10) g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2) g.map(plt.hist, 'dayofweek', bins=bins, ec="k") g.axes[-1].legend() plt.show() # We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4 # In[11]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) df.head() # ## Convert Categorical features to numerical values # Lets look at gender: # In[12]: df.groupby(['Gender'])['loan_status'].value_counts(normalize=True) # 86 % of female pay there loans while only 73 % of males pay there loan # # Lets convert male to 0 and female to 1: # # In[13]: df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True) df.head() # ## One Hot Encoding # #### How about education? # In[14]: df.groupby(['education'])['loan_status'].value_counts(normalize=True) # #### Feature befor One Hot Encoding # In[15]: df[['Principal','terms','age','Gender','education']].head() # #### Use one hot encoding technique to conver categorical varables to binary variables and append them to the feature Data Frame # In[16]: Feature = df[['Principal','terms','age','Gender','weekend']] Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1) Feature.drop(['Master or Above'], axis = 1,inplace=True) Feature.head() # ### Feature selection # Lets defind feature sets, X: # In[17]: X = Feature X[0:5] # What are our lables? # In[18]: y = df['loan_status'].values y[0:5] # ## Normalize Data # Data Standardization give data zero mean and unit variance (technically should be done after train test split ) # In[19]: X= preprocessing.StandardScaler().fit(X).transform(X) X[0:5] # # Classification # We use the test set to report the accuracy of the model # we gona use the following algorithm: # - K Nearest Neighbor(KNN) # - Decision Tree # - Support Vector Machine # - Logistic Regression # # # K Nearest Neighbor(KNN) # # In[20]: # Import the library for splitting the data into train and test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4) print ('the shape of the features train set:', X_train.shape,', the shape of the target train set:' ,y_train.shape) print ('the shape of the feature test set:', X_test.shape,', the shape of the target test set:',y_test.shape) # In[21]: # Importing the KNN model from sklearn.neighbors import KNeighborsClassifier # Importing the metrics from sklearn import metrics Ks = 10 mean_acc = np.zeros((Ks-1)) std_acc = np.zeros((Ks-1)) ConfustionMx = []; for n in range(1,Ks): #Train Model and Predict neigh = KNeighborsClassifier(n_neighbors = n).fit(X_train,y_train) yhat=neigh.predict(X_test) mean_acc[n-1] = metrics.accuracy_score(y_test, yhat) std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0]) mean_acc # In[22]: plt.plot(range(1,Ks),mean_acc,'g') plt.fill_between(range(1,Ks),mean_acc - 1 * std_acc,mean_acc + 1 * std_acc, alpha=0.10) plt.legend(('Accuracy ', '+/- 3xstd')) plt.ylabel('Accuracy ') plt.xlabel('Number of Neighbors (K)') plt.tight_layout() plt.show() # In[23]: print( "The best accuracy was with", mean_acc.max(), "with k=", mean_acc.argmax()+1) # In[24]: # Set value of k as 7 k = 7 # Train Model and Predict loanknn = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train) loanknn # In[25]: yhat = loanknn.predict(X_test) yhat[0:5] # In[26]: print("Train set Accuracy: ", metrics.accuracy_score(y_train, loanknn.predict(X_train))) print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat)) # In[27]: from sklearn.metrics import classification_report print (classification_report(y_test, yhat)) # In[28]: from sklearn.metrics import f1_score f1_score(y_test, yhat, average='weighted') # In[29]: from sklearn.metrics import jaccard_similarity_score jaccard_similarity_score(y_test, yhat) # # Decision Tree # In[30]: # Import the decision tree model from sklearn.tree import DecisionTreeClassifier # In[31]: md = 10 mean_acc = np.zeros((md-1)) std_acc = np.zeros((md-1)) ConfustionMx = []; for n in range(1,md): #Train Model and Predict loant = DecisionTreeClassifier(criterion="entropy", max_depth = n).fit(X_train,y_train) yhat=loant.predict(X_test) mean_acc[n-1] = metrics.accuracy_score(y_test, yhat) std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0]) mean_acc # In[32]: plt.plot(range(1,md),mean_acc,'r') plt.fill_between(range(1,md),mean_acc - 1 * std_acc,mean_acc + 1 * std_acc, alpha=0.10) plt.legend(('Accuracy ', '+/- 3xstd')) plt.ylabel('Accuracy ') plt.xlabel('Number of Max Depth') plt.tight_layout() plt.show() # In[33]: loandt = DecisionTreeClassifier(criterion="entropy", max_depth = 6) # Check the default parameters loandt # Train the Decision tree model loandt.fit(X_train,y_train) # Predict using the model yhat= loandt.predict(X_test) # In[34]: print("Train set Accuracy: ", metrics.accuracy_score(y_train, loandt.predict(X_train))) print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat)) # In[35]: print (classification_report(y_test, yhat)) # In[36]: # Calculate the F1 score f1_score(y_test, yhat, average='weighted') # In[37]: # Calculate the jaccard index jaccard_similarity_score(y_test, yhat) # In[38]: #!conda install -c conda-forge pydotplus -y #!conda install -c conda-forge python-graphviz -y # In[39]: '''from sklearn.externals.six import StringIO import pydotplus import matplotlib.image as mpimg from sklearn import tree %matplotlib inline ''' # In[40]: '''dot_data = StringIO() filename = "loantree.png" featureNames = Feature.columns targetNames = df['loan_status'].unique().tolist() out=tree.export_graphviz(loandt,feature_names=featureNames, out_file=dot_data, class_names= np.unique(y_train), filled=True, special_characters=True,rotate=False) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_png(filename) img = mpimg.imread(filename) plt.figure(figsize=(100, 200)) plt.imshow(img,interpolation='nearest')''' # # Support Vector Machine # In[41]: # Import the library for SVM Classifier from sklearn import svm # Build a SVM Classifier with a Radial base Function Kernel loansvm1 = svm.SVC(kernel='rbf').fit(X_train, y_train) yhat1 = loansvm1.predict(X_test) svm_r = metrics.accuracy_score(y_test, yhat1) # Build a SVM Classifier with a Linear Kernel loansvm2 = svm.SVC(kernel='linear').fit(X_train, y_train) yhat2 = loansvm2.predict(X_test) svm_l = metrics.accuracy_score(y_test, yhat2) # Build a SVM Classifier with a Polynomial Kernel loansvm3 = svm.SVC(kernel='poly').fit(X_train, y_train) yhat3 = loansvm3.predict(X_test) svm_p = metrics.accuracy_score(y_test, yhat3) # Build a SVM Classifier with a Sigmoid Kernel loansvm4 = svm.SVC(kernel='sigmoid').fit(X_train, y_train) yhat4 = loansvm4.predict(X_test) svm_s = metrics.accuracy_score(y_test, yhat4) print(svm_r,svm_l,svm_p,svm_s) # In[42]: # Find if labels are missing in the SVM models print("The label missing in the first model with rbf kernel",set(y_test) - set(yhat1)) print("The label missing in the second model with linear",set(y_test) - set(yhat2)) print("The label missing in the third model with polynomial kernel",set(y_test) - set(yhat3)) print("The label missing in the fourth model with sigmoid kernel",set(y_test) - set(yhat4)) # In[43]: # Build and train the SVM Classifier with a linear kernel loansvm = svm.SVC(kernel='rbf').fit(X_train, y_train) # In[44]: yhat = loansvm.predict(X_test) yhat [0:5] # In[45]: print("Train set Accuracy: ", metrics.accuracy_score(y_train, loansvm.predict(X_train))) print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat)) # In[46]: print (classification_report(y_test, yhat)) # In[47]: # Calculate the f1 score f1_score(y_test, yhat, average='weighted') # In[48]: #Calculate the Jaccard index jaccard_similarity_score(y_test, yhat) # # Logistic Regression # In[49]: # Import the library for Logistice regression from sklearn.linear_model import LogisticRegression # Build and train the logestic regression model loanlr1 = LogisticRegression(C=0.01, solver='liblinear').fit(X_train,y_train) yhat1 = loanlr1.predict(X_test) loanlr_a1 = metrics.accuracy_score(y_test, yhat1) # Build and train the logestic regression model loanlr2 = LogisticRegression(C=0.01, solver='sag').fit(X_train,y_train) yhat2 = loanlr2.predict(X_test) loanlr_a2 = metrics.accuracy_score(y_test, yhat2) # Build and train the logestic regression model loanlr3 = LogisticRegression(C=0.01, solver='saga').fit(X_train,y_train) yhat3 = loanlr3.predict(X_test) loanlr_a3 = metrics.accuracy_score(y_test, yhat3) # Build and train the logestic regression model loanlr4 = LogisticRegression(C=0.01, solver='newton-cg').fit(X_train,y_train) yhat4 = loanlr4.predict(X_test) loanlr_a4 = metrics.accuracy_score(y_test, yhat4) # Build and train the logestic regression model loanlr5 = LogisticRegression(C=0.01, solver='lbfgs').fit(X_train,y_train) yhat5 = loanlr5.predict(X_test) loanlr_a5 = metrics.accuracy_score(y_test, yhat5) print('LR model with liblinear solver',loanlr_a1) print('LR model with sag solver',loanlr_a2) print('LR model with saga solver',loanlr_a3) print('LR model with newton-cg solver',loanlr_a4) print('LR model with lbfgs solver',loanlr_a5) # In[50]: # Find if labels are missing in the models print("The label missing in the LR model with liblinear solver",set(y_test) - set(yhat1)) print("The label missing in the LR model with sag solver",set(y_test) - set(yhat2)) print("The label missing in the LR model with saga solver",set(y_test) - set(yhat3)) print("The label missing in the LR model with newton-cg solver",set(y_test) - set(yhat4)) print("The label missing in the LR model with lbfgs solver",set(y_test) - set(yhat5)) # In[51]: loanlr = LogisticRegression(C=0.01, solver='liblinear').fit(X_train,y_train) yhat = loanlr.predict(X_test) # In[52]: print("Train set Accuracy: ", metrics.accuracy_score(y_train, loanlr.predict(X_train))) print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat)) # In[53]: print (classification_report(y_test, yhat)) # In[54]: # Calculate the f1 score f1_score(y_test, yhat, average='weighted') # In[55]: #Calculate the Jaccard index jaccard_similarity_score(y_test, yhat) # # Model Evaluation using Test set # In[56]: from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import f1_score from sklearn.metrics import log_loss # First, download and load the test set: # In[57]: get_ipython().system('wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv') # ### Load Test set for evaluation # In[58]: test_df = pd.read_csv('loan_test.csv') test_df.head() # In[59]: # shape of the test data set test_df.shape # In[60]: # Count of the loan status test_df['loan_status'].value_counts() # In[61]: df = test_df df['due_date'] =
pd.to_datetime(df['due_date'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Jan 15 11:36:48 2021 @author: nb137 """ # Data Setup import os import sys # Hide my folder tree for publication online, but this is me ensuring I've updated my data os.system(r'github COVID_GH_FOLDER') # Can't update from terminal, but this will remind me to pull data if i haven't response = input("Was GitHub updated? y/n: ") if response == 'n': sys.exit() elif response =='y': pass else: print('Did not input y or n, stopping') sys.exit() import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as mtick import numpy as np import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from covid_support import combine, cols, states, state_info today = pd.datetime.today().strftime('%Y-%m-%d') latest_data = combine.index.max().strftime('%Y-%m-%d') print("Dashboard updated:\t{} \nLatest Data:\t\t{}".format(today,latest_data)) import matplotlib matplotlib.rc('font',size=8) # Select AZ, CA, ME, NY OR,TX WA, WI state_info = state_info.iloc[[0,1,7,8,9,12,14,15,16]] # New Cases Per Capita # TODO: Plot days ago to show indication of when cases may not be reported yet plt.figure(figsize=(12,6)) for i,r in state_info.iterrows(): new_cases_per_pop = combine['Confirmed',r['State']].diff().rolling(7).mean()/(r['Pop']/1e5) plt.plot(combine.index, new_cases_per_pop,linewidth=3, label=r['State']) plt.title('New Cases/100k/day 7d rolling') plt.yscale('log') plt.ylabel('log scale cases/100k') plt.xlabel('Date') plt.ylim(1e0,15e1) plt.legend() plt.grid(which='both') # Testing Rates combine = combine['6/1/2020':] for sub in [state_info]: td = combine.index[-1] plt.figure(figsize=(12,6)) plt.subplot(2,1,1) for i,r in sub.iterrows(): new_cases_per_pop = combine['Confirmed',r['State']].diff().rolling(7).mean()/(r['Pop']/1e5) new_tests_per_pop = combine['Testing_Rate',r['State']].diff().rolling(7).mean() new_tests_per_pop[new_tests_per_pop <0] = np.nan perc_test_pos = new_cases_per_pop/new_tests_per_pop plt.plot(combine.index, perc_test_pos, label=r['State']) plt.plot((
pd.datetime(2020,6,8)
pandas.datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 2 11:39:57 2018 @author: <NAME> @Contains : Pre-processing functions """ import pandas as pd import numpy as np import json def mapprice(v): if pd.isnull(v): return [ np.nan] try: vv = v.split('-') p0 = vv[0].strip()[1:].replace(",","") return [float(p0)] except ValueError: return [np.nan] def mapnumber_available_in_stock(v): if pd.isnull(v): return np.NaN ,np.NaN try: vv = v.split('\xa0') return int(vv[0]),str(vv[1]) except ValueError: return np.NaN ,np.NaN def mapnumber_of_reviews(v): if pd.isnull(v): return np.nan try: vv = v.replace(",","") return int(vv) except ValueError: return np.nan def mapaverage_review_rating(v): if pd.isnull(v): return np.nan try: vv = float(v.split('out')[0].strip()) return vv except ValueError: return np.nan # read json data of seller def myseller(v): if pd.isnull(v): return 0 try: vv = v.replace('=>',':') djson = pd.read_json(vv,orient='records') dict_data = json.loads(djson) return dict_data except ValueError: return 0 #split category def mapcategories(srs): if
pd.isnull(srs)
pandas.isnull
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5),
pd.timedelta_range('1 day', periods=5)
pandas.timedelta_range
# File System import os import json from pathlib import Path from zipfile import ZipFile import pickle import gc import numpy as np import pandas as pd from sympy.geometry import * DATA_PATH = '../data/' # Point this constant to the location of your data archive files EXPECTED_DATASETS = {'Colorado': [ 'county_total_population.Colorado.zip', 'covid_county.Colorado.zip', 'neon_2d_wind.Colorado.zip', 'neon_barometric_pressure.Colorado.zip', 'neon_single_asp_air_temperature.Colorado.zip' ]} counties = {'Colorado': ['Boulder', 'Grand', 'Larimer', 'Logan', 'Weld', 'Yuma']} def get_datasets(state='Colorado'): # Returns dataframes in order: control, covidWind, covidPressure, covidTemperature extract(state) create_pickles(state) return pd.read_pickle(f'../data/control.{state}.pkl'),
pd.read_pickle(f'../data/covidWind.{state}.pkl')
pandas.read_pickle
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ### """ Load Data function Arguments: messages_filepath -> path to messages csv file categories_filepath -> path to categories csv file Output: df -> Loaded dasa as Pandas DataFrame """ ## messages = pd.read_csv(messages_filepath) categories =
pd.read_csv(categories_filepath)
pandas.read_csv
import os import numpy as np import pandas as pd from sklearn import linear_model def allign_alleles(df): """Look for reversed alleles and inverts the z-score for one of them. Here, we take advantage of numpy's vectorized functions for performance. """ d = {'A': 0, 'C': 1, 'G': 2, 'T': 3} a = [] # array of alleles for colname in ['A1_ref', 'A2_ref', 'A1_gen', 'A2_gen', 'A1_y', 'A2_y']: tmp = np.empty(len(df[colname]), dtype=int) for k, v in d.items(): tmp[np.array(df[colname]) == k] = v a.append(tmp) matched_alleles_gen = (((a[0] == a[2]) & (a[1] == a[3])) | ((a[0] == 3 - a[2]) & (a[1] == 3 - a[3]))) reversed_alleles_gen = (((a[0] == a[3]) & (a[1] == a[2])) | ((a[0] == 3 - a[3]) & (a[1] == 3 - a[2]))) matched_alleles_y = (((a[0] == a[4]) & (a[1] == a[5])) | ((a[0] == 3 - a[4]) & (a[1] == 3 - a[5]))) reversed_alleles_y = (((a[0] == a[5]) & (a[1] == a[4])) | ((a[0] == 3 - a[5]) & (a[1] == 3 - a[4]))) df['Z_y'] *= -2 * reversed_alleles_y + 1 df['reversed'] = reversed_alleles_gen df = df[((matched_alleles_y|reversed_alleles_y)&(matched_alleles_gen|reversed_alleles_gen))] def get_files(file_name, chr): if '@' in file_name: valid_files = [] if chr is None: for i in range(1, 23): cur_file = file_name.replace('@', str(i)) if os.path.isfile(cur_file): valid_files.append(cur_file) else: raise ValueError('No file matching {} for chr {}'.format( file_name, i)) else: cur_file = file_name.replace('@', chr) if os.path.isfile(cur_file): valid_files.append(cur_file) else: raise ValueError('No file matching {} for chr {}'.format( file_name, chr)) return valid_files else: if os.path.isfile(file_name): return [file_name] else: ValueError('No files matching {}'.format(file_name)) def prep(bfile, genotype, sumstats2, N2, phenotype, covariates, chr, start, end): bim_files = get_files(bfile + '.bim', chr) genotype_files = get_files(genotype + '.bim', chr) # read in bim files bims = [pd.read_csv(f, header=None, names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], delim_whitespace=True) for f in bim_files] bim = pd.concat(bims, ignore_index=True) genotype_bims = [pd.read_csv(f, header=None, names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], delim_whitespace=True) for f in genotype_files] genotype_bim = pd.concat(genotype_bims, ignore_index=True) if chr is not None: if start is None: start = 0 if end is None: end = float('inf') genotype_bim = genotype_bim[np.logical_and(np.logical_and(genotype_bim['CHR']==chr, genotype_bim['BP']<=end), genotype_bim['BP']>=start)].reset_index(drop=True) bim = bim[np.logical_and(np.logical_and(bim['CHR']==chr, bim['BP']<=end), bim['BP']>=start)].reset_index(drop=True) summary_stats = pd.read_csv(sumstats2, delim_whitespace=True) # rename cols bim.rename(columns={'CHR': 'CHR_ref', 'CM': 'CM_ref', 'BP':'BP_ref', 'A1': 'A1_ref', 'A2': 'A2_ref'}, inplace=True) genotype_bim.rename(columns={'CHR': 'CHR_gen', 'CM': 'CM_gen', 'BP':'BP_gen', 'A1': 'A1_gen', 'A2': 'A2_gen'}, inplace=True) summary_stats.rename(columns={'A1': 'A1_y', 'A2': 'A2_y', 'N': 'N_y', 'Z': 'Z_y'}, inplace=True) # take overlap between output and ref genotype files df = pd.merge(bim, genotype_bim, on=['SNP']).merge(summary_stats, on=['SNP']) # flip sign of z-score for allele reversals allign_alleles(df) df = df.drop_duplicates(subset='SNP', keep=False) if N2 is not None: N2 = N2 else: N2 = summary_stats['N_y'].max() df.rename(columns={'CHR_ref':'CHR'}, inplace=True) ggr_df = pd.read_csv(phenotype, header=None, names=['IID', 'Phenotype'], delim_whitespace=True, usecols=[1, 2]) fam_files = get_files(genotype + '.fam', chr) for i in range(len(fam_files)): fam_data = pd.read_csv(fam_files[i], header=None, names=['IID'], delim_whitespace=True, usecols=[1]) ggr_df = pd.merge(fam_data, ggr_df, on=['IID']) ii = ggr_df['Phenotype'] != 9 pheno_avg = np.mean(ggr_df['Phenotype'][ii]) ggr_df['Phenotype'][np.logical_not(ii)] = pheno_avg if covariates is not None: covariates_df = pd.read_csv(covariates, header=None, delim_whitespace=True) covariates_df = covariates_df.iloc[:, 1:] covariates_df = covariates_df.rename(columns={1:'IID'}) regression_df = pd.merge(ggr_df[['IID']], covariates_df, on=['IID']) ggr_df =
pd.merge(ggr_df, covariates_df[['IID']], on=['IID'])
pandas.merge
#!/usr/bin/env python # coding: utf-8 """ analysis and optimization """ import logging import numpy as np import pandas as pd import seaborn as sns import sklearn from matplotlib import pyplot as plt from scipy import stats from scipy.optimize import differential_evolution from sklearn.ensemble import RandomForestRegressor # pylint: disable=ungrouped-imports from sklearn.linear_model import LinearRegression # pylint: disable=ungrouped-imports from stldeli import config # pylint: disable=too-many-statements,too-many-locals def main(): """ main :return: """ data = pd.read_csv("data.csv").clean_column_names() y_df = data[data.columns.intersection(['tension_strength'])] x_df = data[config.important_features] logging.info(x_df.columns) strength_regressor_rf = RandomForestRegressor() strength_regressor_rf.fit(x_df, y_df.values.reshape(-1)) feature_importance = pd.concat([pd.Series(strength_regressor_rf.feature_importances_, name='importance'), pd.Series(x_df.columns, name='feature') ], axis=1 ).sort_values('importance') _, axis = plt.subplots(nrows=1, ncols=1, figsize=(8, 8)) feature_importance.plot.barh(x='feature', y='importance', color='grey', legend=False, ax=axis ) axis.set_xlabel('relative importance') axis.set_ylabel('') axis.set_title('Tensile Strength') strength_predicted = pd.Series(strength_regressor_rf.predict(x_df), name='predicted') strength_actual = pd.Series(y_df.values.reshape(-1), name='actual') strength_residual = strength_actual - strength_predicted pd.concat([strength_predicted, strength_actual] , axis=1 ).plot.scatter(x='actual', y='predicted', title='Tensile Strength (MPa)') strength_residual.name = 'residual' pd.concat([strength_predicted, strength_residual] , axis=1 ).plot.scatter(x='predicted', y='residual', title='Tensile Strength (MPa)') np.sqrt(sklearn.metrics.mean_squared_error(y_true=strength_actual, y_pred=strength_predicted ) ) stats.probplot(strength_residual, dist="norm", plot=plt) metadata = pd.read_csv('metadata.csv') metadata.info() newx = metadata[config.strength_controllable_parameters] tensile = strength_regressor_rf.predict(newx) tensile_series = pd.Series(tensile, name='tensile_strength_predicted') tensile_series.plot.hist() metadata_enriched = metadata.join(tensile_series) filament = metadata['filament used '].str.strip(' ').str.split(' ', expand=True).rename( columns={0: 'filament_used_mm', 1: 'filament_used_cm3' } ) metadata_enriched['filament_used_mm'] = filament['filament_used_mm'] \ .str.replace('mm', '') \ .apply(float) metadata_enriched['filament_used_cm3'] = filament['filament_used_cm3'] \ .str.strip('()') \ .str.replace('cm3', '') \ .apply(float) metadata_enriched['infill extrusion width (mm)'] = metadata['infill extrusion width '] \ .str.replace('mm', '') \ .apply(float) figure = sns.lmplot( x='filament_used_cm3', y='tensile_strength_predicted', hue='--infill-every-layers', # col='--fill-density', # row='--layer-height', data=metadata_enriched ) figure.axes[0, 0].set_xlabel('filament used ($cm^3$)') figure.axes[0, 0].set_ylabel('tensile strength (MPa)') y_df = metadata_enriched[metadata_enriched.columns.intersection(['filament_used_cm3'])] x_df = metadata_enriched[config.filament_controllable_parameters] y_df.plot.hist(legend=False) filament_regressor_rf = RandomForestRegressor() filament_regressor_rf.fit(x_df, y_df.values.reshape(-1)) # filament_regressor_linear.fit(x_numeric.dropna(1),y) feature_importance = pd.concat([pd.Series(filament_regressor_rf.feature_importances_, name='importance'), pd.Series(x_df.columns, name='feature') ], axis=1 ).sort_values('importance') feature_importance.dropna() _, axis = plt.subplots(nrows=1, ncols=1, figsize=(8, 8)) feature_importance.dropna()[-10:].plot.barh( x='feature', y='importance', color='grey', legend=False, ax=axis ) axis.set_xlabel('relative importance') axis.set_ylabel('') axis.set_title('Filament Usage') filament_predicted = pd.Series(filament_regressor_rf.predict(x_df), name='predicted') filament_actual = pd.Series(y_df.values.reshape(-1), name='actual') filament_residual = filament_actual - filament_predicted filament_residual.name = 'residual' pd.concat([filament_predicted, filament_actual], axis=1).plot.scatter(x='actual', y='predicted', title='Filament Used ($cm^3$)') np.sqrt(sklearn.metrics.mean_squared_error(y_pred=filament_predicted, y_true=filament_actual)) stats.probplot(filament_residual.sample(n=100), dist="norm", plot=plt) average_filament = metadata_enriched['filament_used_cm3'].mean() average_strength = metadata_enriched['tensile_strength_predicted'].mean() def cost_function(input_array, progress_df): """ layer_height, fill_density, infill_every_layers, wall_thickness, nozzle_temperature """ (layer_height, fill_density, infill_every_layers, wall_thickness, nozzle_temperature) = input_array x_strength = pd.Series( {'layer_height': layer_height, 'fill_density': fill_density, 'wall_thickness': wall_thickness, 'nozzle_temperature': nozzle_temperature} ) x_filament = pd.Series( {'layer_height': layer_height, 'fill_density': fill_density, 'infill_every_layers': infill_every_layers, }) _strength = strength_regressor_rf.predict(x_strength.values.reshape(1, -1)) _filament = filament_regressor_rf.predict(x_filament.values.reshape(1, -1)) cost = 0.5 * _filament / average_filament - 0.5 * _strength / average_strength row = pd.Series(np.append(input_array, cost), # pylint: disable=used-before-assignment index=('layer_height', 'fill_density', 'infill_every_layers', 'wall_thickness', 'nozzle_temperature', 'iteration', 'cost' )) progress_df.append(row) return cost cost_function(np.array([0.02, 10.00, 1, 1, 200]),
pd.DataFrame()
pandas.DataFrame
""" Script to check results files for compliance with a dietary restriction at the recipe level. To run, first download food.csv from https://www.foodb.ca/downloads. """ import os import re import csv import pandas as pd from apply_tag import apply_tag def get_ing_list(): """Get ingredient list from FooDB.""" ing_list =
pd.read_csv('/sample_data/food.csv')
pandas.read_csv
# Steven 05/17/2020 # clustering model design from time import time import pandas as pd import numpy as np # from sklearn.decomposition import PCA # from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import KMeans # from sklearn.cluster import DBSCAN # from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MinMaxScaler # StandardScaler # from sklearn.model_selection import StratifiedKFold # from sklearn.model_selection import GridSearchCV from sklearn.metrics import silhouette_score # from sklearn.metrics import make_scorer # from sklearn.metrics import calinski_harabasz_score from sklearn.metrics import davies_bouldin_score from sklearn.neighbors._nearest_centroid import NearestCentroid import matplotlib.pyplot as plt def createKMeans(k=2): model = KMeans(n_clusters=k, random_state=0) # print(model,k) # print('k=',k) return model def s_score_silhouette(estimator, X): labels_ = estimator.fit_predict(X) score = 0 # print(X.shape) # print(X) actualK = len(list(set(labels_))) if actualK > 1: # print(labels_) score = silhouette_score(X, labels_, metric='euclidean') # 'euclidean' # score = calinski_harabasz_score(X, labels_) # score = davies_bouldin_score(X, labels_) # print(score) return score def squaredDistances(a, b): return np.sum((a - b)**2) def calculateSSE2(data, labels, centroids): print(data.shape, type(data), centroids.shape) sse = 0 for i, ct in enumerate(centroids): # print('i,ct=',i,ct) samples = [] for k in range(data.shape[0]): label = labels[k] sample = data.iloc[k, :].values # print('sample,label=',i,sample,label) if label == i: # sse += squaredDistances(sample,ct) samples.append(sample) sse += squaredDistances(samples, ct) return sse def calculateSSE(data, labels, centroids): # print(data.shape,type(data),centroids.shape,labels.shape) # print('labels=',labels) # data = data.to_numpy()#if dataframe sse = 0 for i, ct in enumerate(centroids): # print('i,ct=',i,ct) # samples = data.iloc[np.where(labels == i)[0], :].values samples = data[np.where(labels == i)[0], :] sse += squaredDistances(samples, ct) return sse def calculateDaviesBouldin(data, labels): return davies_bouldin_score(data, labels) def getModelMeasure(data, labels): sse, dbValue, csm = 0, 0, 0 # k = len(np.unique(labels)) k = len(list(set(labels))) if k > 1: # print(data.shape,model.labels_) # csm = silhouette_score(data, labels, metric='euclidean') clf = NearestCentroid() clf.fit(data, labels) # print(clf.centroids_) sse = calculateSSE(data, labels, clf.centroids_) # dbValue = calculateDaviesBouldin(data,labels) sse = round(sse, 4) csm = round(csm, 4) dbValue = round(dbValue, 4) print('SSE=', sse, 'DB=', dbValue, 'CSM=', csm, 'clusters=', k) # print("Silhouette Coefficient: %0.3f" % csm) # print('clusters=',k) return sse, dbValue, csm, k def preprocessingData(data, N=5): scaler = MinMaxScaler() # StandardScaler() # # scaler.fit(data) # data = scaler.transform(data) data = scaler.fit_transform(data) return data def KMeansModelTrain(dataName, data, N=10): data = preprocessingData(data) df = pd.DataFrame() print('datashape=', data.shape) columns = ['Dataset', 'Algorithm', 'K', 'tt(s)', 'SSE', 'DB', 'CSM'] for i in range(2, N, 1): # 2 N 1 model = createKMeans(i) modelName = 'K-Means' t = time() model.fit(data) tt = round(time() - t, 4) print("\ndataSet:%s model:%s iter i=%d run in %.2fs" % (dataName, modelName, i, tt)) sse, dbValue, csm, k = getModelMeasure(data, model.labels_) dbName = dataName + str(data.shape) line =
pd.DataFrame([[dbName, modelName, k, tt, sse, dbValue, csm]], columns=columns)
pandas.DataFrame
import pandas as pd from .helpers import pandas_to_json from .consts import profile_col_names pd.set_option('display.max_columns', 40) import sys # data processing def process_data(inf_dict, friends_dict, profile_dict, lk_dict, final_data_dict): # convert dicts to pandas dfs inf_df = pd.DataFrame(inf_dict, index=[0]) friends_df = pd.DataFrame(friends_dict) profile_df =
pd.DataFrame(profile_dict, index=[0])
pandas.DataFrame
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from pandas._libs import lib from pandas._libs.tslibs import ( NaT, iNaT, ) import pandas as pd from pandas import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import pandas._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.isnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert isinstance(pydt, timedelta) and not isinstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert isinstance(td64, np.timedelta64) # this is NOT equal and cannot be roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert isinstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "minute", "min", "minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, pd.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).tolist()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).astype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").astype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").astype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").astype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"),
Timedelta("-1 days 02:34:56.789123456")
pandas.Timedelta
from datetime import datetime startTime = datetime.now() import json import glob import numpy as np import sklearn import pandas as pd from io import StringIO import tensorflow as tf import tensorflowjs as tfjs from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder EPOCHS = 12 airports = dict() airlines = dict() def build_model(): model = keras.Sequential([ keras.layers.Dense(64, activation=tf.nn.relu, input_shape=(X_train.shape[1],)), keras.layers.Dense(64, activation=tf.nn.relu), keras.layers.Dense(64, activation=tf.nn.relu), keras.layers.Dense(1) ]) optimizer = tf.train.RMSPropOptimizer(0.001) model.compile(loss='mse', optimizer=optimizer, metrics=['mae']) return model # load the carriers lookup this_data = pd.read_csv('flight-data/carriers.csv', skipinitialspace=True, low_memory=False) airlines_lookup = this_data.set_index('Code')['Description'].to_dict() # we are going to create twelve different models, one for each month # of the year. The importing, cleaning, and training all take place # twelve times and result in twelve different model json files. for i in range (1, 13): print('Starting month {}'.format(i)) print('===============================================================\nLoading data for month {}... '.format(i), end=' ') path = 'flight-data/*/*_' + str(i) + '.csv' month_data = glob.glob(path) loaded_data = [] for path in month_data: this_data =
pd.read_csv(path, skipinitialspace=True, low_memory=False)
pandas.read_csv
# Automated Antibody Search # <NAME> - UBC March 2020 # This code uses selenium webdriver to automate search for antibodies based on marker genes found via scRNA-seq # Input: a dataframe containing uniquely upregulated marker genes for a given cluster # REQUIREMENTS: # Download selenium in terminal using the command: pip install selenium # Download Chrome driver via https://chromedriver.chromium.org/downloads # Input the file path for chromedriver on LINE 42 ###############SET UP################# from selenium import webdriver from selenium.webdriver.common.keys import Keys import pandas as pd # create a data frame with info to save regarding astrocyte protein expression co = ["Gene", "FullName", "Region", "Antibody", "Neurons", "Glia", "pct1", "pct2"] df = pd.DataFrame(columns=co) # get user input for which file to open toOpen = input("Enter the file path of your marker gene csv file: ") # save whole df markers = pd.read_csv(toOpen) # save all gene names to iterate through allgenes = markers['Unnamed: 0'] # save the pct values pct1 = markers['pct.1'] pct2 = markers['pct.2'] # get user input for what to name the new file toSave = input("Enter the name you would like to save the output file as (be sure to include .csv at the end): ") # this line will open up your controlled chrome window # input the filepath of your chromedriver here driver = webdriver.Chrome("/Users/kaitlinsullivan/opt/miniconda3/lib/python3.8/site-packages/chromedriver") # open protein atlas (or any website of choice) driver.get("https://www.proteinatlas.org/") ##############SEARCH FOR GENES IN LIST################# # loop through each each and search for protein expression in the hippocampus and cortex for z in range(len(allgenes)): cur_gene = allgenes[z] cur_pct1 = pct1[z] cur_pct2 = pct2[z] # locate the search bar and submit button # if you are looking to use this code for a different website: # go to that website and press option+command+U - this will bring up the source code so you can find elements search_bar = driver.find_element_by_id("searchQuery") sub_button = driver.find_element_by_id("searchButton") # search gene names via imported marker gene list search_bar.clear() search_bar.send_keys(cur_gene) sub_button.click() # get the full gene name # this searches for the second HTML element of the table that pops up after searching a given gene name # since the gene of choice may not always be at the top of the list, best to iterate through list cur_names = driver.find_elements_by_class_name("tda") # if there are no genes found skip to next iteration if(len(cur_names)==0): continue # iterate through list of gene names to find gene in question i = 0 exist = True while(cur_names[i].text != cur_gene): i+=1 if(i>=len(cur_names)): exist = False break # if the search results do not bring up the gene name, skip to next iteration if(exist != True): continue #save the full name of the gene cur_name = cur_names[i+1].text ##############GET BRAIN TISSUE INFO################### # select brain tissue protein expression by finding correct gene HTML element gene_xpath = "//a[contains(@href, '-" + cur_gene + "/brain')]" brain = driver.find_elements_by_xpath(gene_xpath) # if there is no brain tissue info skip if(len(brain)==0): cur_region = "NA" cur_a = "NA" cur_neur = "NA" cur_glia = "NA" # write empty line for gene cur = pd.DataFrame([[cur_gene, cur_name, cur_region, cur_ab, cur_neur, cur_glia, cur_pct1, cur_pct2]], columns=co) df.append(cur, ignore_index=True) continue brain[0].click() # select tissue menu tissue = driver.find_element_by_class_name("tissue_menu_opener") tissue.click() # save all tissue types in a list tissue = driver.find_elements_by_xpath("//div/span/a/span") # convert from web elements to strings tissue_text = [None]*len(tissue) for y in range(len(tissue)): tissue_text[y] = tissue[y].text ##############CEREBRAL CORTEX################### # save cortical info if("CEREBRAL CORTEX" in tissue_text): # click on the hippocampus cortex = driver.find_elements_by_xpath("//a[contains(@href, '/cerebral+cortex')]") cortex[0].click() cur_region = "Cortex" # save antibody names as a list ab_h = driver.find_elements_by_class_name("head_nohex") ##### if there are no antibodies if(len(ab_h)==0): cur_ab = "NA" cur_neur = "NA" cur_glia = "NA" # write empty line for gene in HC cur = pd.DataFrame([[cur_gene, cur_name, cur_region, cur_ab, cur_neur, cur_glia, cur_pct1, cur_pct2]], columns=co) df = df.append(cur, ignore_index=True) ##### if there are antibodies else: # find parent element of table holding values parent = driver.find_element_by_xpath("//table[@class='border dark']") # find the values cells = parent.find_elements_by_tag_name("td") for x in range(len(ab_h)): # manually check that there are 4 variables as assumed if(len(cells)<4): # save line to table cur =
pd.DataFrame([[cur_gene, cur_name, cur_region, cur_ab, "check", "check", cur_pct1, cur_pct2]], columns=co)
pandas.DataFrame
import pandas as pd import logging import electricitylci.model_config as config formatter = logging.Formatter( "%(levelname)s:%(filename)s:%(funcName)s:%(message)s" ) logging.basicConfig( format="%(levelname)s:%(filename)s:%(funcName)s:%(message)s", level=logging.INFO, ) logger = logging.getLogger("electricitylci") def get_generation_process_df(regions=None, **kwargs): """ Create a dataframe of emissions from power generation by fuel type in each region. kwargs would include the upstream emissions dataframe (upstream_df) if upstream emissions are being included. Parameters ---------- regions : str, optional Regions to include in the analysis (the default is None, which uses the value read from a settings YAML file). Other options include "eGRID", "NERC", "BA", "US", "FERC", and "EIA" Returns ------- DataFrame Each row represents information about a single emission from a fuel category in a single region. Columns are: 'Subregion', 'FuelCategory', 'FlowName', 'FlowUUID', 'Compartment', 'Year', 'Source', 'Unit', 'ElementaryFlowPrimeContext', 'TechnologicalCorrelation', 'TemporalCorrelation', 'DataCollection', 'Emission_factor', 'Reliability_Score', 'GeographicalCorrelation', 'GeomMean', 'GeomSD', 'Maximum', 'Minimum' """ from electricitylci.generation import create_generation_process_df from electricitylci.combinator import concat_clean_upstream_and_plant if config.model_specs.include_renewable_generation is True: generation_process_df=get_gen_plus_netl() else: generation_process_df = create_generation_process_df() if config.model_specs.include_netl_water is True: import electricitylci.plant_water_use as water water_df = water.generate_plant_water_use(config.model_specs.eia_gen_year) generation_process_df=concat_clean_upstream_and_plant(generation_process_df,water_df) if config.model_specs.include_upstream_processes is True: try: upstream_df = kwargs['upstream_df'] upstream_dict = kwargs['upstream_dict'] except KeyError: print( "A kwarg named 'upstream_dict' must be included if include_upstream_processes" "is True" ) # upstream_dict = write_upstream_process_database_to_dict( # upstream_df # ) # upstream_dict = write_upstream_dicts_to_jsonld(upstream_dict) combined_df, canadian_gen = combine_upstream_and_gen_df( generation_process_df, upstream_df ) gen_plus_fuels = add_fuels_to_gen( generation_process_df, upstream_df, canadian_gen, upstream_dict ) else: import electricitylci.import_impacts as import_impacts canadian_gen_df = import_impacts.generate_canadian_mixes(generation_process_df) generation_process_df = pd.concat([generation_process_df, canadian_gen_df], ignore_index=True) gen_plus_fuels=generation_process_df #This change has been made to accomodate the new method of generating #consumption mixes for FERC regions. They now pull BAs to provide #a more accurate inventory. The tradeoff here is that it's no longer possible #to make a FERC region generation mix and also provide the consumption mix. #Or it could be possible but would requir running through aggregate twice. # generation_process_df = aggregate_gen( # gen_plus_fuels, subregion=regions # ) if regions is None: regions = config.model_specs.regional_aggregation if regions in ["BA","FERC","US"]: generation_process_df = aggregate_gen( gen_plus_fuels, subregion="BA" ) else: generation_process_df = aggregate_gen( gen_plus_fuels, subregion=regions ) return generation_process_df def get_generation_mix_process_df(regions=None): """ Create a dataframe of generation mixes by fuel type in each subregion. This function imports and uses the parameter 'replace_egrid' and 'gen_mix_from_model_generation_data' from model_config.py. If 'replace_egrid' is true or the specified 'regions' is true, then the generation mix will come from EIA 923 data. If 'replace_egrid' is false then the generation mix will either come from the eGRID reference data ('gen_mix_from_model_generation_data' is false) or from the generation data from this model ('gen_mix_from_model_generation_data' is true). Parameters ---------- regions : str, optional Which regions to include (the default is 'all', which includes all eGRID subregions) Returns ------- DataFrame Sample output: >>> all_gen_mix_db.head() Subregion FuelCategory Electricity NERC Generation_Ratio 0 AKGD COAL 5.582922e+05 ASCC 0.116814 22 AKGD OIL 3.355753e+05 ASCC 0.070214 48 AKGD GAS 3.157474e+06 ASCC 0.660651 90 AKGD HYDRO 5.477350e+05 ASCC 0.114605 114 AKGD BIOMASS 5.616577e+04 ASCC 0.011752 """ from electricitylci.egrid_filter import ( electricity_for_selected_egrid_facilities, ) from electricitylci.generation_mix import ( create_generation_mix_process_df_from_model_generation_data, create_generation_mix_process_df_from_egrid_ref_data, ) from electricitylci.eia923_generation import build_generation_data if regions is None: regions = config.model_specs.regional_aggregation if config.model_specs.replace_egrid or regions in ["BA","FERC","US"]: # assert regions == 'BA' or regions == 'NERC', 'Regions must be BA or NERC' if regions in ["BA","FERC","US"] and not config.model_specs.replace_egrid: logger.info( f"EIA923 generation data is being used for the generation mix " f"despite replace_egrid = False. The reference eGrid electricity " f"data cannot be reorgnznied to match BA or FERC regions. For " f"the US region, the function for generating US mixes does not " f"support aggregating to the US." ) print("EIA923 generation data is used when replacing eGRID") generation_data = build_generation_data( generation_years=[config.model_specs.eia_gen_year] ) generation_mix_process_df = create_generation_mix_process_df_from_model_generation_data( generation_data, regions ) else: if config.model_specs.gen_mix_from_model_generation_data: generation_mix_process_df = create_generation_mix_process_df_from_model_generation_data( electricity_for_selected_egrid_facilities, regions ) else: generation_mix_process_df = create_generation_mix_process_df_from_egrid_ref_data( regions ) return generation_mix_process_df def write_generation_process_database_to_dict(gen_database, regions=None): """ Create olca formatted dictionaries of individual processes Parameters ---------- gen_database : DataFrame Each row represents information about a single emission from a fuel category in a single region. regions : str, optional Not currently used (the default is 'all', which [default_description]) Returns ------- dict A dictionary of dictionaries, each of which contains information about emissions from a single fuel type in a single region. """ from electricitylci.generation import olcaschema_genprocess if regions is None: regions = config.model_specs.regional_aggregation gen_dict = olcaschema_genprocess(gen_database, subregion=regions) return gen_dict def write_generation_mix_database_to_dict( genmix_database, gen_dict, regions=None ): from electricitylci.generation_mix import olcaschema_genmix if regions is None: regions = config.model_specs.regional_aggregation if regions in ["FERC","US","BA"]: genmix_dict = olcaschema_genmix( genmix_database, gen_dict, subregion="BA" ) else: genmix_dict = olcaschema_genmix( genmix_database, gen_dict, subregion=regions ) return genmix_dict def write_surplus_pool_and_consumption_mix_dict(): """ Create olca formatted dictionaries for the consumption mix as calculated by consumption_mix.py. Note that this funcion directly pulls the dataframes, converts the data into the dictionary and then returns the dictionary. Returns ------- dictionary The surplus pool and consumption mixes for the various regions. """ from electricitylci.consumption_mix import surplus_dict from electricitylci.consumption_mix import consumption_dict surplus_pool_and_con_mix = {**surplus_dict, **consumption_dict} return surplus_pool_and_con_mix def write_distribution_dict(): from electricitylci.distribution import distribution_mix_dictionary return distribution_mix_dictionary() def write_process_dicts_to_jsonld(*process_dicts): """ Send one or more process dictionaries to be written to json-ld """ from electricitylci.olca_jsonld_writer import write all_process_dicts = dict() for d in process_dicts: all_process_dicts = {**all_process_dicts, **d} olca_dicts = write(all_process_dicts, config.model_specs.namestr) return olca_dicts def get_upstream_process_df(eia_gen_year): """ Automatically load all of the upstream emissions data from the various modules. Will return a dataframe with upstream emissions from coal, natural gas, petroleum, nuclear, and plant construction. """ import electricitylci.coal_upstream as coal import electricitylci.natural_gas_upstream as ng import electricitylci.petroleum_upstream as petro import electricitylci.nuclear_upstream as nuke import electricitylci.power_plant_construction as const from electricitylci.combinator import concat_map_upstream_databases print("Generating upstream inventories...") coal_df = coal.generate_upstream_coal(eia_gen_year) ng_df = ng.generate_upstream_ng(eia_gen_year) petro_df = petro.generate_petroleum_upstream(eia_gen_year) nuke_df = nuke.generate_upstream_nuc(eia_gen_year) const = const.generate_power_plant_construction(eia_gen_year) #coal and ng already conform to mapping so no mapping needed upstream_df = concat_map_upstream_databases(eia_gen_year, petro_df, nuke_df, const ) upstream_df=pd.concat([upstream_df,coal_df,ng_df],sort=False,ignore_index=True) return upstream_df def write_upstream_process_database_to_dict(upstream_df): """ Convert the upstream dataframe generated by get_upstream_process_df to dictionaries to be written to json-ld. Parameters ---------- upstream_df : dataframe Combined dataframe as generated by gen_upstream_process_df Returns ------- dictionary """ import electricitylci.upstream_dict as upd print("Writing upstream processes to dictionaries") upstream_dicts = upd.olcaschema_genupstream_processes(upstream_df) return upstream_dicts def write_upstream_dicts_to_jsonld(upstream_dicts): """ Write the upstream dictionary to jsonld. Parameters ---------- upstream_dicts : dictionary The dictioanary of upstream unit processes generated by electricitylci.write_upstream_database_to_dict. """ upstream_dicts = write_process_dicts_to_jsonld(upstream_dicts) return upstream_dicts def combine_upstream_and_gen_df(gen_df, upstream_df): """ Combine the generation and upstream dataframes into a single dataframe. The emissions represented here are the annutal emissions for all power plants. This dataframe would be suitable for further analysis. Parameters ---------- gen_df : dataframe The generator dataframe, generated by get_gen_plus_netl or get_generation_process_df. Note that get_generation_process_df returns two dataframes. The intention would be to send the second returned dataframe (plant-level emissions) to this routine. upstream_df : dataframe The upstream dataframe, generated by get_upstream_process_df """ import electricitylci.combinator as combine import electricitylci.import_impacts as import_impacts print("Combining upstream and generation inventories") combined_df = combine.concat_clean_upstream_and_plant(gen_df, upstream_df) canadian_gen = import_impacts.generate_canadian_mixes(combined_df) combined_df = pd.concat([combined_df, canadian_gen], ignore_index=True) return combined_df, canadian_gen def get_gen_plus_netl(): """ This will combine the netl life cycle data for solar, solar thermal, geothermal, wind, and hydro and will include impacts from construction, etc. that would be omitted from the regular sources of emissions. It then generates power plant emissions. The two different dataframes are combined to provide a single dataframe representing annual emissions or life cycle emissions apportioned over the appropriate number of years for all reporting power plants. Returns ------- dataframe """ import electricitylci.generation as gen from electricitylci.combinator import ( concat_map_upstream_databases, concat_clean_upstream_and_plant, ) import electricitylci.geothermal as geo import electricitylci.solar_upstream as solar import electricitylci.wind_upstream as wind import electricitylci.hydro_upstream as hydro import electricitylci.solar_thermal_upstream as solartherm eia_gen_year = config.model_specs.eia_gen_year print( "Generating inventories for geothermal, solar, wind, hydro, and solar thermal..." ) geo_df = geo.generate_upstream_geo(eia_gen_year) solar_df = solar.generate_upstream_solar(eia_gen_year) wind_df = wind.generate_upstream_wind(eia_gen_year) hydro_df = hydro.generate_hydro_emissions() solartherm_df = solartherm.generate_upstream_solarthermal(eia_gen_year) netl_gen = concat_map_upstream_databases(eia_gen_year, geo_df, solar_df, wind_df, solartherm_df, ) netl_gen["DataCollection"] = 5 netl_gen["GeographicalCorrelation"] = 1 netl_gen["TechnologicalCorrelation"] = 1 netl_gen["ReliabilityScore"] = 1 netl_gen=
pd.concat([netl_gen,hydro_df[netl_gen.columns]],ignore_index=True,sort=False)
pandas.concat
# -------------- # Importing header files import numpy as np import pandas as pd from scipy.stats import mode import warnings warnings.filterwarnings('ignore') #Reading file bank_data =
pd.read_csv(path)
pandas.read_csv
from flask import request, url_for from flask_api import FlaskAPI, status, exceptions import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import NMF from surprise import KNNWithMeans from surprise import accuracy from surprise.model_selection import KFold from surprise import SVD, SVDpp from surprise import Dataset from surprise.model_selection import cross_validate, train_test_split from surprise import Reader # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from surprise import KNNBasic import matplotlib.pyplot as plt from sklearn.neighbors import NearestNeighbors import os import json from flask import Flask from flask_cors import CORS app = FlaskAPI(__name__) CORS(app) notes = { 0: 'do the shopping', 1: 'build the codez', 2: 'paint the door', } algo = SVD() def note_repr(key): return { 'url': request.host_url.rstrip('/') + url_for('notes_detail', key=key), 'text': notes[key] } @app.route("/", methods=['GET', 'POST']) def notes_list(): """ List or create notes. """ if request.method == 'POST': note = str(request.data.get('text', '')) idx = max(notes.keys()) + 1 notes[idx] = note return note_repr(idx), status.HTTP_201_CREATED # request.method == 'GET' return [note_repr(idx) for idx in sorted(notes.keys())] @app.route("/<int:key>/", methods=['GET', 'PUT', 'DELETE']) def notes_detail(key): """ Retrieve, update or delete note instances. """ if request.method == 'PUT': note = str(request.data.get('text', '')) notes[key] = note return note_repr(key) elif request.method == 'DELETE': notes.pop(key, None) return '', status.HTTP_204_NO_CONTENT # request.method == 'GET' if key not in notes: raise exceptions.NotFound() return note_repr(key) @app.route("/getFutureSubjects/", methods=['GET', 'POST']) def getFutureSubjects(): data = pd.read_csv('hack.csv') l_data = request.json for l in l_data: learner_id = l['learnerID'] learner_data = data[data["LearnerID"] == learner_id].head(1) learner_schoolid = learner_data['Schoolid'].values[0] learner_curr_year = learner_data['CurretYearName'].values[0] data['year'] = data['MasterYearName'].str.slice(5) data['year'] = pd.to_numeric(data['year'], errors='coerce').fillna(0).astype(np.int64) data['current_year'] = data['CurretYearName'].str.slice(5) data['current_year'] = pd.to_numeric(data['current_year'], errors='coerce').fillna(0).astype(np.int64) current_yr = data[data["LearnerID"] == learner_id].sort_values(['year'], ascending=[0]).iloc[[0],:]["year"].values[0] + 1 past_data = data[(data['year'] <= current_yr) & (data['year'] != 0) & (data['current_year'] > current_yr) & (data['LearnerID'] != learner_id)] df = past_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() learner_data = data[data["LearnerID"] == learner_id] learner_pivot = learner_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() for l in l_data: print('asdasdasdasd') print(l['subject']) print(l['marks']) learner_pivot[l['subject']] = l['marks'] final_pivot = pd.concat([learner_pivot, df], ignore_index=False, sort=True).fillna(0) final_pivot[final_pivot["LearnerID"] == learner_id] model_knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=5, n_jobs=-1).fit(df) values, indexes = model_knn.kneighbors(final_pivot[final_pivot["LearnerID"] == learner_id].values.reshape(1,-1)) similar_leaners = dict(zip(indexes[0], values[0])) final_learner_pivot = final_pivot[final_pivot["LearnerID"] == learner_id] sorted_leaners = [(k, similar_leaners[k]) for k in sorted(similar_leaners, key=similar_leaners.get, reverse=True)] index_arr = [] values_arr = [] for l in sorted_leaners: index_arr.append(l[0]) values_arr.append(l[1]) similar_learners_df = df.loc[index_arr, :] similar_learners_df['similarity'] = values_arr final_learner_pivot['similarity'] = 1 similar_learners_without_self = similar_learners_df similar_learners_df = pd.concat([similar_learners_df,final_learner_pivot], ignore_index=False, sort=False).fillna(0) learners = data[(data['year'] == (current_yr + 2)) & (data['LearnerID'].isin(similar_learners_without_self['LearnerID'].values))] #similar_learners_df subjects = learners.MasterSubjectName.unique() learners = learners[['LearnerID', 'Points.1', 'SchoolSubjectName']].rename(columns={"Points.1": "Marks"}) arr = [] # arr.append(learners.to_json(orient='records')) # grid_obj = { # "grid":str(learners.to_json(orient='records')) # } # arr.append(grid_obj) #return similar_learners_df.to_json(orient='records') for s in subjects: id = str(learner_id) + '-' + str(learner_schoolid) subject = learner_curr_year + '-' + s obj = { "learnerID": learner_id, "subject": subject, "marks": (algo.predict(id, subject)[3] * 10) } arr.append(obj) return json.dumps(arr) @app.route("/getSubjects/<int:learner_id>/", methods=['GET', 'PUT', 'DELETE']) def getSubjects(learner_id): data = pd.read_csv('hack.csv') learner_data = data[data["LearnerID"] == learner_id].head(1) learner_schoolid = learner_data['Schoolid'].values[0] learner_curr_year = learner_data['CurretYearName'].values[0] data['year'] = data['MasterYearName'].str.slice(5) data['year'] = pd.to_numeric(data['year'], errors='coerce').fillna(0).astype(np.int64) data['current_year'] = data['CurretYearName'].str.slice(5) data['current_year'] = pd.to_numeric(data['current_year'], errors='coerce').fillna(0).astype(np.int64) current_yr = data[data["LearnerID"] == learner_id].sort_values(['year'], ascending=[0]).iloc[[0],:]["year"].values[0] past_data = data[(data['year'] <= current_yr) & (data['year'] != 0) & (data['current_year'] > current_yr) & (data['LearnerID'] != learner_id)] df = past_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() # recently added learner_data = data[data["LearnerID"] == learner_id] # recently added done learner_pivot = learner_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() final_pivot = pd.concat([learner_pivot, df], ignore_index=False, sort=True).fillna(0) final_pivot[final_pivot["LearnerID"] == learner_id] model_knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=5, n_jobs=-1) model_knn.fit(df) values, indexes = model_knn.kneighbors(final_pivot[final_pivot["LearnerID"] == learner_id].values.reshape(1,-1)) similar_leaners = dict(zip(indexes[0], values[0])) final_learner_pivot = final_pivot[final_pivot["LearnerID"] == learner_id] sorted_leaners = [(k, similar_leaners[k]) for k in sorted(similar_leaners, key=similar_leaners.get, reverse=True)] index_arr = [] values_arr = [] for l in sorted_leaners: index_arr.append(l[0]) values_arr.append(l[1]) similar_learners_df = df.loc[index_arr, :] similar_learners_df['similarity'] = values_arr final_learner_pivot['similarity'] = 1 similar_learners_without_self = similar_learners_df similar_learners_df = pd.concat([similar_learners_df,final_learner_pivot], ignore_index=False, sort=False).fillna(0) learners = data[(data['year'] == (current_yr + 1)) & (data['LearnerID'].isin(similar_learners_without_self['LearnerID'].values))] #similar_learners_df subjects = learners.MasterSubjectName.unique() learners = learners[['LearnerID', 'Points.1', 'SchoolSubjectName']].rename(columns={"Points.1": "Marks"}) arr = [] # arr.append(learners.to_json(orient='records')) # grid_obj = { # "grid":str(learners.to_json(orient='records')) # } # arr.append(grid_obj) #return similar_learners_df.to_json(orient='records') for s in subjects: id = str(learner_id) + '-' + str(learner_schoolid) subject = learner_curr_year + '-' + s obj = { "learnerID": learner_id, "subject": subject, "marks": (algo.predict(id, subject)[3] * 10) } arr.append(obj) return json.dumps(arr) @app.route("/getLearners/<int:learner_id>/", methods=['GET', 'PUT', 'DELETE']) def getLearners(learner_id): data = pd.read_csv('hack.csv') learner_data = data[data["LearnerID"] == learner_id].head(1) learner_schoolid = learner_data['Schoolid'].values[0] learner_curr_year = learner_data['CurretYearName'].values[0] data['year'] = data['MasterYearName'].str.slice(5) data['year'] = pd.to_numeric(data['year'], errors='coerce').fillna(0).astype(np.int64) data['current_year'] = data['CurretYearName'].str.slice(5) data['current_year'] = pd.to_numeric(data['current_year'], errors='coerce').fillna(0).astype(np.int64) current_yr = data[data["LearnerID"] == learner_id].sort_values(['year'], ascending=[0]).iloc[[0],:]["year"].values[0] past_data = data[(data['year'] <= current_yr) & (data['year'] != 0) & (data['current_year'] > current_yr) & (data['LearnerID'] != learner_id)] df = past_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() learner_pivot = learner_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() final_pivot = pd.concat([learner_pivot, df], ignore_index=False, sort=True).fillna(0) final_pivot[final_pivot["LearnerID"] == learner_id] model_knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=5, n_jobs=-1) model_knn.fit(df) values, indexes = model_knn.kneighbors(final_pivot[final_pivot["LearnerID"] == learner_id].values.reshape(1,-1)) similar_leaners = dict(zip(indexes[0], values[0])) final_learner_pivot = final_pivot[final_pivot["LearnerID"] == learner_id] sorted_leaners = [(k, similar_leaners[k]) for k in sorted(similar_leaners, key=similar_leaners.get, reverse=True)] index_arr = [] values_arr = [] for l in sorted_leaners: index_arr.append(l[0]) values_arr.append(l[1]) similar_learners_df = df.loc[index_arr, :] similar_learners_df['similarity'] = values_arr final_learner_pivot['similarity'] = 1 similar_learners_without_self = similar_learners_df similar_learners_df = pd.concat([similar_learners_df,final_learner_pivot], ignore_index=False, sort=False).fillna(0) learners = data[(data['year'] == (current_yr + 1)) & (data['LearnerID'].isin(similar_learners_without_self['LearnerID'].values))] #similar_learners_df subjects = learners.MasterSubjectName.unique() #learners = learners[['LearnerID', 'Points.1', 'SchoolSubjectName']] learners = learners[['LearnerID', 'Points.1', 'SchoolSubjectName']].rename(columns={"Points.1": "Marks"}) arr = [] arr.append(learners.to_json(orient='records')) # grid_obj = { # "grid":str(learners.to_json(orient='records')) # } # arr = [] # grid_obj = { # "grid":learners.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index().to_json(orient='records') # for s in learners: # obj ={ # "learnerID": learner_id, # "subject": s, # "marks":s # } # arr.append(grid_obj) # obj = { # "LearnerID": learner_id # } #arr.append(obj) #return similar_learners_df.to_json(orient='records') # for s in subjects: # id = str(learner_id) + '-' + str(learner_schoolid) # subject = learner_curr_year + '-' + s # obj = { # "learnerID": learner_id, # "subject": subject, # "marks": algo.predict(id, subject) # } # arr.append(obj) # return json.dumps(arr) return learners.to_json(orient='records') # return json.dumps(learners) # return "".join(map(str, subjects)) @app.route("/getLearnersNew/<int:learner_id>/", methods=['GET', 'PUT', 'DELETE']) def getLearnersNew(learner_id): return getSubjects(learner_id) #getSubjects(233381) @app.route("/getLearners1/<int:learner_id>/", methods=['GET', 'PUT', 'DELETE']) def getLearners1(learner_id): #learner_id = 232301 data_df =
pd.read_csv('hack.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ AIDeveloper --------- @author: maikherbig """ import os,sys,gc os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'#suppress warnings/info from tensorflow if not sys.platform.startswith("win"): from multiprocessing import freeze_support freeze_support() # Make sure to get the right icon file on win,linux and mac if sys.platform=="darwin": icon_suff = ".icns" else: icon_suff = ".ico" import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtWidgets, QtGui from pyqtgraph import Qt import aid_start dir_root = os.path.dirname(aid_start.__file__)#ask the module for its origin dir_settings = os.path.join(dir_root,"aid_settings.json")#dir to settings Default_dict = aid_start.get_default_dict(dir_settings) #try: # splashapp = QtWidgets.QApplication(sys.argv) # #splashapp.setWindowIcon(QtGui.QIcon("."+os.sep+"art"+os.sep+Default_dict["Icon theme"]+os.sep+"main_icon_simple_04_256.ico")) # # Create and display the splash screen # splash_pix = os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff) # splash_pix = QtGui.QPixmap(splash_pix) # #splash_pix = QtGui.QPixmap("."+os.sep+"art"+os.sep+Default_dict["Icon theme"]+os.sep+"main_icon_simple_04_256"+icon_suff) # splash = QtWidgets.QSplashScreen(splash_pix, QtCore.Qt.WindowStaysOnTopHint) # splash.setMask(splash_pix.mask()) # splash.show() #except: # pass #BEFORE importing tensorflow or anything from keras: make sure the keras.json has #certain properties keras_json_path = os.path.expanduser('~')+os.sep+'.keras'+os.sep+'keras.json' if not os.path.isdir(os.path.expanduser('~')+os.sep+'.keras'): os.mkdir(os.path.expanduser('~')+os.sep+'.keras') aid_start.banner() #show a fancy banner in console aid_start.keras_json_check(keras_json_path) import traceback,shutil,re,ast,io,platform import h5py,json,time,copy,urllib,datetime from stat import S_IREAD,S_IRGRP,S_IROTH,S_IWRITE,S_IWGRP,S_IWOTH import tensorflow as tf from tensorboard import program from tensorboard import default from tensorflow.python.client import device_lib devices = device_lib.list_local_devices() device_types = [devices[i].device_type for i in range(len(devices))] #Get the number of CPU cores and GPUs cpu_nr = os.cpu_count() gpu_nr = device_types.count("GPU") print("Nr. of GPUs detected: "+str(gpu_nr)) print("Found "+str(len(devices))+" device(s):") print("------------------------") for i in range(len(devices)): print("Device "+str(i)+": "+devices[i].name) print("Device type: "+devices[i].device_type) print("Device description: "+devices[i].physical_device_desc) print("------------------------") #Split CPU and GPU into two lists of devices devices_cpu = [] devices_gpu = [] for dev in devices: if dev.device_type=="CPU": devices_cpu.append(dev) elif dev.device_type=="GPU": devices_gpu.append(dev) else: print("Unknown device type:"+str(dev)+"\n") import numpy as np rand_state = np.random.RandomState(117) #to get the same random number on diff. PCs from scipy import ndimage,misc from sklearn import metrics,preprocessing import PIL import dclab import cv2 import pandas as pd import openpyxl,xlrd import psutil from keras.models import model_from_json,model_from_config,load_model,clone_model from keras import backend as K if 'GPU' in device_types: keras_gpu_avail = K.tensorflow_backend._get_available_gpus() if len(keras_gpu_avail)>0: print("Following GPU is used:") print(keras_gpu_avail) print("------------------------") else: print("TensorFlow detected GPU, but Keras didn't") print("------------------------") from keras.preprocessing.image import load_img from keras.utils import np_utils,multi_gpu_model from keras.utils.conv_utils import convert_kernel import keras_metrics #side package for precision, recall etc during training global keras_metrics import model_zoo from keras2onnx import convert_keras from onnx import save_model as save_onnx import aid_img, aid_dl, aid_bin import aid_frontend from partial_trainability import partial_trainability import aid_imports VERSION = "0.2.3" #Python 3.5.6 Version model_zoo_version = model_zoo.__version__() print("AIDeveloper Version: "+VERSION) print("model_zoo.py Version: "+model_zoo.__version__()) try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtWidgets.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig) tooltips = aid_start.get_tooltips() class MyPopup(QtWidgets.QWidget): def __init__(self): QtWidgets.QWidget.__init__(self) class WorkerSignals(QtCore.QObject): ''' Code inspired from here: https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/ Defines the signals available from a running worker thread. Supported signals are: finished No data error `tuple` (exctype, value, traceback.format_exc() ) result `object` data returned from processing, anything progress `int` indicating % progress history `dict` containing keras model history.history resulting from .fit ''' finished = QtCore.pyqtSignal() error = QtCore.pyqtSignal(tuple) result = QtCore.pyqtSignal(object) progress = QtCore.pyqtSignal(int) history = QtCore.pyqtSignal(dict) class Worker(QtCore.QRunnable): ''' Code inspired/copied from: https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/ Worker thread Inherits from QRunnable to handler worker thread setup, signals and wrap-up. :param callback: The function callback to run on this worker thread. Supplied args and kwargs will be passed through to the runner. :type callback: function :param args: Arguments to pass to the callback function :param kwargs: Keywords to pass to the callback function ''' def __init__(self, fn, *args, **kwargs): super(Worker, self).__init__() # Store constructor arguments (re-used for processing) self.fn = fn self.args = args self.kwargs = kwargs self.signals = WorkerSignals() # Add the callback to our kwargs self.kwargs['progress_callback'] = self.signals.progress self.kwargs['history_callback'] = self.signals.history @QtCore.pyqtSlot() def run(self): ''' Initialise the runner function with passed args, kwargs. ''' # Retrieve args/kwargs here; and fire processing using them try: result = self.fn(*self.args, **self.kwargs) except: traceback.print_exc() exctype, value = sys.exc_info()[:2] self.signals.error.emit((exctype, value, traceback.format_exc())) else: self.signals.result.emit(result) # Return the result of the processing finally: self.signals.finished.emit() # Done class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.setupUi() def setupUi(self): aid_frontend.setup_main_ui(self,gpu_nr) def retranslateUi(self): aid_frontend.retranslate_main_ui(self,gpu_nr,VERSION) def dataDropped(self, l): #If there is data stored on ram tell user that RAM needs to be refreshed! if len(self.ram)>0: self.statusbar.showMessage("Newly added data is not yet in RAM. Only RAM data will be used. Use ->'File'->'Data to RAM now' to update RAM",5000) #l is a list of some filenames (.rtdc) or folders (containing .jpg, jpeg, .png) #Iterate over l and check if it is a folder or a file (directory) isfile = [os.path.isfile(str(url)) for url in l] isfolder = [os.path.isdir(str(url)) for url in l] #####################For folders with images:########################## #where are folders? ind_true = np.where(np.array(isfolder)==True)[0] foldernames = list(np.array(l)[ind_true]) #select the indices that are valid #On mac, there is a trailing / in case of folders; remove them foldernames = [os.path.normpath(url) for url in foldernames] basename = [os.path.basename(f) for f in foldernames] #Look quickly inside the folders and ask the user if he wants to convert #to .rtdc (might take a while!) if len(foldernames)>0: #User dropped (also) folders (which may contain images) # filecounts = [] # for i in range(len(foldernames)): # url = foldernames[i] # files = os.listdir(url) # files_full = [os.path.join(url,files[i]) for i in range(len(files))] # filecounts.append(len([f for f in files_full if os.path.isfile(f)])) # Text = [] # for b,n in zip(basename,filecounts): # Text.append(b+": "+str(n)+" images") # Text = "\n".join(Text) Text = "Images from single folders are read and saved to individual \ .rtdc files with the same name like the corresponding folder.<b>If \ you have RGB images you can either save the full RGB information, \ or do a conversion to Grayscale (saves some diskspace but information \ about color is lost). RGB is recommended since AID will automatically\ do the conversion to grayscale later if required.<b>If you have \ Grayscale images, a conversion to RGB will just copy the info to all \ channels, which allows you to use RGB-mode and Grayscale-mode lateron." Text = Text+"\nImages from following folders will be converted:\n"+"\n".join(basename) #Show the user a summary with all the found folders and how many files are #contained. Ask if he want to convert msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Should the images of the chosen folder(s)\ be converted to .rtdc using <b>RGB</b> or <b>Grayscale</b> format? <b>\ (RGB is recommended!)</b> Either option might take some time. You can \ reuse the .rtdc file next time.</p></body></html>" msg.setText(text) msg.setDetailedText(Text) msg.setWindowTitle("Format for conversion to .rtdc (RGB/Grayscale)") msg.addButton(QtGui.QPushButton('Convert to Grayscale'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Convert to RGB'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() #Conversion of images in folders is (almost) independent from what #is going to be fitted (So I leave the option menu still!) #In options: Color Mode one can still use RGB mode and export here as #Grayscale (but this would actually not work since RGB information is lost). #The other way around works. Therefore it is recommended to export RGB! if retval==0: color_mode = "Grayscale" channels = 1 elif retval==1: color_mode = "RGB" channels = 3 else: return self.statusbar.showMessage("Color mode' "+color_mode+"' is used",5000) url_converted = [] for i in range(len(foldernames)): url = foldernames[i] print("Start converting images in\n"+url) #try: #get a list of files inside this directory: images,pos_x,pos_y = [],[],[] for root, dirs, files in os.walk(url): for file in files: try: path = os.path.join(root, file) img = load_img(path,color_mode=color_mode.lower()) #This uses PIL and supports many many formats! images.append(np.array(img)) #append nice numpy array to list #create pos_x and pos_y pos_x.append( int(np.round(img.width/2.0,0)) ) pos_y.append( int(np.round(img.height/2.0,0)) ) except: pass #Thanks to andko76 for pointing that unequal image sizes cause an error: #https://github.com/maikherbig/AIDeveloper/issues/1 #Check that all images have the same size # img_shape_errors = 0 # text_error = "Images have unequal dimensions:" # img_h = [a.shape[0] for a in images] # img_h_uni = len(np.unique(img_h)) # if img_h_uni!=1: # text_error += "\n- found unequal heights" # img_shape_errors=1 # img_w = [a.shape[1] for a in images] # img_w_uni = len(np.unique(img_w)) # if img_w_uni!=1: # text_error += "\n- found unequal widths" # img_shape_errors=1 # img_c = [len(a.shape) for a in images] # img_c_uni = len(np.unique(img_c)) # if img_c_uni!=1: # text_error += "\n- found unequal numbers of channels" # img_shape_errors=1 # #If there were issues detected, show error message # if img_shape_errors==1: # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Warning) # msg.setText(str(text_error)) # msg.setWindowTitle("Error: Unequal image shapes") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # return #Get a list of occuring image dimensions (width and height) img_shape = [a.shape[0] for a in images] + [a.shape[1] for a in images] dims = np.unique(img_shape) #Get a list of occurences of image shapes img_shape = [str(a.shape[0])+" x "+str(a.shape[1]) for a in images] occurences = np.unique(img_shape,return_counts=True) #inform user if there is more than one img shape if len(occurences[0])>1 or len(dims)>1: text_detail = "Path: "+url text_detail += "\nFollowing image shapes are present" for i in range(len(occurences[0])): text_detail+="\n- "+str(occurences[1][i])+" times: "+str(occurences[0][i]) self.popup_imgRes = QtGui.QDialog() self.popup_imgRes_ui = aid_frontend.popup_imageLoadResize() self.popup_imgRes_ui.setupUi(self.popup_imgRes) #open a popup to show options for image resizing (make image equally sized) #self.popup_imgRes.setWindowModality(QtCore.Qt.WindowModal) self.popup_imgRes.setWindowModality(QtCore.Qt.ApplicationModal) #Insert information into textBrowser self.popup_imgRes_ui.textBrowser_imgResize_occurences.setText(text_detail) Image_import_dimension = Default_dict["Image_import_dimension"] self.popup_imgRes_ui.spinBox_ingResize_h_1.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_h_2.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_w_1.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_w_2.setValue(Image_import_dimension) Image_import_interpol_method = Default_dict["Image_import_interpol_method"] index = self.popup_imgRes_ui.comboBox_resizeMethod.findText(Image_import_interpol_method, QtCore.Qt.MatchFixedString) if index >= 0: self.popup_imgRes_ui.comboBox_resizeMethod.setCurrentIndex(index) #Define function for the OK button: def popup_imgRes_ok(images,channels,pos_x,pos_y): print("Start resizing operation") #Get info from GUI final_h = int(self.popup_imgRes_ui.spinBox_ingResize_h_1.value()) print("Height:"+str(final_h)) final_w = int(self.popup_imgRes_ui.spinBox_ingResize_w_1.value()) print("Width:"+str(final_w)) Default_dict["Image_import_dimension"] = final_h pix = 1 if self.popup_imgRes_ui.radioButton_imgResize_cropPad.isChecked():#cropping and padding method images = aid_img.image_crop_pad_cv2(images,pos_x,pos_y,pix,final_h,final_w,padding_mode="cv2.BORDER_CONSTANT") elif self.popup_imgRes_ui.radioButton_imgResize_interpolate.isChecked(): interpolation_method = str(self.popup_imgRes_ui.comboBox_resizeMethod.currentText()) Default_dict["Image_import_interpol_method"] = interpolation_method images = aid_img.image_resize_scale(images,pos_x,pos_y,final_h,final_w,channels,interpolation_method,verbose=False) else: print("Invalid image resize method!") #Save the Default_dict aid_bin.save_aid_settings(Default_dict) self.popup_imgRes.accept() return images #Define function for the Cancel button: def popup_imgRes_cancel(): self.popup_imgRes.close() return self.popup_imgRes_ui.pushButton_imgResize_ok.clicked.connect(lambda: popup_imgRes_ok(images,channels,pos_x,pos_y)) self.popup_imgRes_ui.pushButton_imgResize_cancel.clicked.connect(popup_imgRes_cancel) retval = self.popup_imgRes.exec_() #retval is 0 if the user clicked cancel or just closed the window; in this case just exist the function if retval==0: return #get new pos_x, pos_y (after cropping, the pixel value for the middle of the image is different!) pos_x = [int(np.round(img.shape[1]/2.0,0)) for img in images] pos_y = [int(np.round(img.shape[0]/2.0,0)) for img in images] #Now, all images are of identical shape and can be converted to a numpy array images = np.array((images), dtype="uint8") pos_x = np.array((pos_x), dtype="uint8") pos_y = np.array((pos_y), dtype="uint8") #Save as foldername.rtdc fname = url+".rtdc" if os.path.isfile(fname): #ask user if file can be overwritten msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>File:"+fname+" already exists. Should it be overwritten?</p></body></html>" msg.setText(text) msg.setWindowTitle("Overwrite file?") msg.addButton(QtGui.QPushButton('Yes'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('No'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() if retval==0: try: os.remove(fname) aid_img.imgs_2_rtdc(fname,images,pos_x,pos_y) url_converted.append(fname) except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") retval = msg.exec_() elif retval==1: pass else: pass else:#file does not yet exist. Create it aid_img.imgs_2_rtdc(fname,images,pos_x,pos_y) url_converted.append(fname) print("Finished converting! Final dimension of image tensor is:"+str(images.shape)) #Now load the created files directly to drag/drop-region! self.dataDropped(url_converted) #####################For .rtdc files:################################## #where are files? ind_true = np.where(np.array(isfile)==True)[0] filenames = list(np.array(l)[ind_true]) #select the indices that are valid #check if the file can be opened and get some information fileinfo = [] for i in range(len(filenames)): rtdc_path = filenames[i] try: failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return features = list(rtdc_ds["events"].keys()) #Make sure that there is "images", "pos_x" and "pos_y" available if "image" in features and "pos_x" in features and "pos_y" in features: nr_images = rtdc_ds["events"]["image"].len() pix = rtdc_ds.attrs["imaging:pixel size"] xtra_in_available = len(rtdc_ds.keys())>2 #Is True, only if there are more than 2 elements. fileinfo.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"pix":pix,"xtra_in":xtra_in_available}) else: missing = [] for feat in ["image","pos_x","pos_y"]: if feat not in features: missing.append(feat) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Essential feature(s) are missing in data-set") msg.setDetailedText("Data-set: "+rtdc_path+"\nis missing "+str(missing)) msg.setWindowTitle("Missing essential features") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() except Exception as e: print(e) #Add the stuff to the combobox on Plot/Peak Tab url_list = [fileinfo[iterator]["rtdc_path"] for iterator in range(len(fileinfo))] self.comboBox_chooseRtdcFile.addItems(url_list) self.comboBox_selectData.addItems(url_list) if len(url_list)==0: #This fixes the issue that the prog. crashes if accidentially a tableitem is dragged and "dropped" on the table return width=self.comboBox_selectData.fontMetrics().boundingRect(max(url_list, key=len)).width() self.comboBox_selectData.view().setFixedWidth(width+10) for rowNumber in range(len(fileinfo)):#for url in l: url = fileinfo[rowNumber]["rtdc_path"] #add to table rowPosition = self.table_dragdrop.rowCount() self.table_dragdrop.insertRow(rowPosition) columnPosition = 0 line = QtWidgets.QLabel(self.table_dragdrop) line.setText(url) line.setDisabled(True) line.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) self.table_dragdrop.setCellWidget(rowPosition, columnPosition, line) # item = QtWidgets.QTableWidgetItem(url) # item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) # print(item.textAlignment()) # item.setTextAlignment(QtCore.Qt.AlignRight) # change the alignment # #item.setTextAlignment(QtCore.Qt.AlignLeading | QtCore.Qt.AnchorRight) # change the alignment # self.table_dragdrop.setItem(rowPosition , columnPosition, item ) # columnPosition = 1 spinb = QtWidgets.QSpinBox(self.table_dragdrop) spinb.valueChanged.connect(self.dataOverviewOn) self.table_dragdrop.setCellWidget(rowPosition, columnPosition, spinb) for columnPosition in range(2,4): #for each item, also create 2 checkboxes (train/valid) item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 4 #Place a button which allows to show a plot (scatter, histo...lets see) btn = QtWidgets.QPushButton(self.table_dragdrop) btn.setMinimumSize(QtCore.QSize(50, 30)) btn.setMaximumSize(QtCore.QSize(50, 30)) btn.clicked.connect(self.button_hist) btn.setText('Plot') self.table_dragdrop.setCellWidget(rowPosition, columnPosition, btn) self.table_dragdrop.resizeRowsToContents() # columnPosition = 5 # #Place a combobox with the available features # cb = QtWidgets.QComboBox(self.table_dragdrop) # cb.addItems(fileinfo[rowNumber]["features"]) # cb.setMinimumSize(QtCore.QSize(70, 30)) # cb.setMaximumSize(QtCore.QSize(70, 30)) # width=cb.fontMetrics().boundingRect(max(fileinfo[rowNumber]["features"], key=len)).width() # cb.view().setFixedWidth(width+30) # self.table_dragdrop.setCellWidget(rowPosition, columnPosition, cb) columnPosition = 5 #Place a combobox with the available features item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, fileinfo[rowNumber]["nr_images"]) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 6 #Field to user-define nr. of cells/epoch item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole,100) #item.cellChanged.connect(self.dataOverviewOn) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 7 #Pixel size item = QtWidgets.QTableWidgetItem() pix = float(fileinfo[rowNumber]["pix"]) #print(pix) item.setData(QtCore.Qt.EditRole,pix) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 8 #Should data be shuffled (random?) item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Checked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 9 #Zooming factor item = QtWidgets.QTableWidgetItem() zoom = 1.0 item.setData(QtCore.Qt.EditRole,zoom) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 10 #Should xtra_data be used? item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) xtra_in_available = fileinfo[rowNumber]["xtra_in"] if xtra_in_available: item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) else: item.setFlags( QtCore.Qt.ItemIsUserCheckable ) item.setCheckState(QtCore.Qt.Unchecked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) #Functions for Keras augmentation checkboxes def keras_changed_rotation(self,on_or_off): if on_or_off==0: self.lineEdit_Rotation.setText(str(0)) self.lineEdit_Rotation.setEnabled(False) elif on_or_off==2: self.lineEdit_Rotation.setText(str(Default_dict ["rotation"])) self.lineEdit_Rotation.setEnabled(True) else: return def keras_changed_width_shift(self,on_or_off): if on_or_off==0: self.lineEdit_widthShift.setText(str(0)) self.lineEdit_widthShift.setEnabled(False) elif on_or_off==2: self.lineEdit_widthShift.setText(str(Default_dict ["width_shift"])) self.lineEdit_widthShift.setEnabled(True) else: return def keras_changed_height_shift(self,on_or_off): if on_or_off==0: self.lineEdit_heightShift.setText(str(0)) self.lineEdit_heightShift.setEnabled(False) elif on_or_off==2: self.lineEdit_heightShift.setText(str(Default_dict ["height_shift"])) self.lineEdit_heightShift.setEnabled(True) else: return def keras_changed_zoom(self,on_or_off): if on_or_off==0: self.lineEdit_zoomRange.setText(str(0)) self.lineEdit_zoomRange.setEnabled(False) elif on_or_off==2: self.lineEdit_zoomRange.setText(str(Default_dict ["zoom"])) self.lineEdit_zoomRange.setEnabled(True) else: return def keras_changed_shear(self,on_or_off): if on_or_off==0: self.lineEdit_shearRange.setText(str(0)) self.lineEdit_shearRange.setEnabled(False) elif on_or_off==2: self.lineEdit_shearRange.setText(str(Default_dict ["shear"])) self.lineEdit_shearRange.setEnabled(True) else: return def keras_changed_brightplus(self,on_or_off): if on_or_off==0: self.spinBox_PlusLower.setValue(0) self.spinBox_PlusLower.setEnabled(False) self.spinBox_PlusUpper.setValue(0) self.spinBox_PlusUpper.setEnabled(False) elif on_or_off==2: self.spinBox_PlusLower.setValue(Default_dict ["Brightness add. lower"]) self.spinBox_PlusLower.setEnabled(True) self.spinBox_PlusUpper.setValue(Default_dict ["Brightness add. upper"]) self.spinBox_PlusUpper.setEnabled(True) else: return def keras_changed_brightmult(self,on_or_off): if on_or_off==0: self.doubleSpinBox_MultLower.setValue(1.0) self.doubleSpinBox_MultLower.setEnabled(False) self.doubleSpinBox_MultUpper.setValue(1.0) self.doubleSpinBox_MultUpper.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_MultLower.setValue(Default_dict ["Brightness mult. lower"]) self.doubleSpinBox_MultLower.setEnabled(True) self.doubleSpinBox_MultUpper.setValue(Default_dict ["Brightness mult. upper"]) self.doubleSpinBox_MultUpper.setEnabled(True) else: return def keras_changed_noiseMean(self,on_or_off): if on_or_off==0: self.doubleSpinBox_GaussianNoiseMean.setValue(0.0) self.doubleSpinBox_GaussianNoiseMean.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_GaussianNoiseMean.setValue(Default_dict ["Gaussnoise Mean"]) self.doubleSpinBox_GaussianNoiseMean.setEnabled(True) else: return def keras_changed_noiseScale(self,on_or_off): if on_or_off==0: self.doubleSpinBox_GaussianNoiseScale.setValue(0.0) self.doubleSpinBox_GaussianNoiseScale.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_GaussianNoiseScale.setValue(Default_dict ["Gaussnoise Scale"]) self.doubleSpinBox_GaussianNoiseScale.setEnabled(True) else: return def keras_changed_contrast(self,on_or_off): if on_or_off==0: self.doubleSpinBox_contrastLower.setEnabled(False) self.doubleSpinBox_contrastHigher.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) else: return def keras_changed_saturation(self,on_or_off): if on_or_off==0: self.doubleSpinBox_saturationLower.setEnabled(False) self.doubleSpinBox_saturationHigher.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_saturationLower.setEnabled(True) self.doubleSpinBox_saturationHigher.setEnabled(True) else: return def keras_changed_hue(self,on_or_off): if on_or_off==0: self.doubleSpinBox_hueDelta.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_hueDelta.setEnabled(True) else: return def expert_mode_off(self,on_or_off): """ Reset all values on the expert tab to the default values, excluding the metrics metrics are defined only once when starting fitting and should not be changed """ if on_or_off==0: #switch off self.spinBox_batchSize.setValue(Default_dict["spinBox_batchSize"]) self.spinBox_epochs.setValue(1) self.checkBox_expt_loss.setChecked(False) self.expert_loss_off(0) self.groupBox_learningRate.setChecked(False) self.expert_learningrate_off(0) self.checkBox_optimizer.setChecked(False) self.expert_optimizer_off(0) def expert_loss_off(self,on_or_off): if on_or_off==0: #switch off #switch back to categorical_crossentropy index = self.comboBox_expt_loss.findText("categorical_crossentropy", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_expt_loss.setCurrentIndex(index) def expert_learningrate_off(self,on_or_off): if on_or_off==0: #switch off #which optimizer is used? (there are different default learning-rates #for each optimizer!) optimizer = str(self.comboBox_optimizer.currentText()) self.doubleSpinBox_learningRate.setValue(Default_dict["doubleSpinBox_learningRate_"+optimizer]) self.radioButton_LrCycl.setChecked(False) self.radioButton_LrExpo.setChecked(False) self.radioButton_LrConst.setChecked(True) def expert_optimizer_off(self,on_or_off): if on_or_off==0: #switch off, set back to categorical_crossentropy optimizer = "Adam" index = self.comboBox_optimizer.findText(optimizer, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_optimizer.setCurrentIndex(index) #also reset the learning rate to the default self.doubleSpinBox_learningRate.setValue(Default_dict["doubleSpinBox_learningRate_"+optimizer]) def expert_optimizer_changed(self,optimizer_text,listindex): # print("optimizer_text: "+str(optimizer_text)) # print("listindex: "+str(listindex)) if optimizer_text=="": return if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] #set the learning rate to the default for this optimizer value_current = float(item_ui.doubleSpinBox_learningRate.value()) value_wanted = Default_dict["doubleSpinBox_learningRate_"+optimizer_text] #insert the current value in the optimizer_settings: item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_text.lower()] = value_current item_ui.optimizer_settings["comboBox_optimizer"] = optimizer_text try: #only works on the fitting-popup text = str(item_ui.textBrowser_FittingInfo.toPlainText()) except: text = "Epoch" # print("text: "+str(text)) if value_current!=value_wanted and "Epoch" in text:#avoid that the message pops up when window is created item_ui.doubleSpinBox_learningRate.setValue(value_wanted) item_ui.doubleSpinBox_expDecInitLr.setValue(value_wanted) #Inform user msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setWindowTitle("Learning rate to default") msg.setText("Learning rate was set to the default for "+optimizer_text) msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def expert_lr_changed(self,value,optimizer_text,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_text.lower()] = value def update_hist1(self): feature = str(self.comboBox_feat1.currentText()) feature_values = self.rtdc_ds["events"][feature] #if len(feature_values)==len(self.rtdc_ds['area_cvx']): # self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def update_hist2(self): feature = str(self.comboBox_feat2.currentText()) feature_values = self.rtdc_ds["events"][feature] #if len(feature_values)==len(self.rtdc_ds['area_cvx']): #self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def update_scatter(self): feature_x = str(self.comboBox_feat1.currentText()) feature_x_values = self.rtdc_ds["events"][feature_x] feature_y = str(self.comboBox_feat2.currentText()) feature_y_values = self.rtdc_ds["events"][feature_y] if len(feature_x_values)==len(feature_y_values): #self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() #y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(feature_x_values, feature_y_values,pen=None,symbol='o',clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def button_hist(self,item): buttonClicked = self.sender() index = self.table_dragdrop.indexAt(buttonClicked.pos()) rowPosition = index.row() rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.rtdc_ds = rtdc_ds # feature_values = rtdc_ds[feature] #Init a popup window self.w = MyPopup() self.w.setWindowTitle(rtdc_path) self.w.setObjectName(_fromUtf8("w")) self.gridLayout_w2 = QtWidgets.QGridLayout(self.w) self.gridLayout_w2.setContentsMargins(0, 0, 0, 0) self.gridLayout_w2.setObjectName(_fromUtf8("gridLayout_w2")) self.widget = QtWidgets.QWidget(self.w) self.widget.setMinimumSize(QtCore.QSize(0, 65)) self.widget.setMaximumSize(QtCore.QSize(16777215, 65)) self.widget.setObjectName(_fromUtf8("widget")) self.horizontalLayout_w3 = QtWidgets.QHBoxLayout(self.widget) self.horizontalLayout_w3.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_w3.setObjectName(_fromUtf8("horizontalLayout_w3")) self.verticalLayout_w = QtWidgets.QVBoxLayout() self.verticalLayout_w.setObjectName(_fromUtf8("verticalLayout_w")) self.horizontalLayout_w = QtWidgets.QHBoxLayout() self.horizontalLayout_w.setObjectName(_fromUtf8("horizontalLayout_w")) self.comboBox_feat1 = QtWidgets.QComboBox(self.widget) self.comboBox_feat1.setObjectName(_fromUtf8("comboBox_feat1")) features = list(self.rtdc_ds["events"].keys()) self.comboBox_feat1.addItems(features) self.horizontalLayout_w.addWidget(self.comboBox_feat1) self.comboBox_feat2 = QtWidgets.QComboBox(self.widget) self.comboBox_feat2.setObjectName(_fromUtf8("comboBox_feat2")) self.comboBox_feat2.addItems(features) self.horizontalLayout_w.addWidget(self.comboBox_feat2) self.verticalLayout_w.addLayout(self.horizontalLayout_w) self.horizontalLayout_w2 = QtWidgets.QHBoxLayout() self.horizontalLayout_w2.setObjectName(_fromUtf8("horizontalLayout_w2")) self.pushButton_Hist1 = QtWidgets.QPushButton(self.widget) self.pushButton_Hist1.setObjectName(_fromUtf8("pushButton_Hist1")) self.horizontalLayout_w2.addWidget(self.pushButton_Hist1) self.pushButton_Hist2 = QtWidgets.QPushButton(self.widget) self.pushButton_Hist2.setObjectName(_fromUtf8("pushButton_Hist2")) self.horizontalLayout_w2.addWidget(self.pushButton_Hist2) self.verticalLayout_w.addLayout(self.horizontalLayout_w2) self.horizontalLayout_w3.addLayout(self.verticalLayout_w) self.verticalLayout_w2 = QtWidgets.QVBoxLayout() self.verticalLayout_w2.setObjectName(_fromUtf8("verticalLayout_w2")) self.pushButton_Scatter = QtWidgets.QPushButton(self.widget) self.pushButton_Scatter.setObjectName(_fromUtf8("pushButton_Scatter")) self.verticalLayout_w2.addWidget(self.pushButton_Scatter) self.checkBox_ScalePix = QtWidgets.QCheckBox(self.widget) self.checkBox_ScalePix.setObjectName(_fromUtf8("checkBox_ScalePix")) self.verticalLayout_w2.addWidget(self.checkBox_ScalePix) self.horizontalLayout_w3.addLayout(self.verticalLayout_w2) self.gridLayout_w2.addWidget(self.widget, 0, 0, 1, 1) self.pushButton_Hist1.setText("Hist") self.pushButton_Hist1.clicked.connect(self.update_hist1) self.pushButton_Hist2.setText("Hist") self.pushButton_Hist2.clicked.connect(self.update_hist2) self.pushButton_Scatter.setText("Scatter") self.pushButton_Scatter.clicked.connect(self.update_scatter) self.checkBox_ScalePix.setText("Scale by pix") self.histogram = pg.GraphicsWindow() self.plt1 = self.histogram.addPlot() # y,x = np.histogram(feature_values, bins='auto') # plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150)) self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) self.w.show() def update_historyplot_pop(self,listindex): #listindex = self.popupcounter-1 #len(self.fittingpopups_ui)-1 #After the first epoch there are checkboxes available. Check, if user checked some: colcount = int(self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.columnCount()) #Collect items that are checked selected_items,Colors = [],[] for colposition in range(colcount): #is it checked for train? cb = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) self.Colors = Colors Histories = self.fittingpopups_ui[listindex].Histories DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) # if len(DF1)>0: # DF1 = pd.concat(DF1) # else: # return self.fittingpopups_ui[listindex].widget_pop.clear() #Create fresh plot plt1 = self.fittingpopups_ui[listindex].widget_pop.addPlot() plt1.showGrid(x=True,y=True) plt1.addLegend() plt1.setLabel('bottom', 'Epoch', units='') #Create a dict that stores plots for each metric (for real time plotting) self.fittingpopups_ui[listindex].historyscatters = dict() for i in range(len(selected_items)): key = selected_items[i] df = DF1[key] color = self.Colors[i] pen_rollmedi = list(color.color().getRgb()) pen_rollmedi = pg.mkColor(pen_rollmedi) pen_rollmedi = pg.mkPen(color=pen_rollmedi,width=6) color = list(color.color().getRgb()) color[-1] = int(0.6*color[-1]) color = tuple(color) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) #print(df) historyscatter = plt1.plot(range(len(df)), df.values, pen=None,symbol='o',symbolPen=None,symbolBrush=brush,name=key,clear=False) #self.fittingpopups_ui[listindex].historyscatters.append(historyscatter) self.fittingpopups_ui[listindex].historyscatters[key]=historyscatter def stop_fitting_pop(self,listindex): #listindex = len(self.fittingpopups_ui)-1 epochs = self.fittingpopups_ui[listindex].epoch_counter #Stop button on the fititng popup #Should stop the fitting process and save the metafile #1. Change the nr. requested epochs to a smaller number self.fittingpopups_ui[listindex].spinBox_NrEpochs.setValue(epochs-1) #2. Check the box which will cause that the new parameters are applied at next epoch self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.setChecked(True) def pause_fitting_pop(self,listindex): #Just change the text on the button if str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())==" ": #If the the text on the button was Pause, change it to Continue self.fittingpopups_ui[listindex].pushButton_Pause_pop.setText("") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setStyleSheet("background-color: green") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setIcon(QtGui.QIcon(os.path.join(dir_root,"art",Default_dict["Icon theme"],"continue.png"))) elif str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())=="": #If the the text on the button was Continue, change it to Pause self.fittingpopups_ui[listindex].pushButton_Pause_pop.setText(" ") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setIcon(QtGui.QIcon(os.path.join(dir_root,"art",Default_dict["Icon theme"],"pause.png"))) self.fittingpopups_ui[listindex].pushButton_Pause_pop.setStyleSheet("") def saveTextWindow_pop(self,listindex): #Get the entire content of textBrowser_FittingInfo text = str(self.fittingpopups_ui[listindex].textBrowser_FittingInfo.toPlainText()) #Ask the user where to save the stuff filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Fitting info', Default_dict["Path of last model"]," (*.txt)") filename = filename[0] #Save to this filename if len(filename)>0: f = open(filename,'w') f.write(text) f.close() def clearTextWindow_pop(self,listindex): self.fittingpopups_ui[listindex].textBrowser_FittingInfo.clear() def showModelSumm_pop(self,listindex): text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) def saveModelSumm_pop(self,listindex): text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary #Ask the user where to save the stuff filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Model summary', Default_dict["Path of last model"]," (*.txt)") filename = filename[0] #Save to this filename f = open(filename,'w') f.write(text) f.close() #class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert) # def get_class_weight(self,SelectedFiles,lossW_expert,custom_check_classes=False): t1 = time.time() print("Getting dictionary for class_weight") if lossW_expert=="None": return None elif lossW_expert=="": return None elif lossW_expert=="Balanced": #Which are training files? ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = list(np.array(SelectedFiles)[ind]) classes = [int(selectedfile["class"]) for selectedfile in SelectedFiles_train] nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train] classes_uni = np.unique(classes) counter = {} for class_ in classes_uni: ind = np.where(np.array(classes)==class_)[0] nr_events_epoch_class = np.array(nr_events_epoch)[ind] counter[class_] = np.sum(nr_events_epoch_class) max_val = float(max(counter.values())) return {class_id : max_val/num_images for class_id, num_images in counter.items()} elif lossW_expert.startswith("{"):#Custom loss weights class_weights = eval(lossW_expert) if custom_check_classes:#Check that each element in classes_uni is contained in class_weights.keys() ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = list(np.array(SelectedFiles)[ind]) classes = [int(selectedfile["class"]) for selectedfile in SelectedFiles_train] classes_uni = np.unique(classes) classes_uni = np.sort(classes_uni) class_weights_keys = np.sort([int(a) for a in class_weights.keys()]) #each element in classes_uni has to be equal to class_weights_keys equal = np.array_equal(classes_uni,class_weights_keys) if equal == True: return class_weights else: #If the equal is false I'm really in trouble... #run the function again, but request 'Balanced' weights. I'm not sure if this should be the default... class_weights = self.get_class_weight(SelectedFiles,"Balanced") return ["Balanced",class_weights] else: return class_weights t2 = time.time() dt = np.round(t2-t1,2) print("Comp. time = "+str(dt)) def accept_lr_range(self): lr_start = str(self.popup_lrfinder_ui.lineEdit_LrMin.text()) lr_stop = str(self.popup_lrfinder_ui.lineEdit_LrMax.text()) if len(lr_start)>0 and len(lr_stop)>0: self.lineEdit_cycLrMin.setText(lr_start) self.lineEdit_cycLrMax.setText(lr_stop) else: print("Found no values for LR range") def accept_lr_value(self): single_lr = self.popup_lrfinder_ui.lineEdit_singleLr.text() if len(single_lr)>0: lr_value = float(single_lr) self.doubleSpinBox_learningRate.setValue(lr_value) self.doubleSpinBox_expDecInitLr.setValue(lr_value) else: print("Found no value for single LR!") def reset_lr_settings(self): self.popup_lrfinder_ui.lineEdit_startLr.setText(_translate("Form_LrFinder", "1e-10", None)) self.popup_lrfinder_ui.lineEdit_stopLr.setText(_translate("Form_LrFinder", "0.1", None)) self.popup_lrfinder_ui.doubleSpinBox_percDataT.setProperty("value", 100.0) self.popup_lrfinder_ui.doubleSpinBox_percDataV.setProperty("value", 100.0) self.popup_lrfinder_ui.spinBox_batchSize.setValue(Default_dict["spinBox_batchSize"]) self.popup_lrfinder_ui.spinBox_lineWidth.setProperty("value", 6) self.popup_lrfinder_ui.spinBox_epochs.setProperty("value", 5) def reset_lr_value(self): self.popup_lrfinder_ui.lineEdit_singleLr.setText("") #Uncheck and Check the groupbox to refresh the line self.popup_lrfinder_ui.groupBox_singleLr.setChecked(False) self.popup_lrfinder_ui.groupBox_singleLr.setChecked(True) def reset_lr_range(self): self.popup_lrfinder_ui.lineEdit_LrMin.setText("") self.popup_lrfinder_ui.lineEdit_LrMax.setText("") #Uncheck and Check the groupbox to refresh the range self.popup_lrfinder_ui.groupBox_LrRange.setChecked(False) self.popup_lrfinder_ui.groupBox_LrRange.setChecked(True) def popup_lr_finder(self): SelectedFiles = self.items_clicked() self.popup_lrfinder = MyPopup() self.popup_lrfinder_ui = aid_frontend.popup_lrfinder() self.popup_lrfinder_ui.setupUi(self.popup_lrfinder) #open a popup for lr finder #Get information about the model #check, which radiobutton is clicked and just copy paste the text from there if self.radioButton_NewModel.isChecked(): modelname = str(self.comboBox_ModelSelection.currentText()) if modelname==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return elif self.radioButton_LoadContinueModel.isChecked(): modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadRestartModel.isChecked(): modelname = str(self.lineEdit_LoadModelPath.text()) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please specify a model using the radiobuttons on the 'Define Model' -tab") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return in_dim = int(self.spinBox_imagecrop.value()) #Put information onto UI self.popup_lrfinder_ui.lineEdit_loadModel.setText(modelname) self.popup_lrfinder_ui.spinBox_Crop_inpImgSize.setValue(in_dim) color_mode = self.get_color_mode() self.popup_lrfinder_ui.comboBox_colorMode.addItem(color_mode) loss_str = str(self.comboBox_expt_loss.currentText()) self.popup_lrfinder_ui.comboBox_expt_loss.addItem(loss_str) optimizer_str = str(self.comboBox_optimizer.currentText()) self.popup_lrfinder_ui.comboBox_optimizer.addItem(optimizer_str) batch_size = self.spinBox_batchSize.value() self.popup_lrfinder_ui.spinBox_batchSize.setValue(batch_size) #Connect action_lr_finder function to button self.popup_lrfinder_ui.pushButton_LrFindRun.clicked.connect(lambda: self.action_initialize_model(duties="initialize_lrfind")) self.popup_lrfinder_ui.pushButton_rangeAccept.clicked.connect(self.accept_lr_range) self.popup_lrfinder_ui.pushButton_singleAccept.clicked.connect(self.accept_lr_value) self.popup_lrfinder_ui.pushButton_LrReset.clicked.connect(self.reset_lr_settings) self.popup_lrfinder_ui.pushButton_singleReset.clicked.connect(self.reset_lr_value) self.popup_lrfinder_ui.pushButton_rangeReset.clicked.connect(self.reset_lr_range) #Update the plot when any plotting option is changed self.popup_lrfinder_ui.comboBox_metric.currentIndexChanged.connect(self.update_lrfind_plot) self.popup_lrfinder_ui.spinBox_lineWidth.valueChanged.connect(self.update_lrfind_plot) self.popup_lrfinder_ui.checkBox_smooth.toggled.connect(self.update_lrfind_plot) #LR single value when groupbox is toggled self.popup_lrfinder_ui.groupBox_singleLr.toggled.connect(self.get_lr_single) #LR range when groupbox is toggled self.popup_lrfinder_ui.groupBox_LrRange.toggled.connect(self.get_lr_range) #compute the number of steps/epoch ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) def update_stepsPerEpoch(): batch_size = self.popup_lrfinder_ui.spinBox_batchSize.value() perc_data = self.popup_lrfinder_ui.doubleSpinBox_percDataT.value() nr_events = (perc_data/100)*nr_events_train_total stepsPerEpoch = np.ceil(nr_events / float(batch_size)) self.popup_lrfinder_ui.spinBox_stepsPerEpoch.setValue(stepsPerEpoch) update_stepsPerEpoch() self.popup_lrfinder_ui.spinBox_batchSize.valueChanged.connect(update_stepsPerEpoch) self.popup_lrfinder_ui.doubleSpinBox_percDataT.valueChanged.connect(update_stepsPerEpoch) self.popup_lrfinder.show() def popup_clr_settings(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_clrsettings = MyPopup() item_ui.popup_clrsettings_ui = aid_frontend.Ui_Clr_settings() item_ui.popup_clrsettings_ui.setupUi(item_ui.popup_clrsettings) #open a popup for lr plotting ##Manual insertion## item_ui.popup_clrsettings_ui.spinBox_stepSize.setProperty("value", item_ui.clr_settings["step_size"]) item_ui.popup_clrsettings_ui.doubleSpinBox_gamma.setProperty("value", item_ui.clr_settings["gamma"]) def clr_settings_ok(): step_size = int(item_ui.popup_clrsettings_ui.spinBox_stepSize.value()) gamma = float(item_ui.popup_clrsettings_ui.doubleSpinBox_gamma.value()) item_ui.clr_settings["step_size"] = step_size #Number of epochs to fulfill half a cycle item_ui.clr_settings["gamma"] = gamma #gamma factor for Exponential decrease method (exp_range) print("Settings for cyclical learning rates were changed.") #close the popup item_ui.popup_clrsettings = None item_ui.popup_clrsettings_ui = None def clr_settings_cancel():#close the popup item_ui.popup_clrsettings = None item_ui.popup_clrsettings_ui = None item_ui.popup_clrsettings_ui.pushButton_ok.clicked.connect(clr_settings_ok) item_ui.popup_clrsettings_ui.pushButton_cancel.clicked.connect(clr_settings_cancel) item_ui.popup_clrsettings.show() def popup_lr_plot(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_lrplot = MyPopup() item_ui.popup_lrplot_ui = aid_frontend.popup_lrplot() item_ui.popup_lrplot_ui.setupUi(item_ui.popup_lrplot) #open a popup for lr plotting #compute total number of epochs that will be fitted spinBox_NrEpochs = item_ui.spinBox_NrEpochs.value() #my own loop spinBox_epochs = item_ui.spinBox_epochs.value() #inside model.fit() nr_epochs = spinBox_NrEpochs*spinBox_epochs item_ui.popup_lrplot_ui.spinBox_totalEpochs.setValue(nr_epochs) #Get the number of training examples SelectedFiles = self.items_clicked() ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) if nr_events_train_total==0 and item_ui.radioButton_LrConst.isChecked()==False: #for Cyclical learning rates and Exponential learning rates, the #number of training images is needed msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no training data. Nr. of training images is required for this plot.") msg.setWindowTitle("Nr. of training images = 0") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return text_info = "" if item_ui.radioButton_LrConst.isChecked(): text_info+="Constant learning rate\n" epochs_plot = np.array(range(nr_epochs)) const_lr = float(self.doubleSpinBox_learningRate.value()) learningrates = np.repeat(const_lr,nr_epochs) elif item_ui.radioButton_LrCycl.isChecked(): text_info+="Cyclical learning rates\n" base_lr = float(item_ui.lineEdit_cycLrMin.text()) max_lr = float(item_ui.lineEdit_cycLrMax.text()) batch_size = int(item_ui.spinBox_batchSize.value()) step_size = item_ui.clr_settings["step_size"] #batch updates in a half cycle step_size_ = step_size*int(np.round(nr_events_train_total / batch_size))#number of steps in one epoch mode = str(item_ui.comboBox_cycLrMethod.currentText()) clr_iterations = nr_epochs*int(np.round(nr_events_train_total / batch_size))#number of cycles nr_cycles = (clr_iterations/step_size_)/2.0#number of cycles gamma = item_ui.clr_settings["gamma"] #gamma factor for the exp_range #Generate text to diplay the settings used text_info+="Nr. of training images: "+str(nr_events_train_total)+"\n" text_info+="base_lr: "+str(base_lr)+"\n" text_info+="max_lr: "+str(max_lr)+"\n" text_info+="batch_size: "+str(batch_size)+"\n" text_info+="mode: "+str(mode)+"\n" text_info+="gamma: "+str(gamma)+"\n" text_info+="Nr. of epochs to fulfill one cycle: "+str(2*step_size)+"\n" #text_info+="Total nr. of lr adjustmend: "+str(step_size_)+"\n" text_info+="Total nr. of lr adjustments: "+str(clr_iterations)+"\n" text_info+="Total nr. of cycles: "+str(nr_cycles)+"\n" #Request the learning rates from the class cyclicLR clr_iterations = np.arange(clr_iterations) clr_1 = aid_dl.cyclicLR(base_lr=base_lr,max_lr=max_lr,step_size=step_size_,mode=mode,gamma=gamma) clr_1.clr_iterations=clr_iterations#pass the number of clr iterations to the class learningrates = clr_1.clr() #compute the learning rates for each iteration #convert clr_iterations back to "epochs" epochs_plot = clr_iterations/int(np.round(nr_events_train_total / batch_size)) elif item_ui.radioButton_LrExpo.isChecked(): text_info+="Exponentially decreased learning rates\n" initial_lr = float(item_ui.doubleSpinBox_expDecInitLr.value()) decay_steps = int(item_ui.spinBox_expDecSteps.value()) decay_rate = float(item_ui.doubleSpinBox_expDecRate.value()) batch_size = int(item_ui.spinBox_batchSize.value()) text_info+="Nr. of training images: "+str(nr_events_train_total)+"\n" text_info+="initial_lr: "+str(initial_lr)+"\n" text_info+="decay_steps: "+str(decay_steps)+"\n" text_info+="decay_rate: "+str(decay_rate)+"\n" #epochs_plot = np.array(range(nr_epochs)) epochs_plot = nr_epochs * int(np.round(nr_events_train_total / batch_size)) epochs_plot = np.arange(epochs_plot) exp_decay = aid_dl.exponentialDecay(initial_lr=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate) exp_decay.iterations=epochs_plot#pass the number of clr iterations to the class learningrates = exp_decay.exp_decay() epochs_plot = epochs_plot/int(np.round(nr_events_train_total / batch_size)) #learningrates = aid_dl.exponentialDecay(epochs_plot,initial_lr=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate) def refreshPlot(): try: # try to empty the plot item_ui.popup_lrplot_ui.lr_plot.removeItem(item_ui.lr_line2) except: pass #Get design settings color = item_ui.popup_lrplot_ui.pushButton_color.palette().button().color() width = int(item_ui.popup_lrplot_ui.spinBox_lineWidth.value()) color = list(color.getRgb()) color = tuple(color) pencolor=pg.mkPen(color, width=width) #define curve and add to plot item_ui.lr_line2 = pg.PlotCurveItem(x=epochs_plot, y=learningrates,pen=pencolor) item_ui.popup_lrplot_ui.lr_plot.addItem(item_ui.lr_line2) refreshPlot() item_ui.popup_lrplot_ui.pushButton_refreshPlot.clicked.connect(refreshPlot) item_ui.popup_lrplot_ui.textBrowser_lrSettings.setText(text_info) item_ui.popup_lrplot.show() def lossWeights_activated(self,on_or_off,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] if on_or_off==False:#0 means switched OFF item_ui.lineEdit_lossW.setText("") item_ui.pushButton_lossW.setEnabled(False) #this happens when the user activated the expert option "loss weights" elif on_or_off==True:#2 means switched ON #Activate button item_ui.pushButton_lossW.setEnabled(True) self.lossWeights_popup(listindex) def lossWeights_popup(self,listindex): if listindex==-1: item_ui = self SelectedFiles = self.items_clicked() else: item_ui = self.fittingpopups_ui[listindex] SelectedFiles = item_ui.SelectedFiles item_ui.popup_lossW = MyPopup() item_ui.popup_lossW_ui = aid_frontend.popup_lossweights() item_ui.popup_lossW_ui.setupUi(item_ui.popup_lossW) #open a popup to show the numbers of events in each class in a table indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] item_ui.popup_lossW_ui.tableWidget_lossW.setColumnCount(5) nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = nr_ind item_ui.popup_lossW_ui.tableWidget_lossW.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class", "Events tot." ,"Events/Epoch", "Events/Epoch[%]", "Loss weight"] item_ui.popup_lossW_ui.tableWidget_lossW.setHorizontalHeaderLabels(header_labels) header = item_ui.popup_lossW_ui.tableWidget_lossW.horizontalHeader() for i in range(len(header_labels)): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) #Fill the table rowPosition = 0 #Training info ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) #Total nr of cells for each index for index in np.unique(indices_train): colPos = 0 #"Class" #put the index (class!) in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) #Get the training files of that index ind = np.where(indices_train==index)[0] SelectedFiles_train_index = np.array(SelectedFiles_train)[ind] colPos = 1 #"Events tot." nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 2 #"Events/Epoch" nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 3 #"Events/Epoch[%]" item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.round(np.sum(nr_events_epoch)/float(nr_events_train_total),2))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 4 #"Loss weights" #for each item create a spinbopx (trainability) spinb = QtWidgets.QDoubleSpinBox(item_ui.popup_lossW_ui.tableWidget_lossW) spinb.setEnabled(False) spinb.setMinimum(-99999) spinb.setMaximum(99999) spinb.setSingleStep(0.1) spinb.setValue(1.0) #Default in Keras is "None", which means class_weight=1.0 item_ui.popup_lossW_ui.tableWidget_lossW.setCellWidget(rowPosition, colPos, spinb) rowPosition += 1 item_ui.popup_lossW_ui.tableWidget_lossW.resizeColumnsToContents() item_ui.popup_lossW_ui.tableWidget_lossW.resizeRowsToContents() item_ui.popup_lossW.show() item_ui.popup_lossW_ui.pushButton_pop_lossW_cancel.clicked.connect(lambda: self.lossW_cancel(listindex)) item_ui.popup_lossW_ui.pushButton_pop_lossW_ok.clicked.connect(lambda: self.lossW_ok(listindex)) item_ui.popup_lossW_ui.comboBox_lossW.currentIndexChanged.connect(lambda on_or_off: self.lossW_comboB(on_or_off,listindex)) def optimizer_change_settings_popup(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_optim = MyPopup() item_ui.popup_optim_ui = aid_frontend.Ui_Form_expt_optim() item_ui.popup_optim_ui.setupUi(item_ui.popup_optim) #open a popup to show advances settings for optimizer ##Manual insertion## optimizer_name = item_ui.optimizer_settings["comboBox_optimizer"].lower() if optimizer_name=='sgd': item_ui.popup_optim_ui.radioButton_sgd.setChecked(True) elif optimizer_name=='rmsprop': item_ui.popup_optim_ui.radioButton_rms.setChecked(True) elif optimizer_name=='adagrad': item_ui.popup_optim_ui.radioButton_adagrad.setChecked(True) elif optimizer_name=='adadelta': item_ui.popup_optim_ui.radioButton_adadelta.setChecked(True) elif optimizer_name=='adam': item_ui.popup_optim_ui.radioButton_adam.setChecked(True) elif optimizer_name=='adamax': item_ui.popup_optim_ui.radioButton_adamax.setChecked(True) elif optimizer_name=='nadam': item_ui.popup_optim_ui.radioButton_nadam.setChecked(True) item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_sgd"]) item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.setValue(item_ui.optimizer_settings["doubleSpinBox_sgd_momentum"]) item_ui.popup_optim_ui.checkBox_sgd_nesterov.setChecked(item_ui.optimizer_settings["checkBox_sgd_nesterov"]) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_rmsprop"]) item_ui.popup_optim_ui.doubleSpinBox_rms_rho.setValue(item_ui.optimizer_settings["doubleSpinBox_rms_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adam"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_adam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_adam_beta2"]) item_ui.popup_optim_ui.checkBox_adam_amsgrad.setChecked(item_ui.optimizer_settings["checkBox_adam_amsgrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_nadam"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_nadam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_nadam_beta2"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adadelta"]) item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.setValue(item_ui.optimizer_settings["doubleSpinBox_adadelta_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adagrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adamax"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_adamax_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_adamax_beta2"]) def change_lr(lr): item_ui.doubleSpinBox_learningRate.setValue(lr) item_ui.doubleSpinBox_expDecInitLr.setValue(lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.valueChanged.connect(change_lr) def change_optimizer(optimizer_name): index = item_ui.comboBox_optimizer.findText(optimizer_name, QtCore.Qt.MatchFixedString) if index >= 0: item_ui.comboBox_optimizer.setCurrentIndex(index) #get the learning rate for that optimizer lr = item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_name.lower()] change_lr(lr) item_ui.popup_optim_ui.radioButton_adam.toggled.connect(lambda: change_optimizer("Adam")) item_ui.popup_optim_ui.radioButton_sgd.toggled.connect(lambda: change_optimizer("SGD")) item_ui.popup_optim_ui.radioButton_rms.toggled.connect(lambda: change_optimizer("RMSprop")) item_ui.popup_optim_ui.radioButton_adagrad.toggled.connect(lambda: change_optimizer("Adagrad")) item_ui.popup_optim_ui.radioButton_adadelta.toggled.connect(lambda: change_optimizer("Adadelta")) item_ui.popup_optim_ui.radioButton_adamax.toggled.connect(lambda: change_optimizer("Adamax")) item_ui.popup_optim_ui.radioButton_nadam.toggled.connect(lambda: change_optimizer("Nadam")) def ok(): doubleSpinBox_lr_sgd = float(item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.value()) doubleSpinBox_sgd_momentum = float(item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.value()) checkBox_sgd_nesterov = bool(item_ui.popup_optim_ui.checkBox_sgd_nesterov.isChecked()) doubleSpinBox_lr_rmsprop = float(item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.value()) doubleSpinBox_rms_rho = float(item_ui.popup_optim_ui.doubleSpinBox_rms_rho.value()) doubleSpinBox_lr_adam = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adam.value()) doubleSpinBox_adam_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.value()) doubleSpinBox_adam_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.value()) checkBox_adam_amsgrad = bool(item_ui.popup_optim_ui.checkBox_adam_amsgrad.isChecked()) doubleSpinBox_lr_adadelta = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.value()) doubleSpinBox_adadelta_rho = float(item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.value()) doubleSpinBox_lr_nadam = float(item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.value()) doubleSpinBox_nadam_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.value()) doubleSpinBox_nadam_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.value()) doubleSpinBox_lr_adagrad = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.value()) doubleSpinBox_lr_adamax = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.value()) doubleSpinBox_adamax_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.value()) doubleSpinBox_adamax_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.value()) item_ui.optimizer_settings["doubleSpinBox_lr_sgd"] = doubleSpinBox_lr_sgd item_ui.optimizer_settings["doubleSpinBox_sgd_momentum"] = doubleSpinBox_sgd_momentum item_ui.optimizer_settings["checkBox_sgd_nesterov"] = checkBox_sgd_nesterov item_ui.optimizer_settings["doubleSpinBox_lr_rmsprop"] = doubleSpinBox_lr_rmsprop item_ui.optimizer_settings["doubleSpinBox_rms_rho"] = doubleSpinBox_rms_rho item_ui.optimizer_settings["doubleSpinBox_lr_adam"] = doubleSpinBox_lr_adam item_ui.optimizer_settings["doubleSpinBox_adam_beta1"] = doubleSpinBox_adam_beta1 item_ui.optimizer_settings["doubleSpinBox_adam_beta2"] = doubleSpinBox_adam_beta2 item_ui.optimizer_settings["checkBox_adam_amsgrad"] = checkBox_adam_amsgrad item_ui.optimizer_settings["doubleSpinBox_lr_adadelta"] = doubleSpinBox_lr_adadelta item_ui.optimizer_settings["doubleSpinBox_adadelta_rho"] = doubleSpinBox_adadelta_rho item_ui.optimizer_settings["doubleSpinBox_lr_nadam"] = doubleSpinBox_lr_nadam item_ui.optimizer_settings["doubleSpinBox_nadam_beta1"] = doubleSpinBox_nadam_beta1 item_ui.optimizer_settings["doubleSpinBox_nadam_beta2"] = doubleSpinBox_nadam_beta2 item_ui.optimizer_settings["doubleSpinBox_lr_adagrad"] = doubleSpinBox_lr_adagrad item_ui.optimizer_settings["doubleSpinBox_lr_adamax"] = doubleSpinBox_lr_adamax item_ui.optimizer_settings["doubleSpinBox_adamax_beta1"] = doubleSpinBox_adamax_beta1 item_ui.optimizer_settings["doubleSpinBox_adamax_beta2"] = doubleSpinBox_adamax_beta2 #close the popup item_ui.popup_optim = None item_ui.popup_optim_ui = None print("Advanced settings for optimizer were changed.") def cancel():#close the popup item_ui.popup_optim = None item_ui.popup_optim_ui = None def reset(): print("Reset optimizer settings (in UI). To accept, click OK") optimizer_default = aid_dl.get_optimizer_settings() item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.setValue(optimizer_default["doubleSpinBox_lr_sgd"]) item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.setValue(optimizer_default["doubleSpinBox_sgd_momentum"]) item_ui.popup_optim_ui.checkBox_sgd_nesterov.setChecked(optimizer_default["checkBox_sgd_nesterov"]) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.setValue(optimizer_default["doubleSpinBox_lr_rmsprop"]) item_ui.popup_optim_ui.doubleSpinBox_rms_rho.setValue(optimizer_default["doubleSpinBox_rms_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.setValue(optimizer_default["doubleSpinBox_lr_adam"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.setValue(optimizer_default["doubleSpinBox_adam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.setValue(optimizer_default["doubleSpinBox_adam_beta2"]) item_ui.popup_optim_ui.checkBox_adam_amsgrad.setChecked(optimizer_default["checkBox_adam_amsgrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.setValue(optimizer_default["doubleSpinBox_lr_nadam"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.setValue(optimizer_default["doubleSpinBox_nadam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.setValue(optimizer_default["doubleSpinBox_nadam_beta2"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.setValue(optimizer_default["doubleSpinBox_lr_adadelta"]) item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.setValue(optimizer_default["doubleSpinBox_adadelta_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.setValue(optimizer_default["doubleSpinBox_lr_adagrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.setValue(optimizer_default["doubleSpinBox_lr_adamax"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.setValue(optimizer_default["doubleSpinBox_adamax_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.setValue(optimizer_default["doubleSpinBox_adamax_beta2"]) item_ui.popup_optim_ui.pushButton_ok.clicked.connect(ok) item_ui.popup_optim_ui.pushButton_cancel.clicked.connect(cancel) item_ui.popup_optim_ui.pushButton_reset.clicked.connect(reset) item_ui.popup_optim.show() def onLayoutChange(self,app): #Get the text of the triggered layout layout_trig = (self.sender().text()).split(" layout")[0] layout_current = Default_dict["Layout"] if layout_trig == layout_current: self.statusbar.showMessage(layout_current+" layout is already in use",2000) return elif layout_trig == "Normal": #Change Layout in Defaultdict to "Normal", such that next start will use Normal layout Default_dict["Layout"] = "Normal" app.setStyleSheet("") #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) elif layout_trig == "Dark": #Change Layout in Defaultdict to "Dark", such that next start will use Dark layout Default_dict["Layout"] = "Dark" dir_layout = os.path.join(dir_root,"layout_dark.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) elif layout_trig == "DarkOrange": #Change Layout in Defaultdict to "Dark", such that next start will use Dark layout Default_dict["Layout"] = "DarkOrange" dir_layout = os.path.join(dir_root,"layout_darkorange.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/nphase/qt-ping-grapher/blob/master/resources/darkorange.stylesheet f = f.read() app.setStyleSheet(f) #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) #Save the layout to Default_dict with open(dir_settings, 'w') as f: json.dump(Default_dict,f) def onTooltipOnOff(self,app): #what is the current layout? if bool(self.actionLayout_Normal.isChecked())==True: #use normal layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips app.setStyleSheet("") elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips app.setStyleSheet("""QToolTip { opacity: 0 }""") elif bool(self.actionLayout_Dark.isChecked())==True: #use dark layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips dir_layout = os.path.join(dir_root,"layout_dark.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips dir_layout = os.path.join(dir_root,"layout_dark_notooltip.txt")#dir to settings f = open(dir_layout, "r")#I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) elif bool(self.actionLayout_DarkOrange.isChecked())==True: #use darkorange layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips dir_layout = os.path.join(dir_root,"layout_darkorange.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/nphase/qt-ping-grapher/blob/master/resources/darkorange.stylesheet f = f.read() app.setStyleSheet(f) elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips dir_layout = os.path.join(dir_root,"layout_darkorange_notooltip.txt")#dir to settings f = open(dir_layout, "r") f = f.read() app.setStyleSheet(f) def onIconThemeChange(self): #Get the text of the triggered icon theme icontheme_trig = self.sender().text() icontheme_currenent = Default_dict["Icon theme"] if icontheme_trig == icontheme_currenent: self.statusbar.showMessage(icontheme_currenent+" is already in use",2000) return elif icontheme_trig == "Icon theme 1": Default_dict["Icon theme"] = "Icon theme 1" self.statusbar.showMessage("Icon theme 1 will be used after restart",2000) elif icontheme_trig == "Icon theme 2": Default_dict["Icon theme"] = "Icon theme 2" self.statusbar.showMessage("Icon theme 2 will be used after restart",2000) #Save the layout to Default_dict with open(dir_settings, 'w') as f: json.dump(Default_dict,f) def items_clicked(self): #This function checks, which data has been checked on table_dragdrop and returns the necessary data rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #is it checked for train? cb_t = self.table_dragdrop.item(rowPosition, 2) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) if cb_t.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #add to training files if the user wants more than 0 images per epoch failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return hash_ = aid_bin.hashfunction(rtdc_path)#rtdc_ds.hash features = list(rtdc_ds["events"].keys()) nr_images = rtdc_ds["events"]["image"].len() SelectedFiles.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"hash":hash_,"xtra_in":xtra_in}) cb_v = self.table_dragdrop.item(rowPosition, 3) if cb_v.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return hash_ = aid_bin.hashfunction(rtdc_path) features = list(rtdc_ds["events"].keys()) nr_images = rtdc_ds["events"]["image"].len() SelectedFiles.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"hash":hash_,"xtra_in":xtra_in}) return SelectedFiles def items_available(self): """ Function grabs all information from table_dragdrop. Checked and Unchecked Does not load rtdc_ds (save time) """ rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"NotSpecified","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) return SelectedFiles def items_clicked_no_rtdc_ds(self): #This function checks, which data has been checked on table_dragdrop and returns the necessary data rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) #is it checked for train? cb_t = self.table_dragdrop.item(rowPosition, 2) if cb_t.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #add to training files if the user wants more than 0 images per epoch #SelectedFiles.append({"nr_images":nr_events,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch}) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) cb_v = self.table_dragdrop.item(rowPosition, 3) if cb_v.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #SelectedFiles.append({"nr_images":nr_events,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch}) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) return SelectedFiles def uncheck_if_zero(self,item): #If the Nr. of epochs is changed to zero: #uncheck the dataset for train/valid row = item.row() col = item.column() #if the user changed Nr. of cells per epoch to zero if col==6 and int(item.text())==0: #get the checkstate of the coresponding T/V cb_t = self.table_dragdrop.item(row, 2) if cb_t.checkState() == QtCore.Qt.Checked: cb_t.setCheckState(False) cb_v = self.table_dragdrop.item(row, 3) if cb_v.checkState() == QtCore.Qt.Checked: cb_v.setCheckState(False) def item_click(self,item): colPosition = item.column() rowPosition = item.row() #if Shuffle was clicked (col=8), check if this checkbox is not deactivated if colPosition==8: if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==False: rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_images = rtdc_ds["events"]["image"].len() columnPosition = 6 item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, nr_images) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==True: #Inspect this table item. If shuffle was checked before, it will be grayed out. Invert normal cell then item = self.table_dragdrop.item(rowPosition, 6) item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) if len(self.ram)>0: self.statusbar.showMessage("Make sure to update RAM (->Edit->Data to RAM now) after changing Data-set",2000) self.ram = dict() #clear the ram, since the data was changed self.dataOverviewOn() #When data is clicked, always reset the validation set (only important for 'Assess Model'-tab) self.ValidationSet = None self.Metrics = dict() #Also reset the metrics def dataOverviewOn(self): if self.groupBox_DataOverview.isChecked()==True: if self.threadpool_single_queue == 0: SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) def dataOverviewOn_OnChange(self,item): #When a value is entered in Events/Epoch and enter is hit #there is no update of the table called if self.groupBox_DataOverview.isChecked()==True: if self.threadpool_single_queue == 0: rowPosition = item.row() colPosition = item.column() if colPosition==6:#one when using the spinbox (Class),or when entering a new number in "Events/Epoch", the table is not updated. #get the new value nr_cells = self.table_dragdrop.cellWidget(rowPosition, colPosition) if nr_cells==None: return else: SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) def update_data_overview(self,SelectedFiles): #Check if there are custom class names (determined by user) rows = self.tableWidget_Info.rowCount() self.classes_custom = [] #by default assume there are no custom classes classes_custom_bool = False if rows>0:#if >0, then there is already a table existing classes,self.classes_custom = [],[] for row in range(rows): try: class_ = self.tableWidget_Info.item(row,0).text() if class_.isdigit(): classes.append(class_)#get the classes except: pass try: self.classes_custom.append(self.tableWidget_Info.item(row,3).text())#get the classes except: pass classes = np.unique(classes) if len(classes)==len(self.classes_custom):#equal in length same = [i for i, j in zip(classes, self.classes_custom) if i == j] #which items are identical? if len(same)==0: #apparently there are custom classes! Save them classes_custom_bool = True if len(SelectedFiles)==0:#reset the table #Table1 #Prepare a table in tableWidget_Info self.tableWidget_Info.setColumnCount(0) self.tableWidget_Info.setRowCount(0) self.tableWidget_Info.setColumnCount(4) header = self.tableWidget_Info.horizontalHeader() header_labels = ["Class","Events tot.","Events/Epoch","Name"] self.tableWidget_Info.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) return #Prepare a table in tableWidget_Info self.tableWidget_Info.setColumnCount(0) self.tableWidget_Info.setRowCount(0) indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] self.tableWidget_Info.setColumnCount(4) header = self.tableWidget_Info.horizontalHeader() nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = 2*nr_ind+2 #add two rows for intermediate headers (Train/Valid) self.tableWidget_Info.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Events tot.","Events/Epoch","Name"] self.tableWidget_Info.setHorizontalHeaderLabels(header_labels) #self.tableWidget_Info.resizeColumnsToContents() header = self.tableWidget_Info.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) #Training info rowPosition = 0 self.tableWidget_Info.setSpan(rowPosition, 0, 1, 2) item = QtWidgets.QTableWidgetItem("Train. data") item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.tableWidget_Info.setItem(rowPosition, 0, item) rowPosition += 1 ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] classes = np.unique(indices_train) if len(classes)==len(self.classes_custom): classes_custom_bool = True else: classes_custom_bool = False #display information for each individual class for index_ in range(len(classes)): #for index in np.unique(indices_train): index = classes[index_] #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info.setItem(rowPosition, 0, item) #Get the training files of that index ind = np.where(indices_train==index)[0] SelectedFiles_train_index = np.array(SelectedFiles_train)[ind] #Total nr of cells for each class nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) self.tableWidget_Info.setItem(rowPosition, 1, item) nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() if classes_custom_bool==False: item.setData(QtCore.Qt.EditRole,str(index)) else: item.setData(QtCore.Qt.EditRole,self.classes_custom[index_]) self.tableWidget_Info.setItem(rowPosition, 3, item) rowPosition += 1 #Validation info self.tableWidget_Info.setSpan(rowPosition, 0, 1, 2) item = QtWidgets.QTableWidgetItem("Val. data") item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.tableWidget_Info.setItem(rowPosition, 0, item) rowPosition += 1 ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] #Total nr of cells for each index for index in np.unique(indices_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(indices_valid==index)[0] SelectedFiles_valid_index = np.array(SelectedFiles_valid)[ind] nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) self.tableWidget_Info.setItem(rowPosition, 1, item) nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info.setItem(rowPosition, 2, item) rowPosition += 1 self.tableWidget_Info.resizeColumnsToContents() self.tableWidget_Info.resizeRowsToContents() def update_data_overview_2(self,SelectedFiles): if len(SelectedFiles)==0: #Table2 self.tableWidget_Info_2.setColumnCount(0) self.tableWidget_Info_2.setRowCount(0) #In case user specified X_valid and y_valid before, delete it again: self.ValidationSet = None self.Metrics = dict() #Also reset the metrics #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setColumnCount(4) header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) return #Prepare a table in tableWidget_Info self.tableWidget_Info_2.setColumnCount(0) self.tableWidget_Info_2.setRowCount(0) #In case user specified X_valid and y_valid before, delete it again: self.ValidationSet = None self.Metrics = dict() #Also reset the metrics indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setColumnCount(4) nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = nr_ind self.tableWidget_Info_2.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) rowPosition = 0 #Validation info ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] #Total nr of cells for each index for index in np.unique(indices_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(indices_valid==index)[0] SelectedFiles_valid_index = np.array(SelectedFiles_valid)[ind] nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info_2.setItem(rowPosition, 1, item) #Column for color item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, "") item.setBackground(QtGui.QColor(self.colorsQt[index])) self.tableWidget_Info_2.setItem(rowPosition, 2, item) #Column for User specified name item = QtWidgets.QTableWidgetItem() #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 3, item) rowPosition += 1 self.tableWidget_Info_2.resizeColumnsToContents() self.tableWidget_Info_2.resizeRowsToContents() def tableWidget_Info_2_click(self,item): if item is not None: if item.column()==2: tableitem = self.tableWidget_Info_2.item(item.row(), item.column()) color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) def tableWidget_HistoryItems_dclick(self,item): if item is not None: tableitem = self.tableWidget_HistoryItems.item(item.row(), item.column()) if str(tableitem.text())!="Show saved only": color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) self.update_historyplot() def select_all(self,col): """ Check/Uncheck items on table_dragdrop """ apply_at_col = [2,3,8,10] if col not in apply_at_col: return #otherwiese continue rows = range(self.table_dragdrop.rowCount()) #Number of rows of the table tableitems = [self.table_dragdrop.item(row, col) for row in rows] checkStates = [tableitem.checkState() for tableitem in tableitems] #Checked? checked = [state==QtCore.Qt.Checked for state in checkStates] if set(checked)=={True}:#all are checked! #Uncheck all! for tableitem in tableitems: tableitem.setCheckState(QtCore.Qt.Unchecked) else:#otherwise check all for tableitem in tableitems: tableitem.setCheckState(QtCore.Qt.Checked) #If shuffle column was clicked do some extra if col==8: for rowPosition in rows: if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==False: rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_images = rtdc_ds["events"]["image"].len() columnPosition = 6 item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, nr_images) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==True: #Inspect this table item. If shuffle was checked before, it will be grayed out. Invert normal cell then item = self.table_dragdrop.item(rowPosition, 6) item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) #Finally, update the Data-Overview-Box self.dataOverviewOn()#update the overview box def item_dclick(self, item): #Check/Uncheck if item is from column 2 or 3 tableitem = self.table_dragdrop.item(item.row(), item.column()) if item.column() in [2,3]: #If the item is unchecked ->check it! if tableitem.checkState() == QtCore.Qt.Unchecked: tableitem.setCheckState(QtCore.Qt.Checked) #else, the other way around elif tableitem.checkState() == QtCore.Qt.Checked: tableitem.setCheckState(QtCore.Qt.Unchecked) #Show example image if item on column 0 was dclicked if item.column() == 0: #rtdc_path = str(item.text()) #rtdc_path = tableitem.text() rtdc_path = self.table_dragdrop.cellWidget(item.row(), item.column()).text() failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() nr_images = rtdc_ds["events"]["image"].len() ind = np.random.randint(0,nr_images) img = rtdc_ds["events"]["image"][ind] if len(img.shape)==2: height, width = img.shape channels = 1 elif len(img.shape)==3: height, width, channels = img.shape else: print("Invalid image format: "+str(img.shape)) return self.w = MyPopup() self.gridLayout_w = QtWidgets.QGridLayout(self.w) self.label_image = QtWidgets.QLabel(self.w) self.label_cropimage = QtWidgets.QLabel(self.w) #zoom image such that longest side is 512 zoom_factor = np.round(float(512.0/np.max(img.shape)),0) #Get the order, specified in Image processing->Zoom Order zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Convert to corresponding cv2 zooming method zoom_interpol_method = aid_img.zoom_arguments_scipy2cv(zoom_factor,zoom_order) img_zoomed = cv2.resize(img, dsize=None,fx=zoom_factor, fy=zoom_factor, interpolation=eval(zoom_interpol_method)) if channels==1: height, width = img_zoomed.shape if channels==3: height, width, _ = img_zoomed.shape if channels==1: qi=QtGui.QImage(img_zoomed.data, width, height,width, QtGui.QImage.Format_Indexed8) if channels==3: qi = QtGui.QImage(img_zoomed.data,img_zoomed.shape[1], img_zoomed.shape[0], QtGui.QImage.Format_RGB888) self.label_image.setPixmap(QtGui.QPixmap.fromImage(qi)) self.gridLayout_w.addWidget(self.label_image, 1,1) #get the location of the cell rowPosition = item.row() pix = float(self.table_dragdrop.item(rowPosition, 7).text()) #pix = rtdc_ds.config["imaging"]["pixel size"] PIX = pix pos_x,pos_y = rtdc_ds["events"]["pos_x"][ind]/PIX,rtdc_ds["events"]["pos_y"][ind]/PIX cropsize = self.spinBox_imagecrop.value() y1 = int(round(pos_y))-cropsize/2 x1 = int(round(pos_x))-cropsize/2 y2 = y1+cropsize x2 = x1+cropsize #Crop the image img_crop = img[int(y1):int(y2),int(x1):int(x2)] #zoom image such that the height gets the same as for non-cropped img zoom_factor = float(img_zoomed.shape[0])/img_crop.shape[0] if zoom_factor == np.inf: factor = 1 if self.actionVerbose.isChecked()==True: print("Set resize factor to 1. Before, it was: "+str(factor)) #Get the order, specified in Image processing->Zoom Order zoom_order = str(self.comboBox_zoomOrder.currentText()) # zoom_interpol_method = aid_img.zoom_arguments_scipy2cv(zoom_factor,zoom_order) img_crop = cv2.resize(img_crop, dsize=None,fx=zoom_factor, fy=zoom_factor, interpolation=eval(zoom_interpol_method)) if channels==1: height, width = img_crop.shape qi=QtGui.QImage(img_crop.data, width, height,width, QtGui.QImage.Format_Indexed8) if channels==3: height, width, _ = img_crop.shape qi = QtGui.QImage(img_crop.data,width, height, QtGui.QImage.Format_RGB888) self.label_cropimage.setPixmap(QtGui.QPixmap.fromImage(qi)) self.gridLayout_w.addWidget(self.label_cropimage, 1,2) self.w.show() def get_norm_from_modelparafile(self): #Get the normalization method from a modelparafile filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta file (*meta.xlsx)") filename = filename[0] if len(str(filename))==0: return norm = pd.read_excel(filename,sheet_name='Parameters')["Normalization"] norm = str(norm[0]) index = self.comboBox_Normalization.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization.setCurrentIndex(index) self.w.close() else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid normalization method was specified.\ Likely this version of AIDeveloper does not support that normalization method\ Please define a valid normalization method") msg.setDetailedText("Supported normalization methods are: "+"\n".join(self.norm_methods)) msg.setWindowTitle("Invalid Normalization method") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("Invalid Normalization method") def update_plottingTab(self): #Get current text of combobox (url to data set) url = str(self.comboBox_chooseRtdcFile.currentText()) if len(url)==0: return failed,rtdc_ds = aid_bin.load_rtdc(url) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return keys = list(rtdc_ds["events"].keys()) #find keys of image_channels keys_0d,keys_1d,keys_2d = [],[],[] for key in keys: if type(rtdc_ds["events"][key])==h5py._hl.dataset.Dataset: shape = rtdc_ds["events"][key].shape if len(shape)==1: #zero-dimensional info (single number per cell) keys_0d.append(key) elif len(shape)==2: #one-dimensional info (multiple numbers per cell) keys_1d.append(key) elif len(shape)==3: #two-dimensional info (images) keys_2d.append(key) #add the traces to the 1d features if "trace" in keys: for key_trace in list(rtdc_ds["events"]["trace"].keys()): keys_1d.append(key_trace+" (RTFDC)") #Sort keys_2d: "image" first; "mask" last keys_2d.insert(0, keys_2d.pop(keys_2d.index("image"))) keys_2d.insert(len(keys_2d), keys_2d.pop(keys_2d.index("mask"))) #Fill those feautues in the comboboxes at the scatterplot self.comboBox_featurex.addItems(keys_0d) self.comboBox_featurey.addItems(keys_0d) #check if masks or contours are available cont_available = "mask" in keys or "contour" in keys self.checkBox_contour.setEnabled(cont_available) self.checkBox_contour.setChecked(cont_available) #Centroid is always available (prerequisite for AIDeveloper) self.checkBox_centroid.setEnabled(True) self.checkBox_centroid.setChecked(True) #Intialize option menus self.contour_options_nr = 0 self.centroid_options_nr = 0 self.show_1d_options_nr = 0 self.show_2d_options_nr = 0 self.init_contour_options(keys_2d) self.init_centroid_options(keys_1d) self.init_2d_options(keys_2d) self.init_1d_options(keys_1d) def init_contour_options(self,keys_2d): print("Work in progress") # self.popup_layercontrols = MyPopup() # self.popup_layercontrols_ui = frontend.Ui_LayerControl() # self.popup_layercontrols_ui.setupUi(self.popup_layercontrols,keys_2d) #open a popup def init_centroid_options(self,keys_image): print("Work in progress") # self.popup_centroid_options = MyPopup() # self.popup_centroid_options_ui = aid_frontend.Ui_centroid_options() # self.popup_centroid_options_ui.setupUi(self.popup_centroid_options,keys_image) #open a popup def init_2d_options(self,keys_2d): #Initialize 2d Option Menu. Range values are saved and manipulated here self.popup_2dOptions = MyPopup() self.popup_2dOptions_ui = aid_frontend.Ui_2dOptions() self.popup_2dOptions_ui.setupUi(self.popup_2dOptions,keys_2d) #open a popup def init_1d_options(self,keys_1d): self.popup_1dOptions = MyPopup() self.popup_1dOptions_ui = aid_frontend.Ui_1dOptions() self.popup_1dOptions_ui.setupUi(self.popup_1dOptions,keys_1d) #open a popup def show_contour_options(): self.contour_options_nr += 1 print("Work in progress") def show_centroid_options(self): print("Work in progress") self.centroid_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.centroid_options_nr==1: for iterator in range(len(self.popup_layercontrols_ui.spinBox_minChX)): print(1) def show_2d_options(self): self.show_2d_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.show_2d_options_nr==1: for iterator in range(len(self.popup_2dOptions_ui.spinBox_minChX)): slider = self.popup_2dOptions_ui.horizontalSlider_chX[iterator] slider.startValueChanged.connect(lambda _, b=None: self.put_image(ind=b)) slider.endValueChanged.connect(lambda _, b=None: self.put_image(ind=b)) checkBox = self.popup_2dOptions_ui.checkBox_show_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_image(ind=b)) comboBox = self.popup_2dOptions_ui.comboBox_cmap_chX[iterator] comboBox.currentIndexChanged.connect(lambda _, b=None: self.put_image(ind=b)) checkBox = self.popup_2dOptions_ui.checkBox_auto_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_image(ind=b)) self.popup_2dOptions.show() def show_1d_options(self): self.show_1d_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.show_1d_options_nr==1: for iterator in range(len(self.popup_1dOptions_ui.checkBox_show_chX)): checkBox = self.popup_1dOptions_ui.checkBox_show_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_line(index=b)) comboBox = self.popup_1dOptions_ui.comboBox_cmap_chX[iterator] comboBox.clicked.connect(lambda _, b=None: self.put_line(index=b)) self.popup_1dOptions.show() def activate_deactivate_spinbox(self,newstate): #get the checkstate of the Input model crop if newstate==2: #activate the spinbox self.spinBox_imagecrop.setEnabled(True) elif newstate==0: self.spinBox_imagecrop.setEnabled(False) def gray_or_rgb_augmentation(self,index): #When Color-Mode is changed: #Get the new colormode: new_colormode = self.colorModes[index] #when the new Color Mode is Grayscale, disable saturation and hue augmentation if new_colormode=="Grayscale": self.checkBox_contrast.setEnabled(True) self.checkBox_contrast.setChecked(True) self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) self.checkBox_saturation.setEnabled(False) self.checkBox_saturation.setChecked(False) self.doubleSpinBox_saturationLower.setEnabled(False) self.doubleSpinBox_saturationHigher.setEnabled(False) self.checkBox_hue.setEnabled(False) self.checkBox_hue.setChecked(False) self.doubleSpinBox_hueDelta.setEnabled(False) elif new_colormode=="RGB": self.checkBox_contrast.setEnabled(True) self.checkBox_contrast.setChecked(True) self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) self.checkBox_saturation.setEnabled(True) self.checkBox_saturation.setChecked(True) self.doubleSpinBox_saturationLower.setEnabled(True) self.doubleSpinBox_saturationHigher.setEnabled(True) self.checkBox_hue.setEnabled(True) self.checkBox_hue.setChecked(True) self.doubleSpinBox_hueDelta.setEnabled(True) else: print("Invalid Color Mode") def onClick(self,points,pointermethod): #delete the last item if the user selected already one: try: self.scatter_xy.removeItem(self.point_clicked) except: pass if pointermethod=="point": points = points[0] p = points.pos() clicked_x, clicked_y = p.x(), p.y() a1 = (clicked_x)/float(np.max(self.feature_x)) a2 = (clicked_y)/float(np.max(self.feature_y)) #Which is the closest scatter point? dist = np.sqrt(( a1-self.scatter_x_norm )**2 + ( a2-self.scatter_y_norm )**2) index = np.argmin(dist) elif pointermethod=="index": index = points clicked_x = self.feature_x[index] clicked_y = self.feature_y[index] self.point_clicked = pg.ScatterPlotItem() self.point_clicked.setData([clicked_x], [clicked_y],brush="r",symbol='o',symbolPen="w",size=15) self.scatter_xy.addItem(self.point_clicked) #self.scatter_xy.plot([clicked_x], [clicked_y],pen=None,symbol='o',symbolPen='w',clear=False) self.point_was_selected_before = True #I dont care if the user click or used the slider->always adjust spinbox and slider without running the onChange functions self.changedbyuser = False self.spinBox_cellInd.setValue(index) self.horizontalSlider_cellInd.setValue(index) self.changedbyuser = True self.put_image(index) self.put_line(index) def put_image(self,ind): #check that the user is looking at the plotting tab curr_ind = self.tabWidget_Modelbuilder.currentIndex() if curr_ind!=3: return try: self.widget_showCell.removeItem(self.dot) except: pass try: self.widget_showCell.removeItem(self.plot_contour) except: pass if ind==None: index = int(self.spinBox_cellInd.value()) else: index = ind rtdc_ds = self.rtdc_ds #which channel shouldbe displayed channels = len(self.popup_2dOptions_ui.spinBox_minChX) keys_2d = [self.popup_2dOptions_ui.label_layername_chX[i].text() for i in range(channels)] #Define variable on self that carries all image information if channels==1: img = np.expand_dims(rtdc_ds["events"]["image"][index],-1) elif channels>1: img = np.stack( [rtdc_ds["events"][key][index] for key in keys_2d] ,axis=-1) if len(img.shape)==2: channels = 1 elif len(img.shape)==3: height, width, channels = img.shape else: print("Invalid image format: "+str(img.shape)) return color_mode = str(self.comboBox_GrayOrRGB_2.currentText()) if color_mode=="Grayscale": #Slider allows to show individual layers: each is shown as grayscale img = img elif color_mode == "RGB":#User can define, which layers are shown in R,G,and B #Retrieve the setting from self.popup_layercontrols_ui ui_item = self.popup_2dOptions_ui layer_names = [obj.text() for obj in ui_item.label_layername_chX] layer_active = [obj.isChecked() for obj in ui_item.checkBox_show_chX] layer_range = [obj.getRange() for obj in ui_item.horizontalSlider_chX] layer_auto = [obj.isChecked() for obj in ui_item.checkBox_auto_chX] layer_cmap = [obj.currentText() for obj in ui_item.comboBox_cmap_chX] #Assemble the image according to the settings in self.popup_layercontrols_ui #Find activated layers for each color: ind_active_r,ind_active_g,ind_active_b = [],[],[] for ch in range(len(layer_cmap)): #for color,active in zip(layer_cmap,layer_active): if layer_cmap[ch]=="Red" and layer_active[ch]==True: ind_active_r.append(ch) if layer_cmap[ch]=="Green" and layer_active[ch]==True: ind_active_g.append(ch) if layer_cmap[ch]=="Blue" and layer_active[ch]==True: ind_active_b.append(ch) if len(ind_active_r)>0: img_ch = img[:,:,np.array(ind_active_r)] layer_range_ch = np.array(layer_range)[np.array(ind_active_r)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_r)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_r = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_r = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) if len(ind_active_g)>0: img_ch = img[:,:,np.array(ind_active_g)] layer_range_ch = np.array(layer_range)[np.array(ind_active_g)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_g)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_g = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_g = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) if len(ind_active_b)>0: img_ch = img[:,:,np.array(ind_active_b)] layer_range_ch = np.array(layer_range)[np.array(ind_active_b)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_b)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_b = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_b = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) #Assemble image by stacking all layers img = np.stack([img_r,img_g,img_b],axis=-1) #Get the levels of the previous frame levels_init = self.widget_showCell.getLevels() if levels_init==(0,1.0): levels_init = (0,255) #Get the layer index of the previous frame index_ = self.widget_showCell.currentIndex if color_mode=="Grayscale": self.widget_showCell.setImage(img.T,autoRange=False,levels=levels_init,levelMode="mono") self.widget_showCell.setCurrentIndex(index_) elif color_mode=="RGB": self.widget_showCell.setImage(np.swapaxes(img,0,1)) pix = rtdc_ds.attrs["imaging:pixel size"] pos_x = rtdc_ds["events"]["pos_x"][index]/pix pos_y = rtdc_ds["events"]["pos_y"][index]/pix #Indicate the centroid of the cell if self.checkBox_centroid.isChecked(): self.dot = pg.CircleROI(pos=(pos_x-2, pos_y-2), size=4, pen=QtGui.QPen(QtCore.Qt.red, 0.1), movable=False) self.widget_showCell.getView().addItem(self.dot) self.widget_showCell.show() if self.checkBox_contour.isChecked(): #get the contour based on the mask contour,_ = cv2.findContours(rtdc_ds["events"]["mask"][index], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contour = contour[0][:,0,:] self.plot_contour = pg.PlotCurveItem(contour[:,0],contour[:,1],width=6,pen="r") self.widget_showCell.getView().addItem(self.plot_contour) def put_line(self,index): curr_ind = self.tabWidget_Modelbuilder.currentIndex() if curr_ind!=3: return #Fluorescence traces: clear first try: self.plot_fl_trace_.clear() #clear the plot self.plot_fl_trace.clear() #clear the plot except: pass if index==None: index = int(self.spinBox_cellInd.value()) rtdc_ds = self.rtdc_ds feature_keys = list(rtdc_ds.keys()) #which features shouldbe displayed features_nr = len(self.popup_1dOptions_ui.checkBox_show_chX) keys_1d = [self.popup_1dOptions_ui.checkBox_show_chX[i].text() for i in range(features_nr)] keys_1d_on = [self.popup_1dOptions_ui.checkBox_show_chX[i].isChecked() for i in range(features_nr)] colors = [self.popup_1dOptions_ui.comboBox_cmap_chX[i].palette().button().color() for i in range(features_nr)] colors = [list(c.getRgb()) for c in colors] colors = [tuple(c) for c in colors] ind = np.where(np.array(keys_1d_on)==True)[0] keys_1d = list(np.array(keys_1d)[ind]) colors = list(np.array(colors)[ind]) for key_1d,color in zip(keys_1d,colors): if key_1d.endswith(" (RTFDC)"): key_1d = key_1d.split(" (RTFDC)")[0] trace_flx = rtdc_ds["events"]["trace"][key_1d][index] pencolor = pg.mkPen(color, width=2) self.plot_fl_trace_ = self.plot_fl_trace.plot(range(len(trace_flx)),trace_flx,width=6,pen=pencolor,clear=False) # if "fl1_max" in feature_keys and "fl1_pos" in feature_keys: #if also the maxima and position of the max are available: use it to put the region accordingly # fl1_max,fl1_pos = rtdc_ds["events"]["fl1_max"][index],rtdc_ds["events"]["fl1_pos"][index] else: values = rtdc_ds["events"][key_1d][index] pencolor = pg.mkPen(color, width=2) self.plot_fl_trace_ = self.plot_fl_trace.plot(range(len(trace_flx)),trace_flx,width=6,pen=pencolor,clear=False) #get the maximum of [fl1_max,fl2_max,fl3_max] and put the region to the corresponding fl-position # ind = np.argmax(np.array([fl1_max,fl2_max,fl3_max])) # region_pos = np.array([fl1_pos,fl2_pos,fl3_pos])[ind] #this region is already given in us. translate this back to range # peak_height = np.array([fl1_max,fl2_max,fl3_max])[ind] # sample_rate = rtdc_ds.attrs["fluorescence:sample rate"] # fl_pos_ind = float((sample_rate*region_pos))/1E6 # # #Indicate the used flx_max and flx_pos by a scatter dot # self.peak_dot = self.plot_fl_trace.plot([float(fl_pos_ind)], [float(peak_height)],pen=None,symbol='o',symbolPen='w',clear=False) def onScatterClick(self,event, points): pointermethod = 'point' if self.changedbyuser: self.onClick(points,pointermethod) def onIndexChange(self,index): pointermethod = 'index' if self.changedbyuser: self.onClick(index,pointermethod) #Set self.changedbyuser to False and change the spinbox and slider. changedbyuser=False prevents onClick function self.changedbyuser = False self.spinBox_cellInd.setValue(index) self.horizontalSlider_cellInd.setValue(index) self.changedbyuser = True def updateScatterPlot(self): #If the Plot is updated, delete the dot in the cell-image try: self.widget_showCell.removeItem(self.dot) except: pass try: self.scatter_xy.removeItem(self.point_clicked) except: pass self.point_was_selected_before = False #read url from current comboBox_chooseRtdcFile url = str(self.comboBox_chooseRtdcFile.currentText()) if len(url)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the 'Build' tab to load files first") msg.setWindowTitle("No file selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return failed,rtdc_ds = aid_bin.load_rtdc(url) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.rtdc_ds = rtdc_ds feature_x_name = str(self.comboBox_featurex.currentText()) feature_y_name = str(self.comboBox_featurey.currentText()) features = list(self.rtdc_ds["events"].keys()) if feature_x_name in features: self.feature_x = self.rtdc_ds["events"][feature_x_name] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Feature on x axis is not contained in data set") msg.setWindowTitle("Invalid x feature") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if feature_y_name in features: self.feature_y = self.rtdc_ds["events"][feature_y_name] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Feature on y axis is not contained in data set") msg.setWindowTitle("Invalid y feature") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.changedbyuser = True #variable used to prevent plotting if spinbox or slider is changed programmatically #density estimation kde = self.comboBox_kde.currentText() if kde=="None": brush = "b" elif kde=="2d Histogram" or kde=="Gauss": if kde=="2d Histogram": density = aid_bin.kde_histogram(np.array(self.feature_x), np.array(self.feature_y)) elif kde=="Gauss": density = aid_bin.kde_gauss(np.array(self.feature_x), np.array(self.feature_y)) density_min,density_max = np.min(density),np.max(density) density = (density-density_min)/density_max # define colormap brush = [] from pyqtgraph.graphicsItems.GradientEditorItem import Gradients cmap = pg.ColorMap(*zip(*Gradients["viridis"]["ticks"])) for k in density: brush.append(cmap.mapToQColor(k)) #Add plot #self.scatter = self.scatter_xy.plot(np.array(self.feature_x), np.array(self.feature_y),symbolPen=None,pen=None,symbol='o',brush=brush[100],clear=True) #try to remove existing scatterplot try: self.scatter_xy.removeItem(self.scatter) except: print("Not cleared") self.scatter = pg.ScatterPlotItem() self.scatter.setData(np.array(self.feature_x), np.array(self.feature_y),brush=brush,symbolPen=None,pen=None,symbol='o',size=10) self.scatter_xy.addItem(self.scatter) #pen=None,symbol='o',symbolPen=None,symbolBrush=density,clear=True) self.scatter.sigClicked.connect(self.onScatterClick) #When scatterplot is clicked, show the desired cell #Fill histogram for x-axis; widget_histx y,x = np.histogram(self.feature_x, bins='auto') self.hist_x.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) #Manually clear y hist first. Only clear=True did not do the job self.hist_y.clear() #Fill histogram for y-axis; widget_histy y,x = np.histogram(self.feature_y, bins='auto') curve = pg.PlotCurveItem(-1.*x, y, stepMode=True, fillLevel=0, brush=(0, 0, 255, 150),clear=True) curve.rotate(-90) self.hist_y.addItem(curve) self.scatter_x_norm = (np.array(self.feature_x).astype(np.float32))/float(np.max(self.feature_x)) self.scatter_y_norm = (np.array(self.feature_y).astype(np.float32))/float(np.max(self.feature_y)) #Adjust the horizontalSlider_cellInd and spinBox_cellInd self.horizontalSlider_cellInd.setSingleStep(1) self.horizontalSlider_cellInd.setMinimum(0) self.horizontalSlider_cellInd.setMaximum(len(self.feature_x)-1) self.spinBox_cellInd.setMinimum(0) self.spinBox_cellInd.setMaximum(len(self.feature_x)-1) def selectPeakPos(self): #Check if self.region exists #If not, show a message and return: if not hasattr(self, 'region'): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no region defined yet") msg.setWindowTitle("No region defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Try to get the user defined peak position if not hasattr(self, 'new_peak'): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no peak defined yet") msg.setWindowTitle("No peak defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #how much rows are already in table? rowcount = self.tableWidget_showSelectedPeaks.rowCount() self.tableWidget_showSelectedPeaks.setRowCount(rowcount+1) rowPosition = rowcount item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["fl_max"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 0, item) item = QtWidgets.QTableWidgetItem() fl_pos_us = float(float(self.new_peak["fl_pos"])*float(1E6))/float(self.rtdc_ds.attrs["fluorescence:sample rate"]) item.setData(QtCore.Qt.EditRole,fl_pos_us) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 1, item) item = QtWidgets.QTableWidgetItem() pos_x_um = float(self.new_peak["pos_x"])*float(self.rtdc_ds.attrs["imaging:pixel size"]) item.setData(QtCore.Qt.EditRole,pos_x_um) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["fl_pos"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 3, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["pos_x"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 4, item) self.tableWidget_showSelectedPeaks.resizeColumnsToContents() self.tableWidget_showSelectedPeaks.resizeRowsToContents() #Update the widget_showSelectedPeaks self.update_peak_plot() def selectPeakRange(self): new_region = self.region.getRegion() region_width = np.max(new_region) - np.min(new_region) #in [samples] sample_rate = self.rtdc_ds.attrs["fluorescence:sample rate"] region_width = (float(region_width)/float(sample_rate))*1E6 #range[samples]*(1/sample_rate[1/s]) = range[s]; div by 1E6 to conver to us self.region_width = region_width #put this in the table item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.region_width)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() def onPeaksPlotClick(self,event, points): points = points[0] p = points.pos() clicked_x, clicked_y = p.x(), p.y() a1 = (clicked_x)/float(np.max(self.Pos_x)) a2 = (clicked_y)/float(np.max(self.Fl_pos)) #Which is the closest scatter point? pos_x_norm = self.Pos_x/np.max(self.Pos_x)#normalized pos_x fl_pos_norm = self.Fl_pos/np.max(self.Fl_pos)#normalized fl_pos dist = np.sqrt(( a1-pos_x_norm )**2 + ( a2-fl_pos_norm )**2) index = np.argmin(dist) #Highlight this row self.tableWidget_showSelectedPeaks.selectRow(index) #Delete the highlighted rows # try: # self.actionRemoveSelectedPeaks_function() # except: # pass def update_peak_plot(self): #This function reads tableWidget_showSelectedPeaks and #fits a function and #puts fitting parameters on tableWidget_peakModelParameters #read the data on tableWidget_showSelectedPeaks rowcount = self.tableWidget_showSelectedPeaks.rowCount() Fl_pos,Pos_x = [],[] for row in range(rowcount): line = [float(self.tableWidget_showSelectedPeaks.item(row, col).text()) for col in [1,2]] #use the values for [us] and [um] Fl_pos.append(line[0]) Pos_x.append(line[1]) self.Fl_pos = np.array(Fl_pos) self.Pos_x = np.array(Pos_x) self.selectedPeaksPlotPlot = self.selectedPeaksPlot.plot(self.Pos_x, self.Fl_pos,pen=None,symbol='o',symbolPen=None,symbolBrush='b',clear=True) #if user clicks in the plot, show him the corresponding row in the table self.selectedPeaksPlotPlot.sigPointsClicked.connect(self.onPeaksPlotClick) if not hasattr(self, 'region_width'): #if there was no region_width defined yet... #to get a reasonable initial range, use 20% of the nr. of availeble samples samples_per_event = self.rtdc_ds.attrs["fluorescence:samples per event"] self.region_width = 0.2*samples_per_event #width of the region in samples #Convert to SI unit: sample_rate = self.rtdc_ds.attrs["fluorescence:sample rate"] self.region_width = (float(self.region_width)/float(sample_rate))*1E6 #range[samples]*(1/sample_rate[1/s]) = range[s]; div by 1E6 to convert to us #which model should be used? if str(self.comboBox_peakDetModel.currentText()) == "Linear dependency and max in range" and len(Pos_x)>1: slope,intercept = np.polyfit(Pos_x, Fl_pos,deg=1) #Linear FIT, y=mx+n; y=FL_pos[us] x=Pos_x[um] xlin = np.round(np.linspace(np.min(Pos_x),np.max(Pos_x),25),1) ylin = intercept + slope*xlin self.selectedPeaksPlot.plot(xlin, ylin,width=6,pen='b',clear=False) #Put info to tableWidget_peakModelParameters self.tableWidget_peakModelParameters.setColumnCount(2) self.tableWidget_peakModelParameters.setRowCount(5) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Model") self.tableWidget_peakModelParameters.setItem(0, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Linear dependency and max in range") self.tableWidget_peakModelParameters.setItem(0, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.region_width)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Intercept [us]") self.tableWidget_peakModelParameters.setItem(2, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(intercept)) self.tableWidget_peakModelParameters.setItem(2, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Slope [us/um]") self.tableWidget_peakModelParameters.setItem(3, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(slope)) self.tableWidget_peakModelParameters.setItem(3, 1, item) #Calculate velocity item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Velocity[m/s]") self.tableWidget_peakModelParameters.setItem(4, 0, item) velocity = float(1.0/float(slope)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(velocity)) self.tableWidget_peakModelParameters.setItem(4, 1, item) def addHighestXPctPeaks(self): #how many x%? x_pct = float(self.doubleSpinBox_highestXPercent.value()) #Get the flourescence traces and maxima/positions of maxima #->it could be that the user did not yet load the dataset: if not hasattr(self,"rtdc_ds"): #run the function updateScatterPlot() self.updateScatterPlot() trace = self.rtdc_ds["events"]["trace"] fl_keys = list(trace.keys()) fl1_max,fl1_pos,fl2_max,fl2_pos,fl3_max,fl3_pos,pos_x = [],[],[],[],[],[],[] for i in range(len(fl_keys)): if "fl1_median" in fl_keys[i] and self.checkBox_fl1.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl1_max.append(trace_flx[ind]) fl1_pos.append(ind) #Get the x% maxima fl1_max = np.array(fl1_max) fl1_pos = np.array(fl1_pos) sorter = np.argsort(fl1_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl1_max))] fl1_max = fl1_max[sorter] fl1_pos = fl1_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) elif "fl2_median" in fl_keys[i] and self.checkBox_fl2.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl2_max.append(trace_flx[ind]) fl2_pos.append(ind) #Get the x% maxima fl2_max = np.array(fl2_max) fl2_pos = np.array(fl2_pos) sorter = np.argsort(fl2_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl2_max))] fl2_max = fl2_max[sorter] fl2_pos = fl2_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) elif "fl3_median" in fl_keys[i] and self.checkBox_fl3.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl3_max.append(trace_flx[ind]) fl3_pos.append(ind) #Get the x% maxima fl3_max = np.array(fl3_max) fl3_pos = np.array(fl3_pos) sorter = np.argsort(fl3_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl3_max))] fl3_max = fl3_max[sorter] fl3_pos = fl3_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) #Add fl1 fl2 and fl3 information flx_max = np.array(list(fl1_max)+list(fl2_max)+list(fl3_max)) flx_pos = np.array(list(fl1_pos)+list(fl2_pos)+list(fl3_pos)) pos_x_um = np.concatenate(np.atleast_2d(np.array(pos_x))) pix = self.rtdc_ds.attrs["imaging:pixel size"] pos_x = pos_x_um/pix #convert from um to pix rowcount = self.tableWidget_showSelectedPeaks.rowCount() self.tableWidget_showSelectedPeaks.setRowCount(rowcount+len(flx_max)) for i in range(len(flx_max)): rowPosition = rowcount+i item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(flx_max[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 0, item) item = QtWidgets.QTableWidgetItem() fl_pos_us = float(float(flx_pos[i])*float(1E6))/float(self.rtdc_ds.attrs["fluorescence:sample rate"] ) item.setData(QtCore.Qt.EditRole,fl_pos_us) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 1, item) item = QtWidgets.QTableWidgetItem() #pos_x_um = float(pos_x[i])*float(self.rtdc_ds.config["imaging"]["pixel size"]) item.setData(QtCore.Qt.EditRole,float(pos_x_um[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(flx_pos[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 3, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(pos_x[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 4, item) #Update the widget_showSelectedPeaks self.update_peak_plot() def savePeakDetModel(self): #Get tableWidget_peakModelParameters and write it to excel file #Get filename from user: filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save peak fitting model', Default_dict["Path of last model"],"Excel file (*.xlsx)") filename = filename[0] if len(filename)==0: return #add the suffix .csv if not filename.endswith(".xlsx"): filename = filename +".xlsx" table = self.tableWidget_peakModelParameters cols = table.columnCount() header = range(cols) rows = table.rowCount() model_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: model_df.iloc[i, j] = table.item(i, j).text() except: model_df.iloc[i, j] = np.nan table = self.tableWidget_showSelectedPeaks cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] rows = table.rowCount() peaks_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: peaks_df.iloc[i, j] = table.item(i, j).text() except: peaks_df.iloc[i, j] = np.nan writer = pd.ExcelWriter(filename, engine='openpyxl') #Used files go to a separate sheet on the MetaFile.xlsx pd.DataFrame().to_excel(writer,sheet_name='Model') #initialize empty Sheet model_df.to_excel(writer,sheet_name='Model') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='Peaks') #initialize empty Sheet peaks_df.to_excel(writer,sheet_name='Peaks') writer.save() writer.close() def loadPeakDetModel(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open peak fitting model', Default_dict["Path of last model"],"Excel file (*.xlsx)") filename = filename[0] if len(str(filename))==0: return peak_model_df = pd.read_excel(filename,sheet_name='Model') model = peak_model_df.iloc[0,1] if model=="Linear dependency and max in range": #set the combobox accordingly index = self.comboBox_peakDetModel.findText(model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_peakDetModel.setCurrentIndex(index) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Could not find a valid model in the chosen file. Did you accidentially load a session or history file?!") msg.setWindowTitle("No valid model found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return range_ = float(peak_model_df.iloc[1,1]) intercept = float(peak_model_df.iloc[2,1]) slope = float(peak_model_df.iloc[3,1]) velocity = float(peak_model_df.iloc[4,1]) #put the information in the table xlin = np.round(np.linspace(np.min(0),np.max(100),25),1) ylin = intercept + slope*xlin self.selectedPeaksPlot.plot(xlin, ylin,width=6,pen='b',clear=False) #Put info to tableWidget_peakModelParameters self.tableWidget_peakModelParameters.setColumnCount(2) self.tableWidget_peakModelParameters.setRowCount(5) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Model") self.tableWidget_peakModelParameters.setItem(0, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Linear dependency and max in range") self.tableWidget_peakModelParameters.setItem(0, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(range_)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Intercept [us]") self.tableWidget_peakModelParameters.setItem(2, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(intercept)) self.tableWidget_peakModelParameters.setItem(2, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Slope [us/um]") self.tableWidget_peakModelParameters.setItem(3, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(slope)) self.tableWidget_peakModelParameters.setItem(3, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Velocity[m/s]") self.tableWidget_peakModelParameters.setItem(4, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(velocity)) self.tableWidget_peakModelParameters.setItem(4, 1, item) def applyPeakModel_and_export(self): #On which files should the action be performed? Files = [] if self.radioButton_exportAll.isChecked(): #Grab all items of comboBox_chooseRtdcFile Files = [self.comboBox_chooseRtdcFile.itemText(i) for i in range(self.comboBox_chooseRtdcFile.count())] else: file = self.comboBox_chooseRtdcFile.currentText() Files.append(str(file)) #Get the model from tableWidget_peakModelParameters table = self.tableWidget_peakModelParameters cols = table.columnCount() header = range(cols) rows = table.rowCount() model_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: model_df.iloc[i, j] = table.item(i, j).text() except: model_df.iloc[i, j] = np.nan model = model_df.iloc[0,1] if model == "Linear dependency and max in range": range_us = float(model_df.iloc[1,1]) #[us] intercept_us = float(model_df.iloc[2,1]) slope_us_um = float(model_df.iloc[3,1]) #velocity_m_s = float(model_df.iloc[4,1]) #Get a directory from the user! folder = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select directory', Default_dict["Path of last model"]) if len(folder)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid directory") msg.setWindowTitle("Invalid directory") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return for rtdc_path in Files: path, rtdc_file = os.path.split(rtdc_path) savename = os.path.join(folder,rtdc_file) #Avoid to save to an existing file: addon = 1 while os.path.isfile(savename): savename = savename.split(".rtdc")[0] if addon>1: savename = savename.split("_"+str(addon-1))[0] savename = savename+"_"+str(addon)+".rtdc" addon += 1 print("Saving to : "+savename) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Convert quantities to [index] sample_rate = rtdc_ds.attrs["fluorescence:sample rate"] range_ = (range_us*float(sample_rate))/1E6 #range was given in us->Divide by 1E6 to get to s and then multiply by the sample rate # #check if an rtdc_ds is already chosen: # if not hasattr(self,'rtdc_ds'): # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("No measurement chosen yet. Use 'Update' button") # msg.setWindowTitle("No measurement") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # return trace = rtdc_ds["events"]["trace"] fl_keys = list(trace.keys()) #Which traces are available fl1_max,fl1_pos,fl2_max,fl2_pos,fl3_max,fl3_pos,pos_x = [],[],[],[],[],[],[] #Iterate over the available cells pos_x = rtdc_ds["events"]["pos_x"] #is already given in [um] indices = range(len(pos_x)) if model == "Linear dependency and max in range": #Use the linear model to get the estimated location of the fluorescence peaks fl_peak_position_us = intercept_us+slope_us_um*pos_x #Convert to index fl_peak_position_ = (fl_peak_position_us*float(sample_rate))/1E6 #Now we have the estimated peak position of each cell. Look at the traces on these spots def ind_to_us(x): return x*1E6/sample_rate #iterate over the cells: for cellindex in range(len(pos_x)): #Iterate over the availble traces for i in range(len(fl_keys)): if "_median" in fl_keys[i]: trace_flx = trace[fl_keys[i]][cellindex] trace_pos = np.array(range(len(trace_flx))) left = int(fl_peak_position_[cellindex]-range_/2.0) right = int(fl_peak_position_[cellindex]+range_/2.0) trace_flx_range = trace_flx[left:right] trace_pos_range = trace_pos[left:right] ind = np.argmax(trace_flx_range) if "fl1_median" in fl_keys[i]: fl1_max.append(trace_flx_range[ind]) fl1_pos.append(ind_to_us(trace_pos_range[ind])) if "fl2_median" in fl_keys[i]: fl2_max.append(trace_flx_range[ind]) fl2_pos.append(ind_to_us(trace_pos_range[ind])) if "fl3_median" in fl_keys[i]: fl3_max.append(trace_flx_range[ind]) fl3_pos.append(ind_to_us(trace_pos_range[ind])) #Save those new fluorescence features into free spots in .rtdc file #Those names can be found via dclab.dfn.feature_names called (userdef0...userdef9) #TODO (dont use dclab anymore for saving) #But just in case anyone uses that function?! #get metadata of the dataset meta = {} # only export configuration meta data (no user-defined config) for sec in dclab.definitions.CFG_METADATA: if sec in ["fmt_tdms"]: # ignored sections continue if sec in rtdc_ds.config: meta[sec] = rtdc_ds.config[sec].copy() #features = rtdc_ds._events.keys() #Get the names of the online features compression = 'gzip' nev = len(rtdc_ds) #["Overwrite Fl_max and Fl_pos","Save to userdef"] features = list(rtdc_ds["events"].keys()) if str(self.comboBox_toFlOrUserdef.currentText())=='Save to userdef': features = features+["userdef"+str(i) for i in range(10)] with dclab.rtdc_dataset.write_hdf5.write(path_or_h5file=savename,meta=meta, mode="append") as h5obj: # write each feature individually for feat in features: # event-wise, because # - tdms-based datasets don't allow indexing with numpy # - there might be memory issues if feat == "contour": cont_list = [rtdc_ds["events"]["contour"][ii] for ii in indices] dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"contour": cont_list}, mode="append", compression=compression) elif feat == "userdef0": if "fl1_median" in fl_keys: print("writing fl1_max to userdef0") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef0": np.array(fl1_max)}, mode="append", compression=compression) elif feat == "userdef1": if "fl2_median" in fl_keys: print("writing fl2_max to userdef1") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef1": np.array(fl2_max)}, mode="append", compression=compression) elif feat == "userdef2": if "fl3_median" in fl_keys: print("writing fl3_max to userdef2") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef2": np.array(fl3_max)}, mode="append", compression=compression) elif feat == "userdef3": if "fl1_pos" in features: print("writing fl1_pos to userdef3") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef3": np.array(fl1_pos)}, mode="append", compression=compression) elif feat == "userdef4": if "fl2_pos" in features: print("writing fl2_pos to userdef4") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef4": np.array(fl2_pos)}, mode="append", compression=compression) elif feat == "userdef5": if "fl3_pos" in features: print("writing fl3_pos to userdef5") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef5": np.array(fl3_pos)}, mode="append", compression=compression) elif feat in ["userdef"+str(i) for i in range(5,10)]: pass elif feat == "fl1_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl1_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl1_max)},mode="append",compression=compression) elif feat == "fl2_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl2_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl2_max)},mode="append",compression=compression) elif feat == "fl3_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl3_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl3_max)},mode="append",compression=compression) elif feat == "fl1_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl1_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl1_pos)},mode="append",compression=compression) elif feat == "fl2_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl2_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl2_pos)},mode="append",compression=compression) elif feat == "fl3_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl3_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl3_pos)},mode="append",compression=compression) elif feat == "index": dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"index": np.array(indices)+1}, #ShapeOut likes to start with index=1 mode="append", compression=compression) elif feat in ["mask", "image"]: # store image stacks (reduced file size and save time) m = 64 if feat=='mask': im0 = rtdc_ds["events"][feat][0] if feat=="image": im0 = rtdc_ds["events"][feat][0] imstack = np.zeros((m, im0.shape[0], im0.shape[1]), dtype=im0.dtype) jj = 0 if feat=='mask': image_list = [rtdc_ds["events"][feat][ii] for ii in indices] elif feat=='image': image_list = [rtdc_ds["events"][feat][ii] for ii in indices] for ii in range(len(image_list)): dat = image_list[ii] #dat = rtdc_ds[feat][ii] imstack[jj] = dat if (jj + 1) % m == 0: jj = 0 dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: imstack}, mode="append", compression=compression) else: jj += 1 # write rest if jj: dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: imstack[:jj, :, :]}, mode="append", compression=compression) elif feat == "trace": for tr in rtdc_ds["events"]["trace"].keys(): tr0 = rtdc_ds["events"]["trace"][tr][0] trdat = np.zeros((nev, tr0.size), dtype=tr0.dtype) jj = 0 trace_list = [rtdc_ds["events"]["trace"][tr][ii] for ii in indices] for ii in range(len(trace_list)): trdat[jj] = trace_list[ii] jj += 1 dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"trace": {tr: trdat}}, mode="append", compression=compression) else: dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: rtdc_ds["events"][feat][indices]},mode="append") h5obj.close() def partialtrainability_activated(self,on_or_off): if on_or_off==False:#0 means switched OFF self.lineEdit_partialTrainability.setText("") #self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) #Also, remove the model from self! self.model_keras = None self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(False) self.lineEdit_LoadModelPath.setText("")#put the filename in the lineedit #this happens when the user activated the expert option "partial trainability" elif on_or_off==True:#2 means switched ON #Has the user already chosen a model? if self.model_keras == None: #if there is no model yet chosen self.action_initialize_model(duties="initialize") #If there is still no model... if self.model_keras == None:# or self.model_keras_path==None: #if there is no model yet chosen #Tell the user to initiate a model first! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>To use this option please first select and load a model. To do that choose/load a model in 'Define Model'-Tab and hit the button 'Initialize/Fit Model'. Choose to only initialize the model.</p></body></html>") msg.setWindowTitle("Please load a model first") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Switch off self.lineEdit_partialTrainability.setText("") self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(False) self.lineEdit_LoadModelPath.setText("") #self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) self.checkBox_partialTrainability.setChecked(False) return #Otherwise, there is a model on self and we can continue :) #Collections are not supported if type(self.model_keras)==tuple: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>Partial trainability is not available for collections of models. Please specify a single model.</p></body></html>") msg.setWindowTitle("Collections of models not supported for collections of models") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Switch on lineedit and the button #self.lineEdit_partialTrainability.setEnabled(True)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(True)#enables the lineEdit which shows the trainability status of each layer. #Load trainability states of the model Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] Layer_train_status = [self.model_keras.layers[layerindex].trainable for layerindex in index] self.lineEdit_partialTrainability.setText(str(Layer_train_status))#enables the lineEdit which shows the trainability status of each layer. def partialTrainability(self): self.popup_trainability = MyPopup() self.popup_trainability_ui = aid_frontend.popup_trainability() self.popup_trainability_ui.setupUi(self.popup_trainability) #open a popup to show the layers in a table #One can only activate this function when there was a model loaded already! #self.model_keras has to exist!!! if self.model_keras == None: #if there is no model yet chosen self.action_initialize_model(duties="initialize") if self.model_keras == None: #if there is still no model... msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>To use this option please first select and load a model. To do that choose/load a model in 'Define Model'-Tab and hit the button 'Initialize/Fit Model'. Choose to only initialize the model.</p></body></html>") msg.setWindowTitle("Please load a model first") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Switch this On in the final version self.lineEdit_partialTrainability.setText("") self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) return #Fill information about the model if self.radioButton_NewModel.isChecked():#a new model is loaded self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("New model") elif self.radioButton_LoadRestartModel.isChecked():#a new model is loaded load_model_path = str(self.lineEdit_LoadModelPath.text()) self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("Restart model: "+load_model_path) elif self.radioButton_LoadContinueModel.isChecked():#a new model is loaded load_model_path = str(self.lineEdit_LoadModelPath.text()) self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("Continue model: "+load_model_path) in_dim = self.model_keras.input_shape #Retrieve the color_mode from the model (nr. of channels in last in_dim) channels = in_dim[-1] #TensorFlow: channels in last dimension out_dim = self.model_keras.output_shape[-1] self.popup_trainability_ui.spinBox_pop_pTr_inpSize.setValue(int(in_dim[1])) self.popup_trainability_ui.spinBox_pop_pTr_outpSize.setValue(int(out_dim)) if channels==1: self.popup_trainability_ui.comboBox_pop_pTr_colorMode.addItem("Grayscale") elif channels==3: self.popup_trainability_ui.comboBox_pop_pTr_colorMode.addItem("RGB") #Model summary to textBrowser_pop_pTr_modelSummary summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) self.popup_trainability_ui.textBrowser_pop_pTr_modelSummary.setText(summary) #Work on the tableWidget_pop_pTr_layersTable Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] nr_layers = len(index) #total nr. of dense and conv layers with parameters for rowNumber in range(nr_layers): layerindex = index[rowNumber] columnPosition = 0 layer = self.model_keras.layers[layerindex] rowPosition = self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.rowCount() self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.insertRow(rowPosition) Name = layer.name item = QtWidgets.QTableWidgetItem(Name) item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) item.setTextAlignment(QtCore.Qt.AlignCenter) # change the alignment self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition , columnPosition, item ) # columnPosition = 1 layer_type = layer.__class__.__name__ item = QtWidgets.QTableWidgetItem(layer_type) item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) item.setTextAlignment(QtCore.Qt.AlignCenter) # change the alignment self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition , columnPosition, item ) # columnPosition = 2 Params = layer.count_params() item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, Params) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition, columnPosition, item) columnPosition = 3 if layer_type == "Dense": split_property = "units" #'units' are the number of nodes in dense layers elif layer_type == "Conv2D": split_property = "filters" else: print("other splitprop!") return layer_config = layer.get_config() nr_units = layer_config[split_property] #units are either nodes or filters for dense and convolutional layer, respectively item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, int(nr_units)) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition, columnPosition, item) columnPosition = 4 #for each item create a spinbopx (trainability) spinb = QtWidgets.QDoubleSpinBox(self.popup_trainability_ui.tableWidget_pop_pTr_layersTable) spinb.setMinimum(0) spinb.setMaximum(1) spinb.setSingleStep(0.1) trainability = int(layer.trainable) #.trainable actually returns True or False. Make it integer spinb.setValue(trainability) #this should be always 1 self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setCellWidget(rowPosition, columnPosition, spinb) self.popup_trainability.show() #self.popup_trainability_ui.pushButton_pop_pTr_reset.clicked.connect(self.pop_pTr_reset) self.popup_trainability_ui.pushButton_pop_pTr_update.clicked.connect(self.pop_pTr_update_2) self.popup_trainability_ui.pushButton_pop_pTr_ok.clicked.connect(self.pop_pTr_ok) ###############Functions for the partial trainability popup################ def pop_pTr_reset(self): #Reset the model to initial state, with partial trainability print("Not implemented yet") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>Not implemented yet.</p></body></html>") msg.setWindowTitle("Not implemented") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def pop_pTr_update_1(self):#main worker function #Apply the requested changes and display updated model in table pTr_table = self.popup_trainability_ui.tableWidget_pop_pTr_layersTable #Read the table: Layer_names,Layer_trainabilities = [],[] rowCount = pTr_table.rowCount() for row in range(rowCount): #Layer_indices.append(str(pTr_table.item(row, 0).text())) Layer_names.append(str(pTr_table.item(row, 0).text())) Layer_trainabilities.append(float(pTr_table.cellWidget(row, 4).value())) Layer_trainabilities = np.array(Layer_trainabilities) #What are the current trainability statuses of the model Layer_trainabilities_orig = np.array([self.model_keras.get_layer(l_name).trainable for l_name in Layer_names]) diff = abs( Layer_trainabilities - Layer_trainabilities_orig ) ind = np.where( diff>0 )[0] #Where do we have a trainability between 0 and 1 #ind = np.where( (Layer_trainabilities>0) & (Layer_trainabilities<1) )[0] if len(ind)>0: Layer_trainabilities = list(Layer_trainabilities[ind]) Layer_names = list(np.array(Layer_names)[ind]) #Update the model using user-specified trainabilities self.model_keras = partial_trainability(self.model_keras,Layer_names,Layer_trainabilities) #Update lineEdit_partialTrainability Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] Layer_train_status = [self.model_keras.layers[layerindex].trainable for layerindex in index] self.lineEdit_partialTrainability.setText(str(Layer_train_status))#enables the lineEdit which shows the trainability status of each layer. else: print("Nothing to do. All trainabilities are either 0 or 1") def pop_pTr_update_2(self):#call pop_pTr_update_1 to do the work and then update the window try: self.pop_pTr_update_1()#Change the model on self.model_keras according to the table self.partialTrainability()#Update the popup window by calling the partialTrainability function except Exception as e: #There is an issue building the model! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error occured when building model:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def pop_pTr_ok(self): self.pop_pTr_update_1()#Change the model on self.model_keras according to the table; If 'Update' was used before, there will not be done work again, but the model is used as it is #To make the model accessible, it has to be saved to a new .model file filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save model', Default_dict["Path of last model"],"AIDeveloper model file (*.model)") filename = filename[0] path, fname = os.path.split(filename) if len(fname)==0: return #add the suffix _session.xlsx if not fname.endswith(".model"): fname = fname +".model" filename = os.path.join(path,fname) self.model_keras.save(filename) #Activate 'load and restart' and put this file #Avoid the automatic popup self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(True) self.lineEdit_LoadModelPath.setText(filename)#put the filename in the lineedit #Destroy the window self.popup_trainability = None msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(tooltips["modelsaved_success"]) msg.setWindowTitle("Sucessfully created and selected model") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def lossW_comboB(self,state_nr,listindex): if listindex==-1: ui_item = self.popup_lossW_ui else: ui_item = self.fittingpopups_ui[listindex].popup_lossW_ui state_str = ui_item.comboBox_lossW.itemText(int(state_nr)) rows_nr = int(ui_item.tableWidget_lossW.rowCount()) if rows_nr==0: state_str = "None" if state_str=="None": for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(False) ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setValue(1.0) elif state_str=="Custom": for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(True) elif state_str=="Balanced": #How many cells in total per epoch events_epoch = [int(ui_item.tableWidget_lossW.item(rowPos,2).text()) for rowPos in range(rows_nr)] classes = [int(ui_item.tableWidget_lossW.item(rowPos,0).text()) for rowPos in range(rows_nr)] counter = {} for i in range(len(classes)): counter[classes[i]]=events_epoch[i] max_val = float(max(counter.values())) class_weights = {class_id : max_val/num_images for class_id, num_images in counter.items()} class_weights = list(class_weights.values()) for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(False) ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setValue(class_weights[rowPos]) def lossW_ok(self,listindex): #This happens when the user presses the OK button on the popup for #custom loss weights if listindex==-1: ui_item = self else: ui_item = self.fittingpopups_ui[listindex] #Which option was used on comboBox_lossW? state_str = ui_item.popup_lossW_ui.comboBox_lossW.currentText() if state_str=="None":#User left None. This actually means its off ui_item.lineEdit_lossW.setText("") ui_item.pushButton_lossW.setEnabled(False) ui_item.checkBox_lossW.setChecked(False) elif state_str=="Custom":#User left None. This actually means its off #There are custom values #Read the loss values on the table rows_nr = int(ui_item.popup_lossW_ui.tableWidget_lossW.rowCount()) classes = [int(ui_item.popup_lossW_ui.tableWidget_lossW.item(rowPos,0).text()) for rowPos in range(rows_nr)] loss_weights = [float(ui_item.popup_lossW_ui.tableWidget_lossW.cellWidget(rowPos,4).value()) for rowPos in range(rows_nr)] counter = {} for i in range(len(classes)): counter[classes[i]]=loss_weights[i] #Put counter (its a dictionary) to lineedit ui_item.lineEdit_lossW.setText(str(counter)) elif state_str=="Balanced":#Balanced, the values are computed later fresh, even when user changes the cell-numbers again ui_item.lineEdit_lossW.setText("Balanced") #Destroy the window ui_item.popup_lossW = None def lossW_cancel(self,listindex): #This happens when the user presses the Cancel button on the popup for #custom loss weights if listindex==-1: ui_item = self else: ui_item = self.fittingpopups_ui[listindex] if ui_item.lineEdit_lossW.text()=="": #if state_str=="None":#User left None. This actually means its off ui_item.lineEdit_lossW.setText("") ui_item.pushButton_lossW.setEnabled(False) ui_item.checkBox_lossW.setChecked(False) ui_item.popup_lossW = None return #Destroy the window ui_item.popup_lossW = None def get_norm_from_manualselection(self): norm = self.comboBox_w.currentText() index = self.comboBox_Normalization.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization.setCurrentIndex(index) self.w.close() def popup_normalization(self): self.w = MyPopup() self.gridLayout_w = QtWidgets.QGridLayout(self.w) self.gridLayout_w.setObjectName(_fromUtf8("gridLayout")) self.verticalLayout_w = QtWidgets.QVBoxLayout() self.verticalLayout_w.setObjectName(_fromUtf8("verticalLayout")) self.label_w = QtWidgets.QLabel(self.w) self.label_w.setAlignment(QtCore.Qt.AlignCenter) self.label_w.setObjectName(_fromUtf8("label_w")) self.verticalLayout_w.addWidget(self.label_w) self.horizontalLayout_2_w = QtWidgets.QHBoxLayout() self.horizontalLayout_2_w.setObjectName(_fromUtf8("horizontalLayout_2")) self.pushButton_w = QtWidgets.QPushButton(self.w) self.pushButton_w.setObjectName(_fromUtf8("pushButton")) self.horizontalLayout_2_w.addWidget(self.pushButton_w) self.horizontalLayout_w = QtWidgets.QHBoxLayout() self.horizontalLayout_w.setObjectName(_fromUtf8("horizontalLayout")) self.label_2_w = QtWidgets.QLabel(self.w) self.label_2_w.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_2_w.setObjectName(_fromUtf8("label_2_w")) self.horizontalLayout_w.addWidget(self.label_2_w) self.comboBox_w = QtWidgets.QComboBox(self.w) self.comboBox_w.setObjectName(_fromUtf8("comboBox")) self.comboBox_w.addItems(["Select"]+self.norm_methods) self.comboBox_w.setMinimumSize(QtCore.QSize(200,22)) self.comboBox_w.setMaximumSize(QtCore.QSize(200, 22)) width=self.comboBox_w.fontMetrics().boundingRect(max(self.norm_methods, key=len)).width() self.comboBox_w.view().setFixedWidth(width+10) self.comboBox_w.currentIndexChanged.connect(self.get_norm_from_manualselection) self.horizontalLayout_w.addWidget(self.comboBox_w) self.horizontalLayout_2_w.addLayout(self.horizontalLayout_w) self.verticalLayout_w.addLayout(self.horizontalLayout_2_w) self.gridLayout_w.addLayout(self.verticalLayout_w, 0, 0, 1, 1) self.w.setWindowTitle("Select normalization method") self.label_w.setText("You are about to continue training a pretrained model\n" "Please select the meta file of that model to load the normalization method\n" "or choose the normalization method manually") self.pushButton_w.setText("Load meta file") self.label_2_w.setText("Manual \n" "selection") #one button that allows to load a meta file containing the norm-method self.pushButton_w.clicked.connect(self.get_norm_from_modelparafile) self.w.show() def action_preview_model(self,enabled):#function runs when radioButton_LoadRestartModel or radioButton_LoadContinueModel was clicked if enabled: #if the "Load and restart" radiobutton was clicked: if self.radioButton_LoadRestartModel.isChecked(): modelname = QtWidgets.QFileDialog.getOpenFileName(self, 'Open model architecture', Default_dict["Path of last model"],"Architecture or model (*.arch *.model)") modelname = modelname[0] #modelname_for_dict = modelname #if the "Load and continue" radiobutton was clicked: elif self.radioButton_LoadContinueModel.isChecked(): modelname = QtWidgets.QFileDialog.getOpenFileName(self, 'Open model with all parameters', Default_dict["Path of last model"],"Keras model (*.model)") modelname = modelname[0] #modelname_for_dict = modelname self.lineEdit_LoadModelPath.setText(modelname) #Put the filename to the line edit #Remember the location for next time if len(str(modelname))>0: Default_dict["Path of last model"] = os.path.split(modelname)[0] aid_bin.save_aid_settings(Default_dict) #If user wants to load and restart a model if self.radioButton_LoadRestartModel.isChecked(): #load the model and print summary if modelname.endswith(".arch"): json_file = open(modelname, 'r') model_config = json_file.read() json_file.close() model_config = json.loads(model_config) #cut the .json off modelname = modelname.split(".arch")[0] #Or a .model (FULL model with trained weights) , but for display only load the architecture elif modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) #model = model_from_config(model_config) modelname = modelname.split(".model")[0] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") text1 = "Architecture: loaded from .arch\nWeights: will be randomly initialized'\n" #Try to find the corresponding .meta #All models have a number: metaname = modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" if chosen_model is not None: #chosen_model is a string that should be contained in comboBox_ModelSelection index = self.comboBox_ModelSelection.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) else: index = self.comboBox_ModelSelection.findText('None', QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) #Otherwise, user wants to load and continue training a model elif self.radioButton_LoadContinueModel.isChecked(): #User can only choose a .model (FULL model with trained weights) , but for display only load the architecture if modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) #model = model_from_config(model_config) modelname = modelname.split(".model")[0] #Try to find the corresponding .meta #All models have a number: metaname = modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" if chosen_model is not None: #chosen_model is a string that should be contained in comboBox_ModelSelection index = self.comboBox_ModelSelection.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) else: index = self.comboBox_ModelSelection.findText('None', QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) text1 = "Architecture: loaded from .model\nWeights: pretrained weights will be loaded and used when hitting button 'Initialize model!'\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") #In both cases (restart or continue) the input dimensions have to fit #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] # # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] #Retrieve the color_mode from the model (nr. of channels in last in_dim) channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: loaded Model takes: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked_no_rtdc_ds() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" #aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" text = text1+text2+text3 self.textBrowser_Info.setText(text) if self.radioButton_LoadContinueModel.isChecked(): #"Load the parameter file of the model that should be continued and apply the same normalization" #Make a popup: You are about to continue to train a pretrained model #Please select the parameter file of that model to load the normalization method #or choose the normalization method manually: #this is important self.popup_normalization() def get_metrics(self,nr_classes): Metrics = [] f1 = bool(self.checkBox_expertF1.isChecked()) if f1==True: Metrics.append("f1_score") precision = bool(self.checkBox_expertPrecision.isChecked()) if precision==True: Metrics.append("precision") recall = bool(self.checkBox_expertRecall.isChecked()) if recall==True: Metrics.append("recall") metrics = ['accuracy'] + Metrics metrics = aid_dl.get_metrics_tensors(metrics,nr_classes) return metrics def action_set_modelpath_and_name(self): #Get the path and filename for the new model filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save model', Default_dict["Path of last model"],"Keras Model file (*.model)") filename = filename[0] if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if filename.endswith(".arch"): filename = filename.split(".arch")[0] #add the suffix .model if not filename.endswith(".model"): filename = filename +".model" self.lineEdit_modelname.setText(filename) #Write to Default_dict Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def get_dataOverview(self): table = self.tableWidget_Info cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] rows = table.rowCount() tmp_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: tmp_df.iloc[i, j] = table.item(i, j).text() except: tmp_df.iloc[i, j] = np.nan return tmp_df def action_initialize_model(self,duties="initialize_train"): """ duties: which tasks should be performed: "initialize", "initialize_train", "initialize_lrfind" """ #print("duties: "+str(duties)) #Create config (define which device to use) if self.radioButton_cpu.isChecked(): deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) # try: # K.clear_session() # except: # print("Could not clear_session (7)") with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #Initialize the model #######################Load and restart model########################## if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) text0 = "Loaded model: "+load_modelname #load the model and print summary if load_modelname.endswith(".arch"): json_file = open(load_modelname, 'r') model_config = json_file.read() json_file.close() model_keras = model_from_json(model_config) model_config = json.loads(model_config) text1 = "\nArchitecture: loaded from .arch\nWeights: randomly initialized\n" #Or a .model (FULL model with trained weights) , but for display only load the architecture elif load_modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(load_modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) model_keras = model_from_config(model_config) text1 = "\nArchitecture: loaded from .model\nWeights: randomly initialized\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return try: metaname = load_modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] except: chosen_model = str(self.comboBox_ModelSelection.currentText()) #In both cases (restart or continue) the input dimensions have to fit #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] channels = in_dim[-1] #TensorFlow: channels in last dimension #Compile model (consider user-specific metrics) model_metrics = self.get_metrics(out_dim) model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" ###############Load and continue training the model#################### elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) text0 = "Loaded model: "+load_modelname+"\n" #User can only choose a .model (FULL model with trained weights) , but for display only load the architecture if load_modelname.endswith(".model"): #Load the full model try: model_keras = load_model(load_modelname,custom_objects=aid_dl.get_custom_metrics()) except: K.clear_session() #On linux It happened that there was an error, if another fitting run before model_keras = load_model(load_modelname,custom_objects=aid_dl.get_custom_metrics()) #model_config = model_keras.config() #Load the model config (this is the architecture) #load_modelname = load_modelname.split(".model")[0] text1 = "Architecture: loaded from .model\nWeights: pretrained weights were loaded\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") try: metaname = load_modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: chosen_model = str(self.comboBox_ModelSelection.currentText()) except: chosen_model = str(self.comboBox_ModelSelection.currentText()) #Check input dimensions #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] in_dim = model_keras.get_input_shape_at(0) out_dim = model_keras.get_output_shape_at(0)[1] channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" ###########################New model################################### elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded text0 = load_modelname #Create a new model! #Get what the user wants from the dropdown menu! chosen_model = str(self.comboBox_ModelSelection.currentText()) if chosen_model==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return in_dim = int(self.spinBox_imagecrop.value()) SelectedFiles = self.items_clicked() #rtdc_ds = SelectedFiles[0]["rtdc_ds"] if str(self.comboBox_GrayOrRGB.currentText())=="Grayscale": channels=1 elif str(self.comboBox_GrayOrRGB.currentText())=="RGB": channels=3 indices = [s["class"] for s in SelectedFiles] indices_unique = np.unique(np.array(indices)) if len(indices_unique)<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Need at least two classes to fit. Please specify .rtdc files and corresponding indeces") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return out_dim = np.max(indices)+1 nr_classes = out_dim if chosen_model=="None": msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return try: model_keras = model_zoo.get_model(chosen_model,in_dim,channels,out_dim) except Exception as e: #There is an issue building the model! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error occured when building model:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return text1 = "Architecture: created "+chosen_model+" design\nWeights: Initialized random weights\n" if self.get_color_mode()=="Grayscale": channels = 1 channel_text = "1 channel (Grayscale)" elif self.get_color_mode()=="RGB": channels = 3 channel_text = "3 channels (RGB)" text2 = "Model Input: "+str(in_dim)+" x "+str(in_dim) + " pixel images and "+channel_text+"\n" if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" else: #No radio-button was chosen msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the radiobuttons to define the model") msg.setWindowTitle("No model defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #If expert mode is on, apply the requested options #This affects learning rate, trainability of layers and dropout rate expert_mode = bool(self.groupBox_expertMode.isChecked()) learning_rate_const = float(self.doubleSpinBox_learningRate.value()) learning_rate_expert_on = bool(self.groupBox_learningRate.isChecked()) train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) loss_expert_on = bool(self.checkBox_expt_loss.isChecked()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert_on = bool(self.checkBox_optimizer.isChecked()) optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.optimizer_settings.copy() #get the current optimizer settings paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() model_metrics = self.get_metrics(nr_classes) if "collection" in chosen_model.lower(): for m in model_keras[1]: #in a collection, model_keras[0] are the names of the models and model_keras[1] is a list of all models aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,self.get_metrics(nr_classes),nr_classes) if not "collection" in chosen_model.lower(): aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] if type(model_keras)==tuple:#when user chose a Collection of models, a tuple is returned by get_model collection = True else: collection = False if collection==False: #if there is a single model: #Original learning rate (before expert mode is switched on!) try: self.learning_rate_original = K.eval(model_keras.optimizer.lr) except: print("Session busy. Try again in fresh session...") #tf.reset_default_graph() #Make sure to start with a fresh session K.clear_session() sess = tf.Session(graph = tf.Graph(), config=config_gpu) #K.set_session(sess) self.learning_rate_original = K.eval(model_keras.optimizer.lr) #Get initial trainability states of model self.trainable_original, self.layer_names = aid_dl.model_get_trainable_list(model_keras) trainable_original, layer_names = self.trainable_original, self.layer_names self.do_list_original = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model do_list_original = self.do_list_original if collection==True: #if there is a collection of models: #Original learning rate (before expert mode is switched on!) self.learning_rate_original = [K.eval(model_keras[1][i].optimizer.lr) for i in range(len(model_keras[1]))] #Get initial trainability states of model trainable_layerName = [aid_dl.model_get_trainable_list(model_keras[1][i]) for i in range(len(model_keras[1]))] self.trainable_original = [trainable_layerName[i][0] for i in range(len(trainable_layerName))] self.layer_names = [trainable_layerName[i][1] for i in range(len(trainable_layerName))] trainable_original, layer_names = self.trainable_original, self.layer_names self.do_list_original = [aid_dl.get_dropout(model_keras[1][i]) for i in range(len(model_keras[1]))]#Get a list of dropout values of the current model do_list_original = self.do_list_original #TODO add expert mode ability for collection of models. Maybe define self.model_keras as a list in general. So, fitting a single model is just a special case if expert_mode==True: #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,out_dim,loss_expert,optimizer_settings,learning_rate_const) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,out_dim,loss_expert,optimizer_settings,learning_rate_const) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a float dropout_expert_list=len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers") msg.setWindowTitle("Issue with Expert->Dropout") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() dropout_expert_list = [] return else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Could not understand user input at Expert->Dropout") msg.setWindowTitle("Issue with Expert->Dropout") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) text_updates = "" #Learning Rate: Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[1][0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: #If there is a difference, change lr accordingly K.set_value(model_keras.optimizer.lr, learning_rate_const) text_updates += "Learning rate: "+str(lr_current)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model else: optimizer_current = aid_dl.get_optimizer_name(model_keras[1][0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Optimizer: "+optimizer_expert+"\n" #Loss function: Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True if collection==True: if model_keras[1][0].loss!=loss_expert: recompile = True text_updates += "Loss function: "+loss_expert+"\n" if recompile==True: if collection==False: print("Recompiling...") aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras[1]: print("Recompiling...") aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) self.model_keras = model_keras #overwrite the model in self if collection == False: #Get user-specified filename for the new model new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)>0: text_new_modelname = "Model will be saved as: "+new_modelname+"\n" else: text_new_modelname = "Please specify a model path (name for the model to be fitted)\n" if collection == True: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)>0: new_modelname = os.path.split(new_modelname) text_new_modelname = "Collection of Models will be saved into: "+new_modelname[0]+"\n" else: text_new_modelname = "Please specify a model path (name for the model to be fitted)\n" #Info about normalization method norm = str(self.comboBox_Normalization.currentText()) text4 = "Input image normalization method: "+norm+"\n" #Check if there are dropout layers: #do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model if len(do_list_original)>0: text4 = text4+"Found "+str(len(do_list_original)) +" dropout layers with rates: "+str(do_list_original)+"\n" else: text4 = text4+"Found no dropout layers\n" if expert_mode==True: if dropout_expert_on: text4 = text4+text_do+"\n" # if learning_rate_expert_on==True: # if K.eval(model_keras.optimizer.lr) != learning_rate_const: #if the learning rate in UI is NOT equal to the lr of the model... # text_lr = "Changed the learning rate to: "+ str(learning_rate_const)+"\n" # text4 = text4+text_lr text5 = "Model summary:\n" summary = [] if collection==False: model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text_new_modelname+text0+text1+text2+text3+text4+text_updates+text5+summary self.textBrowser_Info.setText(text) #Save the model architecture: serialize to JSON model_json = model_keras.to_json() with open(new_modelname.split(".model")[0]+".arch", "w") as json_file: json_file.write(model_json) elif collection==True: if self.groupBox_expertMode.isChecked()==True: self.groupBox_expertMode.setChecked(False) print("Turned off expert mode. Not implemented yet for collections of models. This does not affect user-specified metrics (precision/recall/f1)") self.model_keras_arch_path = [new_modelname[0]+os.sep+new_modelname[1].split(".model")[0]+"_"+model_keras[0][i]+".arch" for i in range(len(model_keras[0]))] for i in range(len(model_keras[1])): model_keras[1][i].summary(print_fn=summary.append) #Save the model architecture: serialize to JSON model_json = model_keras[1][i].to_json() with open(self.model_keras_arch_path[i], "w") as json_file: json_file.write(model_json) summary = "\n".join(summary) text = text_new_modelname+text0+text1+text2+text3+text4+text_updates+text5+summary self.textBrowser_Info.setText(text) #Save the model to a variable on self self.model_keras = model_keras #Get the user-defined cropping size crop = int(self.spinBox_imagecrop.value()) #Make the cropsize a bit larger since the images will later be rotated cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Estimate RAM needed nr_imgs = np.sum([np.array(list(SelectedFiles)[i]["nr_images"]) for i in range(len(list(SelectedFiles)))]) ram_needed = np.round(nr_imgs * aid_bin.calc_ram_need(cropsize2),2) if duties=="initialize":#Stop here if the model just needs to be intialized (for expert mode->partial trainability) return elif duties=="initialize_train": #Tell the user if the data is stored and read from ram or not msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Should the model only be initialized,\ or do you want to start fitting right after? For fitting, data will\ be loaded to RAM (since Edit->Data to RAM is enabled), which will\ require "+str(ram_needed)+"MB of RAM.</p></body></html>" msg.setText(text) msg.setWindowTitle("Initialize model or initialize and fit model?") msg.addButton(QtGui.QPushButton('Stop after model initialization'), QtGui.QMessageBox.RejectRole) msg.addButton(QtGui.QPushButton('Start fitting'), QtGui.QMessageBox.ApplyRole) retval = msg.exec_() elif duties=="initialize_lrfind": retval = 1 else: print("Invalid duties: "+duties) return if retval==0: #yes role: Only initialize model print("Closing session") del model_keras sess.close() return elif retval == 1: if self.actionDataToRam.isChecked(): color_mode = self.get_color_mode() zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Check if there is data already available in RAM if len(self.ram)==0:#if there is already data stored on ram print("No data on RAM. I have to load") dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic else: print("There is already some data on RAM") new_fileinfo = {"SelectedFiles":list(SelectedFiles),"cropsize2":cropsize2,"zoom_factors":zoom_factors,"zoom_order":zoom_order,"color_mode":color_mode} identical = aid_bin.ram_compare_data(self.ram,new_fileinfo) if not identical: #Load the data dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic if identical: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "Data was loaded before! Should same data be reused? If not, click 'Reload data', e.g. if you altered the Data-table." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("Found data on RAM") msg.addButton(QtGui.QPushButton('Reuse data'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Reload data'), QtGui.QMessageBox.NoRole) retval = msg.exec_() if retval==0: print("Re-use data") #Re-use same data elif retval==1: print("Re-load data") dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic #Finally, activate the 'Fit model' button again #self.pushButton_FitModel.setEnabled(True) if duties=="initialize_train": self.action_fit_model() if duties=="initialize_lrfind": self.action_lr_finder() del model_keras def action_fit_model_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): gpu_used = False deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): gpu_used = True deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #get an index of the fitting popup listindex = self.popupcounter-1 #Get user-specified filename for the new model new_modelname = str(self.lineEdit_modelname.text()) model_keras_path = self.model_keras_path if type(model_keras_path)==list: collection = True #Take the initialized models model_keras_path = self.model_keras_path model_keras = [load_model(model_keras_path[i],custom_objects=aid_dl.get_custom_metrics()) for i in range(len(model_keras_path)) ] model_architecture_names = self.model_keras[0] print(model_architecture_names) #self.model_keras = None else: collection = False if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) #self.model_keras = None #Initialize a variable for the parallel model model_keras_p = None #Multi-GPU if deviceSelected=="Multi-GPU": if collection==False: print("Adjusting the model for Multi-GPU") model_keras_p = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have if self.radioButton_LoadContinueModel.isChecked():#calling multi_gpu_model resets the weights. Hence, they need to be put in place again model_keras_p.layers[-2].set_weights(model_keras.get_weights()) elif collection==True: print("Collection & Multi-GPU is not supported yet") return # model_keras_p = [] # for m in model_keras_p: # print("Adjusting the model for Multi-GPU") # model_keras_p.append(multi_gpu_model(m, gpus=gpu_nr)) #indicate the numbers of gpus that you have ##############Main function after hitting FIT MODEL#################### if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras[0].output.shape.dims[1]) #Metrics to be displayed during fitting (real-time) model_metrics = self.get_metrics(nr_classes) #Compile model if collection==False and deviceSelected=="Single-GPU": model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==False and deviceSelected=="Multi-GPU": model_keras_p.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==True and deviceSelected=="Single-GPU": #Switch off the expert tab! self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(False) self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setEnabled(False) for m in model_keras: m.compile(loss='categorical_crossentropy',optimizer='adam',metrics=self.get_metrics(nr_classes))#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==True and deviceSelected=="Multi-GPU": print("Collection & Multi-GPU is not supported yet") return #Original learning rate: #learning_rate_original = self.learning_rate_original#K.eval(model_keras.optimizer.lr) #Original trainable states of layers with parameters trainable_original, layer_names = self.trainable_original, self.layer_names do_list_original = self.do_list_original #Collect all information about the fitting routine that was user #defined if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 new_model = self.radioButton_NewModel.isChecked() chosen_model = str(self.comboBox_ModelSelection.currentText()) crop = int(self.spinBox_imagecrop.value()) color_mode = str(self.comboBox_GrayOrRGB.currentText()) loadrestart_model = self.radioButton_LoadRestartModel.isChecked() loadcontinue_model = self.radioButton_LoadContinueModel.isChecked() norm = str(self.comboBox_Normalization.currentText()) nr_epochs = int(self.spinBox_NrEpochs.value()) keras_refresh_nr_epochs = int(self.spinBox_RefreshAfterEpochs.value()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_refresh_nr_epochs = int(self.spinBox_RefreshAfterNrEpochs.value()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple if collection==False: expert_mode = bool(self.groupBox_expertMode.isChecked()) elif collection==True: expert_mode = self.groupBox_expertMode.setChecked(False) print("Expert mode was switched off. Not implemented yet for collections") expert_mode = False batchSize_expert = int(self.spinBox_batchSize.value()) epochs_expert = int(self.spinBox_epochs.value()) learning_rate_expert_on = bool(self.groupBox_learningRate.isChecked()) learning_rate_const_on = bool(self.radioButton_LrConst.isChecked()) learning_rate_const = float(self.doubleSpinBox_learningRate.value()) learning_rate_cycLR_on = bool(self.radioButton_LrCycl.isChecked()) try: cycLrMin = float(self.lineEdit_cycLrMin.text()) cycLrMax = float(self.lineEdit_cycLrMax.text()) except: cycLrMin = [] cycLrMax = [] cycLrMethod = str(self.comboBox_cycLrMethod.currentText()) #clr_settings = self.fittingpopups_ui[listindex].clr_settings.copy() cycLrGamma = self.clr_settings["gamma"] SelectedFiles = self.items_clicked()#to compute cycLrStepSize, the number of training images is needed cycLrStepSize = aid_dl.get_cyclStepSize(SelectedFiles,self.clr_settings["step_size"],batchSize_expert) #put clr_settings onto fittingpopup, self.fittingpopups_ui[listindex].clr_settings = self.clr_settings.copy()#assign a copy. Otherwise values in both dicts are changed when manipulating one dict #put optimizer_settings onto fittingpopup, self.fittingpopups_ui[listindex].optimizer_settings = self.optimizer_settings.copy()#assign a copy. Otherwise values in both dicts are changed when manipulating one dict learning_rate_expo_on = bool(self.radioButton_LrExpo.isChecked()) expDecInitLr = float(self.doubleSpinBox_expDecInitLr.value()) expDecSteps = int(self.spinBox_expDecSteps.value()) expDecRate = float(self.doubleSpinBox_expDecRate.value()) loss_expert_on = bool(self.checkBox_expt_loss.isChecked()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert_on = bool(self.checkBox_optimizer.isChecked()) optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.fittingpopups_ui[listindex].optimizer_settings.copy()#make a copy to make sure that changes in the UI are not immediately used paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert_on = bool(self.checkBox_lossW.isChecked()) lossW_expert = str(self.lineEdit_lossW.text()) #To get the class weights (loss), the SelectedFiles are required #SelectedFiles = self.items_clicked() #Check if xtra_data should be used for training xtra_in = [s["xtra_in"] for s in SelectedFiles] if len(set(xtra_in))==1: xtra_in = list(set(xtra_in))[0] elif len(set(xtra_in))>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return self.fittingpopups_ui[listindex].SelectedFiles = SelectedFiles #save to self. to make it accessible for popup showing loss weights #Get the class weights. This function runs now the first time in the fitting routine. #It is possible that the user chose Custom weights and then changed the classes. Hence first check if #there is a weight for each class available. class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert,custom_check_classes=True) if type(class_weight)==list: #There has been a mismatch between the classes described in class_weight and the classes available in SelectedFiles! lossW_expert = class_weight[0] #overwrite class_weight = class_weight[1] print("class_weight:" +str(class_weight)) print("There has been a mismatch between the classes described in \ Loss weights and the classes available in the selected files! \ Hence, the Loss weights are set to Balanced") #Get callback for the learning rate scheduling callback_lr = aid_dl.get_lr_callback(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) #save a dictionary with initial values lr_dict_original = aid_dl.get_lr_dict(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) if collection==False: #Create an excel file writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles_df = pd.DataFrame(SelectedFiles) pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet elif collection==True: SelectedFiles_df = pd.DataFrame(SelectedFiles) Writers = [] #Create excel files for i in range(len(model_keras_path)): writer = pd.ExcelWriter(model_keras_path[i].split(".model")[0]+'_meta.xlsx', engine='openpyxl') Writers.append(writer) for writer in Writers: #Used files go to a separate sheet on the MetaFile.xlsx pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet ###############################Expert Mode values################## expert_mode_before = False #There was no expert mode used before. if expert_mode==True: #activate groupBox_expertMode_pop self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(True) expert_mode_before = True #Some settings only need to be changed once, after user clicked apply at next epoch #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a single float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else: text = "Could not understand user input at Expert->Dropout" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do) text_updates = "" #Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection == False: K.set_value(model_keras.optimizer.lr, learning_rate_const) if collection == True: for m in model_keras: K.set_value(m.optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" #Check if model has to be compiled again recompile = False #by default, dont recompile (happens for "Load and continue" training a model) if new_model==True: recompile = True #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model if collection==True: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if collection==True: if model_keras[0].loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True: print("Recompiling...") if collection==False: aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras: aid_dl.model_compile(m, loss_expert, optimizer_settings, learning_rate_const,model_metrics, nr_classes) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to adjust learning rate, loss, optimizer") self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_updates) #self.model_keras = model_keras #overwrite the model on self ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_epoch_train = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_train] rtdc_path_train = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_train] zoom_factors_train = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_train] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_train = [selectedfile["shuffle"] for selectedfile in SelectedFiles_train] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_train]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #read self.ram to new variable ; next clear ram. This is required for multitasking (training multiple models with maybe different data) DATA = self.ram if verbose==1: print("Length of DATA (in RAM) = "+str(len(DATA))) #clear the ram again if desired if not self.actionKeep_Data_in_RAM.isChecked(): self.ram = dict() print("Removed data from self.ram. For further training sessions, data has to be reloaded.") #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles_train)): #if Data_to_RAM was not enabled: #if not self.actionDataToRam.isChecked(): if len(DATA)==0: #Here, the entire training set needs to be used! Not only random images! #Replace=true: means individual cells could occur several times gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) # else: #get a similar generator, using the ram-data # if len(DATA)==0: # gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times else: gen_train = aid_img.gen_crop_img_ram(DATA,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen_train)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "<html><head/><body><p>The standard deviation of your training data is zero! This would lead to division by zero. To avoid this, I will divide by 0.0001 instead.</p></body></html>" msg.setText(text) msg.setWindowTitle("Std. is zero") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() Para_dict = pd.DataFrame() def update_para_dict(): #Document changes in the meta-file Para_dict["AIDeveloper_Version"]=VERSION, Para_dict["model_zoo_version"]=model_zoo_version, try: Para_dict["OS"]=platform.platform(), Para_dict["CPU"]=platform.processor(), except: Para_dict["OS"]="Unknown", Para_dict["CPU"]="Unknown", Para_dict["Modelname"]=new_modelname, Para_dict["Chosen Model"]=chosen_model, Para_dict["new_model"]=new_model, Para_dict["loadrestart_model"]=loadrestart_model, Para_dict["loadcontinue_model"]=loadcontinue_model, Para_dict["Continued_Fitting_From"]=load_modelname, Para_dict["Input image size"]=crop, Para_dict["Color Mode"]=color_mode, Para_dict["Zoom order"]=zoom_order, Para_dict["Device"]=deviceSelected, Para_dict["gpu_used"]=gpu_used, Para_dict["gpu_memory"]=gpu_memory, Para_dict["Output Nr. classes"]=nr_classes, Para_dict["Normalization"]=norm, Para_dict["Nr. epochs"]=nr_epochs, Para_dict["Keras refresh after nr. epochs"]=keras_refresh_nr_epochs, Para_dict["Horz. flip"]=h_flip, Para_dict["Vert. flip"]=v_flip, Para_dict["rotation"]=rotation, Para_dict["width_shift"]=width_shift, Para_dict["height_shift"]=height_shift, Para_dict["zoom"]=zoom, Para_dict["shear"]=shear, Para_dict["Brightness refresh after nr. epochs"]=brightness_refresh_nr_epochs, Para_dict["Brightness add. lower"]=brightness_add_lower, Para_dict["Brightness add. upper"]=brightness_add_upper, Para_dict["Brightness mult. lower"]=brightness_mult_lower, Para_dict["Brightness mult. upper"]=brightness_mult_upper, Para_dict["Gaussnoise Mean"]=gaussnoise_mean, Para_dict["Gaussnoise Scale"]=gaussnoise_scale, Para_dict["Contrast on"]=contrast_on, Para_dict["Contrast Lower"]=contrast_lower, Para_dict["Contrast Higher"]=contrast_higher, Para_dict["Saturation on"]=saturation_on, Para_dict["Saturation Lower"]=saturation_lower, Para_dict["Saturation Higher"]=saturation_higher, Para_dict["Hue on"]=hue_on, Para_dict["Hue delta"]=hue_delta, Para_dict["Average blur on"]=avgBlur_on, Para_dict["Average blur Lower"]=avgBlur_min, Para_dict["Average blur Higher"]=avgBlur_max, Para_dict["Gauss blur on"]=gaussBlur_on, Para_dict["Gauss blur Lower"]=gaussBlur_min, Para_dict["Gauss blur Higher"]=gaussBlur_max, Para_dict["Motion blur on"]=motionBlur_on, Para_dict["Motion blur Kernel"]=motionBlur_kernel, Para_dict["Motion blur Angle"]=motionBlur_angle, Para_dict["Epoch_Started_Using_These_Settings"]=counter, Para_dict["expert_mode"]=expert_mode, Para_dict["batchSize_expert"]=batchSize_expert, Para_dict["epochs_expert"]=epochs_expert, Para_dict["learning_rate_expert_on"]=learning_rate_expert_on, Para_dict["learning_rate_const_on"]=learning_rate_const_on, Para_dict["learning_rate_const"]=learning_rate_const, Para_dict["learning_rate_cycLR_on"]=learning_rate_cycLR_on, Para_dict["cycLrMin"]=cycLrMin, Para_dict["cycLrMax"]=cycLrMax, Para_dict["cycLrMethod"] = cycLrMethod, Para_dict["clr_settings"] = self.fittingpopups_ui[listindex].clr_settings, Para_dict["learning_rate_expo_on"]=learning_rate_expo_on, Para_dict["expDecInitLr"]=expDecInitLr, Para_dict["expDecSteps"]=expDecSteps, Para_dict["expDecRate"]=expDecRate, Para_dict["loss_expert_on"]=loss_expert_on, Para_dict["loss_expert"]=loss_expert, Para_dict["optimizer_expert_on"]=optimizer_expert_on, Para_dict["optimizer_expert"]=optimizer_expert, Para_dict["optimizer_settings"]=optimizer_settings, Para_dict["paddingMode"]=paddingMode, Para_dict["train_last_layers"]=train_last_layers, Para_dict["train_last_layers_n"]=train_last_layers_n, Para_dict["train_dense_layers"]=train_dense_layers, Para_dict["dropout_expert_on"]=dropout_expert_on, Para_dict["dropout_expert"]=dropout_expert, Para_dict["lossW_expert_on"]=lossW_expert_on, Para_dict["lossW_expert"]=lossW_expert, Para_dict["class_weight"]=class_weight, Para_dict["metrics"]=model_metrics, #training data cannot be changed during training if norm == "StdScaling using mean and std of all training data": #This needs to be saved into Para_dict since it will be required for inference Para_dict["Mean of training data used for scaling"]=mean_trainingdata, Para_dict["Std of training data used for scaling"]=std_trainingdata, if collection==False: if counter == 0: Para_dict.to_excel(self.fittingpopups_ui[listindex].writer,sheet_name='Parameters') else: Para_dict.to_excel(self.fittingpopups_ui[listindex].writer,sheet_name='Parameters',startrow=self.fittingpopups_ui[listindex].writer.sheets['Parameters'].max_row,header= False) if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH)#change to read/write try: self.fittingpopups_ui[listindex].writer.save() except: pass os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH)#change to only readable if collection==True: for i in range(len(Writers)): Para_dict["Chosen Model"]=model_architecture_names[i], writer = Writers[i] if counter==0: Para_dict.to_excel(Writers[i],sheet_name='Parameters') else: Para_dict.to_excel(writer,sheet_name='Parameters',startrow=writer.sheets['Parameters'].max_row,header= False) if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write try: writer.save() except: pass os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #read only ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_valid]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False ############Cropping##################### X_valid,y_valid,Indices,xtra_valid = [],[],[],[] for i in range(len(SelectedFiles_valid)): if not self.actionDataToRam.isChecked(): #Replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: #get a similar generator, using the ram-data if len(DATA)==0: #Replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: gen_valid = aid_img.gen_crop_img_ram(DATA,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") generator_cropped_out = next(gen_valid) X_valid.append(generator_cropped_out[0]) #y_valid.append(np.repeat(indices_valid[i],nr_events_epoch_valid[i])) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(generator_cropped_out[1]) xtra_valid.append(generator_cropped_out[2]) del generator_cropped_out #Save the validation set (BEFORE normalization!) #Write to.rtdc files if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False aid_bin.write_rtdc(new_modelname.split(".model")[0]+'_Valid_Data.rtdc',rtdc_path_valid,X_valid,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=xtra_valid) elif bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True aid_bin.write_rtdc(new_modelname.split(".model")[0]+'_Valid_Data.rtdc',rtdc_path_valid,X_valid,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=xtra_valid) elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Use a different Exporting option in ->Edit if you want to export the data") # msg.setWindowTitle("Export is turned off!") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() X_valid = np.concatenate(X_valid) y_valid = np.concatenate(y_valid) Y_valid = np_utils.to_categorical(y_valid, nr_classes)# * 2 - 1 xtra_valid = np.concatenate(xtra_valid) if not bool(self.actionExport_Off.isChecked())==True: #Save the labels np.savetxt(new_modelname.split(".model")[0]+'_Valid_Labels.txt',y_valid.astype(int),fmt='%i') if len(X_valid.shape)==4: channels=3 elif len(X_valid.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_valid.shape)) if channels==1: #Add the "channels" dimension X_valid = np.expand_dims(X_valid,3) #get it to theano image format (channels first) #X_valid = X_valid.swapaxes(-1,-2).swapaxes(-2,-3) if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) #Validation data can be cropped to final size already since no augmentation #will happen on this data set dim_val = X_valid.shape print("Current dim. of validation set (pixels x pixels) = "+str(dim_val[2])) if dim_val[2]!=crop: print("Change dim. (pixels x pixels) of validation set to = "+str(crop)) remove = int(dim_val[2]/2.0 - crop/2.0) X_valid = X_valid[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow if xtra_in==True: print("Add Xtra Data to X_valid") X_valid = [X_valid,xtra_valid] ####################Update the PopupFitting######################## self.fittingpopups_ui[listindex].lineEdit_modelname_pop.setText(new_modelname) #set the progress bar to zero self.fittingpopups_ui[listindex].spinBox_imagecrop_pop.setValue(crop) self.fittingpopups_ui[listindex].spinBox_NrEpochs.setValue(nr_epochs) self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.addItems(self.predefined_models) chosen_model = str(self.comboBox_ModelSelection.currentText()) index = self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].comboBox_Normalization_pop.addItems(self.norm_methods) index = self.fittingpopups_ui[listindex].comboBox_Normalization_pop.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_Normalization_pop.setCurrentIndex(index) #padding index = self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.findText(paddingMode, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.setCurrentIndex(index) #zoom_order self.fittingpopups_ui[listindex].comboBox_zoomOrder.setCurrentIndex(zoom_order) #CPU setting self.fittingpopups_ui[listindex].comboBox_cpu_pop.addItem("Default CPU") if gpu_used==False: self.fittingpopups_ui[listindex].radioButton_cpu_pop.setChecked(True) self.fittingpopups_ui[listindex].doubleSpinBox_memory_pop.setValue(gpu_memory) #GPU setting if gpu_used==True: self.fittingpopups_ui[listindex].radioButton_gpu_pop.setChecked(True) self.fittingpopups_ui[listindex].comboBox_gpu_pop.addItem(deviceSelected) self.fittingpopups_ui[listindex].doubleSpinBox_memory_pop.setValue(gpu_memory) self.fittingpopups_ui[listindex].spinBox_RefreshAfterEpochs_pop.setValue(keras_refresh_nr_epochs) self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.setChecked(h_flip) self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.setChecked(v_flip) self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.setText(str(rotation)) self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.setText(str(width_shift)) self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.setText(str(height_shift)) self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.setText(str(zoom)) self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.setText(str(shear)) self.fittingpopups_ui[listindex].spinBox_RefreshAfterNrEpochs_pop.setValue(brightness_refresh_nr_epochs) self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.setValue(brightness_add_lower) self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.setValue(brightness_add_upper) self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.setValue(brightness_mult_lower) self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.setValue(brightness_mult_upper) self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.setValue(gaussnoise_mean) self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.setValue(gaussnoise_scale) self.fittingpopups_ui[listindex].checkBox_contrast_pop.setChecked(contrast_on) self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.setValue(contrast_lower) self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.setValue(contrast_higher) self.fittingpopups_ui[listindex].checkBox_saturation_pop.setChecked(saturation_on) self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.setValue(saturation_lower) self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.setValue(saturation_higher) self.fittingpopups_ui[listindex].checkBox_hue_pop.setChecked(hue_on) self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.setValue(hue_delta) #Special for saturation and hue. Only enabled for RGB: saturation_enabled = bool(self.checkBox_saturation.isEnabled()) self.fittingpopups_ui[listindex].checkBox_saturation_pop.setEnabled(saturation_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.setEnabled(saturation_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.setEnabled(saturation_enabled) hue_enabled = bool(self.checkBox_hue.isEnabled()) self.fittingpopups_ui[listindex].checkBox_hue_pop.setEnabled(hue_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.setEnabled(hue_enabled) self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.setChecked(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].label_avgBlurMin_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.setValue(avgBlur_min) self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].label_avgBlurMax_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.setValue(avgBlur_max) self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.setChecked(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].label_gaussBlurMin_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.setValue(gaussBlur_min) self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].label_gaussBlurMax_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.setValue(gaussBlur_max) self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.setChecked(motionBlur_on) self.fittingpopups_ui[listindex].label_motionBlurKernel_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].label_motionBlurAngle_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setEnabled(motionBlur_on) if len(motionBlur_kernel)==1: self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setText(str(motionBlur_kernel[0])) if len(motionBlur_kernel)==2: self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setText(str(motionBlur_kernel[0])+","+str(motionBlur_kernel[1])) if len(motionBlur_angle)==1: self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setText(str(motionBlur_angle[0])) if len(motionBlur_kernel)==2: self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setText(str(motionBlur_angle[0])+","+str(motionBlur_angle[1])) self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(expert_mode) self.fittingpopups_ui[listindex].spinBox_batchSize.setValue(batchSize_expert) self.fittingpopups_ui[listindex].spinBox_epochs.setValue(epochs_expert) self.fittingpopups_ui[listindex].groupBox_learningRate_pop.setChecked(learning_rate_expert_on) self.fittingpopups_ui[listindex].radioButton_LrConst.setChecked(learning_rate_const_on) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.setValue(learning_rate_const) self.fittingpopups_ui[listindex].radioButton_LrCycl.setChecked(learning_rate_cycLR_on) self.fittingpopups_ui[listindex].lineEdit_cycLrMin.setText(str(cycLrMin)) self.fittingpopups_ui[listindex].lineEdit_cycLrMax.setText(str(cycLrMax)) index = self.fittingpopups_ui[listindex].comboBox_cycLrMethod.findText(cycLrMethod, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_cycLrMethod.setCurrentIndex(index) self.fittingpopups_ui[listindex].radioButton_LrExpo.setChecked(learning_rate_expo_on) self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.setValue(expDecInitLr) self.fittingpopups_ui[listindex].spinBox_expDecSteps.setValue(expDecSteps) self.fittingpopups_ui[listindex].doubleSpinBox_expDecRate.setValue(expDecRate) self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.setChecked(loss_expert_on) self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.setChecked(loss_expert_on) index = self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.findText(loss_expert, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].checkBox_optimizer_pop.setChecked(optimizer_expert_on) index = self.fittingpopups_ui[listindex].comboBox_optimizer.findText(optimizer_expert, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_optimizer.setCurrentIndex(index) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.setValue(learning_rate_const) index = self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.findText(paddingMode, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].checkBox_trainLastNOnly_pop.setChecked(train_last_layers) self.fittingpopups_ui[listindex].spinBox_trainLastNOnly_pop.setValue(train_last_layers_n) self.fittingpopups_ui[listindex].checkBox_trainDenseOnly_pop.setChecked(train_dense_layers) self.fittingpopups_ui[listindex].checkBox_dropout_pop.setChecked(dropout_expert_on) do_text = [str(do_i) for do_i in dropout_expert] self.fittingpopups_ui[listindex].lineEdit_dropout_pop.setText((', '.join(do_text))) self.fittingpopups_ui[listindex].checkBox_lossW.setChecked(lossW_expert_on) self.fittingpopups_ui[listindex].pushButton_lossW.setEnabled(lossW_expert_on) self.fittingpopups_ui[listindex].lineEdit_lossW.setText(str(lossW_expert)) if channels==1: channel_text = "Grayscale" elif channels==3: channel_text = "RGB" self.fittingpopups_ui[listindex].comboBox_colorMode_pop.addItems([channel_text]) ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Dictionary defining affine image augmentation options: aug_paras = {"v_flip":v_flip,"h_flip":h_flip,"rotation":rotation,"width_shift":width_shift,"height_shift":height_shift,"zoom":zoom,"shear":shear} Histories,Index,Saved,Stopwatch,LearningRate = [],[],[],[],[] if collection==True: HISTORIES = [ [] for model in model_keras] SAVED = [ [] for model in model_keras] counter = 0 saving_failed = False #when saving fails, this becomes true and the user will be informed at the end of training #Save the initial values (Epoch 1) update_para_dict() model_metrics_names = [] for met in model_metrics: if type(met)==str: model_metrics_names.append(met) else: metname = met.name metlabel = met.label if metlabel>0: metname = metname+"_"+str(metlabel) model_metrics_names.append(metname) #Dictionary for records in metrics model_metrics_records = {} model_metrics_records["acc"] = 0 #accuracy starts at zero and approaches 1 during training model_metrics_records["val_acc"] = 0 #accuracy starts at zero and approaches 1 during training model_metrics_records["loss"] = 9E20 ##loss starts very high and approaches 0 during training model_metrics_records["val_loss"] = 9E20 ##loss starts very high and approaches 0 during training for key in model_metrics_names: if 'precision' in key or 'recall' in key or 'f1_score' in key: model_metrics_records[key] = 0 #those metrics start at zero and approach 1 model_metrics_records["val_"+key] = 0 #those metrics start at zero and approach 1 gen_train_refresh = False time_start = time.time() t1 = time.time() #Initialize a timer; this is used to save the meta file every few seconds t2 = time.time() #Initialize a timer; this is used update the fitting parameters while counter < nr_epochs:#nr_epochs: #resample nr_epochs times #Only keep fitting if the respective window is open: isVisible = self.fittingpopups[listindex].isVisible() if isVisible: ############Keras image augmentation##################### #Start the first iteration: X_train,y_train,xtra_train = [],[],[] t3 = time.time() for i in range(len(SelectedFiles_train)): if len(DATA)==0 or gen_train_refresh: #Replace true means that individual cells could occur several times gen_train = aid_img.gen_crop_img(cropsize2,rtdc_path_train[i],nr_events_epoch_train[i],random_images=shuffle_train[i],replace=True,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) gen_train_refresh = False else: gen_train = aid_img.gen_crop_img_ram(DATA,rtdc_path_train[i],nr_events_epoch_train[i],random_images=shuffle_train[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") data_ = next(gen_train) X_train.append(data_[0]) y_train.append(np.repeat(indices_train[i],X_train[-1].shape[0])) if xtra_in==True: xtra_train.append(data_[2]) del data_ X_train = np.concatenate(X_train) X_train = X_train.astype(np.uint8) y_train = np.concatenate(y_train) if xtra_in==True: print("Retrieve Xtra Data...") xtra_train = np.concatenate(xtra_train) t4 = time.time() if verbose == 1: print("Time to load data (from .rtdc or RAM) and crop="+str(t4-t3)) if len(X_train.shape)==4: channels=3 elif len(X_train.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_train.shape)) if channels==1: #Add the "channels" dimension X_train = np.expand_dims(X_train,3) t3 = time.time() #Some parallellization: use nr_threads (number of CPUs) nr_threads = 1 #Somehow for MNIST and CIFAR, processing always took longer for nr_threads>1 . I tried nr_threads=2,4,8,16,24 if nr_threads == 1: X_batch = aid_img.affine_augm(X_train,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) #Affine image augmentation y_batch = np.copy(y_train) else: #Divde data in 4 batches X_train = np.array_split(X_train,nr_threads) y_train = np.array_split(y_train,nr_threads) self.X_batch = [False] * nr_threads self.y_batch = [False] * nr_threads self.counter_aug = 0 self.Workers_augm = [] def imgaug_worker(aug_paras,progress_callback,history_callback): i = aug_paras["i"] self.X_batch[i] = aid_img.affine_augm(aug_paras["X_train"],v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) self.y_batch[i] = aug_paras["y_train"] self.counter_aug+=1 t3_a = time.time() for i in range(nr_threads): aug_paras_ = copy.deepcopy(aug_paras) aug_paras_["i"] = i aug_paras_["X_train"]=X_train[i]#augparas contains rotation and so on. X_train and y_train are overwritten in each iteration (for each worker new X_train) aug_paras_["y_train"]=y_train[i] self.Workers_augm.append(Worker(imgaug_worker,aug_paras_)) self.threadpool.start(self.Workers_augm[i]) while self.counter_aug < nr_threads: time.sleep(0.01)#Wait 0.1s, then check the len again t3_b = time.time() if verbose == 1: print("Time to perform affine augmentation_internal ="+str(t3_b-t3_a)) X_batch = np.concatenate(self.X_batch) y_batch = np.concatenate(self.y_batch) Y_batch = np_utils.to_categorical(y_batch, nr_classes)# * 2 - 1 t4 = time.time() if verbose == 1: print("Time to perform affine augmentation ="+str(t4-t3)) t3 = time.time() #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow t4 = time.time() # if verbose == 1: # print("Time to crop to final size="+str(t4-t3)) X_batch_orig = np.copy(X_batch) #save into new array and do some iterations with varying noise/brightness #reuse this X_batch_orig a few times since this augmentation was costly keras_iter_counter = 0 while keras_iter_counter < keras_refresh_nr_epochs and counter < nr_epochs: keras_iter_counter+=1 #if t2-t1>5: #check for changed settings every 5 seconds if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #Another while loop if the user wants to reuse the keras-augmented data #several times and only apply brightness augmentation: brightness_iter_counter = 0 while brightness_iter_counter < brightness_refresh_nr_epochs and counter < nr_epochs: #In each iteration, start with non-augmented data X_batch = np.copy(X_batch_orig)#copy from X_batch_orig, X_batch will be altered without altering X_batch_orig X_batch = X_batch.astype(np.uint8) #########X_batch = X_batch.astype(float)########## No float yet :) !!! brightness_iter_counter += 1 if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 if self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.isChecked(): nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_NrEpochs.value()) #Keras stuff keras_refresh_nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_RefreshAfterEpochs_pop.value()) h_flip = bool(self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.isChecked()) v_flip = bool(self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.isChecked()) rotation = float(self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.text()) width_shift = float(self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.text()) height_shift = float(self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.text()) zoom = float(self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.text()) shear = float(self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.text()) #Brightness stuff brightness_refresh_nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_RefreshAfterNrEpochs_pop.value()) brightness_add_lower = float(self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.value()) brightness_add_upper = float(self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.value()) brightness_mult_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.value()) brightness_mult_upper = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.value()) gaussnoise_mean = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.value()) gaussnoise_scale = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.value()) contrast_on = bool(self.fittingpopups_ui[listindex].checkBox_contrast_pop.isChecked()) contrast_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.value()) contrast_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.value()) saturation_on = bool(self.fittingpopups_ui[listindex].checkBox_saturation_pop.isChecked()) saturation_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.value()) saturation_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.value()) hue_on = bool(self.fittingpopups_ui[listindex].checkBox_hue_pop.isChecked()) hue_delta = float(self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.value()) avgBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.isChecked()) avgBlur_min = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.value()) avgBlur_max = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.value()) gaussBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.isChecked()) gaussBlur_min = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.value()) gaussBlur_max = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.value()) motionBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.isChecked()) motionBlur_kernel = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.text()) motionBlur_angle = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple #Expert mode stuff expert_mode = bool(self.fittingpopups_ui[listindex].groupBox_expertMode_pop.isChecked()) batchSize_expert = int(self.fittingpopups_ui[listindex].spinBox_batchSize.value()) epochs_expert = int(self.fittingpopups_ui[listindex].spinBox_epochs.value()) learning_rate_expert_on = bool(self.fittingpopups_ui[listindex].groupBox_learningRate_pop.isChecked()) learning_rate_const_on = bool(self.fittingpopups_ui[listindex].radioButton_LrConst.isChecked()) learning_rate_const = float(self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value()) learning_rate_cycLR_on = bool(self.fittingpopups_ui[listindex].radioButton_LrCycl.isChecked()) try: cycLrMin = float(self.fittingpopups_ui[listindex].lineEdit_cycLrMin.text()) cycLrMax = float(self.fittingpopups_ui[listindex].lineEdit_cycLrMax.text()) except: cycLrMin = [] cycLrMax = [] cycLrMethod = str(self.fittingpopups_ui[listindex].comboBox_cycLrMethod.currentText()) clr_settings = self.fittingpopups_ui[listindex].clr_settings.copy() #Get a copy of the current optimizer_settings. .copy prevents that changes in the UI have immediate effect cycLrStepSize = aid_dl.get_cyclStepSize(SelectedFiles,clr_settings["step_size"],batchSize_expert) cycLrGamma = clr_settings["gamma"] learning_rate_expo_on = bool(self.fittingpopups_ui[listindex].radioButton_LrExpo.isChecked()) expDecInitLr = float(self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.value()) expDecSteps = int(self.fittingpopups_ui[listindex].spinBox_expDecSteps.value()) expDecRate = float(self.fittingpopups_ui[listindex].doubleSpinBox_expDecRate.value()) loss_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.isChecked()) loss_expert = str(self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.currentText()) optimizer_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_optimizer_pop.isChecked()) optimizer_expert = str(self.fittingpopups_ui[listindex].comboBox_optimizer.currentText()) optimizer_settings = self.fittingpopups_ui[listindex].optimizer_settings.copy() #Get a copy of the current optimizer_settings. .copy prevents that changes in the UI have immediate effect paddingMode_ = str(self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.currentText()) print("paddingMode_:"+str(paddingMode_)) if paddingMode_ != paddingMode: print("Changed the padding mode!") gen_train_refresh = True#otherwise changing paddingMode will not have any effect paddingMode = paddingMode_ train_last_layers = bool(self.fittingpopups_ui[listindex].checkBox_trainLastNOnly_pop.isChecked()) train_last_layers_n = int(self.fittingpopups_ui[listindex].spinBox_trainLastNOnly_pop.value()) train_dense_layers = bool(self.fittingpopups_ui[listindex].checkBox_trainDenseOnly_pop.isChecked()) dropout_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_dropout_pop.isChecked()) try: dropout_expert = str(self.fittingpopups_ui[listindex].lineEdit_dropout_pop.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_lossW.isChecked()) lossW_expert = str(self.fittingpopups_ui[listindex].lineEdit_lossW.text()) class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert) # print("Updating parameter file (meta.xlsx)!") update_para_dict() #Changes in expert mode can affect the model: apply changes now: if expert_mode==True: if collection==False: #Expert mode is currently not supported for Collections expert_mode_before = True #Apply changes to the trainable states: if train_last_layers==True:#Train only the last n layers if verbose: print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] #Change the trainability states. Model compilation is done inside model_change_trainability summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if train_dense_layers==True:#Train only dense layers if verbose: print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True #Change the trainability states. Model compilation is done inside model_change_trainability summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else: text = "Could not understand user input at Expert->Dropout" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... #Change dropout. Model .compile happens inside change_dropout function do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to changed dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" if verbose: print(text_do) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do) if learning_rate_expert_on==True: #get the current lr_dict lr_dict_now = aid_dl.get_lr_dict(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) if not lr_dict_now.equals(lr_dict_original):#in case the dataframes dont equal... #generate a new callback callback_lr = aid_dl.get_lr_callback(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) #update lr_dict_original lr_dict_original = lr_dict_now.copy() else: callback_lr = None if optimizer_expert_on==True: optimizer_settings_now = self.fittingpopups_ui[listindex].optimizer_settings.copy() if not optimizer_settings_now == optimizer_settings:#in case the dataframes dont equal... #grab these new optimizer values optimizer_settings = optimizer_settings_now.copy() ############################Invert 'expert' settings######################### if expert_mode==False and expert_mode_before==True: #if the expert mode was selected before, change the parameters back to original vlaues if verbose: print("Expert mode was used before and settings are now inverted") #Re-set trainable states back to original state if verbose: print("Change 'trainable' layers back to original state") summary = aid_dl.model_change_trainability(model_keras,trainable_original,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change 'trainable' layers back to original state") text1 = "Expert mode turns off: Request for orignal trainability states:\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if verbose: print("Change dropout rates in dropout layers back to original values") callback_lr = None#remove learning rate callback if verbose: print("Set learning rate callback to None") if len(do_list_original)>0: do_changed = aid_dl.change_dropout(model_keras,do_list_original,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout values back to original state. I'm not sure if this works!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to original values: "+str(do_list_original) else: text_do = "Dropout rate(s) in model was/were not changed" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do+"\n") text_updates = "" #Compare current lr and the lr on expert tab: if collection==False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection==False: K.set_value(model_keras.optimizer.lr, learning_rate_const) else: K.set_value(model_keras[0].optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model else: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: loss_ = model_keras.loss else: loss_ = model_keras[0].loss if loss_!=loss_expert: recompile = True model_metrics_records["loss"] = 9E20 #Reset the record for loss because new loss function could converge to a different min. value model_metrics_records["val_loss"] = 9E20 #Reset the record for loss because new loss function could converge to a different min. value text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True and collection==False: print("Recompiling...") aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change optimizer, loss and learninig rate.") elif recompile==True and collection==True: if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled print("Altering learning rate is not suported for collections (yet)") return print("Recompiling...") for m in model_keras: aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_updates) #self.model_keras = model_keras #overwrite the model in self self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.setChecked(False) ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? X_batch = X_batch.astype(np.uint8) if contrast_on: t_con_aug_1 = time.time() X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! t_con_aug_2 = time.time() if verbose == 1: print("Time to augment contrast="+str(t_con_aug_2-t_con_aug_1)) if saturation_on or hue_on: t_sat_aug_1 = time.time() X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) #Gray and RGB; both values >0! t_sat_aug_2 = time.time() if verbose == 1: print("Time to augment saturation/hue="+str(t_sat_aug_2-t_sat_aug_1)) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: t_avgBlur_1 = time.time() X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) t_avgBlur_2 = time.time() if verbose == 1: print("Time to perform average blurring="+str(t_avgBlur_2-t_avgBlur_1)) if gaussBlur_on: t_gaussBlur_1 = time.time() X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) t_gaussBlur_2 = time.time() if verbose == 1: print("Time to perform gaussian blurring="+str(t_gaussBlur_2-t_gaussBlur_1)) if motionBlur_on: t_motionBlur_1 = time.time() X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) t_motionBlur_2 = time.time() if verbose == 1: print("Time to perform motion blurring="+str(t_motionBlur_2-t_motionBlur_1)) ##########Brightness noise######### t3 = time.time() X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) t4 = time.time() if verbose == 1: print("Time to augment brightness="+str(t4-t3)) t3 = time.time() if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) t4 = time.time() if verbose == 1: print("Time to apply normalization="+str(t4-t3)) #Fitting can be paused while str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())=="": time.sleep(2) #wait 2 seconds and then check the text on the button again if verbose == 1: print("X_batch.shape") print(X_batch.shape) if xtra_in==True: print("Add Xtra Data to X_batch") X_batch = [X_batch,xtra_train] #generate a list of callbacks, get empty list if callback_lr is none callbacks = [] if callback_lr!=None: callbacks.append(callback_lr) ################################################### ###############Actual fitting###################### ################################################### if collection==False: if model_keras_p == None: history = model_keras.fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) elif model_keras_p != None: history = model_keras_p.fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) Histories.append(history.history) Stopwatch.append(time.time()-time_start) learningrate = K.get_value(history.model.optimizer.lr) LearningRate.append(learningrate) #Check if any metric broke a record record_broken = False #initially, assume there is no new record for key in history.history.keys(): value = history.history[key][-1] record = model_metrics_records[key] if 'val_acc' in key or 'val_precision' in key or 'val_recall' in key or 'val_f1_score' in key: #These metrics should go up (towards 1) if value>record: model_metrics_records[key] = value record_broken = True print(key+" broke record -> Model will be saved" ) elif 'val_loss' in key: #This metric should go down (towards 0) if value<record: model_metrics_records[key] = value record_broken = True print(key+" broke record -> Model will be saved") #self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) if record_broken:#if any record was broken... if deviceSelected=="Multi-GPU":#in case of Multi-GPU... #In case of multi-GPU, first copy the weights of the parallel model to the normal model model_keras.set_weights(model_keras_p.layers[-2].get_weights()) #Save the model text = "Save model to following directory: \n"+os.path.dirname(new_modelname) print(text) if os.path.exists(os.path.dirname(new_modelname)): model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") text = "Record was broken -> saved model" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else:#in case the folder does not exist (anymore), create a folder in temp #what is the foldername of the model? text = "Saving failed. Create folder in temp" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) saving_failed = True temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist text = "Your temp. folder is here: "+str(temp_path) print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) parentfolder = aid_bin.splitall(new_modelname)[-2] fname = os.path.split(new_modelname)[-1] #create that folder in temp if it not exists already if not os.path.exists(os.path.join(temp_path,parentfolder)): text = "Create folder in temp:\n"+os.path.join(temp_path,parentfolder) print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) os.mkdir(os.path.join(temp_path,parentfolder)) #change the new_modelname to a path in temp new_modelname = os.path.join(temp_path,parentfolder,fname) #inform user! text = "Could not find original folder. Files are now saved to "+new_modelname text = "<span style=\' color: red;\'>" +text+"</span>" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) text = "<span style=\' color: black;\'>" +""+"</span>" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #Save the model model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") text = "Model saved successfully to temp" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #Also update the excel writer! writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet Saved.append(1) #Also save the model upon user-request elif bool(self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.isChecked())==True: if deviceSelected=="Multi-GPU":#in case of Multi-GPU... #In case of multi-GPU, first copy the weights of the parallel model to the normal model model_keras.set_weights(model_keras_p.layers[-2].get_weights()) model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") Saved.append(1) self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.setChecked(False) else: Saved.append(0) elif collection==True: for i in range(len(model_keras)): #Expert-settings return automatically to default values when Expert-mode is unchecked history = model_keras[i].fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) HISTORIES[i].append(history.history) learningrate = K.get_value(history.model.optimizer.lr) print("model_keras_path[i]") print(model_keras_path[i]) #Check if any metric broke a record record_broken = False #initially, assume there is no new record for key in history.history.keys(): value = history.history[key][-1] record = model_metrics_records[key] if 'val_acc' in key or 'val_precision' in key or 'val_recall' in key or 'val_f1_score' in key: #These metrics should go up (towards 1) if value>record: model_metrics_records[key] = value record_broken = True text = key+" broke record -> Model will be saved" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #one could 'break' here, but I want to update all records elif 'val_loss' in key: #This metric should go down (towards 0) if value<record: model_metrics_records[key] = value record_broken = True text = key+" broke record -> Model will be saved" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #For collections of models: if record_broken: #Save the model model_keras[i].save(model_keras_path[i].split(".model")[0]+"_"+str(counter)+".model") SAVED[i].append(1) elif bool(self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.isChecked())==True: model_keras[i].save(model_keras_path[i].split(".model")[0]+"_"+str(counter)+".model") SAVED[i].append(1) self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.setChecked(False) else: SAVED[i].append(0) callback_progessbar = float(counter)/nr_epochs progress_callback.emit(100.0*callback_progessbar) history_emit = history.history history_emit["LearningRate"] = [learningrate] history_callback.emit(history_emit) Index.append(counter) t2 = time.time() if collection==False: if counter==0: #If this runs the first time, create the file with header DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index #If this runs the first time, create the file with header if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(writer,sheet_name='History') writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) meta_saving_t = int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()) text = "meta.xlsx was saved (automatic saving every "+str(meta_saving_t)+"s)" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #self.fittingpopups_ui[listindex].backup.append({"DF1":DF1}) Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists #Get a sensible frequency for saving the dataframe (every 20s) elif t2-t1>int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()): #elif counter%50==0: #otherwise save the history to excel after each n epochs DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index #Saving if os.path.exists(os.path.dirname(new_modelname)):#check if folder is (still) available if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #make read only meta_saving_t = int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()) text = "meta.xlsx was saved (automatic saving every "+str(meta_saving_t)+"s to directory:\n)"+new_modelname print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists t1 = time.time() else:#If folder not available, create a folder in temp text = "Failed to save meta.xlsx. -> Create folder in temp\n" saving_failed = True temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist text += "Your temp folder is here: "+str(temp_path)+"\n" folder = os.path.split(new_modelname)[-2] folder = os.path.split(folder)[-1] fname = os.path.split(new_modelname)[-1] #create that folder in temp if it does'nt exist already if not os.path.exists(os.path.join(temp_path,folder)): os.mkdir(os.path.join(temp_path,folder)) text +="Created directory in temp:\n"+os.path.join(temp_path,folder) print(text) #change the new_modelname to a path in temp new_modelname = os.path.join(temp_path,folder,fname) #inform user! text = "Could not find original folder. Files are now saved to "+new_modelname text = "<span style=\' color: red;\'>" +text+"</span>"#put red text to the infobox self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) text = "<span style=\' color: black;\'>" +""+"</span>"#reset textcolor to black self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #update the excel writer writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): print("There is already such a file...AID will add new data to it. Please check if this is OK") os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(writer,sheet_name='History') writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) print("meta.xlsx was saved") Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists if collection==True: if counter==0: for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] #If this runs the first time, create the file with header DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #If this runs the first time, create the file with header if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(Writers[i],sheet_name='History') Writers[i].save() os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) print("meta.xlsx was saved") Index = []#reset the Index list #Get a sensible frequency for saving the dataframe (every 20s) elif t2-t1>int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()): for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #Saving #TODO: save to temp, if harddisk not available to prevent crash. if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write DF1.to_excel(Writers[i],sheet_name='History', startrow=Writers[i].sheets['History'].max_row,header= False) Writers[i].save() os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #make read only print("meta.xlsx was saved") t1 = time.time() Index = []#reset the Index list counter+=1 progress_callback.emit(100.0) #If the original storing locating became inaccessible (folder name changed, HD unplugged...) #the models and meta are saved to temp folder. Inform the user!!! if saving_failed==True: path_orig = str(self.fittingpopups_ui[listindex].lineEdit_modelname_pop.text()) text = "<html><head/><body><p>Original path:<br>"+path_orig+\ "<br>became inaccessible during training! Files were then saved to:<br>"+\ new_modelname.split(".model")[0]+"<br>To bring both parts back together\ , you have manually open the meta files (excel) and copy;paste each sheet. \ Sorry for the inconvenience.<br>If that happens often, you may contact \ the main developer and ask him to improve that.</p></body></html>" text = "<span style=\' font-weight:600; color: red;\'>" +text+"</span>"#put red text to the infobox self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) print('\a')#make a noise self.fittingpopups_ui[listindex].textBrowser_FittingInfo.setStyleSheet("background-color: yellow;") self.fittingpopups_ui[listindex].textBrowser_FittingInfo.moveCursor(QtGui.QTextCursor.End) if collection==False: if len(Histories)>0: #if the list for History files is not empty, process it! DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index Index = []#reset the Index list Histories = []#reset the Histories list Saved = [] #does such a file exist already? append! if not os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): DF1.to_excel(writer,sheet_name='History') else: # else it exists so append without writing the header DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write writer.save() writer.close() if collection==True: for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] if len(Histories)>0: #if the list for History files is not empty, process it! DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #does such a file exist already? append! if not os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): DF1.to_excel(Writers[i],sheet_name='History') else: # else it exists so append without writing the header DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write Writers[i].save() Writers[i].close() Index = []#reset the Index list sess.close() # try: # aid_dl.reset_keras(model_keras) # except: # pass def action_fit_model(self): #Take the initialized model #Unfortunately, in TensorFlow it is not possile to pass a model from #one thread to another. Therefore I have to load and save the models each time :( model_keras = self.model_keras if type(model_keras)==tuple: collection=True else: collection=False #Check if there was a model initialized: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a path/filename for the model to be fitted!") msg.setWindowTitle("Model path/ filename missing!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if model_keras==None:#in case the model got deleted in another task self.action_initialize_model(duties="initialize_train") print("Had to re-run action_initialize_model!") model_keras = self.model_keras self.model_keras = None#delete this copy if model_keras==None: # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Model could not be initialized") # msg.setWindowTitle("Error") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() return if not model_keras==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model is now initialized for you, Please check Model summary window below if everything is correct and then press Fit again!") msg.setWindowTitle("No initilized model found!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #There should be at least two outputs (index 0 and 1) if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras[1][0].get_config()#["layers"] nr_classes = int(model_keras[1][0].output.shape.dims[1]) if nr_classes<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define at least two classes") msg.setWindowTitle("Not enough classes") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if collection==False: #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = new_modelname.split(".model")[0]+"_0.model" #save a first version of the .model model_keras.save(self.model_keras_path) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway if collection==True: #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = [new_modelname.split(".model")[0]+"_"+model_keras[0][i]+".model" for i in range(len(model_keras[0]))] for i in range(len(self.model_keras_path)): #save a first version of the .model model_keras[1][i].save(self.model_keras_path[i]) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway #Check that Data is on RAM DATA_len = len(self.ram) #this returns the len of a dictionary. The dictionary is supposed to contain the training/validation data; otherwise the data is read from .rtdc data directly (SLOW unless you have ultra-good SSD) def popup_data_to_ram(button): yes_or_no = button.text() if yes_or_no == "&Yes": print("Moving data to ram") self.actionDataToRamNow_function() elif yes_or_no == "&No": pass if DATA_len==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Would you like transfer the Data to RAM now?\n(Currently the data is not in RAM and would be read from .rtdc, which slows down fitting dramatically unless you have a super-fast SSD.)") msg.setWindowTitle("Data to RAM now?") msg.setStandardButtons(QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) msg.buttonClicked.connect(popup_data_to_ram) msg.exec_() ###################Popup Window#################################### self.fittingpopups.append(MyPopup()) ui = aid_frontend.Fitting_Ui() ui.setupUi(self.fittingpopups[-1]) #append the ui to the last element on the list self.fittingpopups_ui.append(ui) # Increase the popupcounter by one; this will help to coordinate the data flow between main ui and popup self.popupcounter += 1 listindex=self.popupcounter-1 ##############################Define functions######################### self.fittingpopups_ui[listindex].pushButton_UpdatePlot_pop.clicked.connect(lambda: self.update_historyplot_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_Stop_pop.clicked.connect(lambda: self.stop_fitting_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_Pause_pop.clicked.connect(lambda: self.pause_fitting_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_saveTextWindow_pop.clicked.connect(lambda: self.saveTextWindow_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_clearTextWindow_pop.clicked.connect(lambda: self.clearTextWindow_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_showModelSumm_pop.clicked.connect(lambda: self.showModelSumm_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_saveModelSumm_pop.clicked.connect(lambda: self.saveModelSumm_pop(listindex)) #Expert mode functions #self.fittingpopups_ui[listindex].checkBox_pTr_pop.toggled.connect(lambda on_or_off: self.partialtrainability_activated_pop(on_or_off,listindex)) self.fittingpopups_ui[listindex].pushButton_lossW.clicked.connect(lambda: self.lossWeights_popup(listindex)) self.fittingpopups_ui[listindex].checkBox_lossW.clicked.connect(lambda on_or_off: self.lossWeights_activated(on_or_off,listindex)) self.fittingpopups_ui[listindex].Form.setWindowTitle(os.path.split(new_modelname)[1]) self.fittingpopups_ui[listindex].progressBar_Fitting_pop.setValue(0) #set the progress bar to zero self.fittingpopups_ui[listindex].pushButton_ShowExamleImgs_pop.clicked.connect(lambda: self.action_show_example_imgs_pop(listindex)) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.doubleClicked.connect(lambda item: self.tableWidget_HistoryInfo_pop_dclick(item,listindex)) #Cyclical learning rate extra settings self.fittingpopups_ui[listindex].pushButton_cycLrPopup.clicked.connect(lambda: self.popup_clr_settings(listindex)) self.fittingpopups_ui[listindex].comboBox_optimizer.currentTextChanged.connect(lambda: self.expert_optimizer_changed(optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].pushButton_LR_plot.clicked.connect(lambda: self.popup_lr_plot(listindex)) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.valueChanged.connect(lambda: self.expert_lr_changed(value=self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value(),optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.valueChanged.connect(lambda: self.expert_lr_changed(value=self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value(),optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].pushButton_optimizer_pop.clicked.connect(lambda: self.optimizer_change_settings_popup(listindex)) worker = Worker(self.action_fit_model_worker) #Get a signal from the worker to update the progressbar worker.signals.progress.connect(self.fittingpopups_ui[listindex].progressBar_Fitting_pop.setValue) #Define a func which prints information during fitting to textbrowser #And furthermore provide option to do real-time plotting def real_time_info(dic): self.fittingpopups_ui[listindex].Histories.append(dic) #append to a list. Will be used for plotting in the "Update plot" function OtherMetrics_keys = self.fittingpopups_ui[listindex].RealTime_OtherMetrics.keys() #Append to lists for real-time plotting self.fittingpopups_ui[listindex].RealTime_Acc.append(dic["acc"][0]) self.fittingpopups_ui[listindex].RealTime_ValAcc.append(dic["val_acc"][0]) self.fittingpopups_ui[listindex].RealTime_Loss.append(dic["loss"][0]) self.fittingpopups_ui[listindex].RealTime_ValLoss.append(dic["val_loss"][0]) keys = list(dic.keys()) #sort keys alphabetically keys_ = [l.lower() for l in keys] ind_sort = np.argsort(keys_) keys = list(np.array(keys)[ind_sort]) #First keys should always be acc,loss,val_acc,val_loss -in this order keys_first = ["acc","loss","val_acc","val_loss"] for i in range(len(keys_first)): if keys_first[i] in keys: ind = np.where(np.array(keys)==keys_first[i])[0][0] if ind!=i: del keys[ind] keys.insert(i,keys_first[i]) for key in keys: if "precision" in key or "f1" in key or "recall" in key or "LearningRate" in key: if not key in OtherMetrics_keys: #if this key is missing in self.fittingpopups_ui[listindex].RealTime_OtherMetrics attach it! self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key] = [] self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key].append(dic[key]) dic_text = [("{} {}".format(item, np.round(amount[0],4))) for item, amount in dic.items()] text = "Epoch "+str(self.fittingpopups_ui[listindex].epoch_counter)+"\n"+" ".join(dic_text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) self.fittingpopups_ui[listindex].epoch_counter+=1 if self.fittingpopups_ui[listindex].epoch_counter==1: #for each key, put a checkbox on the tableWidget_HistoryInfo_pop rowPosition = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.rowCount() self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.insertRow(rowPosition) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.setColumnCount(len(keys)) for columnPosition in range(len(keys)):#(2,4): key = keys[columnPosition] #for each item, also create 2 checkboxes (train/valid) item = QtWidgets.QTableWidgetItem(str(key))#("item {0} {1}".format(rowNumber, columnNumber)) item.setBackground(QtGui.QColor(self.colorsQt[columnPosition])) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.setItem(rowPosition, columnPosition, item) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.resizeColumnsToContents() self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.resizeRowsToContents() ########################Real-time plotting######################### if self.fittingpopups_ui[listindex].checkBox_realTimePlotting_pop.isChecked(): #get the range for the real time fitting if hasattr(self.fittingpopups_ui[listindex], 'historyscatters'):#if update plot was hit before x = range(len(self.fittingpopups_ui[listindex].Histories)) realTimeEpochs = self.fittingpopups_ui[listindex].spinBox_realTimeEpochs.value() if len(x)>realTimeEpochs: x = x[-realTimeEpochs:] #is any metric checked on the table? colcount = int(self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.columnCount()) #Collect items that are checked selected_items,Colors = [],[] for colposition in range(colcount): #is it checked? cb = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) for i in range(len(self.fittingpopups_ui[listindex].historyscatters)): #iterate over all available plots key = list(self.fittingpopups_ui[listindex].historyscatters.keys())[i] if key in selected_items: if key=="acc": y = np.array(self.fittingpopups_ui[listindex].RealTime_Acc).astype(float) elif key=="val_acc": y = np.array(self.fittingpopups_ui[listindex].RealTime_ValAcc).astype(float) elif key=="loss": y = np.array(self.fittingpopups_ui[listindex].RealTime_Loss).astype(float) elif key=="val_loss": y = np.array(self.fittingpopups_ui[listindex].RealTime_ValLoss).astype(float) elif "precision" in key or "f1" in key or "recall" in key or "LearningRate" in key: y = np.array(self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key]).astype(float).reshape(-1,) else: return #Only show the last 250 epochs if y.shape[0]>realTimeEpochs: y = y[-realTimeEpochs:] if y.shape[0]==len(x): self.fittingpopups_ui[listindex].historyscatters[key].setData(x, y)#,pen=None,symbol='o',symbolPen=None,symbolBrush=brush,clear=False) else: print("x and y are not the same size! Omitted plotting. I will try again to plot after the next epoch.") pg.QtGui.QApplication.processEvents() self.fittingpopups_ui[listindex].epoch_counter = 0 #self.fittingpopups_ui[listindex].backup = [] #backup of the meta information -> in case the original folder is not accessible anymore worker.signals.history.connect(real_time_info) #Finally start the worker! self.threadpool.start(worker) self.fittingpopups[listindex].show() def action_lr_finder(self): #lr_find model_keras = self.model_keras if type(model_keras)==tuple: collection=True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("LR screening is not supported for Collections of models. Please select single model") msg.setWindowTitle("LR screening not supported for Collections!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return else: collection=False #Check if there was a model initialized: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a path/filename for the model to be fitted!") msg.setWindowTitle("Model path/ filename missing!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if model_keras==None:#in case the model got deleted in another task self.action_initialize_model(duties="initialize_train") print("Had to re-run action_initialize_model!") model_keras = self.model_keras self.model_keras = None#delete this copy if model_keras==None: return if not model_keras==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model is now initialized for you, Please check Model summary window below if everything is correct and then press Fit again!") msg.setWindowTitle("No initilized model found!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_classes = int(model_keras.output.shape.dims[1]) if nr_classes<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define at least two classes") msg.setWindowTitle("Not enough classes") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = new_modelname.split(".model")[0]+"_0.model" #save a first version of the .model model_keras.save(self.model_keras_path) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway #Check that Data is on RAM DATA_len = len(self.ram) #this returns the len of a dictionary. The dictionary is supposed to contain the training/validation data; otherwise the data is read from .rtdc data directly (SLOW unless you have ultra-good SSD) def popup_data_to_ram(button): yes_or_no = button.text() if yes_or_no == "&Yes": print("Moving data to ram") self.actionDataToRamNow_function() elif yes_or_no == "&No": pass if DATA_len==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Would you like transfer the Data to RAM now?\n(Currently the data is not in RAM and would be read from .rtdc, which slows down fitting dramatically unless you have a super-fast SSD.)") msg.setWindowTitle("Data to RAM now?") msg.setStandardButtons(QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) msg.buttonClicked.connect(popup_data_to_ram) msg.exec_() worker = Worker(self.action_lr_finder_worker) #Get a signal from the worker to update the progressbar worker.signals.progress.connect(print) worker.signals.history.connect(print) #Finally start the worker! self.threadpool.start(worker) def action_lr_finder_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): gpu_used = False deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): gpu_used = True deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #get an index of the fitting popup #listindex = self.popupcounter-1 #Get user-specified filename for the new model model_keras_path = self.model_keras_path if type(model_keras_path)==list: collection = True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("LR screening is currently not supported for Collections of models. Please use single model") msg.setWindowTitle("LR screening not supported for Collections") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return else: collection = False if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) #Initialize a variable for the parallel model model_keras_p = None #Multi-GPU if deviceSelected=="Multi-GPU": if collection==False: print("Adjusting the model for Multi-GPU") model_keras_p = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have if self.radioButton_LoadContinueModel.isChecked():#calling multi_gpu_model resets the weights. Hence, they need to be put in place again model_keras_p.layers[-2].set_weights(model_keras.get_weights()) elif collection==True: print("Collection & Multi-GPU is not supported yet") return ##############Main function after hitting FIT MODEL#################### if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras[0].output.shape.dims[1]) #Metrics to be displayed during fitting (real-time) model_metrics = self.get_metrics(nr_classes) #Compile model if deviceSelected=="Single-GPU": model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif deviceSelected=="Multi-GPU": model_keras_p.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled #Collect all information about the fitting routine that was user #defined if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 trainable_original, layer_names = self.trainable_original, self.layer_names crop = int(self.spinBox_imagecrop.value()) norm = str(self.comboBox_Normalization.currentText()) nr_epochs = int(self.spinBox_NrEpochs.value()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple if collection==False: expert_mode = bool(self.groupBox_expertMode.isChecked()) elif collection==True: expert_mode = self.groupBox_expertMode.setChecked(False) print("Expert mode was switched off. Not implemented yet for collections") expert_mode = False learning_rate_const = float(self.doubleSpinBox_learningRate.value()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.optimizer_settings.copy() paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert = str(self.lineEdit_lossW.text()) #To get the class weights (loss), the SelectedFiles are required SelectedFiles = self.items_clicked_no_rtdc_ds() #Check if xtra_data should be used for training xtra_in = [s["xtra_in"] for s in SelectedFiles] if len(set(xtra_in))==1: xtra_in = list(set(xtra_in))[0] elif len(set(xtra_in))>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return #Get the class weights. This function runs now the first time in the fitting routine. #It is possible that the user chose Custom weights and then changed the classes. Hence first check if #there is a weight for each class available. class_weight = self.get_class_weight(SelectedFiles,lossW_expert,custom_check_classes=True) if type(class_weight)==list: #There has been a mismatch between the classes described in class_weight and the classes available in SelectedFiles! lossW_expert = class_weight[0] #overwrite class_weight = class_weight[1] print(class_weight) print("There has been a mismatch between the classes described in \ Loss weights and the classes available in the selected files! \ Hence, the Loss weights are set to Balanced") ###############################Expert Mode values################## if expert_mode==True: #Some settings only need to be changed once, after user clicked apply at next epoch #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" print(text1+summary) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" print(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a single float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" print(text) else: text = "Could not understand user input at Expert->Dropout" print(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) text_updates = "" #Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection == False: K.set_value(model_keras.optimizer.lr, learning_rate_const) if collection == True: for m in model_keras: K.set_value(m.optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model if collection==True: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if collection==True: if model_keras[0].loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True: print("Recompiling...") if collection==False: aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras[1]: aid_dl.model_compile(m, loss_expert, optimizer_settings, learning_rate_const,model_metrics, nr_classes) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to adjust learning rate, loss, optimizer") print(text_updates) ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_epoch_train = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_train] rtdc_path_train = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_train] zoom_factors_train = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_train] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_train = [selectedfile["shuffle"] for selectedfile in SelectedFiles_train] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_train]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False if verbose==1: print("Length of DATA (in RAM) = "+str(len(self.ram))) #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles_train)): if len(self.ram)==0: #Here, the entire training set needs to be used! Not only random images! #Replace=true: means individual cells could occur several times gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen_train = aid_img.gen_crop_img_ram(self.ram,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen_train)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "<html><head/><body><p>The standard deviation of your training data is zero! This would lead to division by zero. To avoid this, I will divide by 0.0001 instead.</p></body></html>" msg.setText(text) msg.setWindowTitle("Std. is zero") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_valid]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False ############Cropping##################### percDataV = float(self.popup_lrfinder_ui.doubleSpinBox_percDataV.value()) percDataV = percDataV/100.0 X_valid,y_valid,Indices,xtra_valid = [],[],[],[] for i in range(len(SelectedFiles_valid)): if len(self.ram)==0:#if there is no data available on ram #replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],int(np.rint(percDataV*nr_events_epoch_valid[i])),random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else:#get a similar generator, using the ram-data gen_valid = aid_img.gen_crop_img_ram(self.ram,rtdc_path_valid[i],int(np.rint(percDataV*nr_events_epoch_valid[i])),random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") generator_cropped_out = next(gen_valid) X_valid.append(generator_cropped_out[0]) #y_valid.append(np.repeat(indices_valid[i],nr_events_epoch_valid[i])) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(generator_cropped_out[1]) xtra_valid.append(generator_cropped_out[2]) del generator_cropped_out X_valid = np.concatenate(X_valid) y_valid = np.concatenate(y_valid) Y_valid = np_utils.to_categorical(y_valid, nr_classes)# * 2 - 1 xtra_valid = np.concatenate(xtra_valid) if len(X_valid.shape)==4: channels=3 elif len(X_valid.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_valid.shape)) if channels==1: #Add the "channels" dimension X_valid = np.expand_dims(X_valid,3) if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) #Validation data can be cropped to final size already since no augmentation #will happen on this data set dim_val = X_valid.shape print("Current dim. of validation set (pixels x pixels) = "+str(dim_val[2])) if dim_val[2]!=crop: print("Change dim. (pixels x pixels) of validation set to = "+str(crop)) remove = int(dim_val[2]/2.0 - crop/2.0) X_valid = X_valid[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow if xtra_in==True: print("Add Xtra Data to X_valid") X_valid = [X_valid,xtra_valid] ###################Load training data#################### #####################and perform######################### ##################Image augmentation##################### #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Should only a certain percentage of the numbers given in the table be sampled? percDataT = float(self.popup_lrfinder_ui.doubleSpinBox_percDataT.value()) percDataT = percDataT/100.0 X_train,y_train,xtra_train = [],[],[] t3 = time.time() for i in range(len(SelectedFiles_train)): if len(self.ram)==0: #Replace true means that individual cells could occur several times gen_train = aid_img.gen_crop_img(cropsize2,rtdc_path_train[i],int(np.rint(percDataT*nr_events_epoch_train[i])),random_images=shuffle_train[i],replace=True,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: gen_train = aid_img.gen_crop_img_ram(self.ram,rtdc_path_train[i],int(np.rint(percDataT*nr_events_epoch_train[i])),random_images=shuffle_train[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") data_ = next(gen_train) X_train.append(data_[0]) y_train.append(np.repeat(indices_train[i],X_train[-1].shape[0])) if xtra_in==True: xtra_train.append(data_[2]) del data_ X_train = np.concatenate(X_train) X_train = X_train.astype(np.uint8) y_train = np.concatenate(y_train) if xtra_in==True: print("Retrieve Xtra Data...") xtra_train = np.concatenate(xtra_train) t4 = time.time() if verbose == 1: print("Time to load data (from .rtdc or RAM) and crop="+str(t4-t3)) if len(X_train.shape)==4: channels=3 elif len(X_train.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_train.shape)) if channels==1: #Add the "channels" dimension X_train = np.expand_dims(X_train,3) t3 = time.time() #Affine augmentation X_train = aid_img.affine_augm(X_train,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) #Affine image augmentation y_train = np.copy(y_train) Y_train = np_utils.to_categorical(y_train, nr_classes)# * 2 - 1 t4 = time.time() if verbose == 1: print("Time to perform affine augmentation ="+str(t4-t3)) t3 = time.time() #Now do the final cropping to the actual size that was set by user dim = X_train.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) X_train = X_train[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow t4 = time.time() #X_train = np.copy(X_train) #save into new array and do some iterations with varying noise/brightness #reuse this X_batch_orig a few times since this augmentation was costly if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #In each iteration, start with non-augmented data #X_batch = np.copy(X_batch_orig)#copy from X_batch_orig, X_batch will be altered without altering X_batch_orig #X_train = X_train.astype(np.uint8) ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? X_train = X_train.astype(np.uint8) if contrast_on: t_con_aug_1 = time.time() X_train = aid_img.contrast_augm_cv2(X_train,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! t_con_aug_2 = time.time() if verbose == 1: print("Time to augment contrast="+str(t_con_aug_2-t_con_aug_1)) if saturation_on or hue_on: t_sat_aug_1 = time.time() X_train = aid_img.satur_hue_augm_cv2(X_train.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) #Gray and RGB; both values >0! t_sat_aug_2 = time.time() if verbose == 1: print("Time to augment saturation/hue="+str(t_sat_aug_2-t_sat_aug_1)) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: t_avgBlur_1 = time.time() X_train = aid_img.avg_blur_cv2(X_train,avgBlur_min,avgBlur_max) t_avgBlur_2 = time.time() if verbose == 1: print("Time to perform average blurring="+str(t_avgBlur_2-t_avgBlur_1)) if gaussBlur_on: t_gaussBlur_1 = time.time() X_train = aid_img.gauss_blur_cv(X_train,gaussBlur_min,gaussBlur_max) t_gaussBlur_2 = time.time() if verbose == 1: print("Time to perform gaussian blurring="+str(t_gaussBlur_2-t_gaussBlur_1)) if motionBlur_on: t_motionBlur_1 = time.time() X_train = aid_img.motion_blur_cv(X_train,motionBlur_kernel,motionBlur_angle) t_motionBlur_2 = time.time() if verbose == 1: print("Time to perform motion blurring="+str(t_motionBlur_2-t_motionBlur_1)) ##########Brightness noise######### t3 = time.time() X_train = aid_img.brightn_noise_augm_cv2(X_train,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) t4 = time.time() if verbose == 1: print("Time to augment brightness="+str(t4-t3)) t3 = time.time() if norm == "StdScaling using mean and std of all training data": X_train = aid_img.image_normalization(X_train,norm,mean_trainingdata,std_trainingdata) else: X_train = aid_img.image_normalization(X_train,norm) t4 = time.time() if verbose == 1: print("Time to apply normalization="+str(t4-t3)) if verbose == 1: print("X_train.shape") print(X_train.shape) if xtra_in==True: print("Add Xtra Data to X_train") X_train = [X_train,xtra_train] ################################################### ###############Actual fitting###################### ################################################### batch_size = int(self.popup_lrfinder_ui.spinBox_batchSize.value()) stepsPerEpoch = int(self.popup_lrfinder_ui.spinBox_stepsPerEpoch.value()) epochs = int(self.popup_lrfinder_ui.spinBox_epochs.value()) start_lr = float(self.popup_lrfinder_ui.lineEdit_startLr.text()) stop_lr = float(self.popup_lrfinder_ui.lineEdit_stopLr.text()) valMetrics = bool(self.popup_lrfinder_ui.checkBox_valMetrics.isChecked()) ####################lr_find algorithm#################### if model_keras_p == None: lrf = aid_dl.LearningRateFinder(model_keras) elif model_keras_p != None: lrf = aid_dl.LearningRateFinder(model_keras_p) if valMetrics==True: lrf.find([X_train,Y_train],[X_valid,Y_valid],start_lr,stop_lr,stepsPerEpoch=stepsPerEpoch,batchSize=batch_size,epochs=epochs) else: lrf.find([X_train,Y_train],None,start_lr,stop_lr,stepsPerEpoch=stepsPerEpoch,batchSize=batch_size,epochs=epochs) skipBegin,skipEnd = 10,1 self.learning_rates = lrf.lrs[skipBegin:-skipEnd] self.losses_or = lrf.losses_or[skipBegin:-skipEnd] self.losses_sm = lrf.losses_sm[skipBegin:-skipEnd] self.accs_or = lrf.accs_or[skipBegin:-skipEnd] self.accs_sm = lrf.accs_sm[skipBegin:-skipEnd] self.val_losses_sm = lrf.val_losses_sm[skipBegin:-skipEnd] self.val_losses_or = lrf.val_losses_or[skipBegin:-skipEnd] self.val_accs_sm = lrf.val_accs_sm[skipBegin:-skipEnd] self.val_accs_or = lrf.val_accs_or[skipBegin:-skipEnd] # Enable the groupboxes self.popup_lrfinder_ui.groupBox_singleLr.setEnabled(True) self.popup_lrfinder_ui.groupBox_LrRange.setEnabled(True) self.update_lrfind_plot() def update_lrfind_plot(self): if not hasattr(self, 'learning_rates'): return metric = str(self.popup_lrfinder_ui.comboBox_metric.currentText()) color = self.popup_lrfinder_ui.pushButton_color.palette().button().color() width = int(self.popup_lrfinder_ui.spinBox_lineWidth.value()) color = list(color.getRgb()) color = tuple(color) pencolor = pg.mkPen(color, width=width) smooth = bool(self.popup_lrfinder_ui.checkBox_smooth.isChecked()) try:# try to empty the plot self.popup_lrfinder_ui.lr_plot.clear() #self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_line) except: pass if metric=="Loss" and smooth==True: self.y_values = self.losses_sm elif metric=="Loss" and smooth==False: self.y_values = self.losses_or elif metric=="Loss 1st derivative" and smooth==True: self.y_values = np.diff(self.losses_sm,n=1) elif metric=="Loss 1st derivative" and smooth==False: self.y_values = np.diff(self.losses_or,n=1) elif metric=="Accuracy" and smooth==True: self.y_values = self.accs_sm elif metric=="Accuracy" and smooth==False: self.y_values = self.accs_or elif metric=="Accuracy 1st derivative" and smooth==True: self.y_values = np.diff(self.accs_sm,n=1) elif metric=="Accuracy 1st derivative" and smooth==False: self.y_values = np.diff(self.accs_or,n=1) elif metric=="Val. loss" and smooth==True: self.y_values = self.val_losses_sm elif metric=="Val. loss" and smooth==False: self.y_values = self.val_losses_or elif metric=="Val. loss 1st derivative" and smooth==True: self.y_values = np.diff(self.val_losses_sm,n=1) elif metric=="Val. loss 1st derivative" and smooth==False: self.y_values = np.diff(self.val_losses_or,n=1) elif metric=="Val. accuracy" and smooth==True: self.y_values = self.val_accs_sm elif metric=="Val. accuracy" and smooth==False: self.y_values = self.val_accs_or elif metric=="Val. accuracy 1st derivative" and smooth==True: self.y_values = np.diff(self.val_accs_sm,n=1) elif metric=="Val. accuracy 1st derivative" and smooth==False: self.y_values = np.diff(self.val_accs_or,n=1) else: print("The combination of "+str(metric)+" and smooth="+str(smooth)+" is not supported!") if len(self.learning_rates)==len(self.y_values): self.lr_line = pg.PlotCurveItem(x=np.log10(self.learning_rates), y=self.y_values,pen=pencolor,name=metric) elif len(self.learning_rates)-1==len(self.y_values): self.lr_line = pg.PlotCurveItem(x=np.log10(self.learning_rates)[1:], y=self.y_values,pen=pencolor,name=metric) else: print("No data available. Probably, validation metrics were not computed. Please click Run again.") return self.popup_lrfinder_ui.lr_plot.addItem(self.lr_line) #In case the groupBox_singleLr is already checked, carry out the function: if self.popup_lrfinder_ui.groupBox_singleLr.isChecked(): self.get_lr_single(on_or_off=True) #In case the groupBox_LrRange is already checked, carry out the function: if self.popup_lrfinder_ui.groupBox_LrRange.isChecked(): self.get_lr_range(on_or_off=True) def get_lr_single(self,on_or_off): if on_or_off==True: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): ind = np.argmin(self.y_values)#find location of loss-minimum mini_x = self.learning_rates[ind] mini_x = np.log10(mini_x) pen = pg.mkPen(color="w") self.lr_single = pg.InfiniteLine(pos=mini_x, angle=90, pen=pen, movable=True) self.popup_lrfinder_ui.lr_plot.addItem(self.lr_single) def position_changed(): #where did the user drag the region_linfit to? new_position = 10**(self.lr_single.value()) self.popup_lrfinder_ui.lineEdit_singleLr.setText(str(new_position)) self.lr_single.sigPositionChangeFinished.connect(position_changed) if on_or_off==False: #user unchecked the groupbox->remove the InfiniteLine if possible try: self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_single) except: pass def get_lr_range(self,on_or_off): #print(on_or_off) #start_lr = float(self.popup_lrfinder_ui.lineEdit_startLr.text()) #stop_lr = float(self.popup_lrfinder_ui.lineEdit_stopLr.text()) if on_or_off==True: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): start_x = 0.00001 start_x = np.log10(start_x) ind = np.argmin(self.y_values)#find location of loss-minimum end_x = self.learning_rates[ind] end_x = np.log10(end_x) self.lr_region = pg.LinearRegionItem([start_x, end_x], movable=True) self.popup_lrfinder_ui.lr_plot.addItem(self.lr_region) def region_changed(): #where did the user drag the region_linfit to? new_region = self.lr_region.getRegion() new_region_left = 10**(new_region[0]) new_region_right = 10**(new_region[1]) self.popup_lrfinder_ui.lineEdit_LrMin.setText(str(new_region_left)) self.popup_lrfinder_ui.lineEdit_LrMax.setText(str(new_region_right)) self.lr_region.sigRegionChangeFinished.connect(region_changed) if on_or_off==False: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): try: self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_region) except: pass def action_show_example_imgs(self): #this function is only for the main window if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #Get state of the comboboxes! tr_or_valid = str(self.comboBox_ShowTrainOrValid.currentText()) w_or_wo_augm = str(self.comboBox_ShowWOrWoAug.currentText()) #most of it should be similar to action_fit_model_worker #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles = self.items_clicked_no_rtdc_ds() #Collect all information about the fitting routine that was user defined crop = int(self.spinBox_imagecrop.value()) norm = str(self.comboBox_Normalization.currentText()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() #which index is requested by user:? req_index = int(self.spinBox_ShowIndex.value()) if tr_or_valid=='Training': ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] elif tr_or_valid=='Validation': ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles = np.array(SelectedFiles)[ind] SelectedFiles = list(SelectedFiles) indices = [selectedfile["class"] for selectedfile in SelectedFiles] ind = np.where(np.array(indices)==req_index)[0] if len(ind)<1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no data for this class available") msg.setWindowTitle("Class not available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return indices = list(np.array(indices)[ind]) SelectedFiles = list(np.array(SelectedFiles)[ind]) nr_events_epoch = len(indices)*[10] #[selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles] rtdc_path = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles] zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle = [selectedfile["shuffle"] for selectedfile in SelectedFiles] #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 print("std_trainingdata was zero and is now set to 0.0001 to avoid div. by zero!") if self.actionVerbose.isChecked(): print("Used all training data to get mean and std for normalization") if w_or_wo_augm=='With Augmentation': ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number ############Cropping and image augmentation##################### #Start the first iteration: X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=True,replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") try: #When all cells are at the border of the image, the generator will be empty. Avoid program crash by try, except X.append(next(gen)[0]) except StopIteration: print("All events at border of image and discarded") return y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) X = X.astype(np.uint8) #make sure we stay in uint8 y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 X = np.expand_dims(X,3)#Add the "channels" dimension else: print("Invalid data dimension:" +str(X.shape)) X_batch, y_batch = aid_img.affine_augm(X,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear), y #Affine image augmentation X_batch = X_batch.astype(np.uint8) #make sure we stay in uint8 #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? if contrast_on: X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! if saturation_on or hue_on: X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) if gaussBlur_on: X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) if motionBlur_on: X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) X = X_batch if verbose: print("Shape of the shown images is:"+str(X.shape)) elif w_or_wo_augm=='Original image': ############Cropping##################### X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=True,replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") try: X.append(next(gen)[0]) except: return y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 X = np.expand_dims(X,3) #Add the "channels" dimension else: print("Invalid data dimension: " +str(X.shape)) if norm == "StdScaling using mean and std of all training data": X = aid_img.image_normalization(X,norm,mean_trainingdata,std_trainingdata) else: X = aid_img.image_normalization(X,norm) if verbose: print("Shape of the shown images is: "+str(X.shape)) #Is there already anything shown on the widget? children = self.widget_ViewImages.findChildren(QtWidgets.QGridLayout) if len(children)>0: #if there is something, delete it! for i in reversed(range(self.gridLayout_ViewImages.count())): widgetToRemove = self.gridLayout_ViewImages.itemAt(i).widget() widgetToRemove.setParent(None) widgetToRemove.deleteLater() else: #else, create a Gridlayout to put the images self.gridLayout_ViewImages = QtWidgets.QGridLayout(self.widget_ViewImages) for i in range(5): if channels==1: img = X[i,:,:,0] #TensorFlow if channels==3: img = X[i,:,:,:] #TensorFlow #Stretch pixel value to full 8bit range (0-255); only for display img = img-np.min(img) fac = np.max(img) img = (img/fac)*255.0 img = img.astype(np.uint8) if channels==1: height, width = img.shape if channels==3: height, width, _ = img.shape # qi=QtGui.QImage(img_zoom.data, width, height,width, QtGui.QImage.Format_Indexed8) # self.label_image_show = QtWidgets.QLabel(self.widget_ViewImages) # self.label_image_show.setPixmap(QtGui.QPixmap.fromImage(qi)) # self.gridLayout_ViewImages.addWidget(self.label_image_show, 1,i) # self.label_image_show.show() #Use pygtgraph instead, in order to allow for exporting images self.image_show = pg.ImageView(self.widget_ViewImages) self.image_show.show() if verbose: print("Shape of zoomed image: "+str(img.shape)) if channels==1: self.image_show.setImage(img.T,autoRange=False) if channels==3: self.image_show.setImage(np.swapaxes(img,0,1),autoRange=False) self.image_show.ui.histogram.hide() self.image_show.ui.roiBtn.hide() self.image_show.ui.menuBtn.hide() self.gridLayout_ViewImages.addWidget(self.image_show, 1,i) self.widget_ViewImages.show() def tableWidget_HistoryInfo_pop_dclick(self,item,listindex): if item is not None: tableitem = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(item.row(), item.column()) if str(tableitem.text())!="Show saved only": color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) #self.update_historyplot_pop(listindex) def action_show_example_imgs_pop(self,listindex): #this function is only for the main window #Get state of the comboboxes! tr_or_valid = str(self.fittingpopups_ui[listindex].comboBox_ShowTrainOrValid_pop.currentText()) w_or_wo_augm = str(self.fittingpopups_ui[listindex].comboBox_ShowWOrWoAug_pop.currentText()) #most of it should be similar to action_fit_model_worker #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles = self.items_clicked_no_rtdc_ds() #Collect all information about the fitting routine that was user defined crop = int(self.fittingpopups_ui[listindex].spinBox_imagecrop_pop.value()) norm = str(self.fittingpopups_ui[listindex].comboBox_Normalization_pop.currentText()) h_flip = bool(self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.isChecked()) v_flip = bool(self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.isChecked()) rotation = float(self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.text()) width_shift = float(self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.text()) height_shift = float(self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.text()) zoom = float(self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.text()) shear = float(self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.text()) brightness_add_lower = float(self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.value()) brightness_add_upper = float(self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.value()) brightness_mult_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.value()) brightness_mult_upper = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.value()) gaussnoise_mean = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.value()) gaussnoise_scale = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.value()) contrast_on = bool(self.fittingpopups_ui[listindex].checkBox_contrast_pop.isChecked()) contrast_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.value()) contrast_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.value()) saturation_on = bool(self.fittingpopups_ui[listindex].checkBox_saturation_pop.isChecked()) saturation_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.value()) saturation_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.value()) hue_on = bool(self.fittingpopups_ui[listindex].checkBox_hue_pop.isChecked()) hue_delta = float(self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.value()) avgBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.isChecked()) avgBlur_min = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.value()) avgBlur_max = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.value()) gaussBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.isChecked()) gaussBlur_min = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.value()) gaussBlur_max = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.value()) motionBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.isChecked()) motionBlur_kernel = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.text()) motionBlur_angle = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple paddingMode = str(self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.currentText()).lower() #which index is requested by user:? req_index = int(self.fittingpopups_ui[listindex].spinBox_ShowIndex_pop.value()) if tr_or_valid=='Training': ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] elif tr_or_valid=='Validation': ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles = np.array(SelectedFiles)[ind] SelectedFiles = list(SelectedFiles) indices = [selectedfile["class"] for selectedfile in SelectedFiles] ind = np.where(np.array(indices)==req_index)[0] if len(ind)<1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no data for this class available") msg.setWindowTitle("Class not available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return indices = list(np.array(indices)[ind]) SelectedFiles = list(np.array(SelectedFiles)[ind]) nr_events_epoch = len(indices)*[10] #[selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles] rtdc_path = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles] zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle = [selectedfile["shuffle"] for selectedfile in SelectedFiles] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) #Replace true means that individual cells could occur several times else: if len(self.ram)==0: gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) #Replace true means that individual cells could occur several times else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],random_images=False,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 print("std_trainingdata turned out to be zero. I set it to 0.0001, to avoid division by zero!") if self.actionVerbose.isChecked(): print("Used all training data to get mean and std for normalization") if w_or_wo_augm=='With Augmentation': ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number ############Get cropped images with image augmentation##################### #Start the first iteration: X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=shuffle[i],replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") X.append(next(gen)[0]) #y.append(np.repeat(indices[i],nr_events_epoch[i])) y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X.shape)) if channels==1: #Add the "channels" dimension X = np.expand_dims(X,3) X_batch, y_batch = aid_img.affine_augm(X,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear), y #Affine image augmentation X_batch = X_batch.astype(np.uint8) #make sure we stay in uint8 #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? if contrast_on: X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! if saturation_on or hue_on: X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) if gaussBlur_on: X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) if motionBlur_on: X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) X = X_batch elif w_or_wo_augm=='Original image': ############Cropping##################### X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=shuffle[i],replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") X.append(next(gen)[0]) #y.append(np.repeat(indices[i],nr_events_epoch[i])) y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels = 3 elif len(X.shape)==3: channels = 1 X = np.expand_dims(X,3)#Add the "channels" dimension else: print("Invalid data dimension:" +str(X.shape)) if norm == "StdScaling using mean and std of all training data": X = aid_img.image_normalization(X,norm,mean_trainingdata,std_trainingdata) else: X = aid_img.image_normalization(X,norm) #Is there already anything shown on the widget? children = self.fittingpopups_ui[listindex].widget_ViewImages_pop.findChildren(QtWidgets.QGridLayout) if len(children)>0: #if there is something, delete it! for i in reversed(range(self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.count())): widgetToRemove = self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.itemAt(i).widget() widgetToRemove.setParent(None) widgetToRemove.deleteLater() else: #else, create a Gridlayout to put the images self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop = QtWidgets.QGridLayout(self.fittingpopups_ui[listindex].widget_ViewImages_pop) for i in range(5): if channels==1: img = X[i,:,:,0] if channels==3: img = X[i,:,:,:] #Normalize image to full 8bit range (from 0 to 255) img = img-np.min(img) fac = np.max(img) img = (img/fac)*255.0 img = img.astype(np.uint8) # height, width = img_zoom.shape # qi=QtGui.QImage(img_zoom.data, width, height,width, QtGui.QImage.Format_Indexed8) # self.label_image_show = QtWidgets.QLabel(self.widget_ViewImages) # self.label_image_show.setPixmap(QtGui.QPixmap.fromImage(qi)) # self.gridLayout_ViewImages_pop.addWidget(self.label_image_show, 1,i) # self.label_image_show.show() #Use pygtgraph instead, in order to allow for exporting images self.fittingpopups_ui[listindex].image_show_pop = pg.ImageView(self.fittingpopups_ui[listindex].widget_ViewImages_pop) self.fittingpopups_ui[listindex].image_show_pop.show() if channels==1: self.fittingpopups_ui[listindex].image_show_pop.setImage(img.T,autoRange=False) if channels==3: self.fittingpopups_ui[listindex].image_show_pop.setImage(np.swapaxes(img,0,1),autoRange=False) self.fittingpopups_ui[listindex].image_show_pop.ui.histogram.hide() self.fittingpopups_ui[listindex].image_show_pop.ui.roiBtn.hide() self.fittingpopups_ui[listindex].image_show_pop.ui.menuBtn.hide() self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.addWidget(self.fittingpopups_ui[listindex].image_show_pop, 1,i) self.fittingpopups_ui[listindex].widget_ViewImages_pop.show() def get_color_mode(self): if str(self.comboBox_GrayOrRGB.currentText())=="Grayscale": return "Grayscale" elif str(self.comboBox_GrayOrRGB.currentText())=="RGB": return "RGB" else: return None def checkBox_rollingMedian_statechange(self,item):#used in frontend self.horizontalSlider_rollmedi.setEnabled(item) def update_historyplot(self): #After loading a history, there are checkboxes available. Check, if user checked some: colcount = self.tableWidget_HistoryItems.columnCount() #Collect items that are checked selected_items = [] Colors = [] for colposition in range(colcount): #get checkbox item and; is it checked? cb = self.tableWidget_HistoryItems.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) #Get a list of the color from the background of the table items DF1 = self.loaded_history #Clear the plot self.widget_Scatterplot.clear() #Add plot self.plt1 = self.widget_Scatterplot.addPlot() self.plt1.showGrid(x=True,y=True) self.plt1.addLegend() self.plt1.setLabel('bottom', 'Epoch', units='') self.plot_rollmedis = [] #list for plots of rolling medians if "Show saved only" in selected_items: #nr_of_selected_items = len(selected_items)-1 #get the "Saved" column from DF1 saved = DF1["Saved"] saved = np.where(np.array(saved==1))[0] # else: # nr_of_selected_items = len(selected_items) self.Colors = Colors scatter_x,scatter_y = [],[] for i in range(len(selected_items)): key = selected_items[i] if key!="Show saved only": df = DF1[key] epochs = range(len(df)) win = int(self.horizontalSlider_rollmedi.value()) rollmedi = df.rolling(window=win).median() if "Show saved only" in selected_items: df = np.array(df)[saved] epochs = np.array(epochs)[saved] rollmedi = pd.DataFrame(df).rolling(window=win).median() scatter_x.append(epochs) scatter_y.append(df) color = self.Colors[i] pen_rollmedi = list(color.color().getRgb()) pen_rollmedi = pg.mkColor(pen_rollmedi) pen_rollmedi = pg.mkPen(color=pen_rollmedi,width=6) color = list(color.color().getRgb()) color[-1] = int(0.6*color[-1]) color = tuple(color) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) self.plt1.plot(epochs, df,pen=None,symbol='o',symbolPen=None,symbolBrush=brush,name=key,clear=False) if bool(self.checkBox_rollingMedian.isChecked()):#Should a rolling median be plotted? try: rollmedi = np.array(rollmedi).reshape(rollmedi.shape[0]) rm = self.plt1.plot(np.array(epochs), rollmedi,pen=pen_rollmedi,clear=False) self.plot_rollmedis.append(rm) except Exception as e: #There is an issue for the rolling median plotting! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText(str(e)+"\n->There are likely too few points to have a rolling median with such a window size ("+str(round(win))+")") msg.setWindowTitle("Error occured when plotting rolling median:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() if len(str(self.lineEdit_LoadHistory.text()))==0: #if DF1==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please load History file first (.meta)") msg.setWindowTitle("No History file loaded") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if len(scatter_x)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please select at least one of " +"\n".join(list(DF1.keys()))) msg.setWindowTitle("No quantity selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Keep the information as lists available for this function self.scatter_x_l, self.scatter_y_l = scatter_x,scatter_y if bool(self.checkBox_linearFit.isChecked()): #Put a liner region on the plot; cover the last 10% of points if np.max(np.concatenate(scatter_x))<12: start_x = 0 end_x = np.max(np.concatenate(scatter_x))+1 else: start_x = int(0.9*np.max(np.concatenate(scatter_x))) end_x = int(1.0*np.max(np.concatenate(scatter_x))) self.region_linfit = pg.LinearRegionItem([start_x, end_x], bounds=[-np.inf,np.inf], movable=True) self.plt1.addItem(self.region_linfit) def region_changed(): try: #clear the plot from other fits if there are any if len(self.plot_fits)>0: for i in range(len(self.plot_fits)): self.plt1.legend.removeItem(self.names[i]) self.plt1.removeItem(self.plot_fits[i]) except: pass #where did the user drag the region_linfit to? new_region = self.region_linfit.getRegion() #for each curve, do a linear regression self.plot_fits,self.names = [], [] for i in range(len(self.scatter_x_l)): scatter_x_vals = np.array(self.scatter_x_l[i]) ind = np.where( (scatter_x_vals<new_region[1]) & (scatter_x_vals>new_region[0]) ) scatter_x_vals = scatter_x_vals[ind] scatter_y_vals = np.array(self.scatter_y_l[i])[ind] if len(scatter_x_vals)>1: fit = np.polyfit(scatter_x_vals,scatter_y_vals,1) fit_y = fit[0]*scatter_x_vals+fit[1] pencolor = pg.mkColor(self.Colors[i].color()) pen = pg.mkPen(color=pencolor,width=6) text = 'y='+("{:.2e}".format(fit[0]))+"x + " +("{:.2e}".format(fit[1])) self.names.append(text) self.plot_fits.append(self.plt1.plot(name=text)) self.plot_fits[i].setData(scatter_x_vals,fit_y,pen=pen,clear=False,name=text) self.region_linfit.sigRegionChangeFinished.connect(region_changed) def slider_changed(): if bool(self.checkBox_rollingMedian.isChecked()): #remove other rolling median lines: for i in range(len(self.plot_rollmedis)): self.plt1.removeItem(self.plot_rollmedis[i]) #Start with fresh list self.plot_rollmedis = [] win = int(self.horizontalSlider_rollmedi.value()) for i in range(len(self.scatter_x_l)): epochs = np.array(self.scatter_x_l[i]) if type(self.scatter_y_l[i]) == pd.core.frame.DataFrame: rollmedi = self.scatter_y_l[i].rolling(window=win).median() else: rollmedi = pd.DataFrame(self.scatter_y_l[i]).rolling(window=win).median() rollmedi = np.array(rollmedi).reshape(rollmedi.shape[0]) pencolor = pg.mkColor(self.Colors[i].color()) pen_rollmedi = pg.mkPen(color=pencolor,width=6) rm = self.plt1.plot(np.array(epochs), rollmedi,pen=pen_rollmedi,clear=False) self.plot_rollmedis.append(rm) self.horizontalSlider_rollmedi.sliderMoved.connect(slider_changed) scatter_x = np.concatenate(scatter_x) scatter_y = np.concatenate(scatter_y) scatter_x_norm = (scatter_x.astype(float))/float(np.max(scatter_x)) scatter_y_norm = (scatter_y.astype(float))/float(np.max(scatter_y)) self.model_was_selected_before = False def onClick(event): #Get all plotting items #if len(self.plt1.listDataItems())==nr_of_selected_items+1: #delete the last item if the user selected already one: if self.model_was_selected_before: self.plt1.removeItem(self.plt1.listDataItems()[-1]) items = self.widget_Scatterplot.scene().items(event.scenePos()) #get the index of the viewbox isviewbox = [type(item)==pg.graphicsItems.ViewBox.ViewBox for item in items] index = np.where(np.array(isviewbox)==True)[0] vb = np.array(items)[index] try: #when user rescaed the vew and clicks somewhere outside, it could appear an IndexError. clicked_x = float(vb[0].mapSceneToView(event.scenePos()).x()) clicked_y = float(vb[0].mapSceneToView(event.scenePos()).y()) except: return try: a1 = (clicked_x)/float(np.max(scatter_x)) a2 = (clicked_y)/float(np.max(scatter_y)) except Exception as e: print(str(e)) return #Which is the closest scatter point? dist = np.sqrt(( a1-scatter_x_norm )**2 + ( a2-scatter_y_norm )**2) index = np.argmin(dist) clicked_x = scatter_x[index] clicked_y = scatter_y[index] #Update the spinBox #self.spinBox_ModelIndex.setValue(int(clicked_x)) #Modelindex for textBrowser_SelectedModelInfo text_index = "\nModelindex: "+str(clicked_x) #Indicate the selected model on the scatter plot self.plt1.plot([clicked_x], [clicked_y],pen=None,symbol='o',symbolPen='w',clear=False) #Get more information about this model Modelname = str(self.loaded_para["Modelname"].iloc[0]) path, filename = os.path.split(Modelname) filename = filename.split(".model")[0]+"_"+str(clicked_x)+".model" path = os.path.join(path,filename) if os.path.isfile(path): text_path = "\nFile is located in:"+path else: text_path = "\nFile not found!:"+path+"\nProbably the .model was deleted or not saved" text_acc = str(DF1.iloc[clicked_x]) self.textBrowser_SelectedModelInfo.setText("Loaded model: "+filename+text_index+text_path+"\nPerformance:\n"+text_acc) self.model_was_selected_before = True self.model_2_convert = path self.widget_Scatterplot.scene().sigMouseClicked.connect(onClick) def action_load_history(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta file (*meta.xlsx)") filename = filename[0] if not filename.endswith("meta.xlsx"): return if not os.path.isfile(filename): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("File not found") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.lineEdit_LoadHistory.setText(filename) self.action_plot_history(filename) def action_load_history_current(self): if self.model_keras_path==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no fitting going on") msg.setWindowTitle("No current fitting process!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return history_path = self.model_keras_path if type(history_path)==list:#collection=True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Not implemented for collections. Please use 'Load History' button to specify a single .meta file") msg.setWindowTitle("Not implemented for collecitons") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return filename = history_path.split("_0.model")[0]+"_meta.xlsx" if not filename.endswith("meta.xlsx"): return if not os.path.isfile(filename): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("File not found") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.lineEdit_LoadHistory.setText(filename) self.action_plot_history(filename) def action_plot_history(self,filename): #If there is a file, it can happen that fitting is currently going on #and with bad luck AID just tries to write to the file. This would cause a crash. #Therfore, first try to copy the file to a temporary folder. If that fails, #wait 1 seconds and try again #There needs to be a "temp" folder. If there os none, create it! #does temp exist? tries = 0 #during fitting, AID sometimes wants to write to the history file. In this case we cant read try: while tries<15:#try a few times try: temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist #Create a random filename for a temp. file someletters = list("STERNBURGPILS") temporaryfile = np.random.choice(someletters,5,replace=True) temporaryfile = "".join(temporaryfile)+".xlsx" temporaryfile = os.path.join(temp_path,temporaryfile) shutil.copyfile(filename,temporaryfile) #copy the original excel file there dic = pd.read_excel(temporaryfile,sheet_name='History',index_col=0) #open it there self.loaded_history = dic para = pd.read_excel(temporaryfile,sheet_name='Parameters') print(temporaryfile) #delete the tempfile os.remove(temporaryfile) self.loaded_para = para tries = 16 except: time.sleep(1.5) tries+=1 except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Check if dic exists now try: keys = list(dic.keys()) except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) #sort the list alphabetically keys_ = [l.lower() for l in keys] ind_sort = np.argsort(keys_) keys = list(np.array(keys)[ind_sort]) #First keys should always be acc,loss,val_acc,val_loss -in this order keys_first = ["acc","loss","val_acc","val_loss"] for i in range(len(keys_first)): if keys_first[i] in keys: ind = np.where(np.array(keys)==keys_first[i])[0][0] if ind!=i: del keys[ind] keys.insert(i,keys_first[i]) #Lastly check if there is "Saved" or "Time" present and shift it to the back keys_last = ["Saved","Time"] for i in range(len(keys_last)): if keys_last[i] in keys: ind = np.where(np.array(keys)==keys_last[i])[0][0] if ind!=len(keys): del keys[ind] keys.append(keys_last[i]) self.tableWidget_HistoryItems.setColumnCount(len(keys)+1) #+1 because of "Show saved only" #for each key, put a checkbox on the tableWidget_HistoryInfo_pop rowPosition = self.tableWidget_HistoryItems.rowCount() if rowPosition==0: self.tableWidget_HistoryItems.insertRow(0) else: rowPosition=0 for columnPosition in range(len(keys)):#(2,4): key = keys[columnPosition] item = QtWidgets.QTableWidgetItem(str(key))#("item {0} {1}".format(rowNumber, columnNumber)) item.setBackground(QtGui.QColor(self.colorsQt[columnPosition])) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.tableWidget_HistoryItems.setItem(rowPosition, columnPosition, item) #One checkbox at the end to switch on/of to show only the models that are saved columnPosition = len(keys) item = QtWidgets.QTableWidgetItem("Show saved only")#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.tableWidget_HistoryItems.setItem(rowPosition, columnPosition, item) self.tableWidget_HistoryItems.resizeColumnsToContents() self.tableWidget_HistoryItems.resizeRowsToContents() def history_tab_get_model_path(self):#Let user define a model he would like to convert #pushButton_LoadModel #Open a QFileDialog filepath = QtWidgets.QFileDialog.getOpenFileName(self, 'Select a trained model you want to convert', Default_dict["Path of last model"],"Keras Model file (*.model)") filepath = filepath[0] if os.path.isfile(filepath): self.model_2_convert = filepath path, filename = os.path.split(filepath) try: modelindex = filename.split(".model")[0] modelindex = int(modelindex.split("_")[-1]) except: modelindex = np.nan self.textBrowser_SelectedModelInfo.setText("Error loading model") return text = "Loaded model: "+filename+"\nModelindex: "+str(modelindex)+"\nFile is located in: "+filepath self.textBrowser_SelectedModelInfo.setText(text) def history_tab_convertModel(self): #Check if there is text in textBrowser_SelectedModelInfo path = self.model_2_convert try: os.path.isfile(path) except: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No file defined!") msg.setWindowTitle("No file defined!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if not os.path.isfile(path): #text_path = "\nFile not found!:"+path+"\nProbably the .model was deleted or not saved" #self.pushButton_convertModel.setEnabled(False) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("\nFile not found!:"+path+"\nProbably the .model was deleted or not saved") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #If the source format is Keras tensforflow: source_format = str(self.combobox_initial_format.currentText()) target_format = str(self.comboBox_convertTo.currentText()) #What is the target format? ##TODO: All conversion methods to multiprocessing functions! def conversion_successful_msg(text):#Enable the Convert to .nnet button msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(text) msg.setWindowTitle("Successfully converted model!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() ##################Keras TensorFlow -> .nnet############################ if target_format==".nnet" and source_format=="Keras TensorFlow": ConvertToNnet = 1 worker = Worker(self.history_tab_convertModel_nnet_worker,ConvertToNnet) def get_model_keras_from_worker(dic): self.model_keras = dic["model_keras"] worker.signals.history.connect(get_model_keras_from_worker) def conversion_successful(i):#Enable the Convert to .nnet button msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "Conversion Keras TensorFlow -> .nnet done" msg.setText(text) msg.setWindowTitle("Successfully converted model!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #self.pushButton_convertModel.setEnabled(True) worker.signals.history.connect(conversion_successful) self.threadpool.start(worker) ##################Keras TensorFlow -> Frozen .pb####################### elif target_format=="Frozen TensorFlow .pb" and source_format=="Keras TensorFlow": #target filename should be like source +_frozen.pb path_new = os.path.splitext(path)[0] + "_frozen.pb" aid_dl.convert_kerastf_2_frozen_pb(path,path_new) text = "Conversion Keras TensorFlow -> Frozen .pb is done" conversion_successful_msg(text) ##################Keras TensorFlow -> Optimized .pb#################### elif target_format=="Optimized TensorFlow .pb" and source_format=="Keras TensorFlow": path_new = os.path.splitext(path)[0] + "_optimized.pb" aid_dl.convert_kerastf_2_optimized_pb(path,path_new) text = "Conversion Keras TensorFlow -> Optimized .pb is done" conversion_successful_msg(text) ####################Frozen -> Optimized .pb############################ elif target_format=="Optimized TensorFlow .pb" and source_format=="Frozen TensorFlow .pb": path_new = os.path.splitext(path)[0] + "_optimized.pb" aid_dl.convert_frozen_2_optimized_pb(path,path_new) text = "Conversion Frozen -> Optimized .pb is done" conversion_successful_msg(text) ##################Keras TensorFlow -> ONNX#################### elif target_format=="ONNX (via keras2onnx)" and source_format=="Keras TensorFlow": path_new = os.path.splitext(path)[0] + ".onnx" aid_dl.convert_kerastf_2_onnx(path,path_new) text = "Conversion Keras TensorFlow -> ONNX (via keras2onnx) is done" conversion_successful_msg(text) ##################Keras TensorFlow -> ONNX via MMdnn#################### elif target_format=="ONNX (via MMdnn)" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_onnx_mmdnn(path) text = "Conversion Keras TensorFlow -> ONNX (via MMdnn) is done" conversion_successful_msg(text) ##################Keras TensorFlow -> PyTorch Script#################### elif target_format=="PyTorch Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"pytorch") text = "Conversion Keras TensorFlow -> PyTorch Script is done. You can now use this script and the saved weights to build the model using your PyTorch installation." conversion_successful_msg(text) ##################Keras TensorFlow -> Caffe Script#################### elif target_format=="Caffe Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"caffe") text = "Conversion Keras TensorFlow -> Caffe Script is done. You can now use this script and the saved weights to build the model using your Caffe installation." conversion_successful_msg(text) ##################Keras TensorFlow -> CNTK Script#################### elif target_format=="CNTK Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"cntk") text = "Conversion Keras TensorFlow -> CNTK Script is done. You can now use this script and the saved weights to build the model using your CNTK installation." conversion_successful_msg(text) ##################Keras TensorFlow -> mxnet Script#################### elif target_format=="MXNet Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"mxnet") text = "Conversion Keras TensorFlow -> MXNet Script is done. You can now use this script and the saved weights to build the model using your MXNet installation." conversion_successful_msg(text) ##################Keras TensorFlow -> onnx Script#################### elif target_format=="ONNX Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"onnx") text = "Conversion Keras TensorFlow -> ONNX Script is done. You can now use this script and the saved weights to build the model using your ONNX installation." conversion_successful_msg(text) ##################Keras TensorFlow -> TensorFlow Script#################### elif target_format=="TensorFlow Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"tensorflow") text = "Conversion Keras TensorFlow -> TensorFlow Script is done. You can now use this script and the saved weights to build the model using your Tensorflow installation." conversion_successful_msg(text) ##################Keras TensorFlow -> Keras Script#################### elif target_format=="Keras Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"keras") text = "Conversion Keras TensorFlow -> Keras Script is done. You can now use this script and the saved weights to build the model using your Keras installation." conversion_successful_msg(text) ##################Keras TensorFlow -> CoreML#################### elif "CoreML" in target_format and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_coreml(path) text = "Conversion Keras TensorFlow -> CoreML is done." conversion_successful_msg(text) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Not implemeted (yet)") msg.setWindowTitle("Not implemeted (yet)") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #If that worked without error, save the filepath for next time Default_dict["Path of last model"] = os.path.split(path)[0] aid_bin.save_aid_settings(Default_dict) def history_tab_convertModel_nnet_worker(self,ConvertToNnet,progress_callback,history_callback): #Define a new session -> Necessary for threading in TensorFlow #with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: with tf.Session() as sess: path = self.model_2_convert try: model_keras = load_model(path,custom_objects=aid_dl.get_custom_metrics()) except: model_keras = load_model(path) dic = {"model_keras":model_keras} history_callback.emit(dic) progress_callback.emit(1) if ConvertToNnet==1: #Since this happened in a thread, TensorFlow cant access it anywhere else #Therefore perform Conversion to nnet right away: model_config = model_keras.get_config()#["layers"] if type(model_config)==dict: model_config = model_config["layers"]#for keras version>2.2.3, there is a change in the output of get_config() #Convert model to theano weights format (Only necesary for CNNs) for layer in model_keras.layers: if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']: original_w = K.get_value(layer.W) converted_w = convert_kernel(original_w) K.set_value(layer.W, converted_w) nnet_path, nnet_filename = os.path.split(self.model_2_convert) nnet_filename = nnet_filename.split(".model")[0]+".nnet" out_path = os.path.join(nnet_path,nnet_filename) aid_dl.dump_to_simple_cpp(model_keras=model_keras,model_config=model_config,output=out_path,verbose=False) # sess.close() # try: # aid_dl.reset_keras() # except: # print("Could not reset Keras (1)") def history_tab_ConvertToNnet(self): print("Not used") # model_keras = self.model_keras # model_config = model_keras.get_config()["layers"] # #Convert model to theano weights format (Only necesary for CNNs) # for layer in model_keras.layers: # if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']: # original_w = K.get_value(layer.W) # converted_w = convert_kernel(original_w) # K.set_value(layer.W, converted_w) # # nnet_path, nnet_filename = os.path.split(self.model_2_convert) # nnet_filename = nnet_filename.split(".model")[0]+".nnet" # out_path = os.path.join(nnet_path,nnet_filename) # aid_dl.dump_to_simple_cpp(model_keras=model_keras,model_config=model_config,output=out_path,verbose=False) # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Successfully converted model and saved to\n"+out_path) # msg.setWindowTitle("Successfully converted model!") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # self.pushButton_convertModel.setEnabled(False) #TODO def test_nnet(self): #I need a function which calls a cpp app that uses the nnet and applies #it on a random image. #The same image is also used as input the the original .model and #both results are then compared print("Not implemented yet") print("Placeholder") print("Building site") def actionDocumentation_function(self): icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "Currently, there is no detailed written documentation. AIDeveloper instead makes strong use of tooltips." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("Documentation") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def actionSoftware_function(self): if sys.platform == "win32": plat = "win" elif sys.platform=="darwin": plat = "mac" elif sys.platform=="linux": plat = "linux" else: print("Unknown Operating system") plat = "Win" dir_deps = os.path.join(dir_root,"aid_dependencies_"+plat+".txt")#dir to aid_dependencies f = open(dir_deps, "r") text_modules = f.read() f.close() icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "<html><head/><body><p>AIDeveloper "+str(VERSION)+"<br>"+sys.version+"<br>Click 'Show Details' to retrieve a list of all Python packages used."+"<br>AID_GPU uses CUDA (NVIDIA) to facilitate GPU processing</p></body></html>" msg.setText(text) msg.setDetailedText(text_modules) msg.setWindowTitle("Software") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def actionAbout_function(self): icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "AIDeveloper is written and maintained by <NAME>. Use <EMAIL> to contact the main developer if you find bugs or if you wish a particular feature. Icon theme 2 was mainly designed and created by <NAME>." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("About") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def actionLoadSession_function(self): #This function should allow to select and load a metafile and #Put the GUI the the corresponing state (place the stuff in the table, click Train/Valid) filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta or session file (*meta.xlsx *session.xlsx)") filename = filename[0] if len(filename)==0: return xlsx = pd.ExcelFile(filename) UsedData = pd.read_excel(xlsx,sheet_name="UsedData") Files = list(UsedData["rtdc_path"]) file_exists = [os.path.exists(url) for url in Files] ind_true = np.where(np.array(file_exists)==True)[0] UsedData_true = UsedData.iloc[ind_true] Files_true = list(UsedData_true["rtdc_path"]) #select the indices that are valid #Add stuff to table_dragdrop rowPosition = int(self.table_dragdrop.rowCount()) self.dataDropped(Files_true) #update the index, train/valid checkbox and shuffle checkbox for i in range(len(Files_true)): #set the index (celltype) try: index = int(np.array(UsedData_true["class"])[i]) except: index = int(np.array(UsedData_true["index"])[i]) print("You are using an old version of AIDeveloper. Consider upgrading") self.table_dragdrop.cellWidget(rowPosition+i, 1).setValue(index) #is it checked for train or valid? trorvalid = str(np.array(UsedData_true["TrainOrValid"])[i]) if trorvalid=="Train": self.table_dragdrop.item(rowPosition+i, 2).setCheckState(QtCore.Qt.Checked) elif trorvalid=="Valid": self.table_dragdrop.item(rowPosition+i, 3).setCheckState(QtCore.Qt.Checked) #how many cells/epoch during training or validation? try: nr_events_epoch = str(np.array(UsedData_true["nr_events_epoch"])[i]) except: nr_events_epoch = str(np.array(UsedData_true["nr_cells_epoch"])[i]) self.table_dragdrop.item(rowPosition+i, 6).setText(nr_events_epoch) #Shuffle or not? shuffle = bool(np.array(UsedData_true["shuffle"])[i]) if shuffle==False: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Unchecked) #Set Cells/Epoch to not editable item = self.table_dragdrop.item(rowPosition+i, 6) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) else: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Checked) #zoom_factor = float(np.array(UsedData_true["zoom_factor"])[i]) zoom_factor = str(np.array(UsedData_true["zoom_factor"])[i]) self.table_dragdrop.item(rowPosition+i, 9).setText(zoom_factor) #Now take care of missing data #Take care of missing files (they might have been moved to a different location) ind_false = np.where(np.array(file_exists)==False)[0] #Files_false = list(UsedData_false["rtdc_path"]) #select the indices that are valid if len(ind_false)>0: UsedData_false = UsedData.iloc[ind_false] Files_false = list(UsedData_false["rtdc_path"]) #select the indices that are valid self.dataDropped(Files_false) self.user_selected_path = None #Create popup that informs user that there is missing data and let him specify a location #to search for the missing files def add_missing_files(): filename = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select directory', Default_dict["Path of last model"]) user_selected_path = filename if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid directory") msg.setWindowTitle("Invalid directory") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #get the hashes hashes = list(np.array(UsedData_false["hash"])[ind_false]) paths = list(np.array(UsedData_false["rtdc_path"])[ind_false]) paths_new,info = aid_bin.find_files(user_selected_path,paths,hashes) text = ('\n'.join([str(a) +"\t"+ b for a,b in zip(paths_new,info)])) self.textBrowser_Info_pop2.setText(text) #Add stuff to table_dragdrop rowPosition = int(self.table_dragdrop.rowCount()) self.dataDropped(paths_new) for i in range(len(paths_new)): #set the index (celltype) try: index = int(np.array(UsedData_false["class"])[i]) except: index = int(np.array(UsedData_false["index"])[i]) print("You are using an old version of AIDeveloper. Consider upgrading") self.table_dragdrop.cellWidget(rowPosition+i, 1).setValue(index) #is it checked for train or valid? trorvalid = str(np.array(UsedData_false["TrainOrValid"])[i]) if trorvalid=="Train": self.table_dragdrop.item(rowPosition+i, 2).setCheckState(QtCore.Qt.Checked) elif trorvalid=="Valid": self.table_dragdrop.item(rowPosition+i, 3).setCheckState(QtCore.Qt.Checked) #how many cells/epoch during training or validation? nr_events_epoch = str(np.array(UsedData_false["nr_events_epoch"])[i]) #how many cells/epoch during training or validation? try: nr_events_epoch = str(np.array(UsedData_false["nr_events_epoch"])[i]) except: nr_events_epoch = str(np.array(UsedData_false["nr_cells_epoch"])[i]) print("You are using an old version of AIDeveloper. Consider upgrading") self.table_dragdrop.item(rowPosition+i, 6).setText(nr_events_epoch) #Shuffle or not? shuffle = bool(np.array(UsedData_false["shuffle"])[i]) if shuffle==False: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Unchecked) #Set Cells/Epoch to not editable item = self.table_dragdrop.item(rowPosition+i, 6) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) else: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Checked) #zoom_factor = float(np.array(UsedData_false["zoom_factor"])[i]) zoom_factor = str(np.array(UsedData_false["zoom_factor"])[i]) self.table_dragdrop.item(rowPosition+i, 9).setText(zoom_factor) self.w_pop2 = MyPopup() self.gridLayout_w_pop2 = QtWidgets.QGridLayout(self.w_pop2) self.gridLayout_w_pop2.setObjectName("gridLayout_w_pop2") self.verticalLayout_w_pop2 = QtWidgets.QVBoxLayout() self.verticalLayout_w_pop2.setObjectName("verticalLayout_w_pop2") self.horizontalLayout_w_pop2 = QtWidgets.QHBoxLayout() self.horizontalLayout_w_pop2.setObjectName("horizontalLayout_w_pop2") self.pushButton_Close_pop2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_Close_pop2.setObjectName("pushButton_Close_pop2") self.pushButton_Close_pop2.clicked.connect(self.w_pop2.close) self.horizontalLayout_w_pop2.addWidget(self.pushButton_Close_pop2) self.pushButton_Search_pop2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_Search_pop2.clicked.connect(add_missing_files) self.pushButton_Search_pop2.setObjectName("pushButton_Search") self.horizontalLayout_w_pop2.addWidget(self.pushButton_Search_pop2) self.verticalLayout_w_pop2.addLayout(self.horizontalLayout_w_pop2) self.textBrowser_Info_pop2 = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser_Info_pop2.setObjectName("textBrowser_Info_pop2") self.verticalLayout_w_pop2.addWidget(self.textBrowser_Info_pop2) self.gridLayout_w_pop2.addLayout(self.verticalLayout_w_pop2, 0, 0, 1, 1) self.w_pop2.setWindowTitle("There are missing files. Do you want to search for them?") self.pushButton_Close_pop2.setText("No") self.pushButton_Search_pop2.setText("Define folder to search files") self.w_pop2.show() #Ask user if only data, or the full set of parameters should be loaded msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) msg.setText(tooltips["msg_loadSession"]) msg.setWindowTitle("Load only data table all parameters?") msg.setStandardButtons(QtGui.QMessageBox.Yes | QtGui.QMessageBox.Save)# | QtGui.QMessageBox.Cancel) dataonly = msg.button(QtGui.QMessageBox.Yes) dataonly.setText('Data table only') allparams = msg.button(QtGui.QMessageBox.Save) allparams.setText('Data and all parameters') # cancel = msg.button(QtGui.QMessageBox.Cancel) # cancel.setText('Cancel') msg.exec_() #Only update the data table. if msg.clickedButton()==dataonly: #show image and heatmap overlay pass #Load the parameters elif msg.clickedButton()==allparams: #show image and heatmap overlay Parameters = pd.read_excel(xlsx,sheet_name="Parameters") aid_frontend.load_hyper_params(self,Parameters) # if msg.clickedButton()==cancel: #show image and heatmap overlay # return #If all this run without error, save the path. Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) #Update the overview-box if self.groupBox_DataOverview.isChecked()==True: self.dataOverviewOn() def actionSaveSession_function(self): filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save session', Default_dict["Path of last model"],"AIDeveloper Session file (*_session.xlsx)") filename = filename[0] path, fname = os.path.split(filename) if len(fname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if fname.endswith(".xlsx"): fname = fname.split(".xlsx")[0] if fname.endswith("_session"): fname = fname.split("_session")[0] if fname.endswith("_meta"): fname = fname.split("_meta")[0] if fname.endswith(".model"): fname = fname.split(".model")[0] if fname.endswith(".arch"): fname = fname.split(".arch")[0] #add the suffix _session.xlsx if not fname.endswith("_session.xlsx"): fname = fname +"_session.xlsx" filename = os.path.join(path,fname) writer = pd.ExcelWriter(filename, engine='openpyxl') #Used files go to a separate sheet on the -session.xlsx SelectedFiles = self.items_clicked() SelectedFiles_df = pd.DataFrame(SelectedFiles) pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet #Get all hyper parameters Para_dict = pd.DataFrame() Para_dict["AIDeveloper_Version"]=VERSION, Para_dict["model_zoo_version"]=model_zoo_version, try: Para_dict["OS"]=platform.platform(), Para_dict["CPU"]=platform.processor(), except: Para_dict["OS"]="Unknown", Para_dict["CPU"]="Unknown", Para_dict = aid_frontend.get_hyper_params(Para_dict,self) Para_dict.to_excel(writer,sheet_name='Parameters') writer.save() writer.close() msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Successfully saved as "+filename) msg.setWindowTitle("Successfully saved") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #If all that run without issue, remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def actionClearList_function(self): #Remove all items from dragdrop table while (self.table_dragdrop.rowCount() > 0): self.table_dragdrop.removeRow(0) #reset ram self.ram = dict() #Remove all items from comboBox_chooseRtdcFile self.comboBox_chooseRtdcFile.clear() self.comboBox_selectData.clear() if self.groupBox_DataOverview.isChecked()==True: self.dataOverviewOn() def actionRemoveSelected_function(self): #Which rows are highlighted? rows_selected = np.array([index.row() for index in self.table_dragdrop.selectedIndexes()]) for row in (rows_selected): self.table_dragdrop.removeRow(row) self.comboBox_chooseRtdcFile.removeItem(row) self.comboBox_selectData.removeItem(row) #if there are rows below this row, they will move up one step: ind = np.where(np.array(rows_selected)>row)[0] rows_selected[ind] -= 1 def actionSaveToPng_function(self): #Which table items are selected? rows_selected = np.array([index.row() for index in self.table_dragdrop.selectedIndexes()]) if len(rows_selected)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("Please first select rows in the table!") msg.setWindowTitle("No rows selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Ask user to which folder the images should be written: filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save to .png/.jpg', Default_dict["Path of last model"],"Image file format (*.png *.jpg *.bmp *.eps *.gif *.ico *.icns)") filename = filename[0] if len(filename)==0: return filename_X, file_extension = os.path.splitext(filename)#divide into path and file_extension if possible #Check if the chosen file_extension is valid if not file_extension in [".png",".jpg",".bmp",".eps",".gif",".ico",".icns"]: print("Invalid file extension detected. Will use .png instead.") file_extension = ".png" #Check the chosen export-options if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False elif bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Plase choose a different Export-option in ->Options->Export") msg.setWindowTitle("Export is turned off!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if save_cropped==True: #Collect information for image processing cropsize = self.spinBox_imagecrop.value() color_mode = str(self.comboBox_loadedRGBorGray.currentText()) #zoom_methods = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = np.where(np.array(zoom_methods)==True)[0] zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order index = 0 for row in (rows_selected): #get the corresponding rtdc_path rtdc_path = str(self.table_dragdrop.cellWidget(row, 0).text()) nr_events = None #no number needed as we take all images (replace=False in gen_crop_img) zoom_factor = float(self.table_dragdrop.item(row, 9).text()) gen = aid_img.gen_crop_img(cropsize,rtdc_path,nr_events=nr_events,replace=False,random_images=False,zoom_factor=zoom_factor,zoom_order=zoom_order,color_mode=color_mode,padding_mode='constant') images = next(gen)[0] #Save the images data to .png/.jpeg... for img in images: img = PIL.Image.fromarray(img) img.save(filename_X+"_"+str(index)+file_extension) index+=1 if save_cropped==False:#save the original images without pre-processing index = 0 for row in (rows_selected): rtdc_path = str(self.table_dragdrop.cellWidget(row, 0).text()) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return images = rtdc_ds["events"]["image"] #get the images #Save the images data to .png/.jpeg... for img in images: img = PIL.Image.fromarray(img) img.save(filename_X+"_"+str(index)+file_extension) index+=1 #If all that run without issue, remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def actionRemoveSelectedPeaks_function(self): #Which rows are highlighted? rows_selected = np.array([index.row() for index in self.tableWidget_showSelectedPeaks.selectedIndexes()]) #delete each row only once :) rows_selected = np.unique(rows_selected) for row in (rows_selected): self.tableWidget_showSelectedPeaks.removeRow(row) #if there are rows below this row, they will move up one step: ind = np.where(np.array(rows_selected)>row)[0] rows_selected[ind] -=1 #Update the widget_showSelectedPeaks self.update_peak_plot() def actionRemoveAllPeaks_function(self): #Remove all items from tableWidget_showSelectedPeaks while (self.tableWidget_showSelectedPeaks.rowCount() > 0): self.tableWidget_showSelectedPeaks.removeRow(0) def actionDataToRamNow_function(self): self.statusbar.showMessage("Moving data to RAM") #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() color_mode = self.get_color_mode() zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Get the user-defined cropping size crop = int(self.spinBox_imagecrop.value()) #Make the cropsize a bit larger since the images will later be rotated cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),crop,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Successfully moved data to RAM") msg.setWindowTitle("Moved Data to RAM") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() self.statusbar.showMessage("") ########################################################################### ########################################################################### ########################################################################### ########################################################################### #######################Functions for Assess model tab###################### def assessmodel_tab_load_model(self): #Get the requested model-name from the chosen metafile #Open a QFileDialog filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Select a trained model you want to assess', Default_dict["Path of last model"],"Keras Model file (*.model)") filename = filename[0] if os.path.isfile(filename): #Put this path on the Assess Model tab self.lineEdit_LoadModel_2.setText(filename) #Save the path to a variable that is then used by history_tab_convertModel_nnet_worker self.load_model_path = filename #Get the modelindex path,filename = os.path.split(filename) modelindex = filename.split(".model")[0] modelindex = int(modelindex.split("_")[-1]) #Update the modelindex on the Assess Model tab self.spinBox_ModelIndex_2.setValue(int(modelindex)) model_full_h5 = h5py.File(self.load_model_path, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] self.spinBox_Crop_2.setValue(int(in_dim[-2])) self.spinBox_OutClasses_2.setValue(int(out_dim)) print("input dimension:"+str(in_dim)) #Adjust the Color mode in the UI: channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: #Set the combobox on Assess model tab to Grayscale; just info for user index = self.comboBox_loadedRGBorGray.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_loadedRGBorGray.setCurrentIndex(index) #Check the currently set color_mode. This is important since images are loaded accordingly if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: #Set the combobox on Assess model tab to Grayscale; just info for user index = self.comboBox_loadedRGBorGray.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_loadedRGBorGray.setCurrentIndex(index) #Check the currently set color_mode. This is important since images are loaded accordingly if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Channel dimensions of model ("+str(channels)+" channels) is not supported. Only 1 or 3 channels are allowed.") msg.setWindowTitle("Unsupported channel dimension") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return modelindex = int(self.spinBox_ModelIndex_2.value()) path,fname = os.path.split(self.load_model_path) fname = fname.split(str(modelindex)+".model")[0]+"meta.xlsx" metafile_path = os.path.join(path,fname) try: img_processing_settings = aid_img.load_model_meta(metafile_path) self.img_processing_settings = img_processing_settings model_type = str(img_processing_settings["model_type"].values[0]) normalization_method = str(img_processing_settings["normalization_method"].values[0]) index = self.comboBox_Normalization_2.findText(normalization_method, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization_2.setCurrentIndex(index) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Unkown normalization method found in .meta file") msg.setWindowTitle("Unkown normalization method") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.lineEdit_ModelSelection_2.setText(model_type) except: #there is not such a file, or the file cannot be opened #Ask the user to choose the normalization method self.lineEdit_ModelSelection_2.setText("Unknown") self.comboBox_Normalization_2.setEnabled(True) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Meta file not found/ Could not be read. Please specify the normalization method manually (dropdown menu)") msg.setWindowTitle("No .meta available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #If all that run without issue, remember the path for next time Default_dict["Path of last model"] = os.path.split(self.load_model_path)[0] aid_bin.save_aid_settings(Default_dict) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("File not found!:\nProbably the .model was deleted or not saved") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def inference_time_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Initiate a fresh session with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(self.load_model_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(self.load_model_path,custom_objects=aid_dl.get_custom_metrics()) #Multi-GPU if deviceSelected=="Multi-GPU": print("Adjusting the model for Multi-GPU") model_keras = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have #Get the model input dimensions in_dim = np.array(model_keras.get_input_shape_at(0)) ind = np.where(in_dim==None) in_dim[ind] = 1 nr_imgs = self.spinBox_inftime_nr_images.value() nr_imgs = int(np.round(float(nr_imgs)/10.0)) #Warm up by predicting a single image image = (np.random.randint(0,255,size=in_dim)).astype(np.float32)/255.0 model_keras.predict(image) # warm up Times = [] for k in range(10): image = (np.random.randint(0,255,size=in_dim)).astype(np.float32)/255.0 t1 = time.time() for i in range(nr_imgs):#predict 50 times 20 images model_keras.predict(image) t2 = time.time() dt = (t2-t1)/(nr_imgs) #divide by nr_imgs to get time [s] per image dt = dt*1000.0 #multiply by 1000 to change to ms range dic = {"outp":str(round(dt,3))+"ms"} history_callback.emit(dic) Times.append(dt) #Send out the Times text = " [ms] Mean: "+str(round(np.mean(Times),3))+"; "+"Median: "+str(round(np.median(Times),3))+"; "+"Min: "+str(round(np.min(Times),3))+"; "+"Max: "+str(round(np.max(Times),3)) dic = {"outp":text} history_callback.emit(dic) progress_callback.emit(1) #when finished return one self.threadpool_single_queue = 0 #reset the thread-counter def inference_time(self): if self.radioButton_cpu.isChecked(): deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): deviceSelected = str(self.comboBox_gpu.currentText()) #Inform user that certain config is used for inference msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Will use "+deviceSelected+" for inference. To change bewtween CPU and GPU, use the options on the Build-Tab") msg.setWindowTitle("CPU used for inference") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Take the model path from the GUI self.load_model_path = str(self.lineEdit_LoadModel_2.text()) if len(self.load_model_path)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a model path first") msg.setWindowTitle("No model path found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Increase the thread-counter by one; only after finishing the thread, it will be reset to 0 self.threadpool_single_queue += 1 if self.threadpool_single_queue == 1: worker = Worker(self.inference_time_worker) def get_dt_from_worker(dic): outp = dic["outp"] self.lineEdit_InferenceTime.setText(outp) worker.signals.history.connect(get_dt_from_worker) self.threadpool_single.start(worker) def update_check_worker(self,progress_callback,history_callback): #Retrieve information from GitHub dic = aid_bin.check_for_updates(VERSION) #dic = {"Errors":None,"latest_release":latest_release,"latest_release_url":url,"changelog":changelog} history_callback.emit(dic) progress_callback.emit(1) #when finished return one self.threadpool_single_queue = 0 #reset the thread-counter def actionUpdate_check_function(self): #Increase the thread-counter by one; only after finishing the thread, it will be reset to 0 self.threadpool_single_queue += 1 if self.threadpool_single_queue == 1: worker = Worker(self.update_check_worker) def get_info_from_worker(dic): #Create a popup window self.popup_updates = MyPopup() self.popup_updates_ui = aid_frontend.Ui_Updates() self.popup_updates_ui.setupUi(self.popup_updates) #open a popup if dic["Errors"]!=None:#if there is an errror (no internet...) #display the error in the textbrowser text = str(dic["Errors"]) elif dic["Errors"]==None:#No errors! Nice latest_release = dic["latest_release"] if latest_release=="You are up to date": text = "Your major version of AIDeveloper is up-to-date. Check below if there are updates available for that major version. <br>Example: Your major version of AIDeveloper is 0.2.0, then all updates which start with 0.2.x will be compatible." text = "<html><head/><body><p>"+text+"</p></body></html>" else: text = "There is a new major update available. To download, follow this link:" text = text+"<br>"+"<a href ="+dic["latest_release_url"]+">"+dic["latest_release_url"]+"</a>" text = text+"<br>"+dic["changelog"] text = text+"<br>Major updates need to be downloaded and installed manually. After that, you can install minor updates (which correspond to that major version) using the menu below." text = "<html><head/><body><p>"+text+"</p></body></html>" #Fill info text (on top of Update Popup window) self.popup_updates_ui.textBrowser_majorVersionInfo.setText(text) #Fill lineEdit "Your version" self.popup_updates_ui.lineEdit_yourVersion.setText(VERSION) #Add updates to the comboBox self.popup_updates_ui.comboBox_updatesOndevice.addItems(dic["tags_update_ondevice"]) self.popup_updates_ui.comboBox_updatesOnline.addItems(dic["tags_update_online"]) self.popup_updates.show() self.popup_updates_ui.pushButton_installOndevice.clicked.connect(lambda: self.update_aideveloper("local")) self.popup_updates_ui.pushButton_installOnline.clicked.connect(lambda: self.update_aideveloper("github")) self.popup_updates_ui.pushButton_findFile.clicked.connect(self.update_addLocalFile) worker.signals.history.connect(get_info_from_worker) self.threadpool_single.start(worker) def actionTerminology_function(self): #show a messagebox with link to terminology github page icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "To learn more about machine learning/ deep learning specific terminology, please visit:<br>" url = "<a href=https://github.com/maikherbig/AIDeveloper/tree/master/Terminology>https://github.com/maikherbig/AIDeveloper/tree/master/Terminology</a>" text = "<html><head/><body><p>"+text+url+"</p></body></html>" msg.setText(text) msg.setWindowTitle("ML/DL Terminology") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def update_aideveloper(self,source): #retrieve the current text on comboBox_availableUpdates if source=="local": item_text = str(self.popup_updates_ui.comboBox_updatesOndevice.currentText()) elif source=="github": item_text = str(self.popup_updates_ui.comboBox_updatesOnline.currentText()) #Length of the version name should not be 0 if len(item_text)==0: e = "No update available" aid_frontend.message(e) return if source=="local": #Complete file path (item_text not enough) item_path = "AIDeveloper_"+item_text+".zip" item_path = os.path.join(dir_root,item_path) elif source=="github": if item_text=="Bleeding edge": #user want the most recent scripts from GitHub. downloadprocess = aid_bin.download_aid_repo() else: #item_text is a tag of the version. Use tag to download the zip downloadprocess = aid_bin.download_aid_update(item_text) #Check if download was successful if downloadprocess["success"]==False:#if the download was not done show message message = "Download was not conducted. Probably, the file is already present in:/n"+downloadprocess["path_save"] aid_frontend.message(message,msg_type="Warning") return #Retrieve the path of the zip file (contains the update files) item_path = downloadprocess["path_save"] if not os.path.isfile(item_path):#in case that is no file (zip file not created...) e = "Update requires a zip file. Could not find/create such a file!" aid_frontend.message(e) #Perform the update (including backup of current version) path_backup = aid_bin.update_from_zip(item_path,VERSION) #message: Installation successful-> need to restart AID msg = "Update successful. Please restart AIDeveloper. A backup of your previous version is stored in:\n"+path_backup aid_frontend.message(msg,msg_type="Information") def update_addLocalFile(self): #open a filedialog filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Choose update file', dir_root,"AID update file (*.zip)") filename = filename[0] print(filename) #Check if the file is a zip if not filename.endswith(".zip"):#file has to be .zip text = "Chosen file is not a .zip archive!" aid_frontend.message(msg_text=text,msg_type="Error") #Check that file exists if not os.path.isfile(filename): text = "File not found" aid_frontend.message(msg_text=text,msg_type="Error") return base,_ = os.path.split(filename) #ensure that filename obeys the name convention: "AIDeveloper_"+tag_name+".zip" tag_name = datetime.datetime.now().strftime("%Y%m%d_%H-%M-%S")+"-update" save_name = "AIDeveloper_"+tag_name+".zip" save_name = os.path.join(dir_root,save_name) #copy the file to dir_root shutil.copy(filename,save_name) #append tag_name to combobox self.popup_updates_ui.comboBox_updatesOndevice.addItem(tag_name) text = "Update is now availabele via the Dropdown menu on the left ("+tag_name+")." text += " The file was copied to:\n" text += save_name aid_frontend.message(msg_text=text,msg_type="Information") def get_validation_data_from_clicked(self,get_normalized=True): #Check, if files were clicked SelectedFiles = self.items_clicked_no_rtdc_ds() ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] if len(ind)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No validation data was selected. Please use tab 'Build' and drag/drop to load data") msg.setWindowTitle("No validation data selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return 0 SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #Read other model properties from the Ui norm = self.comboBox_Normalization_2.currentText() norm = str(norm) #if normalization method needs mean/std of training set, the metafile needs to be loaded: if norm == "StdScaling using mean and std of all training data": modelindex = int(self.spinBox_ModelIndex_2.value()) path,fname = os.path.split(self.load_model_path) fname = fname.split(str(modelindex)+".model")[0]+"meta.xlsx" metafile_path = os.path.join(path,fname) parameters = pd.read_excel(metafile_path,sheet_name='Parameters') mean_trainingdata = parameters["Mean of training data used for scaling"] std_trainingdata = parameters["Std of training data used for scaling"] else: mean_trainingdata = None std_trainingdata = None crop = int(self.spinBox_Crop_2.value()) paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() #read self.ram to new variable ; DONT clear ram after since multiple assessments can run on the same data. DATA = self.ram #self.ram = dict() #DONT clear the ram here! ############Cropping##################### X_valid,y_valid,Indices,Xtra_in = [],[],[],[] for i in range(len(SelectedFiles_valid)): if not self.actionDataToRam.isChecked(): #Replace=True means that individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: #get a similar generator, using the ram-data if len(DATA)==0: #Replace=True means that individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: if self.actionVerbose.isChecked(): print("Loaded data from RAM") gen_valid = aid_img.gen_crop_img_ram(DATA,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace=True means that individual cells could occur several times gen = next(gen_valid) X_valid.append(gen[0]) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(gen[1]) #Cell index to track the event in the data-set(not cell-type!) Xtra_in.append(gen[2]) X_valid_orig = [X.astype(np.uint8) for X in X_valid] X_valid = np.concatenate(X_valid) Xtra_in = np.concatenate(Xtra_in) # dim = X_valid.shape # if dim[2]!=crop: # remove = int(dim[2]/2.0 - crop/2.0) # #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano # X_valid = X_valid[:,remove:-remove,remove:-remove] #crop to crop x crop pixels #TensorFlow print("X_valid has following dimension:") print(X_valid.shape) y_valid = np.concatenate(y_valid) if len(np.array(X_valid).shape)<3: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Discarded all events because too far at border of image (check zooming/cropping settings!)") msg.setWindowTitle("Empty dataset!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return 0 if get_normalized == True: if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) else: X_valid = None dic = {"SelectedFiles_valid":SelectedFiles_valid,"nr_events_epoch_valid":nr_events_epoch_valid,"rtdc_path_valid":rtdc_path_valid,"X_valid_orig":X_valid_orig,"X_valid":X_valid,"y_valid":y_valid,"Indices":Indices,"Xtra_in":Xtra_in} self.ValidationSet = dic return 1 def export_valid_to_rtdc(self): if not type(self.ValidationSet) is type(None): #If ValidationSet is not none, there has been a ValidationSet loaded already msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Re-used validation data (from RAM) loaded earlier. If that is not good, please check and uncheck a file on 'Build' tab. This will delete the validation data from RAM") msg.setWindowTitle("Re-Used data") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() worked = 1 else: #Otherwise get the validation data from the stuff that is clicked on 'Build'-Tab worked = self.get_validation_data_from_clicked() #after that, self.ValidationSet will exist if worked==0: return rtdc_path_valid = self.ValidationSet["rtdc_path_valid"] X_valid = [] X_valid.append(self.ValidationSet["X_valid"][:,:,:,0]) X_valid_orig = self.ValidationSet["X_valid_orig"] Xtra_in = self.ValidationSet["Xtra_in"] Indices = self.ValidationSet["Indices"] y_valid = self.ValidationSet["y_valid"] #Get a filename from the user for the new file filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save to rtdc', Default_dict["Path of last model"],"rtdc file (*.rtdc)") filename = filename[0] if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #add the suffix _Valid_Data.avi or _Valid_Labels.npy if not filename.endswith(".rtdc"): filename = filename +".rtdc" filename_X = filename.split(".rtdc")[0]+"_Valid_Data.rtdc" filename_y = filename.split(".rtdc")[0]+"_Valid_Labels.txt" if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False elif bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("You could choose a different Exporting option in ->Option->Export") msg.setWindowTitle("Export is turned off!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return aid_bin.write_rtdc(filename_X,rtdc_path_valid,X_valid_orig,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=Xtra_in) np.savetxt(filename_y,y_valid.astype(int),fmt='%i') #If all that run without issue, remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def import_valid_from_rtdc(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open Valid_Data.rtdc', Default_dict["Path of last model"],".rtdc file (*_Valid_Data.rtdc)") filename = filename[0] rtdc_path = filename if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Load the corresponding labels filename_labels = filename.split("Data.rtdc")[0]+"Labels.txt" if not os.path.isfile(filename_labels): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No corresponding _Labels.npy file found! Expected it here: "+filename_labels) msg.setWindowTitle("No Labels found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return y_valid = np.loadtxt(filename_labels).astype(int) #Inform user (statusbar message) self.statusbar.showMessage("Loaded labels from "+filename_labels,5000) #Read images from .rtdc file failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Load meta file #filename_meta = filename.split("Valid_Data.rtdc")[0]+"meta.xlsx" #Make the Image dimensions matching the requirements of the model model_in = int(self.spinBox_Crop_2.value()) model_out = int(self.spinBox_OutClasses_2.value()) color_mode = str(self.comboBox_loadedRGBorGray.currentText()) # if color_mode=='RGB': #User wants RGB images # target_channels = 3 # if color_mode=='Grayscale': # User want to have Grayscale # target_channels = 1 if model_in==1 and model_out==1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please first define a model. The validation data will then be cropped according to the required model-input size") msg.setWindowTitle("No model defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return x_valid = np.array(rtdc_ds["events"]["image"]) #dim = x_valid.shape[1] #channels = x_valid.shape[-1] #Get further image processing settings from self. zoom_factor = float(self.img_processing_settings["zoom_factor"].values[0]) zoom_interpol_method = str(self.img_processing_settings["zoom_interpol_method"].values[0]) padding_mode = str(self.img_processing_settings["padding_mode"].values[0]) #normalization_method = str(self.img_processing_settings["normalization_method"].values[0]) norm = self.comboBox_Normalization_2.currentText() norm = str(norm) mean_trainingdata = self.img_processing_settings["mean_trainingdata"].values[0] std_trainingdata = self.img_processing_settings["std_trainingdata"].values[0] gen_valid = aid_img.gen_crop_img(cropsize=model_in,rtdc_path=rtdc_path,random_images=False,zoom_factor=zoom_factor,zoom_order=zoom_interpol_method,color_mode=color_mode,padding_mode=padding_mode,xtra_in=False) x_valid,index,xtra_valid = next(gen_valid) #When object is too far at side of image, the frame is dropped. #Consider this for y_valid y_valid = y_valid[index] if not model_in==x_valid.shape[-2]: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model input dimension ("+str(model_in)+"x"+str(model_in)+"pix) and validation data dimension ("+str(x_valid.shape)+") do not match") msg.setWindowTitle("Wrong image dimension") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Normalize the images X_valid_orig = np.copy(x_valid) #copy the cropped but non-normalized images if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(x_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(x_valid,norm) Indices = np.array(range(X_valid.shape[0])) #those are just indices to identify single cells in the file ->not cell-type indices! SelectedFiles_valid = None #[].append(rtdc_path)# nr_events_epoch_valid = None rtdc_h5 = h5py.File(rtdc_path, 'r') try: Xtra_in = np.array(rtdc_h5["xtra_in"])[index] except: Xtra_in = [] rtdc_h5.close() #close the hdf5 dic = {"SelectedFiles_valid":SelectedFiles_valid,"nr_events_epoch_valid":nr_events_epoch_valid,"rtdc_path_valid":[rtdc_path],"X_valid_orig":[X_valid_orig],"X_valid":X_valid,"y_valid":y_valid,"Indices":[Indices],"Xtra_in":Xtra_in} self.ValidationSet = dic self.statusbar.showMessage("Validation data loaded to RAM",5000) #Update the table #Prepare a table in tableWidget_Info self.tableWidget_Info_2.setColumnCount(0)#Reset table self.tableWidget_Info_2.setRowCount(0)#Reset table self.tableWidget_Info_2.setColumnCount(4) #Four columns nr_ind = len(set(y_valid)) #number of different labels ("indices") nr_rows = nr_ind self.tableWidget_Info_2.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) rowPosition = 0 #Total nr of cells for each index for index in np.unique(y_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(y_valid==index)[0] nr_events_epoch = len(ind) item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info_2.setItem(rowPosition, 1, item) #Column for color item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, "") item.setBackground(QtGui.QColor(self.colorsQt[index])) self.tableWidget_Info_2.setItem(rowPosition, 2, item) #Column for User specified name item = QtWidgets.QTableWidgetItem() #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 3, item) rowPosition += 1 self.tableWidget_Info_2.resizeColumnsToContents() self.tableWidget_Info_2.resizeRowsToContents() def cm_interaction(self,item): """ Grab validation data of particular class, load the scores (model.predict) and save images to .rtdc, or show them (users decision) first, "assess_model_plotting" has the be carried out """ true_label = item.row() predicted_label = item.column() #If there is X_valid and y_valid on RAM, use it! if not type(self.ValidationSet) is type(None): #If X_valid is not none, there has been X_valid loaded already self.statusbar.showMessage("Re-used validation data (from RAM) loaded earlier. If that is not good, please check and uncheck a file on 'Build' tab. This will delete the validation data from RAM",2000) else: #Otherwise get the validation data from the stuff that is clicked on 'Build'-Tab self.get_validation_data_from_clicked() #after that, self.ValidationSet will exist self.statusbar.showMessage("Loaded data corresponding to the clicked files on 'Build'-tab",2000) rtdc_path_valid = self.ValidationSet["rtdc_path_valid"] X_valid_orig = self.ValidationSet["X_valid_orig"] #cropped but non-normalized images Indices = self.ValidationSet["Indices"] y_valid = self.ValidationSet["y_valid"] #load the validation labels to a new variable dic = self.Metrics #gives {"scores":scores,"pred":pred,"conc_target_cell":conc_target_cell,"enrichment":enrichment,"yield_":yield_} if len(dic)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Data was altered. Please run 'Update Plots' again") msg.setWindowTitle("Data has changed") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return pred = dic["pred"] #get the length of each Index-list, lengths = [len(l) for l in Indices] starts = np.cumsum(lengths) ToSave, y_valid_list, Indices_ = [],[],[] #list; store images remaining to indiv. .rtdc set in there starts = np.array([0]+list(starts)) for i in range(len(lengths)): y_val = y_valid[starts[i]:starts[i+1]] pred_ = pred[starts[i]:starts[i+1]] #update the indx to prepare for next iteration #indx = lengths[i] ind = np.where( (y_val==true_label) & (pred_==predicted_label) )[0] #select true_label cells and which of them are clasified as predicted_label #Grab the corresponding images ToSave.append(X_valid_orig[i][ind,:,:]) #get non-normalized X_valid to new variable #X_valid_.append(X_valid[i][ind,:,:]) #get normalized/cropped images ready to run through the model y_valid_list.append(y_val[ind]) Indices_.append(Indices[i][ind]) #get non-normalized X_valid to new variable total_number_of_chosen_cells = [len(a) for a in y_valid_list] total_number_of_chosen_cells = np.sum(np.array(total_number_of_chosen_cells)) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Show images/heatmap or save to .rtdc/.png/.jpg?</p></body></html>" msg.setText(text) msg.setWindowTitle("Show or save?") msg.setStandardButtons(QtGui.QMessageBox.Yes | QtGui.QMessageBox.Save | QtGui.QMessageBox.Cancel) show = msg.button(QtGui.QMessageBox.Yes) show.setText('Show image/heatmap') # show = msg.button(QtGui.QMessageBox.YesToAll) # show.setText('Show image/heatmap') save_png = msg.button(QtGui.QMessageBox.Save) save_png.setText('Save to .rtdc/.png/.jpg...') cancel = msg.button(QtGui.QMessageBox.Cancel) cancel.setText('Cancel') msg.exec_() #View image and heatmap overlay (Grad-CAM) if msg.clickedButton()==show: #show image and heatmap overlay if total_number_of_chosen_cells==0: return #Get the images that were passed through the model for prediction X_valid = self.ValidationSet["X_valid"] #cropped but non-normalized images ind = np.where( (y_valid==true_label) & (pred==predicted_label) )[0] #select true_label cells and which of them are clasified as predicted_label X_valid_ = X_valid[ind] #Popup window to show images and settings self.popup_gradcam = QtGui.QDialog() self.popup_gradcam_ui = aid_frontend.popup_cm_interaction() self.popup_gradcam_ui.setupUi(self.popup_gradcam) #open a popup to show images and options #self.popup_imgRes.setWindowModality(QtCore.Qt.WindowModal) #self.popup_gradcam.setWindowModality(QtCore.Qt.ApplicationModal) #Fill Model info self.popup_gradcam_ui.lineEdit_loadModel.setText(self.load_model_path) in_dim = int(self.spinBox_Crop_2.value()) #grab value from Assess Tab self.popup_gradcam_ui.spinBox_Crop_inpImgSize.setValue(in_dim)#insert value into popup out_dim = int(self.spinBox_OutClasses_2.value()) #grab value from Assess Tab self.popup_gradcam_ui.spinBox_outpSize.setValue(out_dim) #insert value into popup self.popup_gradcam_ui.spinBox_gradCAM_targetClass.setMaximum(out_dim-1) #For the grad_cam the name of the final conv-layer needs to be selected convlayers = [layer.name for layer in self.model_keras.layers if len(layer.output_shape)==4] convlayers = convlayers[::-1] #reverse list self.popup_gradcam_ui.comboBox_gradCAM_targetLayer.addItems(convlayers) #Connect buttons to functions self.popup_gradcam_ui.pushButton_update.clicked.connect(lambda: self.popup_cm_show_update(ToSave,X_valid_)) self.popup_gradcam_ui.pushButton_reset.clicked.connect(self.popup_cm_reset) self.popup_gradcam_ui.pushButton_showSummary.clicked.connect(self.popup_show_model_summary) self.popup_gradcam_ui.pushButton_toTensorB.clicked.connect(self.popup_to_tensorboard) #Get the original image img_display = np.concatenate(ToSave) img_display = np.r_[img_display] img_display = img_display.swapaxes(1,2) img_display = np.append(img_display,img_display[-1:],axis=0) self.popup_gradcam_ui.widget_image.setImage(img_display) self.popup_gradcam.show() #For .rtdc/.png... saving elif msg.clickedButton()==save_png: #Save to .rtdc/.png/.jpg/... if total_number_of_chosen_cells==0: return sumlen = np.sum(np.array([len(l) for l in ToSave])) self.statusbar.showMessage("Nr. of target cells above threshold = "+str(sumlen),2000) filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save to .rtdc/.png/.jpg', Default_dict["Path of last model"],"File format (*.rtdc *.png *.jpg *.bmp *.eps *.gif *.ico *.icns)") filename = filename[0] if len(filename)==0: return filename_X, file_extension = os.path.splitext(filename)#divide into path and file_extension if possible #Check if chosen file_extension is valid if not file_extension in [".rtdc",".png",".jpg",".bmp",".eps",".gif",".ico",".icns"]: print("Invalid file extension detected. Will use .png instead.") file_extension = ".png" if file_extension==".rtdc":#user wants to save to .rtdc #add the suffix _Valid_Data.rtdc or _Valid_Labels.txt if not filename.endswith(".rtdc"): filename = filename +".rtdc" filename_X = filename.split(".rtdc")[0]+"_Valid_Data.rtdc" filename_y = filename.split(".rtdc")[0]+"_Valid_Labels.txt" #Save the labels y_valid_list = np.concatenate(y_valid_list) #Save the .rtdc data (images and all other stuff) #Should cropped or original be saved? if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False if bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("You may want to choose a different exporting option in ->Options->Export") msg.setWindowTitle("Export is turned off!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return np.savetxt(filename_y,y_valid_list.astype(int),fmt='%i') aid_bin.write_rtdc(filename_X,rtdc_path_valid,ToSave,Indices_,cropped=save_cropped,color_mode=self.get_color_mode()) #If all that run without issue, remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) else: #some image file format was chosen #Should cropped or original be saved? if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False if bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("You may want to choose a different exporting option in ->Options->Export") msg.setWindowTitle("Export is turned off!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Save the images data to .png/.jpeg... index = 0 for imgs in ToSave: for img in imgs: img = PIL.Image.fromarray(img) img.save(filename_X+"_"+str(index)+file_extension) index+=1 #If all that run without issue, remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def popup_cm_show_update(self,ToSave,X_valid_): #ui_item = self.popup_gradcam_ui #grab information from the popup window show_image = bool(self.popup_gradcam_ui.groupBox_image_Settings.isChecked()) show_gradCAM = bool(self.popup_gradcam_ui.groupBox_gradCAM_Settings.isChecked()) alpha_1 = float(self.popup_gradcam_ui.doubleSpinBox_image_alpha.value()) alpha_2 = float(self.popup_gradcam_ui.doubleSpinBox_gradCAM_alpha.value()) layer_name = str(self.popup_gradcam_ui.comboBox_gradCAM_targetLayer.currentText()) #self.model_keras exists after assess_model_plotting was carried out class_ = int(self.popup_gradcam_ui.spinBox_gradCAM_targetClass.value()) colormap = str(self.popup_gradcam_ui.comboBox_gradCAM_colorMap.currentText()) #self.model_keras exists after assess_model_plotting was carried out colormap = "COLORMAP_"+colormap colormap = getattr(cv2, colormap) currentindex = self.popup_gradcam_ui.widget_image.currentIndex if show_image and not show_gradCAM: #Get the original image for display img_display = np.concatenate(ToSave) img_display = np.r_[img_display] img_display = img_display.swapaxes(1,2) img_display = np.append(img_display,img_display[-1:],axis=0) if show_gradCAM:#grad-Cam is on img_display = np.concatenate(ToSave) #compare model input dim and dom of provided data in_model = self.model_keras.input.shape.as_list()[1:] in_data = list(X_valid_.shape[1:]) channels_model = in_model[-1] if not in_data==in_model: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg = "Model input dimension ("+str(in_model)+") not equal to dim. of input data ("+str(in_data)+")" msg.setText(msg) msg.setWindowTitle("Input dimension error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return img2 = aid_dl.grad_cam(self.load_model_path, X_valid_, class_, layer_name)#Carry out grad-cam img2 = [cv2.applyColorMap(cam_, colormap) for cam_ in img2]#create colormap returns BGR image! img2 = [cv2.cvtColor(cam_, cv2.COLOR_BGR2RGB) for cam_ in img2]#convert to RGB #in case img_display is grayscale, mimick rgb image by stacking if channels_model==1: print("Triple stacking grayscale channel") img_display = [np.stack((img_display_,)*3, axis=-1) for img_display_ in img_display] #add heatmap to image, make sure alpha_1=0 if show_image=False img_display = [cv2.addWeighted(img_display[i], alpha_1, img2[i], alpha_2, 0) for i in range(X_valid_.shape[0])] #ToDo: this only works for RGB images. Adjust expression to work or grayscale and RGB img_display = np.r_[img_display] img_display = img_display.swapaxes(1,2) img_display = np.append(img_display,img_display[-1:],axis=0) self.popup_gradcam_ui.widget_image.setImage(img_display) self.popup_gradcam_ui.widget_image.setCurrentIndex(currentindex) self.popup_gradcam.show() def popup_cm_reset(self): self.popup_gradcam_ui.groupBox_image_Settings.setChecked(True) self.popup_gradcam_ui.groupBox_gradCAM_Settings.setChecked(False) #self.popup_gradcam_ui.doubleSpinBox_image_alpha.setValue(1) self.popup_gradcam_ui.comboBox_gradCAM_targetLayer.setCurrentIndex(0) #self.popup_gradcam_ui.comboBox_gradCAM_colorMap.setCurrentIndex(0) self.popup_gradcam_ui.spinBox_gradCAM_targetClass.setValue(0) def popup_show_model_summary(self): #textbrowser popup self.popup_modelsummary = MyPopup() self.popup_modelsummary_ui = aid_frontend.popup_cm_modelsummary() self.popup_modelsummary_ui.setupUi(self.popup_modelsummary) #open a popup to show images and options text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary self.popup_modelsummary_ui.textBrowser_modelsummary.append(text) self.popup_modelsummary.show() def popup_to_tensorboard(self): #Open the model in tensorboard #Issue: I cannot stop the process. The appraoch below, which uses a #separate thread for the function does not solve the issue self.threadpool_single_queue += 1 if self.threadpool_single_queue == 1: worker = Worker(self.tensorboad_worker) def get_pid_from_worker(dic): pid = dic["outp"] #print("WORKER-PID") #print("pid") #os.kill(pid,signal.CTRL_C_EVENT) #ToDo Find a way to kill that process! worker.signals.history.connect(get_pid_from_worker) self.threadpool_single.start(worker) #print("PID-Here:") #print(os.getpid()) #time.sleep(2) def tensorboad_worker(self,progress_callback,history_callback): #send the model to tensorboard (webbased application) with tf.Session() as sess: model_keras = load_model(self.load_model_path,custom_objects=aid_dl.get_custom_metrics()) graph = K.get_session().graph # Get the sessions graph #get a folder for that model in temp temp_path = aid_bin.create_temp_folder() modelname = os.path.split(self.load_model_path)[-1] modelname = modelname.split(".model")[0] log_dir = os.path.join(temp_path,modelname) writer = tf.summary.FileWriter(logdir=log_dir, graph=graph)#write a log #tb = program.TensorBoard() tb = program.TensorBoard(default.get_plugins(), default.get_assets_zip_provider()) #tb.configure(argv=[None, '--logdir', log_dir,"--host","127.0.0.1"]) tb.configure(argv=[None, '--logdir', log_dir,"--host","localhost"]) url = tb.launch() url = os.path.join(url) os.system(r"start "+url) pid = os.getpid() dic = {"outp":pid} #print("WORKER1-PID") #print(pid) history_callback.emit(dic) #return the pid (use it to kill the process) self.threadpool_single_queue = 0 #reset the thread-counter time.sleep(0.5) def copy_cm_to_clipboard(self,cm1_or_cm2): if cm1_or_cm2==1: table = self.tableWidget_CM1 cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] elif cm1_or_cm2==2: table = self.tableWidget_CM2 cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] elif cm1_or_cm2==3: #this is for the classification report table tableWidget_AccPrecSpec table = self.tableWidget_AccPrecSpec cols = table.columnCount() header = list(range(cols)) rows = table.rowCount() tmp_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: tmp_df.iloc[i, j] = table.item(i, j).text() except: tmp_df.iloc[i, j] = np.nan tmp_df.to_clipboard() if cm1_or_cm2<3: self.statusbar.showMessage("Confusion matrix appended to clipboard.",2000) if cm1_or_cm2==3: self.statusbar.showMessage("Classification report appended to clipboard.",2000) def assess_model_plotting(self): if self.load_model_path == None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a model path first") msg.setWindowTitle("No model path found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #If there is a ValidationSet on RAM-> use it! if not type(self.ValidationSet) is type(None): #If ValidationSet is not none, there has been ValidationSet loaded already self.statusbar.showMessage("Use validation data (from RAM) loaded earlier. If that is not good, please check and uncheck a file on 'Build' tab. This will delete the validation data from RAM",5000) else: #Otherwise get the validation data from the stuff that is clicked on 'Build'-Tab self.get_validation_data_from_clicked() #after that, self.ValidationSet will exist #Check if input data is available if type(self.ValidationSet)==type(None): return elif type(self.ValidationSet["X_valid"])==type(None): return #Check the input dimensions: img_dim = self.ValidationSet["X_valid"].shape[-2] model_in = int(self.spinBox_Crop_2.value()) if model_in!=img_dim: self.ValidationSet = None self.get_validation_data_from_clicked() #after that, self.ValidationSet will exist msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("New model has different input dimensions (image crop). Validation set is re-loaded (like when you clicked on files on build-tab)") msg.setWindowTitle("Automatically re-loaded validation set") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() y_valid = self.ValidationSet["y_valid"] #load the validation labels to a new variable #X_valid = self.X_valid #<--dont do this since it is used only once (.predict) and it would require additional RAM; instad use self.X_valid for .predict #Load the model and predict with tf.Session() as sess: model_keras = load_model(self.load_model_path,custom_objects=aid_dl.get_custom_metrics()) self.model_keras = model_keras #useful to get the list of layers for Grad-CAM; also used to show the summary in_dim = model_keras.get_input_shape_at(node_index=0) if type(in_dim)==list: multi_input = True in_dim = in_dim[0]#discard the second (xtra input) else: multi_input = False channels_model = in_dim[-1] channels_data = self.ValidationSet["X_valid"].shape[-1] #Compare channel dimensions of loaded model and validation set if channels_model==3 and channels_data==1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "Model expects 3 channels, but data has 1 channel!" text = text+" Will stack available channel three times to generate RGB image." msg.setText(text) msg.setWindowTitle("Automatic adjustment of image channels") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #model wants rgb images, but provided data is grayscale->copy and stack 3 times self.ValidationSet["X_valid"] = np.stack((self.ValidationSet["X_valid"][:,:,:,0],)*3, axis=-1) elif channels_model==1 and channels_data==3: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "Model expects 1 channel, but data has 3 channels!" text = text+" Will use the luminosity formula to convert RGB to grayscale." msg.setText(text) msg.setWindowTitle("Automatic adjustment of image channels") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #model wants grayscale, but provided data is rgb self.ValidationSet["X_valid"] = aid_img.rgb_2_gray(self.ValidationSet["X_valid"]) elif channels_model!=channels_data: #Model and validation data have differnt channel dims text = "Model expects "+str(int(channels_model))+" channel(s), but data has "+str(int(channels_data))+" channel(s)!" msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(text) msg.setWindowTitle("Model and data channel dimension not equal!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if multi_input == False: scores = model_keras.predict(self.ValidationSet["X_valid"]) if multi_input == True: print("self.ValidationSet[Xtra_in]") print(self.ValidationSet["Xtra_in"]) scores = model_keras.predict([self.ValidationSet["X_valid"],self.ValidationSet["Xtra_in"]]) #Get settings from the GUI threshold = float(self.doubleSpinBox_sortingThresh.value())#threshold probability obove which a cell is sorted target_index = int(self.spinBox_indexOfInterest.value())#index of the cell type that should be sorted for thresh_on = bool(self.checkBox_SortingThresh.isChecked()) #Check that the target index alias "Sorting class" is actually a valid class of the model out_dim = int(self.spinBox_OutClasses_2.value()) if not target_index<out_dim: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("You set the 'Sorting class' to "+str(target_index)+" which is not a valid class of the loaded model. The model only has the following classes: "+str(range(out_dim))) msg.setWindowTitle("Class not available in the model") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return dic = aid_bin.metrics_using_threshold(scores,y_valid,threshold,target_index,thresh_on) #returns dic = {"scores":scores,"pred":pred,"conc_target_cell":conc_target_cell,"enrichment":enrichment,"yield_":yield_} self.Metrics = dic #write to a variable # pred = dic["pred"] cm = metrics.confusion_matrix(y_valid,pred,labels=range(scores.shape[1])) cm_normalized = 100*cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] #Show the metrics on tableWidget_CM1 and tableWidget_CM2 #inds_uni = set(list(set(y_valid))+list(set(pred))) #It could be that a cell-index is not present in the validation data, but, the dimension of the scores tells me, how many indices are supposed to appear inds_uni = range(scores.shape[1]) #these indices are explained by model #look in into tableWidget_Info_2 if there are user defined index names rowCount = self.tableWidget_Info_2.rowCount() #Only counts rows with input rowCount = sum([self.tableWidget_Info_2.item(row, 0)!=None for row in range(rowCount)]) try: indices_on_table = [int(self.tableWidget_Info_2.item(row, 0).text()) for row in range(rowCount)] names_on_table = [str(self.tableWidget_Info_2.item(row, 3).text()) for row in range(rowCount)] except Exception as e: #There was an error! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Check that len(names_on_table) <= len(inds_uni) ->it is impossible that the model for example can predict 2 classes, but there are 3 different classes in the validation set if not len(names_on_table) <= len(inds_uni): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model can only predict "+str(len(inds_uni))+" classes, but validation data contains "+str(len(names_on_table))+" classes") msg.setWindowTitle("Too many classes in validation set") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #return CellNames = [] for ind in inds_uni: #check if that index is present on table where = np.where(np.array(indices_on_table)==ind)[0] if len(where)==1:#if there is exaclty one item... CellNames.append(np.array(names_on_table)[where]) #append the corresponding user defined name to a list else: CellNames.append(str(ind)) header_labels = [i[0] for i in CellNames]#list(inds_uni)] #Table for CM1 - Total Nr of cells self.tableWidget_CM1.setRowCount(len(inds_uni)) self.tableWidget_CM1.setColumnCount(len(inds_uni)) self.tableWidget_CM1.setHorizontalHeaderLabels(header_labels) self.tableWidget_CM1.setVerticalHeaderLabels(header_labels) for i in inds_uni: for j in inds_uni: rowPosition = i colPosition = j #Total nr of cells for each index #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(cm[i,j])) self.tableWidget_CM1.setItem(rowPosition, colPosition, item) self.tableWidget_CM1.resizeColumnsToContents() self.tableWidget_CM1.resizeRowsToContents() #Table for CM2 - Normalized Confusion matrix self.tableWidget_CM2.setRowCount(len(inds_uni)) self.tableWidget_CM2.setColumnCount(len(inds_uni)) self.tableWidget_CM2.setHorizontalHeaderLabels(header_labels) self.tableWidget_CM2.setVerticalHeaderLabels(header_labels) for i in range(len(inds_uni)): for j in range(len(inds_uni)): rowPosition = i colPosition = j #Total nr of cells for each index #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(cm_normalized[i,j])) self.tableWidget_CM2.setItem(rowPosition, colPosition, item) self.tableWidget_CM2.resizeColumnsToContents() self.tableWidget_CM2.resizeRowsToContents() ############Fill tableWidget_AccPrecSpec with information########## #Compute more metrics and put them on the table below nr_target_init = float(len(np.where(y_valid==target_index)[0])) #number of target cells in the initial sample conc_init = nr_target_init/float(len(y_valid)) #concentration of the target cells in the initial sample acc = metrics.accuracy_score(y_valid,pred) #Reset the table self.tableWidget_AccPrecSpec.setColumnCount(0)#Reset table self.tableWidget_AccPrecSpec.setRowCount(0)#Reset table nr_cols = np.max([5,len(inds_uni)+1]) self.tableWidget_AccPrecSpec.setColumnCount(nr_cols) #Five columns self.tableWidget_AccPrecSpec.setRowCount(7+len(inds_uni)+2) #Nr. of rows #Put lots and lots of Info on tableWidget_AccPrecSpec text_conc_init = "Init. conc. of cells from class/name "+header_labels[target_index] self.tableWidget_AccPrecSpec.setItem(0 , 0, QtGui.QTableWidgetItem(text_conc_init)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(np.round(100*conc_init,4))) self.tableWidget_AccPrecSpec.setItem(0, 1, item) text_conc_final = "Final conc. in target region" self.tableWidget_AccPrecSpec.setItem(1 , 0, QtGui.QTableWidgetItem(text_conc_final)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(np.round(dic["conc_target_cell"],4))) self.tableWidget_AccPrecSpec.setItem(1, 1, item) text_enrich = "Enrichment" self.tableWidget_AccPrecSpec.setItem(2 , 0, QtGui.QTableWidgetItem(text_enrich)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(np.round(dic["enrichment"],4))) self.tableWidget_AccPrecSpec.setItem(2, 1, item) text_yield = "Yield" self.tableWidget_AccPrecSpec.setItem(3 , 0, QtGui.QTableWidgetItem(text_yield)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(np.round(dic["yield_"],4))) self.tableWidget_AccPrecSpec.setItem(3, 1, item) text_acc = "Accuracy"#+str(round(acc,4))+"\n" self.tableWidget_AccPrecSpec.setItem(4 , 0, QtGui.QTableWidgetItem(text_acc)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(np.round(acc,4))) self.tableWidget_AccPrecSpec.setItem(4, 1, item) text_classification_report = "Classification Report"#+metrics.classification_report(y_valid, pred, target_names=header_labels) self.tableWidget_AccPrecSpec.setItem(5 , 0, QtGui.QTableWidgetItem(text_classification_report)) class_rep = metrics.classification_report(y_valid, pred,labels=inds_uni, target_names=header_labels,output_dict =True) try: df = pd.DataFrame(class_rep) df = df.T ax_left = df.axes[0] for row in range(len(ax_left)): self.tableWidget_AccPrecSpec.setItem(7+row, 0, QtGui.QTableWidgetItem(str(ax_left[row]))) ax_up = df.axes[1] for col in range(len(ax_up)): self.tableWidget_AccPrecSpec.setItem(6, 1+col, QtGui.QTableWidgetItem(str(ax_up[col]))) for row in range(df.shape[0]): for col in range(df.shape[1]): val = df.iloc[row,col] val = float(np.round(val,4)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, val) self.tableWidget_AccPrecSpec.setItem(7+row, 1+col, item) except Exception as e: #There is an issue loading the files! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() self.tableWidget_AccPrecSpec.resizeColumnsToContents() self.tableWidget_AccPrecSpec.resizeRowsToContents() #AFTER the table is resized to the contents, fill in also information #about the used data: rowPosition = self.tableWidget_AccPrecSpec.rowCount() self.tableWidget_AccPrecSpec.insertRow(rowPosition) #Insert a new row self.tableWidget_AccPrecSpec.setItem(rowPosition , 0, QtGui.QTableWidgetItem("Used Files")) rowPosition = self.tableWidget_AccPrecSpec.rowCount() self.tableWidget_AccPrecSpec.insertRow(rowPosition) #Insert another row! self.tableWidget_AccPrecSpec.setItem(rowPosition , 0, QtGui.QTableWidgetItem("File")) #dic = {"SelectedFiles_valid":SelectedFiles_valid,"nr_events_epoch_valid":nr_events_epoch_valid,"rtdc_path_valid":[rtdc_path],"X_valid_orig":[X_valid_orig],"X_valid":X_valid,"y_valid":y_valid,"Indices":[Indices]} rtdc_path_valid = self.ValidationSet["rtdc_path_valid"] #nr_events_epoch_valid = self.ValidationSet["nr_events_epoch_valid"] y_valid = self.ValidationSet["y_valid"] #y_valid is a long array containing the label of all cell (of all clicked files) Indices = self.ValidationSet["Indices"] #Index is a list with arrays containing cell-indices (to track events in a data-set) y_valid_uni = np.unique(np.array(y_valid),return_counts=True) #set the column count the at least match the amount of different cell-types available if self.tableWidget_AccPrecSpec.columnCount() < len(y_valid_uni[0]): diff = len(y_valid_uni[0])-self.tableWidget_AccPrecSpec.columnCount() for col_ind in range(diff): colPosition = self.tableWidget_AccPrecSpec.columnCount() self.tableWidget_AccPrecSpec.insertColumn(colPosition) #Insert a new col for each cell-type #Create a column for each cell-type for col_ind in range(len(y_valid_uni[0])): #how_many = y_valid_uni[1][col_ind] #self.tableWidget_AccPrecSpec.setItem(rowPosition , 1+col_ind, QtGui.QTableWidgetItem(float(how_many))) content = "Class "+str(y_valid_uni[0][col_ind]) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, content) self.tableWidget_AccPrecSpec.setItem(rowPosition , 1+col_ind, item) loc = 0 for row in range(len(rtdc_path_valid)): rowPosition = self.tableWidget_AccPrecSpec.rowCount() self.tableWidget_AccPrecSpec.insertRow(rowPosition) #Insert a new row for each entry self.tableWidget_AccPrecSpec.setItem(rowPosition , 0, QtGui.QTableWidgetItem(rtdc_path_valid[row])) #y_valid_uni = np.unique(y_valid[row]) #self.tableWidget_AccPrecSpec.setItem(rowPosition , 1, QtGui.QTableWidgetItem(np.array(y_valid_uni))) #self.tableWidget_AccPrecSpec.setItem(rowPosition , 2, QtGui.QTableWidgetItem(float(nr_events_epoch_valid[row]))) index = Indices[row] #get the array of indices of a single measurement y_valid_i = y_valid[loc:loc+len(index)] loc = loc+len(index) y_valid_i_uni = np.unique(y_valid_i,return_counts=True) for col_ind in range(len(y_valid_i_uni[0])): #what is the cell-type cell_type = int(y_valid_i_uni[0][col_ind])#cell-type index alway starts with 0. Nr. of cells of cell-type 0 remain to column 1 how_many = y_valid_i_uni[1][col_ind] item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, int(how_many)) self.tableWidget_AccPrecSpec.setItem(rowPosition , 1+cell_type, item) #Draw the probability histogram self.probability_histogram() #Finally, also update the third plot self.thirdplot() def create_random_table(self): print("def create_random_table only useful for development") # matrix = np.random.randint(0,100,size=(3,3)) # self.tableWidget_CM1.setRowCount(matrix.shape[0]) # self.tableWidget_CM1.setColumnCount(matrix.shape[1]) # # for i in range(matrix.shape[0]): # for j in range(matrix.shape[1]): # item = QtWidgets.QTableWidgetItem() # item.setData(QtCore.Qt.EditRole,str(matrix[i,j])) # self.tableWidget_CM1.setItem(i, j, item) # # self.tableWidget_CM1.resizeColumnsToContents() # self.tableWidget_CM1.resizeRowsToContents() def probability_histogram(self): # def probability_histogram(self): """ Grab the scores of each class and show it in histogram """ if len(self.Metrics) ==0: #but if not give message and return msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There are no Metrics determined yet (use ->'Update Plots' first)") msg.setWindowTitle("No Metrics found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return dic = self.Metrics #returns dic = {"scores":scores,"pred":pred,"conc_target_cell":conc_target_cell,"enrichment":enrichment,"yield_":yield_} scores = dic["scores"] #Get the available cell indices (cell-type identifier) inds_uni = range(scores.shape[1]) #these indices are explained by model threshold = float(self.doubleSpinBox_sortingThresh.value())#threshold probability obove which a cell is sorted target_index = int(self.spinBox_indexOfInterest.value())#index of the cell type that should be sorted for try: #What is the probability of cell with y_valid=i that it belongs to class target_index? scores_i = [] y_valid = self.ValidationSet["y_valid"] for i in inds_uni: ind = np.where(y_valid==i)[0] if len(ind)>0: #if there are no cells available, dont append. In this case there will also be no color defined scores_i.append(scores[ind,target_index]) except Exception as e: #There is an issue loading the files! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return rowCount = self.tableWidget_Info_2.rowCount() #only count rows with content rowCount = sum([self.tableWidget_Info_2.item(row, 0)!=None for row in range(rowCount)]) names_on_table = [str(self.tableWidget_Info_2.item(row, 3).text()) for row in range(rowCount)] index_on_table = [int(self.tableWidget_Info_2.item(row, 0).text()) for row in range(rowCount)] #On which row is the target_index? ind = np.where(np.array(index_on_table)==target_index)[0] if len(ind) == 1: target_name = str(np.array(names_on_table)[ind][0]) else: target_name = str(target_index) #Get the user-defined colors from table colors_on_table = [self.tableWidget_Info_2.item(row, 2).background() for row in range(rowCount)] #it can be that the table was not updated and there are more scores than table-items if len(colors_on_table)!=len(scores_i): #update table SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) #update colors on table rowCount = self.tableWidget_Info_2.rowCount() #only count rows with content rowCount = sum([self.tableWidget_Info_2.item(row, 0)!=None for row in range(rowCount)]) colors_on_table = [self.tableWidget_Info_2.item(row, 2).background() for row in range(rowCount)] #Clear the plot self.widget_probHistPlot.clear() #Add plot hist = self.widget_probHistPlot.addPlot() hist.showGrid(x=True,y=True) hist.setLabel('bottom', "p("+target_name+")", units='') hist.setLabel('left', "#", units='') #Get the user defined histogram style from the combobox style = str(self.comboBox_probability_histogram.currentText()) for i in range(len(scores_i)): # I had previously range(len(scores_i)); but this causes an error if there is a cell-type missing in the validation set hist_i = hist.plot() if len(scores_i[i])>1:#only continue of there multiple events (histogram does not make sense otherwise) range_hist = (scores_i[i].min(), scores_i[i].max()) first_edge, last_edge = np.lib.histograms._get_outer_edges(scores_i[i], range=range_hist) try: #numpy 1.15 width = np.lib.histograms._hist_bin_selectors['auto'](scores_i[i]) except:#numpy >1.15 width = np.lib.histograms._hist_bin_selectors['auto'](scores_i[i],(np.min(scores_i[i]),np.min(scores_i[i]))) try:#prevent crash if width=0 n_equal_bins = int(np.ceil(np.lib.histograms._unsigned_subtract(last_edge, first_edge) / width)) except: n_equal_bins = 1 if n_equal_bins>1E4: #Who needs more than 10k bins?!: n_equal_bins = int(1E4) else: n_equal_bins='auto' y,x = np.histogram(scores_i[i], bins=n_equal_bins) if style=="Style1": pencolor = pg.mkColor(colors_on_table[i].color()) pen = pg.mkPen(color=pencolor,width=5) hist_i.setData(x, y, stepMode=True, pen=pen,clear=False) elif style=="Style2": pencolor = pg.mkColor(colors_on_table[i].color()) pen = pg.mkPen(color=pencolor,width=10) hist_i.setData(x, y, stepMode=True, pen=pen,clear=False) elif style=="Style3": color = colors_on_table[i].color() color.setAlpha(0.6*255.0) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) hist_i.setData(x, y, stepMode=True, fillLevel=0, brush=brush,clear=False) elif style=="Style4": color = colors_on_table[i].color() color.setAlpha(0.7*255.0) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) hist_i.setData(x, y, stepMode=True, fillLevel=0, brush=brush,clear=False) elif style=="Style5": color = colors_on_table[i].color() color.setAlpha(0.8*255.0) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) hist_i.setData(x, y, stepMode=True, fillLevel=0, brush=brush,clear=False) #Add a vertical line indicating the threshold self.line = pg.InfiniteLine(pos=threshold, angle=90, pen='w', movable=False) hist.addItem(self.line) hist.setXRange(0, 1, padding=0) def thirdplot(self): target_index =self.spinBox_indexOfInterest.value() cb_text = self.comboBox_3rdPlot.currentText() if cb_text=='None': return if cb_text=='ROC-AUC': #Check if self.Metrics are available if len(self.Metrics) == 0: self.assess_model_plotting() #run this function to create self.Metrics dic = self.Metrics else: #If no Metrics available yet... dic = self.Metrics if len(dic)==0: return #Get the ValidationSet y_valid = self.ValidationSet["y_valid"] #load the validation labels to a new variable scores = dic["scores"] inds_uni = list(range(scores.shape[1])) #these indices are explained by model #ROC-curve is only available for binary problems: Y_valid = np_utils.to_categorical(y_valid,num_classes=len(inds_uni)) # Compute ROC curve and ROC area for each class fpr,tpr,roc_auc = dict(),dict(),dict() for i in range(len(inds_uni)): fpr[i], tpr[i], _ = metrics.roc_curve(Y_valid[:, i], scores[:, i]) roc_auc[i] = metrics.auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = metrics.roc_curve(Y_valid.ravel(), scores.ravel()) roc_auc["micro"] = metrics.auc(fpr["micro"], tpr["micro"]) #Get the user-defined colors from table rowCount = self.tableWidget_Info_2.rowCount() #only count rows with content rowCount = sum([self.tableWidget_Info_2.item(row, 0)!=None for row in range(rowCount)]) colors_on_table = [self.tableWidget_Info_2.item(row, 2).background() for row in range(rowCount)] #Clear the plot self.widget_3rdPlot.clear() #Add plot hist = self.widget_3rdPlot.addPlot() hist.showGrid(x=True,y=True) hist.addLegend() hist.setLabel('bottom', "False Positive Rate", units='') hist.setLabel('left', "True Positive Rate", units='') for i, color in zip(range(len(inds_uni)), colors_on_table): text = 'Class '+str(i)+', AUC='+str(round(roc_auc[i],2)) hist.plot(fpr[i], tpr[i], pen=None,symbol='o',symbolPen=None,symbolBrush=color,name=text,clear=False) clr = color.color() hist.plot(fpr[i],tpr[i],pen=clr) hist.setXRange(0, 1, padding=0) if cb_text=='Precision-Recall': #Check if self.Metrics are available if len(self.Metrics) == 0: self.assess_model_plotting() #run this function to create self.Metrics dic = self.Metrics else: #Otherwise, there are Metrics available already :) Use them dic = self.Metrics if len(dic)==0: return #Get the ValidationSet y_valid = self.ValidationSet["y_valid"] #load the validation labels to a new variable scores = dic["scores"]#[:,target_index] inds_uni = list(range(scores.shape[1])) #these indices are explained by model #ROC-curve is only available for binary problems: Y_valid = np_utils.to_categorical(y_valid,num_classes=len(inds_uni)) # Compute Precision Recall curve and P-R area for each class precision,recall,precision_recall_auc = dict(),dict(),dict() for i in range(len(inds_uni)): precision[i], recall[i], _ = metrics.precision_recall_curve(Y_valid[:, i], scores[:, i]) precision_recall_auc[i] = metrics.auc(recall[i], precision[i]) # Compute micro-average ROC curve and ROC area precision["micro"], recall["micro"], _ = metrics.roc_curve(Y_valid.ravel(), scores.ravel()) precision_recall_auc["micro"] = metrics.auc(recall["micro"],precision["micro"]) #Get the user-defined colors from table rowCount = self.tableWidget_Info_2.rowCount() #only count rows with content rowCount = sum([self.tableWidget_Info_2.item(row, 0)!=None for row in range(rowCount)]) colors_on_table = [self.tableWidget_Info_2.item(row, 2).background() for row in range(rowCount)] #Clear the plot self.widget_3rdPlot.clear() #Add plot hist = self.widget_3rdPlot.addPlot() hist.showGrid(x=True,y=True) hist.addLegend() hist.setLabel('bottom', "Recall", units='') hist.setLabel('left', "Precision", units='') for i, color in zip(range(len(inds_uni)), colors_on_table): text = 'Class '+str(i)+', AUC='+str(round(precision_recall_auc[i],2)) hist.plot(recall[i],precision[i], pen=None,symbol='o',symbolPen=None,symbolBrush=color,name=text,clear=False) clr = color.color() hist.plot(recall[i],precision[i],pen=clr) hist.setXRange(0, 1, padding=0) if cb_text=='Enrichment vs. Threshold' or cb_text=='Yield vs. Threshold' or cb_text=='Conc. vs. Threshold': #Check if self.Metrics are available if len(self.Metrics) == 0: #if not, self.assess_model_plotting() #run this function to create self.Metrics dic = self.Metrics else: #If Metrics are already available, use it. Load it dic = self.Metrics if len(dic)==0: return scores = dic["scores"] y_valid = self.ValidationSet["y_valid"] #load the validation labels to a new variable #The dic only contains metrics for a single threshold, which is not enough #call aid_bin.metrics_using_threshold with a range of thresholds: #(it might makes sense to evaluate this for each possible target_index. Now only perform the measurement for the user defined target index) Dics,Threshs = [],[] for thresh in np.linspace(0,1,25): dic_ = aid_bin.metrics_using_threshold(scores,y_valid,thresh,target_index) #returns dic = {"scores":scores,"pred":pred,"conc_target_cell":conc_target_cell,"enrichment":enrichment,"yield_":yield_} Dics.append(dic_) Threshs.append(thresh) #Collect information in arrays enrichment_ = np.array([d["enrichment"] for d in Dics]) yield__ = np.array([d["yield_"] for d in Dics]) conc_target_cell = np.array([d["conc_target_cell"] for d in Dics]) Threshs = np.array(Threshs) rowCount = self.tableWidget_Info_2.rowCount() #only count rows with content rowCount = sum([self.tableWidget_Info_2.item(row, 0)!=None for row in range(rowCount)]) colors_on_table = [self.tableWidget_Info_2.item(row, 2).background() for row in range(rowCount)] #Clear the plot self.widget_3rdPlot.clear() #Add plot hist = self.widget_3rdPlot.addPlot() hist.showGrid(x=True,y=True) hist.addLegend() hist.setLabel('bottom', "Threshold", units='') color = '#0000ff' if cb_text=='Enrichment vs. Threshold': hist.setLabel('left', "Enrichment", units='') hist.plot(Threshs,enrichment_, pen=None,symbol='o',symbolPen=None,symbolBrush=color,name='',clear=False) hist.plot(Threshs,enrichment_,pen=color) if cb_text=='Yield vs. Threshold': hist.setLabel('left', "Yield", units='') hist.plot(Threshs,yield__, pen=None,symbol='o',symbolPen=None,symbolBrush=color,name='',clear=False) hist.plot(Threshs,yield__,pen=color) if cb_text=='Conc. vs. Threshold': hist.setLabel('left', "Conc. of target cell in target region", units='') hist.plot(Threshs,conc_target_cell, pen=None,symbol='o',symbolPen=None,symbolBrush=color,name='',clear=False) hist.plot(Threshs,conc_target_cell,pen=color) hist.setXRange(0, 1, padding=0) #Add indicator for the currently used threshold threshold = float(self.doubleSpinBox_sortingThresh.value())#threshold probability obove which a cell is sorted self.line = pg.InfiniteLine(pos=threshold, angle=90, pen='w', movable=False) hist.addItem(self.line) def classify(self): #Very similar function to "Update Plot". But here, no graphs are produced #Resulting scores/predictions etc are simply stored to excel file #This function does NOT take labels. #Check if a model was defined if self.load_model_path == None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a model path first") msg.setWindowTitle("No model path found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return AvailableFiles = self.items_available() rtdc_paths = [file_["rtdc_path"] for file_ in AvailableFiles] #Classify all datasets or just one? Files,FileIndex = [],[] if self.radioButton_selectAll.isChecked(): Files = rtdc_paths FileIndex = list(range(len(Files))) if len(Files)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There are no files on the 'Build'-Tab") msg.setWindowTitle("No files found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return elif self.radioButton_selectDataSet.isChecked(): rtdc_path = self.comboBox_selectData.currentText() Files.append(rtdc_path) #get the index of this file on the table FileIndex = [int(self.comboBox_selectData.currentIndex())] #FileIndex = list(np.where(np.array(rtdc_path)==np.array(rtdc_paths))[0]) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the radiobuttons (left) to indicate if all or only a selected file should be classified.") msg.setWindowTitle("No file(s) specified") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return print("Chosen file(s):") print(Files) #what input size is required by loaded model? crop = int(self.spinBox_Crop_2.value()) norm = str(self.comboBox_Normalization_2.currentText()) paddingMode = str(self.comboBox_paddingMode.currentText()) color_mode = self.get_color_mode() zoom_factors = [selectedfile["zoom_factor"] for selectedfile in AvailableFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order xtra_in = set([selectedfile["xtra_in"] for selectedfile in AvailableFiles]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #if normalization method needs mean/std of training set, the metafile needs to be loaded: if norm == "StdScaling using mean and std of all training data": modelindex = int(self.spinBox_ModelIndex_2.value()) path,fname = os.path.split(self.load_model_path) fname = fname.split(str(modelindex)+".model")[0]+"meta.xlsx" metafile_path = os.path.join(path,fname) parameters = pd.read_excel(metafile_path,sheet_name='Parameters') mean_trainingdata = parameters["Mean of training data used for scaling"] std_trainingdata = parameters["Std of training data used for scaling"] else: mean_trainingdata = None std_trainingdata = None #Create config (define which device to use) if self.radioButton_cpu.isChecked(): deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: model_keras = load_model(self.load_model_path,custom_objects=aid_dl.get_custom_metrics()) in_dim = model_keras.get_input_shape_at(node_index=0) #Get the color mode of the model channels_model = in_dim[-1] if channels_model==1: color_mode='Grayscale' elif channels_model==3: color_mode='RGB' else: print("Invalid number of channels. AID only supports grayscale (1 channel) and RGB (3 channels) images.") #Get the user-set export option (Excel or to 'userdef0' in .rtdc file) export_option = str(self.comboBox_scoresOrPrediction.currentText()) if export_option == "Add predictions to .rtdc file (userdef0)" or export_option=="Add pred&scores to .rtdc file (userdef0 to 9)": #Users sometimes need to have Donor-ID (Parent foldername) added to the .rtdc file #Ask the user: Do you want to get a specific fixed addon to filename, OR do you want to have the parent-foldername added? msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "Do you want to get a specific fixed addon to filename, <b>or do you want to have the parent-foldername added for each file individually?" text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("Filename-addon for created files") msg.addButton(QtGui.QPushButton('Specific fixed addon...'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Parent foldername'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() if retval==0: #Get some user input: fname_addon, ok = QtWidgets.QInputDialog.getText(self, 'Specific fixed addon...', 'Enter filname addon:') if ok: fname_addon = str(fname_addon) else: return elif retval==1: fname_addon = "Action:GetParentFolderName!" else: return #Iterate over all Files for iterable in range(len(Files)):#rtdc_path in Files: print("Files:"+str(Files)) print("iterable:"+str(iterable)) rtdc_path = Files[iterable] print("rtdc_path:"+str(rtdc_path)) print("FileIndex:"+str(FileIndex)) print("zoom_factors:"+str(zoom_factors)) f_index = FileIndex[iterable] zoom_factor = zoom_factors[f_index] #get all images, cropped correcetly gen_train = aid_img.gen_crop_img(crop,rtdc_path,replace=True,random_images=False,zoom_factor=zoom_factor,zoom_order=zoom_order,color_mode=color_mode,padding_mode=paddingMode,xtra_in=xtra_in) x_train,index,xtra_train = next(gen_train) #x_train-images of all cells, index-original index of all cells if norm == "StdScaling using mean and std of all training data": x_train = aid_img.image_normalization(x_train,norm,mean_trainingdata,std_trainingdata) else: x_train = aid_img.image_normalization(x_train,norm) #Check the input dimensions: img_dim = x_train.shape[-2] model_in = int(self.spinBox_Crop_2.value()) if model_in!=img_dim: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("New model has different input dimensions (image crop). Validation set is re-loaded (clicked files on build-tab)") msg.setWindowTitle("Input dimensions not fitting") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() scores = model_keras.predict(x_train) scores_normal = np.copy(scores) pred_normal = np.argmax(scores_normal,axis=1) #Get settings from the GUI threshold = float(self.doubleSpinBox_sortingThresh.value())#threshold probability obove which a cell is sorted target_index = int(self.spinBox_indexOfInterest.value())#index of the cell type that should be sorted for #Use argmax for prediction (threshold can only be applied to one index) pred_normal = np.argmax(scores,axis=1) #First: check the scores_in_function of the sorting index and adjust them using the threshold pred_thresh = np.array([1 if p>threshold else 0 for p in scores[:,target_index]]) #replace the corresponding column in the scores_in_function scores[:,target_index] = pred_thresh #Determine the prediction again, considering the threshold for the target index pred_thresh = np.argmax(scores,axis=1) normal_or_thresh = bool(self.checkBox_SortingThresh.isChecked()) if normal_or_thresh==True: #(if its true means its normal means p=0.5) prediction_to_rtdc_ds = pred_normal if normal_or_thresh==False: #(if its false means its thresholded for some class) prediction_to_rtdc_ds = pred_thresh if export_option == "Scores and predictions to Excel sheet": info = np.array([[self.load_model_path],[rtdc_path],[target_index],[threshold]]).T info = pd.DataFrame(info,columns=["load_model_path","rtdc_path","target_class","threshold"]) #Combine all information in nice excel sheet filename = rtdc_path.split(".rtdc")[0]+"_Prediction.xlsx" writer = pd.ExcelWriter(filename, engine='openpyxl') #Used files go to a separate sheet on the -session.xlsx pd.DataFrame().to_excel(writer,sheet_name='Info') #initialize empty Sheet info.to_excel(writer,sheet_name='Info') pd.DataFrame().to_excel(writer,sheet_name='Scores_normal') #initialize empty Sheet pd.DataFrame(scores_normal).to_excel(writer,sheet_name='Scores_normal') pd.DataFrame().to_excel(writer,sheet_name='Prediction_normal') #initialize empty Sheet pd.DataFrame(pred_normal).to_excel(writer,sheet_name='Prediction_normal') pd.DataFrame().to_excel(writer,sheet_name='Scores_thresholded') #initialize empty Sheet pd.DataFrame(scores).to_excel(writer,sheet_name='Scores_thresholded') pd.DataFrame().to_excel(writer,sheet_name='Prediction_thresholded') #initialize empty Sheet
pd.DataFrame(pred_thresh)
pandas.DataFrame
#python imports import os import gc import string import random import time import pickle import shutil from datetime import datetime #internal imports from modules.Signal import Signal from modules.Database import Database from modules.Predictor import Classifier, ComplexBuilder from modules.utils import calculateDistanceP, chunks, cleanPath, minMaxNorm, extractMeanByBounds, extractMetricByShiftBounds import joblib from joblib import Parallel, delayed, dump, load import pandas as pd import numpy as np from collections import OrderedDict from itertools import combinations from multiprocessing import Pool, Value from joblib import wrap_non_picklable_objects #plotting import matplotlib.pyplot as plt import seaborn as sns #sklearn imports from sklearn.metrics import classification_report, homogeneity_score, v_measure_score, completeness_score from sklearn.model_selection import ParameterGrid from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LinearRegression from sklearn.neighbors import RadiusNeighborsRegressor, KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import scale, minmax_scale, robust_scale from scipy.stats import ttest_ind, f_oneway #dimensional reduction import umap __VERSION__ = "0.4.48" filePath = os.path.dirname(os.path.realpath(__file__)) pathToTmp = os.path.join(filePath,"tmp") alignModels = { "LinearRegression": LinearRegression, "RadiusNeighborsRegressor" : RadiusNeighborsRegressor, "KNeighborsRegressor":KNeighborsRegressor } alignModelsParams = { "LinearRegression": {}, "RadiusNeighborsRegressor" : {"weights":"distance","radius":30} , "KNeighborsRegressor":{"weights":"distance","n_neighbors":10} } STACKING_CLASSIFIER_GRID = { 'rf__max_depth': [70,None,30],#30,, #'rf__max_features': ['auto'], # 'rf__min_samples_leaf': [2, 3, 5], 'rf__min_samples_split': [2,4],#[2, 3, 4], #'rf__n_estimators': [200], "SVM__C" : [1, 10,1000], "SVM__kernel": ['rbf','poly'], 'SVM__gamma': [0.01,10,100] } OPTICS_PARAM_GRID = { "min_samples":[2,3,5,8], "max_eps": [np.inf,2,1,0.9,0.8], "xi": np.linspace(0,0.3,num=30), "cluster_method" : ["xi"] } AGGLO_PARAM_GRID = { "n_clusters":[None,115,110,105,100,90,95], "distance_threshold":[None,0.5,0.4,0.2,0.1,0.05,0.01], "linkage":["complete","single","average"] } AFF_PRO_PARAM = {"damping":np.linspace(0.5,1,num=50)} HDBSCAN_PROPS = { "min_cluster_size":[2,3,4,6], "min_samples":[2,3,4,5] } #{"min_cluster_size":[2,3,4,6],"min_samples":[2,3,4,5,8,10]} CLUSTER_PARAMS = { "OPTICS":OPTICS_PARAM_GRID, "AGGLOMERATIVE_CLUSTERING":AGGLO_PARAM_GRID, "AFFINITY_PROPAGATION":AFF_PRO_PARAM, "HDBSCAN":HDBSCAN_PROPS } svm_param_grid = { 'C': [1, 10, 100, 1000], 'kernel': ['linear','rbf','poly'], 'gamma': [0.01,0.1,1,2,3,4,5] } RF_GRID_SEARCH = { 'max_depth': [70,None,30,50,10],#30,,,50,5 'max_features': ['auto'], 'min_samples_leaf': [2,5,3,15], # 5, 15 'min_samples_split': [2 ,3,10], 'n_estimators': [300, 500, 600] } entriesInChunks = dict() class ComplexFinder(object): def __init__(self, addImpurity = 0.0, alignMethod = "RadiusNeighborsRegressor",#"RadiusNeighborsRegressor",#"KNeighborsRegressor",#"LinearRegression", # RadiusNeighborsRegressor alignRuns = False, alignWindow = 3, allowSingleFractionQuant = False, analysisMode = "label-free", #[label-free,SILAC,SILAC-TMT] analysisName = None, binaryDatabase = False, classifierClass = "random_forest", classifierTestSize = 0.25, classiferGridSearch = RF_GRID_SEARCH,#STACKING_CLASSIFIER_GRID,# compTabFormat = False, considerOnlyInteractionsPresentInAllRuns = 2, correlationWindowSize = 5, databaseFilter = {'Organism': ["Human"]},#{'Organism': ["Human"]},#{"Confidence" : [1,2,3,4]} - for hu.map2.0,# {} for HUMAN_COMPLEX_PORTAL databaseIDColumn = "subunits(UniProt IDs)", databaseFileName = "20190823_CORUM.txt",#"humap2.txt databaseHasComplexAnnotations = True, databaseEntrySplitString = ";", decoySizeFactor = 1.2, grouping = {"WT": ["D3_WT_03.txt"]}, hdbscanDefaultKwargs = {"min_cluster_size":4,"min_samples":1}, indexIsID = False, idColumn = "Uniprot ID", interactionProbabCutoff = 0.7, justFitAndMatchPeaks = False, keepOnlySignalsValidInAllConditions = False, kFold = 3, maxPeaksPerSignal = 15, maxPeakCenterDifference = 1.8, metrices = ["apex","pearson","euclidean","cosine","max_location","rollingCorrelation"], #"umap-dist" metricesForPrediction = None,#["pearson","euclidean","apex"], metricQuantileCutoff = 0.001, minDistanceBetweenTwoPeaks = 3, minimumPPsPerFeature = 6, minPeakHeightOfMax = 0.05, n_jobs = 12, noDatabaseForPredictions = False, normValueDict = {}, noDistanceCalculationAndPrediction = False, peakModel = "LorentzianModel",#"GaussianModel",#"SkewedGaussianModel",#"LorentzianModel", plotSignalProfiles = False, plotComplexProfiles = False, precision = 0.5, r2Thresh = 0.85, removeSingleDataPointPeaks = True, restartAnalysis = False, retrainClassifier = False, recalculateDistance = False, rollingWinType = None, runName = None, scaleRawDataBeforeDimensionalReduction = True, smoothSignal = True, smoothWindow = 2, takeRondomSampleFromData =False, topNCorrFeaturesForUMAPAlignment = 200, TMTPoolMethod = "sum", transformQuantDataBy = None, useRawDataForDimensionalReduction = False, useFWHMForQuant = True, umapDefaultKwargs = {"min_dist":0.001,"n_neighbors":5,"n_components":2,"random_state":120}, quantFiles = [], usePeakCentricFeatures = False ): """ Init ComplexFinder Class Parameters ---------- * alignMethod = "RadiusNeighborsRegressor", * alignRuns = False, Alignment of runs is based on signal profiles that were found to have a single modelled peak. A refrence run is assign by correlation anaylsis and choosen based on a maximum R2 value. Then fraction-shifts per signal profile is calculated (must be in the window given by *alignWindow*). The fraction residuals are then modelled using the method provided in *alignMethod*. Model peak centers are then adjusted based on the regression results. Of note, the alignment is performed after peak-modelling and before distance calculations. * alignWindow = 3, Number of fraction +/- single-peal profile are accepted for the run alignment. * analysisMode = "label-free", #[label-free,SILAC,SILAC-TMT] * analysisName = None, * binaryDatabase = False, * classifierClass = "random_forest", * classifierTestSize = 0.25, Fraction of the created database containing positive and negative protein-protein interactions that will be used for testing (for example ROC curve analysis) and classification report. * classiferGridSearch = RF_GRID_SEARCH. Dict with keywords matching parameters/settings of estimator (SVM, random forest) and list of values forming the grid used to find the best estimator settings (evaluated by k-fold cross validation). Runtime is effected by number of parameter settings as well as k-fold. * compTabFormat = False True indicates that the data are in the CompBat data format which was recently introduced. In contrast to standard txt files generated by for example MaxQuant. It contains multiple headers. More information can be found here https://www3.cmbi.umcn.nl/cedar/browse/comptab ComplexFinder will try to identifiy the samples and fractions and create separeted txt files. * considerOnlyInteractionsPresentInAllRuns = 2, Can be either bool to filter for protein - protein interactions that are present in all runs. If an integer is provided. the pp interactions are filtered based on the number of runs in which they were quantified. A value of 4 would indicate that the pp interaction must have been predicted in all runs. * correlationWindowSize = 5, Number of fractions used for rolling pearson correlation * databaseFilter = {'Organism': ["Human"]}, Filter dict used to find relevant complexes from database. By default, the corum database is filtered based on the column 'Organism' using 'Mouse' as a search string. If no filtering is required, pass an empty dict {}. * databaseIDColumn = "subunits(UniProt IDs)", * databaseFileName = "20190823_CORUM.txt", * databaseHasComplexAnnotations = True, Indicates if the provided database does contain complex annotations. If you have a database with only pairwise interactions, this setting should be *False*. Clusters are identified by dimensional reduction and density based clustering (HDBSCAN). In order to alter UMAP and HDBSCAN settings use the kewywords *hdbscanDefaultKwargs* and *umapDefaultKwargs*. * databaseEntrySplitString = ";", String by which complex members are separated in the provided database. CORUM = ";", Embl ComplexMap = "|" * decoySizeFactor = 1.2, Size factor for creating the decoy database from the positive proterin connectivity database such as CORUM. * grouping = {"WT": ["D3_WT_04.txt","D3_WT_02.txt"],"KO":["D3_KO_01.txt","D3_KO_02.txt"]}, None or dict. Indicates which samples (file) belong to one group. Let's assume 4 files with the name 'KO_01.txt', 'KO_02.txt', 'WT_01.txt' and 'WT_02.txt' are being analysed. The grouping dict should like this : {"KO":[KO_01.txt','KO_02.txt'],"WT":['WT_01.txt','WT_02.txt']} in order to combine them for statistical testing (e.g. t-test of log2 transformed peak-AUCs). Note that when analysis multiple runs (e.g. grouping present) then calling ComplexFinder().run(X) - X must be a path to a folder containing the files. When using compTabFormat = True. Provide the sample name as <compTabFileName>:<SampleName>. * hdbscanDefaultKwargs = {"min_cluster_size":4,"min_samples":1}, * indexIsID = False, * idColumn = "Uniprot ID", * interactionProbabCutoff = 0.7 Cutoff for estimator probability. Interactions with probabilities below threshold will be removed. * keepOnlySignalsValidInAllConditions = False If True, removes all Signals that were not found to be valid in all files (experiments). * kFold = 3 Cross validation of classifier optimization. * justFitAndMatchPeaks = False If true, the pipeline stops after peak detection/model fitting and matching of peaks (if more than one file is supplied.) * maxPeaksPerSignal = 15 Number of peaks allowed for on signal profile. * maxPeakCenterDifference = 1.8 * metrices = ["apex","pearson","euclidean","p_pearson","max_location","umap-dist","rollingCorrelation"], Metrices to access distance between two profiles. Can be either a list of strings and/or dict. In case of a list of dicts, each dict must contain the keywords: 'fn' and 'name' providing a callable function with 'fn' that returns a single floating number and takes two arrays as an input. * metricesForPrediction = None * metricQuantileCutoff = 0.90 * minDistanceBetweenTwoPeaks = 3 Distance in fractions (int) between two peaks. Setting this to a smaller number results in more peaks. * n_jobs = 12, Number of workers to model peaks, to calculate distance pairs and to train and use the classifer. * noDatabaseForPredictions = False, If you want to use ComplexFinder without any database. Set this to *True*. * normValueDict = {}, * noDistanceCalculationAndPrediction = False, Set to *True* to use ComplexFinder without distance calculation and database prediction. * peakModel = "GaussianModel", Indicates which model should be used to model signal profiles. In principle all models from lmfit can be used. However, the initial parameters are only optimized for GaussianModel and LaurentzianModel. This might effect runtimes dramatically. * plotSignalProfiles = False, If True, each profile is plotted against the fractio along with the fitted models. If you are concerned about time, you might set this to False at the cost of losing visible asessment of the fit quality. * plotComplexProfiles = False, * precision = 0.5 Precision to use to filter protein-protein interactions. If None, the filtering will be performed based on the parameter *interactionProbabCutoff*. * r2Thresh = 0.85 R2 threshold to accept a model fit. Models below the threshold will be ignored. * removeSingleDataPointPeaks = True, * restartAnalysis = False, bool. Set True if you want to restart the anaylsis from scratch. If the tmp folder exsists, items and dirs will be deleted first. * retrainClassifier = False, Even if the trainedClassifier.sav file is found, the classifier is loaded and the training is skipped. If you change the classifierGridSearch, you should set this to True. This will ensure that the classifier training is never skipped. * recalculateDistance = False, * rollingWinType = None, If None, all points are evenly weighted. Can be any string of scipy.signal window function. (https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows) * runName = None, * <del>savePeakModels = True</del> *depracted. always True and will be removed in the next version*. * scaleRawDataBeforeDimensionalReduction = True, If raw data should be used (*useRawDataForDimensionalReduction*) enable this if you want to scale them. Scaling will be performed that values of each row are scaled between zero and one. * smoothSignal = True Enable/disable smoothing. Defaults to True. A moving average of at least 3 adjacent datapoints is calculated using pandas rolling function. Effects the analysis time as well as the nmaximal number of peaks detected. * smoothWindow = 2, * topNCorrFeaturesForUMAPAlignment = 200, Number of profiles used for UMAP Alignment. Only used if useRawDataForDimensionalReduction = True or noDistanceCalculationAndPrediction = True. The Features will be identified by calculating the Pearson correlation coefficient. * useRawDataForDimensionalReduction = False, Setting this to true, will force the pipeline to use the raw values for dimensional reduction. Distance calculations are not automatically turned off and the output is generated but they are not used. * useFWHMForQuant = True If quantFiles is specific, will use the FWHM for peak centric quantification. By default at least a mean of +/- peak centric fraction will be consider (e.g. 3 fraction). However you cann allow single fraction quantification for narrow peaks by setting 'allowSingleFractionQuant' to True. * umapDefaultKwargs = {"min_dist":0.0000001,"n_neighbors":3,"n_components":2}, If you want to perform an aligned UMPA consider altering the parameter alignment_window_size and alignment_regularisation. Find more information here (https://umap-learn.readthedocs.io/en/latest/aligned_umap_basic_usage.html#aligning-varying-parameters) * quantFiles = dict * Quantifiaction files. dict with key name of co-fraction file and values with the path to the quantificaation file Assuming your grouping is something like: {"WT":["WT_01.txt","WT_02.txt"]}. Then the quantification files must contain a key for each file: something like {"WT_01.txt":"myCoolProject/quant/WT01_quant.txt","WT_02.txt":"myCoolProject/quant/WT02_quant.txt"}. Assuming the folder myCoolProject/ exists where the main file is. If analysing a TMT-SILAC experiment it is required to provide TMT labelings for heavy and light peaks separately, the provided dict should look something like this: { "HEAVY_WT_01.txt":"myCoolProject/quant/WT01_quant_heavy.txt", "LIGHT_WT_01.txt":"myCoolProject/quant/WT01_quant_light.txt" } Returns ------- None """ self.params = { "addImpurity" : addImpurity, "indexIsID" : indexIsID, "idColumn" : idColumn, "n_jobs" : n_jobs, "kFold" : kFold, "analysisName" : analysisName, "restartAnalysis" : restartAnalysis, "metrices" : metrices, "peakModel" : peakModel, "smoothWindow" : smoothWindow, "classifierClass" : classifierClass, "retrainClassifier" : retrainClassifier, "interactionProbabCutoff":interactionProbabCutoff, "maxPeaksPerSignal" : maxPeaksPerSignal, "maxPeakCenterDifference" : maxPeakCenterDifference, "classiferGridSearch" : classiferGridSearch, "plotSignalProfiles" : plotSignalProfiles, "savePeakModels" : True, #must be true to process pipeline, depracted, remove from class arguments. "removeSingleDataPointPeaks" : removeSingleDataPointPeaks, "grouping" : grouping, "analysisMode" : analysisMode, "normValueDict" : normValueDict, "databaseFilter" : databaseFilter, "databaseIDColumn" : databaseIDColumn, "databaseFileName" : databaseFileName, "databaseHasComplexAnnotations" : databaseHasComplexAnnotations, "r2Thresh" : r2Thresh, "smoothSignal" : smoothSignal, "umapDefaultKwargs" : umapDefaultKwargs, "hdbscanDefaultKwargs" : hdbscanDefaultKwargs, "noDatabaseForPredictions" : noDatabaseForPredictions, "alignRuns" : alignRuns, "alignMethod" : alignMethod, "runName" : runName, "useRawDataForDimensionalReduction" : useRawDataForDimensionalReduction, "scaleRawDataBeforeDimensionalReduction" : scaleRawDataBeforeDimensionalReduction, "metricQuantileCutoff": metricQuantileCutoff, "recalculateDistance" : recalculateDistance, "metricesForPrediction" : metricesForPrediction, "minDistanceBetweenTwoPeaks" : minDistanceBetweenTwoPeaks, "minimumPPsPerFeature" : minimumPPsPerFeature, "plotComplexProfiles" : plotComplexProfiles, "decoySizeFactor" : decoySizeFactor, "classifierTestSize" : classifierTestSize, "considerOnlyInteractionsPresentInAllRuns" : considerOnlyInteractionsPresentInAllRuns, "precision" : precision, "quantFiles" : quantFiles, "compTabFormat" : compTabFormat, "correlationWindowSize" : correlationWindowSize, "takeRondomSampleFromData" : takeRondomSampleFromData, "minPeakHeightOfMax" : minPeakHeightOfMax, "justFitAndMatchPeaks" : justFitAndMatchPeaks, "keepOnlySignalsValidInAllConditions" : keepOnlySignalsValidInAllConditions, "noDistanceCalculationAndPrediction" : noDistanceCalculationAndPrediction, "topNCorrFeaturesForUMAPAlignment" : topNCorrFeaturesForUMAPAlignment, "databaseEntrySplitString": databaseEntrySplitString, "version" : __VERSION__, "usePeakCentricFeatures" : usePeakCentricFeatures, "allowSingleFractionQuant" : allowSingleFractionQuant, "useFWHMForQuant" : useFWHMForQuant, "TMTPoolMethod" : TMTPoolMethod, "transformQuantDataBy" : transformQuantDataBy } print("\n" + str(self.params)) self._checkParameterInput() def _addMetricesToDB(self,analysisName): """ Adds distance metrices to the database entries that were found in the co-elution profiles. Parameters ---------- Returns ------- None """ if self.params["noDistanceCalculationAndPrediction"]: print("Info :: Skipping matching metrices to DB.") return if "signalDiff" in self.params["metrices"]: self.params["metrices"] = [x for x in self.params["metrices"] if x != "signalDiff"] + ["{}-diff".format(x) for x in np.arange(self.Xs[analysisName].columns.size)] metricColumns = self.params["metrices"] if not self.params["noDatabaseForPredictions"]: self.DB.matchMetrices(self.params["pathToTmp"][analysisName],entriesInChunks[analysisName],metricColumns,analysisName,forceRematch=self.params["recalculateDistance"]) def _addMetricToStats(self,metricName, value): """ Adds a metric to the stats data frame. Does not check if metric is represent, if present, it will just overwrite. Parameters ---------- metricName str Name of metric to add value str Value of metric Returns ------- None """ if metricName in self.stats.columns: self.stats.loc[self.currentAnalysisName,metricName] = value def _addModelToSignals(self,signalModels): """ Adds fitted models to Signals. If not a valid model was found, then the signal profile is removed. Parameters ---------- signalModels - list List of modelfits (dict) Returns ------- None """ for fitModel in signalModels: modelID = fitModel["id"] if len(fitModel) == 1: del self.Signals[self.currentAnalysisName][modelID] if modelID in self.Signals[self.currentAnalysisName]: for k,v in fitModel.items(): if k != 'id': setattr(self.Signals[self.currentAnalysisName][modelID],k,v) self.Signals[self.currentAnalysisName][modelID].saveResults() def _attachQuantificationDetails(self, combinedPeakModels = None): """ """ if self.params["analysisMode"] == "label-free": if len(self.params["quantFiles"]) != 0: print("Warning :: Quant files have been specified but anaylsis mode is label-free. Please define SILAC or TMT or SILAC-TMT") print("Info :: Label-free mode selected. No additation quantification performed..") return if len(self.params["quantFiles"]) > 0: files = np.array(list(self.params["grouping"].values())).flatten() print(files) print(self.params["quantFiles"].keys()) if len(self.params["quantFiles"]) != files.size and self.params["analysisMode"] != "SILAC-TMT": print("Warning :: Different number of quantFiles and groupings provided.") if self.params["analysisMode"] != "SILAC-TMT": initFilesFound = [k for k in self.params["quantFiles"].keys() if k in files] else: print(self.params["quantFiles"]) for k in self.params["quantFiles"].keys(): print(k.split("HEAVY_",maxsplit=1)) initFilesFound = [k for k in self.params["quantFiles"].keys() if k.split("HEAVY_",maxsplit=1)[-1] in files or k.split("LIGHT_",maxsplit=1)[-1] in files] print("Info :: For the following files and correpsonding co-elution profile data was detected") print(initFilesFound) print("Warning :: other files will be ignored.") # elif self.params["analysisMode"] == "SILAC-TMT": # if not all(f.startswith("HEAVY") or f.startswith("LIGHT") for f in self.params["quantFiles"].keys()): # print("Warning :: If using a SILAC-TMT experiment, please provide 'HEAVY' and 'LIGHT' before the file in the dict 'quantFile' such as 'HEAVY_WT_01.txt':<path to quant file> as well as 'LIGHT_WT_01.txt':<path to quant file>") print("combining Peaks!!") if combinedPeakModels is None: ## load combined peak reuslts txtOutput = os.path.join(self.params["pathToComb"],"CombinedPeakModelResults.txt") if os.path.exists(txtOutput): combinedPeakModels = pd.read_csv(txtOutput,sep="\t") else: print("Warning :: Combined peak model reuslts not found. Deleted? Skipping peak centric quantification.") return print("Info :: Starting peak centric quantification. In total {} peaks were found".format(combinedPeakModels.index.size)) print("Info :: Loading quantification files.") if not all(os.path.exists(pathToQuantFile) for pathToQuantFile in self.params["quantFiles"].values()): print("Warning :: Not all quant files found!") if self.params["analysisMode"] != "SILAC-TMT": print(self.params["quantFiles"].values()) path = list(self.params["quantFiles"].values()) print(os.path.abspath(path[0])) quantFilesLoaded = [(k,pd.read_csv(v,sep="\t",index_col = 0),False) for k,v in self.params["quantFiles"].items() if os.path.exists(v) and k in initFilesFound] else: quantFilesLoaded = [(k.split("HEAVY_",maxsplit=1)[-1] if "HEAVY" in k else k.split("LIGHT_",maxsplit=1)[-1],pd.read_csv(v,sep="\t",index_col = 0),"LIGHT" in k) for k,v in self.params["quantFiles"].items() if os.path.exists(v) and k in initFilesFound] if len(quantFilesLoaded) == 0: print("Warning :: No quant files found. Skipping peak-centric quantification.") return if self.params["analysisMode"] == "SILAC": print("Info :: Peak centric quantification using SILAC :: Assuming one SILAC ratio per fraction .") elif self.params["analysisMode"] == "TMT": print("Info :: Peak centric quantification using TMT :: Assuming the following order:") print("Ignoring column headers, just uses the column index as follow..") print("Fraction 1 - TMT reporter 1, Fraction 1 - TMT reporter 2, Faction 2 - TMT reporter 3 .... Fraction 2 - TMT reporter 1") extractedQuantFiles = [] for k,quantFile,isLightQuantData in quantFilesLoaded: print("Info :: Quantification of ", k) centerColumnName = "Center_{}".format(k) fwhmColumnName = "fwhm_{}".format(k) quantFileName = "Q({})".format(k) combinedPeakModelsFiltered = combinedPeakModels.dropna(subset=[centerColumnName]) lowerBound = combinedPeakModelsFiltered[centerColumnName] - combinedPeakModelsFiltered[fwhmColumnName]/1.7 upperBound = combinedPeakModelsFiltered[centerColumnName] + combinedPeakModelsFiltered[fwhmColumnName]/1.7 peakBounds = np.concatenate([lowerBound.values.reshape(-1,1),upperBound.values.reshape(-1,1)],axis=1) peakBounds[:,1] += 1 #add one extra to use bounds as a range in python #check bounds peakBounds[peakBounds[:,0] < 0, 0] = 0 peakBounds[peakBounds[:,1] >= quantFile.columns.size, 1] = quantFile.columns.size - 1 #transform bounds to ints peakBounds = np.around(peakBounds,0).astype(np.int64) quantData = quantFile.loc[combinedPeakModelsFiltered["Key"].values].values if self.params["analysisMode"] == "SILAC": print("Info :: Peak centric quantification using SILAC :: extracting mean from file {}.".format(k)) out = extractMeanByBounds( NPeakModels = combinedPeakModelsFiltered.index.size, peakBounds = peakBounds, quantData = quantData ) quantColumnNames = ["SILAC({})_Mean".format(quantFileName),"SILAC({})_Error".format(quantFileName)] print(out) print(quantColumnNames) dfResult = pd.DataFrame(out,index=combinedPeakModelsFiltered.index, columns = quantColumnNames) dfResult = dfResult.join(pd.DataFrame(peakBounds,index=combinedPeakModelsFiltered.index, columns = ["SILAC({})_LowerBound".format(quantFileName),"SILAC({})_UpperBound".format(quantFileName)])) extractedQuantFiles.append(dfResult) elif self.params["analysisMode"] == "TMT": print("Info :: Peak centric quantification using TMT :: extracting sum from TMT reporters using file {}".format(self.params["quantFiles"][k])) print("Info :: Detecting reporter channles..") nFractions = self.Xs[k].shape[1] nTMTs = quantData.shape[1] / nFractions print("Info :: {} reporter channels detected and {} fractions.".format(nTMTs,nFractions)) if nTMTs != int(nTMTs): print("Warning :: Could not detect the number of TMT reporter channles. Please check columns in quantFiles to have nTMTx x fractions columns") continue nTMTs = int(nTMTs) out = extractMetricByShiftBounds( NPeakModels = combinedPeakModels.index.size, peakBounds = peakBounds, quantData = quantData, shift = nTMTs, nFractions = nFractions ) quantColumnNames = [] dfResult = pd.DataFrame(out,index=combinedPeakModels.index, columns = quantColumnNames) extractedQuantFiles.append(dfResult) elif self.params["analysisMode"] == "SILAC-TMT": print("Info :: Extracting quantification details from SILAC-TMT data.") print("Info :: Detecting reporter channles..") nFractions = self.Xs[k].shape[1] nTMTs = quantData.shape[1] / nFractions print("Info :: {} reporter channels detected and {} fractions.".format(nTMTs,nFractions)) if nTMTs != int(nTMTs): print("Warning :: Could not detect the number of TMT reporter channles. Please check columns in quantFiles to have nTMTx x fractions columns") continue nTMTs = int(nTMTs) # print(peakBounds) # print(combinedPeakModels["Key"]) # print(isLightQuantData) quantData[quantData == 0.0] = np.nan out = extractMetricByShiftBounds( NPeakModels = combinedPeakModels.index.size, peakBounds = peakBounds, quantData = quantData, shift = nTMTs, nFractions = nFractions ) #print(out) if isLightQuantData: quantColumnNames = ["L_({})_tmt_intensity_{}".format(k,n) for n in range(nTMTs)] else: quantColumnNames = ["H_({})_tmt_intensity_{}".format(k,n) for n in range(nTMTs)] # print(a) dfResult = pd.DataFrame(out,index=combinedPeakModels.index, columns = quantColumnNames) extractedQuantFiles.append(dfResult) combinedPeakModels = combinedPeakModels.join(extractedQuantFiles) txtOutput = os.path.join(self.params["pathToComb"],"CombinedPeakModelResultsQuant.txt") combinedPeakModels.to_csv(txtOutput,sep="\t") def _checkParameterInput(self): """ Checks the input. Parameters ---------- Returns ------- None Raises ------- ValueErrors if datatype if given parameters do not match. """ #check anaylsis mode validModes = ["label-free","SILAC","SILAC-TMT","TMT"] if self.params["analysisMode"] not in validModes: raise ValueError("Parmaeter analysis mode is not valid. Must be one of: {}".format(validModes)) elif self.params["analysisMode"] != "label-free" and len(self.params["quantFiles"]) == 0: raise ValueError("Length 'quantFiles must be at least 1 if the analysis mode is not set to 'label-free'.") if not isinstance(self.params["maxPeaksPerSignal"],int): raise ValueError("maxPeaksPerSignal must be an integer. Current setting: {}".forma(self.params["maxPeaksPerSignal"])) elif self.params["maxPeaksPerSignal"] <= 2: raise ValueError("maxPeaksPerSignal must be greater than or equal 2") elif self.params["maxPeaksPerSignal"] > 20: print("Warning :: maxPeaksPerSignal is set to above 20, this may take quite long to model.") #r2 validation if not isinstance(self.params["r2Thresh"],float): raise ValueError("Parameter r2Trehsh mus be a floating number.") elif self.params["r2Thresh"] < 0.5: print("Warning :: threshold for r2 is set below 0.5. This might result in fits of poor quality") elif self.params["r2Thresh"] > 0.95: print("Warning :: threshold for r2 is above 0.95. Relatively few features might pass this limit.") elif self.params["r2Thresh"] > 0.99: raise ValueError("Threshold for r2 was above 0.99. Please set a lower value.") #minPeakHeightOfMax if not isinstance(self.params["minPeakHeightOfMax"],float) and self.params["minPeakHeightOfMax"] < 1 and self.params["minPeakHeightOfMax"] >= 0: raise ValueError("Parameter 'minPeakHeightOfMax' must be a float smaller than 1.0 and greather/equal 0.0.") #k-fold if not isinstance(self.params["kFold"],int): raise ValueError("Parameter kFold mus be an integer.") elif self.params["kFold"] < 2: raise ValueError("Parameter kFold must be at least 2.") if self.params["alignMethod"] not in alignModels: raise ValueError("Parameter alignMethod must be in {}".format(alignModels.values())) if not isinstance(self.params["metricQuantileCutoff"],float) or self.params["metricQuantileCutoff"] <= 0 or self.params["metricQuantileCutoff"] >= 1: raise ValueError("Parameter metricQuantileCutoff must be a float greater than 0 and smaller than 1.") #add database checks if self.params["metricesForPrediction"] is not None: if not isinstance(self.params["metricesForPrediction"],list): raise TypeError("metricesForPrediction must be a list.") else: if not all(x in self.params["metrices"] for x in self.params["metricesForPrediction"]): raise ValueError("All metrices given in 'metricesForPrediction' must be present in 'metrices'.") else: self.params["metricesForPrediction"] = self.params["metrices"] def _chunkPrediction(self,pathToChunk,classifier,nMetrices,probCutoff): """ Predicts for each chunk the proability for positive interactions. Parameters ---------- pathToChunk : str classifier : classfierClass Trained classifier. nMetrices : int Number if metrices used. (since chunks are simple numpy arrays, no column headers are loaded) probCutoff : float Probability cutoff. Returns ------- Numpy array. Chunks with appended probability. """ X = np.load(pathToChunk,allow_pickle=True) boolSelfIntIdx = X[:,0] != X[:,1] X = X[boolSelfIntIdx] classProba = classifier.predict(X[:,[n+3 for n in range(nMetrices)]]) #boolPredIdx = classProba >= probCutoff #boolIdx = np.sum(boolPredIdx,axis=1) > 0 predX = np.append(X[:,2],classProba.reshape(X.shape[0],-1),axis=1) np.save( file = pathToChunk, arr = predX) return predX def _load(self, X): """ Intitiates data. Parameters ---------- X pd.DataFrame Returns ------- None Raises ------- ValueError if X is not a pandas data frame. """ if isinstance(X, pd.DataFrame): self.X = X if not self.params["indexIsID"]: print("Info :: Checking for duplicates") dupRemoved = self.X.drop_duplicates(subset=[self.params["idColumn"]]) if dupRemoved.index.size < self.X.index.size: print("Warning :: Duplicates detected.") print("File contained duplicate ids which will be removed: {}".format(self.X.index.size-dupRemoved.index.size)) self.X = dupRemoved self.X = self.X.set_index(self.params["idColumn"]) self.X = self.X.astype(np.float32) else: self.X = self.X.loc[self.X.index.drop_duplicates()] #remove duplicaates self.X = self.X.astype(np.float32) #set dtype to 32 to save memory if self.params["takeRondomSampleFromData"] != False and self.params["takeRondomSampleFromData"] > 50: self.X = self.X.sample(self.params["takeRondomSampleFromData"]) print("Random samples taken from data. New data size {}".format(self.X.index.size)) self.params["rawData"][self.currentAnalysisName] = self.X.copy() else: raise ValueError("X must be a pandas data frame") def _loadReferenceDB(self): """ Load reference database. filterDB (dict) is passed to the pandas pd.DataFrame.isin function. Parameters ---------- Returns ------- None """ if self.params["noDistanceCalculationAndPrediction"]: print("noDistanceCalculationAndPrediction was enabled. No database laoded.") return if self.params["noDatabaseForPredictions"]: print("Info :: Parameter noDatabaseForPredictions was set to True. No database laoded.") return print("Info :: Load positive set from data base") if not hasattr(self,"DB"): self.DB = Database(nJobs = self.params["n_jobs"], splitString=self.params["databaseEntrySplitString"]) pathToDatabase = os.path.join(self.params["pathToComb"], "InteractionDatabase.txt") if os.path.exists(pathToDatabase): dbSize = self.DB.loadDatabaseFromFile(pathToDatabase) print("Info :: Database found and loaded. Contains {} positive interactions.".format(dbSize)) # self._addMetricToStats("nPositiveInteractions",dbSize) else: self.DB.pariwiseProteinInteractions( self.params["databaseIDColumn"], dbID = self.params["databaseFileName"], filterDb=self.params["databaseFilter"]) entryList = [] for analysisName in self.params["analysisName"]: entryList.extend([entryID for entryID,Signal in self.Signals[analysisName].items() if Signal.valid]) entryList = np.unique(np.array(entryList).flatten()) print("Info :: Features used for filtering: {}".format(len(entryList))) dbSize = self.DB.filterDBByEntryList(entryList) #add decoy to db if dbSize == 0: raise ValueError("Warning :: No hits found in database. Check dabaseFilter keyword.") elif dbSize < 150: raise ValueError("Warining :: Less than 150 pairwise interactions found.") elif dbSize < 200: #raise ValueError("Filtered positive database contains less than 200 interactions..") print("Warning :: Filtered positive database contains less than 200 interactions.. {}".format(dbSize)) print("Warning :: Please check carefully, if the classifier has enough predictive power.") self.DB.addDecoy(sizeFraction=self.params["decoySizeFactor"]) self.DB.df.to_csv(pathToDatabase,sep="\t") print("Info :: Database saved to {}".format(pathToDatabase)) def _checkGroups(self): "Checks grouping. For comparision of multiple co-elution data sets." if isinstance(self.params["grouping"],dict): if len(self.params["grouping"]) == 0: raise ValueError("Example for grouping : {'KO':['KO_01.txt','KO_02.txt'], 'WT':['WT_01.txt','WT_02.txt'] } Aborting.. ") else: combinedSamples = sum(self.params["grouping"].values(), []) if all(x in combinedSamples for x in self.params["analysisName"]): print("Grouping checked..\nAll columnSuffixes found in grouping.") print("If you are using the combat format, the grouping has to be named as '<combatFileName><sample name>") else: raise ValueError("Could not find all grouping names in loaded dataframe.. Aborting ..") def _findPeaks(self, n_jobs=3): """ Initiates for each feature in the data a Signal instance. Peak detection and modelling is then performed. Results are saved to hard drive for each run. Numerous parameters effect signal modelling (smoothing, maxPeaks, r2Thresh, ...) Create self.Signals (OrderedDict) which is a dict. Key = analysisName, which contains another dict with entries as keys and values are of type Signal class. Parameters ---------- n_jobs int. Number of worker processes. Returns ------- None """ if self.allSamplesFound: print("Info :: Signals loaded and found. Proceeding ...") return pathToSignal = os.path.join(self.params["pathToComb"],"signals.lzma") if os.path.exists(pathToSignal): self.Signals = load(pathToSignal) print("\nLoading pickled signal intensity") if all(analysisName in self.Signals for analysisName in self.params["analysisName"]): print("Info :: All samples found in loaded Signals..") self.allSamplesFound = True return if not hasattr(self , "Signals"): self.Signals = OrderedDict() self.Signals[self.currentAnalysisName] = dict() peakModel = self.params['peakModel'] for entryID, signal in self.X.iterrows(): self.Signals[self.currentAnalysisName][entryID] = Signal(signal.values, ID = entryID, peakModel = peakModel, smoothSignal = self.params["smoothSignal"], savePlots = self.params["plotSignalProfiles"], savePeakModels = self.params["savePeakModels"], maxPeaks = self.params["maxPeaksPerSignal"], metrices = self.params["metrices"], pathToTmp = self.params["pathToTmp"][self.currentAnalysisName], normalizationValue = self.params["normValueDict"][entryID] if entryID in self.params["normValueDict"] else None, removeSingleDataPointPeaks = self.params["removeSingleDataPointPeaks"], analysisName = self.currentAnalysisName, r2Thresh = self.params["r2Thresh"], smoothRollingWindow = self.params["smoothWindow"], minDistanceBetweenTwoPeaks = self.params["minDistanceBetweenTwoPeaks"], minPeakHeightOfMax = self.params["minPeakHeightOfMax"]) t1 = time.time() print("\n\nStarting Signal modelling .. (n_jobs = {})".format(n_jobs)) fittedModels = Parallel(n_jobs=n_jobs, verbose=1)(delayed(Signal.fitModel)() for Signal in self.Signals[self.currentAnalysisName].values()) self._addModelToSignals(fittedModels) self._saveSignalFitStatistics() print("Peak fitting done time : {} secs".format(round((time.time()-t1)))) print("Each feature's fitted models is stored as pdf and txt is stored in model plots (if savePeakModels and plotSignalProfiles was set to true)") def _saveSignals(self): "" if hasattr(self,"Signals") : pathToSignal = os.path.join(self.params["pathToComb"],"signals.lzma") dump(self.Signals.copy(),pathToSignal) self.Xs = OrderedDict() for analysisName in self.params["analysisName"]: pathToFile = os.path.join(self.params["pathToTmp"][analysisName],"validProcessedSignals({}).txt".format(analysisName)) signals = self.Signals[analysisName] validSignalData = dict([(k,v.Y) for k,v in signals.items() if v.valid and v.validModel]) fitDataSignal = dict([(k,v.fitSignal.flatten()) for k,v in signals.items() if v.valid and v.validModel and v.fitSignal is not None]) dfProcessedSignal = pd.DataFrame().from_dict(validSignalData,orient="index") dfFit = pd.DataFrame().from_dict(fitDataSignal, orient="index") if self.params["removeSingleDataPointPeaks"]: numberofPeaks = dict([(k,v.removedDataPoints) for k,v in signals.items() if v.valid and v.validModel and v.fitSignal is not None]) nRemovedData = pd.DataFrame().from_dict(numberofPeaks,orient="index") nRemovedData.columns = ["#removedDataPoints"] dfFit = dfFit.join(nRemovedData) #print(self.params["rawData"][analysisName].index) df = dfProcessedSignal.join(self.params["rawData"][analysisName],rsuffix="_raw",lsuffix="_processed") df = df.join(dfFit,rsuffix = "_fit") df.to_csv(pathToFile,sep="\t") self.Xs[analysisName] = dfProcessedSignal X = self.Xs[analysisName].reset_index() np.save(os.path.join(self.params["pathToTmp"][analysisName],"source.npy"),X.values) for analysisName in self.params["analysisName"]: #clean invalid signals if self.params["keepOnlySignalsValidInAllConditions"]: toDelete = [k for k,v in self.Signals[analysisName].items() if not all(k in self.Signals[analysisName] and self.Signals[analysisName][k].valid for analysisName in self.params["analysisName"])] else: toDelete = [k for k,v in self.Signals[analysisName].items() if not v.valid] #delete Signals that do match criteria for k in toDelete: del self.Signals[analysisName][k] def _calculateDistance(self): """ Calculates Distance between protein protein pairs based on their signal profile. Parameters ---------- signalModels - list List of modelfits (dict) Returns ------- None """ if self.params["noDistanceCalculationAndPrediction"]: print("noDistanceCalculationAndPrediction was enabled. Skipping Distance Calculations.") return global entriesInChunks print("\nStarting Distance Calculation ...") t1 = time.time() chunks = self.signalChunks[self.currentAnalysisName] #return entrieChunkPath = os.path.join(self.params["pathToComb"], "entriesInChunk.pkl") if not self.params["recalculateDistance"] and all(os.path.exists(x.replace(".pkl",".npy")) for x in chunks) and os.path.exists(entrieChunkPath): print("All chunks found for distance calculation.") if not self.entriesInChunkLoaded: with open(os.path.join(self.params["pathToComb"], "entriesInChunk.pkl"),"rb") as f: entriesInChunks = pickle.load(f) self.entriesInChunkLoaded = True else: chunkItems = Parallel(n_jobs=self.params["n_jobs"], verbose=10)(delayed(calculateDistanceP)(c) for c in chunks) entriesInChunks[self.currentAnalysisName] = {} for k,v in chunkItems: for E1E2 in v: entriesInChunks[self.currentAnalysisName][E1E2] = k with open(os.path.join(self.params["pathToComb"], "entriesInChunk.pkl"),"wb") as f: pickle.dump(entriesInChunks,f) print("Distance computing/checking: {} secs\n".format(round(time.time()-t1))) def _createSignalChunks(self,chunkSize = 30): """ Creates signal chunks at given chunk size. Parameter --------- chunkSize - int. default 30. Nuber of signals in a single chunk. Returns ------- list of paths to the saved chunks. """ pathToSignalChunk = os.path.join(self.params["pathToComb"],"signalChunkNames.lzma") if os.path.exists(pathToSignalChunk) and not self.params["recalculateDistance"]: self.signalChunks = load(pathToSignalChunk) print("Info :: Signal chunks loaded and found. Checking if all runs are present.") if all(analysisName in self.signalChunks for analysisName in self.params["analysisName"]): print("Info :: Checked... all samples found.") return else: print("Info :: Not all samples found. Creating new signal chunks..") if not hasattr(self,"signalChunks"): self.signalChunks = dict() else: self.signalChunks.clear() for analysisName in self.params["analysisName"]: print("Info :: {} signal chunk creation started.\nThis may take some minutes.." .format(analysisName)) if "umap-dist" in self.params["metrices"]: #umap dist calculations print("Info :: Calculation UMAP.") embed = umap.UMAP(min_dist=0.0000000000001, n_neighbors=5, metric = "correlation", random_state=56).fit_transform(minMaxNorm(self.Xs[analysisName].values,axis=1)) embed = pd.DataFrame(embed,index=self.Xs[analysisName].index) #save embedding embed.to_csv(os.path.join(self.params["pathToTmp"][analysisName],"chunks","embeddings.txt"),sep="\t") signals = list(self.Signals[analysisName].values()) for n,Signal in enumerate(self.Signals[analysisName].values()): setattr(Signal,"otherSignals", signals[n:]) c = [] for n,chunk in enumerate(chunks(signals,chunkSize)): pathToChunk = os.path.join(self.params["pathToTmp"][analysisName],"chunks",str(n)+".pkl") #if not os.path.exists(pathToChunk) and not self.params["recalculateDistance"]: chunkItems = [ { "ID" : str(signal.ID), "chunkName" : str(n), "Y" : np.array(signal.Y), "ownPeaks" : signal.getPeaksAndsIDs(), "otherSignalPeaks" : [s.getPeaksAndsIDs() for s in signal.otherSignals], "E2" : [str(s.ID) for s in signal.otherSignals], "metrices" : self.params["metrices"], "pathToTmp" : self.params["pathToTmp"][analysisName], "correlationWindowSize" : self.params["correlationWindowSize"], "embedding" : embed.loc[signal.ID].values if "umap-dist" in self.params["metrices"] else [], } for signal in chunk] with open(pathToChunk,"wb") as f: pickle.dump(chunkItems,f) c.append(pathToChunk) self.signalChunks[analysisName] = [p for p in c if os.path.exists(p)] # #saves signal chunls. dump(self.signalChunks,pathToSignalChunk) def _collectRSquaredAndFitDetails(self): """ Data are collected from txt files in the modelPlots folder. """ if not self.params["savePeakModels"]: print("!! Warning !! This parameter is depracted and from now on always true.") self.params["savePeakModels"] = True pathToPlotFolder = os.path.join(self.params["pathToTmp"][self.currentAnalysisName],"result","modelPlots") resultFolder = os.path.join(self.params["pathToTmp"][self.currentAnalysisName],"result") fittedPeaksPath = os.path.join(resultFolder,"fittedPeaks_{}.txt".format(self.currentAnalysisName)) nPeaksPath = os.path.join(resultFolder,"nPeaks.txt") if os.path.exists(fittedPeaksPath) and os.path.exists(nPeaksPath): print("Warning :: FittedPeaks detected. If you changed the data, you have to set the paramter 'restartAnalysis' True to include changes..") return if not os.path.exists(resultFolder): os.mkdir(resultFolder) #number of peaks collectNumbPeaks = [] data = [{"Key":signal.ID, "ID" : n, "R2":signal.Rsquared, "#Peaks":len(signal.modelledPeaks), "Center":peakParam["mu"], "Amplitude":peakParam["A"], "Sigma":peakParam["sigma"], "fwhm":peakParam["fwhm"], "height" : peakParam["height"], "AUC" : peakParam["AUC"], "relAUC" : peakParam["relAUC"], "validModel":signal.validModel, "validData":signal.validData, "Y": ",".join([str(round(x,3)) for x in peakParam["Y"]])} for signal in self.Signals[self.currentAnalysisName].values() if signal.valid for n,peakParam in enumerate(signal.modelledPeaks)] df = pd.DataFrame().from_dict(data) df.to_csv(fittedPeaksPath,sep="\t",index=None) # # find peak properties.. # df = pd.DataFrame(columns=["Key","ID","Amplitude","Center","Sigma","fwhm","height","auc"]) # for file in os.listdir(pathToPlotFolder): # if file.endswith(".txt"): # try: # dfApp = pd.read_csv(os.path.join(pathToPlotFolder,file), sep="\t") # df = df.append(dfApp) # collectNumbPeaks.append({"Key":dfApp["Key"].iloc[0],"N":len(dfApp.index)}) # except: # continue #pd.DataFrame(collectNumbPeaks).to_csv(nPeaksPath,sep="\t", index = None) def _trainPredictor(self, addImpurity = 0.3, apexTraining = False): """ Trains the predictor based on positive interactions in the database. Parameters ---------- Returns ------- None """ #metricColumns = [col for col in self.DB.df.columns if any(x in col for x in self.params["metrices"])] if self.params["noDatabaseForPredictions"] or self.params["noDistanceCalculationAndPrediction"]: print("Predictor training skipped (noDatabaseForPredictions = True or noDistanceCalculationAndPrediction = True). Distance metrices/Raw signals are used for dimensional reduction.") return folderToResults = [os.path.join(self.params["pathToTmp"][analysisName],"result") for analysisName in self.params["analysisName"]] classifierFileName = os.path.join(self.params["pathToComb"],'trainedClassifier_{}.sav'.format(self.params["classifierClass"])) if not self.params["retrainClassifier"] and os.path.exists(classifierFileName): #enumerate( print("Info :: Prediction was done already... loading file") self.classifier = joblib.load(classifierFileName) return metricColumnsForPrediction = self.params["metrices"] totalColumns = metricColumnsForPrediction + ['Class',"E1E2"] data = [self.DB.dfMetrices[analysisName][totalColumns].dropna(subset=metricColumnsForPrediction) for analysisName in self.params["analysisName"]] data = pd.concat(data, ignore_index=True) dataForTraining = data[["E1E2","Class"] + metricColumnsForPrediction] dataForTraining["Class"] = dataForTraining["Class"].astype(np.float64) print("Info :: Merging database metrices.") print("Test size for classifier: {}".format(self.params["classifierTestSize"])) if apexTraining and "apex" in totalColumns: print("Info :: Performing apex based pooling.") dataForTraining = dataForTraining.sort_values("apex").drop_duplicates("E1E2") else: dataForTraining = dataForTraining.groupby(dataForTraining['E1E2']).aggregate("min") dataForTraining['Class'] = dataForTraining['Class'].astype(np.int64) dataForTraining = dataForTraining.reset_index() print("Info :: Using a total of {} features for classifier training.".format(dataForTraining.index.size)) if addImpurity > 0: nRows = dataForTraining.index.size rowIdx = np.random.choice(nRows,int(nRows * addImpurity),replace=False)#np.random.randint(0,nRows,size=int(nRows * addImpurity)) print(dataForTraining.loc[rowIdx,'Class'] ^ 1) dataForTraining.loc[rowIdx,'Class'] = dataForTraining.loc[rowIdx,'Class'] ^ 1 print("Warning :: Stop! Using impurity for the training data is not advisable other than for testing. You should probably not do this?") Y = dataForTraining['Class'].values X = dataForTraining.loc[:,metricColumnsForPrediction].values self.classifier = Classifier( classifierClass = self.params["classifierClass"], n_jobs=self.params['n_jobs'], gridSearch = self.params["classiferGridSearch"], testSize = self.params["classifierTestSize"]) probabilites, meanAuc, stdAuc, oobScore, optParams, Y_test, Y_pred = self.classifier.fit(X,Y,kFold=self.params["kFold"],pathToResults=self.params["pathToComb"], metricColumns = metricColumnsForPrediction) dataForTraining["PredictionClass"] = probabilites #save prediction summary pathToFImport = os.path.join(self.params["pathToComb"],"PredictorSummary{}_{}.txt".format(self.params["metrices"],self.params["addImpurity"])) #create and save classification report classReport = classification_report( Y_test, Y_pred, digits=3, output_dict=True) classReport = OrderedDict([(k,v) for k,v in classReport.items() if k != 'accuracy']) pd.DataFrame().from_dict(classReport, orient="index").to_csv(pathToFImport, sep="\t", index=True) #save database prediction dataForTraining.to_csv(os.path.join(self.params["pathToComb"],"DBpred({}).txt".format(self.params["addImpurity"])),sep="\t", index=False) self._plotFeatureImportance(self.params["pathToComb"]) joblib.dump(self.classifier, classifierFileName) self._addMetricToStats("Metrices",str(metricColumnsForPrediction)) self._addMetricToStats("OOB_Score",oobScore) self._addMetricToStats("ROC_Curve_AUC","{}+-{}".format(meanAuc,stdAuc)) self._addMetricToStats("ClassifierParams",optParams) print("DB prediction saved - DBpred.txt :: Classifier pickled and saved 'trainedClassifier.sav'") def _loadPairsForPrediction(self): "" #load chunks that were saved chunks = [f for f in os.listdir(os.path.join(self.params["pathToTmp"][self.currentAnalysisName],"chunks")) if f.endswith(".npy") and f != "source.npy"] print("\nInfo :: Prediction/Dimensional reduction started...") for chunk in chunks: X = np.load(os.path.join(self.params["pathToTmp"][self.currentAnalysisName],"chunks",chunk),allow_pickle=True) yield (X,len(chunks)) def _predictInteractions(self): "" if self.params["noDatabaseForPredictions"] or self.params["noDistanceCalculationAndPrediction"]: print("Info :: Skipping predictions. (noDatabaseForPredictions = True or noDistanceCalculationAndPrediction = True)") return paramDict = {"NumberInteractions" : 0, "positiveInteractors" : 0, "decoyInteractors" : 0, "novelInteractions" : 0, "interComplexInteractions" : 0} probCutoffs = dict([(cutoff,paramDict.copy()) for cutoff in np.linspace(0.0,0.99,num=30)]) print("Info :: Starting prediction ..") folderToOutput = os.path.join(self.params["pathToTmp"][self.currentAnalysisName],"result") pathToPrediction = os.path.join(folderToOutput,"predictedInteractions{}_{}_{}.txt".format(self.params["metricesForPrediction"],self.params["classifierClass"],self.params["addImpurity"])) if False and not self.params["retrainClassifier"] and os.path.exists(pathToPrediction): predInts = pd.read_csv(pathToPrediction, sep="\t") self.stats.loc[self.currentAnalysisName,"nInteractions ({})".format(self.params["interactionProbabCutoff"])] = predInts.index.size return predInts # del self.Signals #gc.collect() #create prob columns of k fold pColumns = ["Prob_{}".format(n) for n in range(len(self.classifier.predictors))] dfColumns = ["E1","E2","E1E2","apexPeakDist"] + [x if not isinstance(x,dict) else x["name"] for x in self.params["metrices"]] + pColumns + ["In DB"] if not os.path.exists(folderToOutput): os.mkdir(folderToOutput) predInteractions = None metricIdx = [n + 4 if "apex" in self.params["metrices"] else n + 3 for n in range(len(self.params["metrices"]))] #in order to extract from dinstances, apex creates an extra column (apex_dist) for n,(X,nChunks) in enumerate(self._loadPairsForPrediction()): boolSelfIntIdx = X[:,0] == X[:,1] if n % 5 == 0: percDone = round(n/nChunks*100,1) print(percDone,r"%") X = X[boolSelfIntIdx == False] #first two rows E1 E2, and E1E2, apexPeakDist remove before predict if X.shape[0] > 0: classProba = self.classifier.predict(X[:,metricIdx]) else: continue if classProba is None: continue predX = np.append(X,classProba.reshape(X.shape[0],-1),axis=1) interactionClass = self.DB.getInteractionClassByE1E2(X[:,2],X[:,0],X[:,1]) for cutoff in probCutoffs.keys(): boolPredIdx = classProba >= cutoff if len(boolPredIdx.shape) > 1: boolIdx = np.sum(boolPredIdx,axis=1) == self.params["kFold"] else: boolIdx = boolPredIdx counts = interactionClass.loc[boolIdx].value_counts() n = np.sum(boolIdx) probCutoffs[cutoff]["NumberInteractions"] += n probCutoffs[cutoff]["positiveInteractors"] += counts["pos"] if "pos" in counts.index else 0 probCutoffs[cutoff]["decoyInteractors"] += counts["decoy"] if "decoy" in counts.index else 0 probCutoffs[cutoff]["novelInteractions"] += counts["unknown/novel"] if "unknown/novel" in counts.index else 0 probCutoffs[cutoff]["interComplexInteractions"] += counts["inter"] if "inter" in counts.index else 0 boolPredIdx = classProba >= self.params["interactionProbabCutoff"] if len(boolPredIdx.shape) > 1: boolIdx = np.sum(boolPredIdx,axis=1) == self.params["kFold"] else: boolIdx = boolPredIdx predX = np.append(predX,interactionClass.values.reshape(predX.shape[0],1),axis=1) if predInteractions is None: predInteractions = predX[boolIdx,:] else: predInteractions = np.append(predInteractions,predX[boolIdx,:], axis=0) probData = pd.DataFrame().from_dict(probCutoffs, orient="index") probData["FalseNegatives"] = probData["positiveInteractors"].iloc[0] - probData["positiveInteractors"] probData["precision"] = (probData["positiveInteractors"]) / (probData["positiveInteractors"] + probData["interComplexInteractions"] + probData["decoyInteractors"]) probData["recall"] = (probData["positiveInteractors"]) / (probData["positiveInteractors"] + probData["FalseNegatives"]) probData["F1-measure"] = 2 * ((probData["precision"] * probData["recall"]) / (probData["precision"] + probData["recall"])) probData["F-measure(b=2)"] = (1+2**2) * ((probData["precision"] * probData["recall"]) / (((2**2) * probData["precision"]) + probData["recall"])) probData["F-measure(b=0.5)"] = (1+0.5**2)* ((probData["precision"] * probData["recall"]) / (((0.5**2) * probData["precision"]) + probData["recall"])) #self.params["interactionProbabCutoff"] = float(probData.idxmax().loc["F1-measure"]) print("Info :: Interaction probability was set to: {} based on the F-metric using beta = 1.".format(self.params["interactionProbabCutoff"] )) # boolPredIdx = classProba >= self.params["interactionProbabCutoff"] # if len(boolPredIdx.shape) > 1: # boolIdx = np.sum(boolPredIdx,axis=1) == self.params["kFold"] # else: # boolIdx = boolPredIdx probData.to_csv(os.path.join(folderToOutput,"classiferPerformanceMetrics_{}_addImp{}.txt".format(self.params["classifierClass"],self.params["addImpurity"])),sep="\t") # print("Interactions > cutoff :", predInteractions.shape[0]) # print("Info :: Finding interactions in DB") # boolDbMatch = np.isin(predInteractions[:,2],self.DB.df["E1E2"].values, assume_unique=True) # print("Info :: Appending matches.") # predInteractions = np.append(predInteractions,boolDbMatch.reshape(predInteractions.shape[0],1),axis=1) d = pd.DataFrame(predInteractions, columns = dfColumns) print("Info :: Number of interactions detected: {} at cut-off {}".format(d.index.size,self.params["interactionProbabCutoff"])) boolDbMatch = d["In DB"] == "pos" print("Info :: Annotate complexes to pred. interactions.") d["ComplexID"], d["ComplexName"] = zip(*[self._attachComplexID(_bool,E1E2) for E1E2, _bool in zip(predInteractions[:,2], boolDbMatch)]) d = self._attachPeakIDtoEntries(d) # boolIdx = d[pColumns[0]] > self.params["interactionProbabCutoff"] # d = d.loc[boolIdx] origSize = d.index.size print("Info : Filter for at least {} times in predicted interactions".format(self.params["minimumPPsPerFeature"])) if self.params["usePeakCentricFeatures"]: eColumns = ["E1p","E2p"] else: eColumns = ["E1","E2"] Es = pd.Series(d[eColumns].values.flatten()) EsCounted = Es.value_counts() boolIdx = EsCounted >= self.params["minimumPPsPerFeature"] duplicatedPPs = EsCounted.index[boolIdx] d = d.loc[d[eColumns].isin(duplicatedPPs).all(axis="columns")] print("Removed interactions {}".format(origSize-d.index.size)) d.to_csv(pathToPrediction, sep="\t", index=False) self.stats.loc[self.currentAnalysisName,"nInteractions ({})".format(self.params["interactionProbabCutoff"])] = d.index.size self.stats.loc[self.currentAnalysisName,"Classifier"] = self.params["classifierClass"] return d def _attachComplexID(self,_bool,E1E2): "" if not _bool: return ("","") else: df = self.DB.df[self.DB.df["E1E2"] == E1E2] return (';'.join([str(x) for x in df["ComplexID"].tolist()]), ';'.join([str(x) for x in df["complexName"].tolist()])) def _plotChunkSummary(self, data, fileName, folderToOutput): "util fn" data[self.params["metrices"]] = self.classifier._scaleFeatures(data[self.params["metrices"]].values) fig, ax = plt.subplots() XX = data.melt(id_vars = [x for x in data.columns if x not in self.params["metrices"]],value_vars=self.params["metrices"]) sns.boxplot(data = XX, ax=ax, y = "value", x = "variable", hue = "Class") plt.savefig(os.path.join(folderToOutput,"{}.pdf".format(fileName))) plt.close() def _plotFeatureImportance(self,folderToOutput,*args,**kwargs): """ Creates a bar chart showing the estimated feature importances Parameters ---------- folderToOutput : string Path to folder to save the pdf. Will be created if it does not exist. *args Variable length argument list passed to matplotlib.bar. **kwargs Arbitrary keyword arguments passed to matplotlib.bar. Returns ------- None """ fImp = self.classifier.getFeatureImportance() self._makeFolder(folderToOutput) if fImp is not None: #save as txt file pd.DataFrame(fImp, columns= self.params["metrices"]).to_csv(os.path.join(folderToOutput,"featureImportance{}.txt".format(self.params["metrices"])), sep="\t") #plot feature importance fig, ax = plt.subplots() xPos = np.arange(len(self.params["metrices"])) ax.bar(x = xPos, height = np.mean(fImp,axis=0), *args,**kwargs) ax.errorbar(x = xPos, y = np.mean(fImp,axis=0), yerr = np.std(fImp,axis=0)) ax.set_xticks(xPos) ax.set_xticklabels(self.params["metrices"], rotation = 45) plt.savefig(os.path.join(folderToOutput,"featureImportance.pdf")) plt.close() def _randomStr(self,n): """ Returns a random string (lower and upper case) of size n Parameters ---------- n : int Length of string Returns ------- random string of length n """ letters = string.ascii_lowercase + string.ascii_uppercase return "".join(random.choice(letters) for i in range(n)) def _scoreComplexes(self, complexDf, complexMemberIds = "subunits(UniProt IDs)", beta=2.5): "" entryPositiveComplex = [self.DB.assignComplexToProtein(str(e),complexMemberIds,"ComplexID") for e in complexDf.index] complexDf.loc[:,"ComplexID"] = entryPositiveComplex matchingResults = pd.DataFrame(columns = ["Entry","Cluster Labels","Complex ID", "NumberOfInteractionsInDB"]) clearedEntries = pd.Series([x.split("_")[0] for x in complexDf.index], index=complexDf.index) for c,d in self.DB.indentifiedComplexes.items(): boolMatch = clearedEntries.isin(d["members"]) clusters = complexDf.loc[boolMatch,"Cluster Labels"].values.flatten() nEntriesMatch = np.sum(boolMatch) if nEntriesMatch > 1: groundTruth = [c] * nEntriesMatch matchingResults = matchingResults.append(pd.DataFrame().from_dict({"Entry":complexDf.index[boolMatch].values, "Cluster Labels" : clusters, "Complex ID": groundTruth, "NumberOfInteractionsInDB" : [d["n"]] * nEntriesMatch}) ,ignore_index=True) if not matchingResults.empty: score = v_measure_score(matchingResults["Complex ID"],matchingResults["Cluster Labels"],beta = beta) else: score = np.nan return complexDf , score, matchingResults def _clusterInteractions(self, predInts, clusterMethod = "HDBSCAN", plotEmbedding = True, groupFiles = [], combineProbs = True, groupName = ""): """ Performs dimensional reduction and clustering of prediction distance matrix over a defined parameter grid. Parameter predInts - ndarray. clusterMethod - string. Any string of ["HDBSCAN",] plotEmbedding - bool. If true, embedding is plotted and save to pdf and txt file. returns None """ embedd = None bestDf = None topCorrFeatures = None splitLabels = False recordScore = OrderedDict() saveEmbeddings = [] maxScore = np.inf metricColumns = [x if not isinstance(x,dict) else x["name"] for x in self.params["metricesForPrediction"]] cb = ComplexBuilder(method=clusterMethod) print("\nPredict complexes") if predInts is None: print("No database provided. UMAP and clustering will be performed using defaultKwargs. (noDatabaseForPredictions = True)") pathToFolder = self._makeFolder(self.params["pathToComb"],"complexIdentification_{}".format(self.params["addImpurity"])) if not self.params["databaseHasComplexAnnotations"] and not self.params["noDatabaseForPredictions"] and predInts is not None: print("Database does not contain complex annotations. Therefore standard UMAP settings are HDBSCAN settings are used for complex identification.") cb.set_params(self.params["hdbscanDefaultKwargs"]) clusterLabels, intLabels, matrix , reachability, core_distances, embedd = cb.fit(predInts, metricColumns = metricColumns, scaler = self.classifier._scaleFeatures, umapKwargs= self.params["umapDefaultKwargs"]) elif self.params["noDistanceCalculationAndPrediction"] or self.params["noDatabaseForPredictions"]: print("Info :: No database given for complex scoring. UMAP and HDBSCAN are performed to identify complexes.") alignedEmbeddings = OrderedDict() if len(self.Xs) > 1: #correlate with each other firstKey = list(self.Xs.keys())[0] corrDfs = [self.Xs[firstKey].corrwith(df,axis=1,drop=True) for k,df in self.Xs.items() if k != firstKey] mergedDf = pd.concat(corrDfs,join="inner",axis=1).mean(axis=1).sort_values(ascending=False) topCorrFeatures = mergedDf.head(self.params["topNCorrFeaturesForUMAPAlignment"]).index dataSets = [minMaxNorm(X.values,axis=1) for X in self.Xs.values()] relations = [] for k,v in self.Xs.items(): if k != firstKey: relationDict = dict([(self.Xs[prevKey].index.get_loc(idx),v.index.get_loc(idx)) for idx in topCorrFeatures]) relations.append(relationDict) prevKey = k print("Info :: Computing aligned UMAP using top correlated features.") aligned_mapper = umap.aligned_umap.AlignedUMAP(**self.params["umapDefaultKwargs"]).fit(dataSets, relations=relations) for n,umapE in enumerate(aligned_mapper.embeddings_): key = list(self.Xs.keys())[n] df = pd.DataFrame(umapE, index=self.Xs[key].index, columns = ["E({})_0".format(key),"E({})_0".format(key)]) alignedEmbeddings[key] = df.copy() for analysisName in self.params["analysisName"]: if self.params["useRawDataForDimensionalReduction"]: print("Info :: Using raw intensity data for dimensional reduction. Not calculated distances") if self.params["scaleRawDataBeforeDimensionalReduction"]: X = self.Xs[analysisName] predInts = pd.DataFrame(minMaxNorm(X.values,axis=1), index=X.index, columns = ["scaled_({})_{}".format(analysisName,colName) for colName in X.columns]).dropna() else: predInts = self.Xs[analysisName] cb.set_params(self.params["hdbscanDefaultKwargs"]) clusterLabels, intLabels, matrix , reachability, core_distances, embedd, pooledDistances = cb.fit(predInts, preCompEmbedding = alignedEmbeddings[analysisName] if analysisName in alignedEmbeddings else None, metricColumns = self.X.columns, scaler = None, umapKwargs = self.params["umapDefaultKwargs"], generateSquareMatrix = False, ) df = pd.DataFrame().from_dict({"Entry":intLabels,"Cluster Labels":clusterLabels,"reachability":reachability,"core_distances":core_distances}) df = df.sort_values(by="Cluster Labels") df = df.set_index("Entry") predInts.to_csv(os.path.join(pathToFolder,"predInts_{}.txt".format(analysisName))) else: predInts = self._loadAndFilterDistanceMatrix() predInts[metricColumns] = minMaxNorm(predInts[metricColumns].values,axis=0) cb.set_params(self.params["hdbscanDefaultKwargs"]) clusterLabels, intLabels, matrix , reachability, core_distances, embedd, pooledDistances = cb.fit(predInts, metricColumns = metricColumns, scaler = None, poolMethod= "min", umapKwargs = self.params["umapDefaultKwargs"], generateSquareMatrix = True, ) df = pd.DataFrame().from_dict({"Entry":intLabels,"Cluster Labels({})".format(analysisName):clusterLabels,"reachability":reachability,"core_distances":core_distances}) df = df.sort_values(by="Cluster Labels") df = df.set_index("Entry") if pooledDistances is not None: pooledDistances.to_csv(os.path.join(pathToFolder,"PooledDistance_{}.txt".format(self.currentAnalysisName)),sep="\t") squaredDf = pd.DataFrame(matrix,columns=intLabels,index=intLabels).loc[df.index,df.index] squaredDf.to_csv(os.path.join(pathToFolder,"SquaredSorted_{}.txt".format(self.currentAnalysisName)),sep="\t") noNoiseIndex = df.index[df["Cluster Labels"] > 0] squaredDf.loc[noNoiseIndex,noNoiseIndex].to_csv(os.path.join(pathToFolder,"NoNoiseSquaredSorted_{}.txt".format(self.currentAnalysisName)),sep="\t") splitLabels = True if embedd is not None and plotEmbedding: #save embedding dfEmbed = pd.DataFrame(embedd, columns = ["UMAP_{}_0{}".format(analysisName,n) for n in range(embedd.shape[1])]) dfEmbed["clusterLabels({})".format(analysisName)] = clusterLabels dfEmbed["labels({})".format(analysisName)] = intLabels if splitLabels: dfEmbed["sLabels"] = dfEmbed["labels"].str.split("_",expand=True).values[:,0] dfEmbed = dfEmbed.set_index("sLabels") else: dfEmbed = dfEmbed.set_index("labels({})".format(analysisName)) if self.params["scaleRawDataBeforeDimensionalReduction"] and self.params["useRawDataForDimensionalReduction"]: dfEmbed = dfEmbed.join([self.Xs[self.currentAnalysisName],predInts],lsuffix="_",rsuffix="__") else: dfEmbed = dfEmbed.join(self.Xs[self.currentAnalysisName]) if topCorrFeatures is not None: dfEmbed["FeatureForUMAPAlign"] = dfEmbed.index.isin(topCorrFeatures) saveEmbeddings.append(dfEmbed) dfEmbed.to_csv(os.path.join(pathToFolder,"UMAP_Embedding_{}.txt".format(analysisName)),sep="\t") #plot embedding. fig, ax = plt.subplots() ax.scatter(embedd[:,0],embedd[:,1],s=12, c=clusterLabels, cmap='Spectral') plt.savefig(os.path.join(pathToFolder,"E({}).pdf".format(analysisName))) plt.close() pd.concat(saveEmbeddings,axis=1).to_csv(os.path.join(pathToFolder,"concatEmbeddings.txt"),sep="\t") else: embedd = None if len(groupFiles) > 0: groupMetricColumns = ["Prob_0_({})".format(analysisName) for analysisName in groupFiles] # print(groupMetricColumns) usePeaks = self.params["usePeakCentricFeatures"] print("Using peaks for clustering.") print(groupMetricColumns) if usePeaks: # if len(groupFiles) > 0: eColumns = ["E1p_({})".format(groupFiles[0]),"E2p_({})".format(groupFiles[0])] predInts = predInts[groupMetricColumns + eColumns + ["E1E2"]] else: predInts = predInts[groupMetricColumns + ["E1","E2","E1E2"]] eColumns = ["E1","E2"] # predInts.dropna(subset=groupMetricColumns,inplace=True,thresh=1) for n, params in enumerate(list(ParameterGrid(CLUSTER_PARAMS[clusterMethod]))): try: cb.set_params(params) if clusterMethod == "HDBSCAN": clusterLabels, intLabels, matrix , reachability, core_distances, embedd, pooledDistances = cb.fit(predInts, metricColumns = groupMetricColumns,#,#[colName for colName in predInts.columns if "Prob_" in colName], scaler = None,#self.classifier._scaleFeatures, # inv = True, # after pooling by poolMethod, invert (1-X) poolMethod="max", preCompEmbedding = None, entryColumns = eColumns ) else: clusterLabels, intLabels, matrix , reachability, core_distances = cb.fit(predInts, metricColumns = [colName for colName in predInts.columns if "Prob_" in colName], scaler = self.classifier._scaleFeatures) # clusterLabels, intLabels, matrix , reachability, core_distances = cb.fit(predInts, metricColumns = probColumn, scaler = None, inv=True, poolMethod="mean") except Exception as e: print(e) print("\nWarning :: There was an error performing clustering and dimensional reduction, using the params:\n" + str(params)) continue df = pd.DataFrame().from_dict({"Entry":intLabels,"Cluster Labels":clusterLabels,"reachability":reachability,"core_distances":core_distances}) df = df.sort_values(by=["Cluster Labels"]) if usePeaks: df["E"] = df["Entry"].str.split("_",expand=True)[0] df = df.set_index("E") else: df = df.set_index("Entry") # clusteredComplexes = df[df["Cluster Labels"] != -1] df, score, matchingResults = self._scoreComplexes(df) # df = df.join(assignedIDs[["ComplexID"]]) if True:#maxScore > score: # write out all df.to_csv(os.path.join( pathToFolder,"Complexes:{}_{}_{}.txt".format(groupName,n,score)),sep="\t") matchingResults.to_csv(os.path.join( pathToFolder,"ComplexPerEntry(ScoreCalc):{}_{}_{}.txt".format(groupName,n,score)),sep="\t") print("Info :: Current best params ... ") # squaredDf = pd.DataFrame(matrix,columns=df.index,index=df.index).loc[df.index,df.index] # squaredDf.to_csv(os.path.join(pathToFolder,"SquaredSorted{}_{}.txt".format(groupName,n)),sep="\t") # if usePeaks: # noNoiseIndex = df["Entry"].loc[df["Cluster Labels"] > 0] # else: # noNoiseIndex = df.index[df["Cluster Labels"] > 0] # squaredDf.loc[noNoiseIndex,noNoiseIndex].to_csv(os.path.join(pathToFolder,"NoNoiseSquaredSorted_{}_{}.txt".format(groupName,n)),sep="\t") maxScore = score bestDf = df self._plotComplexProfiles(bestDf, pathToFolder, str(n)) if embedd is not None and plotEmbedding: #save embedding umapColumnNames = ["UMAP_{}".format(n) for n in range(embedd.shape[1])] dfEmbed = pd.DataFrame(embedd, columns = umapColumnNames) embedd = dfEmbed[umapColumnNames] dfEmbed["clusterLabels"] = clusterLabels if usePeaks: dfEmbed["Ep"] = intLabels dfEmbed["Entry"] = [x.split("_")[0] for x in intLabels] else: dfEmbed["Entry"] = intLabels dfEmbed = dfEmbed.set_index("Entry") dfEmbed.loc[dfEmbed.index,"ComplexID"] = df["ComplexID"].loc[dfEmbed.index] rawDataMerge = [self.Xs[analysisName] for analysisName in groupFiles] if n == 0: for sampleN,fileName in enumerate(groupFiles): rawDataMerge[sampleN].columns = ["{}_({}):F{}".format(colName,fileName,sampleN) for colName in rawDataMerge[sampleN].columns] dfEmbed = dfEmbed.join(other = rawDataMerge) try: dfEmbed.to_csv(os.path.join(pathToFolder,"UMAP_Embeding_{}_{}.txt".format(n,groupName)),sep="\t") except: print("Saving umap embedding failed.") #plot embedding. fig, ax = plt.subplots() ax.scatter(embedd["UMAP_0"].values, embedd["UMAP_1"].values,s=50, c=clusterLabels, cmap='Spectral') plt.savefig(os.path.join(pathToFolder,"UMAP_Embedding_{}_n{}.pdf".format(groupName,n))) plt.close() recordScore[n] = {"score":score,"params":params} def _loadAndFilterDistanceMatrix(self): """ Output to disk: 'highQualityInteractions(..).txt However they are just the ones that show the lowest distance metrices. Parameters ---------- Returns ------- None """ metricColumns = [x if not isinstance(x,dict) else x["name"] for x in self.params["metrices"]] dfColumns = ["E1","E2","E1E2","apexPeakDist"] + metricColumns q = None df = pd.DataFrame(columns = dfColumns) filteredExisting = False pathToFile = os.path.join(self.params["pathToComb"],"highQualityInteractions({}).txt".format(self.currentAnalysisName)) for X,nChunks in self._loadPairsForPrediction(): boolSelfIntIdx = X[:,0] == X[:,1] X = X[boolSelfIntIdx == False] if q is None: df = df.append(pd.DataFrame(X, columns = dfColumns), ignore_index=True) else: if not filteredExisting: #first reduce existing df mask = df[metricColumns] < q#X[:,[n+4 for n in range(len(self.params["metrices"]))]] < q df = df.loc[np.any(mask,axis=1)] #filtered filteredExisting = True toAttach = pd.DataFrame(X, columns = dfColumns) mask = toAttach[metricColumns] < q toAttach = toAttach.loc[np.any(mask,axis=1)] df = df.append(toAttach, ignore_index=True) if df.index.size > 50000 and q is None: q = np.quantile(df[metricColumns].astype(float).values, q = 1-self.params["metricQuantileCutoff"], axis = 0) print("Info :: {} total pairwise protein-protein pairs at any distance below 10% quantile.".format(df.index.size)) df = self._attachPeakIDtoEntries(df) df.to_csv(pathToFile, sep="\t") print("Info :: Saving low distance interactions in result folder.") return df def _plotComplexProfiles(self,complexDf,outputFolder,name): """ Creates line charts as pdf for each profile. Chart has two axes, one shows realy values and the bottom one is scaled by normalizing the highest value to one and the lowest to zero. Enabled/Disabled by the parameter "plotComplexProfiles". Parameters ---------- complexDf : pd.DataFrame asd outputFolder : string Path to folder, will be created if it does not exist. name : string Name of complex. Returns ------- None """ if self.params["plotComplexProfiles"]: toProfiles = self._makeFolder(outputFolder,"complexProfiles") pathToFolder = self._makeFolder(toProfiles,str(name)) x = np.arange(0,len(self.X.columns)) for c in complexDf["Cluster Labels"].unique(): if c != -1: fig, ax = plt.subplots(nrows=2,ncols=1) entries = complexDf.loc[complexDf["Cluster Labels"] == c,:].index lineColors = sns.color_palette("Blues",desat=0.8,n_colors=entries.size) for n,e in enumerate(entries): uniprotID = e.split("_")[0] if uniprotID in self.Signals[self.currentAnalysisName]: y = self.Signals[self.currentAnalysisName][uniprotID].Y normY = y / np.nanmax(y) ax[0].plot(x,y,linestyle="-",linewidth=1, label=e, color = lineColors[n]) ax[1].plot(x,normY,linestyle="-",linewidth=1, label=e, color = lineColors[n]) plt.legend(prop={'size': 5}) plt.savefig(os.path.join(pathToFolder,"{}_n{}.pdf".format(c,len(entries)))) plt.close() def _attachPeakIDtoEntries(self,predInts): "" if not "apexPeakDist" in predInts.columns: return predInts peakIds = [peakID.split("_") for peakID in predInts["apexPeakDist"]] predInts["E1p"], predInts["E2p"] = zip(*[("{}_{}".format(E1,peakIds[n][0]),"{}_{}".format(E2,peakIds[n][1])) for n,(E1,E2) in enumerate(zip(predInts["E1"],predInts["E2"]))]) return predInts def _makeFolder(self,*args): "" pathToFolder = os.path.join(*args) if not os.path.exists(pathToFolder): os.mkdir(pathToFolder) return pathToFolder def _createTxtFile(self,pathToFile,headers): "" with open(pathToFile,"w+") as f: f.write("\t".join(headers)) def _makeTmpFolder(self, n = 0): """ Creates temporary fodler. Parameters ---------- n : int Returns ------- pathToTmp : str ansolute path to tmp/anlysis name folder. """ if self.params["analysisName"] is None: analysisName = self._randomStr(50) elif isinstance(self.params["analysisName"],list) and n < len(self.params["analysisName"]): analysisName = self.params["analysisName"][n] else: analysisName = str(self.params["analysisName"]) #check if results folder exists. pathToTmp = os.path.join(".","results") if not os.path.exists(pathToTmp): os.mkdir(pathToTmp) self.currentAnalysisName = analysisName date = datetime.today().strftime('%Y-%m-%d') self.params["Date of anaylsis"] = date runName = self.params["runName"] if self.params["runName"] is not None else self._randomStr(3) self.params["pathToComb"] = self._makeFolder(pathToTmp,"{}_n({})runs".format(runName,len(self.params["analysisName"]))) print("Info :: Folder created in which combined results will be saved: " + self.params["pathToComb"]) pathToTmpFolder = os.path.join(self.params["pathToComb"],analysisName) if os.path.exists(pathToTmpFolder): print("Info :: Path to results folder exsists") if self.params["restartAnalysis"]: print("Warning :: Argument restartAnalysis was set to True .. cleaning folder.") #to do - shift to extra fn for root, dirs, files in os.walk(pathToTmpFolder): for f in files: os.unlink(os.path.join(root, f)) for d in dirs: shutil.rmtree(os.path.join(root, d)) else: print("Info :: Will take files from there, if they exist") return pathToTmpFolder try: self._makeFolder(pathToTmpFolder) print("Info :: Result folder created -- ",analysisName) self._makeFolder(pathToTmpFolder,"chunks") print("Info :: Chunks folder created/checked") self._makeFolder(pathToTmpFolder,"result") print("Info :: Result folder created/checked") self._makeFolder(pathToTmpFolder,"result","alignments") print("Info :: Alignment folder created/checked") self._makeFolder(pathToTmpFolder,"result","modelPlots") print("Info :: Result/modelPlots folder created/checked. In this folder, all model plots will be saved here, if savePlots equals true, otherwise empty.") # self._createTxtFile(pathToFile = os.path.join(pathToTmpFolder,"runTimes.txt"),headers = ["Date","Time","Step","Comment"]) return pathToTmpFolder except OSError as e: print(e) raise OSError("Could not create result folder due to OS Error") def _handleComptabFormat(self,X,filesToLoad): """ Extracts different samples from comptab format. Parameters ---------- X : str Path to folder where comptab files is located filesToLoad: list of txt/tsv files present in the folder Returns ------- detectedDataFrames : list of pd.DataFrame list of identified data farmes from compbat file fileNames : list of str Internal names <comptabfileName>:<sampleName> """ detectedDataFrames = [] fileNames = [] for fileName in filesToLoad: comptFile = pd.read_csv(os.path.join(X,fileName), sep="\t", header=[0,1], index_col=0) columnsToKeep = [colNameTuple for colNameTuple in comptFile.columns if "unique peptides" not in colNameTuple and "coverage" not in colNameTuple and "protein length" not in colNameTuple] comptFile = comptFile[columnsToKeep] #find unique sample names given in the first header samples = np.unique([colNameTuple[0] for colNameTuple in comptFile.columns]) for sampleName in samples: sampleColumns = [colNameTuple for colNameTuple in comptFile.columns if colNameTuple[0] == sampleName] dataFrame = pd.DataFrame(comptFile[sampleColumns].values, columns = [colNameTuple[1] for colNameTuple in comptFile.columns if colNameTuple[0] == sampleName]) dataFrame["Uniprot ID"] = comptFile.index detectedDataFrames.append(dataFrame) fileNames.append("{}:{}".format(fileName,sampleName)) return detectedDataFrames, fileNames def _mergeDistancesForGroups(self): "" def run(self,X, maxValueToOne = False): """ Runs the ComplexFinder Script. Parameters ---------- X : str, list, pd.DataFrame Returns ------- pathToTmp : str ansolute path to tmp/anlysis name folder. """ self.allSamplesFound = False self.entriesInChunkLoaded = False global entriesInChunks if isinstance(X,list) and all(isinstance(x,pd.DataFrame) for x in X): if self.params["compTabFormat"]: raise TypeError("If 'compTabFormat' is True. X must be a path to a folder. Either set compTabFormat to False or provide a path.") print("Multiple dataset detected - each one will be analysed separetely") if self.params["analysisName"] is None or not isinstance(self.params["analysisName"],list) or len(self.params["analysisName"]) != len(X): self.params["analysisName"] = [self._randomStr(10) for n in range(len(X))] #create random analysisNames print("Info :: 'anylsisName' did not match X shape. Created random strings per dataframe.") elif isinstance(X,str): if os.path.exists(X): loadFiles = [f for f in os.listdir(X) if f.endswith(".txt") or f.endswith(".tsv")] if self.params["compTabFormat"]: Xs, loadFiles = self._handleComptabFormat(X,loadFiles) else: Xs = [pd.read_csv(os.path.join(X,fileName), sep="\t") for fileName in loadFiles] #filterId = pd.read_csv(os.path.join("filter","SPY.txt"),index_col=None) #Xs = [X.loc[X["Protein.Group"].isin(filterId["MouseMito"].values)] for X in Xs] self.params["analysisName"] = loadFiles if maxValueToOne: maxValues = pd.concat([x.max(axis=1) for x in X], axis=1).max(axis=1) normValueDict = dict([(X[0][self.params["idColumn"]].values[n],maxValue) for n,maxValue in enumerate(maxValues.values)]) self.params["normValueDict"] = normValueDict else: raise ValueError("Provided path {} does not exist.".format(X)) elif isinstance(X,pd.DataFrame): Xs = [X] self.params["analysisName"] = [self._randomStr(10)] else: ValueError("X must be either a string, a list of pandas data frames or pandas data frame itself.") self.params["pathToTmp"] = {} statColumns = ["nInteractions ({})".format(self.params["interactionProbabCutoff"]),"nPositiveInteractions","OOB_Score","ROC_Curve_AUC","Metrices","Classifier","ClassifierParams"] self.stats = pd.DataFrame(index = self.params["analysisName"],columns = statColumns) self.params["rawData"] = {} self.params["runTimes"] = {} self.params["runTimes"]["StartTime"] = time.time() for n,X in enumerate(Xs): pathToTmpFolder = self._makeTmpFolder(n) self.params["pathToTmp"][self.currentAnalysisName] = pathToTmpFolder if n == 0: pathToParams = os.path.join(self.params["pathToComb"],"params.json") pd.DataFrame().from_dict(self.params,orient="index").sort_index().to_json(pathToParams,indent = 4, orient="columns") print("Info :: Parameters saved to output folder.") if os.path.exists(os.path.join(self.params["pathToComb"],"runTimes.txt")): if not self.params["restartAnalysis"] and not self.params["recalculateDistance"] and not self.params["retrainClassifier"]: print("Warning :: Analysis done. Aborting (detected by finding the file 'runTimes.txt'") return print("------------------------") print("--"+self.currentAnalysisName+"--") print("--------Started---------") print("--Signal Processing &--") print("------Peak Fitting------") print("------------------------") if pathToTmpFolder is not None: #loading data self._load(X) #self._checkGroups() self._findPeaks(self.params["n_jobs"]) self._collectRSquaredAndFitDetails() self._saveSignals() combinedPeakModel = self._combinePeakResults() self._attachQuantificationDetails(combinedPeakModel) endSignalTime = time.time() self.params["runTimes"]["SignalFitting&Comparision"] = time.time() - self.params["runTimes"]["StartTime"] if not self.params["justFitAndMatchPeaks"]: print("Info :: Peak modeling done. Starting with distance calculations and predictions (if enabled)..") self._createSignalChunks() for n,X in enumerate(X): if n < len(self.params["analysisName"]): #happnes if others than txt file are present self.currentAnalysisName = self.params["analysisName"][n] print(self.currentAnalysisName," :: Starting distance calculations.") self._calculateDistance() self._mergeDistancesForGroups() self.params["runTimes"]["Distance Calculation"] = time.time() - endSignalTime distEndTime = time.time() self._loadReferenceDB() for analysisName in self.params["analysisName"]: self._addMetricesToDB(analysisName) dataPrepEndTime = time.time() self.params["runTimes"]["Database Preparation"] = dataPrepEndTime - distEndTime self._trainPredictor(self.params["addImpurity"]) for analysisName in self.params["analysisName"]: self.currentAnalysisName = analysisName self._predictInteractions() # #save statistics self.stats.to_csv(os.path.join(self.params["pathToComb"],"statistics.txt"),sep="\t") #combine interactions if not self.params["noDistanceCalculationAndPrediction"]: if not self.params["noDatabaseForPredictions"]: combinedInteractions = self._combineInteractionsAndClusters() else: print("Warning/Info :: noDistancenCalculationAndPrediction is True, skipping combineInteraction step.") endTrainingTime = time.time() self.params["runTimes"]["Classifier Training & Prediction"] = endTrainingTime - dataPrepEndTime if not self.params["noDistanceCalculationAndPrediction"] and len(self.params["grouping"]) > 0 and not self.params["noDatabaseForPredictions"]: for groupName,groupFileNames in self.params["grouping"].items(): if isinstance(groupFileNames,str): groupFileNames = [groupFileNames] self._clusterInteractions(combinedInteractions,groupFiles = groupFileNames,groupName = groupName) else: print("Info :: Cluster Interactions") self._clusterInteractions(None) self.params["runTimes"]["Interaction Clustering and Embedding"] = time.time() - endTrainingTime print("Info :: Run Times :: ") print(self.params["runTimes"]) pd.DataFrame().from_dict(self.params["runTimes"],orient="index").to_csv(os.path.join(self.params["pathToComb"],"runTimes.txt"),sep="\t") print("Info :: Analysis done.") def _combinePredictedInteractions(self, pathToComb): """ Combines predicted Interactions based on the output files : predictedInteractions[..].txt of each run. Parameters ---------- pathToComb : str, path to combined result folder. Returns ------- combResults : pd.DataFrame combined data frame for each run. All metrices and predictions are provided. """ pathToInteractions = os.path.join(pathToComb,"combinedInteractions.txt") if False and os.path.exists(pathToInteractions) and not self.params["retrainClassifier"]: combResults = pd.read_csv(pathToInteractions,sep="\t") combResults = self._filterCombinedInteractions(combResults) print("Info :: Combined interactions found and loaded.") return combResults print("Info :: Combining interactions of runs.") preditctedInteractions = [] for analysisName in self.params["analysisName"]: pathToResults = os.path.join(self.params["pathToTmp"][analysisName],"result") pathToPrediction = os.path.join(pathToResults,"predictedInteractions{}_{}_{}.txt".format(self.params["metricesForPrediction"],self.params["classifierClass"],self.params["addImpurity"])) if os.path.exists(pathToPrediction): df = pd.read_csv(pathToPrediction,sep="\t", low_memory=False).set_index(["E1E2","E1","E2"]) df = df.loc[df["Prob_0"] > self.params["interactionProbabCutoff"]] preditctedInteractions.append(df) else: raise ValueError("Warning :: PredictedInteractions not found. " + str(pathToPrediction)) for n,df in enumerate(preditctedInteractions): analysisName = self.params["analysisName"][n] if n == 0: combResults = df combResults.columns = ["{}_({})".format(colName,analysisName) for colName in df.columns] combResults[analysisName] = pd.Series(["+"]*df.index.size, index = df.index) else: df.columns = ["{}_({})".format(colName,analysisName) for colName in df.columns] #columnNames = [colName for colName in df.columns if colName] # we have them already from n = 0 df[analysisName] = pd.Series(["+"]*df.index.size, index = df.index) # combResults["validSignal({})".format(analysisName)] = df[["E1_({})".format(analysisName),"E2_({})".format(analysisName)]].apply(lambda x: all(e in self.Signals[analysisName] and self.Signals[analysisName][e].valid for e in x.values),axis=1) combResults = combResults.join(df, how="outer") combResults = combResults.reset_index() for analysisName in self.params["analysisName"]: combResults["validSignalFit({})".format(analysisName)] = combResults[["E1","E2"]].apply(lambda x: all(e in self.Signals[analysisName] and self.Signals[analysisName][e].valid for e in x.values),axis=1) combResults["#Valid Signal Fit"] = combResults[["validSignalFit({})".format(analysisName) for analysisName in self.params["analysisName"]]].sum(axis=1) detectedColumn = [analysisName for analysisName in self.params["analysisName"]] #detected in grouping for groupName,groupItems in self.params["grouping"].items(): if all(groupItem in combResults.columns for groupItem in groupItems): boolIdx = combResults[groupItems] == "+" if isinstance(boolIdx,pd.Series): #grouping equals 1 (groupItems, nonsenese (always ture), but repoted due to conisitency) combResults["Complete in {}".format(groupName)] = boolIdx else: combResults["Complete in {}".format(groupName)] = np.sum(boolIdx,axis=1) == len(groupItems) boolIdx = combResults[detectedColumn] == "+" combResults["# Detected in"] = np.sum(boolIdx,axis=1) combResults.sort_values(by="# Detected in", ascending = False, inplace = True) # combResults.loc[combResults["E1E2"].str.contains("A0A087WU95")].to_csv("BiasedSelection.txt",sep="\t") combResults.to_csv(pathToInteractions,sep="\t",index=True) combResults = self._filterCombinedInteractions(combResults) return combResults def _filterCombinedInteractions(self,combResults): """ Filters combined interactions. Parameters ---------- combResults : pd.DataFrame. Combined interactions. Returns ------- combResults : pd.DataFrame filteredCombResults """ interactionsInAllSamples = self.params["considerOnlyInteractionsPresentInAllRuns"] if isinstance(interactionsInAllSamples,bool) and interactionsInAllSamples: filteredCombResults = combResults.loc[combResults["# Detected in"] == len(self.params["analysisName"])] elif isinstance(interactionsInAllSamples,int): if interactionsInAllSamples > len(self.params["analysisName"]): interactionsInAllSamples = len(self.params["analysisName"]) filteredCombResults = combResults.loc[combResults["# Detected in"] >= interactionsInAllSamples] else: #if no filtering is applied. filteredCombResults = combResults return filteredCombResults def _combineInteractionsAndClusters(self): "" pathToComb = self.params["pathToComb"] combinedInteractions = self._combinePredictedInteractions(pathToComb) return combinedInteractions def _saveSignalFitStatistics(self): "Save Fit Statistic to disk" pathToTxt = os.path.join(self.params["pathToTmp"][self.currentAnalysisName],"result","fitStatistic({}).txt".format(self.currentAnalysisName)) data = [{ "id":signal.ID, "R2":signal.Rsquared, "#Peaks":len(signal.modelledPeaks) if hasattr(signal,"modelledPeaks") else 0, "valid":signal.valid, "validModel":signal.validModel, "validData":signal.validData } for signal in self.Signals[self.currentAnalysisName].values()] pd.DataFrame().from_dict(data).to_csv(pathToTxt,sep="\t") def _checkAlignment(self,data): "" data = data.dropna() centerColumns = [colName for colName in data.columns if colName.startswith("auc")] data[centerColumns].corr() f = plt.figure() ax = f.add_subplot(111) ax.scatter(data[centerColumns[0]],data[centerColumns[1]]) plt.show() def _alignProfiles(self,fittedPeaksData): "" alignMethod = self.params["alignMethod"] if len(fittedPeaksData) > 1 and alignMethod in alignModels and os.path.exists(self.params["pathToComb"]): alignResults = OrderedDict([(analysisName,[]) for analysisName in self.params["analysisName"]]) fittedModels = dict() removedDuplicates = [X.loc[~X.duplicated(subset=["Key"],keep=False)] for X in fittedPeaksData] preparedData = [] for n,dataFrame in enumerate(removedDuplicates): dataFrame.columns = ["{}_{}".format(colName,self.params["analysisName"][n]) if colName != "Key" else colName for colName in dataFrame.columns ] dataFrame = dataFrame.set_index("Key") preparedData.append(dataFrame) #join data frames joinedDataFrame = preparedData[0].join(preparedData[1:],how="outer") if joinedDataFrame .index.size < 30: print("Less than 30 data profiles with single peaks found. Aborting alignment") return fittedPeaksData #use linear regression or lowess for comb in combinations(self.params["analysisName"],2): c1, c2 = comb columnHeaders = ["Center_{}".format(c1),"Center_{}".format(c2)] data = joinedDataFrame.dropna(subset=columnHeaders)[columnHeaders] absDiff = np.abs(data[columnHeaders[0]] - data[columnHeaders[1]]) pd.DataFrame(data).to_csv("alignedPeaks.txt",sep="\t") boolIdx = absDiff > 5 #remove everything with a higher difference of 5. data = data.loc[~boolIdx] nRows = data.index.size X, Y = data[[columnHeaders[0]]].values, data[[columnHeaders[1]]].values model = alignModels["LinearRegression"](**alignModelsParams["LinearRegression"]).fit(X,Y) lnSpace = np.linspace(np.min(data.values),np.max(data.values)).reshape(-1,1) #get min / max values Yplot = model.predict(lnSpace) #store R2 R2 = model.score(X,Y) alignResults[c1].append(R2) alignResults[c2].append(R2) #save model fittedModels[comb] = {"model":model,"R2":R2} #plot alignment f = plt.figure() ax = f.add_subplot(111) ax.scatter(joinedDataFrame["Center_{}".format(c1)],joinedDataFrame["Center_{}".format(c2)]) ax.plot(lnSpace,Yplot) plt.savefig(os.path.join(self.params["pathToComb"],"{}.pdf".format(comb))) #ax.plot() #save alignment o =
pd.DataFrame(lnSpace)
pandas.DataFrame
import sys assert sys.version_info >= (3, 5) # make sure we have Python 3.5+ import pandas as pd import numpy as np from pathlib import Path # init input df - fishing gear def init_fishing_df(path): fishing_df = pd.read_csv('../data/' + path) # comment out for real life data-------------- fishing_df = fishing_df[fishing_df['is_fishing'] > -0.5] fishing_df['is_fishing'] = [0 if x < 0.3 else 1 for x in fishing_df['is_fishing']] fishing_df = fishing_df[['is_fishing', 'lat', 'lon', 'course', 'speed', 'timestamp', 'distance_from_shore', 'distance_from_port', 'mmsi', 'source']] fishing_df['gear_type'] = Path(path).stem #--------------------------------------------- return fishing_df # ------------------------This section only needed when adding sst/precip data----------------------------- # init input df - sea surface temparature def init_sst_df(path_sst): sst_df = pd.read_csv('../data/' + path_sst, index_col=0) sst_df["time_bnds"] = pd.to_datetime(sst_df["time_bnds"]).dt.to_period('M') return sst_df # init input df - precipitation def init_precip_df(path_precip): precip_df = pd.read_csv('../data/' + path_precip, index_col=0) precip_df["time"] = pd.to_datetime(precip_df["time"]).dt.to_period('M') return precip_df # ------------------------This section only needed when slicing lon/lat or time----------------------------- # custom rounding functions def custom_season(x): return np.round(int(x)/3) def custom_round(x): return 0.5 + np.floor(float(x)) # ------------------------Functions to combine/add features and feature engineering----------------------------- def time_feature(df): df["adjust_time_date"] =
pd.to_datetime(df['timestamp'], unit='s')
pandas.to_datetime
''' ''' import os, glob try: from icecube import dataclasses, icetray, dataio from icecube import genie_icetray except ModuleNotFoundError: # Not running in IceTray pass import numpy as np import pandas as pd from sqlalchemy import create_engine import sqlalchemy import time from multiprocessing import Pool import pickle import argparse import sys parser = argparse.ArgumentParser() parser.add_argument("-config", "--config", type=str, required=True) def contains_retro(frame): try: frame['L7_reconstructed_zenith'] return True except: return False def build_standard_extraction(): standard_truths = {'energy': 'MCInIcePrimary.energy', 'position_x': 'MCInIcePrimary.pos.x', 'position_y': 'MCInIcePrimary.pos.y', 'position_z': 'MCInIcePrimary.pos.z', 'azimuth': 'MCInIcePrimary.dir.azimuth', 'zenith': 'MCInIcePrimary.dir.zenith', 'pid': 'MCInIcePrimary.pdg_encoding', 'event_time': 'event_time', 'sim_type': 'sim_type', 'interaction_type': 'interaction_type', 'elasticity': 'elasticity', 'RunID': 'RunID', 'SubrunID': 'SubrunID', 'EventID': 'EventID', 'SubEventID': 'SubEventID'} return standard_truths def case_handle_this(frame, sim_type): if sim_type != 'noise': MCInIcePrimary = frame['MCInIcePrimary'] else: MCInIcePrimary = None if sim_type != 'muongun' and sim_type != 'noise': interaction_type = frame["I3MCWeightDict"]["InteractionType"] elasticity = frame['I3GENIEResultDict']['y'] else: interaction_type = -1 elasticity = -1 return MCInIcePrimary, interaction_type, elasticity def is_montecarlo(frame): mc = True try: frame['MCInIcePrimary'] except: mc = False return mc def build_blank_extraction(): ## Please note that if the simulation type is pure noise or real that these values will be appended to the truth table blank_extraction = {'energy_log10': '-1', 'position_x': '-1', 'position_y': '-1', 'position_z': '-1', 'azimuth': '-1', 'zenith': '-1', 'pid': '-1', 'event_time': 'event_time', 'sim_type': 'sim_type', 'interaction_type': '-1', 'elasticity': '-1', 'RunID': 'RunID', 'SubrunID': 'SubrunID', 'EventID': 'EventID', 'SubEventID': 'SubEventID'} return blank_extraction def build_retro_extraction(is_mc): retro_extraction = {'azimuth_retro': 'frame["L7_reconstructed_azimuth"].value', 'time_retro': 'frame["L7_reconstructed_time"].value', 'energy_retro': 'frame["L7_reconstructed_total_energy"].value', 'position_x_retro': 'frame["L7_reconstructed_vertex_x"].value', 'position_y_retro': 'frame["L7_reconstructed_vertex_y"].value', 'position_z_retro': 'frame["L7_reconstructed_vertex_z"].value', 'zenith_retro': 'frame["L7_reconstructed_zenith"].value', 'azimuth_sigma': 'frame["L7_retro_crs_prefit__azimuth_sigma_tot"].value', 'position_x_sigma': 'frame["L7_retro_crs_prefit__x_sigma_tot"].value', 'position_y_sigma': 'frame["L7_retro_crs_prefit__y_sigma_tot"].value', 'position_z_sigma': 'frame["L7_retro_crs_prefit__z_sigma_tot"].value', 'time_sigma': 'frame["L7_retro_crs_prefit__time_sigma_tot"].value', 'zenith_sigma': 'frame["L7_retro_crs_prefit__zenith_sigma_tot"].value', 'energy_sigma': 'frame["L7_retro_crs_prefit__energy_sigma_tot"].value', 'cascade_energy_retro': 'frame["L7_reconstructed_cascade_energy"].value', 'track_energy_retro': 'frame["L7_reconstructed_track_energy"].value', 'track_length_retro': 'frame["L7_reconstructed_track_length"].value', 'lvl7_probnu': 'frame["L7_MuonClassifier_FullSky_ProbNu"].value', 'lvl4_probnu': 'frame["L4_MuonClassifier_Data_ProbNu"].value', 'lvl7_prob_track': 'frame["L7_PIDClassifier_FullSky_ProbTrack"].value'} if is_mc: retro_extraction['osc_weight'] = 'frame["I3MCWeightDict"]["weight"]' return retro_extraction def extract_retro(frame): is_mc = is_montecarlo(frame) retro = {} if contains_retro(frame): retro_extraction = build_retro_extraction(is_mc) for retro_variable in retro_extraction.keys(): retro[retro_variable] = eval(retro_extraction[retro_variable]) return retro def extract_truth(frame, input_file, extract_these_truths = None): if extract_these_truths == None: extract_these_truths = build_standard_extraction() is_mc = is_montecarlo(frame) sim_type = find_simulation_type(is_mc,input_file) event_time = frame['I3EventHeader'].start_time.utc_daq_time RunID, SubrunID, EventID, SubEventID = extract_event_ids(frame) if is_mc: MCInIcePrimary, interaction_type, elasticity = case_handle_this(frame, sim_type) if MCInIcePrimary != None: ## is not noise truth = {} for truth_variable in extract_these_truths.keys(): truth[truth_variable] = eval(extract_these_truths[truth_variable]) else: ## is real data or noise blank_extraction = build_blank_extraction() truth = {} for truth_variable in blank_extraction.keys(): truth[truth_variable] = eval(blank_extraction[truth_variable]) return truth def extract_features(frame, key, gcd_dict,calibration): charge = [] time = [] width = [] area = [] rqe = [] x = [] y = [] z = [] if key in frame.keys(): data = frame[key] try: om_keys = data.keys() except: try: if "I3Calibration" in frame.keys(): data = frame[key].apply(frame) om_keys = data.keys() else: frame["I3Calibration"] = calibration data = frame[key].apply(frame) om_keys = data.keys() except: data = dataclasses.I3RecoPulseSeriesMap.from_frame(frame,key) om_keys = data.keys() for om_key in om_keys: pulses = data[om_key] for pulse in pulses: charge.append(pulse.charge) time.append(pulse.time) width.append(pulse.width) area.append(gcd_dict[om_key].area) rqe.append(frame["I3Calibration"].dom_cal[om_key].relative_dom_eff) x.append(gcd_dict[om_key].position.x) y.append(gcd_dict[om_key].position.y) z.append(gcd_dict[om_key].position.z) features = {'charge': charge, 'dom_time': time, 'dom_x': x, 'dom_y': y, 'dom_z': z, 'width' : width, 'pmt_area': area, 'rde': rqe} return features def find_simulation_type(mc, input_file): if mc == False: sim_type = 'data' else: sim_type = 'lol' if 'muon' in input_file: sim_type = 'muongun' if 'corsika' in input_file: sim_type = 'corsika' if 'genie' in input_file: sim_type = 'genie' if 'noise' in input_file: sim_type = 'noise' if sim_type == 'lol': print('SIM TYPE NOT FOUND!') return sim_type def load_geospatial_data(gcd_path): gcd_file = dataio.I3File(gcd_path) g_frame = gcd_file.pop_frame(icetray.I3Frame.Geometry) om_geom_dict = g_frame["I3Geometry"].omgeo calibration = gcd_file.pop_frame(icetray.I3Frame.Calibration)["I3Calibration"] return om_geom_dict, calibration def is_empty(features): if features['dom_x'] != None: return False else: return True def extract_event_ids(frame): RunID = frame['I3EventHeader'].run_id SubrunID = frame['I3EventHeader'].sub_run_id EventID = frame['I3EventHeader'].event_id SubEventID = frame['I3EventHeader'].sub_event_id return RunID, SubrunID, EventID, SubEventID def apply_event_no(extraction, event_no_list, event_counter): out = pd.DataFrame(extraction.values()).T out.columns = extraction.keys() out['event_no'] = event_no_list[event_counter] return out def check_for_new_columns(columns, biggest_columns): if len(columns) > len(biggest_columns): return columns else: return biggest_columns def write_dicts(settings): input_files,id,gcd_files,outdir , max_dict_size,event_no_list, pulse_map_keys,custom_truth, db_name,verbose = settings # Useful bits event_counter = 0 feature_big = {} truth_big = pd.DataFrame() retro_big =
pd.DataFrame()
pandas.DataFrame
# pylint: disable=E1101 from datetime import datetime import datetime as dt import os import warnings import nose import struct import sys from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.core.common import is_categorical_dtype from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) import pandas.util.testing as tm from pandas.tslib import NaT from pandas import compat class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds = DataFrame(columns=['unit']) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path,write_index=False) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) def test_data_method(self): # Minimal testing of legacy data method reader_114 = StataReader(self.dta1_114) with warnings.catch_warnings(record=True) as w: parsed_114_data = reader_114.data() reader_114 = StataReader(self.dta1_114) parsed_114_read = reader_114.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read) def test_read_dta1(self): reader_114 = StataReader(self.dta1_114) parsed_114 = reader_114.read() reader_117 = StataReader(self.dta1_117) parsed_117 = reader_117.read() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta2(self): if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('datetime interp under 2.6 is faulty') expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) expected['yearly_date'] = expected['yearly_date'].astype('O') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta tm.assert_equal(len(w), 3) # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta3(self): parsed_113 = self.read_dta(self.dta3_113) parsed_114 = self.read_dta(self.dta3_114) parsed_115 = self.read_dta(self.dta3_115) parsed_117 = self.read_dta(self.dta3_117) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int16) expected['quarter'] = expected['quarter'].astype(np.int8) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta4(self): parsed_113 = self.read_dta(self.dta4_113) parsed_114 = self.read_dta(self.dta4_114) parsed_115 = self.read_dta(self.dta4_115) parsed_117 = self.read_dta(self.dta4_117) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled']) # these are all categoricals expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=['x', 'y', 'z']) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_write_dta5(self): original = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = 'index' original.index = original.index.astype(np.int32) original['year'] = original['year'].astype(np.int32) original['quarter'] = original['quarter'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_read_write_dta10(self): original = DataFrame(data=[["string", "object", 1, 1.1, np.datetime64('2003-12-25')]], columns=['string', 'object', 'integer', 'floating', 'datetime']) original["object"] = Series(original["object"], dtype=object) original.index.name = 'index' original.index = original.index.astype(np.int32) original['integer'] = original['integer'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {'datetime': 'tc'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = pd.DataFrame(np.random.randn(5,4), columns=list('abcd')) df.ix[2, 'a':'c'] = np.nan df_copy = df.copy() df.to_stata('test.dta', write_index=False) tm.assert_frame_equal(df, df_copy) def test_encoding(self): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding, encoding="latin-1") result = encoded.kreis1849[0] if compat.PY3: expected = raw.kreis1849[0] self.assertEqual(result, expected) self.assertIsInstance(result, compat.string_types) else: expected = raw.kreis1849.str.decode("latin-1")[0] self.assertEqual(result, expected) self.assertIsInstance(result, unicode) with tm.ensure_clean() as path: encoded.to_stata(path,encoding='latin-1', write_index=False) reread_encoded = read_stata(path, encoding='latin-1') tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame([(1, 2, 3, 4)], columns=['good', compat.u('b\u00E4d'), '8number', 'astringwithmorethan32characters______']) formatted = DataFrame([(1, 2, 3, 4)], columns=['good', 'b_d', '_8number', 'astringwithmorethan32characters_']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta12(self): original = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_1', 'astringwithmorethan32characters_2', '+', '-', 'short', 'delete']) formatted = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_', '_0astringwithmorethan32character', '_', '_1_', '_short', '_delete']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) tm.assert_equal(len(w), 1) # should get a warning for that format. written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta13(self): s1 = Series(2**9, dtype=np.int16) s2 = Series(2**17, dtype=np.int32) s3 = Series(2**33, dtype=np.int64) original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3}) original.index.name = 'index' formatted = original formatted['int64'] = formatted['int64'].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_reread_dta14(self): expected = self.read_csv(self.csv14) cols = ['byte_', 'int_', 'long_', 'float_', 'double_'] for col in cols: expected[col] = expected[col].convert_objects(convert_numeric=True) expected['float_'] = expected['float_'].astype(np.float32) expected['date_td'] = pd.to_datetime(expected['date_td'], coerce=True) parsed_113 = self.read_dta(self.dta14_113) parsed_113.index.name = 'index' parsed_114 = self.read_dta(self.dta14_114) parsed_114.index.name = 'index' parsed_115 = self.read_dta(self.dta14_115) parsed_115.index.name = 'index' parsed_117 = self.read_dta(self.dta14_117) parsed_117.index.name = 'index' tm.assert_frame_equal(parsed_114, parsed_113) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) with tm.ensure_clean() as path: parsed_114.to_stata(path, {'date_td': 'td'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), parsed_114) def test_read_write_reread_dta15(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) parsed_113 = self.read_dta(self.dta15_113) parsed_114 = self.read_dta(self.dta15_114) parsed_115 = self.read_dta(self.dta15_115) parsed_117 = self.read_dta(self.dta15_117) tm.assert_frame_equal(expected, parsed_114) tm.assert_frame_equal(parsed_113, parsed_114) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) def test_timestamp_and_label(self): original =
DataFrame([(1,)], columns=['var'])
pandas.core.frame.DataFrame
import datetime import numpy as np from pandas.compat import IS64, is_platform_windows from pandas import Categorical, DataFrame, Series, date_range import pandas._testing as tm class TestIteration: def test_keys(self, float_frame): assert float_frame.keys() is float_frame.columns def test_iteritems(self): df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"]) for k, v in df.items(): assert isinstance(v, DataFrame._constructor_sliced) def test_items(self): # GH#17213, GH#13918 cols = ["a", "b", "c"] df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols) for c, (k, v) in zip(cols, df.items()): assert c == k assert isinstance(v, Series) assert (df[k] == v).all() def test_items_names(self, float_string_frame): for k, v in float_string_frame.items(): assert v.name == k def test_iter(self, float_frame): assert tm.equalContents(list(float_frame), float_frame.columns) def test_iterrows(self, float_frame, float_string_frame): for k, v in float_frame.iterrows(): exp = float_frame.loc[k] tm.assert_series_equal(v, exp) for k, v in float_string_frame.iterrows(): exp = float_string_frame.loc[k] tm.assert_series_equal(v, exp) def test_iterrows_iso8601(self): # GH#19671 s = DataFrame( { "non_iso8601": ["M1701", "M1802", "M1903", "M2004"], "iso8601": date_range("2000-01-01", periods=4, freq="M"), } ) for k, v in s.iterrows(): exp = s.loc[k] tm.assert_series_equal(v, exp) def test_iterrows_corner(self): # GH#12222 df = DataFrame( { "a": [datetime.datetime(2015, 1, 1)], "b": [None], "c": [None], "d": [""], "e": [[]], "f": [set()], "g": [{}], } ) expected = Series( [datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}], index=list("abcdefg"), name=0, dtype="object", ) _, result = next(df.iterrows()) tm.assert_series_equal(result, expected) def test_itertuples(self, float_frame): for i, tup in enumerate(float_frame.itertuples()): ser = DataFrame._constructor_sliced(tup[1:]) ser.name = tup[0] expected = float_frame.iloc[i, :].reset_index(drop=True)
tm.assert_series_equal(ser, expected)
pandas._testing.assert_series_equal
# -*- coding: utf-8 -*- """ @brief test log(time=2s) """ import unittest import pandas import numpy from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from pyquickhelper.pycode import ExtTestCase from mlinsights.search_rank import SearchEnginePredictions class TestSearchPredictions(ExtTestCase): def test_search_predictions_lr(self): iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target clf = LogisticRegression() clf.fit(X, y) res = [] for i in range(20): h = i * 0.05 h2 = 1 - i * 0.05 res.append(dict(ind=i * 5, meta1="m%d" % i, meta2="m%d" % (i + 1), f1=h, f2=h2)) df =
pandas.DataFrame(res)
pandas.DataFrame
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'),
pd.Timedelta('02:30:00')
pandas.Timedelta
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3,4,7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEquals(self.ts.ix[d1], self.ts[d1]) self.assertEquals(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][::-1] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assert_((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assert_((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s[::-1] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_ix_setitem(self): inds = self.series.index[[3,4,7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3,4,7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEquals(self.series[d1], 4) self.assertEquals(self.series[d2], 6) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.order() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # tuple name, e.g. from hierarchical index self.series.name = ('foo', 'bar', 'baz') repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) def test_to_string(self): from cStringIO import StringIO buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) self.assert_(retval is None) self.assertEqual(buf.getvalue().strip(), s) # pass float_format format = '%.4f'.__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split('\n')] expected = [format(x) for x in self.ts] self.assertEqual(result, expected) # empty string result = self.ts[:0].to_string() self.assertEqual(result, '') result = self.ts[:0].to_string(length=0) self.assertEqual(result, '') # name and length cp = self.ts.copy() cp.name = 'foo' result = cp.to_string(length=True, name=True) last_line = result.split('\n')[-1].strip() self.assertEqual(last_line, "Name: foo, Length: %d" % len(cp)) def test_to_string_mixed(self): s = Series(['foo', np.nan, -1.23, 4.56]) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 -1.23\n' '3 4.56') self.assertEqual(result, expected) # but don't count NAs as floats s = Series(['foo', np.nan, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) s = Series(['foo', 5, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 5\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) def test_to_string_float_na_spacing(self): s = Series([0., 1.5678, 2., -3., 4.]) s[::2] = np.nan result = s.to_string() expected = ('0 NaN\n' '1 1.568\n' '2 NaN\n' '3 -3.000\n' '4 NaN') self.assertEqual(result, expected) def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assert_(getkeys() is self.ts.index) def test_values(self): self.assert_(np.array_equal(self.ts, self.ts.values)) def test_iteritems(self): for idx, val in self.series.iteritems(): self.assertEqual(val, self.series[idx]) for idx, val in self.ts.iteritems(): self.assertEqual(val, self.ts[idx]) def test_sum(self): self._check_stat_op('sum', np.sum) def test_sum_inf(self): s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan assert_almost_equal(s.sum(), s2.sum()) import pandas.core.nanops as nanops arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf res = nanops.nansum(arr, axis=1) expected = nanops._nansum(arr, axis=1) assert_almost_equal(res, expected) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = TimeSeries(np.ones(10, dtype=int), index=range(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) def test_var(self): alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) def test_skew(self): from scipy.stats import skew alt =lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assert_(issubclass(argsorted.dtype.type, np.integer)) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def _check_stat_op(self, name, alternate, check_objects=False): from pandas import DateRange import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assert_(notnull(f(self.series))) self.assert_(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona)) allna = self.series * nan self.assert_(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # check DateRange if check_objects: s = Series(DateRange('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_(np.array_equal(func(self.ts), func(np.array(self.ts)))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_(np.array_equal(result, expected)) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index) assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.] , index=range(3)) result = s.prod() self.assert_(not isinstance(result, Series)) def test_quantile(self): from scipy.stats import scoreatpercentile q = self.ts.quantile(0.1) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 90)) def test_describe(self): _ = self.series.describe() _ = self.ts.describe() def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count' : 7, 'unique' : 4, 'top' : 'a', 'freq' : 3}, index=result.index) assert_series_equal(result, expected) def test_append(self): appendedSeries = self.series.append(self.ts) for idx, value in appendedSeries.iteritems(): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.ts.index: self.assertEqual(value, self.ts[idx]) else: self.fail("orphaned index!") self.assertRaises(Exception, self.ts.append, self.ts) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): np.random.seed(12345) ts = tm.makeTimeSeries() bool_series = ts > 0 self.assert_(not bool_series.all()) self.assert_(bool_series.any()) def test_operators(self): series = self.ts other = self.ts[::2] def _check_op(other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'gt', 'ge', 'lt', 'le'] for opname in simple_ops: _check_op(other, getattr(operator, opname)) _check_op(other, operator.pow, pos_only=True) _check_op(other, lambda x, y: operator.add(y, x)) _check_op(other, lambda x, y: operator.sub(y, x)) _check_op(other, lambda x, y: operator.truediv(y, x)) _check_op(other, lambda x, y: operator.floordiv(y, x)) _check_op(other, lambda x, y: operator.mul(y, x)) _check_op(other, lambda x, y: operator.pow(y, x), pos_only=True) check(self.ts * 2) check(self.ts * 0) check(self.ts[::2]) check(5) def check_comparators(other): _check_op(other, operator.gt) _check_op(other, operator.ge) _check_op(other, operator.eq) _check_op(other, operator.lt) _check_op(other, operator.le) check_comparators(5) check_comparators(self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x' : 0.}) # it works! _ = s1 * s2 # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assert_(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmin())) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assert_(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmax())) def test_operators_date(self): result = self.objSeries + timedelta(1) result = self.objSeries - timedelta(1) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assert_(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assert_(len(result) == 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_(np.array_equal(added[:-5], expected)) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): from pandas.util.testing import rands import operator # GH 353 vals = Series([rands(5) for _ in xrange(10)]) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals' : vals}) result = 'foo_' + frame expected = DataFrame({'vals' : vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A' : self.ts}) tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A']) tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) ops = [Series.add, Series.sub, Series.mul, Series.div] equivs = [operator.add, operator.sub, operator.mul] if py3compat.PY3: equivs.append(operator.truediv) else: equivs.append(operator.div) fillvals = [0, 0, 1, 1] for op, equiv_op, fv in zip(ops, equivs, fillvals): result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) def test_combine_first(self): values = tm.makeIntIndex(20).values.astype(float) series = Series(values, index=tm.makeIntIndex(20)) series_copy = series * 2 series_copy[::2] = np.NaN # nothing used from the input combined = series.combine_first(series_copy) self.assert_(np.array_equal(combined, series)) # Holes filled from input combined = series_copy.combine_first(series) self.assert_(np.isfinite(combined).all()) self.assert_(np.array_equal(combined[::2], series[::2])) self.assert_(np.array_equal(combined[1::2], series_copy[1::2])) # mixed types index = tm.makeStringIndex(20) floats = Series(tm.randn(20), index=index) strings = Series(tm.makeStringIndex(10), index=index[::2]) combined = strings.combine_first(floats) tm.assert_dict_equal(strings, combined, compare_keys=False) tm.assert_dict_equal(floats[1::2], combined, compare_keys=False) # corner case s = Series([1., 2, 3], index=[0, 1, 2]) result = s.combine_first(Series([], index=[])) assert_series_equal(s, result) def test_corr(self): import scipy.stats as stats # full overlap self.assertAlmostEqual(self.ts.corr(self.ts), 1) # partial overlap self.assertAlmostEqual(self.ts[:15].corr(self.ts[5:]), 1) # No overlap self.assert_(np.isnan(self.ts[::2].corr(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.corr(cp))) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) self.assertAlmostEqual(result, expected) def test_corr_rank(self): import scipy import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method='kendall') expected = stats.kendalltau(A, B)[0] self.assertAlmostEqual(result, expected) result = A.corr(B, method='spearman') expected = stats.spearmanr(A, B)[0] self.assertAlmostEqual(result, expected) # these methods got rewritten in 0.8 if int(scipy.__version__.split('.')[1]) < 9: raise nose.SkipTest # results from R A = Series([-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606]) B = Series([-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375]) kexp = 0.4319297 sexp = 0.5853767 self.assertAlmostEqual(A.corr(B, method='kendall'), kexp) self.assertAlmostEqual(A.corr(B, method='spearman'), sexp) def test_cov(self): # full overlap self.assertAlmostEqual(self.ts.cov(self.ts), self.ts.std()**2) # partial overlap self.assertAlmostEqual(self.ts[:15].cov(self.ts[5:]), self.ts[5:15].std()**2) # No overlap self.assert_(np.isnan(self.ts[::2].cov(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.cov(cp))) def test_copy(self): ts = self.ts.copy() ts[::2] = np.NaN # Did not modify original Series self.assertFalse(np.isnan(self.ts[0])) def test_count(self): self.assertEqual(self.ts.count(), len(self.ts)) self.ts[::2] = np.NaN self.assertEqual(self.ts.count(), np.isfinite(self.ts).sum()) def test_value_counts_nunique(self): s = Series(['a', 'b', 'b', 'b', 'b', 'a', 'c', 'd', 'd', 'a']) hist = s.value_counts() expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) assert_series_equal(hist, expected) self.assertEquals(s.nunique(), 4) # handle NA's properly s[5:7] = np.nan hist = s.value_counts() expected = s.dropna().value_counts() assert_series_equal(hist, expected) s = Series({}) hist = s.value_counts() expected = Series([]) assert_series_equal(hist, expected) def test_sort(self): ts = self.ts.copy() ts.sort() self.assert_(np.array_equal(ts, self.ts.order())) self.assert_(np.array_equal(ts.index, self.ts.order().index)) def test_sort_index(self): import random rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index() assert_series_equal(sorted_series, self.ts) # descending sorted_series = random_order.sort_index(ascending=False) assert_series_equal(sorted_series, self.ts.reindex(self.ts.index[::-1])) def test_order(self): ts = self.ts.copy() ts[:5] = np.NaN vals = ts.values result = ts.order() self.assert_(np.isnan(result[-5:]).all()) self.assert_(np.array_equal(result[:-5], np.sort(vals[5:]))) result = ts.order(na_last=False) self.assert_(np.isnan(result[:5]).all()) self.assert_(np.array_equal(result[5:], np.sort(vals[5:]))) # something object-type ser = Series(['A', 'B'], [1, 2]) # no failure ser.order() # ascending=False ordered = ts.order(ascending=False) expected = np.sort(ts.valid().values)[::-1] assert_almost_equal(expected, ordered.valid().values) ordered = ts.order(ascending=False, na_last=False) assert_almost_equal(expected, ordered.valid().values) def test_rank(self): from scipy.stats import rankdata self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) exp = rankdata(filled) exp[mask] = np.nan assert_almost_equal(ranks, exp) def test_from_csv(self): self.ts.to_csv('_foo') ts = Series.from_csv('_foo') assert_series_equal(self.ts, ts) self.series.to_csv('_foo') series = Series.from_csv('_foo') assert_series_equal(self.series, series) outfile = open('_foo', 'w') outfile.write('1998-01-01|1.0\n1999-01-01|2.0') outfile.close() series = Series.from_csv('_foo',sep='|') checkseries = Series({datetime(1998,1,1): 1.0, datetime(1999,1,1): 2.0}) assert_series_equal(checkseries, series) series = Series.from_csv('_foo',sep='|',parse_dates=False) checkseries = Series({'1998-01-01': 1.0, '1999-01-01': 2.0}) assert_series_equal(checkseries, series) os.remove('_foo') def test_to_csv(self): self.ts.to_csv('_foo') lines = open('_foo', 'U').readlines() assert(lines[1] != '\n') os.remove('_foo') def test_to_dict(self): self.assert_(np.array_equal(Series(self.ts.to_dict()), self.ts)) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5)
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import os import pandas as pd from typing import Union import data import numpy as np def runs()->pd.DataFrame: """Get meta data about the runs Returns: pd.DataFrame: Meta data for all runs """ dir_path = os.path.join(os.path.dirname(data.__file__),'raw') df_runs = pd.read_csv(os.path.join(dir_path,'runs.csv'), index_col=0) return df_runs def load_run(id:int, dir_path='../data/raw')->pd.DataFrame: """Load time series for one run. Args: id (int): id of run Returns: pd.DataFrame: time series as a data frame. """ file_name = f'{id}.csv' file_path = os.path.join(dir_path, file_name) df =
pd.read_csv(file_path, index_col=0)
pandas.read_csv
import pandas as pd import numpy as np import os from datetime import datetime from IPython.display import IFrame,clear_output # for PDF reading import textract import re import sys import docx from difflib import SequenceMatcher ####################################################################################### def similar(a, b): return SequenceMatcher(None, a, b).ratio() ####################################################################################### def dms_to_dd(x,as_string=True): d,m,s = x.split() result = abs(float(d)) + float(m)/60. + float(s)/3600. if float(d) < 0: result = -result return result ####################################################################################### def convert_state(state): return {'New Hampshire':'NH','Maine':'ME', 'Massachusetts':'MA','New Hampshire/Maine':'NH'}[state] ####################################################################################### def doy_to_date(x, year=2008, jan1=1): # jan1 is Day 1, usually #if np.isnan(x): # return np.nan #print(x) result = ( pd.Period(year = year-1, month=12, day=31, freq='D') + pd.to_timedelta(x+(1-jan1), unit='days') ) return result.strftime('%Y-%m-%d') ####################################################################################### def date_conversion(x, year=None, dateformat='%d-%m-%y'): # year is Fall Year for date # default interpretations: # aaaa-bb-cc : Year/Month/Day # PROBLEMATIC: # aa-bb-cc : Month/Day/Year - or Day/Month/Year if aa>12 # Returns string # Unknown / missing if np.any([True for i in ['(earliest/latest)', '-999','no data','no response', 'unknown', 'missing', 'unknown', 'unkown','none', # the following are added for postcard data # 2021-02-07 'died', 'no res','skip','omit','card not received', 'card not returned', 'moved','nursing home','delete'] if i in str(x).lower()]): return '-999' elif (str(x).strip()=='') | (str(x).strip()=='?') | (str(x).strip()=='-?-'): return '-999' elif x in ['0',0]: return '0' xx = str(x) if ('+1' in xx) | ('+2' in xx) | ('+3' in xx): xx = xx.split('+')[0].strip() outofbounds = False if ((year < 1678) | (year > 2262)) & (year is not None): outofbounds = True if ((len(xx)==8) | ((len(xx)==10))) & ('-' not in xx) & ('/' not in xx): #print xx, year if (xx[-2]=='.') | ((len(xx)==8) & (xx.isdigit())): xx = '{}-{}-{}'.format(xx[:4],xx[4:6],xx[6:8]) # year, month, day #print xx, year try: if (len(xx)==8 ) & ('-' in xx): xdt = pd.to_datetime(xx, format=dateformat) else: xdt = pd.to_datetime(xx) d, m, y = xdt.day, xdt.month, xdt.year except ValueError as e: if (len(xx)==8) & ('-' in xx): # mostly a problem if 00-02-28 (i.e., thinking 00 is a month) if (xx[2]=='-') & (xx[5]=='-'): xx = '19'+xx else: xx = xx+', {}'.format(year) elif (len(xx)==10)& ('-' in xx) & outofbounds: if len(xx.split('-')[0]) >2: y,m, d = (int(i) for i in xx.split('-')) else: d,m,y = (int(i) for i in xx.split('-')) # latest thaw in August; earliest freeze in August if ((m<=8) & (y== year+1)) | ((m>=8) & (y==year)): return '{:04d}-{:02d}-{:02d}'.format(y,m,d) else: print ('+++++PROBLEM+++++') print(xx) xx = xx+', {}'.format(year) else: xx = xx+', {}'.format(year) try: xdt =
pd.to_datetime(xx)
pandas.to_datetime
from datetime import datetime import numpy as np import pytest from pandas.core.dtypes.cast import find_common_type, is_dtype_equal import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas._testing as tm class TestDataFrameCombineFirst: def test_combine_first_mixed(self): a = Series(["a", "b"], index=range(2)) b = Series(range(2), index=range(2)) f = DataFrame({"A": a, "B": b}) a = Series(["a", "b"], index=range(5, 7)) b = Series(range(2), index=range(5, 7)) g = DataFrame({"A": a, "B": b}) exp = DataFrame({"A": list("abab"), "B": [0, 1, 0, 1]}, index=[0, 1, 5, 6]) combined = f.combine_first(g) tm.assert_frame_equal(combined, exp) def test_combine_first(self, float_frame): # disjoint head, tail = float_frame[:5], float_frame[5:] combined = head.combine_first(tail) reordered_frame = float_frame.reindex(combined.index) tm.assert_frame_equal(combined, reordered_frame) assert tm.equalContents(combined.columns, float_frame.columns) tm.assert_series_equal(combined["A"], reordered_frame["A"]) # same index fcopy = float_frame.copy() fcopy["A"] = 1 del fcopy["C"] fcopy2 = float_frame.copy() fcopy2["B"] = 0 del fcopy2["D"] combined = fcopy.combine_first(fcopy2) assert (combined["A"] == 1).all() tm.assert_series_equal(combined["B"], fcopy["B"]) tm.assert_series_equal(combined["C"], fcopy2["C"]) tm.assert_series_equal(combined["D"], fcopy["D"]) # overlap head, tail = reordered_frame[:10].copy(), reordered_frame head["A"] = 1 combined = head.combine_first(tail) assert (combined["A"][:10] == 1).all() # reverse overlap tail["A"][:10] = 0 combined = tail.combine_first(head) assert (combined["A"][:10] == 0).all() # no overlap f = float_frame[:10] g = float_frame[10:] combined = f.combine_first(g) tm.assert_series_equal(combined["A"].reindex(f.index), f["A"]) tm.assert_series_equal(combined["A"].reindex(g.index), g["A"]) # corner cases comb = float_frame.combine_first(DataFrame()) tm.assert_frame_equal(comb, float_frame) comb = DataFrame().combine_first(float_frame) tm.assert_frame_equal(comb, float_frame) comb = float_frame.combine_first(DataFrame(index=["faz", "boo"])) assert "faz" in comb.index # #2525 df = DataFrame({"a": [1]}, index=[datetime(2012, 1, 1)]) df2 = DataFrame(columns=["b"]) result = df.combine_first(df2) assert "b" in result def test_combine_first_mixed_bug(self): idx = Index(["a", "b", "c", "e"]) ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx) ser2 = Series(["a", "b", "c", "e"], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3}) idx = Index(["a", "b", "c", "f"]) ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx) ser2 = Series(["a", "b", "c", "f"], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3}) combined = frame1.combine_first(frame2) assert len(combined.columns) == 5 def test_combine_first_same_as_in_update(self): # gh 3016 (same as in update) df = DataFrame( [[1.0, 2.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) other = DataFrame([[45, 45]], index=[0], columns=["A", "B"]) result = df.combine_first(other) tm.assert_frame_equal(result, df) df.loc[0, "A"] = np.nan result = df.combine_first(other) df.loc[0, "A"] = 45 tm.assert_frame_equal(result, df) def test_combine_first_doc_example(self): # doc example df1 = DataFrame( {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]} ) df2 = DataFrame( { "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0], "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0], } ) result = df1.combine_first(df2) expected = DataFrame({"A": [1, 2, 3, 5, 3, 7.0], "B": [np.nan, 2, 3, 4, 6, 8]}) tm.assert_frame_equal(result, expected) def test_combine_first_return_obj_type_with_bools(self): # GH3552 df1 = DataFrame( [[np.nan, 3.0, True], [-4.6, np.nan, True], [np.nan, 7.0, False]] ) df2 = DataFrame([[-42.6, np.nan, True], [-5.0, 1.6, False]], index=[1, 2]) expected = Series([True, True, False], name=2, dtype=bool) result_12 = df1.combine_first(df2)[2] tm.assert_series_equal(result_12, expected) result_21 = df2.combine_first(df1)[2] tm.assert_series_equal(result_21, expected) @pytest.mark.parametrize( "data1, data2, data_expected", ( ( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [pd.NaT, pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [pd.NaT, pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [datetime(2000, 1, 2), pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 2), pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ), ) def test_combine_first_convert_datatime_correctly( self, data1, data2, data_expected ): # GH 3593 df1, df2 = DataFrame({"a": data1}), DataFrame({"a": data2}) result = df1.combine_first(df2) expected = DataFrame({"a": data_expected}) tm.assert_frame_equal(result, expected) def test_combine_first_align_nan(self): # GH 7509 (not fixed) dfa = DataFrame([[pd.Timestamp("2011-01-01"), 2]], columns=["a", "b"]) dfb = DataFrame([[4], [5]], columns=["b"]) assert dfa["a"].dtype == "datetime64[ns]" assert dfa["b"].dtype == "int64" res = dfa.combine_first(dfb) exp = DataFrame( {"a": [pd.Timestamp("2011-01-01"), pd.NaT], "b": [2, 5]}, columns=["a", "b"], ) tm.assert_frame_equal(res, exp) assert res["a"].dtype == "datetime64[ns]" # ToDo: this must be int64 assert res["b"].dtype == "int64" res = dfa.iloc[:0].combine_first(dfb) exp = DataFrame({"a": [np.nan, np.nan], "b": [4, 5]}, columns=["a", "b"]) tm.assert_frame_equal(res, exp) # ToDo: this must be datetime64 assert res["a"].dtype == "float64" # ToDo: this must be int64 assert res["b"].dtype == "int64" def test_combine_first_timezone(self): # see gh-7630 data1 = pd.to_datetime("20100101 01:01").tz_localize("UTC") df1 = DataFrame( columns=["UTCdatetime", "abc"], data=data1, index=pd.date_range("20140627", periods=1), ) data2 = pd.to_datetime("20121212 12:12").tz_localize("UTC") df2 = DataFrame( columns=["UTCdatetime", "xyz"], data=data2, index=pd.date_range("20140628", periods=1), ) res = df2[["UTCdatetime"]].combine_first(df1) exp = DataFrame( { "UTCdatetime": [ pd.Timestamp("2010-01-01 01:01", tz="UTC"), pd.Timestamp("2012-12-12 12:12", tz="UTC"), ], "abc": [pd.Timestamp("2010-01-01 01:01:00", tz="UTC"), pd.NaT], }, columns=["UTCdatetime", "abc"], index=pd.date_range("20140627", periods=2, freq="D"), ) assert res["UTCdatetime"].dtype == "datetime64[ns, UTC]" assert res["abc"].dtype == "datetime64[ns, UTC]" tm.assert_frame_equal(res, exp) # see gh-10567 dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="UTC") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-03", "2015-01-05", tz="UTC") df2 = DataFrame({"DATE": dts2}) res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res["DATE"].dtype == "datetime64[ns, UTC]" dts1 = pd.DatetimeIndex( ["2011-01-01", "NaT", "2011-01-03", "2011-01-04"], tz="US/Eastern" ) df1 = DataFrame({"DATE": dts1}, index=[1, 3, 5, 7]) dts2 = pd.DatetimeIndex( ["2012-01-01", "2012-01-02", "2012-01-03"], tz="US/Eastern" ) df2 = DataFrame({"DATE": dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.DatetimeIndex( [ "2011-01-01", "2012-01-01", "NaT", "2012-01-02", "2011-01-03", "2011-01-04", ], tz="US/Eastern", ) exp = DataFrame({"DATE": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) # different tz dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="US/Eastern") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-03", "2015-01-05") df2 = DataFrame({"DATE": dts2}) # if df1 doesn't have NaN, keep its dtype res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res["DATE"].dtype == "datetime64[ns, US/Eastern]" dts1 = pd.date_range("2015-01-01", "2015-01-02", tz="US/Eastern") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-01", "2015-01-03") df2 = DataFrame({"DATE": dts2}) res = df1.combine_first(df2) exp_dts = [ pd.Timestamp("2015-01-01", tz="US/Eastern"), pd.Timestamp("2015-01-02", tz="US/Eastern"), pd.Timestamp("2015-01-03"), ] exp = DataFrame({"DATE": exp_dts}) tm.assert_frame_equal(res, exp) assert res["DATE"].dtype == "object" def test_combine_first_timedelta(self): data1 = pd.TimedeltaIndex(["1 day", "NaT", "3 day", "4day"]) df1 = DataFrame({"TD": data1}, index=[1, 3, 5, 7]) data2 = pd.TimedeltaIndex(["10 day", "11 day", "12 day"]) df2 = DataFrame({"TD": data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.TimedeltaIndex( ["1 day", "10 day", "NaT", "11 day", "3 day", "4 day"] ) exp = DataFrame({"TD": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["TD"].dtype == "timedelta64[ns]" def test_combine_first_period(self): data1 = pd.PeriodIndex(["2011-01", "NaT", "2011-03", "2011-04"], freq="M") df1 = DataFrame({"P": data1}, index=[1, 3, 5, 7]) data2 = pd.PeriodIndex(["2012-01-01", "2012-02", "2012-03"], freq="M") df2 = DataFrame({"P": data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.PeriodIndex( ["2011-01", "2012-01", "NaT", "2012-02", "2011-03", "2011-04"], freq="M" ) exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["P"].dtype == data1.dtype # different freq dts2 = pd.PeriodIndex(["2012-01-01", "2012-01-02", "2012-01-03"], freq="D") df2 = DataFrame({"P": dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = [ pd.Period("2011-01", freq="M"), pd.Period("2012-01-01", freq="D"), pd.NaT, pd.Period("2012-01-02", freq="D"), pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M"), ] exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["P"].dtype == "object" def test_combine_first_int(self): # GH14687 - integer series that do no align exactly df1 = DataFrame({"a": [0, 1, 3, 5]}, dtype="int64") df2 = DataFrame({"a": [1, 4]}, dtype="int64") result_12 = df1.combine_first(df2) expected_12 = DataFrame({"a": [0, 1, 3, 5]}) tm.assert_frame_equal(result_12, expected_12) result_21 = df2.combine_first(df1) expected_21 = DataFrame({"a": [1, 4, 3, 5]}) tm.assert_frame_equal(result_21, expected_21) @pytest.mark.parametrize("val", [1, 1.0]) def test_combine_first_with_asymmetric_other(self, val): # see gh-20699 df1 = DataFrame({"isNum": [val]}) df2 = DataFrame({"isBool": [True]}) res = df1.combine_first(df2) exp = DataFrame({"isBool": [True], "isNum": [val]}) tm.assert_frame_equal(res, exp) def test_combine_first_string_dtype_only_na(self): # GH: 37519 df = DataFrame({"a": ["962", "85"], "b": [pd.NA] * 2}, dtype="string") df2 = DataFrame({"a": ["85"], "b": [pd.NA]}, dtype="string") df.set_index(["a", "b"], inplace=True) df2.set_index(["a", "b"], inplace=True) result = df.combine_first(df2) expected = DataFrame( {"a": ["962", "85"], "b": [pd.NA] * 2}, dtype="string" ).set_index(["a", "b"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "scalar1, scalar2", [ (datetime(2020, 1, 1), datetime(2020, 1, 2)), (pd.Period("2020-01-01", "D"), pd.Period("2020-01-02", "D")), (pd.Timedelta("89 days"), pd.Timedelta("60 min")), (pd.Interval(left=0, right=1), pd.Interval(left=2, right=3, closed="left")), ], ) def test_combine_first_timestamp_bug(scalar1, scalar2, nulls_fixture): # GH28481 na_value = nulls_fixture frame = DataFrame([[na_value, na_value]], columns=["a", "b"]) other = DataFrame([[scalar1, scalar2]], columns=["b", "c"]) common_dtype = find_common_type([frame.dtypes["b"], other.dtypes["b"]]) if is_dtype_equal(common_dtype, "object") or frame.dtypes["b"] == other.dtypes["b"]: val = scalar1 else: val = na_value result = frame.combine_first(other) expected = DataFrame([[na_value, val, scalar2]], columns=["a", "b", "c"]) expected["b"] = expected["b"].astype(common_dtype) tm.assert_frame_equal(result, expected) def test_combine_first_timestamp_bug_NaT(): # GH28481 frame = DataFrame([[pd.NaT, pd.NaT]], columns=["a", "b"]) other = DataFrame( [[datetime(2020, 1, 1), datetime(2020, 1, 2)]], columns=["b", "c"] ) result = frame.combine_first(other) expected = DataFrame( [[pd.NaT, datetime(2020, 1, 1), datetime(2020, 1, 2)]], columns=["a", "b", "c"] ) tm.assert_frame_equal(result, expected) def test_combine_first_with_nan_multiindex(): # gh-36562 mi1 = MultiIndex.from_arrays( [["b", "b", "c", "a", "b", np.nan], [1, 2, 3, 4, 5, 6]], names=["a", "b"] ) df = DataFrame({"c": [1, 1, 1, 1, 1, 1]}, index=mi1) mi2 = MultiIndex.from_arrays( [["a", "b", "c", "a", "b", "d"], [1, 1, 1, 1, 1, 1]], names=["a", "b"] ) s =
Series([1, 2, 3, 4, 5, 6], index=mi2)
pandas.Series
from datetime import datetime import json import pandas as pd import iso8601 as iso from dateutil import tz import platform def generate_excel(file_loc, export_loc): # file_loc = r"C:\Users\user\PycharmProjects\MVIPostToExcel\mission-victory-india.ghost.2020-12-19-15-33-27.json" ist = tz.gettz("Asia/Calcutta") curr_dt = datetime.now().astimezone(ist).replace(tzinfo=None) # export_loc = r"C:\Users\user\PycharmProjects\MVIPostToExcel" export_name = "MVIGhostExport_" + curr_dt.strftime("%d-%m-%Y_%H-%M-%S") + ".xlsx" print("Starting Excel Export") print("Time: " + str(curr_dt)) print("Loading Exported JSON Data File from " + file_loc) json_file = open(file_loc, "r", encoding="utf8") print("Loaded Exported JSON Data File Successfully") print("Creating JSON Object from File") json_object = json.load(json_file) print("Created JSON Object from File Successfully") print("Creating DataFrame with Columns: " + "SNo, " + "Title, " + "Slug, " + "Type, " + "Status, " + "Created At (IST), " + "Updated At (IST), " + "Published At (IST), " + "Author, " + "Ghost Editor Link") dataframe = pd.DataFrame(columns=["SNo", "Title", "Slug", "Type", "Status", "Created At (IST)", "Updated At (IST)", "Published At (IST)", "Author", "Ghost Editor Link"]) summary =
pd.DataFrame(columns=["Export Date (IST)", "Exported Records", "Input JSON Path", "Excel Export Path"])
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas.compat import range import pandas as pd import pandas.util.testing as tm # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons(object): def test_df_boolean_comparison_error(self): # GH#4576 # boolean comparisons with a tuple/list give unexpected results df = pd.DataFrame(np.arange(6).reshape((3, 2))) # not shape compatible with pytest.raises(ValueError): df == (2, 2) with pytest.raises(ValueError): df == [2, 2] def test_df_float_none_comparison(self): df = pd.DataFrame(np.random.randn(8, 3), index=range(8), columns=['A', 'B', 'C']) with pytest.raises(TypeError): df.__eq__(None) def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types(self, opname): # GH#15077, non-empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 result = getattr(df, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH#15077 empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('timestamps', [ [pd.Timestamp('2012-01-01 13:00:00+00:00')] * 2, [pd.Timestamp('2012-01-01 13:00:00')] * 2]) def test_tz_aware_scalar_comparison(self, timestamps): # Test for issue #15966 df = pd.DataFrame({'test': timestamps}) expected = pd.DataFrame({'test': [False, False]}) tm.assert_frame_equal(df == -1, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic(object): def test_df_add_flex_filled_mixed_dtypes(self): # GH#19611 dti = pd.date_range('2016-01-01', periods=3) ser = pd.Series(['1 Day', 'NaT', '2 Days'], dtype='timedelta64[ns]') df = pd.DataFrame({'A': dti, 'B': ser}) other = pd.DataFrame({'A': ser, 'B': ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( {'A': pd.Series(['2016-01-02', '2016-01-03', '2016-01-05'], dtype='datetime64[ns]'), 'B': ser * 2}) tm.assert_frame_equal(result, expected) class TestFrameMulDiv(object): """Tests for DataFrame multiplication and division""" # ------------------------------------------------------------------ # Mod By Zero def test_df_mod_zero_df(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) result = df % df tm.assert_frame_equal(result, expected) def test_df_mod_zero_array(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values % df.values result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype='float64') result2.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result2, expected) def test_df_mod_zero_int(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df % 0 expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') % 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_mod_zero_series_does_not_commute(self): # GH#3590, modulo as ints # not commutative with series df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser % df res2 = df % ser assert not res.fillna(0).equals(res2.fillna(0)) # ------------------------------------------------------------------ # Division By Zero def test_df_div_zero_df(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / df first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) tm.assert_frame_equal(result, expected) def test_df_div_zero_array(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) with np.errstate(all='ignore'): arr = df.values.astype('float') / df.values result = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_df_div_zero_int(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / 0 expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns) expected.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') / 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_div_zero_series_does_not_commute(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser / df res2 = df / ser assert not res.fillna(0).equals(res2.fillna(0)) class TestFrameArithmetic(object): @pytest.mark.xfail(reason='GH#7996 datetime64 units not converted to nano', strict=True) def test_df_sub_datetime64_not_ns(self): df = pd.DataFrame(pd.date_range('20130101', periods=3)) dt64 = np.datetime64('2013-01-01') assert dt64.dtype == 'datetime64[D]' res = df - dt64 expected = pd.DataFrame([pd.Timedelta(days=0), pd.Timedelta(days=1), pd.Timedelta(days=2)]) tm.assert_frame_equal(res, expected) @pytest.mark.parametrize('data', [ [1, 2, 3], [1.1, 2.2, 3.3], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.NaT], ['x', 'y', 1]]) @pytest.mark.parametrize('dtype', [None, object]) def test_df_radd_str_invalid(self, dtype, data): df =
pd.DataFrame(data, dtype=dtype)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 5 18:54:29 2019 @author: suvodeepmajumder """ import sys sys.path.append("..") from pygit2 import clone_repository from pygit2 import GIT_SORT_TOPOLOGICAL, GIT_SORT_REVERSE,GIT_MERGE_ANALYSIS_UP_TO_DATE,GIT_MERGE_ANALYSIS_FASTFORWARD,GIT_MERGE_ANALYSIS_NORMAL,GIT_RESET_HARD from pygit2 import Repository import shutil,os import pygit2 from git_log import git2repo import os import re import shlex import numpy as np import pandas as pd from glob2 import glob, iglob import subprocess as sp import understand as und from pathlib import Path from pdb import set_trace import sys from collections import defaultdict from utils.utils import utils import platform from os.path import dirname as up from multiprocessing import Pool, cpu_count import threading from multiprocessing import Queue from threading import Thread import random import string #from main.utils.utils.utils import printProgressBar class ThreadWithReturnValue(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None): Thread.__init__(self, group, target, name, args, kwargs) self._return = None def run(self): #print(type(self._target)) if self._target is not None: self._return = self._target(*self._args, **self._kwargs) def join(self, *args): Thread.join(self, *args) return self._return class MetricsGetter(object): """ Generate class, file, function, object oriented metrics for a project. Parameters ---------- sources_path: str or pathlib.PosixPath Notes ----- The class is designed to run in conjunction with a context manager. """ def __init__(self,repo_url,repo_name,repo_lang,code_path): self.repo_url = repo_url self.repo_name = repo_name self.repo_lang = repo_lang #self.repo_obj = git2repo.git2repo(self.repo_url,self.repo_name) self.root_dir = code_path print("root:",self.root_dir) if platform.system() == 'Darwin' or platform.system() == 'Linux': self.repo_path = self.root_dir+ '/commit_guru/ingester/CASRepos/git/' + self.repo_name self.file_path = up(self.root_dir) + '/data/commit_guru/' + self.repo_name + '.csv' #self.committed_file = up(os.getcwd()) + '/data/committed_files/' + self.repo_name + '_committed_file.pkl' self.und_file = up(self.root_dir) + '/data/understand_files/' + self.repo_name + '_understand.csv' else: self.repo_path = up(os.getcwd()) + '\\temp_repo\\' + self.repo_name self.file_path = up(os.getcwd()) + '\\data\\commit_guru\\' + self.repo_name + '.pkl' #self.committed_file = up(os.getcwd()) + '\\data\\committed_files\\' + self.repo_name + '_committed_file.pkl' self.buggy_clean_pairs = self.read_commits() #self.buggy_clean_pairs = self.buggy_clean_pairs[0:5] # Reference current directory, so we can go back after we are done. self.cwd = Path('/tmp/smajumd3/') #self.repo = self.clone_repo() # Generate path to store udb files #self.udb_path = self.cwd.joinpath(".temp", "udb") self.udb_path = self.cwd.joinpath("temp", "udb/"+self.repo_name) # Create a folder to hold the udb files if not self.udb_path.is_dir(): os.makedirs(self.udb_path) def read_commits(self): df = pd.read_csv(self.file_path) # print(df) df = df[df['contains_bug'] == True] df = df.reset_index('drop' == True) self.commits = [] commits = [] for i in range(df.shape[0]): try: committed_files = [] if df.loc[i,'parent_hashes'] == None: continue bug_fixing_commit = df.loc[i,'parent_hashes'] bug_existing_commit = df.loc[i,'commit_hash'] files_changed = df.loc[i,'fileschanged'] #print(files_changed) files_changed = files_changed.split(',') files_changed = list(filter(('CAS_DELIMITER').__ne__, files_changed)) self.commits.append(bug_existing_commit) #language = "Python" language = self.repo_lang if bug_fixing_commit == None: print(df.iloc[i,0]) continue for row in files_changed: if language == "Java" or language == "C++" or language == "C": if len(row.split('src/')) == 1: continue committed_files.append(row.split('src/')[1].replace('/','.').rsplit('.',1)[0]) elif language == "Python" : committed_files.append(row['file_path'].replace('/', '.').rsplit('.', 1)[0]) elif language == "Fortran" : committed_files.append(row['file_path'].replace('/', '.').rsplit('.', 1)[0]) else: print("Language under construction") commits.append([bug_existing_commit,bug_fixing_commit,committed_files]) except Exception as e: print(e) continue return commits def get_defective_pair_metrics(self): """ Use the understand tool's API to generate metrics Notes ----- + For every clean and buggy pairs of hashed, do the following: 1. Get the diff of the files changes 2. Checkout the snapshot at the buggy commit 3. Compute the metrics of the files in that commit. 4. Next, checkout the snapshot at the clean commit. 5. Compute the metrics of the files in that commit. """ metrics_dataframe = pd.DataFrame() print(len(self.buggy_clean_pairs)) for i in range(len(self.buggy_clean_pairs)): try: buggy_hash = self.buggy_clean_pairs[i][0] clean_hash = self.buggy_clean_pairs[i][1] files_changed = self.buggy_clean_pairs[i][2] # if len((files_changed)) == 0: # continue print(i,self.repo_name,(buggy_hash, clean_hash)) # Go the the cloned project path buggy_und_file = self.udb_path.joinpath("{}_{}.udb".format(self.repo_name+buggy_hash, "buggy")) #print(self.buggy_und_file) db_buggy = und.open(str(buggy_und_file)) #continue print((db_buggy.metrics())) metrics = db_buggy.metric(db_buggy.metrics()) print(metrics) break #print("Files",set(files_changed)) for file in db_buggy.ents("Class"): # print directory name # print(file,file.longname(), file.kind()) #language = "Python" language = self.repo_lang if language == "Java" or language == "C++" or language == "C": r = re.compile(str(file.longname())) newlist = list(filter(r.search, list(set(files_changed)))) elif language == "Python" : if file.library() == "Standard": continue temp_str = file.longname().split(".")[-2] r = re.compile(str(temp_str)) newlist = list(filter(r.search, list(set(files_changed)))) elif language == "Fortran" : if file.library() == "Standard": continue t3 = file.longname() t7 = file.refs() t8 = file.ref() comp = str(file).split(".")[0] # print("-------Here is the library : ",file.library()) # r = re.compile(str(file.longname())) # temp_str = file.longname().split(".")[-2] r = re.compile(comp) newlist = list(filter(r.search, list(set(files_changed)))) else: newlist = [] print("Language under construction") if len(newlist) > 0: metrics = file.metric(file.metrics()) print(len(file.metrics())) metrics["commit_hash"] = buggy_hash metrics["Name"] = file.longname() metrics["Bugs"] = 1 metrics_dataframe = metrics_dataframe.append( pd.Series(metrics), ignore_index=True) else: metrics = file.metric(file.metrics()) print(len(file.metrics())) metrics["commit_hash"] = buggy_hash metrics["Name"] = file.longname() metrics["Bugs"] = 0 metrics_dataframe = metrics_dataframe.append( pd.Series(metrics), ignore_index=True) # Purge und file db_buggy.close() clean_und_file = self.udb_path.joinpath("{}_{}.udb".format(self.repo_name+buggy_hash, "buggy")) db_clean = und.open(str(clean_und_file)) for file in db_clean.ents("class"): # print directory name #language = "Python" language = self.repo_lang if language == "Java" or language == "C++" or language == "C": r = re.compile(str(file.longname())) newlist = list(filter(r.search, list(set(files_changed)))) elif language == "Python" : if file.library() == "Standard": continue temp_str = file.longname().split(".")[-2] r = re.compile(str(temp_str)) newlist = list(filter(r.search, list(set(files_changed)))) elif language == "Fortran" : if file.library() == "Standard": continue t3 = file.longname() t7 = file.refs() t8 = file.ref() comp = str(file).split(".")[0] # print("-------Here is the library : ",file.library()) # r = re.compile(str(file.longname())) # temp_str = file.longname().split(".")[-2] r = re.compile(comp) newlist = list(filter(r.search, list(set(files_changed)))) else: newlist = [] print("Language under construction") if len(newlist) > 0: metrics = file.metric(file.metrics()) #print(metrics) metrics["commit_hash"] = clean_hash metrics["Name"] = file.name() metrics["Bugs"] = 0 metrics_dataframe = metrics_dataframe.append( pd.Series(metrics), ignore_index=True) else: metrics = file.metric(file.metrics()) #print(metrics) metrics["commit_hash"] = clean_hash metrics["Name"] = file.name() metrics["Bugs"] = 0 metrics_dataframe = metrics_dataframe.append(
pd.Series(metrics)
pandas.Series
import os from flask import jsonify, request from server import app import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from aif360.sklearn.metrics import disparate_impact_ratio, base_rate, consistency_score def bias_table(Y, prot_attr=None, instance_type=None): groups = Y.index.unique(prot_attr) with np.errstate(divide='ignore', invalid='ignore'): pct = [Y.xs(g, level=prot_attr).shape[0]/Y.shape[0] for g in groups] data = [[np.divide(1, disparate_impact_ratio(Y[stage].dropna() == outcome, prot_attr=prot_attr, priv_group=g)) for stage in Y.columns for outcome in Y[stage].unique() if not pd.isna(outcome)] for g in groups] pct_name = 'proportion at first stage' if instance_type is None else f'proportion of {instance_type}' num_stages = len(data[0]) col = pd.MultiIndex.from_tuples([(pct_name, '')] + list(zip(['disparate impact']*num_stages, [f'{stage} -> {outcome}' for stage in Y.columns for outcome in Y[stage].unique() if not pd.isna(outcome)]))) table =
pd.DataFrame(np.c_[pct, data], columns=col, index=groups)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Nov 25 10:45:35 2020 @author: yashr """ import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Layer,Lambda forestfires = pd.read_csv("fireforests.csv") #As dummy variables are already created, we will remove the month and alsoday columns forestfires.drop(["month","day"],axis=1,inplace = True) forestfires["temp"].value_counts() print(forestfires["temp"].value_counts()) forestfires.isnull().sum() print(forestfires.isnull().sum()) forestfires.describe() print(forestfires.describe()) ##I am taking small as 0 and large as 1 forestfires.loc[forestfires["temp"]=='small','temp']=0 forestfires.loc[forestfires["temp"]=='large','temp']=1 forestfires["temp"].value_counts() #Normalization being done. def norm_func(i): x = (i-i.min()) / (i.max() - i.min()) return (x) predictors = forestfires.iloc[:,0:28] target = forestfires.iloc[:,28] predictors1 = norm_func(predictors) #data = pd.concat([predictors1,target],axis=1) from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test= train_test_split(predictors1,target, test_size=0.3,stratify = target) def prep_model(hidden_dim): model = Sequential() for i in range(1,len(hidden_dim)-1): if (i==1): model.add(Dense(hidden_dim[i],input_dim=hidden_dim[0],activation="relu")) else: model.add(Dense(hidden_dim[i],activation="relu")) model.add(Dense(hidden_dim[-1],kernel_initializer="normal",activation="sigmoid")) model.compile(loss="binary_crossentropy",optimizer = "rmsprop",metrics = ["accuracy"]) return model predictors1 = norm_func(predictors) #data = pd.concat([predictors1,target],axis=1) from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test= train_test_split(predictors1,target, test_size=0.3,stratify = target) def prep_model(hidden_dim): model = Sequential() for i in range(1,len(hidden_dim)-1): if (i==1): model.add(Dense(hidden_dim[i],input_dim=hidden_dim[0],activation="relu")) else: model.add(Dense(hidden_dim[i],activation="relu")) model.add(Dense(hidden_dim[-1],kernel_initializer="normal",activation="sigmoid")) model.compile(loss="binary_crossentropy",optimizer = "rmsprop",metrics = ["accuracy"]) return model #y_train = pd.DataFrame(y_train) first_model = prep_model([28,50,40,20,1]) first_model.fit(np.array(x_train),np.array(y_train),epochs=500) pred_train = first_model.predict(np.array(x_train)) #Converting the predicted values to series pred_train = pd.Series([i[0] for i in pred_train]) size = ["small","large"] pred_train_class = pd.Series(["small"]*361) pred_train_class[[i>0.5 for i in pred_train]]= "large" train = pd.concat([x_train,y_train],axis=1) train["size_category"].value_counts() #For training data from sklearn.metrics import confusion_matrix train["original_class"] = "small" train.loc[train["size_category"]==1,"original_class"] = "large" train.original_class.value_counts() confusion_matrix(pred_train_class,train["original_class"]) np.mean(pred_train_class==pd.Series(train["original_class"]).reset_index(drop=True)) #100% pd.crosstab(pred_train_class,pd.Series(train["original_class"]).reset_index(drop=True)) #For test data pred_test = first_model.predict(np.array(x_test)) pred_test = pd.Series([i[0] for i in pred_test]) pred_test_class = pd.Series(["small"]*156) pred_test_class[[i>0.5 for i in pred_test]] = "large" test =pd.concat([x_test,y_test],axis=1) test["original_class"]="small" test.loc[test["size_category"]==1,"original_class"] = "large" test["original_class"].value_counts() np.mean(pred_test_class==pd.Series(test["original_class"]).reset_index(drop=True)) # 85% confusion_matrix(pred_test_class,test["original_class"]) pd.crosstab(pred_test_class,
pd.Series(test["original_class"])
pandas.Series
import pandas as pd from intake_dal.dal_catalog import DalCatalog """ Test setup: - batch storage mode driver is parquet and '{{ CATALOG_DIR }}/data/user_events.parquet' has ONLY 1 row - local storage mode driver is csv and '{{ CATALOG_DIR }}/data/user_events.csv' has TWO rows """ def test_dal_catalog_default_storage_parameter(cat): # cat default is local -> csv plugin assert cat.entity.user.user_events().read().head().shape[0] == 2 assert cat.entity.user.user_events(storage_mode="local").read().head().shape[0] == 2 assert cat.entity.user.user_events(storage_mode="batch").read().head().shape[0] == 1 assert cat.entity.user.user_events(storage_mode="in_mem").read().head().shape[0] == 4 assert ( cat.entity.user.user_events(storage_mode="local_test", data_path="data").read().head().shape[0] == 2 ) df =
pd.DataFrame({"key": ["a", "first"], "value": [3, 42]})
pandas.DataFrame
#!/usr/bin/env python import matplotlib as mpl mpl.rcParams['figure.dpi'] = 300 import matplotlib.pyplot as plt import seaborn as sns import pysam from pysamiterators import CachedFasta, MatePairIterator # Molecule modules: from singlecellmultiomics.molecule import TranscriptMolecule, MoleculeIterator from singlecellmultiomics.fragment import SingleEndTranscriptFragment from singlecellmultiomics.features import FeatureContainer # Conversion modules: from singlecellmultiomics.variants.substitutions import conversion_dict_stranded from singlecellmultiomics.variants import substitution_plot, vcf_to_position_set from singlecellmultiomics.utils import reverse_complement, complement from collections import defaultdict, Counter from singlecellmultiomics.utils import is_main_chromosome from singlecellmultiomics.bamProcessing import sorted_bam_file, merge_bams from scipy import stats from multiprocessing import Pool import os import argparse import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import pickle import gzip from uuid import uuid4 def substitution_plot_stranded(pattern_counts: dict, figsize: tuple = (12, 4), conversion_colors: tuple = ('b', 'k', 'r', 'grey', 'g', 'pink','b','k','r','k','w','g'), ylabel: str = '# conversions per molecule', add_main_group_labels: bool = True, ax=None,fig=None, **plot_args ): """ Create 3bp substitution plot Args: pattern_counts(OrderedDict) : Dictionary containing the substitutions to plot. Use variants.vcf_to_variant_contexts to create it. Format: ```OrderedDict([(('ACA', 'A'), 0), (('ACC', 'A'), 1), (('ACG', 'A'), 0), ... (('TTG', 'G'), 0), (('TTT', 'G'), 0)])``` figsize(tuple) : size of the figure to create conversion_colors(tuple) : colors to use for the conversion groups ylabel(str) : y axis label add_main_group_labels(bool) : Add conversion group labels to top of plot **plot_args : Additional argument to pass to .plot() Returns fig : handle to the figure ax : handle to the axis Example: >>> from singlecellmultiomics.variants import vcf_to_variant_contexts, substitution_plot >>> import matplotlib.pyplot as plt >>> pobs = vcf_to_variant_contexts('variants.vcf.gz', 'reference.fasta') >>> for sample, conversions in pobs.items(): >>> fig, ax = substitution_plot(conversions) >>> ax.set_title(sample) >>> plt.show() """ conversions_single_nuc = ('AC', 'AG', 'AT', 'CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG') # Colors for the conversion groups: color_d = dict(zip(conversions_single_nuc, conversion_colors)) colors = [color_d.get(f'{context[1]}{to}') for context, to in pattern_counts.keys()] if ax is None: fig, ax = plt.subplots(figsize=figsize) substitution_dataframe = pd.DataFrame(pattern_counts.values(), index=list(pattern_counts.keys())).T substitution_dataframe.plot(kind='bar', color=colors, legend=False, width=1.0, ax=ax, edgecolor='k', **plot_args) offset = (1 / len(pattern_counts)) * 0.5 # Amount of distance for a half bar # Add 3bp context ticks: ax.set_xticks(np.linspace(-0.5 + offset, 0.5 - offset, len(pattern_counts))) ax.set_xticklabels( [context for context, to in pattern_counts.keys()], rotation=90, size=5) ax.set_ylabel(ylabel) ax.set_xlim((-0.5, 0.5)) sns.despine() if add_main_group_labels: for i, (u, v) in enumerate(conversions_single_nuc): ax.text( # position text relative to Axes (i + 0.5) / len(conversions_single_nuc), 1.0, f'{u}>{v}', fontsize=8, ha='center', va='top', transform=ax.transAxes,bbox=dict(facecolor='white', alpha=1,lw=0) ) return fig, ax if __name__=='__main__': argparser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Assign molecules') argparser.add_argument('bamin', type=str, help='Input BAM file') argparser.add_argument('-o', type=str, help="output bam file (.bam)", required=True) argparser.add_argument('-reference', type=str, help="Reference_path (.fasta)", required=True) argparser.add_argument('-known', type=str, help="Known variants (vcf)", required=True) argparser.add_argument('-exons', type=str, help="exons (gtf.gz)", required=True) argparser.add_argument('-introns', type=str, help="introns (gtf.gz)", required=True) argparser.add_argument('--R2_based', help="The input is only R2 sequences, the molcule mapping direction will be inverted", action='store_true') argparser.add_argument('-temp_dir', type=str, help="scmo_temp", default=str(uuid4())) argparser.add_argument('-tagthreads', type=int, help="Amount of threads used (int)", required=True) args = argparser.parse_args() single_cell_bam_path = args.bamin reference_path = args.reference # Load known variation, to ignore for mut-spectrum known_vcf_path = args.known # Paths to gene models exons_gtf_path = args.exons introns_gtf_path = args.introns # Write a tagged bam file to this path: tagged_output_path = args.o ##### def obtain_conversions(contig : str): """ Create conversion dictionary for the suppled contig Args: contig (str) Returns: conversions_per_library (defaultdict( conversion_dict_stranded ) ) : Per library conversion dictionary n_molecules_per_library (Counter) : observed molecules per library contig(str) : the contig passed to the method temp_bam_path(str) : path to tagged bam file, tagged with gene annotations and 4su mutation count """ conversions_per_library = defaultdict( conversion_dict_stranded ) n_molecules_per_library = Counter() from singlecellmultiomics.molecule import might_be_variant # Create temp directory to write tagged bam file to: temp_dir = args.temp_dir temp_bam_path = f'{temp_dir}/{contig}.bam' if not os.path.exists(temp_dir): try: os.makedirs(temp_dir) except Exception as e: pass # Load gene annotations for the selected contig: transcriptome_features = FeatureContainer() transcriptome_features.loadGTF( path=exons_gtf_path, select_feature_type=['exon'], identifierFields=( 'exon_id', 'gene_id'), store_all=True, contig=contig, head=None) transcriptome_features.loadGTF( path=introns_gtf_path, select_feature_type=['intron'], identifierFields=['transcript_id'], store_all=True, contig=contig, head=None) colormap = plt.get_cmap('RdYlBu_r') colormap.set_bad((0,0,0)) read_groups = {} try: with pysam.AlignmentFile(single_cell_bam_path, threads=4) as alignments, \ pysam.VariantFile(known_vcf_path) as known, \ sorted_bam_file(temp_bam_path, origin_bam=single_cell_bam_path, read_groups=read_groups, fast_compression=True) as out, \ pysam.FastaFile(reference_path) as reference_handle: # Cache the sequence of the contig: (faster) reference = CachedFasta(reference_handle) for n_molecules, molecule in enumerate(MoleculeIterator(alignments, TranscriptMolecule, SingleEndTranscriptFragment, fragment_class_args = { 'stranded':True, 'features':transcriptome_features }, molecule_class_args={ 'reference':reference, 'features':transcriptome_features, 'auto_set_intron_exon_features': True }, contig=contig )): # Read out mut spectrum consensus = molecule.get_consensus() if args.R2_based: molecule.strand = not molecule.strand # Invert becayse its R2 based. n_molecules_per_library[molecule.library] += 1 n_4su_mutations = 0 n_4su_contexts = 0 for (chrom,pos), base in consensus.items(): context = reference.fetch(chrom, pos-1, pos+2).upper() if len(context)!=3: continue if ( (context[1]=='A' and not molecule.strand) or (context[1]=='T' and molecule.strand) ) : n_4su_contexts+=1 # Check if the base matches or the refence contains N's if context[1]==base or 'N' in context or len(context)!=3: continue # Ignore germline variants: if might_be_variant(chrom, pos, known): continue if not molecule.strand: # reverse template context = reverse_complement(context) base = complement(base) # Count 4SU specific mutations, and write to molecule later if context[1]=='T' and base=='C': n_4su_mutations+=1 conversions_per_library[molecule.library][(context, base)] += 1 # Write 4su modification to molecule molecule.set_meta('4S',n_4su_mutations) molecule.set_meta('4c',n_4su_contexts) # Set read color based on conversion rate: try: # The max color value will be 10% modification rate cfloat = colormap( np.clip( 10*(n_4su_mutations/n_4su_contexts),0,1) )[:3] except Exception as e: cfloat = colormap._rgba_bad[:3] molecule.set_meta('YC', '%s,%s,%s' % tuple((int(x * 255) for x in cfloat))) molecule.set_meta('4c',n_4su_contexts) molecule.write_tags() for fragment in molecule: rgid = fragment.get_read_group() if not rgid in read_groups: read_groups[rgid] = fragment.get_read_group(True)[1] # Write tagged molecule to output file molecule.write_pysam(out) except KeyboardInterrupt: # This allows you to cancel the analysis (CTRL+C) and get the current result pass return conversions_per_library, n_molecules_per_library, contig, temp_bam_path n_molecules_per_library = Counter() with Pool(args.tagthreads) as workers: conversions_per_library = defaultdict( conversion_dict_stranded ) # library : (context, query) : obs (int) # Obtain all contigs from the input bam file, exclude scaffolds: with pysam.AlignmentFile(single_cell_bam_path) as alignments: contigs = [contig for contig in alignments.references if is_main_chromosome(contig) and contig not in ['MT','Y'] ] # Run conversion detection on all contigs in parallel: tagged_bams = [] for conversions_for_contig, \ n_molecules_for_contig_per_lib, \ contig, \ temp_tagged_bam in workers.imap_unordered(obtain_conversions, contigs): # Merge conversion dictionary: for library, library_convs in conversions_for_contig.items(): for context, observations in library_convs.items(): conversions_per_library[library][context] += observations n_molecules_per_library+=n_molecules_for_contig_per_lib print(f'finished {contig} ', end='\r') tagged_bams.append(temp_tagged_bam) # Merge: print(f'Merging ', end='\r') merge_bams(tagged_bams, tagged_output_path) # Normalize observed counts to the amount of molecules we saw: for library, library_convs in conversions_per_library.items(): for context, observations in library_convs.items(): library_convs[context] = observations / n_molecules_per_library[library] try: fig, axes = plt.subplots(len(conversions_per_library),1, figsize=(16,4*(len(conversions_per_library))), sharey=True ) if len(conversions_per_library)==1: axes = [axes] for ax, (library, conversions) in zip(axes,conversions_per_library.items()): substitution_plot_stranded(conversions,fig=fig, ax=ax,ylabel='conversions seen per molecule') ax.set_axisbelow(True) ax.grid(axis='y') ax.set_title(f'{library}, {n_molecules_per_library[library]} molecules') fig.tight_layout(pad=3.0) plt.savefig(tagged_output_path.replace('.bam','conversions.png')) except Exception as e: print(e) # Count amount of 4sU conversions per cell, per gene def listionary(): return defaultdict(list) expression_per_cell_per_gene = defaultdict(Counter) # gene -> cell -> obs four_su_per_cell_per_gene = defaultdict(listionary ) # cell -> gene -> [] 4_su observation counts per molecule four_su_per_gene_per_cell = defaultdict(listionary ) # gene -> cell -> [] 4_su observation counts per molecule with pysam.AlignmentFile(tagged_output_path) as reads: for R1,R2 in MatePairIterator(reads): for read in (R1,R2): # Count every fragment only once by selecting one of the two reads. if read is not None: break if read.has_tag('gn'): gene = read.get_tag('gn') elif read.has_tag('GN'): gene = read.get_tag('GN') else: continue if read.is_duplicate: continue cell = read.get_tag('SM') foursu = read.get_tag('4S') foursu_contexts = read.get_tag('4c') library = read.get_tag('LY') cell = cell.split('_')[1] # Remove library part expression_per_cell_per_gene[gene][(library,cell)] += 1 if foursu_contexts>0: four_su_per_gene_per_cell[gene][(library,cell)].append(foursu/foursu_contexts) four_su_per_cell_per_gene[(library,cell)][gene].append(foursu/foursu_contexts) assert not (foursu>0 and foursu_contexts==0) # Store these dictionaries to disk with gzip.open( tagged_output_path.replace('.bam','4sU_per_gene_per_cell.dict.pickle.gz'),'wb' ) as o: pickle.dump(four_su_per_gene_per_cell, o) with gzip.open( tagged_output_path.replace('.bam','4sU_per_cell_per_gene.dict.pickle.gz'),'wb' ) as o: pickle.dump(four_su_per_cell_per_gene, o) with gzip.open( tagged_output_path.replace('.bam','expression_per_cell_per_gene.pickle.gz'),'wb' ) as o: pickle.dump(expression_per_cell_per_gene, o) four_su_per_gene_per_cell_mean = defaultdict(dict) four_su_per_gene_per_cell_total= defaultdict(dict) for gene in four_su_per_gene_per_cell: for cell, fsu_obs in four_su_per_gene_per_cell[gene].items(): four_su_per_gene_per_cell_mean[gene][cell] = np.mean(fsu_obs) four_su_per_gene_per_cell_total[gene][cell] = np.sum( np.array(fsu_obs)>0 ) four_su_per_gene_per_cell_mean = pd.DataFrame(four_su_per_gene_per_cell_mean).T four_su_per_gene_per_cell_total = pd.DataFrame(four_su_per_gene_per_cell_total).T four_su_per_gene_per_cell_mean.to_csv(tagged_output_path.replace('.bam','4sU_labeled_ratio.csv.gz')) expression_matrix =
pd.DataFrame(four_su_per_gene_per_cell)
pandas.DataFrame
import datetime from unittest import TestCase import numpy as np import pandas as pd from mlnext import pipeline class TestColumnSelector(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_select_columns(self): t = pipeline.ColumnSelector(keys=['a']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestColumnDropper(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_drop_columns(self): t = pipeline.ColumnDropper(columns=['b']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop_columns_verbose(self): t = pipeline.ColumnDropper(columns=['b'], verbose=True) expected = self.df.loc[:, ['a']] result = t.transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop__missing_columns(self): t = pipeline.ColumnDropper(columns=['c']) with self.assertWarns(Warning): t.transform(self.df) class TestColumnRename(TestCase): def test_rename_columns(self): t = pipeline.ColumnRename(lambda x: x.split('.')[-1]) df = pd.DataFrame(columns=['a.b.c', 'd.e.f']) expected = pd.DataFrame(columns=['c', 'f']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestNaDropper(TestCase): def test_drop_na(self): t = pipeline.NaDropper() df = pd.DataFrame([1, 0, pd.NA]) expected = pd.DataFrame([1, 0], dtype=object) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestClip(TestCase): def test_clip(self): t = pipeline.Clip(lower=0.5, upper=1.5) df = pd.DataFrame([[0.1, 0.4, 0.6, 0.8, 1.2, 1.5]]) expected = pd.DataFrame([[0.5, 0.5, 0.6, 0.8, 1.2, 1.5]]) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestDatetimeTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_datetime(self): t = pipeline.DatetimeTransformer(columns=['time']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) expected = pd.DataFrame([[datetime.datetime(2021, 1, 4, 14, 12, 31)]], columns=['time']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_datetime_missing_cols(self): t = pipeline.DatetimeTransformer(columns=['t']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) with self.assertRaises(ValueError): t.fit_transform(df) class TestNumericTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_numeric(self): t = pipeline.NumericTransformer(columns=['1']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) expected = pd.DataFrame([0, 1], columns=['1'], dtype=np.int64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_missing_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) with self.assertRaises(ValueError): t.fit_transform(df) def test_numeric_additional_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected['2'] = expected['2'].apply(pd.to_numeric) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_multiple_column(self): t = pipeline.NumericTransformer(columns=['1', '2']) df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_all_column(self): t = pipeline.NumericTransformer() df = pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object) expected = pd.DataFrame([[0, 1]], columns=['1', '2']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestTimeframeExtractor(TestCase): def setUp(self): self.dates = [datetime.datetime(2021, 10, 1, 9, 50, 0), datetime.datetime(2021, 10, 1, 10, 0, 0), datetime.datetime(2021, 10, 1, 11, 0, 0), datetime.datetime(2021, 10, 1, 12, 0, 0), datetime.datetime(2021, 10, 1, 12, 10, 0)] self.values = np.arange(len(self.dates)) self.df = pd.DataFrame(zip(self.dates, self.values), columns=['time', 'value']) def test_timeframe_extractor(self): t = pipeline.TimeframeExtractor( time_column='time', start_time=datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0), verbose=True) expected = pd.DataFrame(zip(self.dates[1:-1], np.arange(1, 4)), columns=['time', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_timeframe_extractor_invert(self): t = pipeline.TimeframeExtractor( time_column='time', start_time=datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0), invert=True) expected = pd.DataFrame(zip([self.dates[0], self.dates[-1]], np.array([0, 4])), columns=['time', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestDateExtractor(TestCase): def setUp(self): self.dates = [datetime.datetime(2021, 10, 1, 9, 50, 0), datetime.datetime(2021, 10, 2, 10, 0, 0), datetime.datetime(2021, 10, 3, 11, 0, 0), datetime.datetime(2021, 10, 4, 12, 0, 0), datetime.datetime(2021, 10, 5, 12, 10, 0)] self.values = np.arange(len(self.dates)) self.df = pd.DataFrame(zip(self.dates, self.values), columns=['date', 'value']) def test_date_extractor(self): t = pipeline.DateExtractor( date_column='date', start_date=datetime.date(2021, 10, 2), end_date=datetime.date(2021, 10, 4), verbose=True) expected = pd.DataFrame(zip(self.dates[1:-1], np.arange(1, 4)), columns=['date', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_date_extractor_invert(self): t = pipeline.DateExtractor( date_column='date', start_date=datetime.date(2021, 10, 2), end_date=datetime.date(2021, 10, 4), invert=True) expected = pd.DataFrame(zip([self.dates[0], self.dates[-1]], np.array([0, 4])), columns=['date', 'value']) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestValueMapper(TestCase): def test_value_mapper_one_column(self): t = pipeline.ValueMapper(columns=['b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)) * 2, columns=['a', 'b']) expected = pd.DataFrame(zip(np.ones((3, 1)) * 2, np.ones((3, 1))), columns=['a', 'b'], dtype=np.float64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_value_mapper_all_columns(self): t = pipeline.ValueMapper(columns=['a', 'b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)) * 2, columns=['a', 'b']) expected = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b'], dtype=np.float64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_value_mapper_missing_value(self): t = pipeline.ValueMapper(columns=['a', 'b'], classes={2.0: 1.0}) df = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b']) expected = pd.DataFrame(np.ones((3, 2)), columns=['a', 'b'], dtype=np.float64) with self.assertWarns(Warning): result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestSorter(TestCase): def setUp(self): self.df = pd.DataFrame({ 'a': [2, 3, 1, 4], 'b': ['A', 'D', 'C', 'B'] }) def test_sorter(self): t = pipeline.Sorter(columns=['a']) result = t.fit_transform(self.df) expected = self.df.copy().sort_values(by=['a']) pd.testing.assert_frame_equal(result, expected) def test_sorter_multi_col(self): t = pipeline.Sorter(columns=['a', 'b']) result = t.fit_transform(self.df) expected = self.df.copy().sort_values(by=['a', 'b']) pd.testing.assert_frame_equal(result, expected) class TestFill(TestCase): def setUp(self): self.df = pd.DataFrame([[0.0, 1.0, 0.2, pd.NA, 0.5]]) def test_fill(self): t = pipeline.Fill(value=1.0) expected = pd.DataFrame([[0.0, 1.0, 0.2, 1.0, 0.5]]) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestTimeOffsetTransformer(TestCase): def test_timeoffset(self): t = pipeline.TimeOffsetTransformer( time_columns=['t'], timedelta=pd.Timedelta(1, 'h')) df = pd.DataFrame({'t': [datetime.datetime(2020, 10, 1, 12, 3, 10)]}) expected = pd.DataFrame( {'t': [datetime.datetime(2020, 10, 1, 13, 3, 10)]}) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_timeoffset_multi_col(self): t = pipeline.TimeOffsetTransformer( time_columns=['t'], timedelta=pd.Timedelta(1, 'h')) df = pd.DataFrame({'t': [datetime.datetime(2020, 10, 1, 12, 3, 10)], 'tt': [datetime.datetime(2020, 10, 1, 13, 3, 10)]}) expected = pd.DataFrame( {'t': [datetime.datetime(2020, 10, 1, 13, 3, 10)], 'tt': [datetime.datetime(2020, 10, 1, 13, 3, 10)]}) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestConditionedDropper(TestCase): def setUp(self): self.data = [0.0, 0.5, 1.0, 1.2] self.df = pd.DataFrame({'a': self.data}) def test_dropper(self): t = pipeline.ConditionedDropper(column='a', threshold=1.0) expected = pd.DataFrame({'a': self.data[:-1]}) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_dropper_invert(self): t = pipeline.ConditionedDropper(column='a', threshold=1.0, invert=True) expected = pd.DataFrame({'a': self.data[-2:]}) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestZeroVarianceDropper(TestCase): def setUp(self): self.df = pd.DataFrame({'one': np.ones((4,)), 'zeros': np.zeros((4,)), 'mixed': np.arange(4)}) def test_dropper(self): t = pipeline.ZeroVarianceDropper(verbose=True) expected = pd.DataFrame({ 'mixed': np.arange(4) }) result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_dropper_fit_higher_variance(self): t = pipeline.ZeroVarianceDropper() expected = pd.DataFrame({ 'mixed': np.arange(4) }) t.fit(self.df) df = self.df.copy() df.iloc[0, 0] = 0 with self.assertWarns(Warning): result = t.transform(df) pd.testing.assert_frame_equal(result, expected) class TestSignalSorter(TestCase): def setUp(self): self.df = pd.DataFrame({'one': np.ones((4,)), 'zeros': np.zeros((4,)), 'mixed': np.arange(4), 'binary': [0, 1, 0, 1], 'cont': [10, 11, 10, 11]}) def test_sorter(self): t = pipeline.SignalSorter(verbose=True) expected = self.df.loc[:, ['mixed', 'cont', 'one', 'zeros', 'binary']] result = t.fit_transform(self.df)
pd.testing.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate from django_plotly_dash import DjangoDash import dash_bootstrap_components as dbc import plotly.graph_objs as go import plotly.express as px import dash_table import dash_daq as daq import pandas as pd import numpy as np import random import json import datetime from collections import Counter from fall.models import AutumnChanllengeData from eb_passwords import map_box_api_key ''' Query outside django... The time zone is just wrong!! ''' ''' initial these global variables on page loads ''' peoples = [] towns = [] upload_time = [] thumbnail = [] random_delay = [] CARD_POSITION = 0 # prevent setup complex map twice def empty_map(): fig = go.Figure(go.Scattermapbox(lat=['38.91427',],lon=['-77.02827',])) fig.update_layout( mapbox=dict( center=dict(lat=23.973793,lon=120.979703), zoom=8, style='white-bg') ) return fig def create_score_df(): df = pd.DataFrame.from_records( AutumnChanllengeData.objects.filter(is_valid=True, survey_datetime__date__gte=datetime.date(2020,10,1)).values( 'creator','survey_datetime','latitude','longitude','county',)) if len(df) == 0: return pd.DataFrame(dict(挑戰者=[],總清單數=[],佔領鄉鎮數=[],首次佔領鄉鎮=[],特殊得分=[],總得分=[])) creator_count = df.creator.value_counts() number_of_checklist = creator_count.tolist() unique_creator = creator_count.index.tolist() unique_county =
pd.unique(df.county)
pandas.unique
#! /usr/bin/env python3 import argparse import re,sys,os,math,gc import numpy as np import pandas as pd import matplotlib as mpl import copy import math from math import pi mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches from mpl_toolkits.axes_grid1.inset_locator import inset_axes from scipy import sparse from mpl_toolkits.axes_grid1.inset_locator import inset_axes import copy import math import seaborn as sns #from scipy.interpolate import BSpline, make_interp_spline plt.rcParams.update({'figure.max_open_warning': 100000}) plt.style.use('seaborn-colorblind') mpl.rcParams['ytick.direction'] = 'out' mpl.rcParams['savefig.dpi'] = 300 #图片像素 mpl.rcParams['figure.dpi'] = 300 mpl.rcParams['pdf.fonttype']=42 mpl.rcParams['ps.fonttype']=42 __author__ ='赵玥' __mail__ ='<EMAIL>' _data__ ='20191101' def draw_boundaries(ax,Boundary_dict,start,end,samplelist,str_x,sam_x): ax.tick_params(top='off',bottom='off',left='on',right='off') for loc in ['top','left','right','bottom']: ax.spines[loc].set_visible(False) #ax.spines['left'].set_color('k') #ax.spines['left'].set_linewidth(2) #ax.spines['left'].set_smart_bounds(True) #ax.spines['left'].set_linewidth(1) #ax.spines['right'].set_visible(False) #ax.spines['bottom'].set_visible(False) ax.set_axis_bgcolor('w') ax.set(xticks=[]) ax.set(yticks=[]) sample1 = samplelist[0] sample2 = samplelist[1] boundary_mid1 = Boundary_dict[sample1]['mid'].tolist() boundary_mid2 = Boundary_dict[sample2]['mid'].tolist() bound_y1min = [1.25 for i in boundary_mid1] bound_y1max = [1.75 for i in boundary_mid1] bound_y2min = [0.25 for i in boundary_mid2] bound_y2max = [0.75 for i in boundary_mid2] ax.set_ylim(0,2) ax.vlines(boundary_mid1,bound_y1min,bound_y1max,lw=2,color='red') ax.vlines(boundary_mid2,bound_y2min,bound_y2max,lw=2,color='green') ax.set_xlim(start,end) ax.text(str_x,0.5,'bound',horizontalalignment='right',verticalalignment='center',rotation='vertical',transform=ax.transAxes,fontsize=8) ax.text(sam_x,0.75,sample1,horizontalalignment='right',verticalalignment='center',rotation='horizontal',transform=ax.transAxes,color="red",fontsize=8) ax.text(sam_x,0.25,sample2,horizontalalignment='right',verticalalignment='center',rotation='horizontal',transform=ax.transAxes,color="green",fontsize=8) def cut_boundaries(Boundary_dict,sample,boundaryPath,chrom,start,end): Boundary_df = pd.read_table(boundaryPath,header=0,index_col=None,encoding='utf-8') Boundary_df = Boundary_df.fillna(0) Boundary_df = Boundary_df[['start','end']] Boundary_df['mid'] = (Boundary_df['start'] + Boundary_df['end'])/2 Boundary_df = Boundary_df[Boundary_df['mid']>=start] Boundary_df = Boundary_df[Boundary_df['mid']<=end] Boundary_df.reset_index(drop=True) Boundary_dict[sample] = Boundary_df return Boundary_dict def draw_insulation(ax,insu,chrs,start,end,color): #df_insu=cut_insulation(insu,chrs,start,end) df_insu=pd.read_table(insu,sep='\t',names=['chrs','start','end','insu']) ax.tick_params(top='off',bottom='off',left='on',right='off') line=ax.plot(df_insu['start'],df_insu['insu'], color=color, linewidth=0.8, label="insulation") ax.set_xlim(start,end) ax.set_xticks([]) ax.set_ylim(df_insu['insu'].min(),df_insu['insu'].max()) #ax.set_yticks([df_insu['insu'].min(),df_insu['insu'].max()]) for loc in ['left','top','bottom']: ax.spines[loc].set_linewidth(0) ax.spines[loc].set_color('black') ax.spines['right'].set_linewidth(0) ax.spines[loc].set_color('black') def draw_SV(files,ax,chrom,start,end,sample,color,types): markdf=pd.read_table(files,sep='\t') markdf=markdf[markdf['types']==types] markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] markdf['sign']=[1]*len(markdf) #vectorf = np.vectorize(np.float) #vectori = np.vectorize(np.int) #starts=list(markdf['start']) #hight=list(markdf['sign']) #width=(markdf['width']) ax.bar(x=list(markdf['start']),height=list(markdf['sign']),bottom=0, width = list(markdf['width']),color=color,linewidth=0,align='edge') ax.set_xlim([start,end]) ax.set_ylim([0,1]) xts = np.linspace(start,end,2) yts = np.linspace(0,1,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.set_yticks([]) #ax.set_yticklabels(ytkls,fontsize=5) ax.text(-0.11,0.0,sample,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='vertical',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) ax.spines['bottom'].set_linewidth(0) ax.spines['left'].set_linewidth(0) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=12) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def cut_insulation(insu,chrs,start,end): file=open(insu) file_list=[] for i in file: i=i.strip() file_list.append(i) insu_list=[] for i in range(len(file_list)): x=file_list[i].split('/') insu_list.append([x[-2],file_list[i]]) list_df=pd.DataFrame(insu_list,columns=['chrs','insu']) list_df=list_df[list_df['chrs']==chrs] list_df=list_df.reset_index(drop=True) df_insu=pd.read_table(list_df['insu'][0],sep='\t',names=['chrs','start','end','insu'],comment='t') df_insu['mid']=(df_insu['start']+df_insu['end'])/2 df_insu=df_insu.fillna(0) df_insu=df_insu[(df_insu['start']>start)&(df_insu['end']<end)] return df_insu def draw_AB(files,res,chrom,start,end,sample,ax): compartdf = pd.read_table(files,sep='\t',names=['chrom','start','end','eigen1']) compartdf = compartdf[compartdf['chrom']==chrom] compartdf = compartdf.reset_index(drop=True) df = compartdf df=df[df['end']>=start] df=df[df['start']<=end] df=df.reset_index(drop=True) ax.tick_params(top='off',bottom='on',left='off',right='off') for loc in ['left','right','top','bottom']: ax.spines[loc].set_visible(False) df['width']=df['end']-df['start'] #ax.axis([start, end, min,max]) for i in range(len(df)): if df['eigen1'][i]>0: ax.bar(x=df['start'][i],height=df['eigen1'][i],bottom=0, width = df['width'][i],color='#E7605B',linewidth=0,align='edge') else: ax.bar(x=df['start'][i],height=df['eigen1'][i],bottom=0, width = df['width'][i],color='#3B679E',linewidth=0,align='edge') ax.set_ylim(-0.1,0.1) ax.set_ylabel(sample) ax.set_yticks([]) ax.set_xticks([]) def Express_Swith(Epipath,chrom,start,end): Expressdf = pd.read_table(Epipath,header=None,index_col=False,sep='\t') Expressdf.columns = ['chrom','start','end','sign'] Expressdf = Expressdf[Expressdf['chrom']==chrom] Expressdf = Expressdf[Expressdf['start']>=int(start)] Expressdf = Expressdf[Expressdf['end']<=int(end)] Expressdf = Expressdf.reset_index(drop=True) return Expressdf def draw_epigenetic(file,ax,chrom,start,end,sample,color,MaxYlim,type,mins): markdf=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] recs = ax.bar(x=list(markdf['start']),height=list(markdf['sign']),bottom=0, width = list(markdf['width']),color=color,linewidth=0,align='edge') if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(mins) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,5) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(float(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=5) ax.text(-0.11,0.4,sample,fontsize=6,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=8) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def draw_epigenetic2(file,ax,chrom,start,end,sample,color,MaxYlim,type,mins): markdf=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) #print (markdf.head()) markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] markdf['width'] = markdf['end'] - markdf['start'] x = np.linspace(start,end,int(len(markdf)/8)) a_BSpline=make_interp_spline(markdf['start'],markdf['sign'],k=3) y_new=a_BSpline(x) ax.plot(x, y_new, color=color,linewidth=2) ax.fill_between(x,y_new ,0,facecolor=color,linewidth=0,label=sample) if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(mins) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,4) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) ax.tick_params(top=False,right=False,width=1,colors='black',direction='out') ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=12) ax.text(-0.11,0.0,sample,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='vertical',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=12) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def draw_RNA(file,ax,chrom,start,end,sample,color,MaxYlim,type,mins): markdf=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) #print (markdf.head()) markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] vectorf = np.vectorize(np.float) vectori = np.vectorize(np.int) starts=vectori(markdf['start']) hight=vectorf(markdf['sign']) width=vectori(markdf['width']) ax.bar(x=starts,height=hight,bottom=0,width=width,color=color,linewidth=0,align='edge') if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(mins) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,5) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=12) ax.text(-0.11,0.4,sample,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='vertical',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=12) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def Express_Swith(Epipath,chrs,start,end): Expressdf = pd.read_table(Epipath,header=None,index_col=False,sep='\t') Expressdf.columns = ['chrs','start','end','sign'] Expressdf = Expressdf[Expressdf['chrs']==chrs] Expressdf = Expressdf[Expressdf['start']>=int(start)] Expressdf = Expressdf[Expressdf['end']<=int(end)] Expressdf = Expressdf.reset_index(drop=True) return Expressdf def draw_diff_epigenetic(file1,file2,ax,chrs,start,end,color,MaxYlim,MinYlim,type): df1=Express_Swith(file1,chrs,start,end) df2=Express_Swith(file2,chrs,start,end) markdf = pd.merge(df1,df2,on='start',how='inner') markdf['sign'] = np.log2(markdf['sign_x']) - np.log2(markdf['sign_y']) markdf = markdf[['chrs_x','start','end_x','sign']] markdf.columns = ['chrs','start','end','sign'] markdf = markdf.reset_index(drop=True) ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] recs = ax.bar(markdf['start'],markdf['sign'],bottom=0, width = markdf['width'],color=color,linewidth=0) if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(MinYlim) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,5) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=5) #ax.text(-0.11,0.4,sample,fontsize=6,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=8) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrs,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() ax.spines['bottom'].set_linewidth(0) ax.spines['left'].set_linewidth(1) ax.spines['top'].set_linewidth(0) ax.spines['right'].set_linewidth(0) gc.collect() def draw_bar(ax,file,chrom,start,end,max,min): df=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) df=df[df['chrs']==chrom] df=df[df['start']>start] df=df[df['end']<end] df=df.reset_index(drop=True) ax.tick_params(top='off',bottom='on',left='off',right='off') for loc in ['left','right','top']: ax.spines[loc].set_visible(False) df['width']=df['end']-df['start'] #ax.axis([start, end, min,max]) for i in range(len(df)): if df['sign'][i]>0: ax.bar(df['start'][i],df['sign'][i],bottom=0, width = df['width'][i],color='#E7605B',linewidth=0) else: ax.bar(df['start'][i],df['sign'][i],bottom=0, width = df['width'][i],color='#3B679E',linewidth=0) ax.set_ylim(min,max) ax.set_yticks([]) ax.set_xticks([]) def get_4C_data(matrix,tstart,tend,binsize,start,end): print (binsize) t=int((tstart-start)/int(binsize)) print ('t',t,'matrix',len(matrix)) datalist=matrix.loc[:,[t]] return datalist from statsmodels.nonparametric.smoothers_lowess import lowess def draw_4C_module(ax,df_list,chrs,start,end,color_list,ymin,ymax,sample_list): ax.tick_params(top='off',bottom='off',left='on',right='off') i=0 for df in df_list: x = np.linspace(start,end,len(df)) df['width']=df['end']-df['start'] df_loess = pd.DataFrame(lowess(df['sign'], np.arange(len(df['sign'])), frac=0.05)[:, 1], index=df.index, columns=['sign']) ax.plot(x,df_loess['sign'], color=color_list[i], linewidth=2,label=sample_list[i],alpha=0.3) i+=1 #ax.legend(handles2, labels2) ax.set_xlim(start,end) ax.set_ylim(ymin,ymax) ax.set_yticks([ymin,ymax]) ax.legend(loc='right',bbox_to_anchor=(1.05,0.3),handlelength=1,handleheight=0.618,fontsize=6,frameon=False) for loc in ['left']: ax.spines[loc].set_linewidth(0.6) ax.spines[loc].set_color('gray') #ax.tick_params(top=False,right=False,width=1,colors='black',direction='out') ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) ax.tick_params(top=False,right=False,bottom=False,width=1,colors='black',direction='out') def draw_4C(ax,chrs,start,end,matrix_list,samples,binsize,tstart,tend,colors,ymax): sample_list=samples.split(',') bed_list=[] for sample in sample_list: matrix,min=extract_raw_matrix(matrix_list,sample,chrs,start,end,binsize) datalist=get_4C_data(matrix,int(tstart),int(tend),binsize,int(start),int(end)) bed_list.append(datalist) starts=[] for i in range(start,end,int(binsize)): starts.append(i) df_list=[] for i in bed_list: df=pd.DataFrame({'start':starts}) df['chrs']=[chrs]*len(df) df['end']=df['start']+int(binsize) df['sign']=i df_list.append(df) color_list=colors.split(',') draw_4C_module(ax,df_list,chrs,start,end,color_list,0,int(ymax),sample_list) def draw_compartment(ax,sample,compmergedf,chrom,start,end,type='top'): ax.tick_params(top='off',bottom='on',left='off',right='off') for loc in ['left','right','top']: ax.spines[loc].set_visible(False) mat = compmergedf[sample] #print(mat) s = compmergedf['start'] colors = ['red','blue','#458B00','#B9BBF9','black'] ax.set_xlim(start,end) if sample == 'Merge': ax.fill_between(s, 0, 0.25,where=mat==1, facecolor=colors[0],linewidth=0,label='CompartmentA') ax.fill_between(s, 0.25, 0.5,where=mat==2, facecolor=colors[2],linewidth=0,label='A Switch B') ax.fill_between(s, 0, -0.25,where=mat==-1,facecolor=colors[1],linewidth=0,label='CompartmentB') ax.fill_between(s, -0.25,-0.5,where=mat==-2,facecolor=colors[3],linewidth=0,label='B Switch A') legend = ax.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.,prop={'size':4},ncol=1) legend.get_frame().set_facecolor('white') else: ax.fill_between(s, 0, mat,where=mat>= 0, facecolor=colors[0],linewidth=0,label='CompartmentA') ax.fill_between(s, 0, mat,where=mat< 0, facecolor=colors[1],linewidth=0,label='CompartmentB') #ax.text(max(mat)/4,-5,'A');ax.text(max(mat)/2,-5,'B') ax.text(-0.11,0.4,sample,fontsize=6,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) ymax = mat.max()+0.005 ymin = mat.min()-0.005 xts = np.linspace(start,end,5) xtkls = ['{:,}'.format(int(i)) for i in xts] ax.set_ylim(ymin,ymax) ax.set_yticks([]) #ax.set_ylabel(sample,rotation='vertical',fontsize='small') #compmergedf = pd.DataFrame() if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=8) ax.spines['bottom'].set_linewidth(1) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.spines['bottom'].set_visible(False) gc.collect() def colorbar(ax,im,vmin,vmax): axins1 = inset_axes(ax, width=0.1,height=0.6,loc=3, bbox_to_anchor=(0, 0.2, 0.5, 1), bbox_transform=ax.transAxes,borderpad=0) print (vmin,vmax) cbar=plt.colorbar(im, cax=axins1, orientation='vertical',ticks=[math.ceil(vmin),int(vmax)]) axins1.tick_params(left='on',right='off',top='off',bottom='off',labelsize=12) axins1.yaxis.set_ticks_position('left') return cbar import math from matplotlib import pyplot as plt plt.style.use('seaborn-colorblind') pd.set_option('display.precision',2) from scipy import sparse import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1.inset_locator import inset_axes #from annotation_GenePred import Gene_annotation def cut_mat(mat,start,end,resolution,min): start = int(int(start)/resolution) end = math.ceil(int(end)/resolution) start = int(start - min) end = int(end - min) mat = mat.fillna(0) mat = mat.iloc[start:end+1,start:end+1] gc.collect() return mat,start,end def self_zscore(df): dsc = pd.DataFrame(np.ravel(df)).describe(include=[np.number]) df = (df - dsc.loc['mean',0])/dsc.loc['std',0] return df from scipy.ndimage import gaussian_filter def get_matrix(mat_path,binsize,start,end): binsize=int(binsize) mat=pd.read_table(mat_path,names=['b1','b2','contacts']) mat=mat[(mat['b1']>=start-3000000) & (mat['b2']>=start-3000000)] mat=mat[(mat['b1']<=end+3000000) & (mat['b2']<=end+3000000)] #-----------xlim genome start genome end------------------------------- min=mat['b1'].min() max=mat['b1'].max() min=math.ceil(int(min)/binsize)*binsize max=int(int(max)/binsize)*binsize N=int(max/binsize)-math.ceil(min/binsize)+1 mat['b1']=mat['b1'].apply(lambda x: (x-min-1)/binsize) mat['b2']=mat['b2'].apply(lambda x: (x-min-1)/binsize) #-----------coo matrix----------------------------------------------- counts=sparse.coo_matrix((mat['contacts'],(mat['b1'],mat['b2'])),shape=(N, N),dtype=float).toarray() diag_matrix=np.diag(np.diag(counts)) counts=counts.T + counts #counts=counts-diag_matrix counts=counts-diag_matrix-diag_matrix df=
pd.DataFrame(counts)
pandas.DataFrame
import os import pandas as pd import numpy as np import cv2 from ._io_data_generation import check_directory, find_movies, copy_movie from .LV_mask_analysis import Contour import matplotlib.pyplot as plt import networkx as nx from sklearn.neighbors import NearestNeighbors from scipy.spatial.distance import cdist from itertools import combinations class ExtractEdEs: def __init__(self, echonet_path=None, output_path=None): if echonet_path is not None: self.echonet_path = echonet_path self.movies_path = os.path.join(echonet_path, 'GoodX2Y2') self.output_path = check_directory(os.path.join(echonet_path, 'Output')) if output_path is not None: self.output_path = check_directory(output_path) self.df_volume_tracings = None self.list_of_movie_files = None self.movie_name = None def _get_volume_tracings(self): self.df_volume_tracings = pd.read_excel( os.path.join(self.echonet_path, 'VolumeTracings.xlsx'), index_col='FileName', sheet_name='VolumeTracings') # TESTING # self.df_volume_tracings = pd.read_excel( # os.path.join(r'G:\DataGeneration\echonet_labels', 'VolumeTracingsTest.xlsx'), # index_col='FileName', # sheet_name='Sheet1') @staticmethod def _get_contour_area(contour): x, y = contour[:, 0], contour[:, 1] return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) @staticmethod def _tri_len(triplet): triplet_shift = triplet.copy() triplet_shift = np.roll(triplet_shift, 1) perimeter = np.sum([np.linalg.norm(a - b) for a, b in zip(triplet, triplet_shift)]) return perimeter def _fix_contour(self, df_split_contour, plot_contour=False): def _remove_basal_points(_df, label='X1'): new_df = _df.copy() points = new_df[label].values dists = np.abs(np.diff(points)) if dists[-1] > 3 * np.mean(dists): new_df = new_df.iloc[:-1] if dists[-2] > 3 * np.mean(dists): new_df = new_df.iloc[:-1] return new_df df_1 = df_split_contour[['X1', 'Y1']].copy() df_1 = _remove_basal_points(df_1, 'X1') apex = df_1.iloc[0] df_2 = df_split_contour[['X2', 'Y2']].copy().iloc[1:] df_2 = _remove_basal_points(df_2, 'X2') df_2 = df_2.iloc[::-1] x = np.concatenate((df_2['X2'], df_1['X1'])) y = np.concatenate((df_2['Y2'], df_1['Y1'])) contour = np.array((x, y)).T # plt.plot(contour[:, 0], contour[:, 1], '.-') # plt.show() fixed_contour = self.sort_points_echonet_contour(contour, apex, False) if plot_contour: plt.plot(contour[:, 0], contour[:, 1], ':', label='contour') plt.plot(fixed_contour[:, 0], fixed_contour[:, 1], '-or', label='contour') plt.scatter(x=apex[0], y=apex[1], c='b', marker='d', s=80, label='apex') plt.scatter(fixed_contour[0, 0], fixed_contour[0, 1], c='g', marker='d', s=80, label='left_basal') plt.scatter(fixed_contour[-1, 0], fixed_contour[-1, 1], c='k', marker='d', s=80, label='right_basal') plt.legend() plt.show() return fixed_contour, np.where(apex)[0][0] def sort_points_echonet_contour(self, points, _apex, show): perimeters, areas = [], [] for i in range(1, 5): tri = np.array([points[0], _apex, points[-i]]) perimeters.append(self._tri_len(tri)) areas.append(self._get_contour_area(tri)) score = np.array(perimeters) * np.array(areas) if np.argmax(score) == 0: new_points = points else: new_points = points[:-(np.argmax(score)), :] new_points = np.flipud(new_points) if show: xx = new_points[:, 0] yy = new_points[:, 1] plt.figure() plt.plot(xx, yy, 'd-') plt.scatter(new_points[-1, 0], new_points[-1, 1], c='r', s=70) plt.scatter(new_points[0, 0], new_points[0, 1], c='g', s=70) plt.scatter(_apex[0], _apex[1], c='k', s=70) plt.show() return new_points def sort_points_full_contour(self, points, show): def _sort_w_neighbours(_points, point_id=10): print('NearestNeighbors') clf = NearestNeighbors(2, n_jobs=-1).fit(_points) G = clf.kneighbors_graph() point_set = nx.from_scipy_sparse_matrix(G) opt_order = list(nx.dfs_preorder_nodes(point_set, point_id)) _sorted_points = np.array([_points[new_id] for new_id in opt_order]) return _sorted_points def _update_marker_ids(_points, _markers): _markers['id_left_basal'] = int(np.where(_markers['left_basal'] == _points)[0][0]) _markers['id_right_basal'] = int(np.where(_markers['right_basal'] == _points)[0][0]) _markers['id_apex'] = int(np.where(_markers['apex'] == _points)[0][0]) return _markers def _get_corner_points(_points): distances = cdist(points, points) corner_points = np.argmax(distances, axis=0) unique, counts = np.unique(corner_points, return_counts=True) pareto_points = points[unique] print(pareto_points) combs = list(combinations(pareto_points, r=3)) perimeters, areas, tris = [], [], [] for tri in combs: tris.append(np.array(tri)) perimeters.append(self._tri_len(np.array(tri))) areas.append(self._get_contour_area(np.array(tri))) score = np.array(perimeters) * np.array(areas) optimal_triangle = np.array(combs[int(np.argmax(score))]) _markers = dict() basal_points = sorted(optimal_triangle, key=lambda x: (x[1]), reverse=True)[:2] _markers['left_basal'], _markers['right_basal'] = sorted(basal_points, key=lambda x: (x[0])) _markers['apex'] = sorted(optimal_triangle, key=lambda x: (x[1]), reverse=False)[0] _markers = _update_marker_ids(_points, _markers) return _markers points = _sort_w_neighbours(points) markers = _get_corner_points(points) points = _sort_w_neighbours(points, markers['id_left_basal']) markers = _update_marker_ids(points, markers) if markers['id_apex'] > markers['id_right_basal']: print('basal_direction') sorted_points = np.concatenate((points[0].reshape(1, -1), points[-1:markers['id_right_basal']-1:-1])) sorted_points = _sort_w_neighbours(sorted_points, markers['id_left_basal']) markers = _update_marker_ids(points, markers) else: print('apical direction') sorted_points = points[:markers['id_right_basal']+1] if show: xx = sorted_points[:, 0] yy = sorted_points[:, 1] plt.figure() plt.plot(xx, yy, 'd-') plt.scatter(markers['left_basal'][0], markers['left_basal'][1], c='r', s=70) plt.scatter(markers['right_basal'][0], markers['right_basal'][1], c='r', s=70) plt.scatter(markers['apex'][0], markers['apex'][1], c='r', s=70) plt.show() return sorted_points, markers def process_contours(self, movie_id, df_case_data, frame_numbers): contours = {'id': movie_id} phases = ['ed', 'es'] for i, frame_number in enumerate(frame_numbers): df_contour = df_case_data.loc[df_case_data.Frame == frame_number] contour, apex_id = self._fix_contour(df_contour.copy()) contour_area = self._get_contour_area(contour) contours[phases[i]] = {'contour': contour, 'contour_area': contour_area, 'frame': frame_number, 'apex_id': apex_id} if contours['ed']['contour_area'] < contours['es']['contour_area']: contours['ed'], contours['es'] = contours['es'], contours['ed'] return contours def process_movie(self, ed_frame, es_frame): dict_frames = {} vidcap = cv2.VideoCapture(os.path.join(self.movies_path, self.movie_name)) success, _ = vidcap.read() vidcap.set(1, es_frame - 1) success, dict_frames['es'] = vidcap.read() vidcap.set(1, ed_frame - 1) success, dict_frames['ed'] = vidcap.read() return dict_frames def _save_contours(self, dict_contours): contours_path = check_directory(os.path.join(self.output_path, 'Contours')) np.savetxt(os.path.join(contours_path, '{}_ed.csv'.format(dict_contours['id'])), dict_contours['ed']['contour'], fmt='%1.4f', delimiter=',') np.savetxt(os.path.join(contours_path, '{}_es.csv'.format(dict_contours['id'])), dict_contours['es']['contour'], fmt='%1.4f', delimiter=',') def _save_screenshots(self, dict_contours): screenshot_path = check_directory(os.path.join(self.output_path, 'Phase_images')) default_im_size = 1024 frame_images = self.process_movie(dict_contours['ed']['frame'], dict_contours['es']['frame']) for phase in ['ed', 'es']: orig_ed_height, orig_ed_width = frame_images[phase].shape[:2] drawing_contours = np.array([dict_contours[phase]['contour'][:, 0] * default_im_size / orig_ed_height, dict_contours[phase]['contour'][:, 1] * default_im_size / orig_ed_width]).T drawing_image = cv2.resize(frame_images[phase], (default_im_size, default_im_size)) cv2.polylines(drawing_image, [np.int32(drawing_contours)], isClosed=False, color=(255, 0, 0), thickness=5) cv2.imwrite(os.path.join(screenshot_path, "{}_{}.jpg".format(dict_contours['id'], phase)), drawing_image) def _save_curvature_markers(self, dict_contours): curvature_indices_path = check_directory(os.path.join(self.output_path, 'Curvature_indices')) curvature_markers = [] for phase in ('ed', 'es'): curvature_markers.append(dict_contours[phase]['curvature_markers']) df_curvature = pd.DataFrame(curvature_markers, index=['ed', 'es']) df_curvature.to_csv(os.path.join(curvature_indices_path, dict_contours['id'] + '_curv.csv')) def extract_case_data(self, save_contours=False, save_curvature_indices=True, save_screenshots=False): curvature_indices = None movie_id = os.path.splitext(os.path.basename(self.movie_name))[0] print('Case ID: {}'.format(movie_id)) df_case = self.df_volume_tracings.loc[movie_id] frames = pd.unique(df_case['Frame']) assert len(frames) == 2, 'More than 2 contours found for case {}'.format(movie_id) contours = self.process_contours(movie_id, df_case, frames) cont = Contour(segmentations_path=None) for phase in ('ed', 'es'): cont.endo_sorted_edge, _ = cont._fit_border_through_pixels(contours[phase]['contour']) cont.curvature = cont._calculate_curvature() contours[phase]['curvature'] = cont.curvature contours[phase]['curvature_markers'] = cont._get_curvature_markers() if save_curvature_indices: print('Saving curvature indices, ID: {}'.format(contours['id'])) self._save_curvature_markers(contours) if save_contours: print('Saving contours, ID: {}'.format(contours['id'])) self._save_contours(contours) if save_screenshots: print('Saving phase images, ID: {}'.format(contours['id'])) self._save_screenshots(contours) return curvature_indices def sort_movies(self): # good_x2y2_path = check_directory(os.path.join(self.echonet_path, 'GoodX2Y2')) # bad_x2y2_path = check_directory(os.path.join(self.echonet_path, 'BadX2Y2')) movie_id = os.path.splitext(os.path.basename(self.movie_name))[0] print('Case ID: {}'.format(movie_id)) df_case = self.df_volume_tracings.loc[movie_id] frames =
pd.unique(df_case['Frame'])
pandas.unique
from datetime import timezone import pandas as pd import numpy as np import datetime import netCDF4 import time def _validate_date(date_text): ''' Checks date format to ensure YYYY-MM-DD format and return date in datetime format. Parameters ---------- date_text: string Date string format to check Returns ------- dt: datetime ''' assert isinstance(date_text, str), (f'date_text must be' / 'of type string') try: dt = datetime.datetime.strptime(date_text, '%Y-%m-%d') except ValueError: raise ValueError("Incorrect data format, should be YYYY-MM-DD") else: dt = dt.replace(tzinfo=timezone.utc) return dt def _start_and_end_of_year(year): ''' Returns a datetime start and end for a given year Parameters ---------- year: int Year to get start and end dates Returns ------- start_year: datetime object start of the year end_year: datetime object end of the year ''' assert isinstance(year, (type(None),int,list)), 'year must be of type int' try: year = str(year) start_year = datetime.datetime.strptime(year, '%Y') except ValueError: raise ValueError("Incorrect years format, should be YYYY") else: next_year = datetime.datetime.strptime(f'{int(year)+1}', '%Y') end_year = next_year - datetime.timedelta(days=1) return start_year, end_year def _dates_to_timestamp(nc, start_date=None, end_date=None): ''' Returns timestamps from dates. Parameters ---------- nc: netCDF Object netCDF data for the given station number and data type start_date: string Start date in YYYY-MM-DD, e.g. '2012-04-01' end_date: string End date in YYYY-MM-DD, e.g. '2012-04-30' Returns ------- start_stamp: float seconds since the Epoch to start_date end_stamp: float seconds since the Epoch to end_date ''' assert isinstance(start_date, (str, type(None))), ('start_date' / 'must be of type str') assert isinstance(end_date, (str, type(None))), ('end_date must be' / 'of type str') time_all = nc.variables['waveTime'][:].compressed() time_range_all = [datetime.datetime.fromtimestamp(time_all[0]).replace(tzinfo=timezone.utc), datetime.datetime.fromtimestamp(time_all[-1]).replace(tzinfo=timezone.utc)] if start_date: start_datetime = _validate_date(start_date) if end_date: end_datetime = _validate_date(end_date) if start_datetime > end_datetime: raise Exception(f'start_date ({start_datetime}) must be'+ f'before end_date ({end_datetime})') elif start_datetime == end_datetime: raise Exception(f'start_date ({start_datetime}) cannot be'+ f'the same as end_date ({end_datetime})') if start_date: if start_datetime > time_range_all[0] and start_datetime < time_range_all[1]: start_stamp = start_datetime.replace(tzinfo=timezone.utc).timestamp() else: print(f'WARNING: Provided start_date ({start_datetime}) is ' f'not in the returned data range {time_range_all} \n' f'Setting start_date to the earliest date in range ' f'{time_range_all[0]}') start_stamp = pd.to_datetime(time_range_all[0]).replace(tzinfo=timezone.utc).timestamp() if end_date: if end_datetime > time_range_all[0] and end_datetime < time_range_all[1]: end_stamp = end_datetime.replace(tzinfo=timezone.utc).timestamp() else: print(f'WARNING: Provided end_date ({end_datetime}) is ' f'not in the returned data range {time_range_all} \n' f'Setting end_date to the latest date in range ' f'{time_range_all[1]}') end_stamp = pd.to_datetime(time_range_all[1]).replace(tzinfo=timezone.utc).timestamp() if start_date and not end_date: end_stamp =
pd.to_datetime(time_range_all[1])
pandas.to_datetime
""" Download data from original sources if they are not already present in the data dir """ import argparse import os from pathlib import Path import pandas as pd import requests def delete_file(target_dir, filename): test_path = Path(os.path.join(target_dir, filename)) if test_path.is_file(): os.remove(test_path) # Download the Gender pay gap data from UK Gov if it's not already there def download_file_if_not_exist(url, target_dir='data', extension='', filename=None): local_filename = filename if filename is not None else url.split('/')[-1] + extension Path(target_dir).mkdir(parents=True, exist_ok=True) test_path = Path(os.path.join(target_dir, local_filename)) if test_path.is_file(): print("{} already exists in '{}' folder".format(local_filename, target_dir)) return print("Downloading {} to {}".format(local_filename, target_dir)) with requests.get(url, stream=True) as r: with test_path.open('wb') as f: for chunk in r.iter_content(chunk_size=1024): f.write(chunk) return local_filename def download_data(): for year in (2017, 2018, 2019): download_file_if_not_exist( url='https://gender-pay-gap.service.gov.uk/viewing/download-data/{}'.format(year), target_dir='data', filename="ukgov-gpg-{}.csv".format(year)) SIC_CODES_CSV='https://datahub.io/core/uk-sic-2007-condensed/r/uk-sic-2007-condensed.csv' download_file_if_not_exist( url=SIC_CODES_CSV, target_dir='data', filename='sic_codes.csv' ) def merge_years(df2017, df2018, df2019): df2017['year'] = 2017 df2018['year'] = 2018 df2019['year'] = 2019 return pd.concat([df2017, df2018, df2019]) def acquire_data(save_file=False, output_filename='data/ukgov-gpg-full.csv'): download_data() df_2017 = pd.read_csv('data/ukgov-gpg-2017.csv', dtype={'SicCodes': str}) df_2018 = pd.read_csv('data/ukgov-gpg-2018.csv', dtype={'SicCodes': str}) df_2019 =
pd.read_csv('data/ukgov-gpg-2019.csv', dtype={'SicCodes': str})
pandas.read_csv
import logging import pandas as pd from catboost import CatBoostClassifier logging.basicConfig(filename='logs/model_development.txt', filemode='a', format='%(asctime)s %(message)s', datefmt="%Y-%m-%d %H:%M:%S") logging.warning('-'*100) logging.warning('FEATURE IMPORTANCE') # dataset data = pd.read_csv('reports/final_dataset.csv') # Initialize the model catboostclassifier = CatBoostClassifier(verbose=0) logging.warning('Check features with more higher value.') for feature in zip(data.columns, catboostclassifier.feature_importances_): print(feature) logging.warning('Create a dataframe containing features and their importance.') feature_dict = dict(zip(data.columns, list(catboostclassifier.feature_importances_))) feature_df =
pd.DataFrame(feature_dict, index=['Importance'])
pandas.DataFrame
import cobra from cobra.core.metabolite import elements_and_molecular_weights elements_and_molecular_weights['R']=0.0 elements_and_molecular_weights['Z']=0.0 import pandas as pd import numpy as np import csv #### Change Biomass composition # define a function change a biomass reaction in the model def update_biomass(model, rxn, stoich, metabolite): r = model.reactions.get_by_id(rxn) new_stoich = stoich # you now have a dictionary of new stoichs for your model for m,s in r.metabolites.items(): stoich = s*-1 temp_dict = {m:stoich} r.add_metabolites(temp_dict) r.add_metabolites(new_stoich) # Then get the total to equal 1 mg biomass DW total = 0 for m,s in r.metabolites.items(): gfw = model.metabolites.get_by_id(m.id).formula_weight mass = gfw*s*-1 total = total+mass correction = total/1000 # this will get it to 1000 ug total mass # Then adjust the stoichiometry as appropriate for m,s in r.metabolites.items(): # now change the stoich to_add = s/correction-s r.add_metabolites({m:to_add}) # Finally build the biomass_c metabolite imbal = r.check_mass_balance() if 'charge' in imbal.keys(): met_charge = imbal['charge']*-1 del imbal['charge'] met_mass = 0 formula_string = '' for e,v in imbal.items(): if v > 1e-10 or v < -1e-10: mass = elements_and_molecular_weights[e] met_mass = met_mass+(mass*-1*v) form_str = e+str(-1*v) formula_string = formula_string + form_str met = model.metabolites.get_by_id(metabolite) met.formula = formula_string met.charge = met_charge r.add_metabolites({met:1}) # Add GAM constraint if rxn == 'bof_c': gam_met = model.metabolites.GAM_const_c r.add_metabolites({gam_met:1}) model.repair() print(model.reactions.get_by_id(rxn).reaction) print('') print(model.metabolites.get_by_id(met.id).formula) print('') print(model.metabolites.get_by_id(met.id).formula_weight) print('') print(model.reactions.get_by_id(rxn).check_mass_balance()) return model ############################################# #### Simulate growth with all constraints#### ############################################# def figure_2LL(model): ## Run all 27 parameter combos and capture: #### - growth rate #### - biomass import math as m cols = ['ID','GR','mgDW','Cells'] data_out = pd.DataFrame(columns=cols) Po_vals = ['mean','ub','lb'] a_star_vals = ['mean','ub','lb'] cell_mass = ['mean','ub','lb'] a_star_all = pd.read_csv('pt_a_star.csv',index_col=0,header=0) rel = pd.read_csv('fluor_lamp.csv',header=0) xsec = 80. #culture cross sectional area in cm2 path_len = 4.7 #cm volume = 375. time_interval = 20 for p in Po_vals: for a in a_star_vals: for c in cell_mass: sample_id = p+'_'+a+'_'+c model = model if a == 'mean': a_star = a_star_all['LL'] elif a == 'ub': a_star = a_star_all['LL_UB'] else: a_star = a_star_all['LL_LB'] if c == 'mean': mgCell = 19.1/1e9 elif c == 'ub': mgCell = 21.1/1e9 else: mgCell = 17.1/1e9 innoc = 2.8e6*volume # cells/mL * total mL iDW = mgCell*innoc # initial culture biomass gDW = iDW cells = (gDW/mgCell) photon_usage = pd.DataFrame(data=[0,0],index = ['Delivered','Absorbed'],columns=['0']) biomass = pd.DataFrame(data=[gDW,cells],index = ['Biomass','Cells'],columns=['0']) # add it up at the end of each simulation o2_check = pd.DataFrame(data=[0],index = ['Max oxygen evolution'],columns=['0']) for t in range(time_interval,1440+time_interval,time_interval): #One simulation every 20 minutes from t=0 to t=24 hrs (1440 min) import math as m interval_bm = 0 #initializes the total biomass photon_count = 0 atten = np.zeros(len(a_star)) #captures light attenuation tmp_o2_evo = 0 gDW = biomass[str(t-time_interval)]['Biomass'] #mg DW cells = (gDW/mgCell) if p == 'mean': Ps = 2.94e-11 # umol O2 cell-1 s-1 alpha = 9.82e-2 beta = 0.0 resp = 1.83e-12 elif p == 'ub': Ps = 3.06e-11 # umol O2 cell-1 s-1 alpha = 9.75e-2 beta = 0.0 resp = 1.75e-12 else: Ps = 2.83e-11 # umol O2 cell-1 s-1 alpha = 9.91e-2 beta = 0.0 resp = 1.92e-12 irrad = 60. # Photon_flux is the initial amount of light delivered to the culture at each wavelength from 400-700 nm photon_flux = (rel['rel_height'].values)*irrad*xsec/10000*time_interval*60. #umol/(m2*s) * cm2 * 1m2/10000cm2 * 60s/min * min = umol photons/time interval total_photons = sum(photon_flux) photon_usage[str(t)]=[total_photons,0] total_absorbed = 0. ti_o2 = 0. for nm in range(len(photon_flux)): abs_coeff = a_star[400+nm] # a* value for the given nm (cm2/cell) Io = photon_flux[nm] # incident photon flux at this nm at this slice (umol_photon/time_interval) Ia = Io-Io*(m.exp(-1*abs_coeff*cells/volume*path_len)) nm_abs = Ia total_absorbed = total_absorbed+nm_abs conv_abs = total_absorbed/time_interval/60./(cells) # converts abs to O2 evo curve units umol/TI * TI/min * min/s * 1/cells => umol/(mgchla*s) slice_o2 = (Ps*(1-m.exp(-1*alpha*conv_abs/Ps))*(m.exp(-1*beta*conv_abs/Ps)))-resp #umol O2 cell-1 s-1 ti_o2 = ti_o2+(slice_o2*(cells)*60.*time_interval) #umol O2 cell-1 s-1 * cells * s/min * min/TI = umol O2/TI o2_check[str(t)]=ti_o2 o2evo = ti_o2 model.reactions.EX_o2_e.upper_bound = o2evo # o2evo model.reactions.EX_o2_e.lower_bound = 0.9*o2evo#0. # <----Po Constraint photon_usage[str(t)]['Absorbed']=total_absorbed ngam = resp*60.*time_interval*cells model.reactions.NGAM.lower_bound = ngam cef_rate = 5.*gDW/60.*time_interval #CEF sets CEF_h upper bound. umol /(mgDW*h) * mgDW * h/60min * min/TI = umol/TI model.reactions.CEF_h.upper_bound = cef_rate model.reactions.EX_photon_e.lower_bound = total_absorbed*-1. model.reactions.EX_photon_e.upper_bound = total_absorbed*-0.9999999 ###### Parameters for PSII fluorescence ## Fv/Fm FvFm_LL = 0.69 ## Calculate Y(II) based on absorbed abs_conv = total_absorbed/time_interval/60./(cells) yII_LL = 0.7016*np.exp(-8.535e8*abs_conv) # yII_LL2 = (2.77e16*(m.pow(abs_conv,2))-(2.51e8*abs_conv)+6.97e-1) ## Y(NPQ) yNPQ_LL = 1./(1.+(np.power(2.3e-9/abs_conv,3.))) if yNPQ_LL < 0: yNPQ_LL = 0. ### Constraints phoYII = round(yII_LL,2) # Y(II) regNPQ = round(yNPQ_LL,2) # Y(NPQ) regFvFm = round((1-FvFm_LL),2) # Photons lost upstream of PSII (1-Fv/Fm) unrNPQ = round((1-phoYII-regNPQ-regFvFm),2) # Y(NO) ### Edit model constraints with the appropriate values ## PHO_PSIIt_u rxn = model.reactions.PHO_PSIIt_u ## reset the stoich for met,s in rxn.metabolites.items(): stoich = s*-1 temp_dict = {met:stoich} rxn.add_metabolites(temp_dict) m1 = model.metabolites.photon_YII_u m2 = model.metabolites.photon_YNPQ_u m4 = model.metabolites.photon_YNO_u m3 = model.metabolites.photon_h m5 = model.metabolites.get_by_id('photon_1-FvFm_u') rxn.add_metabolites({m1:phoYII, m2:regNPQ, m4:unrNPQ, m5:regFvFm, m3:-1.}) model.reactions.DM_photon_c.upper_bound = 0. # constrained <----hv Constraint # Add D1 damage cost uncoupled to PSII ## If uncoupled, set the lower and upper bounds to the experimentally determined values # Damage rates D1_rate = 7e-6# # LL: umol D1/mgDW h-1 <---- D1 Constraint D1_rate = D1_rate * gDW/60.# ugD1 ugDW-1 min-1 * mgDW * 1h/60 min = umolD1 min-1 D1_rate = D1_rate * time_interval # umolD1 min-1 * min/TI = umol D1/TI model.reactions.NGAM_D1_u.lower_bound = D1_rate # model.reactions.NGAM_D1_u.upper_bound = 1.0001*(D1_rate) # ## Solve the model model.objective = 'bof_c' solution = model.optimize() if solution.status == 'optimal': obj_rxn = model.reactions.bof_c biomass[str(t)]=(gDW+obj_rxn.x,(gDW+obj_rxn.x)/(mgCell)) ### collect data if t == 1440: dry_weight = biomass['1420']['Biomass'] cell_count = biomass['1420']['Cells'] mu = np.log(biomass['1440']['Cells']/biomass['0']['Cells'])/(1440/60) data_out = data_out.append({'ID':sample_id,'GR':mu,'mgDW':dry_weight,'Cells':cell_count},ignore_index=True) return data_out def figure_2HL(model): ## Run all 27 parameter combos and capture: #### - growth rate #### - biomass import math as m cols = ['ID','GR','mgDW','Cells'] data_out = pd.DataFrame(columns=cols) Po_vals = ['mean','ub','lb'] a_star_vals = ['mean','ub','lb'] cell_mass = ['mean','ub','lb'] a_star_all = pd.read_csv('pt_a_star.csv',index_col=0,header=0) rel = pd.read_csv('fluor_lamp.csv',header=0) xsec = 80. #culture cross sectional area in cm2 path_len = 4.7 #cm volume = 375. time_interval = 20 for p in Po_vals: for a in a_star_vals: for c in cell_mass: sample_id = p+'_'+a+'_'+c model = model if a == 'mean': a_star = a_star_all['HL'] elif a == 'ub': a_star = a_star_all['HL_UB'] else: a_star = a_star_all['HL_LB'] if c == 'mean': mgCell = 20.4/1e9 elif c == 'ub': mgCell = 21.8/1e9 else: mgCell = 19.0/1e9 innoc = 3.5e6*volume # cells/mL * total mL iDW = mgCell*innoc # initial culture biomass gDW = iDW cells = (gDW/mgCell) photon_usage = pd.DataFrame(data=[0,0],index = ['Delivered','Absorbed'],columns=['0']) biomass = pd.DataFrame(data=[gDW,cells],index = ['Biomass','Cells'],columns=['0']) # add it up at the end of each simulation o2_check = pd.DataFrame(data=[0],index = ['Max oxygen evolution'],columns=['0']) for t in range(time_interval,720+time_interval,time_interval): #One simulation every 20 minutes from t=0 to t=24 hrs (1440 min) import math as m interval_bm = 0 #initializes the total biomass photon_count = 0 atten = np.zeros(len(a_star)) #captures light attenuation tmp_o2_evo = 0 gDW = biomass[str(t-time_interval)]['Biomass'] #mg DW cells = (gDW/mgCell) if p == 'mean': Ps = 2.46e-11 # umol O2 cell-1 s-1 alpha = 9.47e-2 beta = 0.0 resp = 4.72e-12 elif p == 'ub': Ps = (2.54e-11) # umol O2 cell-1 s-1 alpha = (1.05e-1) beta = 3.67e-5 resp = 4.28e-12 else: Ps = (2.35e-11) # umol O2 cell-1 s-1 alpha = (8.5e-2)# beta = 2.5e-10 resp = 5.15e-12 # Calculate photons and O2 uptake irrad = 600. #uE # Photon_flux is the initial amount of light delivered to the culture at each wavelength from 400-700 nm photon_flux = (rel['rel_height'].values)*irrad*xsec/10000*time_interval*60. #umol/(m2*s) * cm2 * 1m2/10000cm2 * 60s/min * min = umol photons/time interval total_photons = sum(photon_flux) photon_usage[str(t)]=[total_photons,0] total_absorbed = 0. ti_o2 = 0. for nm in range(len(photon_flux)): abs_coeff = a_star[400+nm] # a* value for the given nm (cm2/cell) Io = photon_flux[nm] # incident photon flux at this nm at this slice (umol_photon/time_interval) Ia = Io-Io*(m.exp(-1*abs_coeff*cells/volume*path_len)) nm_abs = Ia total_absorbed = total_absorbed+nm_abs conv_abs = total_absorbed/time_interval/60./(cells) # converts abs to O2 evo curve units umol/TI * TI/min * min/s * 1/cells => umol/(mgchla*s) slice_o2 = (Ps*(1-m.exp(-1*alpha*conv_abs/Ps))*(m.exp(-1*beta*conv_abs/Ps)))-resp #umol O2 cell-1 s-1 ti_o2 = ti_o2+(slice_o2*(cells)*60.*time_interval) #umol O2 cell-1 s-1 * cells * s/min * min/TI = umol O2/TI o2_check[str(t)]=ti_o2 o2evo = ti_o2 model.reactions.EX_o2_e.upper_bound = o2evo #1000. # model.reactions.EX_o2_e.lower_bound = 0.9*o2evo#-1000. # photon_usage[str(t)]['Absorbed']=total_absorbed ngam = resp*60.*time_interval*cells model.reactions.AOX_m.lower_bound = ngam cef_rate = 5.*gDW/60.*time_interval #CEF sets CEF_h upper bound. umol /(mgDW*h) * mgDW * h/60min * min/TI = umol/TI model.reactions.CEF_h.upper_bound = cef_rate model.reactions.EX_photon_e.lower_bound = total_absorbed*-1. model.reactions.EX_photon_e.upper_bound = total_absorbed*-0.9999999 ###### Parameters for PSII fluorescence ## Fv/Fm FvFm_HL = 0.63 ## Calculate Y(II) based on absorbed abs_conv = total_absorbed/time_interval/60./(cells) yII_HL = 0.6398*np.exp(-1.169e9*abs_conv) ## Y(NPQ) yNPQ_HL = 1./(1.+(np.power(1.37e-9/abs_conv,5.5))) if yNPQ_HL < 0: yNPQ_HL = 0. ### Constraints phoYII = round(yII_HL,2) # Y(II) regNPQ = round(yNPQ_HL,2) # Y(NPQ) regFvFm = round((1-FvFm_HL),2) # Photons lost upstream of PSII (1-Fv/Fm) unrNPQ = round((1-phoYII-regNPQ-regFvFm),2) # Y(NO) ### Edit model constraints with the appropriate values ## Set Y(II) constraints rxn = model.reactions.PHO_PSIIt_u ## reset the stoich for met,s in rxn.metabolites.items(): stoich = s*-1 temp_dict = {met:stoich} rxn.add_metabolites(temp_dict) m1 = model.metabolites.photon_YII_u m2 = model.metabolites.photon_YNPQ_u m4 = model.metabolites.photon_YNO_u m3 = model.metabolites.photon_h m5 = model.metabolites.get_by_id('photon_1-FvFm_u') rxn.add_metabolites({m1:phoYII, m2:regNPQ, m4:unrNPQ, m5:regFvFm, m3:-1.}) ## Set photon constraints model.reactions.DM_photon_c.upper_bound = 0. # constrained # Add D1 damage cost uncoupled to PSII # Damage rates D1_rate = 2.52e-4# # LL: umol D1/mgDW h-1 <---- D1 Constraint D1_rate = D1_rate * gDW/60.# ugD1 ugDW-1 min-1 * mgDW * 1h/60 min = umolD1 min-1 D1_rate = D1_rate * time_interval # umolD1 min-1 * min/TI = umol D1/TI model.reactions.NGAM_D1_u.lower_bound = D1_rate #0.# model.reactions.NGAM_D1_u.upper_bound = 1.0001*(D1_rate)#0.# ## Solve the model model.objective = 'bof_c' solution = model.optimize() if solution.status == 'optimal': obj_rxn = model.reactions.bof_c biomass[str(t)]=(gDW+obj_rxn.x,(gDW+obj_rxn.x)/(mgCell)) ### collect data if t == 720: dry_weight = biomass['700']['Biomass'] cell_count = biomass['700']['Cells'] mu = np.log(biomass['720']['Cells']/biomass['0']['Cells'])/(720/60) data_out = data_out.append({'ID':sample_id,'GR':mu,'mgDW':dry_weight,'Cells':cell_count},ignore_index=True) return data_out def figure_2HL_HCO3(model): ## Run all 27 parameter combos and capture: #### - growth rate #### - biomass import math as m cols = ['ID','GR','mgDW','Cells'] data_out = pd.DataFrame(columns=cols) Po_vals = ['mean','ub','lb'] a_star_vals = ['mean','ub','lb'] cell_mass = ['mean','ub','lb'] a_star_all = pd.read_csv('pt_a_star.csv',index_col=0,header=0) rel = pd.read_csv('fluor_lamp.csv',header=0) xsec = 80. #culture cross sectional area in cm2 path_len = 4.7 #cm volume = 375. time_interval = 20 for p in Po_vals: for a in a_star_vals: for c in cell_mass: sample_id = p+'_'+a+'_'+c model = model if a == 'mean': a_star = a_star_all['HL'] elif a == 'ub': a_star = a_star_all['HL_UB'] else: a_star = a_star_all['HL_LB'] if c == 'mean': mgCell = 20.4/1e9 elif c == 'ub': mgCell = 21.8/1e9 else: mgCell = 19.0/1e9 innoc = 3.5e6*volume # cells/mL * total mL iDW = mgCell*innoc # initial culture biomass gDW = iDW cells = (gDW/mgCell) photon_usage = pd.DataFrame(data=[0,0],index = ['Delivered','Absorbed'],columns=['0']) biomass = pd.DataFrame(data=[gDW,cells],index = ['Biomass','Cells'],columns=['0']) # add it up at the end of each simulation o2_check = pd.DataFrame(data=[0],index = ['Max oxygen evolution'],columns=['0']) for t in range(time_interval,720+time_interval,time_interval): #One simulation every 20 minutes from t=0 to t=24 hrs (1440 min) import math as m interval_bm = 0 #initializes the total biomass photon_count = 0 atten = np.zeros(len(a_star)) #captures light attenuation tmp_o2_evo = 0 gDW = biomass[str(t-time_interval)]['Biomass'] #mg DW cells = (gDW/mgCell) if p == 'mean': Ps = (2.46e-11)*1.15 # umol O2 cell-1 s-1 alpha = (9.47e-2) beta = 0.0 resp = 4.72e-12 elif p == 'ub': Ps = (2.54e-11)*1.15 # umol O2 cell-1 s-1 alpha = (1.05e-1) beta = 3.67e-5 resp = 4.28e-12 else: Ps = (2.35e-11)*1.15 # umol O2 cell-1 s-1 alpha = (8.5e-2)# beta = 2.5e-10 resp = 5.15e-12 # Calculate photons and O2 uptake irrad = 600. #uE # Photon_flux is the initial amount of light delivered to the culture at each wavelength from 400-700 nm photon_flux = (rel['rel_height'].values)*irrad*xsec/10000*time_interval*60. #umol/(m2*s) * cm2 * 1m2/10000cm2 * 60s/min * min = umol photons/time interval total_photons = sum(photon_flux) photon_usage[str(t)]=[total_photons,0] total_absorbed = 0. ti_o2 = 0. for nm in range(len(photon_flux)): abs_coeff = a_star[400+nm] # a* value for the given nm (cm2/cell) Io = photon_flux[nm] # incident photon flux at this nm at this slice (umol_photon/time_interval) Ia = Io-Io*(m.exp(-1*abs_coeff*cells/volume*path_len)) nm_abs = Ia total_absorbed = total_absorbed+nm_abs conv_abs = total_absorbed/time_interval/60./(cells) # converts abs to O2 evo curve units umol/TI * TI/min * min/s * 1/cells => umol/(mgchla*s) slice_o2 = (Ps*(1-m.exp(-1*alpha*conv_abs/Ps))*(m.exp(-1*beta*conv_abs/Ps)))-resp #umol O2 cell-1 s-1 ti_o2 = ti_o2+(slice_o2*(cells)*60.*time_interval) #umol O2 cell-1 s-1 * cells * s/min * min/TI = umol O2/TI o2_check[str(t)]=ti_o2 o2evo = ti_o2 model.reactions.EX_o2_e.upper_bound = o2evo #1000. # model.reactions.EX_o2_e.lower_bound = 0.9*o2evo#-1000. # photon_usage[str(t)]['Absorbed']=total_absorbed ngam = resp*60.*time_interval*cells model.reactions.AOX_m.lower_bound = ngam cef_rate = 5.*gDW/60.*time_interval #CEF sets CEF_h upper bound. umol /(mgDW*h) * mgDW * h/60min * min/TI = umol/TI model.reactions.CEF_h.upper_bound = cef_rate model.reactions.EX_photon_e.lower_bound = total_absorbed*-1. model.reactions.EX_photon_e.upper_bound = total_absorbed*-0.9999999 ###### Parameters for PSII fluorescence ## Fv/Fm FvFm_HL = 0.63 ## Calculate Y(II) based on absorbed abs_conv = total_absorbed/time_interval/60./(cells) yII_HL = 0.6398*np.exp(-1.169e9*abs_conv) ## Y(NPQ) yNPQ_HL = 1./(1.+(np.power(1.37e-9/abs_conv,5.5))) if yNPQ_HL < 0: yNPQ_HL = 0. ### Constraints phoYII = round(yII_HL,2) # Y(II) regNPQ = round(yNPQ_HL,2) # Y(NPQ) regFvFm = round((1-FvFm_HL),2) # Photons lost upstream of PSII (1-Fv/Fm) unrNPQ = round((1-phoYII-regNPQ-regFvFm),2) # Y(NO) ### Edit model constraints with the appropriate values ## Set Y(II) constraints rxn = model.reactions.PHO_PSIIt_u ## reset the stoich for met,s in rxn.metabolites.items(): stoich = s*-1 temp_dict = {met:stoich} rxn.add_metabolites(temp_dict) m1 = model.metabolites.photon_YII_u m2 = model.metabolites.photon_YNPQ_u m4 = model.metabolites.photon_YNO_u m3 = model.metabolites.photon_h m5 = model.metabolites.get_by_id('photon_1-FvFm_u') rxn.add_metabolites({m1:phoYII, m2:regNPQ, m4:unrNPQ, m5:regFvFm, m3:-1.}) ## Set photon constraints model.reactions.DM_photon_c.upper_bound = 0. # constrained # Add D1 damage cost uncoupled to PSII # Damage rates D1_rate = 2.52e-4# # LL: umol D1/mgDW h-1 <---- D1 Constraint D1_rate = D1_rate * gDW/60.# ugD1 ugDW-1 min-1 * mgDW * 1h/60 min = umolD1 min-1 D1_rate = D1_rate * time_interval # umolD1 min-1 * min/TI = umol D1/TI model.reactions.NGAM_D1_u.lower_bound = D1_rate #0.# model.reactions.NGAM_D1_u.upper_bound = 1.0001*(D1_rate)#0.# ## Solve the model model.objective = 'bof_c' solution = model.optimize() if solution.status == 'optimal': obj_rxn = model.reactions.bof_c biomass[str(t)]=(gDW+obj_rxn.x,(gDW+obj_rxn.x)/(mgCell)) ### collect data if t == 720: dry_weight = biomass['700']['Biomass'] cell_count = biomass['700']['Cells'] mu = np.log(biomass['720']['Cells']/biomass['0']['Cells'])/(720/60) data_out = data_out.append({'ID':sample_id,'GR':mu,'mgDW':dry_weight,'Cells':cell_count},ignore_index=True) return data_out ################################################### #### Simulate growth with variable constraints #### ################################################### def simulate(model,light,photon_const,Po_const,YII_const,D1_const,DM20): a_star = pd.read_csv('pt_a_star.csv',index_col=0,header=0) a_star = a_star[light] # read in the cool white lamp spectral density rel = pd.read_csv('fluor_lamp.csv',header=0) volume = 375. if light == 'LL': mgCell = 19.1/1e9 # mgDW per cell <-- LL +/- 2.0 innoc = 2.8e6*volume # cells/mL * total mL duration = 1440 # total length of the simulation #O2 rate equation # input: umol photons cell-1 s-1 # Output: umol O2 cell-1 s-1 # Mean Ps = 2.94e-11 # umol O2 cell-1 s-1 alpha = 9.82e-2 beta = 0.0 resp = 1.83e-12 # # upper bound # Ps = 3.06e-11 # umol O2 cell-1 s-1 # alpha = 9.75e-2 # beta = 0.0 # resp = 1.75e-12 # # lower bound # Ps = 2.83e-11 # umol O2 cell-1 s-1 # alpha = 9.91e-2 # beta = 0.0 # resp = 1.92e-12 irrad = 60. if light == 'HL': mgCell = 20.4/1e9 # mgDW per cell <-- HL Bounds 20.4+/- 1.4 innoc = 3.5e6*volume # cells/mL * total mL duration = 720 # total length of the simulation # # HL_bicarb Ps = (2.46e-11)*1.15 # umol O2 cell-1 s-1 alpha = (9.47e-2) beta = 0.0 resp = 4.72e-12 # #upper bound # HL # Ps = (2.54e-11) # umol O2 cell-1 s-1 # alpha = (1.05e-1) # beta = 3.67e-5 # resp = 4.28e-12 # #lower bound ## HL # Ps = (2.35e-11) # umol O2 cell-1 s-1 # alpha = (8.5e-2)# # beta = 2.5e-10 # resp = 5.15e-12 irrad = 600. #uE iDW = mgCell*innoc # initial culture biomass ### Cell count is mgDW/mgCell xsec = 80. #culture cross sectional area in cm2 path_len = 4.7 #cm time_interval = 20 gDW = iDW cells = (gDW/mgCell) #__________________________Initialize variables to collect output data___________________________________ # Initialize an unused photon count photon_usage = pd.DataFrame(data=[0,0],index = ['Delivered','Absorbed'],columns=['0']) biomass =
pd.DataFrame(data=[gDW,cells],index = ['Biomass','Cells'],columns=['0'])
pandas.DataFrame
""" @author: <NAME> @email: <EMAIL> this file augments the precomputed features using pyspark and add wordcount and size of article """ import pandas as pd import requests import sys def page_search(session, title): """ :param session: http session from wikipedia API :param title: find the page with wiki title :return: title, size, word_count, articleid """ url = "https://en.wikipedia.org/w/api.php" PARAMS = { "action": "query", "format": "json", "list": "search", "srsearch": title } response = session.get(url=url, params=PARAMS).json() query = response["query"] search = query["search"] title = None if len(search) > 0: title = search[0]["title"] articleid = int(search[0]["pageid"]) size = int(search[0]["size"]) word_count = int(search[0]["wordcount"]) elif "suggestion" in query.get("searchinfo", []): title = query["searchinfo"]["suggestion"] size = 0 word_count = 0 articleid = 0 else: print("title not found!") print(title, query) size, word_count, articleid = None, None, None return title, size, word_count, articleid def fetch_categories(session): """ :param session: http session for wiki api :return: closure which fetches categories of article title """ def __fetch_categories(row): URL = "https://en.wikipedia.org/w/api.php" PARAMS = { "action": "query", "format": "json", "prop": "categories", "pageids": row["articleid"] } R = session.get(url=URL, params=PARAMS) DATA = R.json() PAGES = DATA["query"]["pages"] for k, v in PAGES.items(): try: if 'categories' in v: for cat in v['categories']: row["category"] = cat["title"] print(row.articletitle, "==>", cat["title"]) break except Exception as err: print(err) return row return __fetch_categories def DFS(session, article_title, size, word_count): """ :param session: http session for wiki api :param article_title: title of wiki article :param size: article size :param word_count: word count :return: None """ revisions_url = "https://en.wikipedia.org/w/api.php" #?action=query&prop=revisions&format=json&&rvlimit=5&formatversion=2".format(article_title) PARAMS = { "action": "query", "format": "json", "prop": "revisions", "rvlimit": 5, "formatversion":2, "titles": article_title } diff_url = "http://en.wikipedia.org/w/index.php?diff={}&oldid={}" response= session.get(url=revisions_url, params=PARAMS).json() pages = response["query"]["pages"][0] df = pd.DataFrame() try: revisions = pages["revisions"] if size is not None and word_count is not None: title, size, word_count, articleid = page_search(session, article_title) except KeyError as err: # HARD LUCK # ================================= # spell mistakes of article title # query wikipedia for corrected title # print(pages) # url = "https://en.wikipedia.org/w/api.php" # PARAMS = { # "action": "query", # "format": "json", # "list": "search", # "srsearch": pages["title"] # } # response = session.get(url=url, params=PARAMS).json() # query = response["query"] # search = query["search"] # title = None # if len(search) > 0: # title = search[0]["title"] # elif "suggestion" in query.get("searchinfo",[]): # title= query["searchinfo"]["suggestion"] # else: # print("title not found!") # print(query) # ==================================== title, size, word_count, articleid = page_search(session=session, title=pages["title"]) if title is None: return df print(pages["title"], " ==> ", title) df = DFS(session, title, size, word_count) return df df = df.append({"size":size, "word_count":word_count, "article_title":title, "articleid": int(articleid)}, ignore_index=True) return df def augment_data(): """ :return:filenames of collected edits """ sess = requests.Session() df = pd.DataFrame() edits = pd.read_csv("edits.csv") edits_df = edits #.sample(n=10) # [["editid", "editor", "newrevisionid", "oldrevisionid", "editcomment", "diffurl", "articletitle"]] try: for index, row in edits_df.iterrows(): _df=DFS(sess,row["articletitle"], size=0, word_count=0) if not _df.empty: edits_df.loc[index, "size"] = _df["size"][0] edits_df.loc[index, "word_count"] = _df["word_count"][0] edits_df.loc[index, "articleid"] = _df["articleid"][0] edits_df.loc[index, "articletitle"] = _df["article_title"][0] else: print("failed") print(row["articletitle"]) filename = "augmented_with_size_wc.csv" edits_df = edits_df.dropna() edits_df.to_csv(filename, index=False) print(edits_df.count()) except Exception as err: filename = "incomplete.csv" edits_df.to_csv(filename, index=False) print(edits_df.count()) print(err) sys.exit(0) except KeyboardInterrupt as err: filename = "incomplete.csv" edits_df.to_csv(filename, index=False) print(edits_df.count()) print(err) sys.exit(0) return filename if __name__ == "__main__": merged_data =
pd.read_csv("merged_augmented.csv")
pandas.read_csv
import pandas as pd def generate_train(playlists): # define category range cates = {'cat1': (10, 50), 'cat2': (10, 78), 'cat3': (10, 100), 'cat4': (40, 100), 'cat5': (40, 100), 'cat6': (40, 100),'cat7': (101, 250), 'cat8': (101, 250), 'cat9': (150, 250), 'cat10': (150, 250)} cat_pids = {} for cat, interval in cates.items(): df = playlists[(playlists['num_tracks'] >= interval[0]) & (playlists['num_tracks'] <= interval[1])].sample( n=1000) cat_pids[cat] = list(df.pid) playlists = playlists.drop(df.index) playlists = playlists.reset_index(drop=True) return playlists, cat_pids def generate_test(cat_pids, playlists, interactions, tracks): def build_df_none(cat_pids, playlists, cat, num_samples): df = playlists[playlists['pid'].isin(cat_pids[cat])] df = df[['pid', 'num_tracks']] df['num_samples'] = num_samples df['num_holdouts'] = df['num_tracks'] - df['num_samples'] return df def build_df_name(cat_pids, playlists, cat, num_samples): df = playlists[playlists['pid'].isin(cat_pids[cat])] df = df[['name', 'pid', 'num_tracks']] df['num_samples'] = num_samples df['num_holdouts'] = df['num_tracks'] - df['num_samples'] return df df_test_pl = pd.DataFrame() df_test_itr = pd.DataFrame() df_eval_itr = pd.DataFrame() for cat in list(cat_pids.keys()): if cat == 'cat1': num_samples = 0 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl =
pd.concat([df_test_pl, df])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sat Jun 6 22:23:07 2020 @author: atidem """ import pandas as pd import numpy as np from statsmodels.tsa.holtwinters import ExponentialSmoothing from statsmodels.tsa.ar_model import AR,ARResults from statsmodels.tsa.arima_model import ARIMA,ARMA,ARIMAResults,ARMAResults from pmdarima import auto_arima from sklearn.metrics import mean_absolute_error,mean_squared_error import matplotlib.pyplot as plt from matplotlib.pyplot import show import warnings warnings.filterwarnings("ignore") from math import sqrt import matplotlib as mt import statsmodels as st import sklearn as sk import worldometerDataHandler as handle from statsmodels.tsa.statespace.sarimax import SARIMAX #%% Notes ## default test rate 0.2 , replaceable (Ar,Arma,Arima) ## worldometer link , replaceable ## have to search parameter for each country ## russian data have "did not converge" exception ## edited library for keep going to work in exception "lib\site-packages\numpy\linalg\linalg.py" #%% resultsData = [] dataPosLenDeath = 0 dataPosLenCases = 0 #%% temp method def runAllMethods(): #%% get data from worldometer's link global dataPosLenCases,dataPosLenDeath getData = handle.GetDataFromWorldometer(url) df = getData.handleData() #%% dataLen = len(df) #positivity dataPosDeath = df[df.Deaths>0] dataPosLenDeath = len(dataPosDeath) dataPosCases = df[df.Cases>0] dataPosLenCases = len(dataPosCases) # size of predict(daily) predDayCount = 30 # total range totalIdx = pd.date_range(df.index[0],periods=dataLen+predDayCount,freq='D') #df["Cases"][:pd.to_datetime("19.3.2020",format="%d.%m.%Y")] #%% measure metrics def mape(a,b): mask = a != 0 return (np.fabs(a - b)/a)[mask].mean() def mae(a,b): return mean_absolute_error(a,b) def rmse(a,b): return sqrt(mean_squared_error(a,b)) #%% Holt Winters """ ---Holt Winters--- alpha = smoothing_level beta = smoothing_slope gamma = smoothing_seasonal phi = damping_slope tren = mul , add seasonal = mul , add seasonal period damped = True , False Gonna add user interface """ def holtWinters(data,alpha=None,beta=None,gamma=None,phi=None,tren=None,seasonal='add',period=None,damp=False): dataPos = data[data>0] dataPosLen = len(dataPos) dataPos = pd.to_numeric(dataPos,downcast='float') #print(dataPos) pred = pd.DataFrame(index=totalIdx) model = ExponentialSmoothing(dataPos[:dataPosLen],trend=tren,seasonal=seasonal,seasonal_periods=period,damped=damp) pred["Fitted_Values"] = model.fit(smoothing_level=alpha,smoothing_slope=beta,smoothing_seasonal=gamma,damping_slope=phi).fittedvalues pred["Predicted_Values"] = pd.Series(model.predict(model.params,start=df.index[-1],end=totalIdx[-1]),index=totalIdx[dataLen-1:]) return pred ## Holt Winters Prediction Section ## default values (alpha=None,beta=None,gamma=None,phi=None,tren=None,seasonal='add',period=None,damp=False) Case_mul_mul = holtWinters(data=df.Cases,alpha=0.25,beta=0.25,gamma=0,tren='mul',seasonal='mul',period=dataPosLenCases-1,damp=True) Case_mul_mul.rename(columns={"Fitted_Values":"Cases_hw_tes_mul-mul","Predicted_Values": "Cases_predict_hw_tes_mul"},inplace=True) Case_add_add = holtWinters(data=df.Cases,alpha=0.9,beta=0.9,gamma=0,tren='add',seasonal='add',period=dataPosLenCases-1,damp=False) Case_add_add.rename(columns={"Fitted_Values":"Cases_hw_tes_add-add","Predicted_Values": "Cases_predict_hw_tes_add"},inplace=True) Death_mul_mul = holtWinters(data=df.Deaths,alpha=0.9,beta=0.9,gamma=0,tren='mul',seasonal='mul',period=dataPosLenDeath-1,damp=True) Death_mul_mul.rename(columns={"Fitted_Values":"Deaths_hw_tes_mul","Predicted_Values": "Deaths_predict_hw_tes_mul"},inplace=True) Death_add_add = holtWinters(data=df.Deaths,alpha=0.9,beta=0.9,gamma=0,tren='add',seasonal='add',period=dataPosLenDeath-1,damp=False) Death_add_add.rename(columns={"Fitted_Values":"Deaths_hw_tes_add","Predicted_Values": "Deaths_predict_hw_tes_add"},inplace=True) ## merge prediction and main dataframe finalDf =
pd.concat([df,Case_mul_mul,Case_add_add,Death_mul_mul,Death_add_add],axis=1)
pandas.concat
import numpy as np #import scipy.io #required to read Matlab *.mat file from scipy import linalg import pandas as pd import networkx as nx #import pickle import itertools from sklearn.covariance import GraphLassoCV, ledoit_wolf, graph_lasso from statsmodels.stats.correlation_tools import cov_nearest import networkx as nx import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.patches as patches from matplotlib.ticker import MaxNLocator import json import glob def X_from_excel(file, gmax=5): """ Reads pedigree data and outputs a balanced table, where rows are pedigrees and columns are lineal positions. gmax is the maximum allowed number of generations""" X_raw = pd.read_excel(file, index_col=[0,1]) X_raw = X_raw.unstack() X_raw.columns = ['{}'.format(x[1]) for x in X_raw.columns] """ Create list of all cell id's within given generations Integer id's, e.g. [1,2,3,4,5,6,7]""" gmin = 1 #always start at generation 1 cint = range(int(2**(gmin-1)),int(2**gmax)) """Convert to binary id's: ['1','10','11','100','101','110','111']""" cbin = [str(bin(i))[2:] for i in cint] cells = cbin """Populate new df, which has a complete list of cell id's, w/ data""" X = pd.DataFrame(index=X_raw.index, columns=cells) X.update(X_raw) #fill nan's with data where available return X def MLEchordal(S,Morder=1): """Calculate Kmle from the marginals of cliques and separators in S. S is the sample covariance. Morder is the order of the Markov chain.""" p = S.shape[0] #dimensionality of one side of S idx = range(p) #list of variables K_mle = np.zeros((p,p)) # initialize K """Markov order cannot be greater than dimensionality-1""" if Morder > p-1: Morder = p-1 """Identify cliques and separators in a Markov chain""" Cq = []; Sp = [] for i in range(0,p-Morder): Cq.append(list(idx[i:i+1+Morder])) if i > 0: Sp.append(sorted(set(Cq[i-1]).intersection(set(Cq[i])))) """ Build K_mle from cliques and separators""" # Add cliques for c in Cq: Scq = S[np.ix_(c,c)] Kcq = np.linalg.pinv(Scq) K_mle[np.ix_(c,c)] += Kcq # Subtract separators for s in Sp: Ssp = S[np.ix_(s,s)] Ksp = np.linalg.pinv(Ssp) K_mle[np.ix_(s,s)] -= Ksp cov_mle = np.linalg.pinv(K_mle) #cov_mle = cov_mle.round(10) #remove bit noise to make symmetric cov_mle = (cov_mle + cov_mle.T)/2 #symmetrize return cov_mle, K_mle """ Modified Cholesky decomposition""" def LDL_decomp(A): if not (A.T == A).all(): print('Matrix must be symmetric!') print(A-A.T) #show to make sure asymmetry is just numerical error A = (A + A.T)/2 #make it symmetric C = np.linalg.cholesky(A) d = np.diag(C) D = np.diag(d**2) dinv = np.diag(1/d) L = C.dot(dinv) return L, D def Estep(X,params): """ E-Step of the EM algorithm""" n, p = X.shape mu = params['mu'] cov = params['cov'] """Sufficient statistics""" x_cum = np.zeros(p) # cumulative sum of completed rows xx_cum = np.zeros([p,p]) # cumulative sum of completed outer products #ent_cum = 0 # cumulative entropy #num_m_cum = 0 # cumulative number of missing elements for i in range(n): """Partition cov into observed and missing quadrants""" j_o = np.array(np.where(~np.isnan(X[i,:]))).flatten() j_m = np.array(np.where(np.isnan(X[i,:]))).flatten() num_m = len(j_m) mu_o = mu[j_o] mu_m = mu[j_m] cov_oo = cov[np.ix_(j_o,j_o)] #np.ix_(a,b) = outer product <a,b> cov_mm = cov[np.ix_(j_m,j_m)] cov_om = cov[np.ix_(j_o,j_m)] cov_mo = cov[np.ix_(j_m,j_o)] xo = X[i,j_o] #observed values if num_m == 0: #Simple when no missing data x_cum += xo xx_cum += np.outer(xo,xo) else: """Expected x,xx conditioned on xo, P(xm|xo;params)""" """Expected vals of x and xx""" xm_E = mu_m +cov_mo.dot(np.linalg.pinv(cov_oo)).dot(xo-mu_o) x_all = np.empty(p) x_all[j_o] = xo x_all[j_m] = xm_E # use E(xm|xo;params) for missing elements xx_all = np.outer(x_all,x_all) #need to correct xmxm block """Add residual covariance E(xm*xm|xo) to xmxm: p.648 Eq (17.44) Hastie et al. p.225, Eq (11.5) Little & Rubin""" xmxm_E = cov_mm - cov_mo.dot(np.linalg.pinv(cov_oo)).dot(cov_om) xx_all[np.ix_(j_m,j_m)] += xmxm_E """Cumulative sum over previous x and xx""" x_cum += x_all xx_cum += xx_all #Non-constant terms of entropy of P(xm|xo;params) for LL #ent_cum += 0.5*np.log(np.linalg.det(xx_mm_E)) #Increment cumulative number of missing elements #num_m_cum += num_m # Constant entropy term P(z|xo;params) #ent_const = 0.5*num_m_cum*(1+np.log(2*np.pi)) """Expected complete data log-likelihood""" S = xx_cum - 2*np.outer(mu,x_cum) + n*np.outer(mu,mu) #Sample cov ll = -0.5*(n*np.log(np.linalg.det(cov))+ np.trace(S.dot(np.linalg.pinv(cov)))) """Compute log-likelihood""" #ell = -0.5*n*np.log(np.linalg.det(2*np.pi*cov)) - \ # 0.5*np.trace(np.linalg.pinv(cov).dot(S)) #ll = ell #+ ent_cum + ent_const """Store sufficient statistics in dict""" ss = {'xTot':x_cum, 'xxOuter':xx_cum, 'nExamples':n} return ss,ll class MVN: """ Fits a Multivariate Gaussian Distribution from a dataset which may have missing values by using the Expectation-Maximisation Algorithm Code originally sourced from: https://github.com/charlienash/mvn-missing-data/blob/master/mvn.py""" def __init__(self, em_tol=1e-2, em_maxIter=1000, em_verbose=True): self.em_tol = em_tol self.em_maxIter = em_maxIter self.em_isFitted = False self.em_verbose = em_verbose self.pattern = None #covariance pattern self.label_map = None # mapping from covariance pattern to indices #plt.rc('text', usetex=False) #plt.rc('font', **{'family':'serif', 'serif':['Computer Modern Roman'], # 'monospace': ['Computer Modern Typewriter']}) #import matplotlib as mpl #mpl.rcParams.update(mpl.rcParamsDefault) def create_F(self, gmax,plabels): """ Creates the change-of-basis matrix. Each row is a basis vector. Returned as a dataframe with indices and columns properly labeled. """ """Create gmax Haar transform matrices and store in list""" Nvars = 2**gmax-1 Hlist = [np.ones(1)[:,np.newaxis]] # Haar list, start with [[1]]. modes = [(1,1,1)] # List of mode names dim_func = lambda i: 1 if i==1 else 2**(i-2) #dimensionality of irrep for g in range(1,gmax): Ng = Hlist[g-1].shape[0] a = np.kron(Hlist[g-1], np.array([1.,1.])) b = np.kron(np.eye(Ng),np.array([1.,-1.])) Hlist.append(np.concatenate([a,b],axis=0)) for irrep in range(1,g+2): for d in range(1,dim_func(irrep)+1): modes.append((g+1,irrep,d)) #Hard-coded index ordering """Label modes: (Multiplicity, Irreducible, Dimension) """ modes = pd.MultiIndex.from_tuples(modes, names=['mul','irp','dim']) """Direct sum of H matrices for each gen.""" F = pd.DataFrame(linalg.block_diag(*Hlist),index=modes,columns=plabels) """Normalize each symmetry adapted basis vector (=row)""" F = F.apply(lambda x: x/np.sqrt(x.dot(x)), axis=1) """ Reorder indices in order of increasing index frequency """ F = F.reorder_levels(['irp','dim','mul'],axis=0) """Sort symmetry-adapted basis vectors by irp then by dim""" F = F.sort_index(axis=0,level=['irp','dim']) #Sort by irp,dim """Set the \ell and \tau indices to start at 0 instead of 1.""" F.index = F.index.set_levels(F.index.levels[0]-1, level=0) #'irp' = \ell F.index = F.index.set_levels(F.index.levels[1]-1, level=1) #'dim' = \tau """Aggregate the degenerate eigenspaces""" #Q = F.groupby(axis=0,level=['irp','mul']).sum() #sum the degeneracies Q = F.groupby(axis=0,level=['irp','mul']).mean() #avrge the degeneracies return F,Q def avPattern(self, dat, pmap): """ Average together elements that have the same label. Args ---- dat: array of data values pmap: mapping from unique array elements to pooling indices Returns ---- dat: array of pooled data (changes dat in place) """ for k in pmap: if len(dat.shape) == 1: q = pmap[k][0] elif len(dat.shape) == 2: q = pmap[k] dat[q] = dat[q].mean() return dat def find_MLE(self, cov_emp): """ Finds the penalised MLE given an empirical cov""" """ No decomposition: find MLE of full cov matrix all at once """ if self.MLEalgo == 'glasso': """Convert cov_emp to correlation matrix """ sig_emp = np.sqrt(np.diag(cov_emp)) corr_emp = cov_emp / np.outer(sig_emp,sig_emp) """ gLasso of patterned correlation matrix """ corr_MLE = graph_lasso(corr_emp, alpha = self.alpha, verbose = self.gl_verbose, max_iter = self.gl_maxIter)[0] #Ignore prec_reg output, [1] """Convert back to covariance""" cov_MLE = corr_MLE * np.outer(sig_emp,sig_emp) """ Decomposition: Find MLE of orthogonal components then recombine""" if self.MLEalgo == 'ortho_glasso' or self.MLEalgo == 'ortho_select': """Convert to symmetry-adapted basis""" scov_emp = self.F.dot(cov_emp.dot(self.F.T)) #DataFrame type scov_emp.columns = self.F.index #since df has no column index (hack) """Initialise penalised spec_cov""" scov_p = pd.DataFrame(0,columns=scov_emp.columns, index=scov_emp.index) """Extract list of unique irreps""" irp = scov_emp.index.get_level_values('irp').unique().tolist() for i in irp: """Extract entire irreducible subspace""" scov_iD=scov_emp.xs(key=i,level='irp',axis=0,drop_level=False)\ .xs(key=i,level='irp',axis=1,drop_level=False) """Get multiplicity of subspace""" Nm_i = scov_iD.index.get_level_values('mul').unique().shape[0] if Nm_i == 1: # No glasso if multiplicity is 1 scov_p.loc[scov_iD.index,scov_iD.index] = scov_iD elif Nm_i > 1: # Use glasso """Get dimensionality of subspace""" Nd_i=scov_iD.index.get_level_values('dim').unique().shape[0] if Nd_i == 1: #Single block only cv = scov_iD.values sg = np.sqrt(np.diag(cv)) cr = cv / np.outer(sg,sg) #elementwise division if self.MLEalgo == 'ortho_glasso': """ Perform glasso optimization """ scov_p.loc[scov_iD.index,scov_iD.index] = \ graph_lasso(cr, alpha=self.alpha, verbose=self.gl_verbose, max_iter=self.gl_maxIter)[0] * np.outer(sg,sg) if self.MLEalgo == 'ortho_select': """Perform covariance selection; explicit MLE""" scov_p.loc[scov_iD.index,scov_iD.index] = \ MLEchordal(cv,Morder=self.Morder)[0] elif Nd_i > 1: #Direct sum over repeated blocks """Extract 1st dimensions of irreps (unique params)""" scov_i1 = scov_iD\ .xs(key=1,level='dim',axis=0,drop_level=False)\ .xs(key=1,level='dim',axis=1,drop_level=False) """glasso over 1st dimensions""" cv = scov_i1.values sg = np.sqrt(np.diag(cv)) cr = cv / np.outer(sg,sg) if self.MLEalgo == 'ortho_glasso': """ Perform glasso optimization """ scovp_tmp = graph_lasso(cr, alpha=self.alpha, verbose=self.gl_verbose, max_iter=self.gl_maxIter)[0] * np.outer(sg,sg) if self.MLEalgo == 'ortho_select': """Perform covariance selection; explicit MLE""" scovp_tmp = MLEchordal(cv,Morder=self.Morder)[0] """ direct sum over dimensionality of subspace. Nd_i is the number of repeated blocks in the irrep """ scov_p.loc[scov_iD.index,scov_iD.index] = \ linalg.block_diag(*[scovp_tmp]*Nd_i) cov_MLE = self.F.T.dot(scov_p.dot(self.F)).values return cov_MLE def _mStep(self, ss): """ M-Step of the EM-algorithm. The M-step takes the expected sufficient statistics computed in the E-step, and maximizes the expected complete data log-likelihood with respect to the parameters. Args ---- ss : dict pattern: matrix of labels to identify unique covariance matrix elements Returns ------- params : dict """ mu_emp = 1/ss['nExamples'] * ss['xTot'] """ Pool mu elements according to pattern matrix """ if self.pattern == True: mu_emp = self.avPattern(mu_emp, self.mu_map) cov_emp = 1/ss['nExamples'] * (ss['xxOuter']) - np.outer(mu_emp,mu_emp) """ Pool cov elements according to pattern matrix """ if self.pattern == True: cov_emp = self.avPattern(cov_emp, self.cov_map) """Check that the covariance matrix is positive definite. If it is not this usually spells doom for the iteration.""" if ~np.all(np.linalg.eigvals(cov_emp) > 0): print('MStep: Matrix is NOT positive definite') print('Replace cov with nearest positive definite matrix') cov_emp = cov_nearest(cov_emp) #cov_emp = (cov_emp + cov_emp.T)/2. """ Find MLE for covariance """ cov_MLE = self.find_MLE(cov_emp) """Make sure that shared elements are equal (the glasso nearly preserves their equality, just not exactly, so need to pool elements again)""" #if self.pattern == True: # self.avPattern(corr_p, self.cov_map) #mu = mu_emp.copy() #cov = cov_p.copy() # Store params in dictionary params = { 'mu' : mu_emp, 'cov' : cov_MLE } return params def fit(self, dfX, pattern=None, paramsInit=None, MLEalgo='ortho_select', alpha=0.0, Morder=1, gl_maxIter=500, gl_verbose=False): """ Fit the model using EM with data X. Args ---- dfX : DataFrame, [nExamples, dataDim] df of training data, where nExamples is the number of examples and dataDim is the number of dimensions. MLEalgo: algorithm for finding MLE 'glasso' - graphical lasso of observable covariance 'ortho_glasso' - glasso of orthogonal components 'ortho_select' - explicit MLE from covariance selection; this requires setting the Markov order, Morder alpha: regularisation parameter for glasso (0=no regularisation) Morder: order of the Markov chain to use in covariance selection """ nExamples, dataDim = np.shape(dfX) X = dfX.values.astype(float) plabels = dfX.columns #name of each data variable self.alpha = alpha self.MLEalgo = MLEalgo self.Morder = Morder self.gl_maxIter = gl_maxIter self.gl_verbose = gl_verbose """ Load positions of shared parameters in mean and cov""" if pattern is not None: self.pattern = True self.cov_pattern = pattern.values self.mu_pattern = np.diag(pattern.values) #derived from cov_pattern # Create dicts mapping unique cov element identifier to index: # key=unique identifier; value=list of indices pattern_to_map = lambda p: {i:np.where(p==i) for i in np.unique(p)} self.cov_map = pattern_to_map(self.cov_pattern) self.mu_map = pattern_to_map(self.mu_pattern) """ Initial guess of mu and cov; required for missing data """ if paramsInit is None: #params = {'mu' : np.zeros(dataDim),#np.random.normal(size=dataDim), # 'cov' : np.eye(dataDim)} mu00 = dfX.mean().mean() #global mean mu0 = dfX.mean().values mu0 = self.avPattern(mu0, self.mu_map) #pooled mean values mu0[np.isnan(mu0)] = mu00 #remaining nan's set to global mean var00 = dfX.var().mean() #global variance var0 = dfX.var().values var0 = self.avPattern(var0, self.mu_map) #pooled variance var0[np.isnan(var0)] = var00 #remaining nan's set to global mean cov0 = np.diag(var0) params = {'mu':mu0, 'cov':cov0} #mu0 = dfX.fillna(dfX.mean()).mean().values #cov0 = dfX.fillna(dfX.mean()).cov().values #params = {'mu': mu0, 'cov':cov0} else: params = paramsInit """ Create change-of-basis matrix """ gens = [len(id) for id in plabels] #recover generation values gmin, gmax = min(gens), max(gens) self.F, self.Q = self.create_F(gmax,plabels) # Change-of-basis matrix """ Initialise log-likelihood """ oldL = -np.inf """ Iterate over E and M steps """ for i in range(self.em_maxIter): """E-Step""" #ss.keys() = {'xTot', 'xxOuter', 'nExamples'} """ WHAT IS THE DIFFERENCE BETWEEN Estep and _eStep??? """ ss, ll = Estep(X,params) #ss, ll = self._eStep(X, params) """M-step""" params = self._mStep(ss) """Evaluate likelihood""" if self.em_verbose: print("Iter {:d} NLL: {:.3f} Change: {:.3f}".format(i, -ll, -(ll-oldL)), flush=True) """Break if change in likelihood is small""" if np.abs(ll - oldL) < self.em_tol: break oldL = ll else: if self.em_verbose: print("MVN did not converge within the specified tolerance." + " You might want to increase the number of iterations.") """Mean, Covariance, Sigma """ mu = params['mu'] cov = params['cov'] sig = np.sqrt(np.diag(cov)) self.mu =
pd.Series(mu, index=plabels)
pandas.Series
# -*- coding: utf-8 -*- #!/usr/bin/env python # Copyright 2015-2017, Institute for Systems Biology. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pandas as pd import re from isb_cgc_user_data.utils.error_handling import UduException def convert_file_to_dataframe(filepath_or_buffer, sep="\t", skiprows=0, rollover=False, nrows=None, header=None, logger=None): """does some required data cleaning and then converts into a dataframe """ if logger: logger.log_text("Converting file to a dataframe", severity='INFO') try: # items to change to NaN/NULL # when you change something here, remember to change in clean_up_dataframe too. na_values = ['none', 'None', 'NONE', 'null', 'Null', 'NULL', ' ', 'NA', '__UNKNOWN__', '?'] # read the table/file # EXCEPTION THROWN: TOO MANY FIELDS THROWS CParserError e.g. "Expected 207 fields in line 3, saw 208" # EXCEPTION THROWN: EMPTY FILE THROWS CParserError e.g. "Passed header=0 but only 0 lines in file" data_df = pd.read_table(filepath_or_buffer, sep=sep, skiprows=skiprows, lineterminator='\n', comment='#', na_values=na_values, dtype='object', nrows=nrows, header=header) except Exception as exp: if logger: logger.log_text("Read Table Error: {0}".format(str(exp.message)), severity='ERROR') user_message = None pattern = re.compile('^.* error: (.*)$') match = pattern.match(str(exp.message)) if match: err_guts = match.group(1) if err_guts: user_message = "Error parsing file: {0}. ".format(err_guts[:400]) if not user_message: if "0 lines in file" in str(exp.message): user_message = "File was empty" if not user_message: user_message = "Parsing error reading file" raise UduException(user_message) finally: filepath_or_buffer.close() # close StringIO return data_df #---------------------------------------- # Convert newline-delimited JSON string to dataframe # -- should work for a small to medium files # we are not loading into string, but into a temp file # works only in a single bucket #---------------------------------------- def convert_njson_file_to_df(filebuffer, logger=None): """Converting new-line delimited JSON file into dataframe""" if logger: logger.log_text("Converting new-line delimited JSON file into dataframe", severity='INFO') # convert the file into a dataframe lines = [json.loads(l) for l in filebuffer.splitlines()] data_df =
pd.DataFrame(lines)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri May 20 14:09:31 2016 @author: bmanubay """ import cirpy import numpy as np import pandas as pd from sklearn.externals.joblib import Memory mem = Memory(cachedir="/home/bmanubay/.thermoml/") @mem.cache def resolve_cached(x, rtype): return cirpy.resolve(x, rtype) # Define list of all alkane SMILES strings that appear in all of our data SMILES_alk = ['C', 'CC', 'CCC', 'CCCC', 'CCCCC', 'CCCCCC', 'CCCCCCC', 'CCCCCCCC', 'CCCCCCCCC', 'CCCCCCCCCC', 'CC(C)C', 'CCC(C)C', 'CCCC(C)C', 'C1CCCCC1', 'CC1CCCCC1', 'CCCCCC(C)C', 'CC(C)C(C)C', 'CCC(C)(C)C', 'CCC(C)CC', 'CCCC(C)C', 'CC(C)CC(C)(C)C', 'C1CCCC1', 'C1CCCCCCC1', 'CCC1CCCCC1', 'CC1CCC(C)C(C)C1', 'CCCCC1CCCCC1', 'CC1CCCC1', 'CCCCCCC(C)C', 'CCCCCCCC(C)C', 'CCCCC(C)CCC', 'CCC(C)CCC(C)CC', 'CCC(C)CC(C)CC', 'CCCCCC(C)C', 'C1CCCCCC1', 'CC(C)C(C)C', 'CCC(C)(C)C'] S = pd.DataFrame({'SMILES': SMILES_alk}, columns = ['SMILES']) # Binary mixtures aa1 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/actcoeff_bin.csv", sep=';', index_col= 'Unnamed: 0') aa2 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/dens_bin.csv", sep=';', index_col= 'Unnamed: 0') aa3 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/dielec_bin.csv", sep=';', index_col= 'Unnamed: 0') aa4 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/eme_bin.csv", sep=';', index_col= 'Unnamed: 0') aa5 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/emcp_bin.csv", sep=';', index_col= 'Unnamed: 0') aa6 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/emv_bin.csv", sep=';', index_col= 'Unnamed: 0') aa7 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Property data/sos_bin.csv", sep=';', index_col= 'Unnamed: 0') # Binary Mixtures with alkane-alkane mixtures removed cc1c = pd.concat([aa1["x1"], aa1["x2"], aa1['SMILES1'], aa1['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc1c.SMILES1.isin(S.SMILES) & cc1c.SMILES2.isin(S.SMILES)) cc1c = cc1c[ind] cc1c = cc1c.drop(['x1','x2'], axis=1) count1c = pd.Series(cc1c.squeeze().values.ravel()).value_counts() count1c = count1c.reset_index() count1c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc1 = pd.concat([count1c["SMILES"], count1c["Count"]], axis=1, keys=["SMILES", "Count"]) cc2c = pd.concat([aa2["x1"], aa2["x2"], aa2['SMILES1'], aa2['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc2c.SMILES1.isin(S.SMILES) & cc2c.SMILES2.isin(S.SMILES)) cc2c = cc2c[ind] cc2c = cc2c.drop(['x1','x2'], axis=1) count2c = pd.Series(cc2c.squeeze().values.ravel()).value_counts() count2c = count2c.reset_index() count2c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc2 = pd.concat([count2c["SMILES"], count2c["Count"]], axis=1, keys=["SMILES", "Count"]) cc3c = pd.concat([aa3["x1"], aa3["x2"], aa3['SMILES1'], aa3['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc3c.SMILES1.isin(S.SMILES) & cc3c.SMILES2.isin(S.SMILES)) cc3c = cc3c[ind] cc3c = cc3c.drop(['x1','x2'], axis=1) count3c = pd.Series(cc3c.squeeze().values.ravel()).value_counts() count3c = count3c.reset_index() count3c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc3 = pd.concat([count3c["SMILES"], count3c["Count"]], axis=1, keys=["SMILES", "Count"]) cc4c = pd.concat([aa4["x1"], aa4["x2"], aa4['SMILES1'], aa4['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc4c.SMILES1.isin(S.SMILES) & cc4c.SMILES2.isin(S.SMILES)) cc4c = cc4c[ind] cc4c = cc4c.drop(['x1','x2'], axis=1) count4c = pd.Series(cc4c.squeeze().values.ravel()).value_counts() count4c = count4c.reset_index() count4c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc4 = pd.concat([count4c["SMILES"], count4c["Count"]], axis=1, keys=["SMILES", "Count"]) cc5c = pd.concat([aa5["x1"], aa5["x2"], aa5['SMILES1'], aa5['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc5c.SMILES1.isin(S.SMILES) & cc5c.SMILES2.isin(S.SMILES)) cc5c = cc5c[ind] cc5c = cc5c.drop(['x1','x2'], axis=1) count5c = pd.Series(cc5c.squeeze().values.ravel()).value_counts() count5c = count5c.reset_index() count5c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc5 = pd.concat([count5c["SMILES"], count5c["Count"]], axis=1, keys=["SMILES", "Count"]) cc6c = pd.concat([aa6["x1"], aa6["x2"], aa6['SMILES1'], aa6['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc6c.SMILES1.isin(S.SMILES) & cc6c.SMILES2.isin(S.SMILES)) cc6c = cc6c[ind] cc6c = cc6c.drop(['x1','x2'], axis=1) count6c = pd.Series(cc6c.squeeze().values.ravel()).value_counts() count6c = count6c.reset_index() count6c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc6 = pd.concat([count6c["SMILES"], count6c["Count"]], axis=1, keys=["SMILES", "Count"]) cc7c = pd.concat([aa7["x1"], aa7["x2"], aa7['SMILES1'], aa7['SMILES2']], axis=1, keys = ["x1", "x2", "SMILES1", "SMILES2"]) ind = np.logical_not(cc7c.SMILES1.isin(S.SMILES) & cc7c.SMILES2.isin(S.SMILES)) cc7c = cc7c[ind] cc7c = cc7c.drop(['x1','x2'], axis=1) count7c = pd.Series(cc7c.squeeze().values.ravel()).value_counts() count7c = count7c.reset_index() count7c.rename(columns={"index":"SMILES",0:"Count"},inplace=True) ccc7 = pd.concat([count7c["SMILES"], count7c["Count"]], axis=1, keys=["SMILES", "Count"]) # All data counts c1 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Pure/Component counts/purecomp_counts_cpmol.csv", sep=';', usecols=['SMILES', 'Count']) c2 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Pure/Component counts/purecomp_counts_dens.csv", sep=';', usecols=['SMILES', 'Count']) c3 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Pure/Component counts/purecomp_counts_dielec.csv", sep=';', usecols=['SMILES', 'Count']) c4 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Pure/Component counts/purecomp_counts_hmol.csv", sep=';', usecols=['SMILES', 'Count']) c5 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Pure/Component counts/purecomp_counts_sos.csv", sep=';', usecols=['SMILES', 'Count']) cc1 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_actcoeff.csv", sep=';', usecols=['SMILES', 'Count']) cc2 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_dens.csv", sep=';', usecols=['SMILES', 'Count']) cc3 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_dielec.csv", sep=';', usecols=['SMILES', 'Count']) cc4 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_eme.csv", sep=';', usecols=['SMILES', 'Count']) cc5 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_emcp.csv", sep=';', usecols=['SMILES', 'Count']) cc6 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_emv.csv", sep=';', usecols=['SMILES', 'Count']) cc7 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Component counts/bincomp_counts_sos.csv", sep=';', usecols=['SMILES', 'Count']) gg1 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_actcoeff.csv", sep=';', index_col= 'Unnamed: 0') gg2 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_dens.csv", sep=';', index_col= 'Unnamed: 0') gg3 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_dielec.csv", sep=';', index_col= 'Unnamed: 0') gg4 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_eme.csv", sep=';', index_col= 'Unnamed: 0') gg5 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_emcp.csv", sep=';', index_col= 'Unnamed: 0') gg6 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_emv.csv", sep=';', index_col= 'Unnamed: 0') gg7 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/Binary/Mixture counts/mix_counts_sos.csv", sep=';', index_col= 'Unnamed: 0') a = c2.merge(c1,how='outer',on=['SMILES'],suffixes=(' dens pure', ' cpmol pure')).merge(c5,how='outer',on=['SMILES'],suffixes=(' cpmol pure', ' sos pure')).merge(c3,how='outer',on=['SMILES'],suffixes=(' sos pure', ' dielec pure')).merge(c4,how='outer',on=['SMILES'],suffixes=(' dielec pure', ' hmol pure')) a.replace(np.nan,0,inplace=True) a.rename(columns={'Count':'Count hmol pure'},inplace=True) b = cc2.merge(cc1,how='outer',on=['SMILES'],suffixes=(' dens binary', ' actcoeff binary')).merge(cc7,how='outer',on=['SMILES'],suffixes=(' actcoeff binary', ' sos binary')).merge(cc3,how='outer',on=['SMILES'],suffixes=(' sos binary', ' dielec binary')).merge(cc4,how='outer',on=['SMILES'],suffixes=(' dielec binary', ' eme binary')).merge(cc5,how='outer',on=['SMILES'],suffixes=(' eme binary', ' emcp binary')).merge(cc6,how='outer',on=['SMILES'],suffixes=(' emcp binary', ' emv binary')) b.replace(np.nan,0,inplace=True) b.rename(columns={'Count':'Count emv binary'},inplace=True) bb = ccc2.merge(ccc1,how='outer',on=['SMILES'],suffixes=(' dens binary', ' actcoeff binary')).merge(ccc7,how='outer',on=['SMILES'],suffixes=(' actcoeff binary', ' sos binary')).merge(ccc3,how='outer',on=['SMILES'],suffixes=(' sos binary', ' dielec binary')).merge(ccc4,how='outer',on=['SMILES'],suffixes=(' dielec binary', ' eme binary')).merge(ccc5,how='outer',on=['SMILES'],suffixes=(' eme binary', ' emcp binary')).merge(ccc6,how='outer',on=['SMILES'],suffixes=(' emcp binary', ' emv binary')) bb.replace(np.nan,0,inplace=True) bb.rename(columns={'Count':'Count emv binary'},inplace=True) c = pd.merge(a,b,how='outer',on=['SMILES']) c.replace(np.nan,0,inplace=True) cc =
pd.merge(a,bb,how='outer',on=['SMILES'])
pandas.merge
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import datetime as dt import os from typing import Union import numpy as np import pandas as pd import pytest import pytz from gs_quant.target.common import XRef, PricingLocation, Currency as CurrEnum from numpy.testing import assert_allclose from pandas.testing import assert_series_equal from pandas.tseries.offsets import CustomBusinessDay from pytz import timezone from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures as tm import gs_quant.timeseries.measures_rates as tm_rates from gs_quant.api.gs.assets import GsTemporalXRef, GsAssetApi, GsIdType, IdList, GsAsset from gs_quant.api.gs.data import GsDataApi, MarketDataResponseFrame from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.dataset import Dataset from gs_quant.data.fields import Fields from gs_quant.errors import MqError, MqValueError, MqTypeError from gs_quant.markets.securities import AssetClass, Cross, Index, Currency, SecurityMaster, Stock, \ Swap, CommodityNaturalGasHub from gs_quant.session import GsSession, Environment from gs_quant.test.timeseries.utils import mock_request from gs_quant.timeseries import Returns from gs_quant.timeseries.measures import BenchmarkType _index = [pd.Timestamp('2019-01-01')] _test_datasets = ('TEST_DATASET',) def mock_empty_market_data_response(): df = MarketDataResponseFrame() df.dataset_ids = () return df def map_identifiers_default_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-LIBOR-BBA" in ids: return {"USD-LIBOR-BBA": "MAPDB7QNB2TZVQ0E"} elif "EUR-EURIBOR-TELERATE" in ids: return {"EUR-EURIBOR-TELERATE": "MAJNQPFGN1EBDHAE"} elif "GBP-LIBOR-BBA" in ids: return {"GBP-LIBOR-BBA": "MAFYB8Z4R1377A19"} elif "JPY-LIBOR-BBA" in ids: return {"JPY-LIBOR-BBA": "MABMVE27EM8YZK33"} elif "EUR OIS" in ids: return {"EUR OIS": "MARFAGXDQRWM07Y2"} def map_identifiers_swap_rate_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m" in ids: return {"USD-3m": "MAAXGV0GZTW4GFNC"} elif "EUR-6m" in ids: return {"EUR-6m": "MA5WM2QWRVMYKDK0"} elif "KRW" in ids: return {"KRW": 'MAJ6SEQH3GT0GA2Z'} def map_identifiers_inflation_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "CPI-UKRPI" in ids: return {"CPI-UKRPI": "MAQ7ND0MBP2AVVQW"} elif "CPI-CPXTEMU" in ids: return {"CPI-CPXTEMU": "MAK1FHKH5P5GJSHH"} def map_identifiers_cross_basis_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m/JPY-3m" in ids: return {"USD-3m/JPY-3m": "MA99N6C1KF9078NM"} elif "EUR-3m/USD-3m" in ids: return {"EUR-3m/USD-3m": "MAXPKTXW2D4X6MFQ"} elif "GBP-3m/USD-3m" in ids: return {"GBP-3m/USD-3m": "MA8BZHQV3W32V63B"} def get_data_policy_rate_expectation_mocker( start: Union[dt.date, dt.datetime] = None, end: Union[dt.date, dt.datetime] = None, as_of: dt.datetime = None, since: dt.datetime = None, fields: Union[str, Fields] = None, asset_id_type: str = None, **kwargs) -> pd.DataFrame: if 'meetingNumber' in kwargs: if kwargs['meetingNumber'] == 0: return mock_meeting_spot() elif 'meeting_date' in kwargs: if kwargs['meeting_date'] == dt.date(2019, 10, 24): return mock_meeting_spot() return mock_meeting_expectation() def test_parse_meeting_date(): assert tm.parse_meeting_date(5) == '' assert tm.parse_meeting_date('') == '' assert tm.parse_meeting_date('test') == '' assert tm.parse_meeting_date('2019-09-01') == dt.date(2019, 9, 1) def test_currency_to_default_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) asset_id_list = ["MAZ7RWC904JYHYPS", "MAJNQPFGN1EBDHAE", "MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] correct_mapping = ["MAPDB7QNB2TZVQ0E", "MAJNQPFGN1EBDHAE", "MAFYB8Z4R1377A19", "MABMVE27EM8YZK33", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_default_swap_rate_asset(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_swap_rate_mocker) asset_id_list = ['MAZ7RWC904JYHYPS', 'MAJNQPFGN1EBDHAE', 'MAJ6SEQH3GT0GA2Z'] correct_mapping = ['MAAXGV0GZTW4GFNC', 'MA5WM2QWRVMYKDK0', 'MAJ6SEQH3GT0GA2Z'] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_swap_rate_asset(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_inflation_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_inflation_mocker) asset_id_list = ["MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] correct_mapping = ["MAQ7ND0MBP2AVVQW", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_inflation_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.currency_to_inflation_benchmark_rate('MA66CZBQJST05XKG') == 'MA66CZBQJST05XKG' def test_cross_to_basis(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_cross_basis_mocker) asset_id_list = ["MAYJPCVVF2RWXCES", "MA4B66MW5E27U8P32SB", "nobbid"] correct_mapping = ["MA99N6C1KF9078NM", "MA4B66MW5E27U8P32SB", "nobbid"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_basis(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.cross_to_basis('MAYJPCVVF2RWXCES') == 'MAYJPCVVF2RWXCES' def test_currency_to_tdapi_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA25DW5ZGC1BSC8Y', 'NOK') bbid_mock.return_value = 'NOK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAFRSWPAF5QPNTP2' == correct_id bbid_mock.return_value = 'CHF' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAW25BGQJH9P6DPT' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAA9MVX15AJNQCVG' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA6QCAP9B7ABS9HA' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAEE219J5ZP0ZKRK' == correct_id bbid_mock.return_value = 'SEK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAETMVTPNP3199A5' == correct_id bbid_mock.return_value = 'HKD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MABRNGY8XRFVC36N' == correct_id bbid_mock.return_value = 'NZD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAH16NHE1HBN0FBZ' == correct_id bbid_mock.return_value = 'AUD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAY8147CRK0ZP53B' == correct_id bbid_mock.return_value = 'CAD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MANJ8SS88WJ6N28Q' == correct_id bbid_mock.return_value = 'KRW' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAP55AXG5SQVS6C5' == correct_id bbid_mock.return_value = 'INR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA20JHJXN1PD5HGE' == correct_id bbid_mock.return_value = 'CNY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA4K1D8HH2R0RQY5' == correct_id bbid_mock.return_value = 'SGD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA5CQFHYBPH9E5BS' == correct_id bbid_mock.return_value = 'DKK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAF131NKWVRESFYA' == correct_id asset = Currency('MA890', 'PLN') bbid_mock.return_value = 'PLN' assert 'MA890' == tm_rates._currency_to_tdapi_swap_rate_asset(asset) replace.restore() def test_currency_to_tdapi_basis_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA890', 'NOK') bbid_mock.return_value = 'NOK' assert 'MA890' == tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAQB1PGEJFCET3GG' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAGRG2VT11GQ2RQ9' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAHCYNB3V75JC5Q8' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAXVRBEZCJVH0C4V' == correct_id replace.restore() def test_check_clearing_house(): assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house('lch') assert tm_rates._ClearingHouse.CME == tm_rates._check_clearing_house(tm_rates._ClearingHouse.CME) assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house(None) invalid_ch = ['NYSE'] for ch in invalid_ch: with pytest.raises(MqError): tm_rates._check_clearing_house(ch) def test_get_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] assert dict(csaTerms='USD-1') == tm_rates._get_swap_csa_terms('USD', fed_funds_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_swap_csa_terms('EUR', estr_index) assert {} == tm_rates._get_swap_csa_terms('EUR', euribor_index) assert {} == tm_rates._get_swap_csa_terms('USD', usd_libor_index) def test_get_basis_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] sofr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.SOFR.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] eonia_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EONIA.value] assert dict(csaTerms='USD-1') == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, sofr_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_basis_swap_csa_terms('EUR', estr_index, eonia_index) assert {} == tm_rates._get_basis_swap_csa_terms('EUR', eonia_index, euribor_index) assert {} == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, usd_libor_index) def test_match_floating_tenors(): swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='6m') assert swap_args == tm_rates._match_floating_tenors(swap_args) def test_get_term_struct_date(mocker): today = datetime.datetime.today() biz_day = CustomBusinessDay() assert today == tm_rates._get_term_struct_date(tenor=today, index=today, business_day=biz_day) date_index = datetime.datetime(2020, 7, 31, 0, 0) assert date_index == tm_rates._get_term_struct_date(tenor='2020-07-31', index=date_index, business_day=biz_day) assert date_index == tm_rates._get_term_struct_date(tenor='0b', index=date_index, business_day=biz_day) assert datetime.datetime(2021, 7, 30, 0, 0) == tm_rates._get_term_struct_date(tenor='1y', index=date_index, business_day=biz_day) def test_cross_stored_direction_for_fx_vol(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_stored_direction_for_fx_vol(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_usd_based_cross_for_fx_forecast(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_usd_based_cross(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_used_based_cross(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_to_usd_based_cross(Cross('FUN', 'EURUSD')) replace.restore() def test_cross_stored_direction(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_stored_direction_for_fx_vol(Cross('FUN', 'EURUSD')) replace.restore() def test_get_tdapi_rates_assets(mocker): mock_asset_1 = GsAsset(asset_class='Rate', id='MAW25BGQJH9P6DPT', type_='Swap', name='Test_asset') mock_asset_2 = GsAsset(asset_class='Rate', id='MAA9MVX15AJNQCVG', type_='Swap', name='Test_asset') mock_asset_3 = GsAsset(asset_class='Rate', id='MANQHVYC30AZFT7R', type_='BasisSwap', name='Test_asset') replace = Replacer() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1] assert 'MAW25BGQJH9P6DPT' == tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict(asset_parameters_termination_date='10y', asset_parameters_effective_date='0b') with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [] with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict() assert ['MAW25BGQJH9P6DPT', 'MAA9MVX15AJNQCVG'] == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() # test case will test matching sofr maturity with libor leg and flipping legs to get right asset kwargs = dict(type='BasisSwap', asset_parameters_termination_date='10y', asset_parameters_payer_rate_option=BenchmarkType.LIBOR, asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=BenchmarkType.SOFR, asset_parameters_receiver_designated_maturity='1y', asset_parameters_clearing_house='lch', asset_parameters_effective_date='Spot', asset_parameters_notional_currency='USD', pricing_location='NYC') assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_3] assert 'MANQHVYC30AZFT7R' == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() def test_get_swap_leg_defaults(): result_dict = dict(currency=CurrEnum.JPY, benchmark_type='JPY-LIBOR-BBA', floating_rate_tenor='6m', pricing_location=PricingLocation.TKO) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.JPY) assert result_dict == defaults result_dict = dict(currency=CurrEnum.USD, benchmark_type='USD-LIBOR-BBA', floating_rate_tenor='3m', pricing_location=PricingLocation.NYC) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.USD) assert result_dict == defaults result_dict = dict(currency=CurrEnum.EUR, benchmark_type='EUR-EURIBOR-TELERATE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.EUR) assert result_dict == defaults result_dict = dict(currency=CurrEnum.SEK, benchmark_type='SEK-STIBOR-SIDE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.SEK) assert result_dict == defaults def test_check_forward_tenor(): valid_tenors = [datetime.date(2020, 1, 1), '1y', 'imm2', 'frb2', '1m', '0b'] for tenor in valid_tenors: assert tenor == tm_rates._check_forward_tenor(tenor) invalid_tenors = ['5yr', 'imm5', 'frb0'] for tenor in invalid_tenors: with pytest.raises(MqError): tm_rates._check_forward_tenor(tenor) def mock_commod(_cls, _q): d = { 'price': [30, 30, 30, 30, 35.929686, 35.636039, 27.307498, 23.23177, 19.020833, 18.827291, 17.823749, 17.393958, 17.824999, 20.307603, 24.311249, 25.160103, 25.245728, 25.736873, 28.425206, 28.779789, 30.519996, 34.896348, 33.966973, 33.95489, 33.686348, 34.840307, 32.674163, 30.261665, 30, 30, 30] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-05-01', periods=31, freq='H', tz=timezone('UTC'))) df.dataset_ids = _test_datasets return df def mock_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 11.6311, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "M20", "J20", "K20", "M20", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 9)) df.dataset_ids = _test_datasets return df def mock_fair_price(_cls, _q): d = { 'fairPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_natgas_forward_price(_cls, _q): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_fair_price_swap(_cls, _q): d = {'fairPrice': [2.880]} df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)])) df.dataset_ids = _test_datasets return df def mock_implied_volatility(_cls, _q): d = { 'impliedVolatility': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_missing_bucket_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "J20", "K20", "M20", ] } return pd.DataFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 8)) def mock_fx_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'impliedVolatility': [3]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) d = { 'strikeReference': ['delta', 'spot', 'forward'], 'relativeStrike': [25, 100, 100], 'impliedVolatility': [5, 1, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-01-01', periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_fx_forecast(_cls, _q): d = { 'fxForecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_delta(_cls, _q): d = { 'relativeStrike': [25, -25, 0], 'impliedVolatility': [1, 5, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_empty(_cls, _q): d = { 'strikeReference': [], 'relativeStrike': [], 'impliedVolatility': [] } df = MarketDataResponseFrame(data=d, index=[]) df.dataset_ids = _test_datasets return df def mock_fx_switch(_cls, _q, _n): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_empty) replace.restore() return Cross('MA1889', 'ABC/XYZ') def mock_curr(_cls, _q): d = { 'swapAnnuity': [1, 2, 3], 'swapRate': [1, 2, 3], 'basisSwapRate': [1, 2, 3], 'swaptionVol': [1, 2, 3], 'atmFwdRate': [1, 2, 3], 'midcurveVol': [1, 2, 3], 'capFloorVol': [1, 2, 3], 'spreadOptionVol': [1, 2, 3], 'inflationSwapRate': [1, 2, 3], 'midcurveAtmFwdRate': [1, 2, 3], 'capFloorAtmFwdRate': [1, 2, 3], 'spreadOptionAtmFwdRate': [1, 2, 3], 'strike': [0.25, 0.5, 0.75] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_cross(_cls, _q): d = { 'basis': [1, 2, 3], } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq(_cls, _q): d = { 'relativeStrike': [0.75, 0.25, 0.5], 'impliedVolatility': [5, 1, 2], 'impliedCorrelation': [5, 1, 2], 'realizedCorrelation': [3.14, 2.71828, 1.44], 'averageImpliedVolatility': [5, 1, 2], 'averageImpliedVariance': [5, 1, 2], 'averageRealizedVolatility': [5, 1, 2], 'impliedVolatilityByDeltaStrike': [5, 1, 2], 'fundamentalMetric': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: idx = [pd.Timestamp(datetime.datetime.now(pytz.UTC))] return MarketDataResponseFrame({'impliedVolatility': [3]}, index=idx) d = { 'impliedVolatility': [5, 1, 2], } end = datetime.datetime.now(pytz.UTC).date() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_err(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: raise MqValueError('error while getting last') d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_empty(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame() d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_norm(_cls, _q): d = { 'relativeStrike': [-4.0, 4.0, 0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_spot(_cls, _q): d = { 'relativeStrike': [0.75, 1.25, 1.0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_inc(_cls, _q): d = { 'relativeStrike': [0.25, 0.75], 'impliedVolatility': [5, 1] } df = MarketDataResponseFrame(data=d, index=_index * 2) df.dataset_ids = _test_datasets return df def mock_meeting_expectation(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2020, 1, 29)], 'endingDate': [dt.date(2020, 1, 29)], 'meetingNumber': [2], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2020, 1, 23)], 'value': [-0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_spot(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2019, 10, 30)], 'endingDate': [dt.date(2019, 12, 18)], 'meetingNumber': [0], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2019, 10, 24)], 'value': [-0.004522570525] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_absolute(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2', 'MARFAGXDQRWM07Y2'], 'location': ['NYC', 'NYC'], 'rateType': ['Meeting Forward', 'Meeting Forward'], 'startingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'endingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'meetingNumber': [0, 2], 'valuationDate': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 10, 24), datetime.date(2020, 1, 23)], 'value': [-0.004522570525, -0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_ois_spot(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Spot'], 'startingDate': [datetime.date(2019, 12, 6)], 'endingDate': [datetime.date(2019, 12, 7)], 'meetingNumber': [-1], 'valuationDate': [datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 12, 6)], 'value': [-0.00455] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_esg(_cls, _q): d = { "esNumericScore": [2, 4, 6], "esNumericPercentile": [81.2, 75.4, 65.7], "esPolicyScore": [2, 4, 6], "esPolicyPercentile": [81.2, 75.4, 65.7], "esScore": [2, 4, 6], "esPercentile": [81.2, 75.4, 65.7], "esProductImpactScore": [2, 4, 6], "esProductImpactPercentile": [81.2, 75.4, 65.7], "gScore": [2, 4, 6], "gPercentile": [81.2, 75.4, 65.7], "esMomentumScore": [2, 4, 6], "esMomentumPercentile": [81.2, 75.4, 65.7], "gRegionalScore": [2, 4, 6], "gRegionalPercentile": [81.2, 75.4, 65.7], "controversyScore": [2, 4, 6], "controversyPercentile": [81.2, 75.4, 65.7], "esDisclosurePercentage": [49.2, 55.7, 98.4] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_index_positions_data( asset_id, start_date, end_date, fields=None, position_type=None ): return [ {'underlyingAssetId': 'MA3', 'netWeight': 0.1, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA1', 'netWeight': 0.6, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA2', 'netWeight': 0.3, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' } ] def mock_rating(_cls, _q): d = { 'rating': ['Buy', 'Sell', 'Buy', 'Neutral'], 'convictionList': [1, 0, 0, 0] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_gsdeer_gsfeer(_cls, assetId, start_date): d = { 'gsdeer': [1, 1.2, 1.1], 'gsfeer': [2, 1.8, 1.9], 'year': [2000, 2010, 2020], 'quarter': ['Q1', 'Q2', 'Q3'] } df = MarketDataResponseFrame(data=d, index=_index * 3) return df def mock_factor_profile(_cls, _q): d = { 'growthScore': [0.238, 0.234, 0.234, 0.230], 'financialReturnsScore': [0.982, 0.982, 0.982, 0.982], 'multipleScore': [0.204, 0.192, 0.190, 0.190], 'integratedScore': [0.672, 0.676, 0.676, 0.674] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_commodity_forecast(_cls, _q): d = { 'forecastPeriod': ['3m', '3m', '3m', '3m'], 'forecastType': ['spotReturn', 'spotReturn', 'spotReturn', 'spotReturn'], 'commodityForecast': [1700, 1400, 1500, 1600] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def test_skew(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_norm) actual = tm.skew(mock_spx, '1m', tm.SkewReference.NORMALIZED, 4) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_spot) actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock.return_value = mock_empty_market_data_response() actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert actual.empty replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_inc) with pytest.raises(MqError): tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) replace.restore() with pytest.raises(MqError): tm.skew(mock_spx, '1m', None, 25) def test_skew_fx(): replace = Replacer() cross = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = cross replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_delta) mock = cross actual = tm.skew(mock, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.DELTA, 25, real_time=True) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.SPOT, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.FORWARD, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.NORMALIZED, 25) with pytest.raises(MqError): tm.skew(mock, '1m', None, 25) replace.restore() def test_implied_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol) idx = pd.date_range(end=datetime.datetime.now(pytz.UTC).date(), periods=4, freq='D') actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_NEUTRAL) with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL) replace.restore() def test_implied_vol_no_last(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') idx = pd.date_range(end=datetime.date.today() - datetime.timedelta(days=1), periods=3, freq='D') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_err) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_empty) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace.restore() def test_implied_vol_fx(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock # for different delta strikes replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_vol) actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL, 25) expected = pd.Series([5, 1, 2, 3], index=pd.date_range('2019-01-01', periods=4, freq='D'), name='impliedVolatility') assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_PUT, 25) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_NEUTRAL) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets # NORMALIZED not supported with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.NORMALIZED, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 25) replace.restore() def test_fx_forecast(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) actual = tm.fx_forecast(mock, '12m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.fx_forecast(mock, '3m', real_time=True) replace.restore() def test_fx_forecast_inverse(): replace = Replacer() get_cross = replace('gs_quant.timeseries.measures.cross_to_usd_based_cross', Mock()) get_cross.return_value = "MATGYV0J9MPX534Z" replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) mock = Cross("MAYJPCVVF2RWXCES", 'USD/JPY') actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1 / 1.1, 1 / 1.1, 1 / 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() def test_vol_smile(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.FORWARD, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]), pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '1d') assert actual.empty assert actual.dataset_ids == () market_mock.assert_called_once() with pytest.raises(NotImplementedError): tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '1d', real_time=True) replace.restore() def test_impl_corr(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.implied_correlation(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedCorrelation'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_correlation(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedCorrelation'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.implied_correlation(..., '1m', tm.EdrDataReference.DELTA_PUT, 75, real_time=True) with pytest.raises(MqError): tm.implied_correlation(..., '1m', tm.EdrDataReference.DELTA_CALL, 50, '') replace.restore() def test_impl_corr_n(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') with pytest.raises(MqValueError): tm.implied_correlation(spx, '1m', tm.EdrDataReference.DELTA_CALL, 0.5, composition_date=datetime.date.today()) with pytest.raises(MqValueError): tm.implied_correlation(spx, '1m', tm.EdrDataReference.DELTA_CALL, 0.5, 200) resources = os.path.join(os.path.dirname(__file__), '..', 'resources') i_vol = pd.read_csv(os.path.join(resources, 'SPX_50_icorr_in.csv')) i_vol.index = pd.to_datetime(i_vol['date']) weights = pd.read_csv(os.path.join(resources, 'SPX_50_weights.csv')) weights.set_index('underlyingAssetId', inplace=True) replace = Replacer() market_data = replace('gs_quant.timeseries.econometrics.GsDataApi.get_market_data', Mock()) market_data.return_value = i_vol constituents = replace('gs_quant.timeseries.measures._get_index_constituent_weights', Mock()) constituents.return_value = weights expected = pd.read_csv(os.path.join(resources, 'SPX_50_icorr_out.csv')) expected.index = pd.to_datetime(expected['date']) expected = expected['value'] actual = tm.implied_correlation(spx, '1m', tm.EdrDataReference.DELTA_CALL, 0.5, 50, datetime.date(2020, 8, 31), source='PlotTool') pd.testing.assert_series_equal(actual, expected, check_names=False) replace.restore() def test_real_corr(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') with pytest.raises(NotImplementedError): tm.realized_correlation(spx, '1m', real_time=True) replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.realized_correlation(spx, '1m') assert_series_equal(pd.Series([3.14, 2.71828, 1.44], index=_index * 3), pd.Series(actual), check_names=False) assert actual.dataset_ids == _test_datasets replace.restore() def test_real_corr_missing(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') d = { 'assetId': ['MA4B66MW5E27U8P32SB'] * 3, 'spot': [3000, 3100, 3050], } df = MarketDataResponseFrame(data=d, index=pd.date_range('2020-08-01', periods=3, freq='D')) resources = os.path.join(os.path.dirname(__file__), '..', 'resources') weights = pd.read_csv(os.path.join(resources, 'SPX_50_weights.csv')) weights.set_index('underlyingAssetId', inplace=True) replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', lambda *args, **kwargs: df) constituents = replace('gs_quant.timeseries.measures._get_index_constituent_weights', Mock()) constituents.return_value = weights with pytest.raises(MqValueError): tm.realized_correlation(spx, '1m', 50) replace.restore() def test_real_corr_n(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') with pytest.raises(MqValueError): tm.realized_correlation(spx, '1m', composition_date=datetime.date.today()) with pytest.raises(MqValueError): tm.realized_correlation(spx, '1m', 200) resources = os.path.join(os.path.dirname(__file__), '..', 'resources') r_vol = pd.read_csv(os.path.join(resources, 'SPX_50_rcorr_in.csv')) r_vol.index = pd.to_datetime(r_vol['date']) weights = pd.read_csv(os.path.join(resources, 'SPX_50_weights.csv')) weights.set_index('underlyingAssetId', inplace=True) replace = Replacer() market_data = replace('gs_quant.timeseries.econometrics.GsDataApi.get_market_data', Mock()) market_data.return_value = r_vol constituents = replace('gs_quant.timeseries.measures._get_index_constituent_weights', Mock()) constituents.return_value = weights expected = pd.read_csv(os.path.join(resources, 'SPX_50_rcorr_out.csv')) expected.index = pd.to_datetime(expected['date']) expected = expected['value'] actual = tm.realized_correlation(spx, '1m', 50, datetime.date(2020, 8, 31), source='PlotTool') pd.testing.assert_series_equal(actual, expected, check_names=False) replace.restore() def test_cds_implied_vol(): replace = Replacer() mock_cds = Index('MA890', AssetClass.Equity, 'CDS') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.cds_implied_volatility(mock_cds, '1m', '5y', tm.CdsVolReference.DELTA_CALL, 10) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedVolatilityByDeltaStrike'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.cds_implied_volatility(mock_cds, '1m', '5y', tm.CdsVolReference.FORWARD, 100) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedVolatilityByDeltaStrike'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.cds_implied_volatility(..., '1m', '5y', tm.CdsVolReference.DELTA_PUT, 75, real_time=True) replace.restore() def test_avg_impl_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() df1 = pd.DataFrame(data={'impliedVolatility': [1, 2, 3], 'assetId': ['MA1', 'MA1', 'MA1']}, index=pd.date_range(start='2020-01-01', periods=3)) df2 = pd.DataFrame(data={'impliedVolatility': [2, 3, 4], 'assetId': ['MA2', 'MA2', 'MA2']}, index=pd.date_range(start='2020-01-01', periods=3)) df3 = pd.DataFrame(data={'impliedVolatility': [2, 5], 'assetId': ['MA3', 'MA3']}, index=pd.date_range(start='2020-01-01', periods=2)) replace('gs_quant.api.gs.assets.GsAssetApi.get_asset_positions_data', mock_index_positions_data) market_data_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock_implied_vol = MarketDataResponseFrame(pd.concat([df1, df2, df3], join='inner')) mock_implied_vol.dataset_ids = _test_datasets market_data_mock.return_value = mock_implied_vol actual = tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25, 3, '1d') assert_series_equal(pd.Series([1.4, 2.6, 3.33333], index=pd.date_range(start='2020-01-01', periods=3), name='averageImpliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.average_implied_volatility(..., '1m', tm.EdrDataReference.DELTA_PUT, 75, real_time=True) with pytest.raises(MqValueError): tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75, top_n_of_index=None, composition_date='1d') with pytest.raises(NotImplementedError): tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75, top_n_of_index=101) replace.restore() def test_avg_realized_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.average_realized_volatility(mock_spx, '1m') assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageRealizedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() df1 = pd.DataFrame(data={'spot': [1, 2, 3], 'assetId': ['MA1', 'MA1', 'MA1']}, index=pd.date_range(start='2020-01-01', periods=3)) df2 = pd.DataFrame(data={'spot': [2, 3, 4], 'assetId': ['MA2', 'MA2', 'MA2']}, index=pd.date_range(start='2020-01-01', periods=3)) df3 = pd.DataFrame(data={'spot': [2, 5], 'assetId': ['MA3', 'MA3']}, index=pd.date_range(start='2020-01-01', periods=2)) mock_spot = MarketDataResponseFrame(pd.concat([df1, df2, df3], join='inner')) mock_spot.dataset_ids = _test_datasets replace('gs_quant.api.gs.assets.GsAssetApi.get_asset_positions_data', mock_index_positions_data) market_data_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_data_mock.return_value = mock_spot actual = tm.average_realized_volatility(mock_spx, '2d', Returns.SIMPLE, 3, '1d') assert_series_equal(pd.Series([392.874026], index=pd.date_range(start='2020-01-03', periods=1), name='averageRealizedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.average_realized_volatility(mock_spx, '1w', real_time=True) with pytest.raises(MqValueError): tm.average_realized_volatility(mock_spx, '1w', composition_date='1d') with pytest.raises(NotImplementedError): tm.average_realized_volatility(mock_spx, '1w', Returns.LOGARITHMIC) with pytest.raises(NotImplementedError): tm.average_realized_volatility(mock_spx, '1w', Returns.SIMPLE, 201) replace.restore() empty_positions_data_mock = replace('gs_quant.api.gs.assets.GsAssetApi.get_asset_positions_data', Mock()) empty_positions_data_mock.return_value = [] with pytest.raises(MqValueError): tm.average_realized_volatility(mock_spx, '1w', Returns.SIMPLE, 5) replace.restore() def test_avg_impl_var(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.average_implied_variance(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVariance'), pd.Series(actual)) actual = tm.average_implied_variance(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75) assert actual.dataset_ids == _test_datasets assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVariance'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.average_implied_variance(..., '1m', tm.EdrDataReference.DELTA_PUT, 75, real_time=True) replace.restore() def test_basis_swap_spread(mocker): replace = Replacer() args = dict(swap_tenor='10y', spread_benchmark_type=None, spread_tenor=None, reference_benchmark_type=None, reference_tenor=None, forward_tenor='0b', real_time=False) mock_nok = Currency('MA891', 'NOK') xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'NOK' args['asset'] = mock_nok with pytest.raises(NotImplementedError): tm_rates.basis_swap_spread(**args) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' with pytest.raises(NotImplementedError): tm_rates.basis_swap_spread(..., '1y', real_time=True) args['swap_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['swap_tenor'] = '6y' args['spread_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['spread_tenor'] = '3m' args['reference_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['reference_tenor'] = '6m' args['forward_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['forward_tenor'] = None args['spread_benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['spread_benchmark_type'] = BenchmarkType.LIBOR args['reference_benchmark_type'] = 'libor_3m' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['reference_benchmark_type'] = BenchmarkType.LIBOR xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAQB1PGEJFCET3GG'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.basis_swap_spread(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='basisSwapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == expected.dataset_ids args['reference_benchmark_type'] = BenchmarkType.SOFR args['reference_tenor'] = '1y' args['reference_benchmark_type'] = BenchmarkType.LIBOR args['reference_tenor'] = '3m' xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MA06ATQ9CM0DCZFC'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.basis_swap_spread(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='basisSwapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == expected.dataset_ids replace.restore() def test_swap_rate(mocker): replace = Replacer() args = dict(swap_tenor='10y', benchmark_type=None, floating_rate_tenor=None, forward_tenor='0b', real_time=False) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' args['swap_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['swap_tenor'] = '10y' args['floating_rate_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['floating_rate_tenor'] = '1y' args['forward_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['forward_tenor'] = None args['benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['benchmark_type'] = 'sonia' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['benchmark_type'] = 'fed_funds' xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAZ7RWC904JYHYPS'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.swap_rate(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='swapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == _test_datasets xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'EUR' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAJNQPFGN1EBDHAE'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) args['asset'] = Currency('MAJNQPFGN1EBDHAE', 'EUR') args['benchmark_type'] = 'estr' actual = tm_rates.swap_rate(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='swapRate') expected.dataset_ids = _test_datasets
assert_series_equal(expected, actual)
pandas.testing.assert_series_equal
import argparse import os import shutil import subprocess from datetime import datetime from pathlib import Path import pandas as pd import numpy as np from sklearn.manifold import TSNE from sklearn.cluster import KMeans from mtc.challenge_pipelines.preprocess_data import generate_preprocessed_data from mtc.settings import NLP_EXPERIMENT_PATH, NLP_RAW_DATA from mtc.core.embeddings import DocumentEmbeddings from mtc.core.sentence import Sentence root_path = Path(NLP_RAW_DATA) / 'n2c2' train_name = 'clinicalSTS2019.train.txt' test_name = 'clinicalSTS2019.test.txt' test_labels_name = 'clinicalSTS2019.test.gs.sim.txt' def prepare_input_folder_official(folder): folder = folder / 'n2c2' folder.mkdir(parents=True, exist_ok=True) # Just copy the original data shutil.copy2(root_path / train_name, folder / train_name) shutil.copy2(root_path / test_name, folder / test_name) shutil.copy2(root_path / test_labels_name, folder / test_labels_name) def prepare_input_folder_complete(folder): folder = folder / 'n2c2' folder.mkdir(parents=True, exist_ok=True) # Load raw data df_train = pd.read_csv(root_path / train_name, sep='\t', header=None) df_test = pd.read_csv(root_path / test_name, sep='\t', header=None) df_test[2] = pd.read_csv(root_path / 'clinicalSTS2019.test.gs.sim.txt', header=None) # Create a combined dataframe df = pd.concat([df_train, df_test]) # Shuffle the rows df = df.sample(frac=1, random_state=1337).reset_index(drop=True) # Use combined file as new training data df.to_csv(folder / train_name, sep='\t', header=None, index=None) # Check whether the new files has the correct format df_train = pd.read_csv(folder / train_name, sep='\t', header=None) assert df_train.shape == (2054, 3) assert pd.api.types.is_object_dtype(df.dtypes[0]) assert pd.api.types.is_object_dtype(df.dtypes[1]) assert
pd.api.types.is_float_dtype(df.dtypes[2])
pandas.api.types.is_float_dtype
from typing import * import numpy as np import argparse from toolz.itertoolz import get import zarr import re import sys import logging import pickle import pandas as pd from sympy import Point, Line from skimage import feature, measure, morphology, img_as_float from skimage.filters import rank_order from scipy import ndimage as nd from pathlib import Path from pysmFISH.utils import convert_from_uint16_to_float64 from pysmFISH.data_models import Output_models from pysmFISH.logger_utils import selected_logger class osmFISH_dots_thr_selection(): """ Class used to automatically define the threshold used to call the signal peaks. This function calculate the threshold without masking large object and contamination. This is the original class used in the osmFISH paper. """ def __init__(self, img:np.ndarray, parameters_dict:Dict, min_int:float=False, max_int:float=False,min_peaks:int=False): """Initialize the class Args: img (np.ndarray): Image to process parameters_dict (Dict): Parameters used to define the peaks. min_int (float, optional): Minimum intensity value to use for the binning of the signal intensities. Defaults to False. max_int (float, optional): Maximum intensity value to use for the binning of the signal intensities. Defaults to False. min_peaks (int, optional): Minimum number of peaks required for the calculation of the counting threshold. Defaults to False. """ self.img = img self.parameters_dict = parameters_dict self.min_int = min_int self.max_int = max_int self.min_peaks = min_peaks if self.min_peaks == False: self.min_peaks = 3 self.min_distance = self.parameters_dict['min_distance'] self.fill_value = np.nan # List with the total peaks calculated for each threshold self.total_peaks = [] self.thr_used = [] def counting_graph(self): """Function used for the construction of the number of peaks(Y) / thresholds(X) graph used to define the threshold. """ binning = 100 # Define the range of thr to be tested if self.img.max() == 0: self.thr_array = [] else: if self.min_int and self.max_int: self.thr_array = np.linspace(self.min_int,self.max_int,num=binning) elif self.min_int: self.thr_array = np.linspace(self.min_int,self.img.max(),num=binning) elif self.max_int: self.thr_array = np.linspace(np.min(self.img[np.nonzero(self.img)]),self.max_int,num=binning) else: self.thr_array = np.linspace(np.min(self.img[np.nonzero(self.img)]),self.img.max(),num=binning) # Calculate the number of peaks for each threshold. In this calculation # the size of the objects is not considered self.peak_counter_min = 0 self.peak_counter_max = 0 for vl, thr in enumerate(self.thr_array): # The border is excluded from the counting self.peaks = feature.peak_local_max(self.img,min_distance=self.min_distance,\ threshold_abs=thr,exclude_border=False, indices=True,\ num_peaks=np.inf, footprint=None,labels=None) self.number_peaks = len(self.peaks) # Stop the counting when the number of peaks detected falls below 3 if self.number_peaks<=self.min_peaks: self.stop_thr = thr # Move in the upper loop so you will stop at the previous thr break else: self.total_peaks.append(len(self.peaks)) self.thr_used.append(thr) def thr_identification(self): """Function that use the number of peaks / thresholds graph to define the threshold to used for the counting. - calculate the gradient of the number of peaks / threshold function - remove the initial minimum point - calculate the segment that join the extremities of the gradient. This version of the code uses sympy. - Calculate the thr corresponding to the point of max distance from the segment """ # Consider the case of no detectected peaks or if there is only one Thr # that create peaks (list total_peaks have only one element and ) # if np.array(total_peaks).sum()>0 or len(total_peaks)>1: if len(self.total_peaks)>1: # Trim the threshold array in order to match the stopping point # used the [0][0] to get the first number and then take it out from list # thr_array = thr_array[:np.where(thr_array==stop_thr)[0][0]] self.thr_array = np.array(self.thr_used) # Calculate the gradient of the number of peaks distribution grad = np.gradient(self.total_peaks) # Restructure the data in order to avoid to consider the min_peak in the # calculations # Coord of the gradient min_peak grad_min_peak_coord = np.argmin(grad) # Trim the data to remove the peak. self.trimmed_thr_array = self.thr_array[grad_min_peak_coord:] self.trimmed_grad = grad[grad_min_peak_coord:] if self.trimmed_thr_array.shape>(1,): # Trim the coords array in order to maintain the same length of the # tr and pk self.trimmed_total_peaks = self.total_peaks[grad_min_peak_coord:] # To determine the threshold we will determine the Thr with the biggest # distance to the segment that join the end points of the calculated # gradient # Distances list distances = [] # Calculate the coords of the end points of the gradient p1 = Point(self.trimmed_thr_array[0],self.trimmed_grad[0]) p2 = Point(self.trimmed_thr_array[-1],self.trimmed_grad[-1]) # Create a line that join the points s = Line(p1,p2) allpoints = np.arange(0,len(self.trimmed_thr_array)) # Calculate the distance between all points and the line for p in allpoints: dst = s.distance(Point(self.trimmed_thr_array[p],self.trimmed_grad[p])) distances.append(dst.evalf()) # Remove the end points from the lists self.trimmed_thr_array = self.trimmed_thr_array[1:-1] self.trimmed_grad = self.trimmed_grad[1:-1] self.trimmed_total_peaks = self.trimmed_total_peaks[1:-1] self.trimmed_distances = distances[1:-1] # Determine the coords of the selected Thr # Converted trimmed_distances to array because it crashed # on Sanger. if self.trimmed_distances: # Most efficient way will be to consider the length of Thr list thr_idx = np.argmax(np.array(self.trimmed_distances)) self.selected_thr = self.trimmed_thr_array[thr_idx] # The selected threshold usually causes oversampling of the number of dots # I added a stringency parameter (int n) to use to select the Thr+n # for the counting. It selects a stringency only if the trimmed_thr_array # is long enough. Also consider the case in which the stringency in negative else: self.selected_thr = self.fill_value self.trimmed_thr_array = self.fill_value else: self.selected_thr = self.fill_value self.trimmed_thr_array = self.fill_value else: self.selected_thr = self.fill_value self.trimmed_thr_array = self.fill_value class osmFISH_dots_mapping(): """Function used to count the peaks after identification of the threshold and masking of large objects. This is the original class used in the osmFISH paper. """ def __init__(self,img: np.ndarray,thr: float,parameters_dict: dict): """Class initialization Args: img (np.ndarray): Image to process thr (float): Precalculate threshold for masking the image parameters_dict (dict): Parameters used to define the peaks. """ # Calculate the selected peaks after removal of the big and small objects self.img = img self.thr = thr # make an error if selected Thr <0 self.parameters_dict = parameters_dict self.min_distance = self.parameters_dict['min_distance'] self.min_obj_size = self.parameters_dict['min_obj_size'] self.max_obj_size = self.parameters_dict['max_obj_size'] self.num_peaks_per_label = self.parameters_dict['num_peaks_per_label'] self.fill_value = np.nan # Threshold the image using the selected threshold img_mask = self.img>self.thr labels = nd.label(img_mask)[0] properties = measure.regionprops(labels) for ob in properties: if ob.area<self.min_obj_size or ob.area>self.max_obj_size: img_mask[ob.coords[:,0],ob.coords[:,1]]=0 labels = nd.label(img_mask)[0] # Collect the properties of the labels after size selection properties = measure.regionprops(labels,intensity_image=self.img) self.selected_peaks = feature.peak_local_max(self.img, min_distance=self.min_distance, threshold_abs=self.thr, exclude_border=True, footprint=None, labels=labels,num_peaks_per_label=self.num_peaks_per_label) # # calling peak_local_max without Labels argument # selected_peaks_mask = feature.peak_local_max(self.img, min_distance=self.min_distance, # threshold_abs=self.thr, exclude_border=True, # footprint=None,num_peaks=np.inf,indices=False).astype(int) # # instead, make sure the selected peaks does not meet zeros at labels (background) # labels_mask = (labels > 0).astype(int) # selected_peaks_mask = selected_peaks_mask * labels_mask # self.selected_peaks = np.vstack(np.where(selected_peaks_mask)).T if self.selected_peaks.size: self.intensity_array = self.img[self.selected_peaks[:,0],self.selected_peaks[:,1]] else: self.intensity_array = np.nan def peak_thrs_local_max_fast(image: np.ndarray, min_distance: int=1, threshold_abs: float=None,threshold_rel:float=None, exclude_border: int=True, indices: bool=True, num_peaks: int=np.inf, footprint: np.ndarray=None, labels: np.ndarray=None)->np.ndarray: """Function after modification: returns the coordinates for a range of thresholds Peaks are the local maxima in a region of `2 * min_distance + 1` (i.e. peaks are separated by at least `min_distance`). If peaks are flat (i.e. multiple adjacent pixels have identical intensities), the coordinates of all such pixels are returned. If both `threshold_abs` and `threshold_rel` are provided, the maximum of the two is chosen as the minimum intensity threshold of peaks. Notes ----- The peak local maximum function returns the coordinates of local peaks (maxima) in an image. A maximum filter is used for finding local maxima. This operation dilates the original image. After comparison of the dilated and original image, this function returns the coordinates or a mask of the peaks where the dilated image equals the original image. Examples -------- >>> img1 = np.zeros((7, 7)) >>> img1[3, 4] = 1 >>> img1[3, 2] = 1.5 >>> img1 array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 1.5, 0. , 1. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) >>> peak_local_max(img1, min_distance=1) array([[3, 2], [3, 4]]) >>> peak_local_max(img1, min_distance=2) array([[3, 2]]) >>> img2 = np.zeros((20, 20, 20)) >>> img2[10, 10, 10] = 1 >>> peak_local_max(img2, exclude_border=0) array([[10, 10, 10]]) Args: image (np.ndarray): Input image. min_distance (int, optional): Minimum number of pixels separating peaks in a region of `2 * min_distance + 1` (i.e. peaks are separated by at least `min_distance`). Defaults to 1. threshold_abs (float, optional): Minimum intensity of peaks. By default, the absolute threshold is the minimum intensity of the image. Defaults to None. threshold_rel (float, optional): Minimum intensity of peaks, calculated as `max(image) * threshold_rel`. Defaults to None. exclude_border (int, optional): If nonzero, `exclude_border` excludes peaks from within `exclude_border`-pixels of the border of the image.. Defaults to True. indices (bool, optional): If True, the output will be an array representing peak coordinates. If False, the output will be a boolean array shaped as `image.shape` with peaks present at True elements.. Defaults to True. num_peaks (int, optional): Maximum number of peaks. When the number of peaks exceeds `num_peaks`, return `num_peaks` peaks based on highest peak intensity.. Defaults to np.inf. footprint (np.ndarray, optional): If provided, `footprint == 1` represents the local region within which to search for peaks at every point in `image`. Overrides `min_distance` (also for `exclude_border`).. Defaults to None. labels (np.ndarray, optional): If provided, each unique region `labels == value` represents a unique region to search for peaks. Zero is reserved for background.. Defaults to None. Returns: np.ndarray: If `indices = True` : (row, column, ...) coordinates of peaks. If `indices = False` : Boolean array shaped like `image`, with peaks represented by True values. """ if type(exclude_border) == bool: exclude_border = min_distance if exclude_border else 0 out = np.zeros_like(image, dtype=np.bool) # In the case of labels, recursively build and return an output # operating on each label separately if labels is not None: label_values = np.unique(labels) # Reorder label values to have consecutive integers (no gaps) if np.any(np.diff(label_values) != 1): mask = labels >= 1 labels[mask] = 1 + rank_order(labels[mask])[0].astype(labels.dtype) labels = labels.astype(np.int32) # New values for new ordering label_values = np.unique(labels) for label in label_values[label_values != 0]: maskim = (labels == label) out += feature.peak_local_max(image * maskim, min_distance=min_distance, threshold_abs=threshold_abs, threshold_rel=threshold_rel, exclude_border=exclude_border, indices=False, num_peaks=np.inf, footprint=footprint, labels=None) if indices is True: return np.transpose(out.nonzero()) else: return out.astype(np.bool) if np.all(image == image.flat[0]): if indices is True: return np.empty((0, 2), np.int) else: return out # Non maximum filter if footprint is not None: image_max = nd.maximum_filter(image, footprint=footprint, mode='constant') else: size = 2 * min_distance + 1 image_max = nd.maximum_filter(image, size=size, mode='constant') mask = image == image_max if exclude_border: # zero out the image borders for i in range(mask.ndim): mask = mask.swapaxes(0, i) remove = (footprint.shape[i] if footprint is not None else 2 * exclude_border) mask[:remove // 2] = mask[-remove // 2:] = False mask = mask.swapaxes(0, i) # find top peak candidates above a threshold thresholds = [] if threshold_abs is None: threshold_abs = image.min() thresholds.append(threshold_abs) if threshold_rel is not None: thresholds.append(threshold_rel * image.max()) if thresholds: mask_original = mask # save the local maxima's of the image thrs_coords = {} # dictionary holds the coordinates correspond for each threshold for threshold in thresholds[0]: mask = mask_original mask &= image > threshold # get coordinates of peaks coordinates = np.transpose(mask.nonzero()) if coordinates.shape[0] > num_peaks: intensities = image.flat[np.ravel_multi_index(coordinates.transpose(), image.shape)] idx_maxsort = np.argsort(intensities)[::-1] coordinates = coordinates[idx_maxsort][:num_peaks] if indices is True: thrs_coords[threshold] = coordinates else: nd_indices = tuple(coordinates.T) out[nd_indices] = True return out if thresholds and thrs_coords: return thrs_coords def osmFISH_peak_based_detection_fast(ImgStack: np.ndarray, fov_subdataset: pd.Series, parameters_dict: dict, dimensions: int=2, stringency:int =0, min_int:float=False, max_int:float=False, min_peaks:int=False)->pd.DataFrame: """This function is used to calculate the threshold to use for the dots counting in a 3D image. It is based on the function used in the osmFISH paper but doesn’t require simpy. It integrate the peak_thrs_local_max_fast and the calculation of the peaks on the masked image. Args: ImgStack (np.ndarray): preprocessed image used to count the dots fov_subdataset (pd.Series): Series with the metadata info relative to the image to process parameters_dict (dict): Parameters used to define the peaks. dimensions (int, optional): Image dimension (2 for 2D or 3 for 3D). Defaults to 2. stringency (int, optional): Select a thr before or after the one calculated automatically. Defaults to 0. min_int (float, optional): Minimum intensity value to use for the binning of the signal intensities. Defaults to False. max_int (float, optional): Maximum intensity value to use for the binning of the signal intensities. Defaults to False. min_peaks (int, optional): Minimum number of peaks required for the calculation of the counting threshold. Defaults to False. Returns: pd.DataFrame: counts data """ logger = selected_logger() if min_peaks == False: min_peaks = 3 fill_value = np.nan # List with the total peaks calculated for each threshold thr_used = [] binning = 100 # Define the range of thr to be tested if min_int and max_int: ThrArray = np.linspace(min_int,max_int,num=binning) elif min_int: ThrArray = np.linspace(min_int,ImgStack.max(),num=binning) elif max_int: ThrArray = np.linspace(np.min(ImgStack[np.nonzero(ImgStack)]),max_int,num=binning) else: ThrArray = np.linspace(np.min(ImgStack[np.nonzero(ImgStack)]),ImgStack.max(),num=binning) fov = fov_subdataset.fov_num round_num = fov_subdataset.round_num channel = fov_subdataset.channel target_name = fov_subdataset.target_name fill_value = np.nan data_models = Output_models() counts_dict = data_models.dots_counts_dict # Initialise an empty version of the counts dict counts_dict['r_px_original'] = np.array([fill_value]) counts_dict['c_px_original'] = np.array([fill_value]) counts_dict['dot_id'] = np.array([fill_value]) counts_dict['dot_intensity'] = np.array([fill_value]) counts_dict['selected_thr'] = np.array([fill_value]) min_distance = parameters_dict['CountingFishMinObjDistance'] min_obj_size = parameters_dict['CountingFishMinObjSize'] max_obj_size = parameters_dict['CountingFishMaxObjSize'] #num_peaks_per_label = self.parameters_dict['num_peaks_per_label'] fov_subdataset_df = pd.DataFrame(fov_subdataset).T # List of ndarrays with the coords of the peaks calculated for each threshold PeaksCoords = [] Selected_Peaks2_mask = None # Determine if working in 2D or 3D if dimensions == 2: if len(ImgStack.shape) > 2: ImgStack = np.amax(ImgStack, axis=0) # Define the Thr array # ThrArray = np.linspace(ImgStack.min(), ImgStack.max(), num=binning) # Calculate the number of peaks for each threshold # Exclude border beacause of artefact of image processing thrs_peaks = peak_thrs_local_max_fast(ImgStack, min_distance=min_distance, threshold_abs=ThrArray, exclude_border=True, indices=True, num_peaks=np.inf, footprint=None, labels=None) lists = sorted(thrs_peaks.items()) # sorted by key, return a list of tuples. tuple[0]: threshold, tuple[1]: coords x, PeaksCoords = zip(*lists) # unpack a list of pairs into two tuples TotalPeaks = [] for j in range(len(PeaksCoords)): TotalPeaks += (len(PeaksCoords[j]),) # get number of peaks # print("Thresholds distribution %.3f seconds" % (timings['thrs_dist'])) # Consider the case of no detectected peaks or if there is only one Thr # that create peaks (list TotalPeaks have only one element and ) # if np.array(TotalPeaks).sum()>0 or len(TotalPeaks)>1: if len(TotalPeaks) > 3: # Trim the threshold array in order to match the stopping point # used the [0][0] to get the first number and then take it out from list # ThrArray = ThrArray[:np.where(ThrArray == StopThr)[0][0]] # Trim and convert to types as Simone's TotalPeaks = np.array(TotalPeaks) TotalPeaks = list(TotalPeaks[TotalPeaks > min_peaks]) ThrArray = ThrArray[:len(TotalPeaks)] PeaksCoords = np.array(PeaksCoords) PeaksCoords = PeaksCoords[:len(TotalPeaks)] PeaksCoords = list(PeaksCoords) if len(TotalPeaks) > 3: # Calculate the gradient of the number of peaks distribution # grad = np.gradient(TotalPeaks) grad = np.gradient(TotalPeaks,edge_order=1) # Restructure the data in order to avoid to consider the min_peak in the # calculations # Coord of the gradient min_peak grad_min_peak_coord = np.argmin(grad) # Trim the data to remove the peak. trimmed_thr_array = ThrArray[grad_min_peak_coord:] trimmed_grad = grad[grad_min_peak_coord:] if trimmed_thr_array.shape > (1,): # Trim the coords array in order to maintain the same length of the # tr and pk Trimmed_PeaksCoords = PeaksCoords[grad_min_peak_coord:] trimmed_total_peaks = TotalPeaks[grad_min_peak_coord:] # To determine the threshold we will determine the Thr with the biggest # distance to the segment that join the end points of the calculated # # gradient # Calculate the coords of the end points of the gradient p1 = np.array([trimmed_thr_array[0],trimmed_grad[0]]) p2 = np.array([trimmed_thr_array[-1],trimmed_grad[-1]]) # Create a line that join the points allpoints = np.arange(0,len(trimmed_thr_array)) allpoints_coords = np.array([trimmed_thr_array[allpoints],trimmed_grad[allpoints]]).T distances = [] for point in allpoints_coords: distances.append(np.linalg.norm(np.cross(p2-p1, p1-point))/np.linalg.norm(p2-p1)) # Remove the end points from the lists trimmed_thr_array = trimmed_thr_array[1:-1] trimmed_grad = trimmed_grad[1:-1] trimmed_total_peaks = trimmed_total_peaks[1:-1] trimmed_distances = distances[1:-1] # Determine the coords of the selected Thr # Converted Trimmed_distances to array because it crashed # on Sanger. if trimmed_distances: # Most efficient way will be to consider the length of Thr list Thr_idx = np.argmax(np.array(trimmed_distances)) Calculated_Thr = trimmed_thr_array[Thr_idx] # The selected threshold usually causes oversampling of the number of dots # I added a stringency parameter (int n) to use to select the Thr+n # for the counting. It selects a stringency only if the Trimmed_ThrArray # is long enough if Thr_idx + stringency < len(trimmed_thr_array): Selected_Thr = trimmed_thr_array[Thr_idx + stringency] Selected_Peaks = Trimmed_PeaksCoords[Thr_idx + stringency] else: Selected_Thr = trimmed_thr_array[Thr_idx] Selected_Peaks = Trimmed_PeaksCoords[Thr_idx] # Calculate the selected peaks after removal of the big and small objects # Threshold the image using the selected threshold # if Selected_Thr > 0: # ImgMask = ImgStack > Selected_Thr ImgMask = ImgStack > Selected_Thr Labels = nd.label(ImgMask)[0] Properties = measure.regionprops(Labels) for ob in Properties: if ob.area < min_obj_size or ob.area > max_obj_size: ImgMask[ob.coords[:, 0], ob.coords[:, 1]] = 0 Labels = nd.label(ImgMask)[0] # # calling peak_local_max without Labels argument # Selected_Peaks2_mask = feature.peak_local_max(ImgStack, min_distance=min_distance, # threshold_abs=Selected_Thr, exclude_border=True, indices=False, # footprint=None,num_peaks=np.inf).astype(int) # # instead, make sure the selected peaks does not meet zeros at labels (background) # Labels_mask = (Labels > 0).astype(int) # Selected_Peaks2_mask = Selected_Peaks2_mask * Labels_mask # Selected_Peaks2 = np.vstack(np.where(Selected_Peaks2_mask)).T Selected_Peaks2 = feature.peak_local_max(ImgStack, min_distance=min_distance, threshold_abs=Selected_Thr, exclude_border=True, indices=True, footprint=None,labels=Labels,num_peaks=np.inf).astype(int) if Selected_Peaks2.size: # Intensity counting of the max peaks # Selected_peaks_coords = np.where(Selected_Peaks2) # Selected_peaks_int = ImgStack[Selected_peaks_coords[0], Selected_peaks_coords[1]] Selected_peaks_int = ImgStack[Selected_Peaks2[:, 0], Selected_Peaks2[:, 1]] # Peaks have been identified total_dots = Selected_Peaks2.shape[0] dot_id_array = np.array([str(fov)+'_'+str(round_num)+'_'+ channel +'_'+str(nid) for nid in range(total_dots)]) thr_array = np.repeat(Selected_Thr,total_dots) channel_array = np.repeat(channel,total_dots) counts_dict['r_px_original'] = Selected_Peaks2[:,0] counts_dict['c_px_original'] = Selected_Peaks2[:,1] counts_dict['dot_id'] = dot_id_array counts_dict['dot_intensity'] = Selected_peaks_int counts_dict['selected_thr'] = thr_array else: logger.info(f' fov {fov} does not have counts (mapping)') else: logger.info(f' fov {fov} Trimmed distance equal to zero') else: logger.info(f' fov {fov} calculated Thr array to small for selection of Thr') else: logger.info(f' fov {fov} does not have counts for calculating Thr') else: logger.info(f' fov {fov} does not have counts for calculating Thr') counts_df =
pd.DataFrame(counts_dict)
pandas.DataFrame
#!/usr/bin/env python2 import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from os.path import expanduser import scipy def treegrass_frac(ndvi, day_rs): """ Process based on Donohue et al. (2009) to separate out tree and grass cover, using moving windows (adapted here for daily time-step) """ # first calculate the 7-month moving minimum window across the time-series # period = 7 fp1 = moving_something(np.min, ndvi, period=3, day_rs=day_rs) # period = 9 fp2 = moving_something(lambda x: sum(x)/(9*day_rs), fp1, period=9, day_rs=day_rs) fr1 = ndvi - fp2 ftree = [p2 - np.abs(r1) if r1 < 0 else p2 for p2, r1 in zip(fp2, fr1)] fgrass = ndvi - ftree return pd.DataFrame({'total':ndvi, 'tree':ftree, 'grass':fgrass}) def moving_something(_fun, tseries, period, day_rs=16, is_days=True): """ Applies a function to a moving window of the time-series: ft_ = function([ f(t-N), f(t). f(t+N)]) """ # if the time-series is at a day-time step, update the window to a step-size of 16 days if is_days: p0 = period*day_rs else: p0 = period # find upper and lower bounds of the moving window half = p0//2 tlen = len(tseries) twin = [0]*tlen for im in range(tlen): # find the something for the window that satisfy the edge conditions if im < half: # fold back onto the end of the time-series twin[im] = _fun(np.hstack([tseries[tlen-(half-im):tlen],\ tseries[0:im+half]])) elif im > tlen-half: # fold back into the beginning of the time-series twin[im] = _fun(np.hstack([tseries[im-half:tlen],\ tseries[0:half-(tlen-im)]])) else: twin[im] = _fun(tseries[im-half:im+half]) return twin def import_one_year(file_name): """ Imports the one-year climatology, resetting time columns as a multi-index pandas dataframe """ # universal time labels time_label = ['Month', 'Day', 'Hour', 'Min'] # import data clim_raw =
pd.read_csv(clim_met_file)
pandas.read_csv
# Copyright (C) 2016 The Regents of the University of Michigan # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see [http://www.gnu.org/licenses/]. # note: this file needs to be modified to work on remote data files; currently implemented only for reading/writing locally ''' Takes gzipped Coursera clickstream/log files as input and returns a set of csvs into current working directory. Each weekly csv is a list of users (rows), with columns corresponding to the features for that week. Features come from Mi and Yeung (2015). ''' import gzip, argparse, json, re, math, datetime, os, bisect import pandas as pd MILLISECONDS_IN_SECOND = 1000 def fetch_start_end_date(course_name, run, date_csv = "coursera_course_dates.csv"): """ Fetch course start end end date (so user doesn't have to specify them directly). :param course_name: Short name of course. :param run: run number :param date_csv: Path to csv of course start/end dates. :return: tuple of datetime objects (course_start, course_end) """ full_course_name = '{0}-{1}'.format(course_name, run) date_df = pd.read_csv(date_csv, usecols=[0, 2, 3]).set_index('course') course_start = datetime.datetime.strptime(date_df.loc[full_course_name].start_date, '%m/%d/%y') course_end = datetime.datetime.strptime(date_df.loc[full_course_name].end_date, '%m/%d/%y') return (course_start, course_end) def course_len(course_start, course_end): ''' Return the duration of a course, in number of whole weeks. Note: Final week may be less than 7 days, depending on course start and end dates. :param course_start: datetime object for first day of course (generated from user input) :param course_end: datetime object for last day of course (generated from user input) :return: integer of course duration in number of weeks (rounded up if necessary) ''' course_start, course_end = course_start, course_end n_days = (course_end - course_start).days n_weeks = math.ceil(n_days / 7) return n_weeks def timestamp_week(timestamp, course_start, course_end): ''' Get (zero-indexed) week number for a given timestamp. :param timestamp: UTC timestamp, in seconds. :param course_start: datetime object for first day of course (generated from user input) :param course_end: datetime object for last day of course (generated from user input) :return: integer week number of timestamp. If week not in range of course dates provided, return None. ''' timestamp = datetime.datetime.fromtimestamp(timestamp / MILLISECONDS_IN_SECOND) n_weeks = course_len(course_start, course_end) week_starts = [course_start + datetime.timedelta(days=x) for x in range(0, n_weeks * 7, 7)] week_number = bisect.bisect_left(week_starts, timestamp) - 1 if week_number >= 0 and week_number <= n_weeks: return week_number else: # event is not within official course dates return None def extract_users_dropouts(coursera_clickstream_file, course_start, course_end): ''' Assemble list of all users, and dictionary of their dropout weeks. :param coursera_clickstream_file: gzipped Coursera clickstream file; see ./sampledata for example :param course_start: datetime object for first day of course (generated from user input) :param course_end: datetime object for last day of course (generated from user input) :return: tuple of (users, dropout_dict): users: Python set of all unique user IDs that registered any activity in clickstream log df_dropout: pd.DataFrame of userID, dropout_week for each user (dropout_week = 0 if no valid activity) ''' users = set() user_dropout_weeks = {} linecount = 0 with(gzip.open(coursera_clickstream_file, 'r')) as f: for line in f: try: log_entry = json.loads(line.decode("utf-8")) user = log_entry.get('username') timestamp = log_entry.get('timestamp', 0) week = timestamp_week(timestamp, course_start, course_end) users.add(user) except ValueError as e1: print('Warning: invalid log line {0}: {1}'.format(linecount, e1)) except Exception as e: print('Warning: invalid log line {0}: {1}\n{2}'.format(linecount, e, line)) if user not in user_dropout_weeks.keys(): #no entry for user if not week: #current entry is outside valid course dates; initialize entry with dropout_week = 0 user_dropout_weeks[user] = 0 else: #current entry is within valid course dates; initialize entry with dropout_week = week user_dropout_weeks[user] = week else: #entry already exists for user; check and update if necessary # update entry for user if week is valid and more recent than current entry if week and user_dropout_weeks[user] < week: user_dropout_weeks[user] = week linecount += 1 df_dropout = pd.DataFrame.from_dict(user_dropout_weeks, orient='index') #rename columns; handled this way because DataFrame.from_dict doesn't support column naming directly df_dropout.index.names = ['userID'] df_dropout.columns = ['dropout_week'] output = (users, df_dropout) return output def forum_line_proc(line, forumviews, linecount): fre = re.compile('/forum/') try: l = json.loads(line.decode("utf-8")) if l['key'] == 'pageview' and fre.search(l['page_url']): forumviews.append(l) except ValueError as e1: print('Warning: invalid log line {0}: {1}'.format(linecount, e1)) except Exception as e: print('Warning: invalid log line {0}: {1}\n{2}'.format(linecount, e, line)) return forumviews def quizattempt_line_proc(line, course_start, course_end, quiz_output, linecount): qre = re.compile('/quiz/attempt') # in 'url';avoids counting /quiz/feedback try: j = json.loads(line.decode("utf-8")) user = j.get('username') timestamp = j.get('timestamp') week = timestamp_week(timestamp, course_start, course_end) if week: # check if access_type is one of an assessment type, and if it is # then append entry of that type to quiz_output[user][week] if j.get('key') == 'pageview' and qre.search(j.get('page_url')): quiz_output[user][week].append('quizzes_quiz_attempt') except ValueError as e1: print('Warning: invalid log line {0}: {1}'.format(linecount, e1)) except Exception as e: print('Warning: invalid log line {0}: {1}\n{2}'.format(linecount, e, line)) return quiz_output def extract_forum_views_and_quiz_attempts(coursera_clickstream_file, users, course_start, course_end): """ Extract forum views, and quiz views in a single pass. :return: """ # initialize all data structures n_weeks = course_len(course_start, course_end) forum_output = {user: {n: [] for n in range(n_weeks + 1)} for user in users} # nested dict in format {user: {week: [url1, url2, url3...]}} forumviews = [] linecount = 1 # compile regex for assessment types quiz_output = {user: {n: [] for n in range(n_weeks + 1)} for user in users} # nested dict in format {user: {week: [accessType, accessType...]}} # process each clickstream line, extracting any forum views, active days, or quiz views with gzip.open(coursera_clickstream_file, 'r') as f: for line in f: forumviews = forum_line_proc(line, forumviews, linecount) quiz_output = quizattempt_line_proc(line, course_start, course_end, quiz_output, linecount) linecount += 1 # post-process data from each forum: add each forumview URL accessed to (user, week) entry in forum_output for p in forumviews: user = p.get('username') url = p.get('page_url') timestamp = p.get('timestamp') week = timestamp_week(timestamp, course_start, course_end) if week: # if week falls within active dates of course, add to user entry forum_output[user][week].append(url) forum_output_list = [(k, week, len(views)) for k, v in forum_output.items() for week, views in v.items()] df_forum =
pd.DataFrame(data=forum_output_list, columns=['userID', 'week', 'forum_views'])
pandas.DataFrame
import numpy as np import pandas as pd import pytask from src.config import BLD from src.config import SRC from src.shared import create_age_groups from src.shared import load_dataset LOCATIONS = [ "cnt_home", "cnt_work", "cnt_school", "cnt_leisure", "cnt_transport", "cnt_otherplace", ] MOSSONG_IN = SRC / "original_data" / "mossong_2008" MOSSONG_OUT = BLD / "data" / "mossong_2008" @pytask.mark.depends_on( { "hh_common": MOSSONG_IN / "hh_common.csv", "hh_extra": MOSSONG_IN / "hh_extra.csv", "participant_common": MOSSONG_IN / "participant_common.csv", "participant_extra": MOSSONG_IN / "participant_extra.csv", "contact_common": MOSSONG_IN / "contact_common.csv", "sday": MOSSONG_IN / "sday.csv", "eu_hh_size_shares": BLD / "data" / "population_structure" / "eu_hh_size_shares.pkl", "shared.py": SRC / "shared.py", } ) @pytask.mark.produces( { "contact_data": MOSSONG_OUT / "contact_data.pkl", "hh_sample": MOSSONG_OUT / "hh_sample_ger.csv", "hh_probabilities": MOSSONG_OUT / "hh_probabilities.csv", } ) def task_prepare_mossong_data(depends_on, produces): datasets = { key: load_dataset(val) for key, val in depends_on.items() if not key.endswith(".py") } # clean data hh = _prepare_hh_data(datasets["hh_common"], datasets["hh_extra"]) participants = _prepare_participant_data( datasets["participant_common"], datasets["participant_extra"] ) contacts = _prepare_contact_data(datasets["contact_common"]) sday = _prepare_day_data(datasets["sday"]) # contact_data contacts = _merge_mossong_data( contacts=contacts, participants=participants, sday=sday, hh=hh ) contacts = _make_columns_in_contact_data_nice(contacts) contacts = contacts[contacts["country"].isin(["LU", "DE_TOT", "BE", "NL"])] contacts = contacts.dropna(how="any") contacts.to_pickle(produces["contact_data"]) # household sample for initial states hh = hh.query("country == 'DE_TOT'") hh = _from_wide_to_long_format(hh) hh = _drop_hh_with_missing_ages(hh) hh.to_csv(produces["hh_sample"]) # household probability weights hh["collapsed_hh_size"] = hh["hh_size"].where( hh["hh_size"] <= 5, pd.Interval(5.0, np.inf) ) sample_hh_size_shares = hh["collapsed_hh_size"].value_counts(normalize=True) inv_prob_weights = datasets["eu_hh_size_shares"]["DE_TOT"] / sample_hh_size_shares hh["hh_inv_prob_weights"] = hh["collapsed_hh_size"].replace(inv_prob_weights) hh["probability"] = hh["hh_inv_prob_weights"] / hh["hh_inv_prob_weights"].sum() hh_probs = hh[["hh_id", "probability"]] hh_probs.to_csv(produces["hh_probabilities"]) def _prepare_hh_data(common, extra): common = common.copy() common["country"] = common["country"].replace({"DE": "DE_TOT", "GB": "UK"}) hh = pd.merge(left=common, right=extra, on="hh_id") return hh def _prepare_participant_data(common, extra): common = common.copy(deep=True) extra = extra.copy(deep=True) extra["part_occupation"].replace( { 1: "working", 2: "retired", 3: "at home (housewife)", 4: "unemployed", 5: "fulltime education", 6: "other", }, inplace=True, ) missed_d = {1: 0, 2: "1-4", 3: "5-9", 4: ">10"} rename = [ ("nr_missed_to_record", "diary_missed_unsp"), ("nr_missed_to_record_physical", "diary_missed_skin"), ("nr_missed_to_record_not_physical", "diary_missed_noskin"), ] for new, old in rename: extra[new] = extra[old].replace(missed_d) extra.drop(columns=[old], inplace=True) participants = pd.merge(left=common, right=extra, on="part_id") return participants def _prepare_contact_data(common): df = common.copy(deep=True) df["frequency"] = _make_frequencies_categorical(df["frequency_multi"]) df["phys_contact"].replace({1: True, 2: False}, inplace=True) df["duration"] = _make_durations_categorical(df["duration_multi"]) # the order of the location determines for contacts in more than one context to # which they are counted. This affects < 10% of contacts. assert (df[LOCATIONS].sum(axis=1) > 1).mean() < 0.1 df["place"] = df.apply(_create_place, axis=1) df = df.rename(columns={loc: loc[4:] for loc in LOCATIONS}) df.drop(columns=["frequency_multi", "duration_multi"], inplace=True) return df def _make_frequencies_categorical(sr): rename_dict = { 1: "(almost) daily", 2: "1-2 times a week", 3: "1-2 times a month", 4: "less than once a month", 5: "never met before", } nice_sr = sr.replace(rename_dict) frequencies = [ "(almost) daily", "1-2 times a week", "1-2 times a month", "less than once a month", "never met before", ] return pd.Categorical(nice_sr, categories=frequencies, ordered=True) def _make_durations_categorical(sr): durations = ["<5min", "5-15min", "15min-1h", "1-4h", ">4h"] rename_dict = { 1: "<5min", 2: "5-15min", 3: "15min-1h", 4: "1-4h", 5: ">4h", } nice_sr = sr.replace(rename_dict) return
pd.Categorical(nice_sr, categories=durations, ordered=True)
pandas.Categorical
# Copyright 2021 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd from legate import pandas as lp n = 17 a = [str(i) * 3 for i in range(n)] for i in range(n): if i % 4 == 0: a[i] = None s = pd.Series(a) s = s.astype(
pd.StringDtype()
pandas.StringDtype
from lolesports_api.downloaders import downloadMeta, downloadDetails from lolesports_api.analysis import diffPlot import glob as _glob import json as _json import os as _os import numpy as _np import pandas as _pd def dictToAttr(self, dict): for key, value in dict.items(): setattr(self, key, value) class League(): def __init__(self, leagueSlug): self.slug = leagueSlug queryData = downloadMeta('getLeagues') self.data = [league for league in queryData['data']['leagues'] if league['slug'] == leagueSlug][0] dictToAttr(self, self.data) queryData = downloadMeta('getTournamentsForLeague', {'leagueId': self.id}) self.tournaments = queryData['data']['leagues'][0]['tournaments'] def getTournament(self, tournamentId): tournamentData = [t for t in self.tournaments if t['id'] == tournamentId][0] return Tournament(self.id, tournamentId, tournamentData=tournamentData) def getTournamentBySlug(self, tournamentSlug): tournamentData = [t for t in self.tournaments if t['slug'] == tournamentSlug][0] return Tournament(self.id, tournamentSlug, tournamentData=tournamentData) def download(self, folder='.', **kwargs): folder = f'{folder}/{self.slug}' _os.makedirs(folder, exist_ok=True) for tournamentSlug in [t['slug'] for t in self.tournaments]: split = self.getTournament(tournamentSlug) split.download(folder=folder, **kwargs) class Tournament(): def __init__(self, leagueId, tournamentId, tournamentData=[]): self.leagueId = leagueId self.id = tournamentId if not tournamentData: queryData = downloadMeta('getTournamentsForLeague', {'leagueId': leagueId}) tournamentData = [t for t in queryData['data']['leagues'][0]['tournaments'] if t['id'] == self.id][0] self.data = tournamentData dictToAttr(self, self.data) queryData = downloadMeta('getCompletedEvents', {'tournamentId': self.id}) self.events = queryData['data']['schedule']['events'] def getEvent(self, eventId): return Event(self.id, eventId) def getEventByTeamGame(self, teamSlug, gameNum): teamEvents = [event for event in self.events if teamSlug.lower() in \ [team['code'].lower() for team in event['match']['teams']]] assert gameNum <= len(teamEvents), "Team hasn't played that many games!" return self.getEvent(teamEvents[gameNum-1]['match']['id']) def download(self, folder='.', **kwargs): folder = f'{folder}/{self.slug}' _os.makedirs(folder, exist_ok=True) for eventId in [e['match']['id'] for e in self.events]: event = self.getEvent(eventId) event.download(folder=folder, **kwargs) class Event(): def __init__(self, tournamentId, eventId): self.tournamentId = tournamentId self.id = eventId queryData = downloadMeta('getEventDetails', {'id': eventId}) self.data = queryData['data']['event'] dictToAttr(self, self.data) self.games = self.data['match']['games'] def getGame(self, gameId, **kwargs): gameData = { 'winner': [team['name'] for team in self.data['match']['teams'] if team['result']['gameWins'] == 1][0], 'teams': self.data['match']['teams'] } return Game(self.id, gameId, gameData, **kwargs) def getGameByNum(self, gameNum, **kwargs): gameId = [game['id'] for game in self.games if game['number'] == gameNum][0] return self.getGame(gameId, **kwargs) def download(self, **kwargs): for gameId in [g['id'] for g in self.games]: game = self.getGame(gameId) game.download(**kwargs) class Game(): def __init__(self, eventId, gameId, gameData=[], autoLoad=True): self.eventId = eventId self.id = gameId if not gameData: queryData = downloadMeta('getEventDetails', {'id': eventId}) teamData = queryData['data']['event']['match']['teams'] gameData = { 'winner': [team['name'] for team in teamData if team['result']['gameWins'] == 1][0], 'teams': teamData } dictToAttr(self, gameData) if autoLoad: try: self.loadData() self.parseData() except AssertionError: pass def download(self, folder='.', verbose=True, overwrite=False): try: fname = f'{folder}/{self.id}.json' if (not _os.path.isfile(fname)) or (overwrite): gameData = downloadDetails(self.id) with open(fname, 'w') as fp: _json.dump(gameData, fp) if verbose: print(f'Finished writing to {fname}') else: if verbose: print(f'Already exists. Skipping {self.id}') except Exception as e: print(f'Failed to download {self.id}.') print(e) else: self.loadData() self.parseData() def loadData(self): fname = _glob.glob(f'*/*/{self.id}.json') assert len(fname) > 0, 'No game data file found!' assert len(fname) < 2, f'Multiple game data files found: {fname}' with open(fname[0], 'r') as f: gameData = _json.load(f) self.json = gameData self._filename = fname[0] def parseData(self): ## Parse Time time = _np.array([frame['rfc460Timestamp'][:-1] for frame in self.json['frames']], dtype=_np.datetime64) # time is seconds since the SECOND timestamp. I believe the first timestamp is when they start loading in... time = (time - time[1])/_np.timedelta64(1, 's') pauseIdxs = [idx for idx, frame in enumerate(self.json['frames']) if frame['gameState']=='paused'] for pIdx in pauseIdxs: time[pIdx+1:] -= time[pIdx+1] - time[pIdx] self._timeIndex =
_pd.TimedeltaIndex(time)
pandas.TimedeltaIndex
''' US Job Counts by Industry, 2006-2015 =============================== Interactive heat map shows how total US job change compared to job change by industry surrounding stock crash in 2008. ''' import pandas as pd import altair as alt from datetime import datetime as dt us_employment = pd.read_csv("https://raw.githubusercontent.com/vega/vega-datasets/master/data/us-employment.csv") us_employment["date"] =
pd.to_datetime(us_employment["month"])
pandas.to_datetime
import SQLiteFunctions as SQL import pandas as pd import numpy as np import matplotlib.pyplot as plt # Create new database object and connect to database algo_db = SQL.SqliteDatabase() algo_db.connect_database(r'C:/Users/jnwag/OneDrive/Documents/GitHub/AlgorandGovernance/AlgoDB.db') table_headers = ['id', 'account_id', 'address', 'committed_algo', 'is_eligible', 'reason', 'registration_date', 'session_count', 'link_count'] # Fetch governor data from db test = algo_db.fetch_all('Governors') # convert table data into dataframe and keep only the eligible users df =
pd.DataFrame(test, columns=table_headers)
pandas.DataFrame
import numpy as np import pandas as pd import scipy from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt from distutils.version import LooseVersion pandas_has_categoricals = LooseVersion(pd.__version__) >= "0.15" import nose.tools as nt import numpy.testing as npt from numpy.testing.decorators import skipif from .. import distributions as dist from .. import palettes try: import statsmodels.nonparametric.api assert statsmodels.nonparametric.api _no_statsmodels = False except ImportError: _no_statsmodels = True class TestBoxPlotter(object): """Test boxplot (also base class for things like violinplots).""" rs = np.random.RandomState(30) n_total = 60 x = rs.randn(n_total / 3, 3) x_df = pd.DataFrame(x, columns=pd.Series(list("XYZ"), name="big")) y = pd.Series(rs.randn(n_total), name="y_data") g = pd.Series(np.repeat(list("abc"), n_total / 3), name="small") h = pd.Series(np.tile(list("mn"), n_total / 2), name="medium") df = pd.DataFrame(dict(y=y, g=g, h=h)) x_df["W"] = g default_kws = dict(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, width=.8, fliersize=5, linewidth=None) def test_wide_df_data(self): p = dist._BoxPlotter(**self.default_kws) # Test basic wide DataFrame p.establish_variables(data=self.x_df) # Check data attribute for x, y, in zip(p.plot_data, self.x_df[["X", "Y", "Z"]].values.T): npt.assert_array_equal(x, y) # Check semantic attributes nt.assert_equal(p.orient, "v") nt.assert_is(p.plot_hues, None) nt.assert_is(p.group_label, "big") nt.assert_is(p.value_label, None) # Test wide dataframe with forced horizontal orientation p.establish_variables(data=self.x_df, orient="horiz") nt.assert_equal(p.orient, "h") # Text exception by trying to hue-group with a wide dataframe with nt.assert_raises(ValueError): p.establish_variables(hue="d", data=self.x_df) def test_1d_input_data(self): p = dist._BoxPlotter(**self.default_kws) # Test basic vector data x_1d_array = self.x.ravel() p.establish_variables(data=x_1d_array) nt.assert_equal(len(p.plot_data), 1) nt.assert_equal(len(p.plot_data[0]), self.n_total) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) # Test basic vector data in list form x_1d_list = x_1d_array.tolist() p.establish_variables(data=x_1d_list) nt.assert_equal(len(p.plot_data), 1) nt.assert_equal(len(p.plot_data[0]), self.n_total) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) # Test an object array that looks 1D but isn't x_notreally_1d = np.array([self.x.ravel(), self.x.ravel()[:self.n_total / 2]]) p.establish_variables(data=x_notreally_1d) nt.assert_equal(len(p.plot_data), 2) nt.assert_equal(len(p.plot_data[0]), self.n_total) nt.assert_equal(len(p.plot_data[1]), self.n_total / 2) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) def test_2d_input_data(self): p = dist._BoxPlotter(**self.default_kws) x = self.x[:, 0] # Test vector data that looks 2D but doesn't really have columns p.establish_variables(data=x[:, np.newaxis]) nt.assert_equal(len(p.plot_data), 1) nt.assert_equal(len(p.plot_data[0]), self.x.shape[0]) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) # Test vector data that looks 2D but doesn't really have rows p.establish_variables(data=x[np.newaxis, :]) nt.assert_equal(len(p.plot_data), 1) nt.assert_equal(len(p.plot_data[0]), self.x.shape[0]) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) def test_3d_input_data(self): p = dist._BoxPlotter(**self.default_kws) # Test that passing actually 3D data raises x = np.zeros((5, 5, 5)) with nt.assert_raises(ValueError): p.establish_variables(data=x) def test_list_of_array_input_data(self): p = dist._BoxPlotter(**self.default_kws) # Test 2D input in list form x_list = self.x.T.tolist() p.establish_variables(data=x_list) nt.assert_equal(len(p.plot_data), 3) lengths = [len(v_i) for v_i in p.plot_data] nt.assert_equal(lengths, [self.n_total / 3] * 3) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) def test_wide_array_input_data(self): p = dist._BoxPlotter(**self.default_kws) # Test 2D input in array form p.establish_variables(data=self.x) nt.assert_equal(np.shape(p.plot_data), (3, self.n_total / 3)) npt.assert_array_equal(p.plot_data, self.x.T) nt.assert_is(p.group_label, None) nt.assert_is(p.value_label, None) def test_single_long_direct_inputs(self): p = dist._BoxPlotter(**self.default_kws) # Test passing a series to the x variable p.establish_variables(x=self.y) npt.assert_equal(p.plot_data, [self.y]) nt.assert_equal(p.orient, "h") nt.assert_equal(p.value_label, "y_data") nt.assert_is(p.group_label, None) # Test passing a series to the y variable p.establish_variables(y=self.y) npt.assert_equal(p.plot_data, [self.y]) nt.assert_equal(p.orient, "v") nt.assert_equal(p.value_label, "y_data") nt.assert_is(p.group_label, None) # Test passing an array to the y variable p.establish_variables(y=self.y.values) npt.assert_equal(p.plot_data, [self.y]) nt.assert_equal(p.orient, "v") nt.assert_is(p.value_label, None) nt.assert_is(p.group_label, None) def test_single_long_indirect_inputs(self): p = dist._BoxPlotter(**self.default_kws) # Test referencing a DataFrame series in the x variable p.establish_variables(x="y", data=self.df) npt.assert_equal(p.plot_data, [self.y]) nt.assert_equal(p.orient, "h") nt.assert_equal(p.value_label, "y") nt.assert_is(p.group_label, None) # Test referencing a DataFrame series in the y variable p.establish_variables(y="y", data=self.df) npt.assert_equal(p.plot_data, [self.y]) nt.assert_equal(p.orient, "v") nt.assert_equal(p.value_label, "y") nt.assert_is(p.group_label, None) def test_longform_groupby(self): p = dist._BoxPlotter(**self.default_kws) # Test a vertically oriented grouped and nested plot p.establish_variables("g", "y", "h", data=self.df) nt.assert_equal(len(p.plot_data), 3) nt.assert_equal(len(p.plot_hues), 3) nt.assert_equal(p.orient, "v") nt.assert_equal(p.value_label, "y") nt.assert_equal(p.group_label, "g") nt.assert_equal(p.hue_title, "h") for group, vals in zip(["a", "b", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) for group, hues in zip(["a", "b", "c"], p.plot_hues): npt.assert_array_equal(hues, self.h[self.g == group]) # Test a grouped and nested plot with direct array value data p.establish_variables("g", self.y.values, "h", self.df) nt.assert_is(p.value_label, None) nt.assert_equal(p.group_label, "g") for group, vals in zip(["a", "b", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) # Test a grouped and nested plot with direct array hue data p.establish_variables("g", "y", self.h.values, self.df) for group, hues in zip(["a", "b", "c"], p.plot_hues): npt.assert_array_equal(hues, self.h[self.g == group]) # Test categorical grouping data if pandas_has_categoricals: df = self.df.copy() df.g = df.g.astype("category") # Test that horizontal orientation is automatically detected p.establish_variables("y", "g", "h", data=df) nt.assert_equal(len(p.plot_data), 3) nt.assert_equal(len(p.plot_hues), 3) nt.assert_equal(p.orient, "h") nt.assert_equal(p.value_label, "y") nt.assert_equal(p.group_label, "g") nt.assert_equal(p.hue_title, "h") for group, vals in zip(["a", "b", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) for group, hues in zip(["a", "b", "c"], p.plot_hues): npt.assert_array_equal(hues, self.h[self.g == group]) def test_order(self): p = dist._BoxPlotter(**self.default_kws) # Test inferred order from a wide dataframe input p.establish_variables(data=self.x_df) nt.assert_equal(p.group_names, ["X", "Y", "Z"]) # Test specified order with a wide dataframe input p.establish_variables(data=self.x_df, order=["Y", "Z", "X"]) nt.assert_equal(p.group_names, ["Y", "Z", "X"]) for group, vals in zip(["Y", "Z", "X"], p.plot_data): npt.assert_array_equal(vals, self.x_df[group]) with nt.assert_raises(ValueError): p.establish_variables(data=self.x, order=[1, 2, 0]) # Test inferred order from a grouped longform input p.establish_variables("g", "y", data=self.df) nt.assert_equal(p.group_names, ["a", "b", "c"]) # Test specified order from a grouped longform input p.establish_variables("g", "y", data=self.df, order=["b", "a", "c"]) nt.assert_equal(p.group_names, ["b", "a", "c"]) for group, vals in zip(["b", "a", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) # Test inferred order from a grouped input with categorical groups if pandas_has_categoricals: df = self.df.copy() df.g = df.g.astype("category") df.g = df.g.cat.reorder_categories(["c", "b", "a"]) p.establish_variables("g", "y", data=df) nt.assert_equal(p.group_names, ["c", "b", "a"]) for group, vals in zip(["c", "b", "a"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) def test_hue_order(self): p = dist._BoxPlotter(**self.default_kws) # Test inferred hue order p.establish_variables("g", "y", "h", data=self.df) nt.assert_equal(p.hue_names, ["m", "n"]) # Test specified hue order p.establish_variables("g", "y", "h", data=self.df, hue_order=["n", "m"]) nt.assert_equal(p.hue_names, ["n", "m"]) # Test inferred hue order from a categorical hue input if pandas_has_categoricals: df = self.df.copy() df.h = df.h.astype("category") df.h = df.h.cat.reorder_categories(["n", "m"]) p.establish_variables("g", "y", "h", data=df) nt.assert_equal(p.hue_names, ["n", "m"]) def test_orient_inference(self): p = dist._BoxPlotter(**self.default_kws) cat_series = pd.Series(["a", "b", "c"] * 10) num_series = pd.Series(self.rs.randn(30)) x, y = cat_series, num_series nt.assert_equal(p.infer_orient(x, y, "horiz"), "h") nt.assert_equal(p.infer_orient(x, y, "vert"), "v") nt.assert_equal(p.infer_orient(x, None), "h") nt.assert_equal(p.infer_orient(None, y), "v") nt.assert_equal(p.infer_orient(x, y), "v") if pandas_has_categoricals: cat_series = cat_series.astype("category") y, x = cat_series, num_series nt.assert_equal(p.infer_orient(x, y), "h") def test_default_palettes(self): p = dist._BoxPlotter(**self.default_kws) # Test palette mapping the x position p.establish_variables("g", "y", data=self.df) p.establish_colors(None, None, 1) nt.assert_equal(p.colors, palettes.color_palette("deep", 3)) # Test palette mapping the hue position p.establish_variables("g", "y", "h", data=self.df) p.establish_colors(None, None, 1) nt.assert_equal(p.colors, palettes.color_palette("deep", 2)) def test_default_palette_with_many_levels(self): with palettes.color_palette(["blue", "red"], 2): p = dist._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", data=self.df) p.establish_colors(None, None, 1) npt.assert_array_equal(p.colors, palettes.husl_palette(3, l=.7)) def test_specific_color(self): p = dist._BoxPlotter(**self.default_kws) # Test the same color for each x position p.establish_variables("g", "y", data=self.df) p.establish_colors("blue", None, 1) blue_rgb = mpl.colors.colorConverter.to_rgb("blue") nt.assert_equal(p.colors, [blue_rgb] * 3) # Test a color-based blend for the hue mapping p.establish_variables("g", "y", "h", data=self.df) p.establish_colors("#ff0022", None, 1) rgba_array = palettes.light_palette("#ff0022", 2) npt.assert_array_almost_equal(p.colors, rgba_array[:, :3]) def test_specific_palette(self): p = dist._BoxPlotter(**self.default_kws) # Test palette mapping the x position p.establish_variables("g", "y", data=self.df) p.establish_colors(None, "dark", 1) nt.assert_equal(p.colors, palettes.color_palette("dark", 3)) # Test that non-None `color` and `hue` raises an error p.establish_variables("g", "y", "h", data=self.df) p.establish_colors(None, "muted", 1) nt.assert_equal(p.colors, palettes.color_palette("muted", 2)) # Test that specified palette overrides specified color p = dist._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", data=self.df) p.establish_colors("blue", "deep", 1) nt.assert_equal(p.colors, palettes.color_palette("deep", 3)) def test_dict_as_palette(self): p = dist._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", "h", data=self.df) pal = {"m": (0, 0, 1), "n": (1, 0, 0)} p.establish_colors(None, pal, 1) nt.assert_equal(p.colors, [(0, 0, 1), (1, 0, 0)]) def test_palette_desaturation(self): p = dist._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", data=self.df) p.establish_colors((0, 0, 1), None, .5) nt.assert_equal(p.colors, [(.25, .25, .75)] * 3) p.establish_colors(None, [(0, 0, 1), (1, 0, 0), "w"], .5) nt.assert_equal(p.colors, [(.25, .25, .75), (.75, .25, .25), (1, 1, 1)]) def test_nested_width(self): p = dist._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", "h", data=self.df) nt.assert_equal(p.nested_width, .4 * .98) kws = self.default_kws.copy() kws["width"] = .6 p = dist._BoxPlotter(**kws) p.establish_variables("g", "y", "h", data=self.df) nt.assert_equal(p.nested_width, .3 * .98) def test_hue_offsets(self): p = dist._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", "h", data=self.df) npt.assert_array_equal(p.hue_offsets, [-.2, .2]) kws = self.default_kws.copy() kws["width"] = .6 p = dist._BoxPlotter(**kws) p.establish_variables("g", "y", "h", data=self.df) npt.assert_array_equal(p.hue_offsets, [-.15, .15]) p = dist._BoxPlotter(**kws) p.establish_variables("h", "y", "g", data=self.df) npt.assert_array_almost_equal(p.hue_offsets, [-.2, 0, .2]) def test_axes_data(self): ax = dist.boxplot("g", "y", data=self.df) nt.assert_equal(len(ax.artists), 3) plt.close("all") ax = dist.boxplot("g", "y", "h", data=self.df) nt.assert_equal(len(ax.artists), 6) plt.close("all") def test_box_colors(self): ax = dist.boxplot("g", "y", data=self.df, saturation=1) pal = palettes.color_palette("deep", 3) for patch, color in zip(ax.artists, pal): nt.assert_equal(patch.get_facecolor()[:3], color) plt.close("all") ax = dist.boxplot("g", "y", "h", data=self.df, saturation=1) pal = palettes.color_palette("deep", 2) for patch, color in zip(ax.artists, pal * 2): nt.assert_equal(patch.get_facecolor()[:3], color) plt.close("all") def test_axes_annotation(self): ax = dist.boxplot("g", "y", data=self.df) nt.assert_equal(ax.get_xlabel(), "g") nt.assert_equal(ax.get_ylabel(), "y") nt.assert_equal(ax.get_xlim(), (-.5, 2.5)) npt.assert_array_equal(ax.get_xticks(), [0, 1, 2]) npt.assert_array_equal([l.get_text() for l in ax.get_xticklabels()], ["a", "b", "c"]) plt.close("all") ax = dist.boxplot("g", "y", "h", data=self.df) nt.assert_equal(ax.get_xlabel(), "g") nt.assert_equal(ax.get_ylabel(), "y") npt.assert_array_equal(ax.get_xticks(), [0, 1, 2]) npt.assert_array_equal([l.get_text() for l in ax.get_xticklabels()], ["a", "b", "c"]) npt.assert_array_equal([l.get_text() for l in ax.legend_.get_texts()], ["m", "n"]) plt.close("all") ax = dist.boxplot("y", "g", data=self.df, orient="h") nt.assert_equal(ax.get_xlabel(), "y") nt.assert_equal(ax.get_ylabel(), "g") nt.assert_equal(ax.get_ylim(), (2.5, -.5)) npt.assert_array_equal(ax.get_yticks(), [0, 1, 2]) npt.assert_array_equal([l.get_text() for l in ax.get_yticklabels()], ["a", "b", "c"]) plt.close("all") class TestViolinPlotter(object): """Test violinplots.""" rs = np.random.RandomState(30) n_total = 60 x = rs.randn(n_total / 3, 3) x_df = pd.DataFrame(x, columns=pd.Series(list("XYZ"), name="big")) y = pd.Series(rs.randn(n_total), name="y_data") g = pd.Series(np.repeat(list("abc"), n_total / 3), name="small") h = pd.Series(np.tile(list("mn"), n_total / 2), name="medium") df = pd.DataFrame(dict(y=y, g=g, h=h)) x_df["W"] = g default_kws = dict(x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw="scott", cut=2, scale="area", scale_hue=True, gridsize=100, width=.8, inner="box", split=False, orient=None, linewidth=None, color=None, palette=None, saturation=.75) def test_split_error(self): kws = self.default_kws.copy() kws.update(dict(x="h", y="y", hue="g", data=self.df, split=True)) with nt.assert_raises(ValueError): dist._ViolinPlotter(**kws) def test_no_observations(self): p = dist._ViolinPlotter(**self.default_kws) x = ["a", "a", "b"] y = self.rs.randn(3) y[-1] = np.nan p.establish_variables(x, y) p.estimate_densities("scott", 2, "area", True, 20) nt.assert_equal(len(p.support[0]), 20) nt.assert_equal(len(p.support[1]), 0) nt.assert_equal(len(p.density[0]), 20) nt.assert_equal(len(p.density[1]), 1) nt.assert_equal(p.density[1].item(), 1) p.estimate_densities("scott", 2, "count", True, 20) nt.assert_equal(p.density[1].item(), 0) x = ["a"] * 4 + ["b"] * 2 y = self.rs.randn(6) h = ["m", "n"] * 2 + ["m"] * 2 p.establish_variables(x, y, h) p.estimate_densities("scott", 2, "area", True, 20) nt.assert_equal(len(p.support[1][0]), 20) nt.assert_equal(len(p.support[1][1]), 0) nt.assert_equal(len(p.density[1][0]), 20) nt.assert_equal(len(p.density[1][1]), 1) nt.assert_equal(p.density[1][1].item(), 1) p.estimate_densities("scott", 2, "count", False, 20) nt.assert_equal(p.density[1][1].item(), 0) def test_single_observation(self): p = dist._ViolinPlotter(**self.default_kws) x = ["a", "a", "b"] y = self.rs.randn(3) p.establish_variables(x, y) p.estimate_densities("scott", 2, "area", True, 20) nt.assert_equal(len(p.support[0]), 20) nt.assert_equal(len(p.support[1]), 1) nt.assert_equal(len(p.density[0]), 20) nt.assert_equal(len(p.density[1]), 1) nt.assert_equal(p.density[1].item(), 1) p.estimate_densities("scott", 2, "count", True, 20) nt.assert_equal(p.density[1].item(), .5) x = ["b"] * 4 + ["a"] * 3 y = self.rs.randn(7) h = (["m", "n"] * 4)[:-1] p.establish_variables(x, y, h) p.estimate_densities("scott", 2, "area", True, 20) nt.assert_equal(len(p.support[1][0]), 20) nt.assert_equal(len(p.support[1][1]), 1) nt.assert_equal(len(p.density[1][0]), 20) nt.assert_equal(len(p.density[1][1]), 1) nt.assert_equal(p.density[1][1].item(), 1) p.estimate_densities("scott", 2, "count", False, 20) nt.assert_equal(p.density[1][1].item(), .5) def test_dwidth(self): kws = self.default_kws.copy() kws.update(dict(x="g", y="y", data=self.df)) p = dist._ViolinPlotter(**kws) nt.assert_equal(p.dwidth, .4) kws.update(dict(width=.4)) p = dist._ViolinPlotter(**kws) nt.assert_equal(p.dwidth, .2) kws.update(dict(hue="h", width=.8)) p = dist._ViolinPlotter(**kws) nt.assert_equal(p.dwidth, .2) kws.update(dict(split=True)) p = dist._ViolinPlotter(**kws) nt.assert_equal(p.dwidth, .4) def test_scale_area(self): kws = self.default_kws.copy() kws["scale"] = "area" p = dist._ViolinPlotter(**kws) # Test single layer of grouping p.hue_names = None density = [self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)] max_before = np.array([d.max() for d in density]) p.scale_area(density, max_before, False) max_after = np.array([d.max() for d in density]) nt.assert_equal(max_after[0], 1) before_ratio = max_before[1] / max_before[0] after_ratio = max_after[1] / max_after[0] nt.assert_equal(before_ratio, after_ratio) # Test nested grouping scaling across all densities p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)], [self.rs.uniform(0, .1, 50), self.rs.uniform(0, .02, 50)]] max_before = np.array([[r.max() for r in row] for row in density]) p.scale_area(density, max_before, False) max_after = np.array([[r.max() for r in row] for row in density]) nt.assert_equal(max_after[0, 0], 1) before_ratio = max_before[1, 1] / max_before[0, 0] after_ratio = max_after[1, 1] / max_after[0, 0] nt.assert_equal(before_ratio, after_ratio) # Test nested grouping scaling within hue p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)], [self.rs.uniform(0, .1, 50), self.rs.uniform(0, .02, 50)]] max_before = np.array([[r.max() for r in row] for row in density]) p.scale_area(density, max_before, True) max_after = np.array([[r.max() for r in row] for row in density]) nt.assert_equal(max_after[0, 0], 1) nt.assert_equal(max_after[1, 0], 1) before_ratio = max_before[1, 1] / max_before[1, 0] after_ratio = max_after[1, 1] / max_after[1, 0] nt.assert_equal(before_ratio, after_ratio) def test_scale_width(self): kws = self.default_kws.copy() kws["scale"] = "width" p = dist._ViolinPlotter(**kws) # Test single layer of grouping p.hue_names = None density = [self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)] p.scale_width(density) max_after = np.array([d.max() for d in density]) npt.assert_array_equal(max_after, [1, 1]) # Test nested grouping p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)], [self.rs.uniform(0, .1, 50), self.rs.uniform(0, .02, 50)]] p.scale_width(density) max_after = np.array([[r.max() for r in row] for row in density]) npt.assert_array_equal(max_after, [[1, 1], [1, 1]]) def test_scale_count(self): kws = self.default_kws.copy() kws["scale"] = "count" p = dist._ViolinPlotter(**kws) # Test single layer of grouping p.hue_names = None density = [self.rs.uniform(0, .8, 20), self.rs.uniform(0, .2, 40)] counts = np.array([20, 40]) p.scale_count(density, counts, False) max_after = np.array([d.max() for d in density]) npt.assert_array_equal(max_after, [.5, 1]) # Test nested grouping scaling across all densities p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 5), self.rs.uniform(0, .2, 40)], [self.rs.uniform(0, .1, 100), self.rs.uniform(0, .02, 50)]] counts = np.array([[5, 40], [100, 50]]) p.scale_count(density, counts, False) max_after = np.array([[r.max() for r in row] for row in density]) npt.assert_array_equal(max_after, [[.05, .4], [1, .5]]) # Test nested grouping scaling within hue p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 5), self.rs.uniform(0, .2, 40)], [self.rs.uniform(0, .1, 100), self.rs.uniform(0, .02, 50)]] counts = np.array([[5, 40], [100, 50]]) p.scale_count(density, counts, True) max_after = np.array([[r.max() for r in row] for row in density]) npt.assert_array_equal(max_after, [[.125, 1], [1, .5]]) def test_bad_scale(self): kws = self.default_kws.copy() kws["scale"] = "not_a_scale_type" with nt.assert_raises(ValueError): dist._ViolinPlotter(**kws) def test_kde_fit(self): p = dist._ViolinPlotter(**self.default_kws) data = self.y data_std = data.std(ddof=1) # Bandwidth behavior depends on scipy version if LooseVersion(scipy.__version__) < "0.11": # Test ignoring custom bandwidth on old scipy kde, bw = p.fit_kde(self.y, .2) nt.assert_is_instance(kde, stats.gaussian_kde) nt.assert_equal(kde.factor, kde.scotts_factor()) else: # Test reference rule bandwidth kde, bw = p.fit_kde(data, "scott") nt.assert_is_instance(kde, stats.gaussian_kde) nt.assert_equal(kde.factor, kde.scotts_factor()) nt.assert_equal(bw, kde.scotts_factor() * data_std) # Test numeric scale factor kde, bw = p.fit_kde(self.y, .2) nt.assert_is_instance(kde, stats.gaussian_kde) nt.assert_equal(kde.factor, .2) nt.assert_equal(bw, .2 * data_std) def test_draw_to_density(self): p = dist._ViolinPlotter(**self.default_kws) # p.dwidth will be 1 for easier testing p.width = 2 # Test verical plots support = np.array([.2, .6]) density = np.array([.1, .4]) # Test full vertical plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .5, support, density, False) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.99 * -.4, .99 * .4]) npt.assert_array_equal(y, [.5, .5]) plt.close("all") # Test left vertical plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .5, support, density, "left") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.99 * -.4, 0]) npt.assert_array_equal(y, [.5, .5]) plt.close("all") # Test right vertical plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .5, support, density, "right") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [0, .99 * .4]) npt.assert_array_equal(y, [.5, .5]) plt.close("all") # Switch orientation to test horizontal plots p.orient = "h" support = np.array([.2, .5]) density = np.array([.3, .7]) # Test full horizontal plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .6, support, density, False) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.6, .6]) npt.assert_array_equal(y, [.99 * -.7, .99 * .7]) plt.close("all") # Test left horizontal plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .6, support, density, "left") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.6, .6]) npt.assert_array_equal(y, [.99 * -.7, 0]) plt.close("all") # Test right horizontal plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .6, support, density, "right") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.6, .6]) npt.assert_array_equal(y, [0, .99 * .7]) plt.close("all") def test_draw_single_observations(self): p = dist._ViolinPlotter(**self.default_kws) p.width = 2 # Test vertical plot _, ax = plt.subplots() p.draw_single_observation(ax, 1, 1.5, 1) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [0, 2]) npt.assert_array_equal(y, [1.5, 1.5]) plt.close("all") # Test horizontal plot p.orient = "h" _, ax = plt.subplots() p.draw_single_observation(ax, 2, 2.2, .5) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [2.2, 2.2]) npt.assert_array_equal(y, [1.5, 2.5]) plt.close("all") def test_draw_box_lines(self): # Test vertical plot kws = self.default_kws.copy() kws.update(dict(y="y", data=self.df, inner=None)) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_box_lines(ax, self.y, p.support[0], p.density[0], 0) nt.assert_equal(len(ax.lines), 2) q25, q50, q75 = np.percentile(self.y, [25, 50, 75]) _, y = ax.lines[1].get_xydata().T npt.assert_array_equal(y, [q25, q75]) _, y = ax.collections[0].get_offsets().T nt.assert_equal(y, q50) plt.close("all") # Test horizontal plot kws = self.default_kws.copy() kws.update(dict(x="y", data=self.df, inner=None)) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_box_lines(ax, self.y, p.support[0], p.density[0], 0) nt.assert_equal(len(ax.lines), 2) q25, q50, q75 = np.percentile(self.y, [25, 50, 75]) x, _ = ax.lines[1].get_xydata().T npt.assert_array_equal(x, [q25, q75]) x, _ = ax.collections[0].get_offsets().T nt.assert_equal(x, q50) plt.close("all") def test_draw_quartiles(self): kws = self.default_kws.copy() kws.update(dict(y="y", data=self.df, inner=None)) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_quartiles(ax, self.y, p.support[0], p.density[0], 0) for val, line in zip(np.percentile(self.y, [25, 50, 75]), ax.lines): _, y = line.get_xydata().T npt.assert_array_equal(y, [val, val]) plt.close("all") def test_draw_points(self): p = dist._ViolinPlotter(**self.default_kws) # Test vertical plot _, ax = plt.subplots() p.draw_points(ax, self.y, 0) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, np.zeros_like(self.y)) npt.assert_array_equal(y, self.y) plt.close("all") # Test horizontal plot p.orient = "h" _, ax = plt.subplots() p.draw_points(ax, self.y, 0) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, self.y) npt.assert_array_equal(y, np.zeros_like(self.y)) plt.close("all") def test_draw_sticks(self): kws = self.default_kws.copy() kws.update(dict(y="y", data=self.df, inner=None)) p = dist._ViolinPlotter(**kws) # Test vertical plot _, ax = plt.subplots() p.draw_stick_lines(ax, self.y, p.support[0], p.density[0], 0) for val, line in zip(self.y, ax.lines): _, y = line.get_xydata().T npt.assert_array_equal(y, [val, val]) plt.close("all") # Test horizontal plot p.orient = "h" _, ax = plt.subplots() p.draw_stick_lines(ax, self.y, p.support[0], p.density[0], 0) for val, line in zip(self.y, ax.lines): x, _ = line.get_xydata().T npt.assert_array_equal(x, [val, val]) plt.close("all") def test_draw_violinplots(self): kws = self.default_kws.copy() # Test single vertical violin kws.update(dict(y="y", data=self.df, inner=None, saturation=1, color=(1, 0, 0, 1))) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 1) npt.assert_array_equal(ax.collections[0].get_facecolors(), [(1, 0, 0, 1)]) plt.close("all") # Test single horizontal violin kws.update(dict(x="y", y=None, color=(0, 1, 0, 1))) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 1) npt.assert_array_equal(ax.collections[0].get_facecolors(), [(0, 1, 0, 1)]) plt.close("all") # Test multiple vertical violins kws.update(dict(x="g", y="y", color=None,)) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 3) for violin, color in zip(ax.collections, palettes.color_palette()): npt.assert_array_equal(violin.get_facecolors()[0, :-1], color) plt.close("all") # Test multiple violins with hue nesting kws.update(dict(hue="h")) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 6) for violin, color in zip(ax.collections, palettes.color_palette(n_colors=2) * 3): npt.assert_array_equal(violin.get_facecolors()[0, :-1], color) plt.close("all") # Test multiple split violins kws.update(dict(split=True, palette="muted")) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 6) for violin, color in zip(ax.collections, palettes.color_palette("muted", n_colors=2) * 3): npt.assert_array_equal(violin.get_facecolors()[0, :-1], color) plt.close("all") def test_draw_violinplots_no_observations(self): kws = self.default_kws.copy() kws["inner"] = None # Test single layer of grouping x = ["a", "a", "b"] y = self.rs.randn(3) y[-1] = np.nan kws.update(x=x, y=y) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 1) nt.assert_equal(len(ax.lines), 0) plt.close("all") # Test nested hue grouping x = ["a"] * 4 + ["b"] * 2 y = self.rs.randn(6) h = ["m", "n"] * 2 + ["m"] * 2 kws.update(x=x, y=y, hue=h) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 3) nt.assert_equal(len(ax.lines), 0) plt.close("all") def test_draw_violinplots_single_observations(self): kws = self.default_kws.copy() kws["inner"] = None # Test single layer of grouping x = ["a", "a", "b"] y = self.rs.randn(3) kws.update(x=x, y=y) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 1) nt.assert_equal(len(ax.lines), 1) plt.close("all") # Test nested hue grouping x = ["b"] * 4 + ["a"] * 3 y = self.rs.randn(7) h = (["m", "n"] * 4)[:-1] kws.update(x=x, y=y, hue=h) p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 3) nt.assert_equal(len(ax.lines), 1) plt.close("all") # Test nested hue grouping with split kws["split"] = True p = dist._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) nt.assert_equal(len(ax.collections), 3) nt.assert_equal(len(ax.lines), 1) plt.close("all") def test_violinplots(self): # Smoke test the high level violinplot options dist.violinplot("y", data=self.df) plt.close("all") dist.violinplot(y="y", data=self.df) plt.close("all") dist.violinplot("g", "y", data=self.df) plt.close("all") dist.violinplot("y", "g", data=self.df, orient="h") plt.close("all") dist.violinplot("g", "y", "h", data=self.df) plt.close("all") dist.violinplot("y", "g", "h", data=self.df, orient="h") plt.close("all") for inner in ["box", "quart", "point", "stick", None]: dist.violinplot("g", "y", data=self.df, inner=inner) plt.close("all") dist.violinplot("g", "y", "h", data=self.df, inner=inner) plt.close("all") dist.violinplot("g", "y", "h", data=self.df, inner=inner, split=True) plt.close("all") class TestStripPlotter(object): """Test boxplot (also base class for things like violinplots).""" rs = np.random.RandomState(30) n_total = 60 y = pd.Series(rs.randn(n_total), name="y_data") g = pd.Series(np.repeat(list("abc"), n_total / 3), name="small") h = pd.Series(np.tile(list("mn"), n_total / 2), name="medium") df = pd.DataFrame(dict(y=y, g=g, h=h)) def test_stripplot_vertical(self): pal = palettes.color_palette() ax = dist.stripplot("g", "y", data=self.df) for i, (_, vals) in enumerate(self.y.groupby(self.g)): x, y = ax.collections[i].get_offsets().T npt.assert_array_equal(x, np.ones(len(x)) * i) npt.assert_array_equal(y, vals) npt.assert_equal(ax.collections[i].get_facecolors()[0, :3], pal[i]) plt.close("all") @skipif(not pandas_has_categoricals) def test_stripplot_horiztonal(self): df = self.df.copy() df.g = df.g.astype("category") ax = dist.stripplot("y", "g", data=df) for i, (_, vals) in enumerate(self.y.groupby(self.g)): x, y = ax.collections[i].get_offsets().T npt.assert_array_equal(x, vals) npt.assert_array_equal(y, np.ones(len(x)) * i) plt.close("all") def test_stripplot_jitter(self): pal = palettes.color_palette() ax = dist.stripplot("g", "y", data=self.df, jitter=True) for i, (_, vals) in enumerate(self.y.groupby(self.g)): x, y = ax.collections[i].get_offsets().T npt.assert_array_less(np.ones(len(x)) * i - .1, x) npt.assert_array_less(x, np.ones(len(x)) * i + .1) npt.assert_array_equal(y, vals) npt.assert_equal(ax.collections[i].get_facecolors()[0, :3], pal[i]) plt.close("all") def test_split_nested_stripplot_vertical(self): pal = palettes.color_palette() ax = dist.stripplot("g", "y", "h", data=self.df) for i, (_, group_vals) in enumerate(self.y.groupby(self.g)): for j, (_, vals) in enumerate(group_vals.groupby(self.h)): x, y = ax.collections[i * 2 + j].get_offsets().T npt.assert_array_equal(x, np.ones(len(x)) * i + [-.2, .2][j]) npt.assert_array_equal(y, vals) fc = ax.collections[i * 2 + j].get_facecolors()[0, :3] npt.assert_equal(fc, pal[j]) plt.close("all") @skipif(not pandas_has_categoricals) def test_split_nested_stripplot_horizontal(self): df = self.df.copy() df.g = df.g.astype("category") ax = dist.stripplot("y", "g", "h", data=df) for i, (_, group_vals) in enumerate(self.y.groupby(self.g)): for j, (_, vals) in enumerate(group_vals.groupby(self.h)): x, y = ax.collections[i * 2 + j].get_offsets().T npt.assert_array_equal(x, vals) npt.assert_array_equal(y, np.ones(len(x)) * i + [-.2, .2][j]) plt.close("all") def test_unsplit_nested_stripplot_vertical(self): pal = palettes.color_palette() # Test a simple vertical strip plot ax = dist.stripplot("g", "y", "h", data=self.df, split=False) for i, (_, group_vals) in enumerate(self.y.groupby(self.g)): for j, (_, vals) in enumerate(group_vals.groupby(self.h)): x, y = ax.collections[i * 2 + j].get_offsets().T npt.assert_array_equal(x, np.ones(len(x)) * i) npt.assert_array_equal(y, vals) fc = ax.collections[i * 2 + j].get_facecolors()[0, :3] npt.assert_equal(fc, pal[j]) plt.close("all") @skipif(not pandas_has_categoricals) def test_unsplit_nested_stripplot_horizontal(self): df = self.df.copy() df.g = df.g.astype("category") ax = dist.stripplot("y", "g", "h", data=df, split=False) for i, (_, group_vals) in enumerate(self.y.groupby(self.g)): for j, (_, vals) in enumerate(group_vals.groupby(self.h)): x, y = ax.collections[i * 2 + j].get_offsets().T npt.assert_array_equal(x, vals) npt.assert_array_equal(y, np.ones(len(x)) * i) plt.close("all") class TestKDE(object): rs = np.random.RandomState(0) x = rs.randn(50) y = rs.randn(50) kernel = "gau" bw = "scott" gridsize = 128 clip = (-np.inf, np.inf) cut = 3 def test_scipy_univariate_kde(self): """Test the univariate KDE estimation with scipy.""" grid, y = dist._scipy_univariate_kde(self.x, self.bw, self.gridsize, self.cut, self.clip) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) for bw in ["silverman", .2]: dist._scipy_univariate_kde(self.x, bw, self.gridsize, self.cut, self.clip) @skipif(_no_statsmodels) def test_statsmodels_univariate_kde(self): """Test the univariate KDE estimation with statsmodels.""" grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel, self.bw, self.gridsize, self.cut, self.clip) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) for bw in ["silverman", .2]: dist._statsmodels_univariate_kde(self.x, self.kernel, bw, self.gridsize, self.cut, self.clip) def test_scipy_bivariate_kde(self): """Test the bivariate KDE estimation with scipy.""" clip = [self.clip, self.clip] x, y, z = dist._scipy_bivariate_kde(self.x, self.y, self.bw, self.gridsize, self.cut, clip) nt.assert_equal(x.shape, (self.gridsize, self.gridsize)) nt.assert_equal(y.shape, (self.gridsize, self.gridsize)) nt.assert_equal(len(z), self.gridsize) # Test a specific bandwidth clip = [self.clip, self.clip] x, y, z = dist._scipy_bivariate_kde(self.x, self.y, 1, self.gridsize, self.cut, clip) # Test that we get an error with an invalid bandwidth with nt.assert_raises(ValueError): dist._scipy_bivariate_kde(self.x, self.y, (1, 2), self.gridsize, self.cut, clip) @skipif(_no_statsmodels) def test_statsmodels_bivariate_kde(self): """Test the bivariate KDE estimation with statsmodels.""" clip = [self.clip, self.clip] x, y, z = dist._statsmodels_bivariate_kde(self.x, self.y, self.bw, self.gridsize, self.cut, clip) nt.assert_equal(x.shape, (self.gridsize, self.gridsize)) nt.assert_equal(y.shape, (self.gridsize, self.gridsize)) nt.assert_equal(len(z), self.gridsize) @skipif(_no_statsmodels) def test_statsmodels_kde_cumulative(self): """Test computation of cumulative KDE.""" grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel, self.bw, self.gridsize, self.cut, self.clip, cumulative=True) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) # make sure y is monotonically increasing npt.assert_((np.diff(y) > 0).all()) def test_kde_cummulative_2d(self): """Check error if args indicate bivariate KDE and cumulative.""" with npt.assert_raises(TypeError): dist.kdeplot(self.x, data2=self.y, cumulative=True) def test_bivariate_kde_series(self): df =
pd.DataFrame({'x': self.x, 'y': self.y})
pandas.DataFrame
from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, MultiIndex, Series, _testing as tm, bdate_range, concat, date_range, isna, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io.pytables import Term pytestmark = pytest.mark.single def test_select_columns_in_where(setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_select_with_dups(setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_select(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"])
tm.assert_frame_equal(expected, result)
pandas._testing.assert_frame_equal
import pandas as pd import sys import utils import config nrows = None tr = utils.load_df(config.data+'train.csv',nrows=nrows) te = utils.load_df(config.data+'test.csv',nrows=nrows) actions = ['interaction item image','interaction item info','interaction item deals','interaction item rating','search for item'] df =
pd.concat([tr,te])
pandas.concat
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([pd.NaT]), [False, True]) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(expected, idx.isin(values, level=0)) self.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) self.assertRaises(IndexError, idx.isin, values, level=1) self.assertRaises(IndexError, idx.isin, values, level=10) self.assertRaises(IndexError, idx.isin, values, level=-2) self.assertRaises(KeyError, idx.isin, values, level=1.0) self.assertRaises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' self.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) self.assertRaises(KeyError, idx.isin, values, level='xyzzy') self.assertRaises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) self.assert_numpy_array_equal(res,np.array([True,True,True,True],dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) self.assertTrue(result.equals(self.strIndex)) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') self.assertEqual(idx.name, idx[1:].name) def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) self.assertIs(res, joined) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) self.assertTrue(idx[1:3].identical( pd.Index([2, 3], dtype=np.object_))) self.assertTrue(idx[[0,1]].identical( pd.Index([1, 2], dtype=np.object_))) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None self.assertEqual(idx.reindex([])[0].name, None) self.assertEqual(idx.reindex(np.array([]))[0].name, None) self.assertEqual(idx.reindex(idx.tolist())[0].name, None) self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, None) self.assertEqual(idx.reindex(idx.values)[0].name, None) self.assertEqual(idx.reindex(idx.values[:-1])[0].name, None) # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, None) self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, None) idx.name = 'foobar' self.assertEqual(idx.reindex([])[0].name, 'foobar') self.assertEqual(idx.reindex(np.array([]))[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist())[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values[:-1])[0].name, 'foobar') # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, 'foobar') def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type([]), np.object_) self.assertEqual(get_reindex_type(np.array([])), np.object_) self.assertEqual(get_reindex_type(np.array([], dtype=np.int64)), np.object_) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type(pd.Int64Index([])), np.int64) self.assertEqual(get_reindex_type(pd.Float64Index([])), np.float64) self.assertEqual(get_reindex_type(pd.DatetimeIndex([])), np.datetime64) reindexed = idx.reindex(pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] self.assertEqual(reindexed.levels[0].dtype.type, np.int64) self.assertEqual(reindexed.levels[1].dtype.type, np.float64) class Numeric(Base): def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx * idx tm.assert_index_equal(result, didx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * date_range('20130101',periods=5)) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_explicit_conversions(self): # GH 8608 # add/sub are overriden explicity for Float/Int Index idx = self._holder(np.arange(5,dtype='int64')) # float conversions arr = np.arange(5,dtype='int64')*3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx,expected) fidx = 3.2 * idx tm.assert_index_equal(fidx,expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5,dtype='float64') result = fidx - a tm.assert_index_equal(result,expected) expected = Float64Index(-arr) a = np.zeros(5,dtype='float64') result = a - fidx tm.assert_index_equal(result,expected) def test_ufunc_compat(self): idx = self._holder(np.arange(5,dtype='int64')) result = np.sin(idx) expected = Float64Index(np.sin(np.arange(5,dtype='int64'))) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric, tm.TestCase): _holder = Float64Index _multiprocess_can_split_ = True def setUp(self): self.mixed = Float64Index([1.5, 2, 3, 4, 5]) self.float = Float64Index(np.arange(5) * 2.5) def create_index(self): return Float64Index(np.arange(5,dtype='float64')) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.float).__name__): hash(self.float) def test_repr_roundtrip(self): for ind in (self.mixed, self.float): tm.assert_index_equal(eval(repr(ind)), ind) def check_is_index(self, i): self.assertIsInstance(i, Index) self.assertNotIsInstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): self.assertTrue(a.equals(b)) if is_float_index: self.assertIsInstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1,2,3,4,5]) self.assertIsInstance(index, Float64Index) self.assertTrue((index.values == np.array([1,2,3,4,5],dtype='float64')).all()) index = Float64Index(np.array([1,2,3,4,5])) self.assertIsInstance(index, Float64Index) index = Float64Index([1.,2,3,4,5]) self.assertIsInstance(index, Float64Index) index = Float64Index(np.array([1.,2,3,4,5])) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, float) index = Float64Index(np.array([1.,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) index = Float64Index(np.array([1,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) # nan handling result = Float64Index([np.nan, np.nan]) self.assertTrue(pd.isnull(result.values).all()) result = Float64Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) result = Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) def test_constructor_invalid(self): # invalid self.assertRaises(TypeError, Float64Index, 0.) self.assertRaises(TypeError, Float64Index, ['a','b',0.]) self.assertRaises(TypeError, Float64Index, [Timestamp('20130101')]) def test_constructor_coerce(self): self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5])) self.check_coerce(self.float,Index(np.arange(5) * 2.5)) self.check_coerce(self.float,Index(np.array(np.arange(5) * 2.5, dtype=object))) def test_constructor_explicit(self): # these don't auto convert self.check_coerce(self.float,Index((np.arange(5) * 2.5), dtype=object), is_float_index=False) self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5],dtype=object), is_float_index=False) def test_astype(self): result = self.float.astype(object) self.assertTrue(result.equals(self.float)) self.assertTrue(self.float.equals(result)) self.check_is_index(result) i = self.mixed.copy() i.name = 'foo' result = i.astype(object) self.assertTrue(result.equals(i)) self.assertTrue(i.equals(result)) self.check_is_index(result) def test_equals(self): i = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i2)) i = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i2)) def test_get_loc_na(self): idx = Float64Index([np.nan, 1, 2]) self.assertEqual(idx.get_loc(1), 1) self.assertEqual(idx.get_loc(np.nan), 0) idx = Float64Index([np.nan, 1, np.nan]) self.assertEqual(idx.get_loc(1), 1) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_contains_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(np.nan in i) def test_contains_not_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(1.0 in i) def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) self.assertFalse(i.isin([0]).item()) self.assertFalse(i.isin([1]).item()) self.assertTrue(i.isin([np.nan]).item()) def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) np.testing.assert_array_equal(i.isin([1.0]), np.array([True, False])) np.testing.assert_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, True])) np.testing.assert_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, False])) def test_astype_from_object(self): index = Index([1.0, np.nan, 0.2], dtype='object') result = index.astype(float) expected = Float64Index([1.0, np.nan, 0.2]) tm.assert_equal(result.dtype, expected.dtype) tm.assert_index_equal(result, expected) class TestInt64Index(Numeric, tm.TestCase): _holder = Int64Index _multiprocess_can_split_ = True def setUp(self): self.index = Int64Index(np.arange(0, 20, 2)) def create_index(self): return Int64Index(np.arange(5,dtype='int64')) def test_too_many_names(self): def testit(): self.index.names = ["roger", "harold"] assertRaisesRegexp(ValueError, "^Length", testit) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = np.array([-5, 0, 1, 2], dtype=np.int64) self.assert_numpy_array_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) self.assert_numpy_array_equal(index, expected) # scalar raise Exception self.assertRaises(TypeError, Int64Index, 5) # copy arr = self.index.values new_index = Int64Index(arr, copy=True) self.assert_numpy_array_equal(new_index, self.index) val = arr[0] + 3000 # this should not change index arr[0] = val self.assertNotEqual(new_index[0], val) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) self.assertEqual(index.values.dtype, np.int64) self.assertTrue(index.equals(arr)) # preventing casting arr = np.array([1, '2', 3, '4'], dtype=object) with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr_with_floats) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_copy(self): i = Int64Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Int64Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_coerce_list(self): # coerce things arr = Index([1, 2, 3, 4]) tm.assert_isinstance(arr, Int64Index) # but not if explicit dtype passed arr = Index([1, 2, 3, 4], dtype=object) tm.assert_isinstance(arr, Index) def test_dtype(self): self.assertEqual(self.index.dtype, np.int64) def test_is_monotonic(self): self.assertTrue(self.index.is_monotonic) self.assertTrue(self.index.is_monotonic_increasing) self.assertFalse(self.index.is_monotonic_decreasing) index = Int64Index([4, 3, 2, 1]) self.assertFalse(index.is_monotonic) self.assertTrue(index.is_monotonic_decreasing) index = Int64Index([1]) self.assertTrue(index.is_monotonic) self.assertTrue(index.is_monotonic_increasing) self.assertTrue(index.is_monotonic_decreasing) def test_is_monotonic_na(self): examples = [Index([np.nan]), Index([np.nan, 1]), Index([1, 2, np.nan]), Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT']), ] for index in examples: self.assertFalse(index.is_monotonic_increasing) self.assertFalse(index.is_monotonic_decreasing) def test_equals(self): same_values = Index(self.index, dtype=object) self.assertTrue(self.index.equals(same_values)) self.assertTrue(same_values.equals(self.index)) def test_identical(self): i = Index(self.index.copy()) self.assertTrue(i.identical(self.index)) same_values_different_type = Index(i, dtype=object) self.assertFalse(i.identical(same_values_different_type)) i = self.index.copy(dtype=object) i = i.rename('foo') same_values = Index(i, dtype=object) self.assertTrue(same_values.identical(self.index.copy(dtype=object))) self.assertFalse(i.identical(self.index)) self.assertTrue(Index(same_values, name='foo', dtype=object ).identical(i)) self.assertFalse( self.index.copy(dtype=object) .identical(self.index.copy(dtype='int64'))) def test_get_indexer(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_pad(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_backfill(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5]) self.assert_numpy_array_equal(indexer, expected) def test_join_outer(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic # guarantee of sortedness res, lidx, ridx = self.index.join(other, how='outer', return_indexers=True) noidx_res = self.index.join(other, how='outer') self.assertTrue(res.equals(noidx_res)) eres = Int64Index([0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 25]) elidx = np.array([0, -1, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, 9, -1], dtype=np.int64) eridx = np.array([-1, 3, 4, -1, 5, -1, 0, -1, -1, 1, -1, -1, -1, 2], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='outer', return_indexers=True) noidx_res = self.index.join(other_mono, how='outer') self.assertTrue(res.equals(noidx_res)) eridx = np.array([-1, 0, 1, -1, 2, -1, 3, -1, -1, 4, -1, -1, -1, 5], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_inner(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='inner', return_indexers=True) # no guarantee of sortedness, so sort for comparison purposes ind = res.argsort() res = res.take(ind) lidx = lidx.take(ind) ridx = ridx.take(ind) eres = Int64Index([2, 12]) elidx = np.array([1, 6]) eridx = np.array([4, 1]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='inner', return_indexers=True) res2 = self.index.intersection(other_mono) self.assertTrue(res.equals(res2)) eridx = np.array([1, 4]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_left(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) eres = self.index eridx = np.array([-1, 4, -1, -1, -1, -1, 1, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='left', return_indexers=True) eridx = np.array([-1, 1, -1, -1, -1, -1, 4, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx2.join(idx, how='left', return_indexers=True) eres = idx2 eridx = np.array([0, 2, 3, -1, -1]) elidx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) """ def test_join_right(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='right', return_indexers=True) eres = other elidx = np.array([-1, 6, -1, -1, 1, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='right', return_indexers=True) eres = other_mono elidx = np.array([-1, 1, -1, -1, 6, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx.join(idx2, how='right', return_indexers=True) eres = idx2 elidx = np.array([0, 2, 3, -1, -1]) eridx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) idx = Index([1,1,2,5]) idx2 = Index([1,2,5,9,7]) res = idx.join(idx2, how='right', return_indexers=False) eres = idx2 self.assert(res.equals(eres)) """ def test_join_non_int_index(self): other = Index([3, 6, 7, 8, 10], dtype=object) outer = self.index.join(other, how='outer') outer2 = other.join(self.index, how='outer') expected = Index([0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 18], dtype=object) self.assertTrue(outer.equals(outer2)) self.assertTrue(outer.equals(expected)) inner = self.index.join(other, how='inner') inner2 = other.join(self.index, how='inner') expected = Index([6, 8, 10], dtype=object) self.assertTrue(inner.equals(inner2)) self.assertTrue(inner.equals(expected)) left = self.index.join(other, how='left') self.assertTrue(left.equals(self.index)) left2 = other.join(self.index, how='left') self.assertTrue(left2.equals(other)) right = self.index.join(other, how='right') self.assertTrue(right.equals(other)) right2 = other.join(self.index, how='right') self.assertTrue(right2.equals(self.index)) def test_join_non_unique(self): left = Index([4, 4, 3, 3]) joined, lidx, ridx = left.join(left, return_indexers=True) exp_joined = Index([3, 3, 3, 3, 4, 4, 4, 4]) self.assertTrue(joined.equals(exp_joined)) exp_lidx = np.array([2, 2, 3, 3, 0, 0, 1, 1], dtype=np.int64) self.assert_numpy_array_equal(lidx, exp_lidx) exp_ridx = np.array([2, 3, 2, 3, 0, 1, 0, 1], dtype=np.int64) self.assert_numpy_array_equal(ridx, exp_ridx) def test_join_self(self): kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = self.index.join(self.index, how=kind) self.assertIs(self.index, joined) def test_intersection(self): other = Index([1, 2, 3, 4, 5]) result = self.index.intersection(other) expected = np.sort(np.intersect1d(self.index.values, other.values)) self.assert_numpy_array_equal(result, expected) result = other.intersection(self.index) expected = np.sort(np.asarray(np.intersect1d(self.index.values, other.values))) self.assert_numpy_array_equal(result, expected) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) res = i2.intersection(i1) self.assertEqual(len(res), 0) def test_union_noncomparable(self): from datetime import datetime, timedelta # corner case, non-Int64Index now = datetime.now() other = Index([now + timedelta(i) for i in range(4)], dtype=object) result = self.index.union(other) expected = np.concatenate((self.index, other)) self.assert_numpy_array_equal(result, expected) result = other.union(self.index) expected = np.concatenate((other, self.index)) self.assert_numpy_array_equal(result, expected) def test_cant_or_shouldnt_cast(self): # can't data = ['foo', 'bar', 'baz'] self.assertRaises(TypeError, Int64Index, data) # shouldn't data = ['0', '1', '2'] self.assertRaises(TypeError, Int64Index, data) def test_view_Index(self): self.index.view(Index) def test_prevent_casting(self): result = self.index.astype('O') self.assertEqual(result.dtype, np.object_) def test_take_preserve_name(self): index = Int64Index([1, 2, 3, 4], name='foo') taken = index.take([3, 0, 1]) self.assertEqual(index.name, taken.name) def test_int_name_format(self): from pandas import Series, DataFrame index = Index(['a', 'b', 'c'], name=0) s = Series(lrange(3), index) df = DataFrame(lrange(3), index=index) repr(s) repr(df) def test_print_unicode_columns(self): df = pd.DataFrame( {u("\u05d0"): [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): r = repr(pd.Index(np.arange(1000))) self.assertTrue(len(r) < 100) self.assertTrue("..." in r) def test_repr_roundtrip(self): tm.assert_index_equal(eval(repr(self.index)), self.index) def test_unicode_string_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: bytes(idx) else: str(idx) def test_slice_keep_name(self): idx = Int64Index([1, 2], name='asdf') self.assertEqual(idx.name, idx[1:].name) class TestDatetimeIndex(Base, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def create_index(self): return date_range('20130101',periods=5) def test_pickle_compat_construction(self): pass def test_numeric_compat(self): super(TestDatetimeIndex, self).test_numeric_compat() if not compat.PY3_2: for f in [lambda : np.timedelta64(1, 'D').astype('m8[ns]') * pd.date_range('2000-01-01', periods=3), lambda : pd.date_range('2000-01-01', periods=3) * np.timedelta64(1, 'D').astype('m8[ns]') ]: self.assertRaises(TypeError, f) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index=date_range('20130101',periods=3,tz='US/Eastern',name='foo') unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): # GH7774 index = date_range('20130101', periods=3, tz='US/Eastern') self.assertEqual(str(index.reindex([])[0].tz), 'US/Eastern') self.assertEqual(str(index.reindex(np.array([]))[0].tz), 'US/Eastern') class TestPeriodIndex(Base, tm.TestCase): _holder = PeriodIndex _multiprocess_can_split_ = True def create_index(self): return period_range('20130101',periods=5,freq='D') def test_pickle_compat_construction(self): pass class TestTimedeltaIndex(Base, tm.TestCase): _holder = TimedeltaIndex _multiprocess_can_split_ = True def create_index(self): return pd.to_timedelta(range(5),unit='d') + pd.offsets.Hour(1) def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * idx) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_pickle_compat_construction(self): pass class TestMultiIndex(Base, tm.TestCase): _holder = MultiIndex _multiprocess_can_split_ = True _compat_props = ['shape', 'ndim', 'size', 'itemsize'] def setUp(self): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=self.index_names, verify_integrity=False) def create_index(self): return self.index def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) self.assertTrue(i.labels[0].dtype == 'int8') self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(40)]) self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(400)]) self.assertTrue(i.labels[1].dtype == 'int16') i = MultiIndex.from_product([['a'],range(40000)]) self.assertTrue(i.labels[1].dtype == 'int32') i = pd.MultiIndex.from_product([['a'],range(1000)]) self.assertTrue((i.labels[0]>=0).all()) self.assertTrue((i.labels[1]>=0).all()) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_set_names_and_rename(self): # so long as these are synonyms, we don't need to test set_names self.assertEqual(self.index.rename, self.index.set_names) new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) with assertRaisesRegexp(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, [new_names[0], self.index_names[1]]) res = ind.set_names(new_names2[0], level=0, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, [new_names2[0], self.index_names[1]]) # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) res = ind.set_names(new_names2, level=[0, 1], inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assertRaisesRegexp(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'string'): self.index.set_names(names, level=0) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with assertRaisesRegexp(TypeError, mutable_regex): levels[0] = levels[0] with assertRaisesRegexp(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with assertRaisesRegexp(TypeError, mutable_regex): labels[0] = labels[0] with assertRaisesRegexp(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with assertRaisesRegexp(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() self.assertIsNotNone(mi1._tuples) # make sure level setting works new_vals = mi1.set_levels(levels2).values assert_almost_equal(vals2, new_vals) # non-inplace doesn't kill _tuples [implementation detail] assert_almost_equal(mi1._tuples, vals) # and values is still same too assert_almost_equal(mi1.values, vals) # inplace should kill _tuples mi1.set_levels(levels2, inplace=True) assert_almost_equal(mi1.values, vals2) # make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.array([(long(1), 'a')] * 6, dtype=object) new_values = mi2.set_labels(labels2).values # not inplace shouldn't change assert_almost_equal(mi2._tuples, vals2) # should have correct values assert_almost_equal(exp_values, new_values) # and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) self.assertEqual(mi.labels[0][0], val) labels[0] = 15 self.assertEqual(mi.labels[0][0], val) val = levels[0] levels[0] = "PANDA" self.assertEqual(mi.levels[0][0], val) def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays( [lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sortlevel() self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) df = df.set_value(('grethe', '4'), 'one', 99.34) self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) def test_names(self): # names are assigned in __init__ names = self.index_names level_names = [level.name for level in self.index.levels] self.assertEqual(names, level_names) # setting bad names on existing index = self.index assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] self.assertEqual(ind_names, level_names) def test_reference_duplicate_name(self): idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'x']) self.assertTrue(idx._reference_duplicate_name('x')) idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'y']) self.assertFalse(idx._reference_duplicate_name('x')) def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with assertRaisesRegexp(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) def test_constructor_single_level(self): single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) tm.assert_isinstance(single_level, Index) self.assertNotIsInstance(single_level, MultiIndex) self.assertEqual(single_level.name, 'first') single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]]) self.assertIsNone(single_level.name) def test_constructor_no_levels(self): assertRaisesRegexp(ValueError, "non-zero number of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(levels=[]) with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] assertRaisesRegexp(ValueError, "Length of levels and labels must be" " the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assertRaisesRegexp(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assertRaisesRegexp(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assertRaisesRegexp(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assertRaisesRegexp(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) # deprecated properties with warnings.catch_warnings(): warnings.simplefilter('ignore') with tm.assertRaisesRegexp(ValueError, length_error): self.index.copy().levels = [['a'], ['b']] with tm.assertRaisesRegexp(ValueError, label_error): self.index.copy().labels = [[0, 0, 0, 0], [0, 0]] def assert_multiindex_copied(self, copy, original): # levels shoudl be (at least, shallow copied) assert_copy(copy.levels, original.levels) assert_almost_equal(copy.labels, original.labels) # labels doesn't matter which way copied assert_almost_equal(copy.labels, original.labels) self.assertIsNot(copy.labels, original.labels) # names doesn't matter which way copied self.assertEqual(copy.names, original.names) self.assertIsNot(copy.names, original.names) # sort order should be copied self.assertEqual(copy.sortorder, original.sortorder) def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): self.assertEqual([level.name for level in index.levels], list(names)) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_duplicate_names(self): self.index.names = ['foo', 'foo'] assertRaisesRegexp(KeyError, 'Level foo not found', self.index._get_level_number, 'foo') def test_get_level_number_integer(self): self.index.names = [1, 0] self.assertEqual(self.index._get_level_number(1), 0) self.assertEqual(self.index._get_level_number(0), 1) self.assertRaises(IndexError, self.index._get_level_number, 2) assertRaisesRegexp(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) result = MultiIndex.from_arrays(arrays) self.assertEqual(list(result), list(self.index)) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) self.assertTrue(result.levels[0].equals(Index([Timestamp('20130101')]))) self.assertTrue(result.levels[1].equals(Index(['a','b']))) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) assert_array_equal(result, expected) self.assertEqual(result.names, names) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = pd.lib.list_to_object_array([(1, pd.Timestamp('2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp('2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) assert_array_equal(mi.values, etalon) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] mi = pd.MultiIndex.from_tuples(tuples) assert_array_equal(mi.values, pd.lib.list_to_object_array(tuples)) # Check that code branches for boxed values produce identical results assert_array_equal(mi.values[:4], mi[:4].values) def test_append(self): result = self.index[:3].append(self.index[3:]) self.assertTrue(result.equals(self.index)) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(self.index)) # empty result = self.index.append([]) self.assertTrue(result.equals(self.index)) def test_get_level_values(self): result = self.index.get_level_values(0) expected = ['foo', 'foo', 'bar', 'baz', 'qux', 'qux'] self.assert_numpy_array_equal(result, expected) self.assertEqual(result.name, 'first') result = self.index.get_level_values('first') expected = self.index.get_level_values(0) self.assert_numpy_array_equal(result, expected) def test_get_level_values_na(self): arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = [1, np.nan, 2] assert_array_equal(values.values.astype(float), expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = [np.nan, np.nan, 2] assert_array_equal(values.values.astype(float), expected) arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(0) expected = [np.nan, np.nan, np.nan] assert_array_equal(values.values.astype(float), expected) values = index.get_level_values(1) expected = np.array(['a', np.nan, 1],dtype=object) assert_array_equal(values.values, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) assert_array_equal(values.values, expected.values) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) values = index.get_level_values(0) self.assertEqual(values.shape, (0,)) def test_reorder_levels(self): # this blows up assertRaisesRegexp(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): self.assertEqual(self.index.nlevels, 2) def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] self.assertEqual(result, expected) def test_legacy_pickle(self): if compat.PY3: raise nose.SkipTest("testing for legacy pickles not support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) self.assertTrue(obj.equals(obj2)) res = obj.get_indexer(obj) exp = np.arange(len(obj)) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) self.assertTrue(obj.equals(obj2)) res = obj.get_indexer(obj) exp = np.arange(len(obj)) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index=MultiIndex.from_product([[1,2],['a','b'],date_range('20130101',periods=3,tz='US/Eastern')],names=['one','two','three']) unpickled = self.round_trip_pickle(index) self.assertTrue(index.equal_levels(unpickled)) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) self.assertTrue((result.values == self.index.values).all()) def test_contains(self): self.assertIn(('foo', 'two'), self.index) self.assertNotIn(('bar', 'two'), self.index) self.assertNotIn(None, self.index) def test_is_all_dates(self): self.assertFalse(self.index.is_all_dates) def test_is_numeric(self): # MultiIndex is never numeric self.assertFalse(self.index.is_numeric()) def test_getitem(self): # scalar self.assertEqual(self.index[2], ('bar', 'one')) # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] self.assertTrue(result.equals(expected)) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] self.assertTrue(result.equals(expected)) self.assertTrue(result2.equals(expected)) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) self.assertEqual(sorted_idx.get_loc('baz'), slice(3, 4)) self.assertEqual(sorted_idx.get_loc('foo'), slice(0, 2)) def test_get_loc(self): self.assertEqual(self.index.get_loc(('foo', 'two')), 1) self.assertEqual(self.index.get_loc(('baz', 'two')), 3) self.assertRaises(KeyError, self.index.get_loc, ('bar', 'two')) self.assertRaises(KeyError, self.index.get_loc, 'quux') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(
lrange(4)
pandas.compat.lrange