prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# %% [markdown] # # Models and Ensembling Methods # %% [markdown] # ## Import dependencies import numpy from gensim.models import word2vec from gensim.models import KeyedVectors import pandas from nltk import WordPunctTokenizer from sklearn.preprocessing import label_binarize import sqlite3 from sklearn.multiclass import OneVsRestClassifier from matplotlib import pyplot as plt import seaborn as sns from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.metrics import f1_score from sklearn.metrics import matthews_corrcoef from sklearn.metrics import precision_recall_fscore_support from sklearn import svm from itertools import cycle from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_validate from sklearn.metrics import precision_score, recall_score, roc_auc_score from sklearn.metrics import multilabel_confusion_matrix, confusion_matrix from sklearn.metrics import make_scorer from sklearn.ensemble import StackingClassifier from sklearn.ensemble import BaggingClassifier from sklearn import tree from sklearn.model_selection import GridSearchCV from mlxtend.plotting import plot_learning_curves import lime import lime.lime_tabular # %% [markdown] # ## Define Constants W2V_FEATURE_SIZE = 300 N_CLASSES = 4 RANDOM_STATE = 123 N_FOLDS = 5 # %% [markdown] # ## Read in the data # %% [markdown] # ### Load raw train and test data # %% [markdown] # #### Load in the data from the database # %% dbconn = sqlite3.connect('./data/cleanedtraintest_v2.db') train_data_df = pandas.read_sql_query( 'SELECT category, content_cleaned FROM train_data', dbconn) test_data_df = pandas.read_sql_query( 'SELECT category, content_cleaned FROM test_data', dbconn) dbconn.commit() dbconn.close() # %% [markdown] # #### Check the if the data was loaded correctly # %% train_data_df # %% test_data_df # %% [markdown] # #### Train & Test data where x is the predictor features, y is the predicted feature x_train = train_data_df.content_cleaned y_train = label_binarize(train_data_df.category, classes=range(1, N_CLASSES + 1)) x_test = test_data_df.content_cleaned y_test = label_binarize(test_data_df.category, classes=range(1, N_CLASSES + 1)) # %% [markdown] # ### Load word2vec data # %% [markdown] # #### Load word2vec feature arrays from .npz files # load dict of arrays w2v_train_features_array_dict = numpy.load( './data/word2vec-train-features-120000-min5dim300.npz') w2v_test_features_array_dict = numpy.load( './data/word2vec-test-features-120000-min5dim300.npz') # extract the first array from train data = w2v_train_features_array_dict['arr_0'] # print the array print(data) # extract the first array from test data = w2v_test_features_array_dict['arr_0'] # print the array print(data) # %% [markdown] # #### Load word2vec model trained key vectors w2v_model_train = KeyedVectors.load( './data/custom-trained-word2vec-120000-min5dim300.kv') # %% [markdown] # #### Get the word2vec data back into usable form wpt = WordPunctTokenizer() tokenized_corpus_train = [wpt.tokenize(document) for document in x_train] tokenized_corpus_test = [wpt.tokenize(document) for document in x_test] # %% def average_word_vectors(words, model, vocabulary, num_features): feature_vector = numpy.zeros((num_features,), dtype="float32") nwords = 0. for word in words: if word in vocabulary: nwords = nwords + 1. feature_vector = numpy.add(feature_vector, model[word]) if nwords: feature_vector = numpy.divide(feature_vector, nwords) return feature_vector def averaged_word_vectorizer(corpus, model, num_features): vocabulary = set(model.wv.index2word) features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features) for tokenized_sentence in corpus] return numpy.array(features) # %% [markdown] # #### Obtain document level embeddings # %% w2v_feature_array_train = averaged_word_vectorizer(corpus=tokenized_corpus_train, model=w2v_model_train, num_features=W2V_FEATURE_SIZE) w2v_feature_array_test = averaged_word_vectorizer(corpus=tokenized_corpus_test, model=w2v_model_train, num_features=W2V_FEATURE_SIZE) x_train_w2v = pandas.DataFrame(w2v_feature_array_train) x_test_w2v = pandas.DataFrame(w2v_feature_array_test) # %% [markdown] # #### Sample down for speed, for now. x_train_w2v = x_train_w2v.sample( n = 3000, replace = False, random_state = RANDOM_STATE ) y_train = train_data_df.category.sample( n = 3000, replace = False, random_state = RANDOM_STATE ) y_train = label_binarize(y_train, classes=range(1, N_CLASSES + 1)) # %% [markdown] # #### Delete variables we don't need anymore to save memory # del(w2v_feature_array_test) # del(w2v_feature_array_train) # del(w2v_test_features_array_dict) # del(w2v_train_features_array_dict) # del(tokenized_corpus_test) # del(tokenized_corpus_train) # del(wpt) # del(train_data_df) # del(test_data_df) # del(x_train) # del(x_test) # del(data) # %% [markdown] # ## Build Models # %% [markdown] # ### SVM Model Building Function def run_svm(x_train, y_train): classifier = OneVsRestClassifier(svm.LinearSVC(random_state=RANDOM_STATE)) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Logistic Regression Model Building Function def run_logreg(x_train, y_train): classifier = OneVsRestClassifier(LogisticRegression(random_state=RANDOM_STATE)) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Naive Bayes Function def run_nb(x_train, y_train): classifier = OneVsRestClassifier(GaussianNB()) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Decision Trees Function def run_dectree(x_train, y_train): classifier = OneVsRestClassifier(tree.DecisionTreeClassifier()) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Functions to calculate scores and to plot them # Calculate, then plot the Precision, Recall, Average Precision, F1 def prf1_calc(classifier, algo_name, n_classes, x_test, y_test): # Get the decision function from the classifier if algo_name == 'SVM': y_score = classifier.decision_function(x_test) else: y_score = classifier.predict_proba(x_test) y_pred = classifier.predict(x_test) # The average precision score in multi-label settings # For each class precision = dict() recall = dict() average_f1 = dict() average_precision = dict() mcc = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i]) average_f1[i] = f1_score(y_test[:, i], y_pred[:, i]) mcc[i] = matthews_corrcoef(y_test[:, i], y_pred[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(y_test, y_score, average="micro") average_f1['micro'] = f1_score(y_test, y_pred, average='micro') mcc['micro'] = sum(mcc.values())/4 # Plot the data prf1_plot(precision, recall, average_precision, algo_name, n_classes) # Return all metrics results = pandas.DataFrame() for k in average_precision.keys(): results.at[algo_name, f'P-R {k}'] = numpy.round(average_precision[k], 3) results.at[algo_name, f'F1 {k}'] = numpy.round(average_f1[k], 3) results.at[algo_name, f'MCC {k}'] = numpy.round(mcc[k], 3) return results # Function to Plot Precision, Recall, F1 def prf1_plot(precision, recall, average_precision, algo_name, n_classes): print(algo_name) print('Average precision score, micro-averaged over all classes: {0:0.2f}' .format(average_precision["micro"])) # Plot the micro-averaged Precision-Recall curve plt.figure() plt.step(recall['micro'], precision['micro'], where='post') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title( 'Average precision score, micro-averaged over all classes: AP={0:0.2f}' .format(average_precision["micro"])) # Plot Precision-Recall curve for each class and iso-f1 curves # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(7, 8)) f_scores = numpy.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = numpy.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(lines, labels, loc=(0, -.5), prop=dict(size=14)) plt.show() # %% [markdown] # ## Run the Base Models # %% # Run SVM Model svm_model = run_svm(x_train_w2v, y_train) # %% # Run Logistic Regression Model logreg_model = run_logreg(x_train_w2v, y_train) # %% # Run Naive Bayes Classifier nb_model = run_nb(x_train_w2v, y_train) # %% # Run Decision Trees Classifier dectree_model = run_dectree(x_train_w2v, y_train) # %% [markdown] # ## Get the scores # %% # Initialize the dataframe to keep track of the scores scores = pandas.DataFrame() # %% # Precision, Recall, Avg. Precision for SVM scores = scores.append(prf1_calc(svm_model, 'SVM', N_CLASSES, x_test_w2v, y_test)) # %% # Precision, Recall, Avg. Precision for LOG REG scores = scores.append(prf1_calc(logreg_model, 'LOGREG', N_CLASSES, x_test_w2v, y_test)) # %% # Precision, Recall, Avg. Precision for Naive Bayes scores = scores.append(prf1_calc(nb_model, 'NB', N_CLASSES, x_test_w2v, y_test)) # %% # Precision, Recall, Avg. Precision for Decision Trees scores = scores.append(prf1_calc(dectree_model, 'DT', N_CLASSES, x_test_w2v, y_test)) # %% [markdown] # ## Look at Cross-Validation # %% Create model list to iterate through for cross validation gnb = OneVsRestClassifier(GaussianNB()) sv = OneVsRestClassifier(svm.LinearSVC(random_state=RANDOM_STATE)) lreg = OneVsRestClassifier(LogisticRegression(random_state=RANDOM_STATE)) dtree = OneVsRestClassifier(tree.DecisionTreeClassifier()) model_list = [gnb, sv, lreg, dtree] model_namelist = ['Gaussian Naive Bayes', 'SVM/Linear SVC', 'Logistic Regression', 'Decision Tree'] # %% Make scoring metrics to pass cv function through scoring = {'precision': make_scorer(precision_score, average='micro'), 'recall': make_scorer(recall_score, average='micro'), 'f1': make_scorer(f1_score, average='micro'), 'roc_auc': make_scorer(roc_auc_score, average='micro'), # 'mcc': make_scorer(matthews_corrcoef) <- cannot support multi-label } cv_result_entries = [] i = 0 # %% Loop cross validation through various models and generate results for mod in model_list: metrics = cross_validate( mod, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): cv_result_entries.append((model_namelist[i], fold_index, key, score)) i += 1 # %% #cv_result_entries = pandas.read_csv('./data/cv-results.csv') cv_results_df = pandas.DataFrame(cv_result_entries) #cv_results_df.drop('Unnamed: 0', axis=1, inplace=True) cv_results_df.columns = ['algo', 'cv fold', 'metric', 'value'] #test_df = pandas.DataFrame((cv_results_df[cv_results_df.metric.eq('fit_time')])) # %% Plot cv results for metric_name, metric in zip(['fit_time', 'test_precision', 'test_recall', 'test_f1', 'test_roc_auc'], ['Fit Time', 'Precision', 'Recall', 'F1 Score', 'ROC AUC']): sns.boxplot(x='algo', y='value', #hue='algo', data=cv_results_df[cv_results_df.metric.eq(f'{metric_name}')]) sns.stripplot(x='algo', y = 'value', data = cv_results_df[cv_results_df.metric.eq(f'{metric_name}')], size = 5, linewidth = 1) plt.title(f'{metric} Algo Comparison', fontsize=12) plt.xlabel('Algorithm', fontsize=12) plt.ylabel(f'{metric}', fontsize=12) plt.xticks([0, 1, 2, 3, 4]) plt.xticks(rotation=45) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() # %% Misclassification Errors i=0 for model in model_list: plt.figure() plot_learning_curves(x_train_w2v, y_train, x_test_w2v, y_test, model) plt.title('Learning Curve for ' + model_namelist[i], fontsize=14) plt.xlabel('Training Set Size (%)', fontsize=12) plt.ylabel('Misclassification Error', fontsize=12) plt.show() i += 1 # %% Get predictions y_test_pred = [] for model in model_list: y_test_pred.append(model.predict(x_test_w2v)) # %% Confusion Matrix CLASSES = ['World', 'Sports', 'Business', 'Sci/Tech'] i=0 for _ in model_list: cm = confusion_matrix(numpy.argmax(y_test, axis=1), numpy.argmax(y_test_pred[i], axis=1)) cm_df = pandas.DataFrame(cm, index = CLASSES, columns = CLASSES) cm_df.index.name = 'Actual' cm_df.columns.name = 'Predicted' plt.title('Confusion Matrix for ' + model_namelist[i], fontsize=14) sns.heatmap(cm_df, annot=True, fmt='.6g', annot_kws={"size": 10}, cmap='Reds') plt.show() i += 1 # %% HYPER PARAMETER TUNING BY HYPEROPT (not working) '''from hyperopt import STATUS_OK N_FOLDS = 5 #%% #Objective Function def objective(params, n_folds = N_FOLDS): cv_results = cross_validate(OneVsRestClassifier(GaussianNB()), x_train_w2v, y_train, cv = n_folds, fit_params= params, scoring = {'f1': make_scorer(f1_score, average='micro')}, return_train_score=False, n_jobs=-1 ) # Extract the best score best_score = max(cv_results['test_f1']) # Loss must be minimized loss = 1 - best_score # Dictionary with information for evaluation return {'loss': loss, 'params': params, 'status': STATUS_OK} # %% #Domain Space from hyperopt import hp space = {'estimator__var_smoothing': hp.uniform('estimator__var_smoothing', 1.e-09, 1.e+00)} #%% # Optimization Algorithm from hyperopt import tpe tpe_algo = tpe.suggest #%% # Results History from hyperopt import Trials bayes_trials = Trials() #%% # Run the optimization from hyperopt import fmin from hyperopt import rand MAX_EVALS = 500 params = space # Optimize best = fmin(fn = objective, space = space, algo = tpe.suggest, max_evals = 100, trials = bayes_trials) print(best)''' # %% [markdown] # ## Hyper-parameter tuning with exhaustive Grid Search # ### Tune hyperparameters for Gaussian Naive-Bayes params_gnb = {'estimator__var_smoothing': [1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00] } clf = GridSearchCV(estimator=gnb, param_grid=params_gnb, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=True ) clf_res = clf.fit(x_train_w2v, y_train) print('Best Score: ', clf_res.best_score_) print('Best Params: ', clf_res.best_params_) # %% # ### Tune hyperparameters for Logistic Regression params_lreg = { "estimator__penalty": ['l1', 'l2'], "estimator__C": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000], #"estimator__class_weight":[{1:0.5, 0:0.5}, {1:0.4, 0:0.6}, # {1:0.6, 0:0.4}, {1:0.7, 0:0.3}], "estimator__solver": ["newton-cg", "sag", "saga", "lbfgs"] } clf = GridSearchCV(estimator=lreg, param_grid=params_lreg, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=True ) clf_res = clf.fit(x_train_w2v, y_train) print('Best score:', clf_res.best_score_) print('Best Params:', clf_res.best_params_) # %% # ### Tune hyperparameters for SVM (Linear SVC) params_sv = { "estimator__penalty":['l1', 'l2'], "estimator__tol": [1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00], "estimator__loss":['hinge','squared_hinge'], "estimator__C": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000] #"estimator__class_weight":['None',{1:0.5, 0:0.5}, # {1:0.4, 0:0.6}, {1:0.6, 0:0.4}, {1:0.7, 0:0.3}], } clf = GridSearchCV(estimator=sv, param_grid=params_sv, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=False ) clf_res = clf.fit(x_train_w2v, y_train) print('Best score:', clf_res.best_score_) print('Best Params:', clf_res.best_params_) # %% # ### Tune hyperparameters for Decision Trees params_dtree = { "estimator__splitter":["best", "random"], "estimator__min_samples_split":range(1, 20, 1) } clf = GridSearchCV(estimator=dtree, param_grid=params_dtree, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=False ) clf_res = clf.fit(x_train_w2v, y_train) print('Best score:', clf_res.best_score_) print('Best Params:', clf_res.best_params_) # %% [markdown] # ## Ensemble Methods # %% [markdown] # ### Stacking estimators = [ ('nb', GaussianNB()), ('svm', svm.LinearSVC()) ] sclf = OneVsRestClassifier(StackingClassifier( estimators=estimators, final_estimator=LogisticRegression()) ) metrics = cross_validate( sclf, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) # %% res = [] for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): res.append(('Stacking', fold_index, key, score)) # %% res_df = pandas.DataFrame.from_dict(res) res_df.columns = ['algo', 'cv fold', 'metric', 'value'] cv_results_inc_ens = pandas.concat([cv_results_df, res_df]) # %% [markdown] # ### Bagging sclf = OneVsRestClassifier(BaggingClassifier( base_estimator=LogisticRegression()) ) metrics = cross_validate( sclf, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) # %% res = [] for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): res.append(('Bagging', fold_index, key, score)) # %% res_df = pandas.DataFrame.from_dict(res) res_df.columns = ['algo', 'cv fold', 'metric', 'value'] cv_results_inc_ens = pandas.concat([cv_results_inc_ens, res_df]) # %% [markdown] # ### Boosting from sklearn.ensemble import AdaBoostClassifier sclf = OneVsRestClassifier(AdaBoostClassifier( random_state=RANDOM_STATE) ) metrics = cross_validate( sclf, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) # %% res = [] for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): res.append(('AdaBoost', fold_index, key, score)) # %% res_df =
pandas.DataFrame.from_dict(res)
pandas.DataFrame.from_dict
import itertools import pandas as pd from pandas.testing import assert_series_equal import pytest from solarforecastarbiter.reference_forecasts import forecast def assert_none_or_series(out, expected): assert len(out) == len(expected) for o, e in zip(out, expected): if e is None: assert o is None else: assert_series_equal(o, e) def test_resample(): index = pd.date_range(start='20190101', freq='15min', periods=5) arg = pd.Series([1, 0, 0, 0, 2], index=index) idx_exp = pd.date_range(start='20190101', freq='1h', periods=2) expected = pd.Series([0.25, 2.], index=idx_exp) out = forecast.resample(arg) assert_series_equal(out, expected) assert forecast.resample(None) is None @pytest.fixture def rfs_series(): return pd.Series([1, 2], index=pd.DatetimeIndex(['20190101 01', '20190101 02'])) @pytest.mark.parametrize( 'start,end,start_slice,end_slice,fill_method,exp_val,exp_idx', [ (None, None, None, None, 'interpolate', [1, 1.5, 2], ['20190101 01', '20190101 0130', '20190101 02']), ('20190101', '20190101 0230', None, None, 'interpolate', [1, 1, 1, 1.5, 2, 2], ['20190101', '20190101 0030', '20190101 01', '20190101 0130', '20190101 02', '20190101 0230']), ('20190101', '20190101 02', '20190101 0030', '20190101 0130', 'bfill', [1., 1, 2], ['20190101 0030', '20190101 01', '20190101 0130']) ] ) def test_reindex_fill_slice(rfs_series, start, end, start_slice, end_slice, fill_method, exp_val, exp_idx): exp = pd.Series(exp_val, index=pd.DatetimeIndex(exp_idx)) out = forecast.reindex_fill_slice( rfs_series, freq='30min', start=start, end=end, start_slice=start_slice, end_slice=end_slice, fill_method=fill_method) assert_series_equal(out, exp) def test_reindex_fill_slice_some_nan(): rfs_series = pd.Series([1, 2, None, 4], index=pd.DatetimeIndex([ '20190101 01', '20190101 02', '20190101 03', '20190101 04', ])) start, end, start_slice, end_slice, fill_method = \ None, None, None, None, 'interpolate' exp_val = [1, 1.5, 2, 2.5, 3, 3.5, 4] exp_idx = [ '20190101 01', '20190101 0130', '20190101 02', '20190101 0230', '20190101 03', '20190101 0330', '20190101 04'] exp = pd.Series(exp_val, index=pd.DatetimeIndex(exp_idx)) out = forecast.reindex_fill_slice( rfs_series, freq='30min', start=start, end=end, start_slice=start_slice, end_slice=end_slice, fill_method=fill_method) assert_series_equal(out, exp) def test_reindex_fill_slice_all_nan(): arg = pd.Series([None]*3, index=pd.DatetimeIndex( ['20190101 01', '20190101 02', '20190101 03'])) out = forecast.reindex_fill_slice(arg, freq='30min') exp = pd.Series([None]*5, index=pd.DatetimeIndex( ['20190101 01', '20190101 0130', '20190101 02', '20190101 0230', '20190101 03'])) assert_series_equal(out, exp) def test_reindex_fill_slice_empty(): out = forecast.reindex_fill_slice(pd.Series(dtype=float), freq='30min') assert_series_equal(out, pd.Series(dtype=float)) def test_reindex_fill_slice_none(): out = forecast.reindex_fill_slice(None, freq='30min') assert out is None def test_cloud_cover_to_ghi_linear(): cloud_cover = pd.Series([0, 50, 100.]) ghi_clear = pd.Series([1000, 1000, 1000.]) out = forecast.cloud_cover_to_ghi_linear(cloud_cover, ghi_clear) expected = pd.Series([1000, 675, 350.])
assert_series_equal(out, expected)
pandas.testing.assert_series_equal
from nsetools import Nse import requests from datetime import datetime as dt, timedelta import plotly.graph_objects as go import pandas as pd nse = Nse() headers = { "Connection": "keep-alive", "Cache-Control": "max-age=0", "DNT": "1", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 \ (KHTML, like Gecko) Chrome/79.0.3945.79 Safari/537.36", "Sec-Fetch-User": "?1", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp, \ image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Sec-Fetch-Site": "none", "Sec-Fetch-Mode": "navigate", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "en-US,en;q=0.9,hi;q=0.8", } def fetch_data(stock, start_date, end_date): series = "EQ" start_date = start_date.strftime("%d-%m-%Y") end_date = end_date.strftime("%d-%m-%Y") url = ( "https://www.nseindia.com/api/historical/cm/equity?symbol=" + stock + "&series=[%22" + series + "%22]&from=" + str(start_date) + "&to=" + str(end_date) + "" ) try: data = requests.get(url, headers=headers).json() except ValueError: s = requests.Session() data = s.get("http://nseindia.com", headers=headers) data = s.get(url, headers=headers).json() return
pd.DataFrame.from_records(data["data"])
pandas.DataFrame.from_records
from pandas.stats.tests.common import COLS #edited by ryanrozewski import numpy as np import pandas as pd import quandl from datetime import date import pickle, os from Scheduler.Scheduler import Scheduler from parameters import WORKING_DIR from MonteCarloSimulators.Vasicek.vasicekMCSim import MC_Vasicek_Sim from fredapi import Fred from dateutil import relativedelta QUANDL_API_KEY = '<KEY>' FRED_API_KEY = "bcd1d85077e14239f5678a9fd38f4a59" class CorporateRates(object): def __init__(self): self.OIS = [] self.filename = WORKING_DIR + '/CorpData.dat' self.corporates = [] self.ratings = {'AAA':"BAMLC0A1CAAA", 'AA':"BAMLC0A2CAA", 'A':"BAMLC0A3CA", 'BBB':"BAMLC0A4CBBB", 'BB':"BAMLH0A1HYBB", 'B':"BAMLH0A2HYB", 'CCC':"BAMLH0A3HYC"} self.corpSpreads = {} self.corporates =
pd.DataFrame()
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # isort:skip_file import uuid from datetime import datetime import logging from math import nan from unittest.mock import Mock, patch import numpy as np import pandas as pd import tests.test_app import superset.viz as viz from superset import app from superset.constants import NULL_STRING from superset.exceptions import SpatialException from superset.utils.core import DTTM_ALIAS from .base_tests import SupersetTestCase from .utils import load_fixture logger = logging.getLogger(__name__) class BaseVizTestCase(SupersetTestCase): def test_constructor_exception_no_datasource(self): form_data = {} datasource = None with self.assertRaises(Exception): viz.BaseViz(datasource, form_data) def test_process_metrics(self): # test TableViz metrics in correct order form_data = { "url_params": {}, "row_limit": 500, "metric": "sum__SP_POP_TOTL", "entity": "country_code", "secondary_metric": "sum__SP_POP_TOTL", "granularity_sqla": "year", "page_length": 0, "all_columns": [], "viz_type": "table", "since": "2014-01-01", "until": "2014-01-02", "metrics": ["sum__SP_POP_TOTL", "SUM(SE_PRM_NENR_MA)", "SUM(SP_URB_TOTL)"], "country_fieldtype": "cca3", "percent_metrics": ["count"], "slice_id": 74, "time_grain_sqla": None, "order_by_cols": [], "groupby": ["country_name"], "compare_lag": "10", "limit": "25", "datasource": "2__table", "table_timestamp_format": "%Y-%m-%d %H:%M:%S", "markup_type": "markdown", "where": "", "compare_suffix": "o10Y", } datasource = Mock() datasource.type = "table" test_viz = viz.BaseViz(datasource, form_data) expect_metric_labels = [ u"sum__SP_POP_TOTL", u"SUM(SE_PRM_NENR_MA)", u"SUM(SP_URB_TOTL)", u"count", ] self.assertEqual(test_viz.metric_labels, expect_metric_labels) self.assertEqual(test_viz.all_metrics, expect_metric_labels) def test_get_df_returns_empty_df(self): form_data = {"dummy": 123} query_obj = {"granularity": "day"} datasource = self.get_datasource_mock() test_viz = viz.BaseViz(datasource, form_data) result = test_viz.get_df(query_obj) self.assertEqual(type(result), pd.DataFrame) self.assertTrue(result.empty) def test_get_df_handles_dttm_col(self): form_data = {"dummy": 123} query_obj = {"granularity": "day"} results = Mock() results.query = Mock() results.status = Mock() results.error_message = Mock() datasource = Mock() datasource.type = "table" datasource.query = Mock(return_value=results) mock_dttm_col = Mock() datasource.get_column = Mock(return_value=mock_dttm_col) test_viz = viz.BaseViz(datasource, form_data) test_viz.df_metrics_to_num = Mock() test_viz.get_fillna_for_columns = Mock(return_value=0) results.df = pd.DataFrame(data={DTTM_ALIAS: ["1960-01-01 05:00:00"]}) datasource.offset = 0 mock_dttm_col = Mock() datasource.get_column = Mock(return_value=mock_dttm_col) mock_dttm_col.python_date_format = "epoch_ms" result = test_viz.get_df(query_obj) import logging logger.info(result) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 5, 0)], name=DTTM_ALIAS) ) mock_dttm_col.python_date_format = None result = test_viz.get_df(query_obj) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 5, 0)], name=DTTM_ALIAS) ) datasource.offset = 1 result = test_viz.get_df(query_obj) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 6, 0)], name=DTTM_ALIAS) ) datasource.offset = 0 results.df =
pd.DataFrame(data={DTTM_ALIAS: ["1960-01-01"]})
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import glob #Variable Type Label #Communes Char NOM DE LA COMMUNE #Codes_Insee Char NUMERO DE LA COMMUNE, CODE INSEE #NB_enfant_AEEH Num NOMBRE D'ENFANTS BENEFICIAIRES DE L'AEEH VERSABLE #AEEH_0A2 Num NOMBRE D'ENFANTS DE 0 A 2 ANS, BENEFICIAIRES DE L'AEEH VERSABLE #AEEH_3A5 Num NOMBRE D'ENFANTS DE 3 A 5 ANS, BENEFICIAIRES DE L'AEEH VERSABLE #AEEH_6A11 Num NOMBRE D'ENFANTS DE 6 A 11 ANS, BENEFICIAIRES DE L'AEEH VERSABLE #AEEH_12A15 Num NOMBRE D'ENFANTS DE 12 A 15 ANS, BENEFICIAIRES DE L'AEEH VERSABLE #AEEH_16A17 Num NOMBRE D'ENFANTS DE 16 A 17 ANS, BENEFICIAIRES DE L'AEEH VERSABLE #AEEH_18A20 Num NOMBRE D'ENFANTS DE 18 A 20 ANS, BENEFICIAIRES DE L'AEEH VERSABLE # # #***********REMARQUES*********** # #1) Le foyer allocataire est l�entit� administrative � laquelle les Caf versent au moins une prestation. Il est compos� de l�allocataire #(personne qui per�oit au moins une prestation au regard de sa situation familiale et/ou mon�taire), de son conjoint/concubin/pacs� #�ventuel, des enfants � charge et autres personnes � charge au sens de la r�glementation en vigueur. Un foyer allocataire peut donc #comporter une ou plusieurs personnes. # #2) Le droit versable signifie que le foyer allocataire remplit toutes les conditions pour �tre effectivement pay� au titre du mois #d�observation. En particulier ne sont pas inclus dans ce p�rim�tre les b�n�ficiaires qui n�ont pas fourni l�int�gralit� de leurs #pi�ces justificatives, ou ceux dont le montant de la prestation est inf�rieur au seuil de versement. # #3) Le champ g�ographique d�observation du jeu de donn�es correspond � la commune de r�sidence du foyer allocataire telle qu�elle #est enregistr�e dans le fichier statistique des allocataires extrait d�but d�ann�e N+1 et ce quelle que soit la Caf de gestion. #La premi�re ligne du fichier dont le num�ro commune est XXXXX recouvre deux cas possibles soit un code commune inconnu soit une #commune de r�sidence de l'allocataire � l'�tranger. #A partir de 2014 les r�sidants � l'�tranger et les codes communes inconnus sont dissoci�s en deux lignes. # #4) L'application d'un blanc ' ' est d� � deux cas de figure soit l'information est manquante, soit il y a eu application d'un secret #statistique. Le secret statistique est appliqu� � toutes les valeurs inf�rieures � 5. De plus, pour �viter de d�duire certaines #valeurs manquantes d'autres valeurs par croisement (exemple, diff�rence avec la totalit� dans le cas d'une seule valeur manquante), un #secret statistique est appliqu� sur d'autres valeurs. # #5)Un enfant a droit � l'AEEH s'il remplit les conditions suivantes: #�tre �g� de moins de 20 ans ; #� avoir une incapacit� permanente d�au moins 80 %.Celle-ci peut aussi �tre comprise entre 50 % et 80 % #si l�enfant fr�quente un �tablissement sp�cialis� ou sison �tat exige le recours � un service d��ducation #sp�cialis�e ou de soins � domicile ; # #� ne pas r�sider en internat avec prise en charge int�grale des frais de s�jours par l�Assurance maladie, #l��tat ou l�Aide sociale. C�est la Commission des droits et de l�autonomie des personnes handicap�es (Cdaph) #qui appr�cie l��tat de sant� de l�enfant et propose l�attribution de l�Aeeh, pour une dur�e comprise entre #1 et 5 ans, sauf aggravation du taux d�incapacit�. # #7)L��ge retenu est l��ge atteint dans l�ann�e (ou �ge par g�n�ration). Il correspond � la diff�rence entre l'ann�e d�observation et #l'ann�e de naissance de l'individu. Les intervalles des tranches d'�ges sont des intervalles ferm�s. # #***********Titres des fichiers*********** # #AEEH_Enf_Com_XXXX.csv #o� XXXX est l'ann�e de r�f�rence # #***********Informations additionnelles*********** # #Source : Cnaf, fichier FILEAS et BASE COMMUNALE ALLOCATAIRES (BCA) #Fr�quence de diffusion : Annuelle #Granularit� temporelle : Mois #Unit� : Nombre d'enfants #Champ : France, r�gime g�n�ral + r�gime agricole dans les Dom #Zone g�ographique : Commune # # #***********LIENS*********** # #Retrouvez plus d'informations sur le site de la branche famille: http://www.caf.fr/ df =
pd.read_csv('source/EnfantAEEH2009.csv', sep=";")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon May 10 08:46:30 2021 @author: niven """ import os import glob from pathlib import Path import shutil import datetime import imageio import pandas as pd import geopandas as gpd import numpy as np from scipy import stats from shapely.geometry import Point, Polygon, LineString from shapely import speedups import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.patches as mpatches from matplotlib.collections import LineCollection import matplotlib.cm as cm from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1.inset_locator import inset_axes from src.definitions import ROOT_DIR, filter_Prot, dict_Sale2Yr, cols_prebid, cols_bid, cols_company2 from src.definitions import cols_borehole_pos, cols_borehole from src.definitions import dict_Brent from src.data.utils import concatenate_files, df_col2dict, dryhole_label # %% bid data directories path_bid_data = ROOT_DIR /'src/data' assert path_bid_data.exists() path_scra = ROOT_DIR/'src/data/scra' if path_scra.exists() == False: path_scra.mkdir() # %% block geometry path_activelease = ROOT_DIR/'src/data/shape_files/activelease' path_protractions = ROOT_DIR/'src/data/shape_files/protclip' path_blocks = ROOT_DIR/'src/data/shape_files/blocks' path_bath = ROOT_DIR/'src/data/shape_files/bathymetry' gpd_ActiveLease = gpd.read_file(path_activelease/'al_20210201.shp') gpd_Prot = gpd.read_file(path_protractions/'protclip.shp') gpd_Blocks = gpd.read_file(path_blocks/'blocks.shp') gpd_Bath500ft = gpd.read_file(path_bath/'contours_noaa_500ft.shp') gpd_Blocks['Lon'] = gpd_Blocks.centroid.x gpd_Blocks['Lat'] = gpd_Blocks.centroid.y # %% List of Ewave filter_Ewave = ['KC330','GB740','GB830','GC57','GC66','EW951','EW957','GC31','GC76','GC164','GC390','WR23','WR24', 'WR112','SE129','SE116','KC903','KC560','KC556','KC330'] df_filter = gpd_Blocks.loc[gpd_Blocks['AC_LAB'].isin(filter_Ewave) ].copy() sorterIndex = dict(zip(filter_Ewave, range(len(filter_Ewave)))) df_filter['Order'] = df_filter['AC_LAB'].map(sorterIndex) # % Order polygon points df_filter.sort_values(by=['Order'], ascending = [True], inplace = True) df_filter.set_index('Order', inplace = True) df_filter = pd.concat([df_filter, df_filter.iloc[0:1] ], ignore_index=True ) # % extract centroid (block corner estimate) df_filter['X'] = df_filter.centroid.x df_filter['Y'] = df_filter.centroid.y + .02 # .02 about 1/2 block shift poly = Polygon(list(zip(df_filter.X, df_filter.Y))) # in Python 3.x d = {'Survey': 'Ewave', 'geometry':poly} # gdf_Ewave = gpd.GeoDataFrame(d, index=[0], crs=4267) del d, df_filter, poly, filter_Ewave # %% Borehole data path_boreholes = ROOT_DIR / 'src/data/5010.DAT' assert path_boreholes.exists() df_Boreholes = pd.read_fwf(path_boreholes, colspecs=cols_borehole_pos, header=None) df_Boreholes.columns = cols_borehole # Clean Borehole Dataframe df_Boreholes['BottomLon'] = df_Boreholes['BottomLon'].apply(lambda x: pd.to_numeric(x, errors='coerce')) df_Boreholes['BottomLat'] = df_Boreholes['BottomLat'].apply(lambda x: pd.to_numeric(x, errors='coerce')) df_Boreholes['MD'] = df_Boreholes['MD'].apply(lambda x: pd.to_numeric(x, errors='coerce')) df_Boreholes['TVD'] = df_Boreholes['TVD'].apply(lambda x: pd.to_numeric(x, errors='coerce')) # %% filter to DW protractions df_Boreholes = df_Boreholes.loc[df_Boreholes['BottomArea'].isin(filter_Prot)] # Filter for only "exploration wells and filter out canceled wells df_Boreholes = df_Boreholes[df_Boreholes.StatCode != 'CNL'] #df_Boreholes = df_Boreholes[df_Boreholes.TypeCode == 'E'] df_Boreholes.dropna(axis=0, how='any', thresh=None, subset=['BottomLon','BottomLat'], inplace=True) df_Boreholes['SpudYear']= df_Boreholes['Spud'].apply(lambda x: int(str(x)[0:4])) # %% AC_LAB df_Boreholes['BottomBlock'] = df_Boreholes['BottomBlock'].apply(lambda x: str(pd.to_numeric(x, errors='coerce'))) df_Boreholes['SurfBlock'] = df_Boreholes['SurfBlock'].apply(lambda x: str(pd.to_numeric(x, errors='coerce'))) df_Boreholes['AC_LAB'] = df_Boreholes['BottomArea'].str.cat(df_Boreholes['BottomBlock'],sep="") df_Boreholes['Surf_LAB'] = df_Boreholes['SurfArea'].str.cat(df_Boreholes['SurfBlock'],sep="") # %% Offshore Magazine DW Field Summary path_OffshoreMag = ROOT_DIR / 'src/data/OffshoreMagFields.csv' assert path_OffshoreMag.exists() path_BOEM_Fields = ROOT_DIR/'src/data/BOEM_YE2018_Fields.csv' assert path_BOEM_Fields.exists() df_OffshoreMag = pd.read_csv(path_OffshoreMag) df_BOEM_Fields = pd.read_csv(path_BOEM_Fields) dict_OffshoreMag = df_OffshoreMag.set_index('AC_LAB') # %% Map Boreholes to Offshore Mag list #I. Assume Offshore Mag list is bottom hole block df_bb = pd.merge(df_OffshoreMag, df_Boreholes, on='AC_LAB', how='outer') #check spud is withing +- 1 year mask1 = df_bb[abs(df_bb['YrDisc'] - df_bb['SpudYear']) <= 1 ] #II. Assume Offshore Mag list is surface block df_OffshoreMagSurf = df_OffshoreMag.copy().rename(columns={'AC_LAB':'Surf_LAB'}) df_sb = pd.merge(df_OffshoreMagSurf, df_Boreholes, on='Surf_LAB', how='outer') mask2 = df_sb[abs(df_sb['YrDisc'] - df_sb['SpudYear']) <=1 ] #IIb. Flip lables back mask2.rename(columns={'Surf_LAB':'AC_LAB','AC_LAB':'Surf_LAB'}, inplace=True) #III append and drop duplicate information mask3 = mask1.append(mask2).drop_duplicates() #IV group and get average point mask4 = mask3.groupby(['AC_LAB'])[['BottomLon', 'BottomLat']].agg('mean') del df_OffshoreMagSurf, df_sb, mask1, mask2, mask3 # %% Fillout Lat, Lon coordinates df_OffshoreMag =
pd.merge(df_OffshoreMag, mask4, on='AC_LAB', how='outer')
pandas.merge
from PyInvestor.utils import IEX_URL, timerange_split, timerange_chart , _endpoint, _correctdate import requests import pandas as pd import collections """ TODOs - implement a proper way to deal with out of connection requests """ class Stock: """Gathers data from the IEX endpoints for only one stock """ def __init__(self, symbol): """Initialization of the class Stock """ self.symbol = symbol.upper() self.key = 'stock' def Company(self): """ returns information related to the company """ response = _endpoint(self.key, self.symbol, 'company') df = pd.DataFrame(response) df = df.drop(['tags'], axis=1) return df.drop_duplicates() def DelayedQuote(self): """ returns the 15 minute delayed market quote """ response = _endpoint(self.key, self.symbol, 'delayed-quote') df = pd.Series(response).to_frame().T _correctdate(df) return df def Dividends(self, timerange): """ returns the historical dividends based on the historical market data """ if timerange not in timerange_split: raise ValueError('%s not a valid value. Please select: "5y","2y","1y","ytd","6m","3m","1m"') else: response = _endpoint(self.key, self.symbol, 'dividends/%s' %timerange) return pd.DataFrame(response) def Earnings(self): """ returns data from the four most recent reported quarters """ response = _endpoint(self.key, self.symbol, 'earnings') return pd.DataFrame(response['earnings']) def EffectiveSpread(self): """ returns an array of effective spread, eligible volume, and price improvement of a stock, by market. Effective spread is designed to measure marketable orders executable in relation to the market center's quoted spread and takes into account hidden and midpoint liquidity available at each market center. """ response = _endpoint(self.key, self.symbol, 'effective-spread') return pd.DataFrame(response) def Financials(self): """ returns income statement, balance sheet, and cash flow data from the four most recent reported quarters. """ response = _endpoint(self.key, self.symbol, 'financials') return pd.DataFrame(response['financials']) def Stats(self): """ returns certain important number in relation with a stock """ response = _endpoint(self.key, self.symbol, 'stats') return pd.Series(response).to_frame().T def LargestTrades(self): """ returns 15 minute delayed, last sale eligible trades """ response = _endpoint(self.key, self.symbol, 'largest-trades') df = pd.DataFrame(response) _correctdate(df) return df def News(self, lastndays=10): if (lastndays > 50) or (lastndays < 1): raise ValueError('Value of last is not correct. It must in between [1,50]') else: response = _endpoint(self.key, self.symbol, 'news/last/%s' %lastndays) df = pd.DataFrame(response) return df def OHLC(self): """ returns the official open, high, low and close for a given symbol with open and/or close official listing time """ response = _endpoint(self.key, self.symbol, 'ohlc') dic = collections.defaultdict() dic[self.symbol] = {} dic[self.symbol]['open'] = response['open']['price'] dic[self.symbol]['close'] = response['close']['price'] dic[self.symbol]['high'] = response['high'] dic[self.symbol]['low'] = response['low'] dic[self.symbol]['close_time'] = response['close']['time'] dic[self.symbol]['open_time'] = response['open']['time'] df = pd.DataFrame(dic) _correctdate(df) return df def Previous(self): """ returns previous day adjusted price data for a single stock """ response = _endpoint(self.key, self.symbol, 'previous') return pd.DataFrame(response, index=[response['symbol']]) def Price(self): """ returns a single number, corresponding to the IEX real time price, the 15 minute delayed market price, or the previous close price """ return _endpoint(self.key, self.symbol, 'price') def Quote(self, displayPercent=False): """ returns several quoting prices such as calculationPrice, latestPrice, delayedPrice Option: displayPercent -- all percentage values will be multiplied by a factor 100 """ if displayPercent == False: response = _endpoint(self.key, self.symbol, 'quote') else: response = _endpoint(self.key, self.symbol, 'quote?displayPercent=true') df = pd.Series(response).to_frame().T _correctdate(df) return df def Relevant(self): """ similar to peers endpoint, except this will return most active market symbols when peers are not available. """ response = _endpoint(self.key, self.symbol, 'relevant') return response['symbols'] def Splits(self, timerange): """ returns the different splits that occured for a particular range of dates "timerange" """ if timerange not in timerange_split: raise ValueError('%s not a valid value, please enter: "5y", "2y", "1y", "ytd", "6m", "3m", "1m"' %timerange) else: response = _endpoint(self.key, self.symbol, 'splits/%s' %timerange) return pd.DataFrame(response) def Tags(self): response = _endpoint(self.key, self.symbol, 'company') return response['tags'] def TimeSeries(self, timerange='1m'): """ returns the historically adjusted market-wide data based on the timerange. this turns out to be the same as the chart endpoint of IEX API. """ if timerange not in timerange_chart: raise ValueError('%s not a valid value, please enter: "5y", "2y", "1y", "ytd", "6m", "3m", "1m", "1d", "date", "dynamic"' %timerange) else: response = _endpoint(self.key, self.symbol, 'time-series/%s' %timerange) # still to check if kwargs work return
pd.DataFrame(response)
pandas.DataFrame
import time # 引入time模块 import pandas as pd import re import sqlparse attributeNameArray = ['tableName', 'createTime', 'lastModifyTime', 'owner', 'rowNumber', 'columnNumber', 'primaryKey', 'uniqueKey', 'foreignKey', 'notNullColumn', 'indexColumn', 'columnDataType'] remarksList = ['表名', '创建时间', '最后修改时间', '所有者', '数据行数', '字段数', '主键', '唯一键', '外键', '不能为空字段', '索引字段', '数据类型'] # 这个函数是自己的拼接函数 str2TableClass 中会调用 def myConcat(array: list, separator: str): temp = "" for i in range(0, len(array)): temp += array[i] + separator temp = temp[:-1] return temp # 这个函数用来根据正则解析传入的create table指令 数据分解出来 tableinit 会调用 def str2TableClass(tempStr: str, tableName: str): tempStr = re.search(r"[(](.*)[)]", tempStr).group(1) # 拿到括号里的内容 primaryKey = "" uniqueKey = "" foreignKey = "" # primary key部分 p1 = re.search(r"primary key(.*?)[(](.*?)[)]", tempStr) # print(p1.group(0)) # print(p1.group(2) + " 主键值") if p1 is not None: primaryKey = p1.group(2).strip() primaryKeyList = primaryKey.split(",") for index, ele in enumerate(primaryKeyList): primaryKeyList[index] = ele.strip() primaryKey = myConcat(primaryKeyList, ",") tempStr = re.sub(r"primary key(.*?)[(](.*?)[)]", "", tempStr) # 删除primary key 防止影响到后边内容 # unique key部分 p2 = re.search(r"unique key(.*?)[(](.*?)[)]", tempStr) # print(p2.group(0)) # print(p2.group(2) + " 唯一键值") if p2 is not None: uniqueKey = p2.group(2) tempStr = re.sub(r"unique key(.*?)[(](.*?)[)]", "", tempStr) # foreign key部分 这里其实有bug foreign key 可以有多个 但是我这里 search方法只能找到一个 p3 = re.search(r"foreign key(.*?)[(](.*?)[)](.*?)references(.*?)[(](.*?)[)]", tempStr) # print(p2.group(0)) # print(p2.group(2) + " 当前表中值") # print(p2.group(4).strip() + " 被参考的表名") # print(p2.group(5).strip() + " 外表的键") if p3 is not None: foreignKey = p3.group(2) + "|" + p3.group(4).strip() + "|" + p3.group(5).strip() tempStr = re.sub(r"foreign key(.*?)[(](.*?)[)](.*?)references(.*?)[(](.*?)[)]", "", tempStr) # 分解 剩下的 这样里边全都是类似 school varchar not null 、 age int 或者是空格 的字符串 array = tempStr.split(",") tempArray = [] # 用于临时记录去除空格的形如 school varchar not null 这样的 columnCount = 0 # 用来计数有多少个字段 因为存在全是空格的字符串 for ele in array: if not ele.isspace(): # 自带函数 当全是空格的时候 为 true columnCount += 1 # 用来计数有多少个字段 因为存在全是空格的字符串 tempArray.append(ele.strip()) # 去除前后两边的空格 columnNameArray = [] # 字段名数组 columnDataTypeArray = [] # 字段类型数组 notNullColumn = [] # 设置了不空的字段 for ele in tempArray: p = re.search(r"(.*?)not( +)null", ele) if p is None: arrayAA = re.split(r" +", ele.strip()) else: arrayAA = re.split(r" +", p.group(1).strip()) notNullColumn.append(arrayAA[0]) # 将提取出来的 字段名 和 字段类型 添加进去 columnNameArray.append(arrayAA[0]) columnDataTypeArray.append(arrayAA[1]) uniqueKeyList = uniqueKey.strip().split(",") uniqueKey = myConcat(uniqueKeyList, ",") # myConcat是自己写的函数 将notNull的column拼接起来 形如 school,home notNullColumnStr = myConcat(notNullColumn, ",") notNullColumnStr += "," + primaryKey + "," +uniqueKey # 加上主键也不能为空 # 拼接成形如 id#int,name#varchar,age#int,school#varchar,home#varchar,aad#varchar 的字符串 # 前边是 字段名称 后边是字段类型 两者用#分割 不同字段之间用, 分割 temp = "" for i in range(0, len(columnNameArray)): temp += columnNameArray[i] + "#" + columnDataTypeArray[i] + "," columnDataTypeArrayStr = temp[:-1] # 构造一个类 很好用 print(tempStr) tableTemp = Table(tableName=tableName, createTime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), lastModifyTime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), owner="root", rowNumber=0, columnNumber=columnCount, primaryKey=primaryKey, uniqueKey=uniqueKey, foreignKey=foreignKey, notNullColumn=notNullColumnStr, indexColumn="", columnDataType=columnDataTypeArrayStr) # 将一些信息存入类中 后边还会用 tableTemp.columnNameArray = columnNameArray tableTemp.columnDataTypeArray = columnDataTypeArray return tableTemp # 用来进行表的初始化 主要做的就是提取数据 然后把相关信息写入excel表中去 def tableInit(databaseLocation: str, databaseName: str, currentIndex: int, tokens): for index in range(currentIndex, len(tokens)): while str(tokens[index].ttype) != "None": index += 1 tableName = str(tokens[index].tokens[0]) tempStr = str(tokens[index]) break # 引入writer 防止覆盖 这样可以向两个工作表(sheet)中写入信息 src = databaseLocation + "\\" + databaseName.upper() + "\\" + tableName + ".xlsx" writer = pd.ExcelWriter(src, engine='openpyxl') initTableAttributeObject = str2TableClass(tempStr, tableName) tempArray = list(range(1, len(attributeNameArray) + 1)) # 索引列需要 s1 = pd.Series(tempArray, index=tempArray, name="index") # 索引列 一共需要12个属性 s2 = pd.Series(attributeNameArray, index=tempArray, name="attribute") # 属性名列 s3 = pd.Series(initTableAttributeObject.toArray(), index=tempArray, name="value") # 这个是最麻烦的 注意调用了 Table类的toArray方法 s4 = pd.Series(remarksList, index=tempArray, name="备注") # 备注列 这个是写死的 attributeDf = pd.DataFrame({s1.name: s1, s2.name: s2, s3.name: s3, s4.name: s4}) # 插入4列 attributeDf = attributeDf.set_index("index") # 设置索引 dataDf = pd.DataFrame(columns=initTableAttributeObject.columnNameArray) # 将内容写回excel表格 attributeDf.to_excel(writer, sheet_name="attribute") dataDf.to_excel(writer, sheet_name="data", index=False) writer.save() writer.close() return tableName # 返回创建表的名字 def checkSafety(attributeDf, dataDf, aa: list, dic): primaryKeyList: list = attributeDf["value"].at[6].strip().split(",") uniqueKeyList: list = attributeDf["value"].at[7].strip().split(",") notNullStrArray: list = attributeDf["value"].at[9].strip().split(",") error: str = "" # 检查 非空约束 primary key # print(notNullStrArray) for ele in notNullStrArray: if ele not in aa: # print("字段 " + ele + " 不能为空,插入失败") return "字段 " + ele + " 不能为空,插入失败" # 主键不能重复 for ele in primaryKeyList: dataDf = dataDf.loc[dataDf[ele].apply(lambda xx: str(xx) == dic[ele])] # print(dataDf) if dataDf.empty is False: # print("主键重复,请重试") return "主键重复,请重试" return error # 唯一键不能重复 # for ele in uniqueKeyList: # temp = dataDf.loc[dataDf[ele].apply(lambda xx: str(xx) == dic[ele])] # 这个函数是进行完整性校验无误后 将数据写入到excel表中 tableInsert会调用 def judgeAndInsert(src: str, aa: list, bb: list, all: list): # 注意这里的地址 还是相对于main.py 这个文件而言的 而不是相对于 本文件Table.py # print(aa) # print(bb) # aa 是需要插入列表字段列表 bb是值 writer = pd.ExcelWriter(src) dic = {} for index, ele in enumerate(bb): dic[aa[index]] = ele attributeDf = pd.read_excel(writer, sheet_name="attribute") # print(attributeDf) dataDf = pd.read_excel(writer, sheet_name="data", usecols=all) # print(dataDf) error = checkSafety(attributeDf, dataDf, aa, dic) if error != "": print(error) return dataDf = dataDf.append(dic, ignore_index=True) attributeDf["value"].at[2] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 更新时间 attributeDf["value"].at[4] += 1 # 增加行数 attributeDf.to_excel(writer, sheet_name="attribute", index=False) dataDf.to_excel(writer, sheet_name="data", index=False) writer.save() writer.close() print("插入成功") # 提取关键词 比如 id > 20 key是 id algebraicSymbol 是 > 20是 value def getDataframeByRequirement(key, value, algebraicSymbol, dataframe: pd.DataFrame): #print(key) #print(value) #print(algebraicSymbol) tempDataFrame = None if algebraicSymbol == ">": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx > int(value))] if algebraicSymbol == ">=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx >= int(value))] if algebraicSymbol == "<": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx < int(value))] if algebraicSymbol == "<=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx <= int(value))] if algebraicSymbol == "=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: str(xx) == str(value))] if algebraicSymbol == "!=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: str(xx) != str(value))] return tempDataFrame # 根据表达式 得到一个字符串数组 里边有 tempList = [key, value, algebraicSymbol] def getKeyValueAndAlgebraicSymbol(expression: str): key = "" value = "" algebraicSymbol = "" if "=" in expression: equalIndex = expression.index("=") if expression[equalIndex - 1] == "!": algebraicSymbol = "!=" elif expression[equalIndex - 1] == ">": algebraicSymbol = ">=" elif expression[equalIndex - 1] == "<": algebraicSymbol = "<=" else: algebraicSymbol = "=" else: if ">" in expression: algebraicSymbol = ">" elif "<" in expression: algebraicSymbol = "<" key = (expression.split(algebraicSymbol))[0].strip() value = (expression.split(algebraicSymbol))[1].strip() tempList = [key, value, algebraicSymbol] return tempList # 根据where条件 拿到dataframe数据 def parseWhereGetDf(src: str, whereStr: str): dataDf = pd.read_excel(src, sheet_name="data") # strTemp3 = "sno< 20 and sno > 5 and sno >=10 and sno > 17 or sno < 12" # strTemp4 = "sno > 17 or sno < 12 " noOrDataDf = dataDf if whereStr == "": # print(dataDf) return dataDf else: andSplitStrArray = re.split(r" and ", whereStr) orList = [] for ele in andSplitStrArray: if " or " in ele: orSplitStrArray = re.split(r" or ", ele) orDfList = [] # 拿到所有的or 中的表达式 做一个交集 for factor in orSplitStrArray: tempArray = getKeyValueAndAlgebraicSymbol(factor) OrDataDf = getDataframeByRequirement(tempArray[0], tempArray[1], tempArray[2], dataDf) orDfList.append(OrDataDf) oneTempOrDf = orDfList[0] # 取所有的并集 用or隔开的表达式的并集 for element in orDfList: oneTempOrDf = pd.merge(oneTempOrDf, element, how="outer") # 取并集 orList.append(oneTempOrDf) else: tempArray = getKeyValueAndAlgebraicSymbol(ele) key = tempArray[0] value = tempArray[1] algebraicSymbol = tempArray[2] noOrDataDf = getDataframeByRequirement(key, value, algebraicSymbol, noOrDataDf) finallyDf = noOrDataDf # 举个例子 sno< 20 and sno > 5 and sno >=10 and sno > 17 or sno < 12 and sno > 17 or sno < 12 # orlist中有 2个元素 最终下方函数是对三个dataframe做交集 for ele in orList: finallyDf = pd.merge(finallyDf, ele, how="inner") # print(finallyDeleteDf) return finallyDf # 外界会调用这个全局函数 def tableInsert(currentDatabase, token): # print(token) # INSERT INTO student (name, age) value('jack', 30) tokenStr = "" # 直接提取出来所有的sql指令 进行正则匹配 for ele in token: tokenStr += ele.normalized columnNameArray = [] # valueArray = [] allArray = [] src = "" p1 = re.search(r'INSERT( +)INTO( +)(.*?)( +)[(](.*?)[)]( +)value[(](.*?)[)]', tokenStr) if p1 is not None: # print(p1.group(0)) # INSERT INTO student (name, age) value('jack', 30) # print(p1.group(3)) # student tableName = p1.group(3) src = "databases/" + currentDatabase.upper() + "/" + tableName + ".xlsx" # 求出所有属性 会用到 attributeDf = pd.read_excel(src, sheet_name="attribute") array = str(attributeDf["value"].at[11]).split(",") for ele in array: allArray.append(ele.split("#")[0]) # print(p1.group(5)) # name, age columnNameArray = p1.group(5).strip().split(",") for index in range(0, len(columnNameArray)): columnNameArray[index] = columnNameArray[index].strip() # print(p1.group(7)) # 'jack', 30 valueArray = p1.group(7).strip().split(",") for index in range(0, len(valueArray)): valueArray[index] = valueArray[index].strip().strip("'") print(valueArray) # print("p1") p2 = re.search(r'INSERT( +)INTO( +)(.*?)( +)values[(](.*?)[)]', tokenStr) if p2 is not None: # print(p2.group(0)) # INSERT INTO my_teacher values('lilei',28) # print(p2.group(3)) # student tableName = p2.group(3) src = "databases/" + currentDatabase.upper() + "/" + tableName + ".xlsx" attributeDf = pd.read_excel(src, sheet_name="attribute") array = str(attributeDf["value"].at[11]).split(",") for ele in array: allArray.append(ele.split("#")[0]) columnNameArray = allArray valueArray = p2.group(5).strip().split(",") for index in range(0, len(valueArray)): valueArray[index] = valueArray[index].strip().strip("'") # 调用插入函数 传入 表的路径 字段名称数组 值数组 所有字段数组 judgeAndInsert(src, columnNameArray, valueArray, allArray) def handleDeleteInExcel(src: str, whereStr: str): # print(src) # print(whereStr) # 读取数据 writer = pd.ExcelWriter(src) attributeDf = pd.read_excel(writer, sheet_name="attribute") dataDf = pd.read_excel(writer, sheet_name="data") # print(attributeDf) # print(dataDf) if whereStr == "": # 修改数据 dataDf.drop(dataDf.index, inplace=True) # 删除所有数据 attributeDf["value"].at[4] = 0 # 把rowNumber数据行改成0 代表里面没有数据 else: # print(whereStr) # 提取出关键信息 进行筛选 tempDf = parseWhereGetDf(src=src, whereStr=whereStr) # print(dataDf) print("删除了{}行".format(len(tempDf))) # print(tempDf) dataDf = dataDf.append(tempDf) dataDf = dataDf.drop_duplicates(subset=dataDf.columns, keep=False) # print(dataDf) attributeDf["value"].at[4] -= len(tempDf) # 减少行数 # 写回数据 attributeDf.to_excel(writer, sheet_name="attribute", index=False) dataDf.to_excel(writer, sheet_name="data", index=False) writer.save() writer.close() print("删除成功") def tableDelete(currentDatabase: str, token): tokenStr = "" # 直接提取出来所有的sql指令 进行正则匹配 for ele in token: tokenStr += ele.normalized # print(tokenStr) # 去除多余的空格 tokenStr = re.sub(r" +", " ", tokenStr) tableName: str = "" src: str = "" whereStr: str = "" # 两个分支 如果存在 if "where" in tokenStr: p1 = re.search(r'DELETE FROM (.*?) where (.*)', tokenStr) # print(p1.group(0)) # 全语句 DELETE FROM student where home != 'shandong' or id = 30 # print(p1.group(1)) # 表名 student # print(p1.group(2)) # 条件 home != 'shandong' or id = 30 tableName = p1.group(1).strip() whereStr = p1.group(2).strip() else: p2 = re.search(r'DELETE FROM (.*)', tokenStr) # print(p2.group(0)) # DELETE FROM student # print(p2.group(1)) # student tableName = p2.group(1).strip() whereStr = "" print("你真的想要删除 {} 表中所有数据吗(yes/no)".format(tableName)) if "n" in input(): return src = "databases/" + currentDatabase.upper() + "/" + tableName + ".xlsx" handleDeleteInExcel(src, whereStr) # 处理orderby字句的 order by id asc, name desc; 返回列表如右侧 [['id', 'name'], [True, False]] def getListOfOrderBy(orderByStr: str): # print(orderByStr) orderByKeyList = [] orderByValueList = [] tempArray1 = orderByStr.split(",") for ele in tempArray1: tempArray2 = ele.split() orderByKeyList.append(tempArray2[0].strip()) if "asc" == tempArray2[1].strip(): orderByValueList.append(True) else: orderByValueList.append(False) return [orderByKeyList, orderByValueList] def tableSelect(currentDatabase: str, token): tokenStr = "" # 直接提取出来所有的sql指令 进行正则匹配 for ele in token: tokenStr += ele.normalized # 去除多余的空格 tokenStr = re.sub(r" +", " ", tokenStr) tableName: str = "" src: str = "" whereStr: str = "" orderByList = None columnStr = "" columnStrList = [] # 处理 order by语句 if "ORDER BY" in tokenStr: p3 = re.search("ORDER BY (.*)", tokenStr) # print(p3.group(0)) # print(p3.group(1)) orderByStr = p3.group(1).strip() orderByList = getListOfOrderBy(orderByStr) # print(orderByList) tokenStr = re.sub(r" ORDER BY (.*)", "", tokenStr) # 正则区分出表名 if "where" not in tokenStr: p1 = re.search(r'SELECT (.*?) FROM (.*)', tokenStr) # print(p1.group(0)) # SELECT * FROM student # print(p1.group(1)) # * columnStr = p1.group(1) # print(p1.group(2)) # student tableName = p1.group(2) else: p2 = re.search(r'SELECT (.*?) FROM (.*?) where (.*)', tokenStr) # print(p2.group(0)) # SELECT * FROM student where sno< 20 and sno > 5 and sno >=10 and sno > 17 or sno < 12 # print(p2.group(1)) # * columnStr = p2.group(1) # print(p2.group(2)) # student # print(p2.group(3)) # sno< 20 and sno > 5 and sno >=10 and sno > 17 or sno < 12 tableName = p2.group(2) whereStr = p2.group(3) # 拿到要显示的字段列表 if columnStr != "*": for ele in columnStr.split(","): columnStrList.append(ele.strip()) # print(columnStrList) src = "databases/" + currentDatabase.upper() + "/" + tableName + ".xlsx" targetDataframe = parseWhereGetDf(src, whereStr) if orderByList is not None: targetDataframe.sort_values(by=orderByList[0], inplace=True, ascending=orderByList[1]) print(targetDataframe[columnStrList if columnStr!="*" else targetDataframe.columns]) # name=姓名测试,id=1 def getListOfUpdateSet(updateStr: str): # print(updateStr) updateKeyList = [] updateValueList = [] tempArray1 = updateStr.split(",") for ele in tempArray1: tempArray2 = ele.split("=") updateKeyList.append(tempArray2[0].strip()) updateValueList.append(tempArray2[1].strip()) return [updateKeyList, updateValueList] def handleUpdateInExcel(src: str, whereStr: str, modifyStr: str): writer = pd.ExcelWriter(src) attributeDf = pd.read_excel(writer, sheet_name="attribute") # 先删除然后再插入 tempDataframe: pd.DataFrame = parseWhereGetDf(src, whereStr) # print(tempDataframe) handleDeleteInExcel(src, whereStr) # 需要进行删完再读 dataDf: pd.DataFrame = pd.read_excel(writer, sheet_name="data") updateList = getListOfUpdateSet(modifyStr) # print(updateList) # [['name', 'id'], ['姓名测试', '1']] primaryKeyStr: str = attributeDf["value"].at[6].strip() # 读出主键 primaryKeyList = primaryKeyStr.strip().split(",") for index, ele in enumerate(primaryKeyList): primaryKeyList[index] = ele.strip() backUpTempDataframe = tempDataframe.copy(deep=True) # print(primaryKeyList) # 主键的列表 for index, ele in enumerate(updateList[0]): tempDataframe[ele] = updateList[1][index] dataTempDf = pd.concat([tempDataframe, dataDf], join="outer", ignore_index=True) # 取并集 dataTempDf.to_excel("./temp.xlsx", index=False) dataTempDf =
pd.read_excel("./temp.xlsx")
pandas.read_excel
import random import time import plotly import plotly.graph_objs as go import pandas as pd import json from bs4 import BeautifulSoup import requests colors = ['lightseagreen', 'lightsalmon', 'lightsteelblue', 'lightcoral', 'lightgoldenrodyellow', 'lime'] URL = "http://api.scraperapi.com/" API_KEY = "<KEY>" def create_plot_pie(c): labels = [] values = [] for element in c: labels.append(element) values.append(int(c[element])) data = [ go.Pie( labels=labels, values=values ) ] graphJSON = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder) return graphJSON def create_plot_violin(dic_data, message='total'): data = [] counter = 0 for key, piece_of_data in dic_data.items(): df =
pd.DataFrame({'y': piece_of_data})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Library with methods for handling bounding boxes in images License_info: # ============================================================================== # ISC License (ISC) # Copyright 2020 <NAME> Laboratory for Embedded Machine Learning # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE # OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. # The following script uses several method fragments from Tensorflow https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_pascal_tf_record.py Tensorflow has the following licence: # ============================================================================== # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ # Futures from __future__ import print_function # Built-in/Generic Imports import os import time # Libs import argparse import numpy as np import glob import xml.etree.ElementTree as ET from multiprocessing import Pool import matplotlib from six import BytesIO import re import pandas as pd import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils import tkinter # Own modules import image_utils as im __author__ = '<NAME>' __copyright__ = 'Copyright 2020, Christian Doppler Laboratory for ' \ 'Embedded Machine Learning' __credits__ = [''] __license__ = 'ISC' __version__ = '0.2.0' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Experiental' def xml_to_csv(path, filter=None): """Iterates through all .xml files (generated by labelImg) in a given directory and combines them in a single Pandas dataframe. Parameters: ---------- path : str The path containing the .xml files filter: list of image file names. Default None. If no filter is given, all xml files are used Returns ------- Pandas DataFrame The produced dataframe """ xml_file_list=[] if filter is not None: print("Filter available. Using only xml files with corresponding image files") #xml_filename = os.path.join(xml_source, os.path.splitext(filename)[0] + '.xml') xml_file_list = [os.path.join(path, os.path.splitext(image_name)[0] + '.xml') for image_name in filter] else: print("Filter not used. Select all xml files of the folder") xml_file_list = glob.glob(path + '/*.xml') xml_list = [] for xml_file in xml_file_list: #glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): #Check if detection or ground truth if isinstance(member.find("score"), ET.Element): score = float(member.find("score").text) else: score = None value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member.find("name").text, int(member.find("bndbox")[0].text), int(member.find("bndbox")[1].text), int(member.find("bndbox")[2].text), int(member.find("bndbox")[3].text), score ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax', 'score'] xml_df =
pd.DataFrame(xml_list, columns=column_name)
pandas.DataFrame
import unittest import logging import summer2020py.setup_logger as setup_logger import summer2020py.make_genebody_coverage_graphs.make_genebody_coverage_graphs as mgcg import pandas import tempfile import os temp_wkdir_prefix = "TestMakeGeneBodyCoverageGraphs" logger = logging.getLogger(setup_logger.LOGGER_NAME) # Some notes on testing conventions (more in cuppers convention doc): # (1) Use "self.assert..." over "assert" # - self.assert* methods: https://docs.python.org/2.7/library/unittest.html#assert-methods # - This will ensure that if one assertion fails inside a test method, # exectution won't halt and the rest of the test method will be executed # and other assertions are also verified in the same run. # (2) For testing exceptions use: # with self.assertRaises(some_exception) as context: # [call method that should raise some_exception] # self.assertEqual(str(context.exception), "expected exception message") # # self.assertAlmostEquals(...) for comparing floats class TestMakeGeneBodyCoverageGraphs(unittest.TestCase): def test_main(self): logger.debug("\n \n \n test_main \n \n ") input_dir = os.path.join("assets", "notebook_inputs", "output_gbdy_cov") logger.debug("input_dir: {}".format(input_dir)) with tempfile.TemporaryDirectory(prefix=temp_wkdir_prefix) as wkdir: logger.debug("wkdir: {}".format(wkdir)) args = mgcg.build_parser().parse_args([ #"-s", source_dir, "-i", input_dir, "-o", wkdir, "-of", "MYEXPERIMENTID" ]) mgcg.main(args) #check that html files were outputted self.assertTrue(os.path.exists(os.path.join(wkdir, "MYEXPERIMENTID_genebody_histogram_coverage_diff.html"))) self.assertTrue(os.path.exists(os.path.join(wkdir, "MYEXPERIMENTID_genebody_histogram_cov_diff_pct.html"))) self.assertTrue(os.path.exists(os.path.join(wkdir, "MYEXPERIMENTID_genebody_coverage_percentile.html"))) self.assertTrue(os.path.exists(os.path.join(wkdir, "MYEXPERIMENTID_genebody_coverage_counts.html"))) #check that the text files are the same as example outputss #doesn't work for html files outputted_files = [ os.path.join(wkdir, "MYEXPERIMENTID_all_genebody_coverage_r1200x6.txt"), os.path.join(wkdir, "MYEXPERIMENTID_asymmetry_compare_80_20_r12x6.txt") ] expected_files = [ os.path.join("assets", "example_notebook_outputs", "MYEXPERIMENTID_all_genebody_coverage_r1200x6.txt"), os.path.join("assets", "example_notebook_outputs", "MYEXPERIMENTID_asymmetry_compare_80_20_r12x6.txt") ] for i in range(0, len(outputted_files)): opened_output = open(outputted_files[i], "r") opened_expected = open(expected_files[i], "r") logger.debug("checking {} against expected".format(outputted_files[i])) self.assertEqual(opened_output.read(), opened_expected.read()) opened_output.close() opened_expected.close() def test_input_file_search(self): logger.debug("\n \n \n test_input_file_search\n \n ") input_dir = os.path.join("assets","notebook_inputs", "output_gbdy_cov") logger.debug("input_dir: {}".format(input_dir)) input_files = mgcg.input_file_search(input_dir) self.assertEqual(len(input_files), 12) #check that the first 3 files are the correct ones self.assertEqual( os.path.join('assets','notebook_inputs','output_gbdy_cov','D121','D121.geneBodyCoverage.txt'), input_files[0] ) self.assertEqual( os.path.join('assets','notebook_inputs','output_gbdy_cov','D122','D122.geneBodyCoverage.txt'), input_files[1] ) self.assertEqual( os.path.join('assets','notebook_inputs','output_gbdy_cov','D123','D123.geneBodyCoverage.txt'), input_files[2] ) def test_load_genebody_coverage_data(self): input_files = [ os.path.join("assets", "notebook_inputs", "output_gbdy_cov", "D121", "D121.geneBodyCoverage.txt"), os.path.join("assets", "notebook_inputs", "output_gbdy_cov", "D122", "D122.geneBodyCoverage.txt") ] inp_df_list = mgcg.load_genebody_coverage_data(input_files) #check that there are two data frames self.assertEqual(len(inp_df_list), 2) #check that first df is the right shape self.assertEqual(inp_df_list[0].shape[0], 100) self.assertEqual(inp_df_list[0].shape[1], 2) #check that second df is the right shape self.assertEqual(inp_df_list[1].shape[0], 100) self.assertEqual(inp_df_list[1].shape[1], 2) #check that sample id are the right ones self.assertEqual(inp_df_list[0].sample_id[0], "D121") self.assertEqual(inp_df_list[1].sample_id[0], "D122") def test_merge_dfs_into_one(self): logger.debug("\n \n \n test_merge_dfs_into_one\n \n ") #create first fake data frame df = pandas.DataFrame({"coverage_counts":range(100000,500000, 4000), "sample_id":"FAKE"}) df.index.name = "genebody_pct" df.index += 1 #create second fake data frame df2 = pandas.DataFrame({"coverage_counts":range(120000,520000, 4000), "sample_id":"FACE"}) df2.index.name = "genebody_pct" df2.index += 1 counts_df = mgcg.merge_dfs_into_one([df, df2]) logger.debug("counts_df: {}".format(counts_df)) #check that df is the right shape self.assertEqual(counts_df.shape[0], 200) self.assertEqual(counts_df.shape[1], 3) #check that first sample id is fake and that 11th is face self.assertEqual(counts_df.sample_id[0], "FAKE") self.assertEqual(counts_df.sample_id[100], "FACE") def test_sum_counts(self): logger.debug("\n \n \n test_sum_counts\n \n ") sample_ids =[] for i in range(0, 200): if i < 100: sample_ids.append("FAKE") else: sample_ids.append("FACE") #create fake data frame counts_df = pandas.DataFrame({"coverage_counts":list(range(100000,500000, 4000)) + list(range(120000,520000, 4000)), "sample_id":sample_ids}) sum_counts_df = mgcg.sum_counts(counts_df) logger.debug("counts_df: {}".format(counts_df)) logger.debug("sum_counts_df: {}".format(sum_counts_df)) #check that df is the right shape self.assertEqual(sum_counts_df.shape[0], 2) self.assertEqual(sum_counts_df.shape[1], 1) #check that the sums are correct self.assertEqual(sum_counts_df.total_coverage_counts[0], 31800000) self.assertEqual(sum_counts_df.total_coverage_counts[1], 29800000) def test_calculate_percentile_df(self): logger.debug("\n \n \n test_jcalculate_percentile_df\n \n ") sample_ids =[] for i in range(0, 200): if i < 100: sample_ids.append("FAKE") else: sample_ids.append("FACE") counts_df = pandas.DataFrame({"coverage_counts":list(range(100000,500000, 4000)) + list(range(120000,520000, 4000)), "sample_id":sample_ids}) sum_counts_df = pandas.DataFrame(data = {"total_coverage_counts":[31800000, 29800000]}, index = ["FACE", "FAKE"]) sum_counts_df.index.name = "sample_id" percentile_df = mgcg.calculate_percentile_df(counts_df, sum_counts_df) #check that df is the right shape self.assertEqual(percentile_df.shape[0], 200) self.assertEqual(percentile_df.shape[1], 4) #check that first sample id is fake and that 11th is face self.assertEqual(percentile_df.sample_id[0], "FAKE") self.assertEqual(percentile_df.sample_id[100], "FACE") #check that FAKE coveragecounts are 2.8 mil and FACE are 3 mil self.assertEqual(percentile_df.total_coverage_counts[0], 29800000) self.assertEqual(percentile_df.total_coverage_counts[100], 31800000) #check first twenty percentiles to make sure they are correct for i in range(0, 20): self.assertEqual(percentile_df.coverage_percentile[i], percentile_df.coverage_counts[i] / percentile_df.total_coverage_counts[i]) def test_create_pct_df_list(self): logger.debug("\n \n \n test_create_pct_df_list\n \n ") sample_ids =[] for i in range(0, 200): if i < 100: sample_ids.append("FAKE") else: sample_ids.append("FACE") coverage_percentile = list(range(3356,16756,134)) + list(range(2726,16226, 135)) for num in range(len(coverage_percentile)): coverage_percentile[num] = coverage_percentile[num] / 1000000 percentile_df = pandas.DataFrame({"coverage_percentile":coverage_percentile, "sample_id":sample_ids, "genebody_pct":list(range(1,101))+ list(range(1,101))}) pct_df_list = mgcg.create_pct_df_list(percentile_df) logger.debug("pct_df_list: {}".format(pct_df_list)) #checking 20th self.assertEqual(pct_df_list[0].coverage_20pct[0], 0.005902) self.assertEqual(pct_df_list[0].coverage_20pct[1], 0.005291) #checking 50th self.assertEqual(pct_df_list[1].coverage_50pct[0], 0.009922) self.assertEqual(pct_df_list[1].coverage_50pct[1], 0.009341) #checking 80th self.assertEqual(pct_df_list[2].coverage_80pct[0], 0.013942) self.assertEqual(pct_df_list[2].coverage_80pct[1], 0.013391) def test_create_pct_comp_df(self): logger.debug("\n \n \n test_create_pct_comp_df\n \n ") df20 = pandas.DataFrame(data = {"coverage_20pct":[0.005902,0.005291]}, index = ["FAKE", "FACE"]) df20.index.name = "sample_id" df50 = pandas.DataFrame(data = {"coverage_50pct":[0.009922,0.009341]}, index = ["FAKE", "FACE"]) df50.index.name = "sample_id" df80 = pandas.DataFrame(data = {"coverage_80pct":[0.013942,0.013391]}, index = ["FAKE", "FACE"]) df80.index.name = "sample_id" pct_comp_df = mgcg.create_pct_comp_df([df20, df50, df80]) logger.debug("pct_comp_df: {}".format(pct_comp_df)) self.assertAlmostEqual(pct_comp_df.cov_diff_pct[0], 0.810320, places=5) self.assertAlmostEqual(pct_comp_df.cov_diff_pct[1], 0.867145, places=5) def test_add_label_col(self): logger.debug("\n \n \n test_add_label_col\n \n ") pct_comp_df = pandas.DataFrame(data = {"cov_diff_pct":[0.810320,0.867145]}, index = ["FAKE", "FACE"]) pct_comp_df.index.name = "sample_id" pct_comp_df = mgcg.add_label_col(pct_comp_df) logger.debug("pct_comp_df: {}".format(pct_comp_df)) self.assertEqual(pct_comp_df.label[0], "FAKE 0.81") self.assertEqual(pct_comp_df.label[1], "FACE 0.87") def test_add_labels_based_on_sample_id(self): logger.debug("\n \n \n test_add_labels_based_on_sample_id\n \n ") sample_ids =[] for i in range(0, 200): if i < 100: sample_ids.append("FAKE") else: sample_ids.append("FACE") pct_comp_df = pandas.DataFrame(data = {"cov_diff_pct":[0.810320,0.867145], "label":["FAKE 0.81", "FACE 0.87"]}, index = ["FAKE", "FACE"]) percentile_df = pandas.DataFrame({"sample_id":sample_ids}) percentile_df = mgcg.add_labels_based_on_sample_id(percentile_df, pct_comp_df) self.assertEqual(percentile_df.label[0], "FAKE 0.81") self.assertEqual(percentile_df.label[100], "FACE 0.87") def test_save_to_tsv(self): with tempfile.TemporaryDirectory(prefix=temp_wkdir_prefix) as wkdir: logger.debug("\n \n \n test_save_to_tsv: {}\n \n ".format(wkdir)) output_all_pct_template = "{exp_id}_all_genebody_coverage_r{{}}x{{}}.txt".format(exp_id="MYEXPERIMENTID") logger.debug("output_all_pct_template: {}".format(output_all_pct_template)) output_compare_80_20_template = "{exp_id}_asymmetry_compare_80_20_r{{}}x{{}}.txt".format(exp_id="MYEXPERIMENTID") logger.debug("output_compare_80_20_template: {}".format(output_compare_80_20_template)) pct_comp_df = pandas.DataFrame(data = {"cov_diff_pct":[0.810320,0.867145], "label":["FAKE 0.81", "FACE 0.87"]}, index = ["FAKE", "FACE"]) sample_ids =[] for i in range(0, 200): if i < 100: sample_ids.append("FAKE") else: sample_ids.append("FACE") coverage_percentile = list(range(3356,16756,134)) + list(range(2726,16226, 135)) for num in range(len(coverage_percentile)): coverage_percentile[num] = coverage_percentile[num] / 1000000 percentile_df = pandas.DataFrame({"coverage_percentile":coverage_percentile, "sample_id":sample_ids, "genebody_pct":list(range(1,101))+ list(range(1,101))}) out_f_pct = mgcg.save_to_tsv(wkdir, output_compare_80_20_template, pct_comp_df) out_f_percentile = mgcg.save_to_tsv(wkdir, output_all_pct_template, percentile_df) logger.debug("out_f_pct: {}".format(out_f_pct)) logger.debug("out_f_percentile: {}".format(out_f_percentile)) self.assertTrue(os.path.exists(out_f_pct)) self.assertTrue(os.path.exists(out_f_percentile)) def test_create_and_save_genebody_coverage_graph(self): with tempfile.TemporaryDirectory(prefix=temp_wkdir_prefix) as wkdir: logger.debug("\n \n \n test_create_and_save_genebody_coverage_graph: {}\n \n ".format(wkdir)) output_line_html_template = "{exp_id}_genebody_{{}}.html".format(exp_id="MYEXPERIMENTID") logger.debug("output_line_html_template: {}".format(output_line_html_template)) sample_ids =[] labels = [] for i in range(0, 200): if i < 100: sample_ids.append("FAKE") labels.append("FAKE 0.81") else: sample_ids.append("FACE") labels.append("FAcE 0.87") coverage_percentile = list(range(3356,16756,134)) + list(range(2726,16226, 135)) for num in range(len(coverage_percentile)): coverage_percentile[num] = coverage_percentile[num] / 1000000 percentile_df = pandas.DataFrame({"coverage_percentile":coverage_percentile, "sample_id":sample_ids, "genebody_pct":list(range(1,101))+ list(range(1,101)), "label":labels}) output_filepath = mgcg.create_and_save_genebody_coverage_graph("coverage_percentile", wkdir, percentile_df, output_line_html_template) self.assertTrue(os.path.exists(output_filepath)) def test_create_and_save_histograms(self): with tempfile.TemporaryDirectory(prefix=temp_wkdir_prefix) as wkdir: logger.debug("\n \n \n test_create_and_save_histograms: {}\n \n ".format(wkdir)) output_histogram_html_template = "{exp_id}_genebody_histogram_{{}}.html".format(exp_id="MYEXPERIMENTID") logger.debug("output_histogram_html_template: {}".format(output_histogram_html_template)) pct_comp_df =
pandas.DataFrame(data = {"cov_diff_pct":[0.810320,0.867145], "label":["FAKE 0.81", "FACE 0.87"]}, index = ["FAKE", "FACE"])
pandas.DataFrame
import pandas as pd import numpy as np import os # summarize panel data by group and time period def adjmeans(df, byvar, var, period, changeexclude=None, excludetype=None): df = df.sort_values([byvar, period]) df = df.dropna(subset=[var]) # iterate using numpy arrays prevbyvar = 'ZZZ' prevvarvalue = 0 rowlist = [] varvalues = df[[byvar, var]].values # convert exclusion ratio to absolute number if (excludetype == 'ratio' and changeexclude is not None): changeexclude = df[var].mean() * changeexclude # loop through variable values for j in range(len(varvalues)): byvar = varvalues[j][0] varvalue = varvalues[j][1] if prevbyvar != byvar: if prevbyvar != 'ZZZ': rowlist.append({'byvar': prevbyvar, 'avgvar': varsum / byvarcount, 'sumvar': varsum, 'byvarcount': byvarcount}) varsum = 0 byvarcount = 0 prevbyvar = byvar # exclude extreme changes in variable value if ((changeexclude is None) or (0 <= abs(varvalue-prevvarvalue) <= changeexclude) or (byvarcount == 0)): varsum += varvalue byvarcount += 1 prevvarvalue = varvalue rowlist.append({'byvar' : prevbyvar, 'avgvar' : varsum / byvarcount, 'sumvar':varsum, 'byvarcount': byvarcount}) return pd.DataFrame(rowlist) # check matches of merge-by values def checkmerge(dfleft, dfright, mergebyleft, mergebyright): dfleft['inleft'] = 'Y' dfright['inright'] = 'Y' dfboth = pd.merge(dfleft[[mergebyleft, 'inleft']], dfright[[mergebyright, 'inright']], left_on=[mergebyleft], right_on=[mergebyright], how='outer') dfboth.fillna('N', inplace=True) print(pd.crosstab(dfboth.inleft, dfboth.inright)) print(dfboth.loc[(dfboth.inleft == 'N') | (dfboth.inright == 'N')].head(20)) # concatenate all pickle files in a folder, assuming they have the same structure def addfiles(directory): dfout =
pd.DataFrame()
pandas.DataFrame
import time import sqlite3 import os import hashlib import traceback import pandas as pd from flask import Flask, request, json, render_template, send_from_directory, abort, g from passlib.apps import custom_app_context as pwd_context from flask_httpauth import HTTPBasicAuth, HTTPTokenAuth auth = HTTPBasicAuth() tokenauth = HTTPTokenAuth() working_directory = os.path.dirname(__file__) app = Flask(__name__) tokens = dict() master_database = 'master.db' def create_heatmap(schedules): """Represents upcoming tasks as a calendar heatmap.""" total = [] for item, schedule in schedules: for day in schedule: total.append((day, 1, item)) schedule_df = pd.DataFrame(total, columns=['date', 'check', 'item']) schedule_df.index = schedule_df['date'] schedule_df = schedule_df.drop(columns=['date']) resampled = schedule_df.resample('D').agg({'check': 'sum', 'item': list}) resampled = resampled[resampled['check'] > 0].reset_index() return resampled def generate_upcoming_tasks(merged, exclude_past=True): """Generates upcoming tasks given information about last checked dates and master data.""" today = pd.Timestamp.today() schedules = [] for _, row in merged.iterrows(): schedule = pd.date_range(row['date_checked'], today+pd.Timedelta(13, 'W'), freq=f'{row["frequency"]*7}D') schedule = schedule[1:] if len(schedule) == 0: continue if exclude_past: schedule = schedule[schedule >= today] schedules.append((row['item'], schedule)) return schedules def get_user_database_name(username): connection = sqlite3.connect(os.path.join(working_directory, master_database)) df = pd.read_sql('select database from user_to_database where username = :username', con = connection, params = {"username": username}) return df['database'].iloc[0] def inspect_inventory_log(username): """Gathers observations and master data.""" today = pd.Timestamp.today() user_database = get_user_database_name(username) connection = sqlite3.connect(os.path.join(working_directory, user_database)) checks = pd.read_sql('SELECT * from inventory_log', con = connection) checks['date'] = pd.to_datetime(checks['date']) checks = checks.sort_values('date') last_checked = checks.groupby(['item']).last().reset_index() master_data = pd.read_sql('SELECT * from master_data', con = connection) recent_master_data = master_data.sort_values('date_added').groupby('item').last().reset_index() merged = recent_master_data.merge(last_checked, on='item', suffixes=('_initial','_checked')) merged['week_difference'] = (today - merged['date_checked']).dt.days/7 merged['need_to_check'] = merged['week_difference'] > merged['frequency'] return merged @auth.verify_password def verify_password(username, password): connection = sqlite3.connect(os.path.join(working_directory, master_database)) users = pd.read_sql('select * from users where username=:username', con = connection, params={"username": username}) if len(users) == 0: return False encrypted_password = users['password'].iloc[0] g.user = username return pwd_context.verify(password, encrypted_password) @tokenauth.verify_token def verify_token(token): today = pd.Timestamp.today() if token in tokens: if tokens[token]['expiry'] > today: g.user = tokens[token]['username'] return True else: tokens.pop(token, None) return False def create_user(username, password): """Creates a user in the database including its own set of tables.""" connection = sqlite3.connect(os.path.join(working_directory, master_database)) try: existing_users = pd.read_sql('select * from users', con = connection) except: existing_users = [] current_id = len(existing_users) + 1 # we don't depend on id input anywhere so it's fine to not use better UUIDs if len(existing_users) > 0: if username in set(existing_users['username']): return False user = pd.DataFrame() user['username'] = [username] user['password'] = [pwd_context.hash(password)] # encryption user['active'] = [True] user['id'] = [current_id] user.to_sql('users', con = connection, if_exists='append') new_db = f'user{current_id}.db' user_db_mapping = pd.DataFrame() user_db_mapping['username'] = [username] user_db_mapping['database'] = [new_db] user_db_mapping.to_sql('user_to_database', con = connection, if_exists='append') return True @app.route('/') def hello_world(): return render_template("index.html") @app.route('/users/login', methods=['GET']) @auth.login_required def login_user(): today = pd.Timestamp.today() current_tokens = list(tokens.keys()) for token in current_tokens: if tokens[token]['expiry'] < today: tokens.pop(token, None) expiry = today + pd.Timedelta(11, 'H') frontend_expiry = int((time.time() + (60*60*11)) * 1000) token_string = hashlib.sha256((g.user+str(today)).encode()).hexdigest() token = {'username': g.user, 'expiry': expiry} print(token) tokens[token_string] = token return json.jsonify({'token_created': token_string, 'username': g.user, 'token_expiry': frontend_expiry}) @app.route('/users/register', methods=['POST']) def register_user(): print(request) username = request.form.get('username') password = request.form.get('password') if username is None or password is None: abort(400) created = create_user(username, password) return json.jsonify({ 'username_created': created }) @app.route('/suggestion') @tokenauth.login_required def rx_suggestion(): """Queries the DB for all rx names and return them to be used as suggestions""" user_database = get_user_database_name(g.user) try: connection = sqlite3.connect(os.path.join(working_directory, user_database)) inventory = pd.read_sql('SELECT DISTINCT item from inventory_log', con = connection) suggestions_dict = inventory.to_dict(orient='list') print(suggestions_dict) except: suggestions_dict = {'item': []} return json.jsonify(suggestions_dict) @app.route('/search/<name>') @tokenauth.login_required def search_rx(name): """Queries the DB for the relevant rows, based on search bar""" user_database = get_user_database_name(g.user) try: connection = sqlite3.connect(os.path.join(working_directory, user_database)) inventory = pd.read_sql('SELECT * from inventory_log', con = connection) low_name = name.lower() sub_inventory = inventory[inventory['item'].str.lower() == low_name] actual_name = sub_inventory['item'].iloc[0] checks_count = len(sub_inventory.index) print(checks_count) search_return_dict = {"checks_count": checks_count} # What else should we return when someone asks for information about an item? # TODO: next_check search_return_dict["item"] = [actual_name] search_return_dict["last_checked"] = sub_inventory["date"].max() merged = inspect_inventory_log(username = g.user) need_to_check = merged[merged['item'] == actual_name].iloc[0]['need_to_check'].astype(str) search_return_dict["need_to_check"] = need_to_check # Maybe also add the median time between checks except: search_return_dict = {'item': []} return json.jsonify(search_return_dict) @app.route('/add_item', methods=['POST']) @tokenauth.login_required def add_item(inventory_checked=True): today = pd.Timestamp.today() username = g.user df = pd.DataFrame() df['item'] = [request.form.get('name')] df['date'] = pd.to_datetime([request.form.get('date')]) df['frequency'] = [int(request.form.get('frequency'))] df['date_added'] = [today] print(df) user_database = get_user_database_name(username) connection = sqlite3.connect(os.path.join(working_directory, user_database)) df.to_sql('master_data', con=connection, if_exists='append', index=False) if inventory_checked: df[['date', 'item']].to_sql('inventory_log', con=connection, if_exists='append', index=False) return df.to_json(orient='split', index=False) @app.route('/upload_master_data', methods=['POST']) @tokenauth.login_required def upload_master_data(inventory_checked=True): """Updates a master table from an input file.""" today =
pd.Timestamp.today()
pandas.Timestamp.today
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10, seconds=10).value, expected) self.assertEqual( Timedelta(days=10, milliseconds=10 * 1000).value, expected) self.assertEqual( Timedelta(days=10, microseconds=10 * 1000 * 1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days': 'D', 'seconds': 's', 'microseconds': 'us', 'milliseconds': 'ms', 'minutes': 'm', 'hours': 'h', 'weeks': 'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual( Timedelta(**{pykwarg: npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta( 82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta( 123072001000000))) # string conversion with/without leading zero # GH 9570 self.assertEqual(Timedelta('0:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('00:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('-1:00:00'), -timedelta(hours=1)) self.assertEqual(Timedelta('-01:00:00'), -timedelta(hours=1)) # more strings & abbrevs # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hr'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta( days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=1, microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=31, microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on # the days) self.assertRaises(ValueError, lambda: Timedelta('-10 days -1 h 1.5m 1s 3us')) # only leading neg signs are allowed self.assertRaises(ValueError, lambda: Timedelta('10 days -1 h 1.5m 1s 3us')) # no units specified self.assertRaises(ValueError, lambda: Timedelta('3.1415')) # invalid construction tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta", lambda: Timedelta()) tm.assertRaisesRegexp(ValueError, "unit abbreviation w/o a number", lambda: Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta from the passed " "arguments, allowed keywords are ", lambda: Timedelta(day=10)) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value), td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)), td) self.assertEqual(Timedelta(td._repr_base(format='all')), td) # floats expected = np.timedelta64( 10, 's').astype('m8[ns]').view('i8') + np.timedelta64( 500, 'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5, unit='s').value, expected) # nat self.assertEqual(Timedelta('').value, iNaT) self.assertEqual(Timedelta('nat').value, iNaT) self.assertEqual(Timedelta('NAT').value, iNaT) self.assertEqual(Timedelta(None).value, iNaT) self.assertEqual(Timedelta(np.nan).value, iNaT) self.assertTrue(isnull(Timedelta('nat'))) # offset self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Second(2)), Timedelta('0 days, 00:00:02')) # unicode # GH 11995 expected = Timedelta('1H') result = pd.Timedelta(u'1H') self.assertEqual(result, expected) self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta(u'0 days, 02:00:00')) self.assertRaises(ValueError, lambda: Timedelta(u'foo bar')) def test_overflow_on_construction(self): # xref https://github.com/statsmodels/statsmodels/issues/3374 value = pd.Timedelta('1day').value * 20169940 self.assertRaises(OverflowError, pd.Timedelta, value) def test_total_seconds_scalar(self): # GH 10939 rng = Timedelta('1 days, 10:11:12.100123456') expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) self.assertTrue(np.isnan(rng.total_seconds())) def test_repr(self): self.assertEqual(repr(Timedelta(10, unit='d')), "Timedelta('10 days 00:00:00')") self.assertEqual(repr(Timedelta(10, unit='s')), "Timedelta('0 days 00:00:10')") self.assertEqual(repr(Timedelta(10, unit='ms')), "Timedelta('0 days 00:00:00.010000')") self.assertEqual(repr(Timedelta(-10, unit='ms')), "Timedelta('-1 days +23:59:59.990000')") def test_conversion(self): for td in [Timedelta(10, unit='d'), Timedelta('1 days, 10:11:12.012345')]: pydt = td.to_pytimedelta() self.assertTrue(td == Timedelta(pydt)) self.assertEqual(td, pydt) self.assertTrue(isinstance(pydt, timedelta) and not isinstance( pydt, Timedelta)) self.assertEqual(td, np.timedelta64(td.value, 'ns')) td64 = td.to_timedelta64() self.assertEqual(td64, np.timedelta64(td.value, 'ns')) self.assertEqual(td, td64) self.assertTrue(isinstance(td64, np.timedelta64)) # this is NOT equal and cannot be roundtriped (because of the nanos) td = Timedelta('1 days, 10:11:12.012345678') self.assertTrue(td != td.to_pytimedelta()) def test_freq_conversion(self): td = Timedelta('1 days 2 hours 3 ns') result = td / np.timedelta64(1, 'D') self.assertEqual(result, td.value / float(86400 * 1e9)) result = td / np.timedelta64(1, 's') self.assertEqual(result, td.value / float(1e9)) result = td / np.timedelta64(1, 'ns') self.assertEqual(result, td.value) def test_fields(self): def check(value): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) # compat to datetime.timedelta rng = to_timedelta('1 days, 10:11:12') self.assertEqual(rng.days, 1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 0) self.assertEqual(rng.nanoseconds, 0) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta('-1 days, 10:11:12') self.assertEqual(abs(td), Timedelta('13:48:48')) self.assertTrue(str(td) == "-1 days +10:11:12") self.assertEqual(-td, Timedelta('0 days 13:48:48')) self.assertEqual(-Timedelta('-1 days, 10:11:12').value, 49728000000000) self.assertEqual(Timedelta('-1 days, 10:11:12').value, -49728000000000) rng = to_timedelta('-1 days, 10:11:12.100123456') self.assertEqual(rng.days, -1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 100 * 1000 + 123) self.assertEqual(rng.nanoseconds, 456) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # components tup = pd.to_timedelta(-1, 'us').components self.assertEqual(tup.days, -1) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta('-1 days 1 us').components self.assertEqual(tup.days, -2) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) def test_nat_converters(self): self.assertEqual(to_timedelta( 'nat', box=False).astype('int64'), iNaT) self.assertEqual(to_timedelta( 'nan', box=False).astype('int64'), iNaT) def testit(unit, transform): # array result = to_timedelta(np.arange(5), unit=unit) expected = TimedeltaIndex([np.timedelta64(i, transform(unit)) for i in np.arange(5).tolist()]) tm.assert_index_equal(result, expected) # scalar result = to_timedelta(2, unit=unit) expected = Timedelta(np.timedelta64(2, transform(unit)).astype( 'timedelta64[ns]')) self.assertEqual(result, expected) # validate all units # GH 6855 for unit in ['Y', 'M', 'W', 'D', 'y', 'w', 'd']: testit(unit, lambda x: x.upper()) for unit in ['days', 'day', 'Day', 'Days']: testit(unit, lambda x: 'D') for unit in ['h', 'm', 's', 'ms', 'us', 'ns', 'H', 'S', 'MS', 'US', 'NS']: testit(unit, lambda x: x.lower()) # offsets # m testit('T', lambda x: 'm') # ms testit('L', lambda x: 'ms') def test_numeric_conversions(self): self.assertEqual(ct(0), np.timedelta64(0, 'ns')) self.assertEqual(ct(10), np.timedelta64(10, 'ns')) self.assertEqual(ct(10, unit='ns'), np.timedelta64( 10, 'ns').astype('m8[ns]')) self.assertEqual(ct(10, unit='us'), np.timedelta64( 10, 'us').astype('m8[ns]')) self.assertEqual(ct(10, unit='ms'), np.timedelta64( 10, 'ms').astype('m8[ns]')) self.assertEqual(ct(10, unit='s'), np.timedelta64( 10, 's').astype('m8[ns]')) self.assertEqual(ct(10, unit='d'), np.timedelta64( 10, 'D').astype('m8[ns]')) def test_timedelta_conversions(self): self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1, 's').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1, 'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1, 'D').astype('m8[ns]')) def test_round(self): t1 = Timedelta('1 days 02:34:56.789123456') t2 = Timedelta('-1 days 02:34:56.789123456') for (freq, s1, s2) in [('N', t1, t2), ('U', Timedelta('1 days 02:34:56.789123000'), Timedelta('-1 days 02:34:56.789123000')), ('L', Timedelta('1 days 02:34:56.789000000'), Timedelta('-1 days 02:34:56.789000000')), ('S', Timedelta('1 days 02:34:57'), Timedelta('-1 days 02:34:57')), ('2S', Timedelta('1 days 02:34:56'), Timedelta('-1 days 02:34:56')), ('5S', Timedelta('1 days 02:34:55'), Timedelta('-1 days 02:34:55')), ('T', Timedelta('1 days 02:35:00'), Timedelta('-1 days 02:35:00')), ('12T',
Timedelta('1 days 02:36:00')
pandas.Timedelta
# -*- coding: utf-8 -*- import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np import pandas as pd from keras import utils, callbacks from keras.models import Sequential, Model from keras.layers import Input, Dense, Flatten, Embedding, Dropout, Concatenate, Dot,Reshape,Merge from keras.callbacks import ModelCheckpoint from keras.optimizers import Adam, SGD, RMSprop,Adamax from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn import preprocessing import matplotlib.pyplot as plt import math from sklearn import preprocessing from sklearn.ensemble import ExtraTreesClassifier,ExtraTreesRegressor,RandomForestClassifier,RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import Lasso nbatch_size = 512 def rebuild_data(): """ 清洗选择特征数据 """ user_header = ['user_id','gender', 'age', 'job'] user_df = pd.read_csv('./data/ml-1m/users.dat', sep='::', names=user_header, usecols=[0, 1, 2, 3], engine = 'python') user_df.set_index(['user_id'], inplace = False) movie_header = ['movie_id', 'title','category'] movie_df = pd.read_csv('./data/ml-1m/movies.dat', sep='::', names=movie_header, usecols=[0, 1, 2], engine = 'python') movie_df.set_index(['movie_id'], inplace = False) rating_header = ['user_id', 'movie_id', 'rating', 'timestamp'] rating_df = pd.read_csv('./data/ml-1m/ratings.dat',sep='::', names=rating_header, engine = 'python')[:100000] rating_user = [user_df[user_df['user_id'] == mid].values[0] for uid, mid, r, _ in rating_df.values] rating_movie = [movie_df[movie_df['movie_id'] == mid].values[0] for uid, mid, r, _ in rating_df.values] user_df = pd.DataFrame(rating_user, index=None, columns=['user_id', 'gender', 'age', 'job']) movie_df = pd.DataFrame(rating_movie, index=None, columns=['movie_id', 'title', 'category']) rating_df = rating_df.rating pd.to_pickle(user_df, './data/ml-1m/user_pick') pd.to_pickle(movie_df, './data/ml-1m/movie_pick')
pd.to_pickle(rating_df, './data/ml-1m/rating_pick')
pandas.to_pickle
import pandas as pd import numpy as np import snscrape.modules.twitter as sntwitter # Ensure snscrape (dev. build) is installed import os import itertools import time from src.config import * def crawler(keywords=KEYWORDS, countriesDict=COUNTRIES_DICT, num_tweets_per_tag=NUM_TWEETS_PER_TAG, start_date=START_DATE, end_date=END_DATE): ''' Arguments: keywords - keywords to search for. If None, then default list of keywords is used (Biden vs. Trump - US Presidential Elections 2020). countriesDict - Python Dictionary of countries to scrape tweets from. Keys of dictionary must be the country names, and values must be the major cities in the respective countries. Defaults to a pre-defined list of countries around the world. num_tweets_per_tag - maximum number of tweets that can be scraped per tag (keyword). Default - 5000. start_date - beginning of date range for tweets to be scraped. Default - 2020-09-01. end_date - end of date range for tweets to be scraped. Default - 2020-12-31. Returns: df_v2 - the Pandas DataFrame of tweets scraped using snscrape, which have been cleaned to remove duplicates and generally improve quality of scraped tweets. ''' if len(keywords) < 1: raise RuntimeError("Keywords list is empty. Please enter keywords to scrape tweets in config.py.") if len(countriesDict.keys()) < 1: raise RuntimeError("Countries dictionary is empty. Please fill the dictionary in config.py.") # Initializing Dictionary of DataFrames for Each of the 23 Countries countriesDf = {} # This code block scrapes data for each country in the countriesDict dictionary. # For some countries, the range parameter for SNScrape has been specified. for country in countriesDict.keys(): if country in countriesDf.keys(): continue if country in ['Russia']: withinRange=1000 elif country in ['Mexico']: withinRange=500 elif country in ['Canada']: withinRange=100 elif country in ['Singapore']: withinRange=50 else: withinRange=800 countriesDf[country] = scrape_data(keywords, country, start_date, end_date, countriesDict, num_tweets_per_tag, withinRange) # To check the Number of Tweets found for each Country for country, countryDf in countriesDf.items(): print(f"{country}: {len(countryDf)}") # To create the main DataFrame of tweets df = pd.DataFrame() for countryDf in countriesDf.values(): df = df.append(countryDf) print("Shape of DataFrame before Cleaning:", df.shape) # Cleaning Data df_indexes_v2 = [] user_dict = {} for i in range(len(df)): tweet = df["content"].iloc[i] # To remove tweets that have more hashtags than normal text word_list = tweet.lower().split() num_normal = 0 num_tags = 0 for j in range(len(word_list)): temp = word_list[j] if temp[0] == '#': num_tags += 1 else: num_normal += 1 if num_tags > num_normal: continue # To choose only the latest tweet from a user to prevent multiple tweets from same user user = df["username"].iloc[i] user_dict[user] = i for value in user_dict.values(): df_indexes_v2.append(value) df_v2 = df.iloc[df_indexes_v2] print(f'Shape of DataFrame after cleaning: {df_v2.shape}') # Shuffling tweets in version 2 of the dataframe, and saving to a CSV file df_v2 = df_v2.drop_duplicates(subset='content') df_v2 = df_v2.sample(frac=1).reset_index(drop=True) print(df_v2.shape) # To print the number of tweets for each country print(f"Number of tweets per country:\n{df_v2.groupby('country')['content'].nunique()}") # Save Scraped Data to Current Working Directory cwd = os.getcwd() df_v2.to_csv(f"{cwd}/scraped_data.csv", encoding = "utf-8-sig", index=False) return df_v2 # Data Scraping (Crawling) Method def scrape_data(keywords, countryName, start_date, end_date, countriesDict, num_tweets_per_tag, withinRange=1000): start = time.time() df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ same as the 2x2 but now we use interval. shows a multi output callback decorator uses weather api """ # ============================================================================= # IMPORTS # ============================================================================= import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Output, Input import pandas as pd import numpy as np import datetime as dt import requests import os import plotly.offline as pyo import plotly.graph_objs as go from model_build_smooth import BuildModel # ============================================================================= # FUNCTIONS # ============================================================================= def getData(): """API import. Return last 30 days of weather in a DataFrame""" #load entrant (for Heroku) entrant = 'VFJ5W4L3FNJLNDEMWN6JZSEWB' #form url url = ''.join(['https://weather.visualcrossing.com/', 'VisualCrossingWebServices/rest/services/timeline/', 'London%2C%20ENG%2C%20GB/last30days?unitGroup=uk&key={}', '&include=obs'])\ .format(entrant) #make request req = requests.get(url) req_json = req.json() #convert to pandas dataframe wdays = pd.DataFrame(req_json['days']) #ensure its 30 days long df = wdays.iloc[(len(wdays)-30):] #get temp and time df['datetime'] = pd.to_datetime(df['datetime'], format='%Y-%m-%d') df = df.set_index('datetime') return df def loadModels(): """Instantiates model class and then loads h5 model""" #file names files = os.listdir('./Colab_Models') files = ['./Colab_Models/' + file for file in files] #put temperature first files[0] , files[2] = files[2] , files[0] #assert we have 4 h5 models assert len(files) == 4 assert files[0][-3:] == '.h5' #instantiate model classes model_dict = \ {key : BuildModel(model_name=key, length=30) for key in files} #load h5 models for key in model_dict.keys(): model_dict[key].loadModel() return model_dict def plotlyData(name: str, hist, fc): """plots history and forecast""" trace1 = go.Scatter(x=hist.index, y=hist.values, name='History', mode='lines+markers+text', marker=dict(color='rgba(0,128,0, 1)', size=10,\ symbol=1, line={'width':1}), line=dict(width=3), text=hist.values, textposition="top center", texttemplate='%{text:.0f}', textfont_size=12) trace2 = go.Scatter(x=fc.index, y=fc.values, name='Forecast', mode='lines+markers+text', marker=dict(color = 'rgba(0,0,255, 0.8)', size=15,\ symbol=5, line = {'width':1}), line=dict(width=2, dash='longdash'), text=fc.values, textposition="top center", texttemplate='%{text:.0f}', textfont_size=12) return [trace1, trace2] def plotlyLayout(title, y_label): layout = go.Layout( title={'text':title, 'x':0.5}, xaxis={'title':'Date', 'showgrid':True, 'gridwidth':1, 'gridcolor':'rgba(0,0,0,0.05)'}, yaxis={'title':y_label, 'showgrid':True, 'gridwidth':1.5, 'gridcolor':'rgba(0,0,0,0.15)'}, legend={'x':0.025, 'y':0.95, 'bgcolor':'rgba(255,255,255,1)', 'borderwidth':0.5}, plot_bgcolor='rgba(227,248,251,0)' ) return layout # ============================================================================= # DASH # ============================================================================= app = dash.Dash() server = app.server colors = {'background': '#fff', 'text': '#1E1E1E'} window_style = {'backgroundColor': colors['background'], 'width':'49%', 'display':'inline-block', 'border-color':'#1e1e1e', 'border-width':'1px', 'border-style':'solid'} flex_grid_col = {'display':'flex', 'justify-content':'space-evenly', 'margin':'15px 26px'} p_style = {'textAlign': 'center','color': colors['text'], 'font-family':'sans-serif', 'padding-bottom':'0px'} model_dict = loadModels() app.layout =\ html.Div(children=[ html.Div(children=[ html.H1(children='Neural Network Weather Forecasts for London (UK)', style={'textAlign': 'center','color': colors['text'], 'font-family':'sans-serif'}), html.P(children="All forecasts were generated by LSTM networks that were built using Python's Tensorflow 2.0", style= p_style), html.P(children="Models are fed by the visualcrossing.com weather API", style= p_style), html.P(children=[html.A(href='https://github.com/Joseph-Foley/neural_net_weather_forecasts_on_cloud/', children='Github for this dashboard and tensorflow models')], style=p_style), html.P(children=[html.A(href='https://www.linkedin.com/in/joseph-foley-b9a39058/', children='My LinkedIn Profile')], style=p_style)], style= {'margin':'15px 40px', 'padding':'20px 60px'}), html.Div(children=[ html.Div(dcc.Graph(id='graph1'), style=window_style), html.Div(dcc.Graph(id='graph2'), style=window_style)], style=flex_grid_col), html.Div(children=[ html.Div(dcc.Graph(id='graph3'), style=window_style), html.Div(dcc.Graph(id='graph4'), style=window_style)], style=flex_grid_col), dcc.Interval( id='interval-component', interval=1*60*60*1000, # 1hr * 60mins * 60secs * 1000milisecs n_intervals=0) ], style={'backgroundColor': colors['background']}) @app.callback([Output('graph1','figure'), Output('graph2','figure'), Output('graph3','figure'), Output('graph4','figure')], [Input('interval-component', 'n_intervals')]) def updateGraphs(n): #refresh data from the api df = getData() #make predictions model_dict = loadModels() dict_keys = list(model_dict.keys()) metrics = ['temp', 'precip', 'humidity', 'windspeed'] preds = \ [model_dict[dict_keys[i]].predAhead(7, df[metrics[i]]) for i in range(4)] #format predictions preds =
pd.DataFrame(preds, index=metrics)
pandas.DataFrame
from IPython.core.display import display, HTML import pandas as pd import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import glob import os import gc from joblib import Parallel, delayed from sklearn import preprocessing, model_selection from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import QuantileTransformer from sklearn.metrics import r2_score import matplotlib.pyplot as plt import numpy.matlib path_submissions = '/' target_name = 'target' scores_folds = {} import pandas as pd print(pd.__version__) # data directory # data_dir = '../input/optiver-realized-volatility-prediction/' data_dir = '/home/data/optiver-realized-volatility-prediction/' # Function to calculate first WAP def calc_wap1(df): wap = (df['bid_price1'] * df['ask_size1'] + df['ask_price1'] * df['bid_size1']) / ( df['bid_size1'] + df['ask_size1']) return wap # Function to calculate second WAP def calc_wap2(df): wap = (df['bid_price2'] * df['ask_size2'] + df['ask_price2'] * df['bid_size2']) / ( df['bid_size2'] + df['ask_size2']) return wap def calc_wap3(df): wap = (df['bid_price1'] * df['bid_size1'] + df['ask_price1'] * df['ask_size1']) / ( df['bid_size1'] + df['ask_size1']) return wap def calc_wap4(df): wap = (df['bid_price2'] * df['bid_size2'] + df['ask_price2'] * df['ask_size2']) / ( df['bid_size2'] + df['ask_size2']) return wap # Function to calculate the log of the return # Remember that logb(x / y) = logb(x) - logb(y) def log_return(series): return np.log(series).diff() # Calculate the realized volatility def realized_volatility(series): return np.sqrt(np.sum(series ** 2)) # Function to count unique elements of a series def count_unique(series): return len(np.unique(series)) # Function to read our base train and test set def read_train_test(): train = pd.read_csv(data_dir + 'train.csv') test = pd.read_csv(data_dir + '/test.csv') # Create a key to merge with book and trade data train['row_id'] = train['stock_id'].astype(str) + '-' + train['time_id'].astype(str) test['row_id'] = test['stock_id'].astype(str) + '-' + test['time_id'].astype(str) print(f'Our training set has {train.shape[0]} rows') train.head() return train, test # Function to preprocess book data (for each stock id) def book_preprocessor(file_path): df =
pd.read_parquet(file_path)
pandas.read_parquet
# Define a custom model which takes 34 data points and output 8 classes import numpy as np import pandas as pd from natsort import natsorted import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report, plot_confusion_matrix import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # set seed np.random.seed(42) torch.manual_seed(42) EPOCHS = 250 LEARNING_RATE = 0.001 DROPOUT = 0.5 # Load data test = pd.read_csv("./data/test_data.csv") data = pd.read_csv("./data/train_data.csv") labels = pd.read_csv("./data/train_labels.csv") train_data_df = data.drop(['id'], axis=1) train_labels = labels.drop(['id'], axis=1) test_data = test.drop(['id'], axis=1) # Split the data into training and validation data (80%-20%) train_data, val_data, train_labels, val_labels = train_test_split(train_data_df, train_labels, test_size=0.2) # Convert the data into tensors train_data = torch.from_numpy(train_data.values).float() val_data = torch.from_numpy(val_data.values).float() train_labels = torch.from_numpy(train_labels.values).long() val_labels = torch.from_numpy(val_labels.values).long() test_data = torch.from_numpy(test_data.values).float() # model with dropout class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(34, 128) self.fc2 = nn.Linear(128, 256) self.fc3 = nn.Linear(256, 512) self.fc4 = nn.Linear(512, 1024) self.fc5 = nn.Linear(1024, 512) self.fc6 = nn.Linear(512, 256) self.fc7 = nn.Linear(256, 128) self.fc8 = nn.Linear(128, 8) self.dropout = nn.Dropout(p=DROPOUT) def forward(self, x): x = F.relu(self.fc1(x)) x = self.dropout(x) x = F.relu(self.fc2(x)) x = self.dropout(x) x = F.relu(self.fc3(x)) x = self.dropout(x) x = F.relu(self.fc4(x)) x = self.dropout(x) x = F.relu(self.fc5(x)) x = self.dropout(x) x = F.relu(self.fc6(x)) x = self.dropout(x) x = F.relu(self.fc7(x)) x = self.dropout(x) x = F.softmax(self.fc8(x), dim=1) return x # Create model # model = Net() model = Net() # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) for epoch in range(EPOCHS): optimizer.zero_grad() output = model(train_data) loss = criterion(output, train_labels.squeeze()) loss.backward() optimizer.step() print("Epoch: {}, Training Loss: {}".format(epoch, loss.item())) # Test the model on validation set and plot the prediction with torch.no_grad(): test_output = model(val_data) _, predicted = torch.max(test_output.data, 1) # print(predicted) # print(val_labels) # print(test_output) correct = 0 total = 0 for i in range(0, val_labels.size()[0]): total += 1 if predicted[i] == val_labels.data[i]: correct += 1 print("Accuracy: {} %".format(100 * correct / total)) # Plot the confusion matrix class_names = ['Class 0', 'Class 1', 'Class 2', 'Class 3', 'Class 4', 'Class 5', 'Class 6', 'Class 7'] # Compute and plot the confusion matrix cm = confusion_matrix(val_labels.numpy(), predicted.numpy()) np.set_printoptions(precision=2) print(cm) # Save the model torch.save(model.state_dict(), "./weights.pth") # Load the model model.load_state_dict(torch.load("./weights.pth")) # Test the model and save the predcition with ids with torch.no_grad(): test_output = model(test_data) _, predicted = torch.max(test_output.data, 1) # Create a dataframe with two columns: `id` and `label` submission =
pd.DataFrame({'id': test['id'], 'label': predicted})
pandas.DataFrame
import numpy as np import pandas as pd # Set global constants KT = 1.38e-2 * 298 ETA = 0.89e-9 RHO = 0.99823e-21 # Water NU = ETA / RHO # kinematic viscosity def load_db477x() -> pd.core.frame.DataFrame: # Load filter data for NI447x filter return pd.read_csv("dB447x.txt", sep="\t", index_col=0, header=None, names=None) # ni447x filter def make_filter_params(db447x, n_downsample: int = 1, n_0: int = 4096, n_poles: int = 1, f_cutoff: int = 10000, n_avg: int = 1, factor: int = 1): """ Function to turn filter parameters into a dictionary that is later read by the parse_filter function :param db447x: dataframe of ni447x filter data :param n_downsample: downsampling factor :param n_0: :param n_poles: :param f_cutoff: :param n_avg: :param factor: :return: """ return { "n_downsample": n_downsample, "n_0": n_0, "n_poles": n_poles, "f_cutoff": f_cutoff, "n_avg": n_avg, "factor": factor, "db447x": db447x } def parse_filter(psd, parameters: dict, filter_dict: dict, filter_string: str = "", sep=";"): filters = filter_string.split(sep=sep) if len(filters) != 1 and filters[0] != '': for filter_name in filters: psd = filter_dict[filter_name](psd, parameters) return np.sqrt(np.abs(np.trapz(psd, axis=0, x=psd.index))) def apply_ni447x(row, db447x): if row.name < db447x.index[0]: row[0] = 1 elif row.name > db447x.index[-1]: row[0] = 0 else: res = 10 ** (db447x.iloc[db447x.index.get_loc(row.name, method='nearest')] / 20) row[0] = res.values[0] def ni447x(psd, parameters): db447x = parameters['db447x'] coefs_mag = psd.copy() coefs_mag.apply(apply_ni447x, axis=1, args=[db447x]) psd_filtered = psd * coefs_mag ** 2 return psd_filtered def bessel8(psd, parameters): f_cutoff = parameters['f_cutoff'] f_mod = f_cutoff / 3.17962 coefs_mag = psd.copy() div = [coef / f_mod for coef in coefs_mag.index] coefs = [] for i in range(len(div)): coefs.append(2027025 / np.sqrt(81 * (-225225 * div[i] + 30030 * div[i] ** 3 - 770 * div[i] ** 5 + 4 * div[i] ** 7) ** 2 + ( 2027025 - 945945 * div[i] ** 2 + 51975 * div[i] ** 4 - 630 * div[ i] ** 6 + div[i] ** 8) ** 2)) coefs_mag = [coef ** 2 for coef in coefs] psd_filtered = psd.copy(deep=True) psd_filtered.iloc[:, 0] *= coefs_mag return psd_filtered def boxcar(psd, parameters): n_avg = parameters['n_avg'] psd_filtered = psd.copy(deep=True) coefs_mag = psd.copy(deep=True) max_freq = psd.index[-1] for x, val in coefs_mag.iterrows(): try: coefs_mag.iloc[coefs_mag.index.get_loc(x, method='nearest')] = 1 / n_avg * np.abs( np.sin(x / max_freq * np.pi * n_avg / 2) / np.sin(x / max_freq * np.pi / 2)) except FloatingPointError: # To deal with case x = 0 pass coefs_mag.iloc[coefs_mag.index.get_loc(coefs_mag.index[0], method='nearest')] = 1 psd_filtered = psd * coefs_mag ** 2 return psd_filtered def butterworth(psd, parameters): f_cutoff = parameters['f_cutoff'] coefs_mag = [1 / np.sqrt(1 + (coef / f_cutoff) ** 2) for coef in psd.index] psd_filtered = psd.copy(deep=True) psd_filtered.iloc[:, 0] *= coefs_mag return psd_filtered def qpd(psd, parameters): gam = 0.44 f_0 = 11.1e3 coefs_mag = [gam ** 2 + ((1 - gam ** 2) / (1 + (coef / f_0) ** 2)) for coef in psd.index] psd_filtered = psd.copy(deep=True) psd_filtered.iloc[:, 0] *= coefs_mag return psd_filtered def interpolate_psd(psd, n_downsample: int, n_0: int): """ Helper function for psd_subsample() """ n_downsample = int(n_downsample) # Make placeholders indices = [np.NaN] * ((n_0 * n_downsample) - n_downsample + 1) values = [np.NaN] * ((n_0 * n_downsample) - n_downsample + 1) # Fill data i = 0 for x, val in psd.iterrows(): indices[i * n_downsample] = x values[i * n_downsample] = val[0] i += 1 # Make temp dataframe to interpolate indices temp_indices = pd.DataFrame(data=indices) # Interpolate indices temp_indices = temp_indices.interpolate() # Make dataframe for interpolating values temp_data = pd.DataFrame(data=values, index=temp_indices[0].to_list()) temp_data = temp_data.interpolate('index') temp_data['f'] = temp_data.index temp_data.index = range(len(temp_data)) return temp_data def psd_resample_down(psd, parameters): factor = parameters['factor'] coefs_mag = psd.copy(deep=True) max_freq = psd.index[-1] freq_sample = max_freq * 2 rs_coefs = load_resample_coefs(factor) midpoint_num = int((len(rs_coefs) - 1) / 2) x = [(-midpoint_num / freq_sample) + i * (1 / freq_sample) for i in range(len(rs_coefs))] rs_coefs.index = x length = int(len(psd) / 2) * 2 rs_coefs_ser = rs_coefs.squeeze() # Turn into a series so numpy's rfft works rs_coefs_fft = np.abs(np.fft.rfft(rs_coefs_ser, n=length)) # FFT + 0-padding indices_new = np.linspace(psd.index[0], psd.index[-1], int(length / 2) + 1) rs_coefs_fft =
pd.DataFrame(data=rs_coefs_fft, index=indices_new)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """This script structures the dashboard streamlit in three applications. Its main role is to display results of evaluation which have already been performed. This module is independent from others. """ import streamlit as st import glob import plotly.graph_objects as go import matplotlib.pyplot as plt from statistics import mean import pandas as pd from math import nan import os import json from dataset_helper import records, sampling_frequency from algo_helper import algorithms_list ''' # Benchmark of QRS detectors ''' def get_layout(title: str) -> go.Layout: """ use for displaying a graph. create a Layout object :param title: title of the displayed graph :type title: str :return: model of layout for graphs :rtype: Layout """ return go.Layout(title=title, margin=dict(l=20, r=20, t=30, b=20)) # choose application of interest applications = ['Comparison of different algorithms', 'Evaluation of one algorithm', 'Noise robustness'] application = st.sidebar.selectbox('What would you like to study ?', applications) def print_error_no_evaluation(ds: str = '"#check --help#"', alg: str = '"#check --help#"', t: str = '#int(ms)#') \ -> None: """ display an error message when a result of a specific evaluation is selected, whereas the latter was not been performed. Display make command to run the evaluation of interest. :param ds: name of the dataset of interest :type ds: str :param alg: name of the algorithm of interest :type alg: str :param t: tolerance's value of interest :type t: str """ st.write('The evaluation of your interest has not already being performed. You probably did not execute the ' 'evaluation. Please compute the following command :') st.write(f'\t make evaluation --DATASET="{ds}" --ALGO="{alg}" --TOLERANCE={t}') # list of datasets used in the two first applications (comparison of performances on the entire datasets or on each # record) datasets_list = ['mit-bih-arrhythmia', 'mit-bih-supraventricular-arrhythmia', 'mit-bih-long-term-ecg', 'european-stt'] # colors used for graphs for each algorithm colormap = { 'Pan-Tompkins-ecg-detector': 'rgb(41,58,143)', 'Hamilton-ecg-detector': 'rgb(215,48,39)', 'Christov-ecg-detector': 'rgb(26,152,80)', 'Engelse-Zeelenberg-ecg-detector': '#440154', 'SWT-ecg-detector': 'rgb(255,111,0)', 'Matched-filter-ecg-detector': 'rgb(179,88,6)', 'Two-average-ecg-detector': 'rgb(212,103,128)', 'Hamilton-biosppy': 'rgb(184,225,134)', 'Christov-biosppy': 'rgb(255,234,0)', 'Engelse-Zeelenberg-biosppy': 'rgb(197,27,125)', 'Gamboa-biosppy': 'rgb(153,204,255)', 'mne-ecg': 'rgb(61,89,65)', 'heartpy': 'rgb(44,255,150)', 'gqrs-wfdb': 'rgb(254,224,139)', 'xqrs-wfdb': 'rgb(10,136,186)' } # first application if application == 'Comparison of different algorithms': st.write('\n\n') ''' ## Comparison of performances of some algorithms on a dataset ''' st.write('\n\n') dataset = st.selectbox('Please choose a dataset:', datasets_list) csv_files_dataset = glob.glob(f'output/perf/*_{dataset}_*.csv') tolerance_list = [] for file in csv_files_dataset: eval_tolerance = file[:-4].split('_')[-1] tolerance_list.append(eval_tolerance) tolerance = st.selectbox('Please choose tolerance of the evaluation (in ms):', list(set(tolerance_list))) csv_files = [csv_file for csv_file in csv_files_dataset if csv_file[:-4].split('_')[-1] == tolerance] # table of comparison if len(csv_files) == 0: print_error_no_evaluation(ds=dataset) else: comparison_df = pd.DataFrame(columns=['FP', 'FN', 'F', 'F(%)', 'P+(%)', 'Se(%)', 'F1(%)']) number_of_beats = '' st.write('Please select algorithms you would like to compare:') if st.checkbox('Pan-Tompkins-ecg-detector'): if not os.path.exists(f'output/perf/Pan-Tompkins-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Pan-Tompkins-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Pan-Tompkins-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) results_df.iloc[-1, :].name = 'Pan-Tompkins-ecg-detector' global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Pan-Tompkins-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Hamilton-ecg-detector'): if not os.path.exists(f'output/perf/Hamilton-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Hamilton-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Hamilton-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Hamilton-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Christov-ecg-detector'): if not os.path.exists(f'output/perf/Christov-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Christov-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Christov-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Christov-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Engelse-Zeelenberg-ecg-detector'): if not os.path.exists(f'output/perf/Engelse-Zeelenberg-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Engelse-Zeelenberg-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Engelse-Zeelenberg-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Engelse-Zeelenberg-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('SWT-ecg-detector'): if not os.path.exists(f'output/perf/SWT-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='SWT-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/SWT-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'SWT-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Matched-filter-ecg-detector'): if not os.path.exists(f'output/perf/Matched-filter-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Matched-filter-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Matched-filter-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Matched-filter-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Two-average-ecg-detector'): if not os.path.exists(f'output/perf/Two-average-ecg-detector_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Two-average-ecg-detector', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Two-average-ecg-detector_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Two-average-ecg-detector' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Hamilton-biosppy'): if not os.path.exists(f'output/perf/Hamilton-biosppy_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Hamilton-biosppy', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Hamilton-biosppy_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Hamilton-biosppy' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Christov-biosppy'): if not os.path.exists(f'output/perf/Christov-biosppy_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Christov-biosppy', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Christov-biosppy_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Christov-biosppy' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Engelse-Zeelenberg-biosppy'): if not os.path.exists(f'output/perf/Engelse-Zeelenberg-biosppy_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Engelse-Zeelenberg-biosppy', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Engelse-Zeelenberg-biosppy_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Engelse-Zeelenberg-biosppy' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('Gamboa-biosppy'): if not os.path.exists(f'output/perf/Gamboa-biosppy_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='Gamboa-biosppy', t=tolerance) else: results_df = pd.read_csv(f'output/perf/Gamboa-biosppy_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'Gamboa-biosppy' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('mne-ecg'): if not os.path.exists(f'output/perf/mne-ecg_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='mne-ecg', t=tolerance) else: results_df = pd.read_csv(f'output/perf/mne-ecg_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'mne-ecg' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('heartpy'): if not os.path.exists(f'output/perf/heartpy_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='heartpy', t=tolerance) else: results_df = pd.read_csv(f'output/perf/heartpy_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'heartpy' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('gqrs-wfdb'): if not os.path.exists(f'output/perf/gqrs-wfdb_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='gqrs-wfdb', t=tolerance) else: results_df = pd.read_csv(f'output/perf/gqrs-wfdb_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'gqrs-wfdb' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] if st.checkbox('xqrs-wfdb'): if not os.path.exists(f'output/perf/xqrs-wfdb_{dataset}_{tolerance}.csv'): print_error_no_evaluation(ds=dataset, alg='xqrs-wfdb', t=tolerance) else: results_df = pd.read_csv(f'output/perf/xqrs-wfdb_{dataset}_{tolerance}.csv', delimiter=',', index_col=0) global_eval = results_df.iloc[-1, 1:] global_eval.name = 'xqrs-wfdb' comparison_df = comparison_df.append(global_eval) number_of_beats = results_df.iloc[-1, 0] st.write(f"Comparative table of global performances: ") st.write(comparison_df) st.write(f'Total number of beats for this dataset is : {number_of_beats}') # graphs of comparison ''' ## Comparison of performances of algorithms on different datasets ''' results_F1 = pd.DataFrame(columns=datasets_list, index=algorithms_list) results_Fp = pd.DataFrame(columns=datasets_list, index=algorithms_list) for algo in algorithms_list: for dataset in datasets_list: if os.path.exists(f'output/perf/{algo}_{dataset}_{tolerance}.csv'): results_df =
pd.read_csv(f'output/perf/{algo}_{dataset}_{tolerance}.csv', delimiter=',')
pandas.read_csv
from datetime import timedelta import pandas as pd def twdb_dot(df_row, drop_dcp_metadata=True): """Parser for twdb DOT dataloggers.""" return _twdb_stevens_or_dot(df_row, reverse=False, drop_dcp_metadata=drop_dcp_metadata) def twdb_fts(df_row, drop_dcp_metadata=True): """Parser for twdb fts dataloggers format examples: C510D20018036133614G39-0NN170WXW00097 :WL 31 #60 -72.91 -72.89 -72.89 -72.89 -72.91 -72.92 -72.93 -72.96 -72.99 -72.97 -72.95 -72.95 """ message = df_row['dcp_message'].lower() message_timestamp = df_row['message_timestamp_utc'] battery_voltage = pd.np.nan for line in message.split(':'): if line.split() != []: line = line.split() # grab water level data if line[0] == 'wl': water_levels = [ field.strip('+- ') for field in line[3:] ] # grab battery voltage if line[0] == 'vb': battery_voltage = line[3].strip('+- ') df = _twdb_assemble_dataframe( message_timestamp, battery_voltage, water_levels, reverse=False ) return df def twdb_stevens(df_row, drop_dcp_metadata=True): """Parser for twdb stevens dataloggers.""" return _twdb_stevens_or_dot(df_row, reverse=True, drop_dcp_metadata=drop_dcp_metadata) def twdb_sutron(df_row, drop_dcp_metadata=True): """Parser for twdb sutron dataloggers. Data is transmitted every 12 hours and each message contains 12 water level measurements on the hour for the previous 12 hours and one battery voltage measurement for the current hour format examples: '":ott 60 #60 -190.56 -190.66 -190.69 -190.71 -190.74 -190.73 -190.71 -190.71 -190.71 -190.71 -190.72 -190.72 :BL 13.05 ' '":SENSE01 60 #60 -82.19 -82.19 -82.18 -82.19 -82.19 -82.22 -82.24 -82.26 -82.27 -82.28 -82.28 -82.26 :BL 12.41 ' '":OTT 703 60 #60 -231.47 -231.45 -231.44 -231.45 -231.47 -231.50 -231.51 -231.55 -231.56 -231.57 -231.55 -231.53 :6910704 60 #60 -261.85 -261.83 -261.81 -261.80 -261.81 -261.83 -261.85 -261.87 -261.89 -261.88 -261.86 -261.83 :BL 13.21' '":Sense01 10 #10 -44.70 -44.68 -44.66 -44.65 -44.63 -44.61 -44.60 -44.57 -44.56 -44.54 -44.52 -44.50 :BL 13.29' '"\r\n-101.11 \r\n-101.10 \r\n-101.09 \r\n-101.09 \r\n-101.08 \r\n-101.08 \r\n-101.08 \r\n-101.10 \r\n-101.11 \r\n-101.09 \r\n-101.09 \r\n-101.08' '"\r\n// \r\n// \r\n// \r\n// \r\n// \r\n-199.88 \r\n-199.92 \r\n-199.96 \r\n-199.98 \r\n-200.05 \r\n-200.09 \r\n-200.15' '":Sense01 60 #60 M M M M M M M M M M M M :BL 12.65' """ message = df_row['dcp_message'].lower() message_timestamp = df_row['message_timestamp_utc'] lines = message.strip('":').split(':') if len(lines) == 1: water_levels = [field.strip('+- ') for field in lines[0].split()] df = _twdb_assemble_dataframe(message_timestamp, None, water_levels, reverse=False) else: data = [] battery_voltage = lines[-1].split('bl')[-1].strip() for line in lines[:-1]: channel = line[:7] split = line[7:].split() water_levels = [field.strip('+-" ') for field in split[2:]] df = _twdb_assemble_dataframe(message_timestamp, battery_voltage, water_levels, reverse=False) df['channel'] = channel data.append(df) df = pd.concat(data) if not drop_dcp_metadata: for col in df_row.index: df[col] = df_row[col] return df def twdb_texuni(dataframe, drop_dcp_metadata=True): """Parser for twdb texuni dataloggers. Data is transmitted every 12 hours and each message contains 12 water level measurements on the hour for the previous 12 hours format examples: '"\r\n+0.000,-245.3,\r\n+0.000,-245.3,\r\n+0.000,-245.3,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.4,\r\n+0.000,-245.5,\r\n+0.000,-245.5,\r\n+0.000,-245.6,\r\n+0.000,-245.6,\r\n+0.000,-245.6,\r\n+0.000,-245.6,\r\n+0.000,-245.6,\r\n+0.000,-245.6,\r\n+412.0,+2013.,+307.0,+1300.,+12.75,+0.000,-245.4,-245.3,-245.6,+29.55,' ' \r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-110.0,\r\n+0.000,-110.0,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-110.0,\r\n+0.000,-110.0,\r\n+0.000,-110.0,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+340.0,+2013.,+307.0,+1400.,+12.07,+0.000,-109.9,-109.8,-110.1,+30.57,' """ message = dataframe['dcp_message'] message_timestamp = dataframe['message_timestamp_utc'] water_levels = [row.split(',')[1].strip('+- ') for row in message.strip('" \r\n').splitlines()[:-1]] df = _twdb_assemble_dataframe(message_timestamp, None, water_levels, reverse=True) if not drop_dcp_metadata: for col in dataframe.index: df[col] = dataframe[col] return df def _twdb_assemble_dataframe(message_timestamp, battery_voltage, water_levels, reverse=False): data = [] base_timestamp = message_timestamp.replace(minute=0, second=0, microsecond=0) if reverse: water_levels.reverse() try: battery_voltage = float(battery_voltage) except: battery_voltage = pd.np.nan for hrs, water_level in enumerate(water_levels): timestamp = base_timestamp - timedelta(hours=hrs) try: water_level = float(water_level) except: water_level = pd.np.nan if hrs==0 and battery_voltage: data.append([timestamp, battery_voltage, water_level]) else: data.append([timestamp, pd.np.nan, water_level]) if len(data)>0: df = pd.DataFrame(data, columns=['timestamp_utc', 'battery_voltage', 'water_level']) df.index = pd.to_datetime(df['timestamp_utc']) del df['timestamp_utc'] return df else: return
pd.DataFrame()
pandas.DataFrame
import datetime import re from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas.compat import is_platform_windows import pandas as pd from pandas import ( DataFrame, Index, Series, _testing as tm, bdate_range, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) from pandas.util import _test_decorators as td _default_compressor = "blosc" pytestmark = pytest.mark.single def test_conv_read_write(setup_path): with tm.ensure_clean() as path: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame({"A": range(5), "B": range(5)}) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) def test_long_strings(setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df)
_maybe_remove(store, "df")
pandas.tests.io.pytables.common._maybe_remove
import numpy as np import pandas as pd data=pd.read_csv('iris.csv') data=np.array(data) data=np.mat(data[:,0:4]) #数据长度 length=len(data) #通过核函数在输入空间计算核矩阵 k=np.mat(np.zeros((length,length))) for i in range(0,length): for j in range(i,length): k[i,j]=(np.dot(data[i],data[j].T))**2 k[j,i]=k[i,j] name=range(length) test=pd.DataFrame(columns=name,data=k) print('核矩阵\n',test) len_k=len(k) #中心化核矩阵 I=np.eye(len_k) one=np.ones((len_k,len_k)) A=I-1.0/len_k*one centered_k=np.dot(np.dot(A,k),A) test=pd.DataFrame(columns=name,data=centered_k) print('居中化核矩阵\n',test) #标准化核矩阵 W_2=np.zeros((len_k,len_k)) for i in range(0,len_k): W_2[i,i]=k[i,i]**(-0.5) normalized_k=np.dot(np.dot(W_2,k),W_2) test=pd.DataFrame(columns=name,data=normalized_k) print('规范化核矩阵\n',test) #标准化中心化核矩阵 W_3=np.zeros((len_k,len_k)) for i in range(0,len_k): W_3[i,i]=centered_k[i,i]**(-0.5) normalized_centered_k=np.dot(np.dot(W_3,centered_k),W_3) test=pd.DataFrame(columns=name,data=normalized_centered_k) print('居中规范化核矩阵\n',test) #计算每个输入向量的特征函数φ fai=np.mat(np.zeros((length,10))) for i in range(0,length): for j in range(0,4): fai[i,j]=data[i,j]**2 for m in range(0,3): for n in range(m+1,4): j=j+1 fai[i,j]=2**0.5*data[i,m]*data[i,n] name_f=range(10) test=pd.DataFrame(columns=name_f,data=fai) print('计算φ\n',test) #通过φ计算核矩阵 k_f=np.mat(np.zeros((length,length))) for i in range(0,length): for j in range(i,length): k_f[i,j]=(np.dot(fai[i],fai[j].T)) k_f[j,i]=k_f[i,j] test=pd.DataFrame(columns=name,data=k_f) print('通过φ计算核矩阵\n',test) #中心化φ rows=fai.shape[0] cols=fai.shape[1] centered_fai=np.mat(np.zeros((rows,cols))) for i in range(0,cols): centered_fai[:,i]=fai[:,i]-np.mean(fai[:,i]) test=pd.DataFrame(columns=name_f,data=centered_fai) print('居中φ\n',test) #通过中心化φ计算中心化的核函数 k_cf=np.mat(np.zeros((length,length))) for i in range(0,length): for j in range(i,length): k_cf[i,j]=(np.dot(centered_fai[i],centered_fai[j].T)) k_cf[j,i]=k_cf[i,j] test=pd.DataFrame(columns=name,data=k_cf) print('通过居中φ计算居中核矩阵\n',test) #规范化φ normalized_fai=np.mat(np.zeros((rows,cols))) for i in range(0,len(fai)): temp=np.linalg.norm(fai[i]) normalized_fai[i]=fai[i]/np.linalg.norm(fai[i]) test=pd.DataFrame(columns=name_f,data=normalized_fai) print('规范化φ\n',test) #通过规范化φ计算规范化的核函数 k_nf=np.mat(np.zeros((length,length))) for i in range(0,length): for j in range(i,length): k_nf[i,j]=(np.dot(normalized_fai[i],normalized_fai[j].T)) k_nf[j,i]=k_nf[i,j] test=pd.DataFrame(columns=name,data=k_nf) print('通过规范化φ计算规范化核矩阵\n',test) #计算居中规范化φ normalized_centered_fai=np.mat(np.zeros((rows,cols))) for i in range(0,len(fai)): temp=np.linalg.norm(fai[i]) normalized_centered_fai[i]=centered_fai[i]/np.linalg.norm(centered_fai[i]) test=pd.DataFrame(columns=name_f,data=normalized_centered_fai) print('居中规范化φ\n',test) #通过居中规范化φ计算剧中规范化核矩阵 kc_nf=np.mat(np.zeros((length,length))) for i in range(0,length): for j in range(i,length): kc_nf[i,j]=(np.dot(normalized_centered_fai[i],normalized_centered_fai[j].T)) kc_nf[j,i]=kc_nf[i,j] test=
pd.DataFrame(columns=name,data=kc_nf)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jan 29 12:36:48 2019 @author: adm """ # In[1]: import os import sys import random import math import numpy as np import skimage.io import matplotlib import matplotlib.pyplot as plt import cv2 import time from mrcnn.config import Config from datetime import datetime # Root directory of the project ROOT_DIR = r'C:\Users\adm\Mask_RCNN-master' # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize # Import COCO config sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version #from samples.coco import coco # In[2]: # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"BT_full_two.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) print("cuiwei***********************") # Directory of images to run detection on IMAGE_DIR = os.path.join(ROOT_DIR, "Full_image_test") class ShapesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "shapes" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 1 # Number of classes (including background) NUM_CLASSES = 1 + 1 # background + 3 shapes # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 2048 IMAGE_MAX_DIM = 2048 # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE =100 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # use small validation steps since the epoch is small VALIDATION_STEPS = 50 #import train_tongue #class InferenceConfig(coco.CocoConfig): class InferenceConfig(ShapesConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 # In[3]: config = InferenceConfig() model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO #model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"]) model.load_weights(COCO_MODEL_PATH, by_name=True) # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = ['_background_', 'BT'] # Load a random image from the images folder file_names = next(os.walk(IMAGE_DIR))[2] image = skimage.io.imread(os.path.join(IMAGE_DIR, file_names[0])) #image = img a=datetime.now() # Run detection results = model.detect([image], verbose=1) b=datetime.now() # Visualize results print("shijian",(b-a).seconds) r = results[0] visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores']) # In[3]: mask = r['masks'] mask = mask.astype(int) mask.shape # In[] AA = [] for i in range(mask.shape[2]): temp = skimage.io.imread(os.path.join(IMAGE_DIR, file_names[16])) for j in range(temp.shape[2]): temp[:,:,j] = temp[:,:,j] * mask[:,:,i] #temp1 = #temp[i] = temp[i] AA.append(temp) plt.figure(figsize=(8,8)) plt.imshow(temp) # In[3]: config = InferenceConfig() model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO #model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"]) model.load_weights(COCO_MODEL_PATH, by_name=True) # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = ['_background_', 'BT'] # Load a random image from the images folder file_names = next(os.walk(IMAGE_DIR))[2] for i in range(10): image = skimage.io.imread(os.path.join(IMAGE_DIR, file_names[i])) #image = img a=datetime.now() # Run detection results = model.detect([image], verbose=1) b=datetime.now() # Visualize results print("shijian",(b-a).seconds) r = results[0] visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores']) # In[] mrcnn = model.run_graph([image], [ ("proposals", model.keras_model.get_layer("ROI").output), ("probs", model.keras_model.get_layer("mrcnn_class").output), ("deltas", model.keras_model.get_layer("mrcnn_bbox").output), ("masks", model.keras_model.get_layer("mrcnn_mask").output), ("detections", model.keras_model.get_layer("mrcnn_detection").output), ]) # In[] det_class_ids = mrcnn['detections'][0, :, 4].astype(np.int32) det_count = np.where(det_class_ids == 0)[0][0] det_class_ids = det_class_ids[:det_count] detections = mrcnn['detections'][0, :det_count] #print("{} detections: {}".format( #det_count, np.array(dataset.class_names)[det_class_ids])) #captions = ["{} {:.3f}".format(dataset.class_names[int(c)], s) if c > 0 else "" #for c, s in zip(detections[:, 4], detections[:, 5])] visualize.draw_boxes( image, refined_boxes=utils.denorm_boxes(detections[:, :4], image.shape[:2]), visibilities=[2] * len(detections),title="Detections", ax=get_ax()) # In[] from mrcnn import utils from mrcnn import visualize from mrcnn.visualize import display_images import mrcnn.model as modellib from mrcnn.model import log mrcnn = model.run_graph([image], [ ("proposals", model.keras_model.get_layer("ROI").output), ("probs", model.keras_model.get_layer("mrcnn_class").output), ("deltas", model.keras_model.get_layer("mrcnn_bbox").output), ("masks", model.keras_model.get_layer("mrcnn_mask").output), ("detections", model.keras_model.get_layer("mrcnn_detection").output), ]) # Get predictions of mask head mrcnn = model.run_graph([image], [ ("detections", model.keras_model.get_layer("mrcnn_detection").output), ("masks", model.keras_model.get_layer("mrcnn_mask").output), ]) # Get detection class IDs. Trim zero padding. det_class_ids = mrcnn['detections'][0, :, 4].astype(np.int32) det_count = np.where(det_class_ids == 0)[0][0] det_class_ids = det_class_ids[:det_count] # In[3]: det_boxes = utils.denorm_boxes(mrcnn["detections"][0, :, :4], image.shape[:2]) det_mask_specific = np.array([mrcnn["masks"][0, i, :, :, c] for i, c in enumerate(det_class_ids)]) det_masks = np.array([utils.unmold_mask(m, det_boxes[i], image.shape) for i, m in enumerate(det_mask_specific)]) log("det_mask_specific", det_mask_specific) log("det_masks", det_masks) # In[] det_masks = det_masks # In[] display_images(det_masks[:2] * 255, cmap="Blues", interpolation="none") # In[] hip2= det_masks[:1]*1 hip1 = det_masks[1:]*1 hip1 = hip1.reshape((860,1132,1)) hip2 = hip2.reshape((860,1132,1)) # In[] GT1 = np.multiply(hip1,image) # In[] GT2 = np.multiply(hip2,image) GT = GT1 + GT2 # In[] plt.imshow(GT) # In[] out = GT[250:550,400:800] # In[] plt.imshow(out) # In[] import matplotlib.pyplot as plt from scipy import misc import scipy #I = misc.imread('./cc_1.png') scipy.misc.imsave('C:/Users/adm/Mask_RCNN-master/634判1/a605.jpg', out) # In[] 0 # In[3]: display_images(det_masks[:4] * 255, cmap="Blues", interpolation="none") # In[] from mrcnn import utils from mrcnn import visualize from mrcnn.visualize import display_images import mrcnn.model as modellib from mrcnn.model import log display_images(det_mask_specific[:2] * 255, cmap="Blues", interpolation="none") # In[3]: #bb=det_mask_specific[:1]*255 #aa = det_mask_specific[1:] * 255 #a157 = np.concatenate((aa[0,:,2], bb[0,:,2])) # In[3]: aa=det_mask_specific[:1]*255 bb = det_mask_specific[1:] * 255 aa= aa.flatten() bb = bb.flatten() # In[3]: a1049 = np.concatenate((aa, bb)) # In[3]: dict = {"a1047":a1047, "a1048":a1048, "a1049":a1049} # In[3]: import pandas as pd data =
pd.DataFrame(dict)
pandas.DataFrame
import pandas as pd import numpy as np from typing import Tuple class DACT(object): def __init__(self, data: pd.DataFrame): """ Params: data (DataFrame) - pandas DataFrame with columns 'object_id', 'time', 'cluster_id' containing objects, timestamps, cluster belongings, features .. Note: The first three columns can have custom names as long as they represent the object identifier, the timestamp and the cluster identifier in the right order """ self._data = data.astype({data.columns.values[0]: str}) self._column_names = data.columns.values self._object_column_name = self._column_names[0] self._time_column_name = self._column_names[1] self._cluster_column_name = self._column_names[2] self._object_ids = self._data[self._object_column_name].unique() self._num_objects = len(self._object_ids) self._memberships = self.calc_membership_matrices() self._outlier_rating = None self._outlier_result = None def get_outliers(self, tau: float) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Parameters: tau (float) - threshold for outlier detection Returns: data (DataFrame) - pandas DataFrame with columns 'object_id', 'time', 'cluster_id', 'outlier' outlier_result (DataFrame) - pandas DataFrame with columns 'object_id', 'start_time', 'end_time', 'cluster_end_time', 'rating', 'distance' and 'outlier' """ self.calc_outlier_degree() return self.mark_outliers(tau) def calc_membership_matrices(self) -> dict: """ Returns: memberships (dict) - {<timestamp>: <membership_matrix>} containing the membership matrices for all timestamps """ memberships = {} timestamps = self._data[self._time_column_name].unique() for i in range(len(timestamps)): relevant_data = self._data[self._data[self._time_column_name] == timestamps[i]] memberships[timestamps[i]] = np.zeros((self._num_objects, self._num_objects)) cluster_ids = relevant_data[self._cluster_column_name].unique() for cid in cluster_ids: if cid >= 0: members = relevant_data[relevant_data[self._cluster_column_name] == cid][self._object_column_name].unique() for j in range(len(members)-1): index_j = np.argwhere(self._object_ids == members[j])[0][0] for k in range(j+1, len(members)): index_k = np.argwhere(self._object_ids == members[k])[0][0] memberships[timestamps[i]][index_j][index_k] = 1 memberships[timestamps[i]][index_k][index_j] = 1 return memberships def calc_cohesion_matrix(self, start_time: int, end_time: int) -> np.ndarray: """ Params: start_time (int) - time that should be considered as beginning end_time (int) - int representing the timestamp which should be rated up to Returns: cohesion_matrix (array) - array of shape (num_objects, num_objects) containing the cohesion values of all time series to each other for the considered time period """ timestamps = self._data[self._time_column_name].unique() timestamps = timestamps[np.where(timestamps >= start_time)] timestamps = timestamps[np.where(timestamps <= end_time)] cohesion_matrix = np.zeros((self._num_objects, self._num_objects)) for time in timestamps: cohesion_matrix = cohesion_matrix + self._memberships[time] return cohesion_matrix def calc_subsequence_ratings(self, start_time: int, end_time: int) -> pd.DataFrame: """ Params: start_time (int) - time that should be considered as beginning end_time (int) - int representing the timestamp which should be rated up to Returns: subsequence_ratings (pandas.DataFrame) - pandas DataFrame with columns 'object_id', 'start_time', 'end_time', 'rating' """ subsequence_ratings =
pd.DataFrame(columns=[self._object_column_name, 'start_time', 'end_time', 'rating'])
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import unittest import warnings import pandas as pd import numpy as np from qiime2 import Artifact from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn) from qiime2.core.testing.util import get_dummy_plugin, ReallyEqualMixin class TestInvalidMetadataConstruction(unittest.TestCase): def test_non_dataframe(self): with self.assertRaisesRegex( TypeError, 'Metadata constructor.*DataFrame.*not.*Series'): Metadata(pd.Series([1, 2, 3], name='col', index=pd.Index(['a', 'b', 'c'], name='id'))) def test_no_ids(self): with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({}, index=pd.Index([], name='id'))) with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({'column': []}, index=pd.Index([], name='id'))) def test_invalid_id_header(self): # default index name with self.assertRaisesRegex(ValueError, r'Index\.name.*None'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c']))) with self.assertRaisesRegex(ValueError, r'Index\.name.*my-id-header'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name='my-id-header'))) def test_non_str_id(self): with self.assertRaisesRegex( TypeError, 'non-string metadata ID.*type.*float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', np.nan, 'c'], name='id'))) def test_non_str_column_name(self): with self.assertRaisesRegex( TypeError, 'non-string metadata column name.*type.*' 'float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3], np.nan: [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_empty_id(self): with self.assertRaisesRegex( ValueError, 'empty metadata ID.*at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '', 'c'], name='id'))) def test_empty_column_name(self): with self.assertRaisesRegex( ValueError, 'empty metadata column name.*' 'at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3], '': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_pound_sign_id(self): with self.assertRaisesRegex( ValueError, "metadata ID.*begins with a pound sign.*'#b'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '#b', 'c'], name='id'))) def test_id_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata ID 'sample-id'.*conflicts.*reserved.*" "ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'sample-id', 'c'], name='id'))) def test_column_name_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata column name 'featureid'.*conflicts.*" "reserved.*ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3], 'featureid': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_duplicate_ids(self): with self.assertRaisesRegex(ValueError, "Metadata IDs.*unique.*'a'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'a'], name='id'))) def test_duplicate_column_names(self): data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] with self.assertRaisesRegex(ValueError, "Metadata column names.*unique.*'col1'"): Metadata(pd.DataFrame(data, columns=['col1', 'col2', 'col1'], index=pd.Index(['a', 'b', 'c'], name='id'))) def test_unsupported_column_dtype(self): with self.assertRaisesRegex( TypeError, "Metadata column 'col2'.*unsupported.*dtype.*bool"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [True, False, True]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_unsupported_type(self): with self.assertRaisesRegex( TypeError, "CategoricalMetadataColumn.*strings or missing " r"values.*42\.5.*float.*'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 42.5]}, index=
pd.Index(['a', 'b', 'c'], name='id')
pandas.Index
import math import datetime from typing import Dict, Union import pandas as pd from enum import Enum from decimal import Decimal from pandas.core.frame import DataFrame from pandas.core.indexes.datetimes import DatetimeIndex class TimeseriesInterval(str, Enum): HOURLY = ("H",) DAILY = ("D",) WEEKLY = ("W-SUN",) MONTHLY = "MS" class AggregateMethod(str, Enum): MEAN = ("mean",) SUM = ("sum",) FIRST = ("first",) LAST = ("last",) MEDIAN = ("median",) MIN = ("min",) MAX = ("max",) COUNT = "count" class NaInterpolationMethod(str, Enum): FORDWARD_FILL = ("ffill",) BACKWARD_FILL = ("bfill",) class ColumnType(str, Enum): int = ("int32",) str = ("str",) float = ("float64",) bigdecimal = ("float64",) class ColumnConfig: def __init__( self, name: str, aggregate_method: AggregateMethod, type:ColumnType=None, na_fill_method: NaInterpolationMethod = None, na_fill_value=None, alias:str=None ) -> None: self.name = name self.aggregate_method = aggregate_method self.na_fill_method = na_fill_method self.na_fill_value = na_fill_value self.type = type self.alias = alias pass def _to_df(data: Union[Dict, "list[Dict]", DataFrame]): return data if (isinstance(data, DataFrame)) else (pd.json_normalize(data)) def _last_day_of_month(any_day): next_month = any_day.replace(day=28) + datetime.timedelta(days=4) return next_month - datetime.timedelta(days=next_month.day) def beta_aggregate_timeseries( data: Union[Dict, "list[Dict]", DataFrame], time_column: str, interval: TimeseriesInterval, columns: "list[ColumnConfig]", start_timestamp: int = None, end_timestamp: int = None, ): df = _to_df(data) if df.index.name == time_column: df = df.reset_index() if len(df) == 0: return df tmin = df[time_column].min() tmax = df[time_column].max() if hasattr(tmin, "timestamp"): tmin = tmin.timestamp() if hasattr(tmax, "timestamp"): tmax = tmax.timestamp() if start_timestamp != None: tmin = start_timestamp if end_timestamp != None: tmax = end_timestamp unit = 's' if len(str(tmin)) == 13: tmin /= 1000 tmax /= 1000 unit = 'ms' if interval == TimeseriesInterval.HOURLY: tmin = pd.to_datetime(math.floor(tmin / 3600) * 3600, unit="s") tmax = pd.to_datetime(math.ceil(tmax / 3600) * 3600, unit="s") else: tmin = pd.to_datetime(math.floor(tmin / 86400) * 86400, unit="s") tmax = pd.to_datetime(math.ceil(tmax / 86400) * 86400, unit="s") if interval == TimeseriesInterval.WEEKLY: if tmin.weekday() != 0: tmin += pd.offsets.Day(6 - tmin.weekday()) if tmax.weekday() != 0: tmax += pd.offsets.Day(6 - tmax.weekday()) elif interval == TimeseriesInterval.MONTHLY: tmin = tmin.replace(day=1) tmax = _last_day_of_month(tmax) # print(f'time frame {tmin} - {tmax}') # print(df[time_column].dtype) if not isinstance(df[time_column], DatetimeIndex): df[time_column] =
pd.to_datetime(df[time_column], unit=unit)
pandas.to_datetime
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10, seconds=10).value, expected) self.assertEqual( Timedelta(days=10, milliseconds=10 * 1000).value, expected) self.assertEqual( Timedelta(days=10, microseconds=10 * 1000 * 1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days': 'D', 'seconds': 's', 'microseconds': 'us', 'milliseconds': 'ms', 'minutes': 'm', 'hours': 'h', 'weeks': 'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual( Timedelta(**{pykwarg: npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta( 82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta( 123072001000000))) # string conversion with/without leading zero # GH 9570 self.assertEqual(Timedelta('0:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('00:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('-1:00:00'), -timedelta(hours=1)) self.assertEqual(Timedelta('-01:00:00'), -timedelta(hours=1)) # more strings & abbrevs # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hr'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta( days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=1, microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=31, microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on # the days) self.assertRaises(ValueError, lambda: Timedelta('-10 days -1 h 1.5m 1s 3us')) # only leading neg signs are allowed self.assertRaises(ValueError, lambda: Timedelta('10 days -1 h 1.5m 1s 3us')) # no units specified self.assertRaises(ValueError, lambda: Timedelta('3.1415')) # invalid construction tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta", lambda: Timedelta()) tm.assertRaisesRegexp(ValueError, "unit abbreviation w/o a number", lambda: Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta from the passed " "arguments, allowed keywords are ", lambda: Timedelta(day=10)) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value), td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)), td) self.assertEqual(Timedelta(td._repr_base(format='all')), td) # floats expected = np.timedelta64( 10, 's').astype('m8[ns]').view('i8') + np.timedelta64( 500, 'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5, unit='s').value, expected) # nat self.assertEqual(Timedelta('').value, iNaT) self.assertEqual(Timedelta('nat').value, iNaT) self.assertEqual(Timedelta('NAT').value, iNaT) self.assertEqual(Timedelta(None).value, iNaT) self.assertEqual(
Timedelta(np.nan)
pandas.Timedelta
import logging import os import re import shutil from datetime import datetime from itertools import combinations from random import randint import numpy as np import pandas as pd import psutil import pytest from dask import dataframe as dd from distributed.utils_test import cluster from tqdm import tqdm import featuretools as ft from featuretools import EntitySet, Timedelta, calculate_feature_matrix, dfs from featuretools.computational_backends import utils from featuretools.computational_backends.calculate_feature_matrix import ( FEATURE_CALCULATION_PERCENTAGE, _chunk_dataframe_groups, _handle_chunk_size, scatter_warning ) from featuretools.computational_backends.utils import ( bin_cutoff_times, create_client_and_cluster, n_jobs_to_workers ) from featuretools.feature_base import ( AggregationFeature, DirectFeature, IdentityFeature ) from featuretools.primitives import ( Count, Max, Min, Percentile, Sum, TransformPrimitive ) from featuretools.tests.testing_utils import ( backward_path, get_mock_client_cluster, to_pandas ) from featuretools.utils.gen_utils import Library, import_or_none ks = import_or_none('databricks.koalas') def test_scatter_warning(caplog): logger = logging.getLogger('featuretools') match = "EntitySet was only scattered to {} out of {} workers" warning_message = match.format(1, 2) logger.propagate = True scatter_warning(1, 2) logger.propagate = False assert warning_message in caplog.text # TODO: final assert fails w/ Dask def test_calc_feature_matrix(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed dataframe result not ordered') times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) instances = range(17) cutoff_time = pd.DataFrame({'time': times, es['log'].index: instances}) labels = [False] * 3 + [True] * 2 + [False] * 9 + [True] + [False] * 2 property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, verbose=True) assert (feature_matrix[property_feature.get_name()] == labels).values.all() error_text = 'features must be a non-empty list of features' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix('features', es, cutoff_time=cutoff_time) with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([], es, cutoff_time=cutoff_time) with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([1, 2, 3], es, cutoff_time=cutoff_time) error_text = "cutoff_time times must be datetime type: try casting via "\ "pd\\.to_datetime\\(\\)" with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, instance_ids=range(17), cutoff_time=17) error_text = 'cutoff_time must be a single value or DataFrame' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, instance_ids=range(17), cutoff_time=times) cutoff_times_dup = pd.DataFrame({'time': [datetime(2018, 3, 1), datetime(2018, 3, 1)], es['log'].index: [1, 1]}) error_text = 'Duplicated rows in cutoff time dataframe.' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([property_feature], entityset=es, cutoff_time=cutoff_times_dup) cutoff_reordered = cutoff_time.iloc[[-1, 10, 1]] # 3 ids not ordered by cutoff time feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_reordered, verbose=True) assert all(feature_matrix.index == cutoff_reordered["id"].values) # fails with Dask and Koalas entitysets, cutoff time not reordered; cannot verify out of order # - can't tell if wrong/different all are false so can't check positional def test_cfm_warns_dask_cutoff_time(es): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) instances = range(17) cutoff_time = pd.DataFrame({'time': times, es['log'].index: instances}) cutoff_time = dd.from_pandas(cutoff_time, npartitions=4) property_feature = ft.Feature(es['log']['value']) > 10 match = "cutoff_time should be a Pandas DataFrame: " \ "computing cutoff_time, this may take a while" with pytest.warns(UserWarning, match=match): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) def test_cfm_compose(es, lt): property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=lt, verbose=True) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() def test_cfm_compose_approximate(es, lt): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('dask does not support approximate') property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=lt, approximate='1s', verbose=True) assert(type(feature_matrix) == pd.core.frame.DataFrame) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() def test_cfm_dask_compose(dask_es, lt): property_feature = ft.Feature(dask_es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], dask_es, cutoff_time=lt, verbose=True) feature_matrix = feature_matrix.compute() assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() # tests approximate, skip for dask/koalas def test_cfm_approximate_correct_ordering(): trips = { 'trip_id': [i for i in range(1000)], 'flight_time': [datetime(1998, 4, 2) for i in range(350)] + [datetime(1997, 4, 3) for i in range(650)], 'flight_id': [randint(1, 25) for i in range(1000)], 'trip_duration': [randint(1, 999) for i in range(1000)] } df = pd.DataFrame.from_dict(trips) es = EntitySet('flights') es.entity_from_dataframe("trips", dataframe=df, index="trip_id", time_index='flight_time') es.normalize_entity(base_entity_id="trips", new_entity_id="flights", index="flight_id", make_time_index=True) features = dfs(entityset=es, target_entity='trips', features_only=True) flight_features = [feature for feature in features if isinstance(feature, DirectFeature) and isinstance(feature.base_features[0], AggregationFeature)] property_feature = IdentityFeature(es['trips']['trip_id']) cutoff_time = pd.DataFrame.from_dict({'instance_id': df['trip_id'], 'time': df['flight_time']}) time_feature = IdentityFeature(es['trips']['flight_time']) feature_matrix = calculate_feature_matrix(flight_features + [property_feature, time_feature], es, cutoff_time_in_index=True, cutoff_time=cutoff_time) feature_matrix.index.names = ['instance', 'time'] assert(np.all(feature_matrix.reset_index('time').reset_index()[['instance', 'time']].values == feature_matrix[['trip_id', 'flight_time']].values)) feature_matrix_2 = calculate_feature_matrix(flight_features + [property_feature, time_feature], es, cutoff_time=cutoff_time, cutoff_time_in_index=True, approximate=Timedelta(2, 'd')) feature_matrix_2.index.names = ['instance', 'time'] assert(np.all(feature_matrix_2.reset_index('time').reset_index()[['instance', 'time']].values == feature_matrix_2[['trip_id', 'flight_time']].values)) for column in feature_matrix: for x, y in zip(feature_matrix[column], feature_matrix_2[column]): assert ((pd.isnull(x) and pd.isnull(y)) or (x == y)) # uses approximate, skip for dask/koalas entitysets def test_cfm_no_cutoff_time_index(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat4 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat4, pd_es['sessions']) cutoff_time = pd.DataFrame({ 'time': [datetime(2013, 4, 9, 10, 31, 19), datetime(2013, 4, 9, 11, 0, 0)], 'instance_id': [0, 2] }) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, cutoff_time_in_index=False, approximate=Timedelta(12, 's'), cutoff_time=cutoff_time) assert feature_matrix.index.name == 'id' assert feature_matrix.index.values.tolist() == [0, 2] assert feature_matrix[dfeat.get_name()].tolist() == [10, 10] assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] cutoff_time = pd.DataFrame({ 'time': [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)], 'instance_id': [0, 2] }) feature_matrix_2 = calculate_feature_matrix([dfeat, agg_feat], pd_es, cutoff_time_in_index=False, approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix_2.index.name == 'id' assert feature_matrix_2.index.tolist() == [0, 2] assert feature_matrix_2[dfeat.get_name()].tolist() == [7, 10] assert feature_matrix_2[agg_feat.get_name()].tolist() == [5, 1] # TODO: fails with dask entitysets # TODO: fails with koalas entitysets def test_cfm_duplicated_index_in_cutoff_time(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed results not ordered, missing duplicates') times = [datetime(2011, 4, 1), datetime(2011, 5, 1), datetime(2011, 4, 1), datetime(2011, 5, 1)] instances = [1, 1, 2, 2] property_feature = ft.Feature(es['log']['value']) > 10 cutoff_time = pd.DataFrame({'id': instances, 'time': times}, index=[1, 1, 1, 1]) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, chunk_size=1) assert (feature_matrix.shape[0] == cutoff_time.shape[0]) # TODO: fails with Dask, Koalas def test_saveprogress(es, tmpdir): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('saveprogress fails with distributed entitysets') times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) cutoff_time = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = ft.Feature(es['log']['value']) > 10 save_progress = str(tmpdir) fm_save = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, save_progress=save_progress) _, _, files = next(os.walk(save_progress)) files = [os.path.join(save_progress, file) for file in files] # there are 17 datetime files created above assert len(files) == 17 list_df = [] for file_ in files: df = pd.read_csv(file_, index_col="id", header=0) list_df.append(df) merged_df = pd.concat(list_df) merged_df.set_index(pd.DatetimeIndex(times), inplace=True, append=True) fm_no_save = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) assert np.all((merged_df.sort_index().values) == (fm_save.sort_index().values)) assert np.all((fm_no_save.sort_index().values) == (fm_save.sort_index().values)) assert np.all((fm_no_save.sort_index().values) == (merged_df.sort_index().values)) shutil.rmtree(save_progress) def test_cutoff_time_correctly(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 1, 2]}) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) labels = [10, 5, 0] assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_cutoff_time_binning(): cutoff_time = pd.DataFrame({ 'time': [ datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10, 1) ], 'instance_id': [1, 2, 3] }) binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(4, 'h')) labels = [datetime(2011, 4, 9, 12), datetime(2011, 4, 10, 8), datetime(2011, 4, 10, 12)] for i in binned_cutoff_times.index: assert binned_cutoff_times['time'][i] == labels[i] binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(25, 'h')) labels = [datetime(2011, 4, 8, 22), datetime(2011, 4, 9, 23), datetime(2011, 4, 9, 23)] for i in binned_cutoff_times.index: assert binned_cutoff_times['time'][i] == labels[i] error_text = "Unit is relative" with pytest.raises(ValueError, match=error_text): binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(1, 'mo')) def test_training_window_fails_dask(dask_es): property_feature = ft.Feature(dask_es['log']['id'], parent_entity=dask_es['customers'], primitive=Count) error_text = "Using training_window is not supported with Dask Entities" with pytest.raises(ValueError, match=error_text): calculate_feature_matrix([property_feature], dask_es, training_window='2 hours') def test_cutoff_time_columns_order(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] id_col_names = ['instance_id', es['customers'].index] time_col_names = ['time', es['customers'].time_index] for id_col in id_col_names: for time_col in time_col_names: cutoff_time = pd.DataFrame({'dummy_col_1': [1, 2, 3], id_col: [0, 1, 2], 'dummy_col_2': [True, False, False], time_col: times}) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) labels = [10, 5, 0] feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_cutoff_time_df_redundant_column_names(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] cutoff_time = pd.DataFrame({es['customers'].index: [0, 1, 2], 'instance_id': [0, 1, 2], 'dummy_col': [True, False, False], 'time': times}) err_msg = 'Cutoff time DataFrame cannot contain both a column named "instance_id" and a column' \ ' with the same name as the target entity index' with pytest.raises(AttributeError, match=err_msg): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) cutoff_time = pd.DataFrame({es['customers'].time_index: [0, 1, 2], 'instance_id': [0, 1, 2], 'dummy_col': [True, False, False], 'time': times}) err_msg = 'Cutoff time DataFrame cannot contain both a column named "time" and a column' \ ' with the same name as the target entity time index' with pytest.raises(AttributeError, match=err_msg): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) def test_training_window(pd_es): property_feature = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) top_level_agg = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) # make sure features that have a direct to a higher level agg # so we have multiple "filter eids" in get_pandas_data_slice, # and we go through the loop to pull data with a training_window param more than once dagg = DirectFeature(top_level_agg, pd_es['customers']) # for now, warns if last_time_index not present times = [datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 1, 2]}) warn_text = "Using training_window but last_time_index is not set on entity customers" with pytest.warns(UserWarning, match=warn_text): feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours') pd_es.add_last_time_indexes() error_text = 'Training window cannot be in observations' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([property_feature], pd_es, cutoff_time=cutoff_time, training_window=Timedelta(2, 'observations')) # Case1. include_cutoff_time = True feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=True) prop_values = [4, 5, 1] dagg_values = [3, 2, 1] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case2. include_cutoff_time = False feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=False) prop_values = [5, 5, 2] dagg_values = [3, 2, 1] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case3. include_cutoff_time = False with single cutoff time value feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=pd.to_datetime("2011-04-09 10:40:00"), training_window='9 minutes', include_cutoff_time=False) prop_values = [0, 4, 0] dagg_values = [3, 3, 3] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case4. include_cutoff_time = True with single cutoff time value feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=pd.to_datetime("2011-04-10 10:40:00"), training_window='2 days', include_cutoff_time=True) prop_values = [0, 10, 1] dagg_values = [3, 3, 3] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() def test_training_window_overlap(pd_es): pd_es.add_last_time_indexes() count_log = ft.Feature( base=pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count, ) cutoff_time = pd.DataFrame({ 'id': [0, 0], 'time': ['2011-04-09 10:30:00', '2011-04-09 10:40:00'], }).astype({'time': 'datetime64[ns]'}) # Case1. include_cutoff_time = True actual = calculate_feature_matrix( features=[count_log], entityset=pd_es, cutoff_time=cutoff_time, cutoff_time_in_index=True, training_window='10 minutes', include_cutoff_time=True, )['COUNT(log)'] np.testing.assert_array_equal(actual.values, [1, 9]) # Case2. include_cutoff_time = False actual = calculate_feature_matrix( features=[count_log], entityset=pd_es, cutoff_time=cutoff_time, cutoff_time_in_index=True, training_window='10 minutes', include_cutoff_time=False, )['COUNT(log)'] np.testing.assert_array_equal(actual.values, [0, 9]) def test_include_cutoff_time_without_training_window(es): es.add_last_time_indexes() count_log = ft.Feature( base=es['log']['id'], parent_entity=es['customers'], primitive=Count, ) cutoff_time = pd.DataFrame({ 'id': [0, 0], 'time': ['2011-04-09 10:30:00', '2011-04-09 10:31:00'], }).astype({'time': 'datetime64[ns]'}) # Case1. include_cutoff_time = True actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=cutoff_time, cutoff_time_in_index=True, include_cutoff_time=True, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [1, 6]) # Case2. include_cutoff_time = False actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=cutoff_time, cutoff_time_in_index=True, include_cutoff_time=False, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [0, 5]) # Case3. include_cutoff_time = True with single cutoff time value actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=pd.to_datetime("2011-04-09 10:31:00"), instance_ids=[0], cutoff_time_in_index=True, include_cutoff_time=True, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [6]) # Case4. include_cutoff_time = False with single cutoff time value actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=pd.to_datetime("2011-04-09 10:31:00"), instance_ids=[0], cutoff_time_in_index=True, include_cutoff_time=False, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [5]) def test_approximate_dfeat_of_agg_on_target_include_cutoff_time(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) cutoff_time = pd.DataFrame({'time': [datetime(2011, 4, 9, 10, 31, 19)], 'instance_id': [0]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat2, agg_feat], pd_es, approximate=Timedelta(20, 's'), cutoff_time=cutoff_time, include_cutoff_time=False) # binned cutoff_time will be datetime(2011, 4, 9, 10, 31, 0) and # log event 5 at datetime(2011, 4, 9, 10, 31, 0) will be # excluded due to approximate cutoff time point assert feature_matrix[dfeat.get_name()].tolist() == [5] assert feature_matrix[agg_feat.get_name()].tolist() == [5] feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(20, 's'), cutoff_time=cutoff_time, include_cutoff_time=True) # binned cutoff_time will be datetime(2011, 4, 9, 10, 31, 0) and # log event 5 at datetime(2011, 4, 9, 10, 31, 0) will be # included due to approximate cutoff time point assert feature_matrix[dfeat.get_name()].tolist() == [6] assert feature_matrix[agg_feat.get_name()].tolist() == [5] def test_training_window_recent_time_index(pd_es): # customer with no sessions row = { 'id': [3], 'age': [73], u'région_id': ['United States'], 'cohort': [1], 'cancel_reason': ["Lost interest"], 'loves_ice_cream': [True], 'favorite_quote': ["Don't look back. Something might be gaining on you."], 'signup_date': [datetime(2011, 4, 10)], 'upgrade_date': [datetime(2011, 4, 12)], 'cancel_date': [datetime(2011, 5, 13)], 'date_of_birth': [datetime(1938, 2, 1)], 'engagement_level': [2], } to_add_df = pd.DataFrame(row) to_add_df.index = range(3, 4) # have to convert category to int in order to concat old_df = pd_es['customers'].df old_df.index = old_df.index.astype("int") old_df["id"] = old_df["id"].astype(int) df = pd.concat([old_df, to_add_df], sort=True) # convert back after df.index = df.index.astype("category") df["id"] = df["id"].astype("category") pd_es['customers'].update_data(df=df, recalculate_last_time_indexes=False) pd_es.add_last_time_indexes() property_feature = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) top_level_agg = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dagg = DirectFeature(top_level_agg, pd_es['customers']) instance_ids = [0, 1, 2, 3] times = [datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10, 1), datetime(2011, 4, 10, 1, 59, 59)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': instance_ids}) # Case1. include_cutoff_time = True feature_matrix = calculate_feature_matrix( [property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=True, ) prop_values = [4, 5, 1, 0] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() dagg_values = [3, 2, 1, 3] feature_matrix.sort_index(inplace=True) assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case2. include_cutoff_time = False feature_matrix = calculate_feature_matrix( [property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=False, ) prop_values = [5, 5, 1, 0] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() dagg_values = [3, 2, 1, 3] feature_matrix.sort_index(inplace=True) assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # TODO: add test to fail w/ koalas def test_approximate_fails_dask(dask_es): agg_feat = ft.Feature(dask_es['log']['id'], parent_entity=dask_es['sessions'], primitive=Count) error_text = "Using approximate is not supported with Dask Entities" with pytest.raises(ValueError, match=error_text): calculate_feature_matrix([agg_feat], dask_es, approximate=Timedelta(1, 'week')) def test_approximate_multiple_instances_per_cutoff_time(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(1, 'week'), cutoff_time=cutoff_time) assert feature_matrix.shape[0] == 2 assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approximate_with_multiple_paths(pd_diamond_es): pd_es = pd_diamond_es path = backward_path(pd_es, ['regions', 'customers', 'transactions']) agg_feat = ft.AggregationFeature(pd_es['transactions']['id'], parent_entity=pd_es['regions'], relationship_path=path, primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat], pd_es, approximate=Timedelta(1, 'week'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [6, 2] def test_approximate_dfeat_of_agg_on_target(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, instance_ids=[0, 2], approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [7, 10] assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approximate_dfeat_of_need_all_values(pd_es): p = ft.Feature(pd_es['log']['value'], primitive=Percentile) agg_feat = ft.Feature(p, parent_entity=pd_es['sessions'], primitive=Sum) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) log_df = pd_es['log'].df instances = [0, 2] cutoffs = [pd.Timestamp('2011-04-09 10:31:19'), pd.Timestamp('2011-04-09 11:00:00')] approxes = [pd.Timestamp('2011-04-09 10:31:10'), pd.Timestamp('2011-04-09 11:00:00')] true_vals = [] true_vals_approx = [] for instance, cutoff, approx in zip(instances, cutoffs, approxes): log_data_cutoff = log_df[log_df['datetime'] < cutoff] log_data_cutoff['percentile'] = log_data_cutoff['value'].rank(pct=True) true_agg = log_data_cutoff.loc[log_data_cutoff['session_id'] == instance, 'percentile'].fillna(0).sum() true_vals.append(round(true_agg, 3)) log_data_approx = log_df[log_df['datetime'] < approx] log_data_approx['percentile'] = log_data_approx['value'].rank(pct=True) true_agg_approx = log_data_approx.loc[log_data_approx['session_id'].isin([0, 1, 2]), 'percentile'].fillna(0).sum() true_vals_approx.append(round(true_agg_approx, 3)) lapprox = [round(x, 3) for x in feature_matrix[dfeat.get_name()].tolist()] test_list = [round(x, 3) for x in feature_matrix[agg_feat.get_name()].tolist()] assert lapprox == true_vals_approx assert test_list == true_vals def test_uses_full_entity_feat_of_approximate(pd_es): agg_feat = ft.Feature(pd_es['log']['value'], parent_entity=pd_es['sessions'], primitive=Sum) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) agg_feat3 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Max) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) dfeat2 = DirectFeature(agg_feat3, pd_es['sessions']) p = ft.Feature(dfeat, primitive=Percentile) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) # only dfeat2 should be approximated # because Percentile needs all values feature_matrix_only_dfeat2 = calculate_feature_matrix( [dfeat2], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) assert feature_matrix_only_dfeat2[dfeat2.get_name()].tolist() == [50, 50] feature_matrix_approx = calculate_feature_matrix( [p, dfeat, dfeat2, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) assert feature_matrix_only_dfeat2[dfeat2.get_name()].tolist() == feature_matrix_approx[dfeat2.get_name()].tolist() feature_matrix_small_approx = calculate_feature_matrix( [p, dfeat, dfeat2, agg_feat], pd_es, approximate=Timedelta(10, 'ms'), cutoff_time_in_index=True, cutoff_time=cutoff_time) feature_matrix_no_approx = calculate_feature_matrix( [p, dfeat, dfeat2, agg_feat], pd_es, cutoff_time_in_index=True, cutoff_time=cutoff_time) for f in [p, dfeat, agg_feat]: for fm1, fm2 in combinations([feature_matrix_approx, feature_matrix_small_approx, feature_matrix_no_approx], 2): assert fm1[f.get_name()].tolist() == fm2[f.get_name()].tolist() def test_approximate_dfeat_of_dfeat_of_agg_on_target(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(ft.Feature(agg_feat2, pd_es["sessions"]), pd_es['log']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [7, 10] def test_empty_path_approximate_full(pd_es): pd_es['sessions'].df['customer_id'] = pd.Series([np.nan, np.nan, np.nan, 1, 1, 2], dtype="category") agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) vals1 = feature_matrix[dfeat.get_name()].tolist() assert (vals1[0] == 0) assert (vals1[1] == 0) assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] # todo: do we need to test this situation? # def test_empty_path_approximate_partial(pd_es): # pd_es = copy.deepcopy(pd_es) # pd_es['sessions'].df['customer_id'] = pd.Categorical([0, 0, np.nan, 1, 1, 2]) # agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) # agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) # dfeat = DirectFeature(agg_feat2, pd_es['sessions']) # times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] # cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) # feature_matrix = calculate_feature_matrix([dfeat, agg_feat], # pd_es, # approximate=Timedelta(10, 's'), # cutoff_time=cutoff_time) # vals1 = feature_matrix[dfeat.get_name()].tolist() # assert vals1[0] == 7 # assert np.isnan(vals1[1]) # assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approx_base_feature_is_also_first_class_feature(pd_es): log_to_products = DirectFeature(pd_es['products']['rating'], pd_es['log']) # This should still be computed properly agg_feat = ft.Feature(log_to_products, parent_entity=pd_es['sessions'], primitive=Min) customer_agg_feat = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) # This is to be approximated sess_to_cust = DirectFeature(customer_agg_feat, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([sess_to_cust, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) vals1 = feature_matrix[sess_to_cust.get_name()].tolist() assert vals1 == [8.5, 7] vals2 = feature_matrix[agg_feat.get_name()].tolist() assert vals2 == [4, 1.5] def test_approximate_time_split_returns_the_same_result(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:07:30'), pd.Timestamp('2011-04-09 10:07:40')], 'instance_id': [0, 0]}) feature_matrix_at_once = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_df) divided_matrices = [] separate_cutoff = [cutoff_df.iloc[0:1], cutoff_df.iloc[1:]] # Make sure indexes are different # Not that this step is unecessary and done to showcase the issue here separate_cutoff[0].index = [0] separate_cutoff[1].index = [1] for ct in separate_cutoff: fm = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=ct) divided_matrices.append(fm) feature_matrix_from_split = pd.concat(divided_matrices) assert feature_matrix_from_split.shape == feature_matrix_at_once.shape for i1, i2 in zip(feature_matrix_at_once.index, feature_matrix_from_split.index): assert (pd.isnull(i1) and pd.isnull(i2)) or (i1 == i2) for c in feature_matrix_from_split: for i1, i2 in zip(feature_matrix_at_once[c], feature_matrix_from_split[c]): assert (pd.isnull(i1) and pd.isnull(i2)) or (i1 == i2) def test_approximate_returns_correct_empty_default_values(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['sessions']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-08 11:00:00'), pd.Timestamp('2011-04-09 11:00:00')], 'instance_id': [0, 0]}) fm = calculate_feature_matrix([dfeat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_df) assert fm[dfeat.get_name()].tolist() == [0, 10] # def test_approximate_deep_recurse(pd_es): # pd_es = pd_es # agg_feat = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) # dfeat1 = DirectFeature(agg_feat, pd_es['sessions']) # agg_feat2 = Sum(dfeat1, pd_es['customers']) # dfeat2 = DirectFeature(agg_feat2, pd_es['sessions']) # agg_feat3 = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['products'], primitive=Count) # dfeat3 = DirectFeature(agg_feat3, pd_es['log']) # agg_feat4 = Sum(dfeat3, pd_es['sessions']) # feature_matrix = calculate_feature_matrix([dfeat2, agg_feat4], # pd_es, # instance_ids=[0, 2], # approximate=Timedelta(10, 's'), # cutoff_time=[datetime(2011, 4, 9, 10, 31, 19), # datetime(2011, 4, 9, 11, 0, 0)]) # # dfeat2 and agg_feat4 should both be approximated def test_approximate_child_aggs_handled_correctly(pd_es): agg_feat = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) agg_feat_2 = ft.Feature(pd_es['log']['value'], parent_entity=pd_es['customers'], primitive=Sum) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-08 10:30:00'), pd.Timestamp('2011-04-09 10:30:06')], 'instance_id': [0, 0]}) fm = calculate_feature_matrix([dfeat], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_df) fm_2 = calculate_feature_matrix([dfeat, agg_feat_2], pd_es, approximate=Timedelta(10, 's'), cutoff_time=cutoff_df) assert fm[dfeat.get_name()].tolist() == [2, 3] assert fm_2[agg_feat_2.get_name()].tolist() == [0, 5] def test_cutoff_time_naming(es): agg_feat = ft.Feature(es['customers']['id'], parent_entity=es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, es['customers']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-08 10:30:00'), pd.Timestamp('2011-04-09 10:30:06')], 'instance_id': [0, 0]}) cutoff_df_index_name = cutoff_df.rename(columns={"instance_id": "id"}) cutoff_df_wrong_index_name = cutoff_df.rename(columns={"instance_id": "wrong_id"}) cutoff_df_wrong_time_name = cutoff_df.rename(columns={"time": "cutoff_time"}) fm1 = calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df) fm1 = to_pandas(fm1, index='id', sort_index=True) fm2 = calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df_index_name) fm2 = to_pandas(fm2, index='id', sort_index=True) assert all((fm1 == fm2.values).values) error_text = 'Cutoff time DataFrame must contain a column with either the same name' \ ' as the target entity index or a column named "instance_id"' with pytest.raises(AttributeError, match=error_text): calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df_wrong_index_name) time_error_text = 'Cutoff time DataFrame must contain a column with either the same name' \ ' as the target entity time_index or a column named "time"' with pytest.raises(AttributeError, match=time_error_text): calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df_wrong_time_name) # TODO: order doesn't match, but output matches def test_cutoff_time_extra_columns(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed result not ordered') agg_feat = ft.Feature(es['customers']['id'], parent_entity=es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, es['customers']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:30:06'), pd.Timestamp('2011-04-09 10:30:03'), pd.Timestamp('2011-04-08 10:30:00')], 'instance_id': [0, 1, 0], 'label': [True, True, False]}, columns=['time', 'instance_id', 'label']) fm = calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df) # check column was added to end of matrix assert 'label' == fm.columns[-1] assert (fm['label'].values == cutoff_df['label'].values).all() def test_cutoff_time_extra_columns_approximate(pd_es): agg_feat = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:30:06'), pd.Timestamp('2011-04-09 10:30:03'), pd.Timestamp('2011-04-08 10:30:00')], 'instance_id': [0, 1, 0], 'label': [True, True, False]}, columns=['time', 'instance_id', 'label']) fm = calculate_feature_matrix([dfeat], pd_es, cutoff_time=cutoff_df, approximate="2 days") # check column was added to end of matrix assert 'label' in fm.columns assert (fm['label'].values == cutoff_df['label'].values).all() def test_cutoff_time_extra_columns_same_name(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed result not ordered') agg_feat = ft.Feature(es['customers']['id'], parent_entity=es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, es['customers']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:30:06'), pd.Timestamp('2011-04-09 10:30:03'), pd.Timestamp('2011-04-08 10:30:00')], 'instance_id': [0, 1, 0], 'régions.COUNT(customers)': [False, False, True]}, columns=['time', 'instance_id', 'régions.COUNT(customers)']) fm = calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df) assert (fm['régions.COUNT(customers)'].values == cutoff_df['régions.COUNT(customers)'].values).all() def test_cutoff_time_extra_columns_same_name_approximate(pd_es): agg_feat = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:30:06'), pd.Timestamp('2011-04-09 10:30:03'), pd.Timestamp('2011-04-08 10:30:00')], 'instance_id': [0, 1, 0], 'régions.COUNT(customers)': [False, False, True]}, columns=['time', 'instance_id', 'régions.COUNT(customers)']) fm = calculate_feature_matrix([dfeat], pd_es, cutoff_time=cutoff_df, approximate="2 days") assert (fm['régions.COUNT(customers)'].values == cutoff_df['régions.COUNT(customers)'].values).all() def test_instances_after_cutoff_time_removed(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) cutoff_time = datetime(2011, 4, 8) fm = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, cutoff_time_in_index=True) fm = to_pandas(fm, index='id', sort_index=True) actual_ids = [id for (id, _) in fm.index] if isinstance(fm.index, pd.MultiIndex) else fm.index # Customer with id 1 should be removed assert set(actual_ids) == set([2, 0]) # TODO: Dask and Koalas do not keep instance_id after cutoff def test_instances_with_id_kept_after_cutoff(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed result not ordered, missing extra instances') property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) cutoff_time = datetime(2011, 4, 8) fm = calculate_feature_matrix([property_feature], es, instance_ids=[0, 1, 2], cutoff_time=cutoff_time, cutoff_time_in_index=True) # Customer #1 is after cutoff, but since it is included in instance_ids it # should be kept. actual_ids = [id for (id, _) in fm.index] if isinstance(fm.index, pd.MultiIndex) else fm.index assert set(actual_ids) == set([0, 1, 2]) # TODO: Fails with Dask # TODO: Fails with Koalas def test_cfm_returns_original_time_indexes(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed result not ordered, indexes are lost due to not multiindexing') agg_feat = ft.Feature(es['customers']['id'], parent_entity=es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, es['customers']) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:30:06'), pd.Timestamp('2011-04-09 10:30:03'), pd.Timestamp('2011-04-08 10:30:00')], 'instance_id': [0, 1, 0]}) fm = calculate_feature_matrix([dfeat], es, cutoff_time=cutoff_df, cutoff_time_in_index=True) instance_level_vals = fm.index.get_level_values(0).values time_level_vals = fm.index.get_level_values(1).values assert (instance_level_vals == cutoff_df['instance_id'].values).all() assert (time_level_vals == cutoff_df['time'].values).all() def test_cfm_returns_original_time_indexes_approximate(pd_es): agg_feat = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) agg_feat_2 = ft.Feature(pd_es['sessions']['id'], parent_entity=pd_es['customers'], primitive=Count) cutoff_df = pd.DataFrame({'time': [pd.Timestamp('2011-04-09 10:30:06'), pd.Timestamp('2011-04-09 10:30:03'), pd.Timestamp('2011-04-08 10:30:00')], 'instance_id': [0, 1, 0]}) # approximate, in different windows, no unapproximated aggs fm = calculate_feature_matrix([dfeat], pd_es, cutoff_time=cutoff_df, cutoff_time_in_index=True, approximate="1 m") instance_level_vals = fm.index.get_level_values(0).values time_level_vals = fm.index.get_level_values(1).values assert (instance_level_vals == cutoff_df['instance_id'].values).all() assert (time_level_vals == cutoff_df['time'].values).all() # approximate, in different windows, unapproximated aggs fm = calculate_feature_matrix([dfeat, agg_feat_2], pd_es, cutoff_time=cutoff_df, cutoff_time_in_index=True, approximate="1 m") instance_level_vals = fm.index.get_level_values(0).values time_level_vals = fm.index.get_level_values(1).values assert (instance_level_vals == cutoff_df['instance_id'].values).all() assert (time_level_vals == cutoff_df['time'].values).all() # approximate, in same window, no unapproximated aggs fm2 = calculate_feature_matrix([dfeat], pd_es, cutoff_time=cutoff_df, cutoff_time_in_index=True, approximate="2 d") instance_level_vals = fm2.index.get_level_values(0).values time_level_vals = fm2.index.get_level_values(1).values assert (instance_level_vals == cutoff_df['instance_id'].values).all() assert (time_level_vals == cutoff_df['time'].values).all() # approximate, in same window, unapproximated aggs fm3 = calculate_feature_matrix([dfeat, agg_feat_2], pd_es, cutoff_time=cutoff_df, cutoff_time_in_index=True, approximate="2 d") instance_level_vals = fm3.index.get_level_values(0).values time_level_vals = fm3.index.get_level_values(1).values assert (instance_level_vals == cutoff_df['instance_id'].values).all() assert (time_level_vals == cutoff_df['time'].values).all() def test_dask_kwargs(pd_es): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) labels = [False] * 3 + [True] * 2 + [False] * 9 + [True] + [False] * 2 cutoff_time = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = IdentityFeature(pd_es['log']['value']) > 10 with cluster() as (scheduler, [a, b]): dkwargs = {'cluster': scheduler['address']} feature_matrix = calculate_feature_matrix([property_feature], entityset=pd_es, cutoff_time=cutoff_time, verbose=True, chunk_size=.13, dask_kwargs=dkwargs, approximate='1 hour') assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_dask_persisted_es(pd_es, capsys): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) labels = [False] * 3 + [True] * 2 + [False] * 9 + [True] + [False] * 2 cutoff_time = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = IdentityFeature(pd_es['log']['value']) > 10 with cluster() as (scheduler, [a, b]): dkwargs = {'cluster': scheduler['address']} feature_matrix = calculate_feature_matrix([property_feature], entityset=pd_es, cutoff_time=cutoff_time, verbose=True, chunk_size=.13, dask_kwargs=dkwargs, approximate='1 hour') assert (feature_matrix[property_feature.get_name()] == labels).values.all() feature_matrix = calculate_feature_matrix([property_feature], entityset=pd_es, cutoff_time=cutoff_time, verbose=True, chunk_size=.13, dask_kwargs=dkwargs, approximate='1 hour') captured = capsys.readouterr() assert "Using EntitySet persisted on the cluster as dataset " in captured[0] assert (feature_matrix[property_feature.get_name()] == labels).values.all() class TestCreateClientAndCluster(object): def test_user_cluster_as_string(self, monkeypatch): monkeypatch.setattr(utils, "get_client_cluster", get_mock_client_cluster) # cluster in dask_kwargs case client, cluster = create_client_and_cluster(n_jobs=2, dask_kwargs={'cluster': 'tcp://127.0.0.1:54321'}, entityset_size=1) assert cluster == 'tcp://127.0.0.1:54321' def test_cluster_creation(self, monkeypatch): total_memory = psutil.virtual_memory().total monkeypatch.setattr(utils, "get_client_cluster", get_mock_client_cluster) try: cpus = len(psutil.Process().cpu_affinity()) except AttributeError: cpus = psutil.cpu_count() # jobs < tasks case client, cluster = create_client_and_cluster(n_jobs=2, dask_kwargs={}, entityset_size=1) num_workers = min(cpus, 2) memory_limit = int(total_memory / float(num_workers)) assert cluster == (min(cpus, 2), 1, None, memory_limit) # jobs > tasks case match = r'.*workers requested, but only .* workers created' with pytest.warns(UserWarning, match=match) as record: client, cluster = create_client_and_cluster(n_jobs=1000, dask_kwargs={'diagnostics_port': 8789}, entityset_size=1) assert len(record) == 1 num_workers = cpus memory_limit = int(total_memory / float(num_workers)) assert cluster == (num_workers, 1, 8789, memory_limit) # dask_kwargs sets memory limit client, cluster = create_client_and_cluster(n_jobs=2, dask_kwargs={'diagnostics_port': 8789, 'memory_limit': 1000}, entityset_size=1) num_workers = min(cpus, 2) assert cluster == (num_workers, 1, 8789, 1000) def test_not_enough_memory(self, monkeypatch): total_memory = psutil.virtual_memory().total monkeypatch.setattr(utils, "get_client_cluster", get_mock_client_cluster) # errors if not enough memory for each worker to store the entityset with pytest.raises(ValueError, match=''): create_client_and_cluster(n_jobs=1, dask_kwargs={}, entityset_size=total_memory * 2) # does not error even if worker memory is less than 2x entityset size create_client_and_cluster(n_jobs=1, dask_kwargs={}, entityset_size=total_memory * .75) def test_parallel_failure_raises_correct_error(pd_es): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) cutoff_time = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = IdentityFeature(pd_es['log']['value']) > 10 error_text = 'Need at least one worker' with pytest.raises(AssertionError, match=error_text): calculate_feature_matrix([property_feature], entityset=pd_es, cutoff_time=cutoff_time, verbose=True, chunk_size=.13, n_jobs=0, approximate='1 hour') def test_warning_not_enough_chunks(pd_es, capsys): property_feature = IdentityFeature(pd_es['log']['value']) > 10 with cluster(nworkers=3) as (scheduler, [a, b, c]): dkwargs = {'cluster': scheduler['address']} calculate_feature_matrix([property_feature], entityset=pd_es, chunk_size=.5, verbose=True, dask_kwargs=dkwargs) captured = capsys.readouterr() pattern = r'Fewer chunks \([0-9]+\), than workers \([0-9]+\) consider reducing the chunk size' assert re.search(pattern, captured.out) is not None def test_n_jobs(): try: cpus = len(psutil.Process().cpu_affinity()) except AttributeError: cpus = psutil.cpu_count() assert n_jobs_to_workers(1) == 1 assert n_jobs_to_workers(-1) == cpus assert n_jobs_to_workers(cpus) == cpus assert n_jobs_to_workers((cpus + 1) * -1) == 1 if cpus > 1: assert n_jobs_to_workers(-2) == cpus - 1 error_text = 'Need at least one worker' with pytest.raises(AssertionError, match=error_text): n_jobs_to_workers(0) # TODO: add dask version of int_es def test_integer_time_index(int_es): times = list(range(8, 18)) + list(range(19, 26)) labels = [False] * 3 + [True] * 2 + [False] * 9 + [True] + [False] * 2 cutoff_df = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = IdentityFeature(int_es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df, cutoff_time_in_index=True) time_level_vals = feature_matrix.index.get_level_values(1).values sorted_df = cutoff_df.sort_values(['time', 'instance_id'], kind='mergesort') assert (time_level_vals == sorted_df['time'].values).all() assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_integer_time_index_single_cutoff_value(int_es): labels = [False] * 3 + [True] * 2 + [False] * 4 property_feature = IdentityFeature(int_es['log']['value']) > 10 cutoff_times = [16, pd.Series([16])[0], 16.0, pd.Series([16.0])[0]] for cutoff_time in cutoff_times: feature_matrix = calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_time, cutoff_time_in_index=True) time_level_vals = feature_matrix.index.get_level_values(1).values assert (time_level_vals == [16] * 9).all() assert (feature_matrix[property_feature.get_name()] == labels).values.all() # TODO: add dask version of int_es def test_integer_time_index_datetime_cutoffs(int_es): times = [datetime.now()] * 17 cutoff_df = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = IdentityFeature(int_es['log']['value']) > 10 error_text = "cutoff_time times must be numeric: try casting via pd\\.to_numeric\\(\\)" with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df, cutoff_time_in_index=True) # TODO: add Dask version of int_es def test_integer_time_index_passes_extra_columns(int_es): times = list(range(8, 18)) + list(range(19, 23)) + [25, 24, 23] labels = [False] * 3 + [True] * 2 + [False] * 9 + [False] * 2 + [True] instances = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 15, 14] cutoff_df = pd.DataFrame({'time': times, 'instance_id': instances, 'labels': labels}) cutoff_df = cutoff_df[['time', 'instance_id', 'labels']] property_feature = IdentityFeature(int_es['log']['value']) > 10 fm = calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df, cutoff_time_in_index=True) assert (fm[property_feature.get_name()] == fm['labels']).all() # TODO: add Dask version of int_es def test_integer_time_index_mixed_cutoff(int_es): times_dt = list(range(8, 17)) + [datetime(2011, 1, 1), 19, 20, 21, 22, 25, 24, 23] labels = [False] * 3 + [True] * 2 + [False] * 9 + [False] * 2 + [True] instances = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 15, 14] cutoff_df = pd.DataFrame({'time': times_dt, 'instance_id': instances, 'labels': labels}) cutoff_df = cutoff_df[['time', 'instance_id', 'labels']] property_feature = IdentityFeature(int_es['log']['value']) > 10 error_text = 'cutoff_time times must be.*try casting via.*' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df) times_str = list(range(8, 17)) + ["foobar", 19, 20, 21, 22, 25, 24, 23] cutoff_df['time'] = times_str with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df) times_date_str = list(range(8, 17)) + ['2018-04-02', 19, 20, 21, 22, 25, 24, 23] cutoff_df['time'] = times_date_str with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df) times_int_str = [0, 1, 2, 3, 4, 5, '6', 7, 8, 9, 9, 10, 11, 12, 15, 14, 13] times_int_str = list(range(8, 17)) + ['17', 19, 20, 21, 22, 25, 24, 23] cutoff_df['time'] = times_int_str # calculate_feature_matrix should convert time column to ints successfully here with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], int_es, cutoff_time=cutoff_df) def test_datetime_index_mixed_cutoff(es): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [17] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) labels = [False] * 3 + [True] * 2 + [False] * 9 + [False] * 2 + [True] instances = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 15, 14] cutoff_df = pd.DataFrame({'time': times, 'instance_id': instances, 'labels': labels}) cutoff_df = cutoff_df[['time', 'instance_id', 'labels']] property_feature = IdentityFeature(es['log']['value']) > 10 error_text = 'cutoff_time times must be.*try casting via.*' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_df) times[9] = "foobar" cutoff_df['time'] = times with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_df) cutoff_df['time'].iloc[9] = '2018-04-02 18:50:45.453216' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_df) times[9] = '17' cutoff_df['time'] = times with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_df) def test_string_time_values_in_cutoff_time(es): times = ['2011-04-09 10:31:27', '2011-04-09 10:30:18'] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 0]}) agg_feature = ft.Feature(es['log']['value'], parent_entity=es['customers'], primitive=Sum) error_text = 'cutoff_time times must be.*try casting via.*' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([agg_feature], es, cutoff_time=cutoff_time) # TODO: Dask version fails (feature matrix is empty) # TODO: Koalas version fails (koalas groupby agg doesn't support custom functions) def test_no_data_for_cutoff_time(mock_customer): if not all(isinstance(entity.df, pd.DataFrame) for entity in mock_customer.entities): pytest.xfail("Dask fails because returned feature matrix is empty; Koalas doesn't support custom agg functions") es = mock_customer cutoff_times = pd.DataFrame({"customer_id": [4], "time": pd.Timestamp('2011-04-08 20:08:13')}) trans_per_session = ft.Feature(es["transactions"]["transaction_id"], parent_entity=es["sessions"], primitive=Count) trans_per_customer = ft.Feature(es["transactions"]["transaction_id"], parent_entity=es["customers"], primitive=Count) features = [trans_per_customer, ft.Feature(trans_per_session, parent_entity=es["customers"], primitive=Max)] fm = calculate_feature_matrix(features, entityset=es, cutoff_time=cutoff_times) # due to default values for each primitive # count will be 0, but max will nan np.testing.assert_array_equal(fm.values, [[0, np.nan]]) # adding missing instances not supported in Dask or Koalas def test_instances_not_in_data(pd_es): last_instance = max(pd_es['log'].df.index.values) instances = list(range(last_instance + 1, last_instance + 11)) identity_feature = IdentityFeature(pd_es['log']['value']) property_feature = identity_feature > 10 agg_feat = AggregationFeature(pd_es['log']['value'], parent_entity=pd_es["sessions"], primitive=Max) direct_feature = DirectFeature(agg_feat, pd_es["log"]) features = [identity_feature, property_feature, direct_feature] fm = calculate_feature_matrix(features, entityset=pd_es, instance_ids=instances) assert all(fm.index.values == instances) for column in fm.columns: assert fm[column].isnull().all() fm = calculate_feature_matrix(features, entityset=pd_es, instance_ids=instances, approximate="730 days") assert all(fm.index.values == instances) for column in fm.columns: assert fm[column].isnull().all() def test_some_instances_not_in_data(pd_es): a_time = datetime(2011, 4, 10, 10, 41, 9) # only valid data b_time = datetime(2011, 4, 10, 11, 10, 5) # some missing data c_time = datetime(2011, 4, 10, 12, 0, 0) # all missing data times = [a_time, b_time, a_time, a_time, b_time, b_time] + [c_time] * 4 cutoff_time = pd.DataFrame({"instance_id": list(range(12, 22)), "time": times}) identity_feature = IdentityFeature(pd_es['log']['value']) property_feature = identity_feature > 10 agg_feat = AggregationFeature(pd_es['log']['value'], parent_entity=pd_es["sessions"], primitive=Max) direct_feature = DirectFeature(agg_feat, pd_es["log"]) features = [identity_feature, property_feature, direct_feature] fm = calculate_feature_matrix(features, entityset=pd_es, cutoff_time=cutoff_time) ifeat_answer = [0, 7, 14, np.nan] + [np.nan] * 6 prop_answer = [0, 0, 1, np.nan, 0] + [np.nan] * 5 dfeat_answer = [14, 14, 14, np.nan] + [np.nan] * 6 assert all(fm.index.values == cutoff_time["instance_id"].values) for x, y in zip(fm.columns, [ifeat_answer, prop_answer, dfeat_answer]): np.testing.assert_array_equal(fm[x], y) fm = calculate_feature_matrix(features, entityset=pd_es, cutoff_time=cutoff_time, approximate="5 seconds") dfeat_answer[0] = 7 # approximate calculated before 14 appears dfeat_answer[2] = 7 # approximate calculated before 14 appears prop_answer[3] = 0 # no_unapproximated_aggs code ignores cutoff time assert all(fm.index.values == cutoff_time["instance_id"].values) for x, y in zip(fm.columns, [ifeat_answer, prop_answer, dfeat_answer]): np.testing.assert_array_equal(fm[x], y) def test_missing_instances_with_categorical_index(pd_es): instance_ids = [0, 1, 3, 2] features = ft.dfs(entityset=pd_es, target_entity='customers', features_only=True) fm = calculate_feature_matrix(entityset=pd_es, features=features, instance_ids=instance_ids) assert all(fm.index.values == instance_ids) assert isinstance(fm.index, pd.CategoricalIndex) def test_handle_chunk_size(): total_size = 100 # user provides no chunk size assert _handle_chunk_size(None, total_size) is None # user provides fractional size assert _handle_chunk_size(.1, total_size) == total_size * .1 assert _handle_chunk_size(.001, total_size) == 1 # rounds up assert _handle_chunk_size(.345, total_size) == 35 # rounds up # user provides absolute size assert _handle_chunk_size(1, total_size) == 1 assert _handle_chunk_size(100, total_size) == 100 assert isinstance(_handle_chunk_size(100.0, total_size), int) # test invalid cases with pytest.raises(AssertionError, match="Chunk size must be greater than 0"): _handle_chunk_size(0, total_size) with pytest.raises(AssertionError, match="Chunk size must be greater than 0"): _handle_chunk_size(-1, total_size) def test_chunk_dataframe_groups(): df = pd.DataFrame({ "group": [1, 1, 1, 1, 2, 2, 3] }) grouped = df.groupby("group") chunked_grouped = _chunk_dataframe_groups(grouped, 2) # test group larger than chunk size gets split up first = next(chunked_grouped) assert first[0] == 1 and first[1].shape[0] == 2 second = next(chunked_grouped) assert second[0] == 1 and second[1].shape[0] == 2 # test that equal to and less than chunk size stays together third = next(chunked_grouped) assert third[0] == 2 and third[1].shape[0] == 2 fourth = next(chunked_grouped) assert fourth[0] == 3 and fourth[1].shape[0] == 1 def test_calls_progress_callback(mock_customer): class MockProgressCallback: def __init__(self): self.progress_history = [] self.total_update = 0 self.total_progress_percent = 0 def __call__(self, update, progress_percent, time_elapsed): self.total_update += update self.total_progress_percent = progress_percent self.progress_history.append(progress_percent) mock_progress_callback = MockProgressCallback() es = mock_customer # make sure to calculate features that have different paths to same base feature trans_per_session = ft.Feature(es["transactions"]["transaction_id"], parent_entity=es["sessions"], primitive=Count) trans_per_customer = ft.Feature(es["transactions"]["transaction_id"], parent_entity=es["customers"], primitive=Count) features = [trans_per_session, ft.Feature(trans_per_customer, entity=es["sessions"])] calculate_feature_matrix(features, entityset=es, progress_callback=mock_progress_callback) # second to last entry is the last update from feature calculation assert np.isclose(mock_progress_callback.progress_history[-2], FEATURE_CALCULATION_PERCENTAGE * 100) assert np.isclose(mock_progress_callback.total_update, 100.0) assert np.isclose(mock_progress_callback.total_progress_percent, 100.0) # test with cutoff time dataframe mock_progress_callback = MockProgressCallback() cutoff_time = pd.DataFrame({"instance_id": [1, 2, 3], "time": [pd.to_datetime("2014-01-01 01:00:00"), pd.to_datetime("2014-01-01 02:00:00"), pd.to_datetime("2014-01-01 03:00:00")]}) calculate_feature_matrix(features, entityset=es, cutoff_time=cutoff_time, progress_callback=mock_progress_callback) assert np.isclose(mock_progress_callback.progress_history[-2], FEATURE_CALCULATION_PERCENTAGE * 100) assert np.isclose(mock_progress_callback.total_update, 100.0) assert np.isclose(mock_progress_callback.total_progress_percent, 100.0) def test_calls_progress_callback_cluster(pd_mock_customer): class MockProgressCallback: def __init__(self): self.progress_history = [] self.total_update = 0 self.total_progress_percent = 0 def __call__(self, update, progress_percent, time_elapsed): self.total_update += update self.total_progress_percent = progress_percent self.progress_history.append(progress_percent) mock_progress_callback = MockProgressCallback() trans_per_session = ft.Feature(pd_mock_customer["transactions"]["transaction_id"], parent_entity=pd_mock_customer["sessions"], primitive=Count) trans_per_customer = ft.Feature(pd_mock_customer["transactions"]["transaction_id"], parent_entity=pd_mock_customer["customers"], primitive=Count) features = [trans_per_session, ft.Feature(trans_per_customer, entity=pd_mock_customer["sessions"])] with cluster() as (scheduler, [a, b]): dkwargs = {'cluster': scheduler['address']} calculate_feature_matrix(features, entityset=pd_mock_customer, progress_callback=mock_progress_callback, dask_kwargs=dkwargs) assert np.isclose(mock_progress_callback.total_update, 100.0) assert np.isclose(mock_progress_callback.total_progress_percent, 100.0) def test_closes_tqdm(es): class ErrorPrim(TransformPrimitive): '''A primitive whose function raises an error''' name = "error_prim" input_types = [ft.variable_types.Numeric] return_type = "Numeric" compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] def get_function(self): def error(s): raise RuntimeError("This primitive has errored") return error value = ft.Feature(es['log']['value']) property_feature = value > 10 error_feature = ft.Feature(value, primitive=ErrorPrim) calculate_feature_matrix([property_feature], es, verbose=True) assert len(tqdm._instances) == 0 try: calculate_feature_matrix([value, error_feature], es, verbose=True) assert False except RuntimeError as e: assert e.args[0] == "This primitive has errored" finally: assert len(tqdm._instances) == 0 def test_approximate_with_single_cutoff_warns(pd_es): features = dfs(entityset=pd_es, target_entity='customers', features_only=True, ignore_entities=['cohorts'], agg_primitives=['sum']) match = "Using approximate with a single cutoff_time value or no cutoff_time " \ "provides no computational efficiency benefit" # test warning with single cutoff time with pytest.warns(UserWarning, match=match): calculate_feature_matrix(features, pd_es, cutoff_time=pd.to_datetime("2020-01-01"), approximate="1 day") # test warning with no cutoff time with pytest.warns(UserWarning, match=match): calculate_feature_matrix(features, pd_es, approximate="1 day") # check proper handling of approximate feature_matrix = calculate_feature_matrix(features, pd_es, cutoff_time=
pd.to_datetime("2011-04-09 10:31:30")
pandas.to_datetime
import sys, os import numpy as np import pandas as pd import ujson from scipy.interpolate import interp1d import scipy.ndimage from ast import literal_eval from get_workflow_info import get_workflow_info project_name = "planetary-response-network-and-rescue-global-caribbean-storms-2017" # st thomas DG #ssid = 14759 # St John DG ssid = 14806 # St John Planet #ssid = 14813 # Puerto Rico before only #ssid = 14929 # Turks and Caicos Cockburn Town DG/Planet ssid = 14827 # DG - Barbuda ssid = 14896 # DG - Antigua ssid = 14930 # Planet - Dominica ssid = 14988 active_subject_sets = [ssid] #infile = "%s-classifications.csv" % project_name #infile = 'damage-floods-blockages-shelters-landsat-classifications.csv' infile = 'damage-floods-blockages-shelters-classifications.csv' #infile = 'damages-floods-blockages-shelters-planet-labs-classifications.csv' #infile = 'planetary-response-network-and-rescue-global-caribbean-storms-2017-classifications_wfid4958_nodups_inclnonlive.csv' try: infile = sys.argv[1] except: pass workflow_version = -1 workflow_id = 4958 freetext = '' outdir = "outfiles" subject_file_set_by_user = False # check for other command-line arguments if len(sys.argv) > 1: # if there are additional arguments, loop through them for i_arg, argstr in enumerate(sys.argv[1:]): arg = argstr.split('=') if (arg[0] == "workflow_id") | (arg[0] == "wfid"): workflow_id = int(arg[1]) elif (arg[0] == "workflow_version") | (arg[0] == "wfv"): workflow_version = arg[1] elif (arg[0] == "subject_set_id") | (arg[0] == "ssid"): # might be passed as an int, might be passed as a list try: ssid = int(arg[1]) ssid_str = arg[1] active_subject_sets = [ssid] except: active_subject_sets = literal_eval(arg[1]) ssid = active_subject_sets[0] ssid_str = '%d' % ssid for i in range(len(active_subject_sets)): if i > 0: ssid_str = '%s_%d' % (ssid_str, active_subject_sets[i]) elif (arg[0] == "name") | (arg[0] == "stub") | (arg[0] == "freetext"): freetext = arg[1] elif (arg[0] == "outdir"): outdir = arg[1] elif (arg[0] == "subj") | (arg[0] == "subjects") | (arg[0] == "subjectfile") | (arg[0] == "subject_file"): subjectfile = arg[1] subject_file_set_by_user = True workflow_file = "%s-workflows.csv" % project_name workflow_contents_file = "%s-workflow_contents.csv" % project_name # if this subject file doesn't already exist, run get_subject_sizes.py # note it has to download images to determine imsize (in pixels) so generate it some # other way if you already have that info if not subject_file_set_by_user: subjectfile = "%s-subjects_enhancedinfo_ssids_%s.csv" % (project_name, ssid_str) # these files will/may be written to outfile_nodir = "%s-marks-points_wfid_%d.csv" % (project_name, workflow_id) blankfile_nodir = "%s-marks-blank_wfid_%d.csv" % (project_name, workflow_id) shortcutfile_nodir = "%s-marks-unclassifiable_wfid_%d.csv" % (project_name, workflow_id) questionfile_nodir = "%s-questions_wfid_%d.csv" % (project_name, workflow_id) outfile = "%s/%s" % (outdir, outfile_nodir) blankfile = "%s/%s" % (outdir, blankfile_nodir) shortcutfile = "%s/%s" % (outdir, shortcutfile_nodir) questionfile = "%s/%s" % (outdir, questionfile_nodir) # the order of tools is from the workflow information - as is the fact the # marks are in task T2 tools = ['Road Blockage', 'Flood', 'Temporary Settlement', 'Structural Damage'] mark_count = [0, 0, 0, 0] shortcuts = ['Unclassifiable Image', 'Ocean Only (no land)'] shortcut_mark_count = [0, 0] # for the structural damage subtask, if it exists details = ['Minor', 'Moderate', 'Catastrophic'] def get_wf_basics(workflow_id): # I should be able to do this marking_tasks, shortcuts, questions etc # automatically from workflow_info BUT NOT RIGHT NOW # Guadeloupe if workflow_id == 4928: workflow_version = '18.53' marking_tasks = ['T0'] question_tasks = [''] shortcut_tasks = ['T1'] struc_subtask = False # Turks and Caicos - Landsat 8 elif workflow_id == 4970: workflow_version = '5.8' marking_tasks = ['T0'] question_tasks = ['T2'] shortcut_tasks = ['T1', 'T3'] struc_subtask = False # St Thomas - Digital Globe # also anything that uses DG elif workflow_id == 4958: workflow_version = '17.60' marking_tasks = ['T0'] question_tasks = ['T2'] shortcut_tasks = ['T1', 'T3'] struc_subtask = True # Clone of the DG workflow but for Planet data elif workflow_id == 4975: workflow_version = '1.1' # could also be 2.2 if Dominica or later marking_tasks = ['T0'] question_tasks = ['T2'] shortcut_tasks = ['T1', 'T3'] #struc_subtask = True # even though I doubt these are trustworthy struc_subtask = False # <NAME> before only elif workflow_id == 5030: workflow_version = '3.8' marking_tasks = [] question_tasks = ['T2'] shortcut_tasks = ['T1', 'T3'] struc_subtask = False # Clone of the Planet-only workflow but only the damage marking question elif workflow_id == 5071: workflow_version = '2.3' # could also be 2.2 if Dominica or later marking_tasks = ['T0'] question_tasks = [] shortcut_tasks = ['T1', 'T3'] struc_subtask = False return workflow_version, marking_tasks, question_tasks, shortcut_tasks, struc_subtask def get_coords_mark(markinfo): row = markinfo[1] # print(markinfo) # print("-----") # print(row) # print("\n\n") mark_x = row['x'] mark_y = row['y'] the_x = np.array([row['x_min'], row['imsize_x_pix']]) the_y = np.array([row['y_min'], row['imsize_y_pix']]) the_lon = np.array([row['lon_min'], row['lon_max']]) the_lat = np.array([row['lat_min'], row['lat_max']]) # don't throw an error if the coords are out of bounds, but also don't extrapolate f_x_lon = interp1d(the_x, the_lon, bounds_error=False, fill_value=(None, None)) f_y_lat = interp1d(the_y, the_lat, bounds_error=False, fill_value=(None, None)) return f_x_lon(mark_x), f_y_lat(mark_y) def get_projection(projection_in): # # for now let's just return the same projection for everything # # this is for Sentinel 2 # return Proj(init='epsg:32620') # if you're supplying anything with a colon like 'epsg:32619', you need init=. # if you are supplying something more like '+proj=utm +zone=19 +datum=WGS84 +units=m +no_defs ', which comes from e.g. gdal, using init= will crash things # even though those two strings represent the same projection # what fun this is try: inProj = Proj(projection_in) except: try: inProj = Proj(init=projection_in) except: # just assume a default inProj = Proj(init='epsg:32620') return inProj # takes a single metadata row def get_corner_latlong(meta_json, projection_in): # in some cases we've included the corner lat and long in the metadata, in other cases not quite, but we can get that info # recall that longitude is the x direction, latitude is the y direction # BDS-created subjects have min and max lat and long so we can read it directly try: lon_min = meta_json['lon_min'] lon_max = meta_json['lon_max'] lat_min = meta_json['lat_min'] lat_max = meta_json['lat_max'] except: # some of the subjects have the corners given in unprojected units # which are in meters, but with actual value set by a global grid x_m_min = meta_json['#tile_UL_x'] y_m_max = meta_json['#tile_UL_y'] x_m_max = meta_json['#tile_LR_x'] y_m_min = meta_json['#tile_LR_y'] #print(meta_json) #print((x_m_min, y_m_min, x_m_max, y_m_max)) #f_x_lon, f_y_lat = get_interp_grid(subjects, ssid) try: inProj = get_projection(meta_json['projection_orig']) except: inProj = get_projection(ssid) outProj = Proj(init='epsg:4326') lon_min, lat_min = transform(inProj,outProj,x_m_min,y_m_min) lon_max, lat_max = transform(inProj,outProj,x_m_max,y_m_max) #print((lon_min, lat_min, lon_max, lat_max)) #print("\n") return lon_min, lon_max, lat_min, lat_max wfv, marking_tasks, question_tasks, shortcut_tasks, struc_subtask = get_wf_basics(workflow_id) # don't overwrite the workflow version if it's specified at the prompt if workflow_version < 1: workflow_version = wfv # okay turns out we didn't really need this but I'm hoping it will make it easier to generalize later workflow_df = pd.read_csv(workflow_file) workflow_cdf = pd.read_csv(workflow_contents_file) workflow_info = get_workflow_info(workflow_df, workflow_cdf, workflow_id, workflow_version) classifications_all =
pd.read_csv(infile)
pandas.read_csv
from sensible_raw.loaders import loader from world_viewer.cns_world import CNSWorld from world_viewer.glasses import Glasses import pandas as pd import matplotlib.pyplot as plt import numpy as np import networkx as nx from matplotlib.colors import LogNorm from sklearn.utils import shuffle from matplotlib.figure import figaspect # set analysis parameters analysis = 'expo_frac' opinion_type = "op_fitness" binning = True n_bins = 15 save_plots = False show_plot = True # load not shuffeld copenhagen data for comparision cns_rw = CNSWorld() cns_rw.load_world(opinions = ['fitness'], read_cached = False, stop=False, write_pickle = False, continous_op=False) cns_glasses_rw = Glasses(cns_rw) cns_data_rw = pd.read_pickle("tmp/final/spring_data.pkl") # Function for loading Surrogate data def load_data(runs, mode, analysis = "expo_frac", path= "tmp/ShuffledV4", shuffle_type="complete"): cns = CNSWorld() cns.load_world(opinions = ['fitness'], read_cached = True, stop=False, write_pickle = False, continous_op=False) cns_glasses = Glasses(cns) cns_glasses.output_folder = "" cns.d_ij = None start = "2014-02-01" end = "2014-04-30" cns.time = cns.time.loc[(cns.time.time >= start) & (cns.time.time <= end)] cns.op_nodes = cns.op_nodes.loc[(cns.op_nodes.time >= start) & (cns.op_nodes.time <= end)] cns.a_ij = cns.a_ij.loc[(cns.a_ij.time >= start) & (cns.a_ij.time <= end)] data_all = [] expo_all = [] for run in runs: # load if mode == "edges": exposure = pd.read_pickle(f"{path}/exposure_fitness_7_1_shuffled_time_edges_{shuffle_type}_{run}.pkl") cns.a_ij = pd.read_pickle(f"{path}/a_ij_shuffled_time_{shuffle_type}_{run}.pkl") elif mode == "traits": exposure = pd.read_pickle(f"{path}/exposure_fitness_7_1_shuffled_time_traits_{shuffle_type}_{run}.pkl") cns.op_nodes = pd.read_pickle(f"{path}/op_nodes_shuffled_time_{shuffle_type}_{run}.pkl") if analysis == "expo_nmb": exposure.rename(columns={"exposure":"exposure_old", "n_influencer_summed":"exposure"},inplace=True) #restrict exposure.reset_index(inplace=True) exposure = exposure.loc[(exposure.time >= pd.to_datetime(start)) & (exposure.time <=
pd.to_datetime(end)
pandas.to_datetime
### MOVE TO UTIL import urllib import os import re import sklearn.metrics as metrics import numpy as np import stanfordnlp import pandas as pd from bllipparser import RerankingParser from nltk import Tree from nltk.draw.util import CanvasFrame from nltk.draw import TreeWidget import svgling import pickle from negbio.pipeline import text2bioc import bioc import itertools from textblob import TextBlob from tqdm import tqdm_notebook import os import bioc import tqdm from pathlib2 import Path from negbio.chexpert.stages.aggregate import NegBioAggregator from negbio.chexpert.stages.classify import ModifiedDetector, CATEGORIES from negbio.chexpert.stages.extract import NegBioExtractor from negbio.chexpert.stages.load import NegBioLoader from negbio.pipeline import text2bioc, negdetect from negbio.pipeline.parse import NegBioParser from negbio.pipeline.ptb2ud import NegBioPtb2DepConverter, Lemmatizer from negbio.pipeline.ssplit import NegBioSSplitter from negbio.main_chexpert import pipeline PARSING_MODEL_DIR = "~/.local/share/bllipparser/GENIA+PubMed" CHEXPERT_PATH = "NegBio/negbio/chexpert/" MENTION_PATH =f"{CHEXPERT_PATH}phrases/mention" UNMENTION_PATH = f"{CHEXPERT_PATH}phrases/" NEG_PATH = f'{CHEXPERT_PATH}patterns/negation.txt' PRE_NEG_PATH = f'{CHEXPERT_PATH}patterns/pre_negation_uncertainty.txt' POST_NEG_PATH = f'{CHEXPERT_PATH}patterns/post_negation_uncertainty.txt' PHRASES_PATH = f"{CHEXPERT_PATH}phrases/" TEST_PATH = "stanford_report_test.csv" test_df = pd.read_csv(TEST_PATH) CATEGORIES = ["Cardiomegaly", "Lung Lesion", "Airspace Opacity", "Edema", "Consolidation", "Pneumonia", "Atelectasis", "Pneumothorax", "Pleural Effusion", "Pleural Other", "Fracture"] test_df = test_df[['Report Impression'] + CATEGORIES] test_df = test_df.replace(1, True).fillna(False).replace(0, False).replace(-1, False) def get_dict(path): label_to_mention = {} mention_files = os.listdir(path) for f in mention_files: with open(os.path.join(path, f)) as mention_file: condition = os.path.basename(f)[:-4] condition = condition.replace("_", " ").title() if condition not in label_to_mention: label_to_mention[condition] = [] for line in mention_file: label_to_mention[condition].append(line.split("\n")[0]) return label_to_mention mentions = get_dict(PHRASES_PATH + "mention") unmentions = get_dict(PHRASES_PATH + "unmention") mentions_pk = "mentions.pkl" unmentions_pk = "unmentions.pkl" pickle.dump(mentions, open(mentions_pk, "wb")) pickle.dump(unmentions, open(unmentions_pk, "wb")) mentions = pickle.load(open(mentions_pk, "rb")) unmentions = pickle.load(open(unmentions_pk, "rb")) ## MOVE TO UTIL def get_mention_keywords(observation): if observation in mentions: return mentions[observation] else: return [] chexpert_results_mention = { 'No Finding': 0.769, 'Lung Lesion': 0.896, 'Fracture': 0.975, 'Pleural Other': 0.850, 'Pleural Effusion': 0.985, 'Pneumonia': 0.660, 'Pneumothorax': 1.000, 'Lung Opacity': 0.966, 'Edema': 0.996, 'Support Devices': 0.933, 'Atelectasis': 0.998, 'Enlarged Cardiomediastinum': 0.935, 'Cardiomegaly': 0.973, 'Consolidation': 0.999 } chexpert_results_unmention = { 'No Finding': float("nan"), 'Lung Lesion': 0.900, 'Fracture': 0.807, 'Pleural Other': 1.00, 'Pleural Effusion': 0.971, 'Pneumonia': 0.750, 'Pneumothorax': 0.977, 'Lung Opacity': 0.914, 'Edema': 0.962, 'Support Devices': 0.720, 'Atelectasis': 0.833, 'Enlarged Cardiomediastinum': 0.959, 'Cardiomegaly': 0.909, 'Consolidation': 0.981 } ## MOVE TO UTIL def get_bioc_collection(df): collection = bioc.BioCCollection() splitter = NegBioSSplitter() for i, report in enumerate(df["Report Impression"]): document = text2bioc.text2document(str(i), report) document = splitter.split_doc(document) collection.add_document(document) return collection def clean(sentence): """Clean the text.""" punctuation_spacer = str.maketrans({key: f"{key} " for key in ".,"}) lower_sentence = sentence.lower() # Change `and/or` to `or`. corrected_sentence = re.sub('and/or', 'or', lower_sentence) # Change any `XXX/YYY` to `XXX or YYY`. corrected_sentence = re.sub('(?<=[a-zA-Z])/(?=[a-zA-Z])', ' or ', corrected_sentence) # Clean double periods clean_sentence = corrected_sentence.replace("..", ".") # Insert space after commas and periods. clean_sentence = clean_sentence.translate(punctuation_spacer) # Convert any multi white spaces to single white spaces. clean_sentence = ' '.join(clean_sentence.split()) return clean_sentence def calculate_f1(df, pred_frame): # calculate F1 results =
pd.DataFrame()
pandas.DataFrame
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df =
tm.makeDataFrame()
pandas.util.testing.makeDataFrame
# -*- coding: utf-8 -*- import re,pandas as pd,numpy as np from pandas import DataFrame import os pathDir=os.listdir(r'C:\Users\aklasim\Desktop\Py6.11 Pdf\t1') pt=(r'C:\Users\aklasim\Desktop\Py6.11 Pdf\t1') cols=['工单编号','上级工单编号','项目编号','工单描述','上级工单描述','施工单位','合同号','计划服务费','开工日期','完工日期','作业类型','通知单创建','通知单批准','计划','待审','下达','验收确认','完工确认','完工时间','打印者','打印日期','工序号','工作中心','控制码','工序内容','计划量','签证','物料编码','物料描述','单位计划量','出库量','签证'] l=[] x=0 l1=[] dfb = pd.DataFrame(columns=['工单编号', '上级工单编号', '项目编号', '工单描述', '上级工单描述', '施工单位', '合同号', '计划服务费','开工日期', '完工日期', '作业类型', '通知单创建', '通知单批准', '计划', '待审', '下达', '验收确认','完工确认', '完工时间', '打印者', '打印日期', '工序号', '工作中心', '控制码', '工序内容', '计划量', '签证', '物料编码', '物料描述', '单位计划量', '出库量', '签证', '单位', '数量确认']) for filename in pathDir: x=x+1 df = pd.DataFrame(index=range(30), columns=cols) def gg(rg,n): e=[] f = open(pt + '\\' + filename, encoding='gbk') for line in f: d=re.search(rg,line) if d: d=str(d.group()) e.append(d) print(e) df[n]=pd.Series(e) f.close() desc=gg('工单描述\s\S+','工单描述')#desc = re.findall('工单描述\s\S+', line) n=gg('工单编号\s\d+','工单编号') up_n=gg('上级工单编号\s\d+','上级工单编号') #sup_desc = re.findall('上级工单描述\s\d+', line) pro_n=gg('项目编号\s\d+','项目编号') #pro_co=re.findall('项目编号\s\d+',line) unit=gg('施工单位\s\S+','施工单位')#unit= re.findall('施工单位\s\S+', line) contr_co=gg('合同号\s\d+','合同号') #contr_co = re.findall('合同号\s\d+', line) cost=gg('计划服务费\s+\d+\,*\d*\.\d+','计划服务费')#cost = re.findall('计划服务费\s+\d+\,*\d*\.\d+', line) #if len(cost)>0: # money=cost[0].split()[1] start_d=gg('开工日期\s\S+','开工日期')#start_d = re.findall('开工日期\s\S+', line) over_d=gg('完工日期\s\S+','完工日期')#over_d = re.findall('完工日期\s\S+', line) worktp = gg('作业类型\s\S+', '作业类型')#worktp = re.findall('作业类型\s\S+', line) #ntc_crt = re.findall('通知单创建\s\S+', line) #ntc_pmt = re.findall('通知单批准\s\S+', line) #plan = re.findall('计划\s\S+', line) #ass= re.findall('待审\s\S+', line) #order= re.findall('下达\s\S+', line) #acpt_ck = re.findall('验收确认\s\S+', line) #fns_ck = re.findall('完工确认\s\S+', line) #fns_tm = re.findall('完工时间\s\S+', line) #printer = re.findall('打印者:\S+', line) #prt_d = re.findall('打印日期:\d+-\d+-\d+', line) ntc_crt = gg('通知单创建\s\S+', '通知单创建') ntc_pmt = gg('通知单批准\s\S+', '通知单批准') plan = gg('计划\s\S+', '计划') ass= gg('待审\s\S+', '待审') order= gg('下达\s\S+', '下达') acpt_ck = gg('验收确认\s\S+', '验收确认') fns_ck = gg('完工确认\s\S+', '完工确认') fns_tm = gg('完工时间\s\S+', '完工时间') printer = gg('打印者:\S+', '打印者') prt_d = gg('打印日期:\d+-\d+-\d+', '打印日期') wp_num = [] wk_ctr = [] ctr_code = [] wp_contts = [] cert = [] f = open(pt + '\\' + filename, encoding='gbk') for line in f: proc_set = re.findall('(^\d+)\s(\D+\d*)(\D+\d*)\s((\S*\d*\s*\.*)+)(\d+\.*\d*\D+)+\n', line)#426 if proc_set:# 工序号/工作中心/控制码/工序内容/签证 sets=list(proc_set[0]) wp_num.append(sets[0]) wk_ctr.append (sets[1]) ctr_code.append (sets[2]) wp_contts.append (sets[3]) cert.append (sets[5]) df['工序号']=pd.Series(wp_num) df['工作中心']=pd.Series(wk_ctr) df['控制码']=pd.Series(ctr_code) df['工序内容']=pd.Series(wp_contts) df['签证']=pd.Series(cert) wp_num = [] mat_code = [] mat_descr = [] msr_unit = [] all_num = [] cert=[] f.close() f = open(pt + '\\' + filename, encoding='gbk') for line in f: mat_set = re.findall('(^\d+)\s(\d+)\s((\S*\s*)+)\s(\D)\s((\d\.*\d*\s*)+)\n', line) # 140 if mat_set: # 工序号/物料编码/物料描述/单位/数量确认/计划量/出库量/签证 sets = list(mat_set[0]) wp_num.append(sets[0]) mat_code.append(sets[1]) mat_descr.append(sets[2]) msr_unit.append(sets[4]) all_num.append(sets[5]) cert.append(sets[6]) df['工序号']=pd.Series(wp_num) df['物料编码']=pd.Series(mat_code) df['物料描述']=pd.Series(mat_descr) df['单位']=pd.Series(msr_unit) df['数量确认']=pd.Series(all_num) df['签证']=pd.Series(cert) filename=int(x) print(dfb.columns) print(df.columns) dfb=
pd.concat([dfb,df])
pandas.concat
import pandas as pd import plotly.graph_objs as go import requests import numpy as np import plotly.colors #from collections import OrderedDict from pandas.io.json import json_normalize #country_default = OrderedDict([['Bulgaria', 'a'], ['Canada', 'h'], ['Croatia', 'g'], ['Cyprus', 'gh'], ['Egypt', 'hg'], ['France', 'go'], ['Germany', 'n'], ['Greece', 'gr'], ['Italy', 'it'], ['Jordan', 'j'], ['Kenya', 'ke'], ['Kuwait', 'ku'], ['Lebanon', 'lb'], ['Morocco', 'fg'], ['Romania', 'ro'], ['Russia', 'ru'], ['Spain', 'sp'], ['Turkey', 'tr'], ['UAE', 'ae'], ['UK', 'yl'], ['USA', 'usa'], ['Ukraine', 'uk']]) #countries=country_default def return_figures(): """Creates four plotly visualizations Args: None Returns: list (dict): list containing the four plotly visualizations """ # when the countries variable is empty, use the country_default dictionary #if not bool(countries): #countries = country_default urls = [] url = 'https://corona.lmao.ninja/v3/covid-19/countries' urls.append(url) r = requests.get(url) df = json_normalize(r.json()) df = df.drop(['countryInfo._id', 'countryInfo.iso2', 'countryInfo.flag', 'updated','oneCasePerPeople', 'oneDeathPerPeople', 'oneTestPerPeople'], axis=1) options = ['Bulgaria', 'Croatia', 'Cyprus', 'Egypt', 'France', 'Germany', 'Greece', 'Italy', 'Jordan', 'Kenya', 'Kuwait', 'Lebanon', 'Morocco', 'Romania', 'Russia', 'Spain', 'Turkey', 'UAE', 'Ukraine'] df = df[df['country'].isin(options)] df = df.reset_index() df = df.drop('index', axis=1) country_list = df['country'].tolist() # first chart plots Today's: Cases, Deaths, Recovered per Country # as a relative bar chart graph_one = [] df_one = pd.DataFrame(df) df_one.sort_values('todayCases', ascending=False, inplace=True) for country in country_list: x_val = df_one.country.tolist() graph_one.append( go.Bar( x = x_val, y = df_one.todayCases.tolist(), name = "Today's Cases" ) ) graph_one.append(go.Bar( x = x_val, y= df_one.todayDeaths.tolist(), name = "Today's Deaths" ) ) graph_one.append(go.Bar( x = x_val, y= df_one.todayRecovered.tolist(), name = "Today's Recovered", ) ) layout_one = dict(title = "Today's: Cases, Deaths, Recovered per Country", xaxis = dict(title = 'Country',), yaxis = dict(title = 'Population'), barmode='relative', autosize=False, width=600, height=500 ) # second chart plots Cases, Deaths, Recovered and Critical per Country as a relative bar chart graph_two = [] df_two =
pd.DataFrame(df)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn import tree import sklearn as sk import collections import pydotplus from sklearn.externals import joblib from sklearn.utils import resample import sys import os output_dir = '/home/strikermx/output_dir/model_'+sys.argv[1] +'2' data_dir = '/home/strikermx/data_dir/model_'+sys.argv[1] if not os.path.exists(output_dir): os.makedirs(output_dir) # #load data to dataframe df = pd.read_csv(data_dir + '/training_' + sys.argv[1] + '.dat', sep='|') #downsampling dataset to maintain 0.5 label prior df_majority = df[df.label==0] df_minority = df[df.label==1] df_minority.count() df_majority_downsampled = resample(df_majority, replace=True, # sample with replacement n_samples=len(df_minority.index), # to match majority class random_state=123) # reproducible results balanced_df = pd.concat([df_majority_downsampled, df_minority]) #write file balanced_df.to_csv(data_dir + '/train_up20bl_' + sys.argv[1] + '.dat', sep='|') # convert label data to y axis Y = balanced_df.values[:,88] #drop unable to use column and label column balanced_df.drop(['analytic_id', 'label','voice_pay_per_use_p3','voice_quota_minute_p3'], axis=1, inplace=True) # convert features data to x axis X = balanced_df.values[:, :] #convert type of X and Y X = X.astype(np.float32) Y = Y.astype(np.int) #train model clf_gini = DecisionTreeClassifier(criterion = "gini", max_leaf_nodes = 80, max_depth = 14) clf_gini.fit(X, Y) #save model to file joblib.dump(clf_gini, output_dir + '/dt_' + sys.argv[1] +'.pkl') #make fitted prediction y_pred = clf_gini.predict(X) #get all model decision node node = clf_gini.tree_.apply(X) #make prob fitted prediction prob = clf_gini.predict_proba(X) #convert to dataframe probdf = pd.DataFrame(prob) predictpd = pd.DataFrame(y_pred) nodepd = pd.DataFrame(node) #renaming dataframe column predictpd.columns = ['predict'] nodepd.columns = ['leaf_node'] probdf.columns = ['prob_0','prob_1'] #join probdf and nodepd dataframe probdf = pd.concat([probdf,nodepd], axis=1) #make feature dict from balanced_df data_feature_names = list(balanced_df.columns.values) feature_dict = dict(enumerate(data_feature_names)) #get sample analytic_id sample = df['analytic_id'] sampledf =
pd.DataFrame(sample)
pandas.DataFrame
import logging from os import path import pandas as pd import numpy as np from activitysim.core import ( inject, config, assign, pipeline, tracing, ) from asimtbm.utils import skims from asimtbm.utils import trips from asimtbm.utils import tracing as trace logger = logging.getLogger(__name__) YAML_FILENAME = 'destination_choice.yaml' ORIGIN_TRIPS_KEY = 'orig_zone_trips' @inject.step() def destination_choice(zones, data_dir, trace_od): """ActivitySim step that creates a raw destination choice table and calculates utilities. settings.yaml must specify 'destination_choice' under 'models' for this step to run in the pipeline. destination_choice.yaml must also specify the following: - spec_file_name: <expressions csv> - aggregate_od_matrices: - skims: <skims omx file> - dest_zone: <list of destination zone attribute columns> - orig_zone_trips: <dict of num trips for each segment> @inject.step before the method definition registers this step with the pipeline. Parameters ---------- zones : pandas DataFrame of zone attributes data_dir : str, data directory path trace_od : list or dict origin-destination pair to trace. Returns ------- None but writes final dataframe to csv and registers it to the pipeline. """ logger.info('running destination choice step ...') model_settings = config.read_model_settings(YAML_FILENAME) locals_dict = create_locals_dict(model_settings) od_index = create_od_index(zones.to_frame()) skims_dict = skims.read_skims(zones.index, data_dir, model_settings) locals_dict.update(skims_dict) zone_matrices = create_zone_matrices(zones.to_frame(), od_index, model_settings) locals_dict.update(zone_matrices) segments = model_settings.get(ORIGIN_TRIPS_KEY) spec = read_spec_file(model_settings, segments) od_table = create_od_table(od_index, spec, locals_dict, trace_od) trips.calculate_num_trips(od_table, zones, spec, locals_dict, segments, trace_od=trace_od) # This step is not strictly necessary since the pipeline # closes remaining open files on exit. This just closes them # now instead of leaving them open consuming memory for subsequent steps. skims.close_skims(locals_dict) logger.info('finished destination choice step.') def create_locals_dict(model_settings): """Initial local parameters for the destination choice step. These will be expanded later and used in subsequent evaluations. Gets both constants and math expressions from model settings Parameters ---------- model_settings : dict Returns ------- dict """ locals_dict = {} constants = config.get_model_constants(model_settings) math = model_settings.get('numpy') math_functions = {name: getattr(np, name) for name in math} locals_dict.update(constants) locals_dict.update(math_functions) return locals_dict def create_od_index(zones_df): orig = np.repeat(np.asanyarray(zones_df.index), zones_df.shape[0]) dest = np.tile(np.asanyarray(zones_df.index), zones_df.shape[0]) od_df = pd.DataFrame({'orig': orig, 'dest': dest}) return
pd.MultiIndex.from_frame(od_df)
pandas.MultiIndex.from_frame
# -*- coding: utf-8 -*- """ Created on Wed Sep 5 09:18:08 2018 @author: a.heude """ #Objectif du script: cross-valider le modèle géologique à l'aide d'une reconnaissance de la litho à partir des parmètres physico-chimiques import csv import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() from collections import Counter import sys print(sys.executable) import warnings if not sys.warnoptions: warnings.simplefilter("ignore") from sklearn.preprocessing import StandardScaler from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.cm as cm import sklearn.mixture as mix from sklearn.decomposition import PCA import matplotlib.font_manager matplotlib.rcParams.update({'font.size': 20}) font = {'family' : 'normal', 'weight' : 'bold', 'size' : 20} matplotlib.rc('font', **font) pre_tun=pd.read_csv('file_1.csv',sep=';',encoding = "ISO-8859-1") tun=pd.read_csv('file_2.csv',sep=';',encoding = "ISO-8859-1") def select_dominant_litho(data,list_lithos,nom_ref): #function that selects the dominant lithology in the training dataset #return a dataset with the samples and their dominant lithology ##### #data is the dataframe containing the data #list_lithos is the list of columns names for the lithologies #nom_ref is the name of the column containing sample references ##### final_df=pd.DataFrame() final_df=pd.concat([final_df,data[nom_ref]],axis=1) list_=[] for rows in range(len(data)): i=0 for lithos in list_lithos: if data[lithos][rows]>i: i=data[lithos][rows] main_litho=lithos list_.append(main_litho) final_df=pd.concat([final_df,pd.DataFrame(list_)],axis=1) return final_df def clust_model_training(data,pred,nom_ref,list_lithos,n_clusters,cv_type='full',pca=False,n_comp=2): #function that trains a clustering algorithm #return a dataset with the samples and their dominant lithology ##### #data is the dataframe containing the training data #pred is the list of names for the predictors #list_lithos is the list of columns names for the lithologies #nom_ref is the name of the column containing sample references #n_clusters is the number of clusters to compute #cv_type is the type of covariance (for GM algo) #pca=True or False if a PCA is to be computed on the predictors (allows the visualisation of clusters and data, etc..) #n_comp is the number of components to consider if pca is activated ##### final_df=pd.DataFrame() 'built in of predictors' clean_up=pd.DataFrame() for i in pred: clean_up=pd.concat([clean_up,data[i]],axis=1) clean_up_scale=clean_up for j in list_lithos: clean_up=pd.concat([clean_up,data[j]],axis=1) clean_up=pd.concat([clean_up,data[nom_ref]],axis=1) clean_up.dropna(inplace=True) clean_up_scale.dropna(inplace=True) clean_up.index = pd.RangeIndex(len(clean_up.index)) clean_up_scale.index = pd.RangeIndex(len(clean_up_scale.index)) predictors=pd.DataFrame() for i in pred: predictors=pd.concat([predictors,clean_up[i]],axis=1) list_pred=list(predictors.columns) predictors.index = pd.RangeIndex(len(predictors.index)) scaler=StandardScaler() scaler.fit(clean_up_scale) predictors=scaler.transform(predictors) predictors=pd.DataFrame(predictors) predictors.columns=list_pred if pca==True: predictors=dim_reduction_pca(predictors,n_comp) #trying other clustering algorithms can be interesting #kmeans = KMeans(n_clusters=n_clusters) #kmeans=SpectralClustering(n_clusters=n_clusters, affinity='nearest_neighbors',assign_labels='kmeans') #Here GM has shown good results kmeans=mix.GaussianMixture(n_components=n_clusters, covariance_type = cv_type) try: y_kmeans = kmeans.fit_predict(predictors) except: y_kmeans = kmeans.fit(predictors).predict(predictors) dataframe_litho=select_dominant_litho(clean_up,list_lithos,nom_ref) final_df=pd.concat([final_df,pd.DataFrame(y_kmeans),dataframe_litho],axis=1) final_df.columns=['clusters','sam_ref','lithos'] return final_df,predictors,kmeans, y_kmeans,scaler def assess_cluster_models(range_n_clusters,data,pred,nom_ref,list_lithos,cv_type,pca=False,n_comp=2): #function that assess a clustering model through different number of clusters with silhouettes #code largely extracted from: http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html ##### #range_n_clusters is the range of clusters to test #data is the dataframe containing the training data #pred is the list of names for the predictors #list_lithos is the list of columns names for the lithologies #nom_ref is the name of the column containing sample references #n_clusters is the number of clusters to compute #cv_type is the type of covariance (for GM algo) #pca=True or False if a PCA is to be computed on the predictors (allows the visualisation of clusters and data, etc..) #n_comp is the number of components to consider if pca is activated ##### #Figures are saved in a path for n_clusters in range_n_clusters: # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. final_df,predictors,clusterer,cluster_labels,scaler = clust_model_training(data,pred,nom_ref,list_lithos,n_clusters,cv_type,pca,n_comp) # Create a subplot with 1 row and 2 columns if pca==True: fig, (ax1, ax2) = plt.subplots(1, 2) if pca==False: fig, (ax1) = plt.subplots(1, 1) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(predictors) + (n_clusters + 1) * 10]) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(predictors, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(predictors, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.nipy_spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhouette score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) if pca==True: # 2nd Plot showing the actual clusters formed colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) ax2.scatter(predictors.iloc[:, 0], predictors.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') # Labeling the clusters try: centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') except: print("les centres ne peuvent pas être affichés") ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') figure=plt name_figure="PATH_%s"%(str(n_clusters) + '_clusters') filename_lc="%s.png"%name_figure figure.savefig(filename_lc) plt.clf() return def swarm_plot(dataframe,nom_classifier,nom_elem): #function that performs a swarm plot on the repartition of lithologies within each cluster ##### #dataframe is the dataframe containing the data #nom_classifier is the x-axis (lithologies) #nom_elem is the y-axis (clusters) ##### #Figures are saved in a path lithos={'geo_p2': '','geo_p3':'','geo_p4':'','geo_p5':''} codes=list(dataframe[nom_classifier].astype('category').cat.categories) global df_bp,dict_prop df_bp=pd.concat([dataframe[nom_classifier],dataframe[nom_elem]],axis=1) #Swarm plot ident=nom_elem figure2 = plt.figure(figsize = (10,10)) splot=sns.swarmplot(df_bp.iloc[:,0],df_bp.iloc[:,1]) splot.set_xlim(-1,len(codes)) plt.ylabel('distribution en fonction de la géologie décrite sur le terrain') plt.title(ident,size=20) plt.xlabel(nom_classifier,size=20) plt.ylabel(nom_elem,size=20) plt.legend(lithos.items()) plt.tight_layout(pad=1.5, w_pad=1.5, h_pad=1.5) figure2.savefig("PATH_beeswarm_%s.png"%(nom_classifier + '_' + ident)) plt.clf() return def dim_reduction_pca(data,n_digits): #function that performs a PCA dimension reduction ##### #data is a dataframe #n_digits is the number of components to keep ##### pca=PCA(n_components=n_digits) reduced_data = pca.fit_transform(data) reduced_data=pd.DataFrame(reduced_data) diag=pca.explained_variance_ratio_ print(diag) return reduced_data def home_weighted_scoring(dataframe,target,clusters): #function that performs a scoring according to how well clusters can delimitate lithologies ##### #dataframe is a dataframe of the data #target is the classification we want to be well delimited #clusters are the clusers assigned to each sample ##### #dictionnary containing the results dct=dict() n_samples=len(dataframe) for rows in range(len(dataframe)): if dataframe[clusters][rows] not in dct.keys(): dct[dataframe[clusters][rows]]=[dataframe[target][rows]] else: dct[dataframe[clusters][rows]].append(dataframe[target][rows]) #find the dominant litho in each cluster def dominant_litho(dictionnary,key): liste = dictionnary[key] count=Counter(liste) maxi=0 for keys, values in count.items(): if values > maxi: maxi=values dominant=keys return dominant,maxi #calculate scoring for a cluster as the proportion of dominant over the other classes def score(dictionnary, key): liste = dictionnary[key] dominant,maximum=dominant_litho(dictionnary,key) score = maximum/len(liste) n_sample_cluster=len(liste) return score,n_sample_cluster final_score=0 for keys in dct.keys(): scoring,n_sample_cluster=score(dct,keys) final_score=final_score+ scoring*(n_sample_cluster/n_samples) #returns final score return final_score def assign_values_clusters(dataframe,target,clusters): #function that assigns, for each cluster its proportions of classes from the classification in target ##### #dataframe is a dataframe of the data #target is the classification we want to be well delimited #clusters are the clusers assigned to each sample ##### #dictionnary containing the results dct=dict() for rows in range(len(dataframe)): if dataframe[clusters][rows] not in dct.keys(): dct[dataframe[clusters][rows]]=[dataframe[target][rows]] else: dct[dataframe[clusters][rows]].append(dataframe[target][rows]) def proportions_litho(dictionnary,key): liste = dictionnary[key] count=Counter(liste) proportions=[(i, count[i] / len(liste)) for i in count] return proportions for keys in dct.keys(): proportions=proportions_litho(dct,keys) dct[keys]=proportions #return a dictionnary of the results return dct def predict_only_clusters(data,pred,nom_ref,model_clusters,scaler): #function that predicts clusters from a clustering model - on a new dataset, with writing the results in a csv file ##### #data is the dataframe containing the training data #pred is the list of names for the predictors #nom_ref is the name of the column containing sample references #model_clusters is the clustering model fitted on a training set #scaler is the scaling step used for the training set ##### #built in of predictors clean_up=
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd import csv from os import listdir from os.path import isfile, join import warnings from datetime import date, timedelta, datetime class TransitionMap(): def __init__(self): self._transition_maps = self._download_transition_maps() self._energy_type = _energy_type def get_transition_map_hour(self, hour): """Get the transition map for a specific hour Args: hour: timestamp Return: transition_map_hour: pandas.DataFrame """ return self._transition_maps[hour] def _download_transition_maps(self): """Load the CSV transition maps JOE -- your input should match this Return: transition_maps: list of pandas.DataFrames indexed by hour """ working_directory = os.getcwd() transition_maps = {} for hour in range(0,23): filepath = (working_directory + str(self._energy_type)/ + "_hour_" + str(hour)) transition_maps[hour] = pd.read_csv(filepath) return transition_maps def consolidate_csvs(folder_path, csv_path): """ This will take a folder with MMS csvs and create a new csv with just the demand and energy data. """ # with open(csv_path) as output: # writer = csv.writer(output) # # write header of output file # writer.writerow(["Timestamp", "RRP", "Total_Demand"]) df =
pd.DataFrame(columns=["Timestamp", "Region", "Price", "Demand"])
pandas.DataFrame
# coding: utf-8 # # Windows 10 Coin # # train: (row: 1,347,190, columns: 1,085) # test: (row: 374,136, columns: 1,084) # # y value: if HasClicked == True, app 1.8% # # How to run # 1. Put the train and test files in ..\input # 2. Put the script file in ..\script # 3. In Jupyter Notebook, run all and get submission file in the same script folder # In[1]: # Timer and file info import math import time import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import gc # We're gonna be clearing memory a lot import matplotlib.pyplot as plt import seaborn as sns import random import lightgbm as lgb import hashlib #from ml_metrics import mapk from datetime import datetime import re import csv #import pickle #from sklearn.tree import DecisionTreeClassifier #from sklearn.ensemble import ExtraTreesClassifier #from sklearn.ensemble import RandomForestClassifier from sklearn import ensemble from sklearn import model_selection from sklearn.metrics import matthews_corrcoef, f1_score, classification_report, confusion_matrix, precision_score, recall_score # Timer class Timer: def __init__(self, text=None): self.text = text def __enter__(self): self.cpu = time.clock() self.time = time.time() if self.text: print("{}...".format(self.text)) print(datetime.now()) return self def __exit__(self, *args): self.cpu = time.clock() - self.cpu self.time = time.time() - self.time if self.text: print("%s: cpu %0.2f, time %0.2f\n" % (self.text, self.cpu, self.time)) # Split to train and holdout sets with counts def sample_train_holdout(_df, sample_count, holdout_count): random.seed(7) sample_RowNumber = random.sample(list(_df['RowNumber']), (sample_count + holdout_count)) train_RowNumber = random.sample(sample_RowNumber, sample_count) holdout_RowNumber = list(set(sample_RowNumber) - set(train_RowNumber)) holdout = _df[_df['RowNumber'].isin(holdout_RowNumber)].copy() _df = _df[_df['RowNumber'].isin(train_RowNumber)] return _df, holdout # Sampling for train and holdout with imbalanced binary label def trainHoldoutSampling(_df, _id, _label, _seed=7, t_tr=0.5, t_ho=0.5, f_tr=0.05, f_ho=0.5): random.seed(_seed) positive_id = list(_df[_df[_label]==True][_id].values) negative_id = list(_df[_df[_label]==False][_id].values) train_positive_id = random.sample(positive_id, int(len(positive_id) * t_tr)) holdout_positive_id = random.sample(list(set(positive_id)-set(train_positive_id)), int(len(positive_id) * t_ho)) train_negative_id = random.sample(negative_id, int(len(negative_id) * f_tr)) holdout_negative_id = random.sample(list(set(negative_id)-set(train_negative_id)), int(len(negative_id) * f_ho)) train_id = list(set(train_positive_id)|set(train_negative_id)) holdout_id = list(set(holdout_positive_id)|set(holdout_negative_id)) print('train count: {}, train positive count: {}'.format(len(train_id),len(train_positive_id))) print('holdout count: {}, holdout positive count: {}'.format(len(holdout_id),len(holdout_positive_id))) return _df[_df[_id].isin(train_id)], _df[_df[_id].isin(holdout_id)] def datetime_features2(_df, _col): _format='%m/%d/%Y %I:%M:%S %p' _df[_col] = _df[_col].apply(lambda x: datetime.strptime(x, _format)) colYear = _col+'Year' colMonth = _col+'Month' colDay = _col+'Day' colHour = _col+'Hour' #colYearMonthDay = _col+'YearMonthDay' #colYearMonthDayHour = _col+'YearMonthDayHour' _df[colYear] = _df[_col].apply(lambda x: x.year) _df[colMonth] = _df[_col].apply(lambda x: x.month) _df[colDay] = _df[_col].apply(lambda x: x.day) _df[colHour] = _df[_col].apply(lambda x: x.hour) #ymd = [colYear, colMonth, colDay] #ymdh = [colYear, colMonth, colDay, colHour] #_df[colYearMonthDay] = _df[ymd].apply(lambda x: '_'.join(str(x)), axis=1) #_df[colYearMonthDayHour] = _df[ymdh].apply(lambda x: '_'.join(str(x)), axis=1) return _df # Change date column datetime type and add date time features def datetime_features(_df, _col, isDelete = False): # 1. For years greater than 2017, create year folder with regex and change year to 2017 in datetime column # find and return 4 digit number (1st finding) in dataframe string columns year_col = _col + 'Year' _df[year_col] = _df[_col].apply(lambda x: int(re.findall(r"\D(\d{4})\D", " "+ str(x) +" ")[0])) years = sorted(list(_df[year_col].unique())) yearsGreaterThan2017 = sorted(i for i in years if i > 2017) # Two ways for strange year data (1) change it to 2017 temporarily (2) remove from data; we will go with (1) # because we cannot remove test rows anyway if isDelete: _df = _df[~_df[year_col].isin(yearsGreaterThan2017)] else: for i in yearsGreaterThan2017: print("replace ", i, " to 2017 for conversion") _df.loc[_df[year_col] == i, _col] = _df[_df[year_col] == i][_col].values[0].replace(str(i), "2017") # How to remove strange year rows # train = train[~train['year'].isin(yearsGreaterThan2017)] # 2. Convert string to datetime _df[_col] = pd.to_datetime(_df[_col]) print(_col, "column conversion to datetime type is done") # 3. Add more date time features month_col = _col + 'Month' week_col = _col + 'Week' weekday_col = _col + 'Weekday' day_col = _col + 'Day' hour_col = _col + 'Hour' #year_month_day_col = _col + 'YearMonthDay' #year_month_day_hour_col = _col + 'YearMonthDayHour' _df[month_col] = pd.DatetimeIndex(_df[_col]).month _df[week_col] = pd.DatetimeIndex(_df[_col]).week _df[weekday_col] = pd.DatetimeIndex(_df[_col]).weekday _df[day_col] = pd.DatetimeIndex(_df[_col]).day _df[hour_col] = pd.DatetimeIndex(_df[_col]).hour #_df[year_month_day_col] = _df[[year_col, month_col, day_col]].apply(lambda x: ''.join(str(x)), axis=1) #_df[year_month_day_hour_col] = _df[[year_col, month_col, day_col, hour_col]].apply(lambda x: ''.join(str(x)), axis=1) print("year, month, week, weekday, day, hour features are added") return _df # Delete rows with list condition for dataframe def delRows(_df, _col, _list): _df = _df[~_df[_col].isin(_list)] return _df import re # Create new column using regex pattern for strings for dataframe def addFeatureRegex(_df, _col, _newCol): _df[_newCol] = _df[_col].apply(lambda x: int(re.findall(r"\D(\d{4})\D", " "+ str(x) +" ")[0])) return _df # Convert string to datetime type def stringToDatetime(_df, _col): _df[_col] = _df[_col].astype('datetime64[ns]') return _df # Add features from datetime def addDatetimeFeatures(_df, _col): _df[_col + 'Year'] = pd.DatetimeIndex(_df[_col]).year _df[_col + 'Month'] = pd.DatetimeIndex(_df[_col]).month _df[_col + 'Week'] =
pd.DatetimeIndex(_df[_col])
pandas.DatetimeIndex
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import unicode_literals, division import os import copy import unittest import csv import json import numpy as np import pandas as pd from multiprocessing import set_start_method from sklearn.exceptions import NotFittedError from pymatgen import Structure, Lattice, Molecule from pymatgen.util.testing import PymatgenTest from matminer.featurizers.composition import ElementProperty from matminer.featurizers.site import SiteElementalProperty from matminer.featurizers.structure import DensityFeatures, \ RadialDistributionFunction, PartialRadialDistributionFunction, \ ElectronicRadialDistributionFunction, \ MinimumRelativeDistances, SiteStatsFingerprint, CoulombMatrix, \ SineCoulombMatrix, OrbitalFieldMatrix, GlobalSymmetryFeatures, \ EwaldEnergy, BondFractions, BagofBonds, StructuralHeterogeneity, \ MaximumPackingEfficiency, ChemicalOrdering, StructureComposition, \ Dimensionality, XRDPowderPattern, CGCNNFeaturizer, JarvisCFID, \ GlobalInstabilityIndex, \ StructuralComplexity # For the CGCNNFeaturizer try: import torch import cgcnn except ImportError: torch, cgcnn = None, None test_dir = os.path.join(os.path.dirname(__file__)) class StructureFeaturesTest(PymatgenTest): def setUp(self): self.diamond = Structure( Lattice([[2.189, 0, 1.264], [0.73, 2.064, 1.264], [0, 0, 2.528]]), ["C0+", "C0+"], [[2.554, 1.806, 4.423], [0.365, 0.258, 0.632]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.diamond_no_oxi = Structure( Lattice([[2.189, 0, 1.264], [0.73, 2.064, 1.264], [0, 0, 2.528]]), ["C", "C"], [[2.554, 1.806, 4.423], [0.365, 0.258, 0.632]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.nacl = Structure( Lattice([[3.485, 0, 2.012], [1.162, 3.286, 2.012], [0, 0, 4.025]]), ["Na1+", "Cl1-"], [[0, 0, 0], [2.324, 1.643, 4.025]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.cscl = Structure( Lattice([[4.209, 0, 0], [0, 4.209, 0], [0, 0, 4.209]]), ["Cl1-", "Cs1+"], [[2.105, 2.1045, 2.1045], [0, 0, 0]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.ni3al = Structure( Lattice([[3.52, 0, 0], [0, 3.52, 0], [0, 0, 3.52]]), ["Al", ] + ["Ni"] * 3, [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False, site_properties=None) self.sc = Structure(Lattice([[3.52, 0, 0], [0, 3.52, 0], [0, 0, 3.52]]), ["Al"], [[0, 0, 0]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False) self.bond_angles = range(5, 180, 5) def test_density_features(self): df = DensityFeatures() f = df.featurize(self.diamond) self.assertAlmostEqual(f[0], 3.49, 2) self.assertAlmostEqual(f[1], 5.71, 2) self.assertAlmostEqual(f[2], 0.25, 2) f = df.featurize(self.nacl) self.assertAlmostEqual(f[0], 2.105, 2) self.assertAlmostEqual(f[1], 23.046, 2) self.assertAlmostEqual(f[2], 0.620, 2) nacl_disordered = copy.deepcopy(self.nacl) nacl_disordered.replace_species({"Cl1-": "Cl0.99H0.01"}) self.assertFalse(df.precheck(nacl_disordered)) structures = [self.diamond, self.nacl, nacl_disordered] df2 = pd.DataFrame({"structure": structures}) self.assertAlmostEqual(df.precheck_dataframe(df2, "structure"), 2 / 3) def test_global_symmetry(self): gsf = GlobalSymmetryFeatures() self.assertEqual(gsf.featurize(self.diamond), [227, "cubic", 1, True]) def test_dimensionality(self): cscl = PymatgenTest.get_structure("CsCl") df = Dimensionality(bonds={("Cs", "Cl"): 3.5}) self.assertEqual(df.featurize(cscl)[0], 1) df = Dimensionality(bonds={("Cs", "Cl"): 3.7}) self.assertEqual(df.featurize(cscl)[0], 3) def test_rdf_and_peaks(self): ## Test diamond rdforig = RadialDistributionFunction().featurize( self.diamond) rdf = rdforig[0] # Make sure it the last bin is cutoff-bin_max self.assertAlmostEqual(max(rdf['distances']), 19.9) # Verify bin sizes self.assertEqual(len(rdf['distribution']), 200) # Make sure it gets all of the peaks self.assertEqual(np.count_nonzero(rdf['distribution']), 116) # Check the values for a few individual peaks self.assertAlmostEqual( rdf['distribution'][int(round(1.5 / 0.1))], 15.12755155) self.assertAlmostEqual( rdf['distribution'][int(round(2.9 / 0.1))], 12.53193948) self.assertAlmostEqual( rdf['distribution'][int(round(19.9 / 0.1))], 0.822126129) # Repeat test with NaCl (omitting comments). Altering cutoff distance rdforig = RadialDistributionFunction(cutoff=10).featurize(self.nacl) rdf = rdforig[0] self.assertAlmostEqual(max(rdf['distances']), 9.9) self.assertEqual(len(rdf['distribution']), 100) self.assertEqual(np.count_nonzero(rdf['distribution']), 11) self.assertAlmostEqual( rdf['distribution'][int(round(2.8 / 0.1))], 27.09214168) self.assertAlmostEqual( rdf['distribution'][int(round(4.0 / 0.1))], 26.83338723) self.assertAlmostEqual( rdf['distribution'][int(round(9.8 / 0.1))], 3.024406467) # Repeat test with CsCl. Altering cutoff distance and bin_size rdforig = RadialDistributionFunction( cutoff=8, bin_size=0.5).featurize(self.cscl) rdf = rdforig[0] self.assertAlmostEqual(max(rdf['distances']), 7.5) self.assertEqual(len(rdf['distribution']), 16) self.assertEqual(np.count_nonzero(rdf['distribution']), 5) self.assertAlmostEqual( rdf['distribution'][int(round(3.5 / 0.5))], 6.741265585) self.assertAlmostEqual( rdf['distribution'][int(round(4.0 / 0.5))], 3.937582548) self.assertAlmostEqual( rdf['distribution'][int(round(7.0 / 0.5))], 1.805505363) def test_prdf(self): # Test a few peaks in diamond # These expected numbers were derived by performing # the calculation in another code distances, prdf = PartialRadialDistributionFunction().compute_prdf(self.diamond) self.assertEqual(len(prdf.values()), 1) self.assertAlmostEqual(prdf[('C', 'C')][int(round(1.4 / 0.1))], 0) self.assertAlmostEqual(prdf[('C', 'C')][int(round(1.5 / 0.1))], 1.32445167622) self.assertAlmostEqual(max(distances), 19.9) self.assertAlmostEqual(prdf[('C', 'C')][int(round(19.9 / 0.1))], 0.07197902) # Test a few peaks in CsCl, make sure it gets all types correctly distances, prdf = PartialRadialDistributionFunction(cutoff=10).compute_prdf(self.cscl) self.assertEqual(len(prdf.values()), 4) self.assertAlmostEqual(max(distances), 9.9) self.assertAlmostEqual(prdf[('Cs', 'Cl')][int(round(3.6 / 0.1))], 0.477823197) self.assertAlmostEqual(prdf[('Cl', 'Cs')][int(round(3.6 / 0.1))], 0.477823197) self.assertAlmostEqual(prdf[('Cs', 'Cs')][int(round(3.6 / 0.1))], 0) # Do Ni3Al, make sure it captures the antisymmetry of Ni/Al sites distances, prdf = PartialRadialDistributionFunction(cutoff=10, bin_size=0.5)\ .compute_prdf(self.ni3al) self.assertEqual(len(prdf.values()), 4) self.assertAlmostEqual(prdf[('Ni', 'Al')][int(round(2 / 0.5))], 0.125236677) self.assertAlmostEqual(prdf[('Al', 'Ni')][int(round(2 / 0.5))], 0.37571003) self.assertAlmostEqual(prdf[('Al', 'Al')][int(round(2 / 0.5))], 0) # Check the fit operation featurizer = PartialRadialDistributionFunction() featurizer.fit([self.diamond, self.cscl, self.ni3al]) self.assertEqual({'Cs', 'Cl', 'C', 'Ni', 'Al'}, set(featurizer.elements_)) featurizer.exclude_elems = ['Cs', 'Al'] featurizer.fit([self.diamond, self.cscl, self.ni3al]) self.assertEqual({'Cl', 'C', 'Ni'}, set(featurizer.elements_)) featurizer.include_elems = ['H'] featurizer.fit([self.diamond, self.cscl, self.ni3al]) self.assertEqual({'H', 'Cl', 'C', 'Ni'}, set(featurizer.elements_)) # Check the feature labels featurizer.exclude_elems = () featurizer.include_elems = () featurizer.elements_ = ['Al', 'Ni'] labels = featurizer.feature_labels() n_bins = len(featurizer._make_bins()) - 1 self.assertEqual(3 * n_bins, len(labels)) self.assertIn('Al-Ni PRDF r=0.00-0.10', labels) # Check the featurize method featurizer.elements_ = ['C'] features = featurizer.featurize(self.diamond) prdf = featurizer.compute_prdf(self.diamond)[1] self.assertArrayAlmostEqual(features, prdf[('C', 'C')]) # Check the featurize_dataframe df = pd.DataFrame.from_dict({"structure": [self.diamond, self.cscl]}) featurizer.fit(df["structure"]) df = featurizer.featurize_dataframe(df, col_id="structure") self.assertEqual(df["Cs-Cl PRDF r=0.00-0.10"][0], 0.0) self.assertAlmostEqual(df["Cl-Cl PRDF r=19.70-19.80"][1], 0.049, 3) self.assertEqual(df["Cl-Cl PRDF r=19.90-20.00"][0], 0.0) # Make sure labels and features are in the same order featurizer.elements_ = ['Al', 'Ni'] features = featurizer.featurize(self.ni3al) labels = featurizer.feature_labels() prdf = featurizer.compute_prdf(self.ni3al)[1] self.assertEqual((n_bins * 3,), features.shape) self.assertTrue(labels[0].startswith('Al-Al')) self.assertTrue(labels[n_bins].startswith('Al-Ni')) self.assertTrue(labels[2 * n_bins].startswith('Ni-Ni')) self.assertArrayAlmostEqual(features, np.hstack( [prdf[('Al', 'Al')], prdf[('Al', 'Ni')], prdf[('Ni', 'Ni')]])) def test_redf(self): d = ElectronicRadialDistributionFunction().featurize( self.diamond)[0] self.assertAlmostEqual(int(1000 * d["distances"][0]), 25) self.assertAlmostEqual(int(1000 * d["distribution"][0]), 0) self.assertAlmostEqual(int(1000 * d["distances"][len( d["distances"]) - 1]), 6175) self.assertAlmostEqual(int(1000 * d["distribution"][len( d["distances"]) - 1]), 0) d = ElectronicRadialDistributionFunction().featurize( self.nacl)[0] self.assertAlmostEqual(int(1000 * d["distances"][0]), 25) self.assertAlmostEqual(int(1000 * d["distribution"][0]), 0) self.assertAlmostEqual(int(1000 * d["distances"][56]), 2825) self.assertAlmostEqual(int(1000 * d["distribution"][56]), -2108) self.assertAlmostEqual(int(1000 * d["distances"][len( d["distances"]) - 1]), 9875) d = ElectronicRadialDistributionFunction().featurize( self.cscl)[0] self.assertAlmostEqual(int(1000 * d["distances"][0]), 25) self.assertAlmostEqual(int(1000 * d["distribution"][0]), 0) self.assertAlmostEqual(int(1000 * d["distances"][72]), 3625) self.assertAlmostEqual(int(1000 * d["distribution"][72]), -2194) self.assertAlmostEqual(int(1000 * d["distances"][len( d["distances"]) - 1]), 7275) def test_coulomb_matrix(self): # flat cm = CoulombMatrix(flatten=True) df = pd.DataFrame({"s": [self.diamond, self.nacl]}) with self.assertRaises(NotFittedError): df = cm.featurize_dataframe(df, "s") df = cm.fit_featurize_dataframe(df, "s") labels = cm.feature_labels() self.assertListEqual(labels, ["coulomb matrix eig 0", "coulomb matrix eig 1"]) self.assertArrayAlmostEqual(df[labels].iloc[0], [49.169453, 24.546758], decimal=5) self.assertArrayAlmostEqual(df[labels].iloc[1], [153.774731, 452.894322], decimal=5) # matrix species = ["C", "C", "H", "H"] coords = [[0, 0, 0], [0, 0, 1.203], [0, 0, -1.06], [0, 0, 2.263]] acetylene = Molecule(species, coords) morig = CoulombMatrix(flatten=False).featurize(acetylene) mtarget = [[36.858, 15.835391290, 2.995098235, 1.402827813], \ [15.835391290, 36.858, 1.4028278132103624, 2.9950982], \ [2.9368896127, 1.402827813, 0.5, 0.159279959], \ [1.4028278132, 2.995098235, 0.159279959, 0.5]] self.assertAlmostEqual( int(np.linalg.norm(morig - np.array(mtarget))), 0) m = CoulombMatrix(diag_elems=False, flatten=False).featurize(acetylene)[0] self.assertAlmostEqual(m[0][0], 0.0) self.assertAlmostEqual(m[1][1], 0.0) self.assertAlmostEqual(m[2][2], 0.0) self.assertAlmostEqual(m[3][3], 0.0) def test_sine_coulomb_matrix(self): # flat scm = SineCoulombMatrix(flatten=True) df = pd.DataFrame({"s": [self.sc, self.ni3al]}) with self.assertRaises(NotFittedError): df = scm.featurize_dataframe(df, "s") df = scm.fit_featurize_dataframe(df, "s") labels = scm.feature_labels() self.assertEqual(labels[0], "sine coulomb matrix eig 0") self.assertArrayAlmostEqual( df[labels].iloc[0], [235.740418, 0.0, 0.0, 0.0], decimal=5) self.assertArrayAlmostEqual( df[labels].iloc[1], [232.578562, 1656.288171, 1403.106576, 1403.106576], decimal=5) # matrix scm = SineCoulombMatrix(flatten=False) sin_mat = scm.featurize(self.diamond) mtarget = [[36.8581, 6.147068], [6.147068, 36.8581]] self.assertAlmostEqual( np.linalg.norm(sin_mat - np.array(mtarget)), 0.0, places=4) scm = SineCoulombMatrix(diag_elems=False, flatten=False) sin_mat = scm.featurize(self.diamond)[0] self.assertEqual(sin_mat[0][0], 0) self.assertEqual(sin_mat[1][1], 0) def test_orbital_field_matrix(self): ofm_maker = OrbitalFieldMatrix(flatten=False) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((32, 32)) mtarget[1][1] = 1.4789015 # 1.3675444 mtarget[1][3] = 1.4789015 # 1.3675444 mtarget[3][1] = 1.4789015 # 1.3675444 mtarget[3][3] = 1.4789015 # 1.3675444 if for a coord# of exactly 4 for i in range(32): for j in range(32): if not i in [1, 3] and not j in [1, 3]: self.assertEqual(ofm[i, j], 0.0) mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_maker = OrbitalFieldMatrix(True, flatten=False) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((39, 39)) mtarget[1][1] = 1.4789015 mtarget[1][3] = 1.4789015 mtarget[3][1] = 1.4789015 mtarget[3][3] = 1.4789015 mtarget[1][33] = 1.4789015 mtarget[3][33] = 1.4789015 mtarget[33][1] = 1.4789015 mtarget[33][3] = 1.4789015 mtarget[33][33] = 1.4789015 mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_flat = OrbitalFieldMatrix(period_tag=False, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1024) ofm_flat = OrbitalFieldMatrix(period_tag=True, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1521) ofm_vector = ofm_flat.featurize(self.diamond) for ix in [40, 42, 72, 118, 120, 150, 1288, 1320]: self.assertAlmostEqual(ofm_vector[ix], 1.4789015345821415) def test_min_relative_distances(self): self.assertAlmostEqual(MinimumRelativeDistances().featurize( self.diamond_no_oxi)[0][0], 1.1052576) self.assertAlmostEqual(MinimumRelativeDistances().featurize( self.nacl)[0][0], 0.8891443) self.assertAlmostEqual(MinimumRelativeDistances().featurize( self.cscl)[0][0], 0.9877540) def test_sitestatsfingerprint(self): # Test matrix. op_struct_fp = SiteStatsFingerprint.from_preset("OPSiteFingerprint", stats=None) opvals = op_struct_fp.featurize(self.diamond) oplabels = op_struct_fp.feature_labels() self.assertAlmostEqual(opvals[10][0], 0.9995, places=7) self.assertAlmostEqual(opvals[10][1], 0.9995, places=7) opvals = op_struct_fp.featurize(self.nacl) self.assertAlmostEqual(opvals[18][0], 0.9995, places=7) self.assertAlmostEqual(opvals[18][1], 0.9995, places=7) opvals = op_struct_fp.featurize(self.cscl) self.assertAlmostEqual(opvals[22][0], 0.9995, places=7) self.assertAlmostEqual(opvals[22][1], 0.9995, places=7) # Test stats. op_struct_fp = SiteStatsFingerprint.from_preset("OPSiteFingerprint") opvals = op_struct_fp.featurize(self.diamond) print(opvals, '**') self.assertAlmostEqual(opvals[0], 0.0005, places=7) self.assertAlmostEqual(opvals[1], 0, places=7) self.assertAlmostEqual(opvals[2], 0.0005, places=7) self.assertAlmostEqual(opvals[3], 0.0, places=7) self.assertAlmostEqual(opvals[4], 0.0005, places=7) self.assertAlmostEqual(opvals[18], 0.0805, places=7) self.assertAlmostEqual(opvals[20], 0.9995, places=7) self.assertAlmostEqual(opvals[21], 0, places=7) self.assertAlmostEqual(opvals[22], 0.0075, places=7) self.assertAlmostEqual(opvals[24], 0.2355, places=7) self.assertAlmostEqual(opvals[-1], 0.0, places=7) # Test coordination number cn_fp = SiteStatsFingerprint.from_preset("JmolNN", stats=("mean",)) cn_vals = cn_fp.featurize(self.diamond) self.assertEqual(cn_vals[0], 4.0) # Test the covariance prop_fp = SiteStatsFingerprint(SiteElementalProperty(properties=["Number", "AtomicWeight"]), stats=["mean"], covariance=True) # Test the feature labels labels = prop_fp.feature_labels() self.assertEqual(3, len(labels)) # Test a structure with all the same type (cov should be zero) features = prop_fp.featurize(self.diamond) self.assertArrayAlmostEqual(features, [6, 12.0107, 0]) # Test a structure with only one atom (cov should be zero too) features = prop_fp.featurize(self.sc) self.assertArrayAlmostEqual([13, 26.9815386, 0], features) # Test a structure with nonzero covariance features = prop_fp.featurize(self.nacl) self.assertArrayAlmostEqual([14, 29.22138464, 37.38969216], features) def test_ewald(self): # Add oxidation states to all of the structures for s in [self.nacl, self.cscl, self.diamond]: s.add_oxidation_state_by_guess() # Test basic ewald = EwaldEnergy(accuracy=2) self.assertArrayAlmostEqual(ewald.featurize(self.diamond), [0]) self.assertAlmostEqual(ewald.featurize(self.nacl)[0], -8.84173626, 2) self.assertLess(ewald.featurize(self.nacl), ewald.featurize(self.cscl)) # Atoms are closer in NaCl # Perform Ewald summation by "hand", # Using the result from GULP self.assertArrayAlmostEqual([-8.84173626], ewald.featurize(self.nacl), 2) def test_bondfractions(self): # Test individual structures with featurize bf_md = BondFractions.from_preset("MinimumDistanceNN") bf_md.no_oxi = True bf_md.fit([self.diamond_no_oxi]) self.assertArrayEqual(bf_md.featurize(self.diamond), [1.0]) self.assertArrayEqual(bf_md.featurize(self.diamond_no_oxi), [1.0]) bf_voronoi = BondFractions.from_preset("VoronoiNN") bf_voronoi.bbv = float("nan") bf_voronoi.fit([self.nacl]) bond_fracs = bf_voronoi.featurize(self.nacl) bond_names = bf_voronoi.feature_labels() ref = {'Na+ - Na+ bond frac.': 0.25, 'Cl- - Na+ bond frac.': 0.5, 'Cl- - Cl- bond frac.': 0.25} self.assertDictEqual(dict(zip(bond_names, bond_fracs)), ref) # Test to make sure dataframe behavior is as intended s_list = [self.diamond_no_oxi, self.ni3al] df = pd.DataFrame.from_dict({'s': s_list}) bf_voronoi.fit(df['s']) df = bf_voronoi.featurize_dataframe(df, 's') # Ensure all data is properly labelled and organized self.assertArrayEqual(df['C - C bond frac.'].as_matrix(), [1.0, np.nan]) self.assertArrayEqual(df['Al - Ni bond frac.'].as_matrix(), [np.nan, 0.5]) self.assertArrayEqual(df['Al - Al bond frac.'].as_matrix(), [np.nan, 0.0]) self.assertArrayEqual(df['Ni - Ni bond frac.'].as_matrix(), [np.nan, 0.5]) # Test to make sure bad_bond_values (bbv) are still changed correctly # and check inplace behavior of featurize dataframe. bf_voronoi.bbv = 0.0 df = pd.DataFrame.from_dict({'s': s_list}) df = bf_voronoi.featurize_dataframe(df, 's') self.assertArrayEqual(df['C - C bond frac.'].as_matrix(), [1.0, 0.0]) self.assertArrayEqual(df['Al - Ni bond frac.'].as_matrix(), [0.0, 0.5]) self.assertArrayEqual(df['Al - Al bond frac.'].as_matrix(), [0.0, 0.0]) self.assertArrayEqual(df['Ni - Ni bond frac.'].as_matrix(), [0.0, 0.5]) def test_bob(self): # Test a single fit and featurization scm = SineCoulombMatrix(flatten=False) bob = BagofBonds(coulomb_matrix=scm, token=' - ') bob.fit([self.ni3al]) truth1 = [235.74041833262768, 1486.4464890775491, 1486.4464890775491, 1486.4464890775491, 38.69353092306119, 38.69353092306119, 38.69353092306119, 38.69353092306119, 38.69353092306119, 38.69353092306119, 83.33991275736257, 83.33991275736257, 83.33991275736257, 83.33991275736257, 83.33991275736257, 83.33991275736257] truth1_labels = ['Al site #0', 'Ni site #0', 'Ni site #1', 'Ni site #2', 'Al - Ni bond #0', 'Al - Ni bond #1', 'Al - Ni bond #2', 'Al - Ni bond #3', 'Al - Ni bond #4', 'Al - Ni bond #5', 'Ni - Ni bond #0', 'Ni - Ni bond #1', 'Ni - Ni bond #2', 'Ni - Ni bond #3', 'Ni - Ni bond #4', 'Ni - Ni bond #5'] self.assertAlmostEqual(bob.featurize(self.ni3al), truth1) self.assertEqual(bob.feature_labels(), truth1_labels) # Test padding from fitting and dataframe featurization bob.coulomb_matrix = CoulombMatrix(flatten=False) bob.fit([self.ni3al, self.cscl, self.diamond_no_oxi]) df = pd.DataFrame({'structures': [self.cscl]}) df = bob.featurize_dataframe(df, 'structures') self.assertEqual(len(df.columns.values), 25) self.assertAlmostEqual(df['Cs site #0'][0], 7513.468312122532) self.assertAlmostEqual(df['Al site #0'][0], 0.0) self.assertAlmostEqual(df['Cs - Cl bond #1'][0], 135.74726437398044) self.assertAlmostEqual(df['Al - Ni bond #0'][0], 0.0) # Test error handling for bad fits or null fits bob = BagofBonds(CoulombMatrix(flatten=False)) self.assertRaises(NotFittedError, bob.featurize, self.nacl) bob.fit([self.ni3al, self.diamond]) self.assertRaises(ValueError, bob.featurize, self.nacl)\ def test_ward_prb_2017_lpd(self): """Test the local property difference attributes from Ward 2017""" f = SiteStatsFingerprint.from_preset( "LocalPropertyDifference_ward-prb-2017" ) # Test diamond features = f.featurize(self.diamond) self.assertArrayAlmostEqual(features, [0] * (22 * 5)) features = f.featurize(self.diamond_no_oxi) self.assertArrayAlmostEqual(features, [0] * (22 * 5)) # Test CsCl big_face_area = np.sqrt(3) * 3 / 2 * (2 / 4 / 4) small_face_area = 0.125 big_face_diff = 55 - 17 features = f.featurize(self.cscl) labels = f.feature_labels() my_label = 'mean local difference in Number' self.assertAlmostEqual((8 * big_face_area * big_face_diff) / (8 * big_face_area + 6 * small_face_area), features[labels.index(my_label)], places=3) my_label = 'range local difference in Electronegativity' self.assertAlmostEqual(0, features[labels.index(my_label)], places=3) def test_ward_prb_2017_efftcn(self): """Test the effective coordination number attributes of Ward 2017""" f = SiteStatsFingerprint.from_preset( "CoordinationNumber_ward-prb-2017" ) # Test Ni3Al features = f.featurize(self.ni3al) labels = f.feature_labels() my_label = 'mean CN_VoronoiNN' self.assertAlmostEqual(12, features[labels.index(my_label)]) self.assertArrayAlmostEqual([12, 12, 0, 12, 0], features) def test_ward_prb_2017_strhet(self): f = StructuralHeterogeneity() # Test Ni3Al, which is uniform features = f.featurize(self.ni3al) self.assertArrayAlmostEqual([0, 1, 1, 0, 0, 0, 0, 0, 0], features) # Do CsCl, which has variation in the neighbors big_face_area = np.sqrt(3) * 3 / 2 * (2 / 4 / 4) small_face_area = 0.125 average_dist = (8 * np.sqrt( 3) / 2 * big_face_area + 6 * small_face_area) \ / (8 * big_face_area + 6 * small_face_area) rel_var = (8 * abs(np.sqrt(3) / 2 - average_dist) * big_face_area + 6 * abs(1 - average_dist) * small_face_area) \ / (8 * big_face_area + 6 * small_face_area) / average_dist cscl = Structure( Lattice([[4.209, 0, 0], [0, 4.209, 0], [0, 0, 4.209]]), ["Cl1-", "Cs1+"], [[0.5, 0.5, 0.5], [0, 0, 0]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False, site_properties=None) features = f.featurize(cscl) self.assertArrayAlmostEqual( [0, 1, 1, rel_var, rel_var, 0, rel_var, 0, 0], features) def test_packing_efficiency(self): f = MaximumPackingEfficiency() # Test L1_2 self.assertArrayAlmostEqual([np.pi / 3 / np.sqrt(2)], f.featurize(self.ni3al)) # Test B1 self.assertArrayAlmostEqual([np.pi / 6], f.featurize(self.nacl), decimal=3) def test_ordering_param(self): f = ChemicalOrdering() # Check that elemental structures return zero features = f.featurize(self.diamond) self.assertArrayAlmostEqual([0, 0, 0], features) # Check result for CsCl # These were calculated by hand by <NAME> features = f.featurize(self.cscl) self.assertAlmostEqual(0.551982, features[0], places=5) self.assertAlmostEqual(0.241225, features[1], places=5) # Check for L1_2 features = f.featurize(self.ni3al) self.assertAlmostEqual(1./3., features[0], places=5) self.assertAlmostEqual(0.0303, features[1], places=5) def test_composition_features(self): comp = ElementProperty.from_preset("magpie") f = StructureComposition(featurizer=comp) # Test the fitting (should not crash) f.fit([self.nacl, self.diamond]) # Test the features features = f.featurize(self.nacl) self.assertArrayAlmostEqual(comp.featurize(self.nacl.composition), features) # Test the citations/implementors self.assertEqual(comp.citations(), f.citations()) self.assertEqual(comp.implementors(), f.implementors()) def test_xrd_powderPattern(self): # default settings test xpp = XRDPowderPattern() pattern = xpp.featurize(self.diamond) self.assertAlmostEqual(pattern[44], 0.19378, places=2) self.assertEqual(len(pattern), 128) # reduced range xpp = XRDPowderPattern(two_theta_range=(0, 90)) pattern = xpp.featurize(self.diamond) self.assertAlmostEqual(pattern[44], 0.4083, places=2) self.assertEqual(len(pattern), 91) self.assertEqual(len(xpp.feature_labels()), 91) @unittest.skipIf(not (torch and cgcnn), "pytorch or cgcnn not installed.") def test_cgcnn_featurizer(self): # Test regular classification. cla_props, cla_atom_features, cla_structs = self._get_cgcnn_data() atom_fea_len = 64 cgcnn_featurizer = \ CGCNNFeaturizer(atom_init_fea=cla_atom_features, train_size=5, val_size=2, test_size=3, atom_fea_len=atom_fea_len) cgcnn_featurizer.fit(X=cla_structs, y=cla_props) self.assertEqual(len(cgcnn_featurizer.feature_labels()), atom_fea_len) state_dict = cgcnn_featurizer.model.state_dict() self.assertEqual(state_dict['embedding.weight'].size(), torch.Size([64, 92])) self.assertEqual(state_dict['embedding.bias'].size(), torch.Size([64])) self.assertEqual(state_dict['convs.0.fc_full.weight'].size(), torch.Size([128, 169])) self.assertEqual(state_dict['convs.1.bn1.weight'].size(), torch.Size([128])) self.assertEqual(state_dict['convs.2.bn2.bias'].size(), torch.Size([64])) self.assertEqual(state_dict['conv_to_fc.weight'].size(), torch.Size([128, 64])) self.assertEqual(state_dict['fc_out.weight'].size(), torch.Size([2, 128])) for struct in cla_structs: result = cgcnn_featurizer.featurize(struct) self.assertEqual(len(result), atom_fea_len) # Test regular regression and default atom_init_fea and featurize_many. reg_props, reg_atom_features, reg_structs = \ self._get_cgcnn_data("regression") cgcnn_featurizer = \ CGCNNFeaturizer(task="regression", atom_fea_len=atom_fea_len, train_size=6, val_size=2, test_size=2) cgcnn_featurizer.fit(X=reg_structs, y=reg_props) cgcnn_featurizer.set_n_jobs(1) result = cgcnn_featurizer.featurize_many(entries=reg_structs) self.assertEqual(np.array(result).shape, (len(reg_structs), atom_fea_len)) # Test classification from pre-trained model. cgcnn_featurizer = \ CGCNNFeaturizer(h_fea_len=32, n_conv=4, pretrained_name='semi-metal-classification', atom_init_fea=cla_atom_features, train_size=5, val_size=2, test_size=3, atom_fea_len=atom_fea_len) cgcnn_featurizer.fit(X=cla_structs, y=cla_props) self.assertEqual(len(cgcnn_featurizer.feature_labels()), atom_fea_len) validate_features = [2.1295, 2.1288, 1.8504, 1.9175, 2.1094, 1.7770, 2.0471, 1.7426, 1.7288, 1.7770] for struct, validate_feature in zip(cla_structs, validate_features): result = cgcnn_featurizer.featurize(struct) self.assertEqual(len(result), atom_fea_len) self.assertAlmostEqual(result[0], validate_feature, 4) # Test regression from pre-trained model. cgcnn_featurizer = \ CGCNNFeaturizer(task="regression", h_fea_len=32, n_conv=4, pretrained_name='formation-energy-per-atom', atom_init_fea=reg_atom_features, train_size=5, val_size=2, test_size=3, atom_fea_len=atom_fea_len) cgcnn_featurizer.fit(X=reg_structs, y=reg_props) self.assertEqual(len(cgcnn_featurizer.feature_labels()), atom_fea_len) validate_features = [1.6871, 1.5679, 1.5316, 1.6419, 1.6031, 1.4333, 1.5709, 1.5070, 1.5038, 1.4333] for struct, validate_feature in zip(reg_structs, validate_features): result = cgcnn_featurizer.featurize(struct) self.assertEqual(len(result), atom_fea_len) self.assertAlmostEqual(result[-1], validate_feature, 4) # Test warm start regression. warm_start_file = os.path.join(test_dir, 'cgcnn_test_regression_model.pth.tar') warm_start_model = torch.load(warm_start_file) self.assertEqual(warm_start_model['epoch'], 31) self.assertEqual(warm_start_model['best_epoch'], 9) self.assertAlmostEqual(warm_start_model['best_mae_error'].numpy(), 2.3700, 4) cgcnn_featurizer = \ CGCNNFeaturizer(task="regression", warm_start_file=warm_start_file, epochs=100, atom_fea_len=atom_fea_len, atom_init_fea=reg_atom_features, train_size=6, val_size=2, test_size=2) cgcnn_featurizer.fit(X=reg_structs, y=reg_props) # If use CGCNN featurize_many(), you should change the multiprocessing # start_method to 'spawn', because Gloo (that uses Infiniband) and # NCCL2 are not fork safe, pytorch don't support them or just # set n_jobs = 1 to avoid multiprocessing as follows. set_start_method('spawn', force=True) result = cgcnn_featurizer.featurize_many(entries=reg_structs) self.assertEqual(np.array(result).shape, (len(reg_structs), atom_fea_len)) # Test featurize_dataframe. df =
pd.DataFrame.from_dict({"structure": cla_structs})
pandas.DataFrame.from_dict
import pandas as pd import networkx as nx import numpy as np from sklearn.base import BaseEstimator, TransformerMixin #funtions def degree(G,f): """ Adds a column to the dataframe f with the degree of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') degree_dic = nx.degree_centrality(G) degree_df = pd.DataFrame(data = {'name': list(degree_dic.keys()), 'degree': list(degree_dic.values()) }) f = pd.merge(f, degree_df, on='name') return f def centrality(G,f): """ Adds a column to the dataframe f with the centrality of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') centrality_dic = nx.degree_centrality(G) centrality_df = pd.DataFrame(data = {'name': list(centrality_dic.keys()), 'centrality': list(centrality_dic.values()) }) f = pd.merge(f, centrality_df, on='name') return f def betweenness(G,f): """ Adds a column to the dataframe f with the betweenness of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') betweenness_dic = nx.betweenness_centrality(G) betweenness_df = pd.DataFrame(data = {'name': list(betweenness_dic.keys()), 'betweenness': list(betweenness_dic.values()) }) f = pd.merge(f, betweenness_df, on='name') return f def pagerank(G,f): """ Adds a column to the dataframe f with the pagerank of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') pagerank_dic = nx.pagerank(G) pagerank_df = pd.DataFrame(data = {'name': list(pagerank_dic.keys()), 'pagerank': list(pagerank_dic.values()) }) f = pd.merge(f, pagerank_df, on='name') return f def clustering(G,f): """ Adds a column to the dataframe f with the clustering coeficient of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') clustering_dic = nx.clustering(G) clustering_df = pd.DataFrame(data = {'name': list(clustering_dic.keys()), 'clustering': list(clustering_dic.values()) }) f = pd.merge(f, clustering_df, on='name') return f def communities_greedy_modularity(G,f): """ Adds a column to the dataframe f with the community of each node. The communitys are detected using greedy modularity. G: a networkx graph. f: a pandas dataframe. It works with networkx vesion: '2.4rc1.dev_20190610203526' """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') communities_dic = nx.algorithms.community.greedy_modularity_communities(G) communities_df = pd.DataFrame(data = {'name': [i for j in range(len(communities_dic)) for i in list(communities_dic[j])], 'communities_greedy_modularity': [j for j in range(len(communities_dic)) for i in list(communities_dic[j])] }) f = pd.merge(f, communities_df, on='name') return f def communities_label_propagation(G,f): """ Adds a column to the dataframe f with the community of each node. The communitys are detected using glabel propagation. G: a networkx graph. f: a pandas dataframe. It works with networkx vesion: '2.4rc1.dev_20190610203526' """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') communities_gen = nx.algorithms.community.label_propagation_communities(G) communities_dic = [community for community in communities_gen] communities_df = pd.DataFrame(data = {'name': [i for j in range(len(communities_dic)) for i in list(communities_dic[j])], 'communities_label_propagation': [j for j in range(len(communities_dic)) for i in list(communities_dic[j])] }) f = pd.merge(f, communities_df, on='name') return f def mean_neighbors(G,f,column,n=1): """ Adds a column to the dataframe f with the mean value of its neigbors feature. G: a networkx graph. f: a pandas dataframe. column: the column to which the mean is applied. n: neighbourhood order. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') mean_neighbors = np.zeros([f.shape[0]]) matrix = nx.to_numpy_matrix(G) for e in range(1,n): matrix += matrix ** e for i in f.index: neighbors = matrix[i]>0 mean_neighbors[i] = f[neighbors.tolist()[0]][column].mean() f["mean_neighbors"] = mean_neighbors return f def std_neighbors(G,f,column,n=1): """ Adds a column to the dataframe f with the standar desviation value of its neigbors feature. G: a networkx graph. f: a pandas dataframe. column: the column to which the mean is applied. n: neighbourhood order. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') std_neighbors = np.zeros([f.shape[0]]) matrix = nx.to_numpy_matrix(G) for e in range(1,n): matrix += matrix ** e for i in f.index: neighbors = matrix[i]>0 std_neighbors[i] = f[neighbors.tolist()[0]][column].std() f["std_neighbors"] = std_neighbors return f def max_neighbors(G,f,column,n=1): """ Adds a column to the dataframe f with the maximum value of its neigbors feature. G: a networkx graph. f: a pandas dataframe. column: the column to which the mean is applied. n: neighbourhood order. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') max_neighbors = np.zeros([f.shape[0]]) matrix = nx.to_numpy_matrix(G) for e in range(1,n): matrix += matrix ** e for i in f.index: neighbors = matrix[i]>0 max_neighbors[i] = f[neighbors.tolist()[0]][column].max() f["max_neighbors"] = max_neighbors return f def min_neighbors(G,f,column,n=1): """ Adds a column to the dataframe f with the minimum value of its neigbors feature. G: a networkx graph. f: a pandas dataframe. column: the column to which the mean is applied. n: neighbourhood order. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') min_neighbors = np.zeros([f.shape[0]]) matrix = nx.to_numpy_matrix(G) for e in range(1,n): matrix += matrix ** e for i in f.index: neighbors = matrix[i]>0 min_neighbors[i] = f[neighbors.tolist()[0]][column].min() f["min_neighbors"] = min_neighbors return f def within_module_degree(G,f, column_communities = None, community_method = "label_propagation"): """ the within_module_degree calculates: Zi = (ki-ks)/Ss Ki = number of links between the node i and all the nodes of its cluster Ks = mean degree of the nodes in cluster s Ss = the standar desviation of the nodes in cluster s The within-module degree z-score measures how well-connected node i is to other nodes in the module. PAPER: <NAME>., & <NAME>. (2005). Functional cartography of complex metabolic networks. nature, 433(7028), 895. G: a networkx graph. f: a pandas dataframe. column_communities: a column of the dataframe with the communities for each node. If None, the communities will be estimated using metodo comunidades. community_method: method to calculate the communities in the graph G if they are not provided with columna_comunidades. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') if column_communities == None: if community_method == "label_propagation": f = communities_label_propagation(G,f) column_communities = "communities_label_propagation" elif community_method == "greedy_modularity": f = communities_greedy_modularity(G,f) column_communities = "communities_greedy_modularity" else: raise ValueError('A clustering method should be provided.') z_df = pd.DataFrame(data = {'name': [], 'within_module_degree': [] }) for comutnity in set(f[column_communities]): G2 = G.subgraph(f[f[column_communities] == comutnity]["name"].values) Ks = 2*len(G2.edges) / len(G2.nodes) Ss = np.std([i[1] for i in G2.degree()]) z_df = pd.concat([z_df,pd.DataFrame(data = {'name': list(G2.nodes), 'within_module_degree': [(i[1]-Ks)/Ss for i in G2.degree()] }) ]) f = pd.merge(f, z_df, on='name') return f def participation_coefficient(G,f, column_communities = None, community_method = "label_propagation"): """ the participation_coefficient calculates: Pi = 1- sum_s( (Kis/Kit)^2 ) Kis = number of links between the node i and the nodes of the cluster s Kit = degree of the node i The participation coefficient of a node is therefore close to 1 if its links are uniformly distributed among all the modules and 0 if all its links are within its own module. PAPER: <NAME>., & <NAME>. (2005). Functional cartography of complex metabolic networks. nature, 433(7028), 895. G: a networkx graph. f: a pandas dataframe. columna_comunidades: a column of the dataframe with the communities for each node. If None, the communities will be estimated using metodo comunidades. metodo_comunidades: method to calculate the communities in the graph G if they are not provided with columna_comunidades. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') if column_communities == None: if community_method == "label_propagation": f = communities_label_propagation(G,f) column_communities = "communities_label_propagation" elif community_method == "greedy_modularity": f = communities_greedy_modularity(G,f) column_communities = "communities_greedy_modularity" else: raise ValueError('A clustering method should be provided.') p_df = pd.DataFrame(data = {'name': f['name'], 'participation_coefficient': [1 for _ in f['name']] }) for node in f['name']: Kit = len(G.edges(node)) for comutnity in set(f[column_communities]): Kis = len([edge for edge in G.edges(node) if edge[1] in f[ f[column_communities] == comutnity ]["name"]]) p_df.loc[ p_df["name"] == node, 'participation_coefficient' ] -= ( Kis / Kit ) ** 2 f = pd.merge(f, p_df, on='name') return f def node_embeddings(G,f,dim=20, walk_length=16, num_walks=100, workers=2): """ Adds the embeddings of the nodes to the dataframe f. G: a networkx graph. f: a pandas dataframe. dim: the dimension of the embedding. <NAME>., & <NAME>. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855-864). ACM. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') from node2vec import Node2Vec node2vec = Node2Vec(G, dimensions=dim, walk_length=walk_length, num_walks=num_walks, workers=workers) model = node2vec.fit(window=10, min_count=1) embeddings_df = pd.DataFrame(columns = ['name']+['node_embeddings_'+str(i) for i in range(dim)]) embeddings_df['name'] = f['name'] for name in embeddings_df['name']: embeddings_df[embeddings_df['name'] == name] = [name] + list(model[str(name)]) f = pd.merge(f, embeddings_df, on='name') return f #Transformers class Dumb(BaseEstimator, TransformerMixin): def __init__(self,m = 8): self.m = m print('a',self.m) def fit(self, X, y=None): return self def transform(self, X): print('b',self.m) return X class Replace(BaseEstimator, TransformerMixin): def __init__(self, value1,value2): self.value1 = value1 self.value2 = value2 def fit(self, X, y=None): return self def transform(self, X): return X.replace(self.value1, self.value2, regex=True) class DropName(BaseEstimator, TransformerMixin): """ Drops the "name" column. """ def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X): X_prima = X.drop(['name'],axis=1) return X_prima class Graph_fuction(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the result of the function for each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. function: a python function that takes the graph G as input and outpus a column of the same length that the number of nodes in the graph. column_name: a string with the name of the column """ def __init__(self, G, function, column_name = "Graph_fuction"): self.G = G self.function = function self.column_name = column_name def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) column = self.function(G_train) degree_df = pd.DataFrame(data = {'name': list(G_train.nodes()), self.column_name: column }) X_prima = pd.merge(X, degree_df, on='name') print(X_prima.columns) return X_prima class Graph_features_fuction(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the result of the function for each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. function: a python function that takes the graph G as input and outpus a column of the same length that the number of nodes in the graph. column_name: a string with the name of the column """ def __init__(self, G, function, column_name = "Graph_features_fuction"): self.G = G self.function = function self.column_name = column_name def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) column = self.function(G_train, X) degree_df = pd.DataFrame(data = {'name': list(G_train.nodes()), self.column_name: column }) X_prima = pd.merge(X, degree_df, on='name') print(X_prima.columns) return X_prima class Degree(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the degree of each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) degree_dic = nx.degree_centrality(G_train) degree_df = pd.DataFrame(data = {'name': list(degree_dic.keys()), 'degree': list(degree_dic.values()) }) X_prima = pd.merge(X, degree_df, on='name') return X_prima class Clustering(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the degree of each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) clustering_dic = nx.clustering(G_train) clustering_df = pd.DataFrame(data = {'name': list(clustering_dic.keys()), 'clustering': list(clustering_dic.values()) }) X_prima = pd.merge(X, clustering_df, on='name') return X_prima class Centrality(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the centrality of each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) centrality_dic = nx.degree_centrality(G_train) centrality_df = pd.DataFrame(data = {'name': list(centrality_dic.keys()), 'centrality': list(centrality_dic.values()) }) X_prima = pd.merge(X, centrality_df, on='name') return X_prima class Betweenness(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the betweenness of each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) betweenness_dic = nx.betweenness_centrality(G_train) betweenness_df = pd.DataFrame(data = {'name': list(betweenness_dic.keys()), 'betweenness': list(betweenness_dic.values()) }) X_prima = pd.merge(X, betweenness_df, on='name') return X_prima class Pagerank(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the pagerank of each node. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) pagerank_dic = nx.pagerank(G_train) pagerank_df = pd.DataFrame(data = {'name': list(pagerank_dic.keys()), 'pagerank': list(pagerank_dic.values()) }) X_prima = pd.merge(X, pagerank_df, on='name') return X_prima class Communities_greedy_modularity(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the comunity of each node. The comunitys are detected using greedy modularity. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. It works with networkx vesion: '2.4rc1.dev_20190610203526' """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) communities_dic = nx.algorithms.community.greedy_modularity_communities(G_train) communities_df = pd.DataFrame(data = {'name': [i for j in range(len(communities_dic)) for i in list(communities_dic[j])], 'communities_greedy_modularity': [j for j in range(len(communities_dic)) for i in list(communities_dic[j])] }) X_prima = pd.merge(X,communities_df, on='name') return X_prima class Communities_label_propagation(BaseEstimator, TransformerMixin): """ Adds a column to the dataframe f with the comunity of each node. The comunitys are detected using glabel propagation. G: a networkx graph. The names of the nodes should be incuded in the train dataframe. It works with networkx vesion: '2.4rc1.dev_20190610203526' """ def __init__(self, G): self.G = G def fit(self, X, y=None): return self def transform(self, X): G_train = self.G.subgraph(X['name'].values) communities_gen = nx.algorithms.community.label_propagation_communities(G_train) communities_dic = [community for community in communities_gen] communities_df = pd.DataFrame(data = {'name': [i for j in range(len(communities_dic)) for i in list(communities_dic[j])], 'communities_label_propagation': [j for j in range(len(communities_dic)) for i in list(communities_dic[j])] }) X_prima =
pd.merge(X,communities_df, on='name')
pandas.merge
import pandas as pd import numpy as np # # TODO: # Load up the dataset, setting correct header labels. # df = pd.read_csv('Datasets/census.data', names = ['education', 'age', 'capital-gain', 'race', 'capital-loss', 'hours-per-week', 'sex', 'classification'], na_values = '?') # TODO: # Use basic pandas commands to look through the dataset... get a # feel for it before proceeding! Do the data-types of each column # reflect the values you see when you look through the data using # a text editor / spread sheet program? If you see 'object' where # you expect to see 'int32' / 'float64', that is a good indicator # that there is probably a string or missing value in a column. # use `your_data_frame['your_column'].unique()` to see the unique # values of each column and identify the rogue values. If these # should be represented as nans, you can convert them using # na_values when loading the dataframe. # df.info() # # TODO: # Look through your data and identify any potential categorical # features. Ensure you properly encode any ordinal and nominal # types using the methods discussed in the chapter. # # Be careful! Some features can be represented as either categorical # or continuous (numerical). If you ever get confused, think to yourself # what makes more sense generally---to represent such features with a # continuous numeric type... or a series of categories? # ordinal df.education = df.education.astype('category', ordered = True) # , categories = [...] df.classification = df.classification.astype('category', ordered = True, categories = ['<=50K', '>50K']) # nominal df.race = df.race.astype('category') #.cat.codes df.sex = df.sex.astype('category') #.cat.codes df.dtypes # or, for nominal values df =
pd.get_dummies(df, columns=['race', 'sex'])
pandas.get_dummies
############################################################################## #Copyright 2019 Google LLC # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. ################################################################################ from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor import warnings warnings.filterwarnings("ignore") from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) with warnings.catch_warnings(): warnings.simplefilter("ignore") from numpy import inf from sklearn.linear_model import LassoCV, RidgeCV from sklearn.linear_model import Lasso, Ridge from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pylab as plt get_ipython().magic(u'matplotlib inline') from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 10, 6 from sklearn.metrics import classification_report, confusion_matrix from functools import reduce from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.metrics import make_scorer from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import roc_auc_score from sklearn.model_selection import RandomizedSearchCV from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.model_selection import RepeatedKFold, RepeatedStratifiedKFold from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from autoviml.QuickML_Stacking import QuickML_Stacking from autoviml.Transform_KM_Features import Transform_KM_Features from autoviml.QuickML_Ensembling import QuickML_Ensembling from autoviml.Auto_NLP import Auto_NLP, select_top_features_from_SVD import xgboost as xgb import sys ################################################################################## def find_rare_class(classes, verbose=0): ######### Print the % count of each class in a Target variable ##### """ Works on Multi Class too. Prints class percentages count of target variable. It returns the name of the Rare class (the one with the minimum class member count). This can also be helpful in using it as pos_label in Binary and Multi Class problems. """ counts = OrderedDict(Counter(classes)) total = sum(counts.values()) if verbose >= 1: print(' Class -> Counts -> Percent') for cls in counts.keys(): print("%6s: % 7d -> % 5.1f%%" % (cls, counts[cls], counts[cls]/total*100)) if type(pd.Series(counts).idxmin())==str: return pd.Series(counts).idxmin() else: return int(pd.Series(counts).idxmin()) ############################################################################### def return_factorized_dict(ls): """ ###### Factorize any list of values in a data frame using this neat function if your data has any NaN's it automatically marks it as -1 and returns that for NaN's Returns a dictionary mapping previous values with new values. """ factos = pd.unique(pd.factorize(ls)[0]) categs = pd.unique(pd.factorize(ls)[1]) if -1 in factos: categs = np.insert(categs,np.where(factos==-1)[0][0],np.nan) return dict(zip(categs,factos)) ############################################################################################# from sklearn.metrics import confusion_matrix def balanced_accuracy_score(y_true, y_pred, sample_weight=None, adjusted=False): C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight) with np.errstate(divide='ignore', invalid='ignore'): per_class = np.diag(C) / C.sum(axis=1) if np.any(np.isnan(per_class)): warnings.warn('y_pred contains classes not in y_true') per_class = per_class[~np.isnan(per_class)] score = np.mean(per_class) if adjusted: n_classes = len(per_class) chance = 1 / n_classes score -= chance score /= 1 - chance return score ############################################################################################# import os def check_if_GPU_exists(): GPU_exists = False try: from tensorflow.python.client import device_lib dev_list = device_lib.list_local_devices() print('Number of GPUs = %d' %len(dev_list)) for i in range(len(dev_list)): if 'GPU' == dev_list[i].device_type: GPU_exists = True print('%s available' %dev_list[i].device_type) except: print('') if not GPU_exists: try: os.environ['NVIDIA_VISIBLE_DEVICES'] print('GPU available on this device') return True except: print('No GPU available on this device') return False else: return True ############################################################################################# def analyze_problem_type(train, targ,verbose=0): """ This module analyzes a Target Variable and finds out whether it is a Regression or Classification type problem """ if train[targ].dtype != 'int64' and train[targ].dtype != float : if train[targ].dtype == object: if len(train[targ].unique()) > 1 and len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' else: model_class = 'Multi_Classification' else: if len(train[targ].unique()) == 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 1 and len(train[targ].unique()) <= 30: model_class = 'Multi_Classification' elif train[targ].dtype == 'int64' or train[targ].dtype == float : if len(train[targ].unique()) == 1: print('Error in data set: Only one class in Target variable. Check input and try again') sys.exit() elif len(train[targ].unique()) == 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 1 and len(train[targ].unique()) <= 30: model_class = 'Multi_Classification' else: model_class = 'Regression' elif train[targ].dtype == object: if len(train[targ].unique()) > 1 and len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' else: model_class = 'Multi_Classification' elif train[targ].dtype == bool: model_class = 'Binary_Classification' elif train[targ].dtype == 'int64': if len(train[targ].unique()) == 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 1 and len(train[targ].unique()) <= 30: model_class = 'Multi_Classification' else: model_class = 'Regression' else : model_class = 'Regression' return model_class ####### def convert_train_test_cat_col_to_numeric(start_train, start_test, col,str_flag=True): """ #### This is the easiest way to label encode object variables in both train and test #### This takes care of some categories that are present in train and not in test ### and vice versa """ start_train = copy.deepcopy(start_train) start_test = copy.deepcopy(start_test) missing_flag = False new_missing_col = '' if start_train[col].isnull().sum() > 0: missing_flag = True if str_flag: new_missing_col = col + '_Missing_Flag' start_train[new_missing_col] = 0 start_train.loc[start_train[col].isnull(),new_missing_col]=1 start_train[col] = start_train[col].fillna("NA", inplace=False).astype(str) else: new_missing_col = col + '_Missing_Flag' start_train[new_missing_col] = 0 start_train.loc[start_train[col].isnull(),new_missing_col]=1 start_train[col] = start_train[col].fillna("NA", inplace=False).astype('category') if len(start_train[col].apply(type).value_counts()) > 1: print(' Alert! Mixed Data Types in Train data set %s column with %d data types. Fixing it...' %( col, len(start_train[col].apply(type).value_counts()))) train_categs = start_train[col].value_counts().index.tolist() else: train_categs = np.unique(start_train[col]).tolist() if not isinstance(start_test,str) : if start_test[col].isnull().sum() > 0: #### IN some rare cases, Test data has missing values while Train data doesn.t #### This section is take care of those rare cases. We need to create a missing col #### We need to create that missing flag column in both train and test in that case if not missing_flag: missing_flag = True new_missing_col = col + '_Missing_Flag' start_train[new_missing_col] = 0 ##### THis is to take care of Missing_Flag in start_test data set!! start_test[new_missing_col] = 0 start_test.loc[start_test[col].isnull(),new_missing_col]=1 if str_flag: start_test[col] = start_test[col].fillna("NA", inplace=False).astype(str) else: start_test[col] = start_test[col].fillna("NA", inplace=False).astype('category') else: #### In some rare cases, there is missing values in train but not in test data! #### In those cases, we need to create a new_missing_col in test data in addition to train start_test[new_missing_col] = 0 if len(start_test[col].apply(type).value_counts()) > 1: print(' Alert! Mixed Data Types in Test data set %s column with %d data types. Fixing it...' %( col, len(start_test[col].apply(type).value_counts()))) test_categs = start_test[col].value_counts().index.tolist() test_categs = [x if isinstance(x,str) else str(x) for x in test_categs] start_test[col] = start_test[col].astype(str).values else: test_categs = np.unique(start_test[col]).tolist() if not isinstance(start_test,str) : categs_all = np.unique( train_categs + test_categs).tolist() dict_all = return_factorized_dict(categs_all) else: dict_all = return_factorized_dict(train_categs) start_train[col] = start_train[col].map(dict_all) if not isinstance(start_test,str) : start_test[col] = start_test[col].map(dict_all) return start_train, start_test, missing_flag, new_missing_col ############################################################################################################# def flatten_list(list_of_lists): final_ls = [] for each_item in list_of_lists: if isinstance(each_item,list): final_ls += each_item else: final_ls.append(each_item) return final_ls ############################################################################################################# import scipy as sp def Auto_ViML(train, target, test='',sample_submission='',hyper_param='RS', feature_reduction=True, scoring_parameter='logloss', Boosting_Flag=None, KMeans_Featurizer=False, Add_Poly=0, Stacking_Flag=False, Binning_Flag=False, Imbalanced_Flag=False, verbose=0): """ ######################################################################################################### ############# This is not an Officially Supported Google Product! ######################### ######################################################################################################### #### Automatically Build Variant Interpretable Machine Learning Models (Auto_ViML) ###### #### Developed by <NAME> ###### ###### Version 0.1.652 ####### ##### GPU UPGRADE!! Now with Auto_NLP. Best Version to Download or Upgrade. May 15,2020 ###### ###### Auto_VIMAL with Auto_NLP combines structured data with NLP for Predictions. ####### ######################################################################################################### #Copyright 2019 Google LLC ####### # ####### #Licensed under the Apache License, Version 2.0 (the "License"); ####### #you may not use this file except in compliance with the License. ####### #You may obtain a copy of the License at ####### # ####### # https://www.apache.org/licenses/LICENSE-2.0 ####### # ####### #Unless required by applicable law or agreed to in writing, software ####### #distributed under the License is distributed on an "AS IS" BASIS, ####### #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ####### #See the License for the specific language governing permissions and ####### #limitations under the License. ####### ######################################################################################################### #### Auto_ViML was designed for building a High Performance Interpretable Model With Fewest Vars. ### #### The "V" in Auto_ViML stands for Variant because it tries Multiple Models and Multiple Features ### #### to find the Best Performing Model for any data set.The "i" in Auto_ViML stands " Interpretable"### #### since it selects the fewest Features to build a simpler, more interpretable model. This is key. ## #### Auto_ViML is built mostly using Scikit-Learn, Numpy, Pandas and Matplotlib. Hence it should run ## #### on any Python 2 or Python 3 Anaconda installations. You won't have to import any special #### #### Libraries other than "SHAP" library for SHAP values which provides more interpretability. ##### #### But if you don't have it, Auto_ViML will skip it and show you the regular feature importances. ### ######################################################################################################### #### INPUTS: ### ######################################################################################################### #### train: could be a datapath+filename or a dataframe. It will detect which is which and load it.#### #### test: could be a datapath+filename or a dataframe. If you don't have any, just leave it as "". ### #### submission: must be a datapath+filename. If you don't have any, just leave it as empty string.#### #### target: name of the target variable in the data set. #### #### sep: if you have a spearator in the file such as "," or "\t" mention it here. Default is ",". #### #### scoring_parameter: if you want your own scoring parameter such as "f1" give it here. If not, ##### #### it will assume the appropriate scoring param for the problem and it will build the model.##### #### hyper_param: Tuning options are GridSearch ('GS'), RandomizedSearch ('RS')and now HyperOpt ('HO')# #### Default setting is 'GS'. Auto_ViML with HyperOpt is approximately 3X Faster than Auto_ViML### #### feature_reduction: Default = 'True' but it can be set to False if you don't want automatic #### #### feature_reduction since in Image data sets like digits and MNIST, you get better ##### #### results when you don't reduce features automatically. You can always try both and see. ##### #### KMeans_Featurizer = True: Adds a cluster label to features based on KMeans. Use for Linear. ##### #### False (default) = For Random Forests or XGB models, leave it False since it may overfit.#### #### Boosting Flag: you have 3 possible choices (default is False): ##### #### None = This will build a Linear Model ##### #### False = This will build a Random Forest or Extra Trees model (also known as Bagging) ##### #### True = This will build an XGBoost model ##### #### Add_Poly: Default is 0. It has 2 additional settings: ##### #### 1 = Add interaction variables only such as x1*x2, x2*x3,...x9*10 etc. ##### #### 2 = Add Interactions and Squared variables such as x1**2, x2**2, etc. ##### #### Stacking_Flag: Default is False. If set to True, it will add an additional feature which ##### #### is derived from predictions of another model. This is used in some cases but may result##### #### in overfitting. So be careful turning this flag "on". ##### #### Binning_Flag: Default is False. It set to True, it will convert the top numeric variables ##### #### into binned variables through a technique known as "Entropy" binning. This is very ##### #### helpful for certain datasets (especially hard to build models). ##### #### Imbalanced_Flag: Default is False. If set to True, it will downsample the "Majority Class" ##### #### in an imbalanced dataset and make the "Rare" class at least 5% of the data set. This ##### #### the ideal threshold in my mind to make a model learn. Do it for Highly Imbalanced data.##### #### verbose: This has 3 possible states: ##### #### 0 = limited output. Great for running this silently and getting fast results. ##### #### 1 = more charts. Great for knowing how results were and making changes to flags in input. ##### #### 2 = lots of charts and output. Great for reproducing what Auto_ViML does on your own. ##### ######################################################################################################### #### OUTPUTS: ##### ######################################################################################################### #### model: It will return your trained model ##### #### features: the fewest number of features in your model to make it perform well ##### #### train_modified: this is the modified train dataframe after removing and adding features ##### #### test_modified: this is the modified test dataframe with the same transformations as train ##### ################# A D D I T I O N A L N O T E S ########### #### Finally, it writes your submission file to disk in the current directory called "mysubmission.csv" #### This submission file is ready for you to show it clients or submit it to competitions. ##### #### If no submission file was given but as long as you give it a test file name, it will create ##### #### a submission file for you named "mySubmission.csv". ##### #### Auto_ViML works on any Multi-Class, Multi-Label Data Set. So you can have many target labels ##### #### You don't have to tell Auto_ViML whether it is a Regression or Classification problem. ##### #### Suggestions for a Scoring Metric: ##### #### If you have Binary Class and Multi-Class in a Single Label, Choose Accuracy. It will ###### #### do very well. If you want something better, try roc_auc even for Multi-Class which works. ###### #### You can try F1 or Weighted F1 if you want something complex or for Multi-Class. ###### #### Note that For Imbalanced Classes (<=5% classes), it automatically adds Class Weights. ###### #### Also, Note that it handles Multi-Label automatically so you can send Train data ###### #### with multiple Labels (Targets) and it will automatically predict for each Label. ###### #### Finally this is Meant to Be a Fast Algorithm, so use it for just quick POCs ###### #### This is Not Meant for Production Problems. It produces great models but it is not Perfect! ###### ######################### HELP OTHERS! PLEASE CONTRIBUTE! OPEN A PULL REQUEST! ########################## ######################################################################################################### """ ##### These copies are to make sure that the originals are not destroyed #### CPU_count = os.cpu_count() test = copy.deepcopy(test) orig_train = copy.deepcopy(train) orig_test = copy.deepcopy(test) train_index = train.index if not isinstance(test, str): test_index = test.index start_test = copy.deepcopy(orig_test) ####### These are Global Settings. If you change them here, it will ripple across the whole code ### corr_limit = 0.70 #### This decides what the cut-off for defining highly correlated vars to remove is. scaling = 'MinMax' ### This decides whether to use MinMax scaling or Standard Scaling ("Std"). first_flag = 0 ## This is just a setting to detect which is seed= 99 ### this maintains repeatability of the whole ML pipeline here ### subsample=0.7 #### Leave this low so the models generalize better. Increase it if you want overfit models col_sub_sample = 0.7 ### Leave this low for the same reason above poly_degree = 2 ### this create 2-degree polynomial variables in Add_Poly. Increase if you want more degrees booster = 'gbtree' ### this is the booster for XGBoost. The other option is "Linear". n_splits = 5 ### This controls the number of splits for Cross Validation. Increasing will take longer time. matplotlib_flag = True #(default) This is for drawing SHAP values. If this is False, initJS is used. early_stopping = 20 #### Early stopping rounds for XGBoost ###### encoded = '_Label_Encoded' ### This is the tag we add to feature names in the end to indicate they are label encoded catboost_limit = 0.4 #### The catboost_limit represents the percentage of num vars in data. ANy lower, CatBoost is used. cat_code_limit = 100 #### If the number of dummy variables to create in a data set exceeds this, CatBoost is the default Algorithm used one_hot_size = 500 #### This determines the max length of one_hot_max_size parameter of CatBoost algrithm Alpha_min = -3 #### The lowest value of Alpha in LOGSPACE that is used in CatBoost Alpha_max = 2 #### The highest value of Alpha in LOGSPACE that is used in Lasso or Ridge Regression Cs = [0.001,0.005,0.01,0.05,0.1,0.25,0.5,1,2,4,6,10,20,30,40,50,100,150,200,400,800,1000,2000] #Cs = np.logspace(-4,3,40) ### The list of values of C used in Logistic Regression tolerance = 0.001 #### This tolerance is needed to speed up Logistic Regression. Otherwise, SAGA takes too long!! #### 'lbfgs' is the fastest one but doesnt provide accurate results. Newton-CG is slower but accurate! #### SAGA is extremely slow. Even slower than Newton-CG. Liblinear is the fastest and as accurate as Newton-CG! solvers = ['liblinear'] ### Other solvers for Logistic Regression model: ['newton-cg','lbfgs','saga','liblinear'] solver = 'liblinear' ### This is the next fastest solver after liblinear. Useful for Multi-class problems! penalties = ['l2','l1'] ### This is to determine the penalties for LogisticRegression n_steps = 6 ### number of estimator steps between 100 and max_estims max_depth = 10 ##### This limits the max_depth used in decision trees and other classifiers max_features = 10 #### maximum number of features in a random forest model or extra trees model warm_start = True ### This is to set the warm_start flag for the ExtraTrees models bootstrap = True #### Set this flag to control whether to bootstrap variables or not. n_repeats = 1 #### This is for repeated KFold and StratifiedKFold - this changes the folds every time Bins = 30 ### This is for plotting probabilities in a histogram. For small data sets, 30 is enough. top_nlp_features = 100 ### This sets a limit on the number of features added by each NLP transformer! removed_features_threshold = 5 #### This triggers the Truncated_SVD if number of removed features from XGB exceeds this! calibrator_flag = False ### In Multi-class data sets, a CalibratedClassifier works better than regular classifiers! max_class_length = 1 ### It turns out the number of classes is directly correlated to Estimated Time. Hence this! print('############## D A T A S E T A N A L Y S I S #######################') ########## I F CATBOOST IS REQUESTED, THEN CHECK IF IT IS INSTALLED ####################### if isinstance(Boosting_Flag,str): if Boosting_Flag.lower() == 'catboost': from catboost import CatBoostClassifier, CatBoostRegressor #### Similarly for Random Forests Model, it takes too long with Grid Search, so MAKE IT RandomizedSearch! if not Boosting_Flag: ### there is also a chance Boosting_Flag is None - This is to eliminate that chance! if orig_train.shape[0] >= 10000: hyper_param = 'RS' print('Changing hyperparameter search to RS. Otherwise, Random Forests will take too long for 10,000+ rows') elif Boosting_Flag: ### there is also a chance Boosting_Flag is None - This is to eliminate that chance! if not isinstance(Boosting_Flag, str): if orig_train.shape[0] >= 10000: hyper_param = 'RS' print('Changing hyperparameter search to RS. Otherwise XGBoost will take too long for 10,000+ rows.') ########### T H I S I S W H E R E H Y P E R O P T P A R A M S A R E S E T ######### if hyper_param == 'HO': ########### HyperOpt related objective functions are defined here ################# from hyperopt import hp, tpe from hyperopt.fmin import fmin from hyperopt import Trials from autoviml.custom_scores_HO import accu, rmse, gini_sklearn, gini_meae from autoviml.custom_scores_HO import gini_msle, gini_mae, gini_mse, gini_rmse from autoviml.custom_scores_HO import gini_accuracy, gini_bal_accuracy, gini_roc from autoviml.custom_scores_HO import gini_precision, gini_average_precision, gini_weighted_precision from autoviml.custom_scores_HO import gini_macro_precision, gini_micro_precision from autoviml.custom_scores_HO import gini_samples_precision, gini_f1, gini_weighted_f1 from autoviml.custom_scores_HO import gini_macro_f1, gini_micro_f1, gini_samples_f1,f2_measure from autoviml.custom_scores_HO import gini_log_loss, gini_recall, gini_weighted_recall from autoviml.custom_scores_HO import gini_samples_recall, gini_macro_recall, gini_micro_recall else: from autoviml.custom_scores import accu, rmse, gini_sklearn, gini_meae from autoviml.custom_scores import gini_msle, gini_mae, gini_mse, gini_rmse from autoviml.custom_scores import gini_accuracy, gini_bal_accuracy, gini_roc from autoviml.custom_scores import gini_precision, gini_average_precision, gini_weighted_precision from autoviml.custom_scores import gini_macro_precision, gini_micro_precision from autoviml.custom_scores import gini_samples_precision, gini_f1, gini_weighted_f1 from autoviml.custom_scores import gini_macro_f1, gini_micro_f1, gini_samples_f1,f2_measure from autoviml.custom_scores import gini_log_loss, gini_recall, gini_weighted_recall from autoviml.custom_scores import gini_samples_recall, gini_macro_recall, gini_micro_recall ###### If hyper_param = 'GS', it takes a LOOOONG TIME with "SAGA" solver for LogisticRegression. #### Hence to speed it up you need to change the tolerance threshold to something bigger if hyper_param == 'GS': tolerance = 0.01 #### This tolerance is bigger to speed up Logistic Regression. Otherwise, SAGA takes too long!! ########## This is where some more default parameters are set up ###### data_dimension = orig_train.shape[0]*orig_train.shape[1] ### number of cells in the entire data set . if data_dimension > 1000000: ### if data dimension exceeds 1 million, then reduce no of params no_iter=30 early_stopping = 10 test_size = 0.20 max_iter = 10000 Bins = 100 top_nlp_features = 300 if isinstance(Boosting_Flag,str): if Boosting_Flag.lower() == 'catboost': max_estims = 5000 else: max_estims = 400 else: max_estims = 400 else: if orig_train.shape[0] <= 1000: no_iter=20 test_size = 0.1 max_iter = 4000 top_nlp_features = 250 if isinstance(Boosting_Flag,str): if Boosting_Flag.lower() == 'catboost': max_estims = 3000 else: max_estims = 300 else: max_estims = 300 early_stopping = 4 else: no_iter=30 test_size = 0.15 max_iter = 7000 top_nlp_features = 200 if isinstance(Boosting_Flag,str): if Boosting_Flag.lower() == 'catboost': max_estims = 4000 else: max_estims = 350 else: max_estims = 350 early_stopping = 6 #### The warnings from Sklearn are so annoying that I have to shut it off #### import warnings warnings.filterwarnings("ignore") def warn(*args, **kwargs): pass warnings.warn = warn ### First_Flag is merely a flag for the first time you want to set values of variables if scaling == 'MinMax': SS = MinMaxScaler() elif scaling == 'Std': SS = StandardScaler() else: SS = MinMaxScaler() ### Make target into a list so that we can uniformly process the target label if not isinstance(target, list): target = [target] model_label = 'Single_Label' elif isinstance(target, list): if len(target)==1: model_label = 'Single_Label' elif len(target) > 1: model_label = 'Multi_Label' else: print('Target variable is neither a string nor a list. Please check input and try again!') return ##### This is where we run the Traditional models to compare them to XGB ##### start_time = time.time() #################################################################################### ##### Set up your Target Labels and Classes Properly Here #### Label Encoding ##### #### This is for Classification Problems Only where you do Label Encoding of Target mldict = lambda: defaultdict(mldict) label_dict = mldict() first_time = True print('Training Set Shape = {}'.format(orig_train.shape)) print(' Training Set Memory Usage = {:.2f} MB'.format(orig_train.memory_usage().sum() / 1024**2)) if not isinstance(orig_test,str): print('Test Set Shape = {}'.format(orig_test.shape)) print(' Test Set Memory Usage = {:.2f} MB'.format(orig_test.memory_usage().sum() / 1024**2)) print('%s Target: %s' %(model_label,target)) ###### Now analyze what problem we have here #### try: modeltype = analyze_problem_type(train, target[0],verbose) except: print('Cannot find the Target variable in data set. Please check input and try again') return for each_target in target: #### Make sure you don't move these 2 lines: they need to be reset for every target! #### HyperOpt will not do Trials beyond max_evals - so only if you reset here, it will do it again. if hyper_param == 'HO': params_dict = {} bayes_trials = Trials() ############ THIS IS WHERE OTHER DEFAULT PARAMS ARE SET ############### c_params = dict() r_params = dict() if modeltype == 'Regression': scv = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) eval_metric = 'rmse' objective = 'reg:squarederror' model_class = 'Regression' start_train = copy.deepcopy(orig_train) else: if len(np.unique(train[each_target])) == 2: model_class = 'Binary-Class' elif len(np.unique(train[each_target])) > 2: model_class = 'Multi-Class' ##### If multi-class happens, then you absolutely need to do SMOTE. Otherwise, you don't get good results! #### Unfortunately SMOTE blows up when the data set is large -> so better to turn it off! print('ALERT! Setting Imbalanced_Flag to True in Auto_ViML for Multi_Classification problems improves results!') #Imbalanced_Flag = True else: print('Target label %s has less than 2 classes. Stopping' %each_target) return ### This is for Classification Problems Only ######## print('Shuffling the data set before training') start_train = orig_train.sample(frac=1.0, random_state=seed) scv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) if modeltype != 'Regression': rare_class_orig = find_rare_class(orig_train[each_target].values,verbose=1) ### Perfrom Label Transformation only for Classification Problems #### classes = np.unique(orig_train[each_target]) if first_time: if hyper_param == 'GS': print('Using GridSearchCV for Hyper Parameter Tuning. This is slow. Switch to RS for faster tuning...') elif hyper_param == 'RS': print('Using RandomizedSearchCV for Hyper Parameter Tuning. This is 3X faster than GridSearchCV...') else: print('Using HyperOpt which is approximately 3X Faster than GridSearchCV but results vary...') first_time = False if len(classes) > 2: ##### If Boosting_Flag = True, change it to False here since Multi-Class XGB is VERY SLOW! max_class_length = len(classes) if Boosting_Flag: print('CAUTION: In Multi-Class Boosting (2+ classes), TRAINING WILL TAKE A LOT OF TIME!') objective = 'multi:softmax' eval_metric = "mlogloss" else: max_class_length = 2 eval_metric="logloss" objective = 'binary:logistic' ### Do Label Encoding when the Target Classes in each Label are Strings or Multi Class ### if type(start_train[each_target].values[0])==str or str(start_train[each_target].dtype )=='category' or sorted(np.unique(start_train[each_target].values))[0] != 0: ### if the class is a string or if it has more than 2 classes, then use Factorizer! label_dict[each_target]['values'] = start_train[each_target].values #### Factorizer is the easiest way to convert target in train and predictions in test #### This takes care of some classes that are present in train and not in predictions ### and vice versa. Hence it is better than Label Encoders which breaks when above happens. train_targ_categs = list(start_train[each_target].value_counts().index) if len(train_targ_categs) == 2: majority_class = [x for x in train_targ_categs if x != rare_class_orig] dict_targ_all = {majority_class[0]: 0, rare_class_orig: 1} else: dict_targ_all = return_factorized_dict(train_targ_categs) start_train[each_target] = start_train[each_target].map(dict_targ_all) label_dict[each_target]['dictionary'] = copy.deepcopy(dict_targ_all) label_dict[each_target]['transformer'] = dict([(v,k) for (k,v) in dict_targ_all.items()]) label_dict[each_target]['classes'] = copy.deepcopy(train_targ_categs) class_nums = list(dict_targ_all.values()) label_dict[each_target]['class_nums'] = copy.deepcopy(class_nums) print('String or Multi Class target: %s transformed as follows: %s' %(each_target,dict_targ_all)) rare_class = find_rare_class(start_train[each_target].values) else: ### Since the each_target here is already numeric, you don't have to modify it start_train[each_target] = start_train[each_target].astype(int).values rare_class = find_rare_class(start_train[each_target].values) label_dict[each_target]['values'] = start_train[each_target].values label_dict[each_target]['classes'] = np.unique(start_train[each_target].values) class_nums = np.unique(start_train[each_target].values) label_dict[each_target]['class_nums'] = copy.deepcopy(class_nums) label_dict[each_target]['transformer'] = [] label_dict[each_target]['dictionary'] = dict(zip(classes,classes)) print(' Target %s is already numeric. No transformation done.' %each_target) if rare_class != 1: print('Alert! Rare Class is not 1 but %s in this data set' %rare_class) else: #### In Regression problems, max_class_length is artificially set to one. #### It turns out that Estimated Time is correlated to number of classes in data set. Hence we use this! max_class_length = 1 ########################################################################################### #### This is where we start doing the iterative hyper tuning parameters ##### params_dict = defaultdict(list) accu_mean = [] error_rate = [] ###### This is where we do the training and hyper parameter tuning ######## orig_preds = [x for x in list(orig_train) if x not in target] count = 0 ################# CLASSIFY COLUMNS HERE ###################### var_df = classify_columns(orig_train[orig_preds], verbose) ##### Classify Columns ################ id_cols = var_df['id_vars'] nlp_columns = var_df['nlp_vars'] date_cols = var_df['date_vars'] del_cols = var_df['cols_delete'] factor_cols = var_df['factor_vars'] numvars = var_df['continuous_vars']+var_df['int_vars'] cat_vars = var_df['string_bool_vars']+var_df['discrete_string_vars']+var_df[ 'cat_vars']+var_df['factor_vars']+var_df['num_bool_vars'] num_bool_vars = var_df['num_bool_vars'] ####################################################################################### preds = [x for x in orig_preds if x not in id_cols+del_cols+date_cols+target] if len(id_cols+del_cols+date_cols)== 0: print(' No variables removed since no ID or low-information variables found in data set') else: print(' %d variables removed since they were ID or low-information variables' %len(id_cols+del_cols+date_cols)) ################## This is where real code begins ################################################### GPU_exists = check_if_GPU_exists() ###### This is where we set the CPU and GPU parameters for XGBoost param = {} if Boosting_Flag: if isinstance(Boosting_Flag,str): if Boosting_Flag.lower() == 'catboost': model_name = 'CatBoost' hyper_param = None else: model_name = 'XGBoost' else: model_name = 'XGBoost' elif Boosting_Flag is None: model_name = 'Linear' else: model_name = 'Forests' ##### Set the Scoring Parameters here based on each model and preferences of user ############## cpu_params = {} if model_name == 'XGBoost': ##### WE should keep CPU params as backup in case GPU fails! cpu_params['nthread'] = -1 cpu_params['tree_method'] = 'hist' cpu_params['grow_policy'] = 'depthwise' cpu_params['max_depth'] = max_depth cpu_params['max_leaves'] = 0 cpu_params['verbosity'] = 0 cpu_params['gpu_id'] = 0 cpu_params['updater'] = 'grow_colmaker' cpu_params['predictor'] = 'cpu_predictor' cpu_params['num_parallel_tree'] = 1 if GPU_exists: param['nthread'] = -1 param['tree_method'] = 'gpu_hist' param['grow_policy'] = 'depthwise' param['max_depth'] = max_depth param['max_leaves'] = 0 param['verbosity'] = 0 param['gpu_id'] = 0 param['updater'] = 'grow_gpu_hist' #'prune' param['predictor'] = 'gpu_predictor' param['num_parallel_tree'] = 1 else: param = copy.deepcopy(cpu_params) validation_metric = copy.deepcopy(scoring_parameter) elif model_name.lower() == 'catboost': if model_class == 'Binary-Class': catboost_scoring = 'Accuracy' validation_metric = 'Accuracy' loss_function='Logloss' elif model_class == 'Multi-Class': catboost_scoring = 'AUC' validation_metric = 'AUC:type=Mu' loss_function='MultiClass' else: loss_function = 'RMSE' validation_metric = 'RMSE' catboost_scoring = 'RMSE' else: validation_metric = copy.deepcopy(scoring_parameter) ########## D A T A P R E P R O C E S S I N G H E R E ########################## print('############# D A T A P R E P A R A T I O N #############') if start_train.isnull().sum().sum() > 0: print('Filling missing values with "missing" placeholder and adding a column for missing_flags') else: print('No Missing Values in train data set') copy_preds = copy.deepcopy(preds) missing_flag_cols = [] if len(copy_preds) > 0: dict_train = {} for f in copy_preds: if f in nlp_columns: #### YOu have to skip this for NLP columns ############## continue missing_flag = False if start_train[f].dtype == object: #### This is the easiest way to label encode object variables in both train and test #### This takes care of some categories that are present in train and not in test ### and vice versa start_train, start_test,missing_flag,new_missing_col = convert_train_test_cat_col_to_numeric(start_train, start_test,f,True) if missing_flag: cat_vars.append(new_missing_col) num_bool_vars.append(new_missing_col) preds.append(new_missing_col) missing_flag_cols.append(new_missing_col) elif start_train[f].dtype == np.int64 or start_train[f].dtype == np.int32 or start_train[f].dtype == np.int16: ### if there are integer variables, don't scale them. Leave them as is. fill_num = start_train[f].min() - 1 if start_train[f].isnull().sum() > 0: missing_flag = True new_missing_col = f + '_Missing_Flag' start_train[new_missing_col] = 0 start_train.loc[start_train[f].isnull(),new_missing_col]=1 start_train[f] = start_train[f].fillna(fill_num).astype(int) if type(orig_test) != str: if missing_flag: start_test[new_missing_col] = 0 if start_test[f].isnull().sum() > 0: start_test.loc[start_test[f].isnull(),new_missing_col]=1 start_test[f] = start_test[f].fillna(fill_num).astype(int) if missing_flag: cat_vars.append(new_missing_col) num_bool_vars.append(new_missing_col) preds.append(new_missing_col) missing_flag_cols.append(new_missing_col) elif f in factor_cols: start_train, start_test,missing_flag,new_missing_col = convert_train_test_cat_col_to_numeric(start_train, start_test,f,False) if missing_flag: cat_vars.append(new_missing_col) num_bool_vars.append(new_missing_col) preds.append(new_missing_col) missing_flag_cols.append(new_missing_col) else: ### for all numeric variables, fill missing values with 1 less than min. fill_num = start_train[f].min() - 1 if start_train[f].isnull().sum() > 0: missing_flag = True new_missing_col = f + '_Missing_Flag' start_train[new_missing_col] = 0 start_train.loc[start_train[f].isnull(),new_missing_col]=1 start_train[f] = start_train[f].fillna(fill_num) if type(orig_test) != str: if missing_flag: start_test[new_missing_col] = 0 if start_test[f].isnull().sum() > 0: start_test.loc[start_test[f].isnull(),new_missing_col]=1 start_test[f] = start_test[f].fillna(fill_num) if missing_flag: cat_vars.append(new_missing_col) num_bool_vars.append(new_missing_col) preds.append(new_missing_col) missing_flag_cols.append(new_missing_col) ########################################################################################### if orig_train.isnull().sum().sum() > 0: ### If there are missing values in remaining features print it here #### top5 = orig_train.isnull().sum().sort_values(ascending=False).index.tolist()[:5] print(' Columns with most missing values: %s' %( [x for x in top5 if orig_train[x].isnull().sum()>0])) print(' and their missing value totals: %s' %([orig_train[x].isnull().sum() for x in top5 if orig_train[x].isnull().sum()>0])) if start_train[copy_preds].isnull().sum().sum() == 0: print('Completed missing value Imputation. No more missing values in train.') if verbose >= 1: print(' %d new missing value columns added: %s' %(len(missing_flag_cols),missing_flag_cols)) else: print('Error: Unable to complete missing value imputation in train. Exiting...') return #################################################################################### if type(orig_test) != str: if start_test[copy_preds].isnull().sum().sum() > 0: print('Test data still has some missing values. Fix it. Exiting...') return else: print('Test data has no missing values. Continuing...') ########################################################################################### else: print(' Could not find any variables in your data set. Please check your dataset and try again') return ########################################################################################### print('Completed Label Encoding and Filling of Missing Values for Train and Test Data') ### This is a minor test to make sure that Boolean vars are Integers if they are Numeric! if len(num_bool_vars) > 0: ### Just make sure that numeric Boolean vars are set as Integer type -> otherwise CatBoost will blow up for each_bool_num in var_df['num_bool_vars']: start_train[each_bool_num] = start_train[each_bool_num].astype(int) if type(start_test) != str: start_test[each_bool_num] = start_test[each_bool_num].astype(int) ###################################################################################### ######### Set your Refit Criterion here - if you want to maximize Precision or Recall do it here ## if modeltype == 'Regression': if scoring_parameter in ['log_loss', 'neg_mean_squared_error','mean_squared_error']: refit_metric = 'rmse' else: refit_metric = 'mae' else: if scoring_parameter in ['precision', 'precision_score','average_precision']: refit_metric = 'precision' elif scoring_parameter in ['logloss', 'log_loss']: refit_metric = 'log_loss' elif scoring_parameter in ['recall', 'recall_score']: refit_metric = 'recall' elif scoring_parameter in ['f1', 'f1_score','f1_weighted']: refit_metric = 'f1' elif scoring_parameter in ['accuracy', 'balanced_accuracy','balanced-accuracy']: refit_metric = 'balanced_accuracy' else: refit_metric = 'balanced_accuracy' print('%s problem: hyperparameters are being optimized for %s' %(modeltype,refit_metric)) ########################################################################################### ### Make sure you remove variables that are highly correlated within data set first rem_vars = left_subtract(preds,numvars) if len(numvars) > 0 and feature_reduction: numvars = remove_variables_using_fast_correlation(start_train,numvars, 'pearson', corr_limit,verbose) ### Reduced Preds are now free of correlated variables and hence can be used for Poly adds red_preds = rem_vars + numvars #### You need to save a copy of this red_preds so you can later on create a start_train #### with it after each_target cycle is completed. Very important! orig_red_preds = copy.deepcopy(red_preds) for each_target in target: print('\n############# PROCESSING T A R G E T = %s ##########################' %each_target) ######## D E F I N I N G N E W T R A I N and N E W T E S T here ######################### #### This is where we set the orig train data set with multiple labels to the new start_train #### start_train has the new features added or reduced with the multi targets in one cycle ### That way, we start each train with one target, and then reset it with multi target ############################################################################################# train = start_train[[each_target]+red_preds] if type(orig_test) != str: test = start_test[red_preds] ###### Add Polynomial Variables and Interaction Variables to Train ###### if Add_Poly >= 1: if Add_Poly == 1: print('\nAdding only Interaction Variables. This may result in Overfitting!') elif Add_Poly == 2: print('\nAdding only Squared Variables. This may result in Overfitting!') elif Add_Poly == 3: print('\nAdding Both Interaction and Squared Variables. This may result in Overfitting!') ## Since the data is already scaled, we set scaling to None here ## ### For train data we have to set the fit_flag to True #### if len(numvars) > 1: #### train_red contains reduced numeric variables with original and substituted poly/intxn variables train_sel, lm, train_red,md,fin_xvars,feature_xvar_dict = add_poly_vars_select(train,numvars, each_target,modeltype,poly_degree,Add_Poly,md='', corr_limit=corr_limit, scaling='None', fit_flag=True,verbose=verbose) #### train_red contains reduced numeric variables with original and substituted poly/intxn variables if len(left_subtract(train_sel,numvars)) > 0: #### This means that new intxn and poly vars were added. In that case, you can use them as is #### Since these vars were alread tested for correlation, there should be no high correlation! ### SO you can take train_sel as the new list of numeric vars (numvars) going forward! addl_vars = left_subtract(train_sel,numvars) #numvars = list(set(numvars).intersection(set(train_sel))) ##### Print the additional Interxn and Poly variables here ####### if verbose >= 1: print(' Intxn and Poly Vars are: %s' %addl_vars) train = train_red[train_sel].join(train[rem_vars+[each_target]]) red_preds = [x for x in list(train) if x not in [each_target]] if type(test) != str: ######### Add Polynomial and Interaction variables to Test ################ ## Since the data is already scaled, we set scaling to None here ## ### For Test data we have to set the fit_flag to False #### _, _, test_x_df,_,_,_ = add_poly_vars_select(test,numvars,each_target, modeltype,poly_degree,Add_Poly,md, corr_limit, scaling='None', fit_flag=False, verbose=verbose) ### we need to convert x_vars into text_vars in test_x_df using feature_xvar_dict test_x_vars = test_x_df.columns.tolist() test_text_vars = [feature_xvar_dict[x] for x in test_x_vars] test_x_df.columns = test_text_vars #### test_red contains reduced variables with orig and substituted poly/intxn variables test_red = test_x_df[train_sel] #### we should now combined test_red with rem_vars so that it is the same shape as train test = test_red.join(test[rem_vars]) #### Now we should change train_sel to subst_vars since that is the new list of vars going forward numvars = copy.deepcopy(train_sel) else: #### NO new variables were added. so we can skip the rest of the stuff now ### #### This means the train_sel is the new set of numeric features selected by add_poly algorithm red_preds = train_sel+rem_vars print(' No new variable was added by polynomial features...') else: print('\nAdding Polynomial vars ignored since no numeric vars in data') train_sel = copy.deepcopy(numvars) else: ### if there are no Polynomial vars, then all numeric variables are selected train_sel = copy.deepcopy(numvars) ################ A U T O N L P P R O C E S S I N G B E G I N S H E R E !!! #### if len(nlp_columns) > 0: for nlp_column in nlp_columns: nlp_column_train = train[nlp_column].values if not isinstance(orig_test, str): nlp_column_test = test[nlp_column].values train1, test1, best_nlp_transformer,max_features_limit = Auto_NLP(nlp_column, train, test, each_target, refit_metric, modeltype, top_nlp_features, verbose, build_model=False) ######################################################################## if KMeans_Featurizer: start_time1 = time.time() ##### Do a clustering of word vectors from each NLP_column. This gives great results! tfidf_term_array = create_tfidf_terms(nlp_column_train, best_nlp_transformer, is_train=True, max_features_limit=max_features_limit) print ('Creating word clusters using term matrix of size: %d for Train data set...' %len(tfidf_term_array['terms'])) num_clusters = int(np.sqrt(len(tfidf_term_array['terms']))/2) if num_clusters < 2: num_clusters = 2 ##### Always set verbose to 0 since we KMEANS running is too verbose! km = KMeans(n_clusters=num_clusters, random_state=seed, verbose=0) kme, cluster_labels = return_cluster_labels(km, tfidf_term_array, num_clusters, is_train=True) if isinstance(nlp_column, str): cluster_col = nlp_column + '_word_cluster_label' else: cluster_col = str(nlp_column) + '_word_cluster_label' train1[cluster_col] = cluster_labels print ('Created one new column: %s using selected NLP technique...' %cluster_col) if not isinstance(orig_test, str): tfidf_term_array_test = create_tfidf_terms(nlp_column_test, best_nlp_transformer, is_train=False, max_features_limit=max_features_limit) _, cluster_labels_test = return_cluster_labels(kme, tfidf_term_array_test, num_clusters, is_train=False) test1[cluster_col] = cluster_labels_test print ('Created word clusters using same sized term matrix for Test data set...') print(' Time Taken for creating word cluster labels = %0.0f seconds' %(time.time()-start_time1) ) ####### Make sure you include the above new columns created in the predictor variables! red_preds = [x for x in list(train1) if x not in [each_target]] train = train1[red_preds+[each_target]] if not isinstance(orig_test, str): test = test1[red_preds] ################ A U T O N L P P R O C E S S I N G E N D S H E R E !!! #### ###### We have to detect float variables again since we have created new variables using Auto_NLP!! train_sel = np.array(red_preds)[(train[red_preds].dtypes==float).values].tolist() ######### A D D D A T E T I M E F E A T U R E S #################### if len(date_cols) > 0: #### Do this only if date time columns exist in your data set! for date_col in date_cols: print('Processing %s column for date time features....' %date_col) date_df_train = create_time_series_features(orig_train, date_col) if not isinstance(date_df_train, str): date_col_adds = date_df_train.columns.tolist() print(' Adding %d columns from date time column %s' %(len(date_col_adds),date_col)) train = train.join(date_df_train) else: date_col_adds = [] if not isinstance(orig_test, str): date_df_test = create_time_series_features(orig_test, date_col) if not isinstance(date_df_test, str): test = test.join(date_df_test) red_preds = [x for x in list(train) if x not in [each_target]] train_sel = train_sel + date_col_adds ######### SELECT IMPORTANT FEATURES HERE ############################# if feature_reduction: important_features,num_vars, imp_cats = find_top_features_xgb(train,red_preds,train_sel, each_target, modeltype,corr_limit,verbose) else: important_features = copy.deepcopy(red_preds) num_vars = copy.deepcopy(numvars) #### we need to set the rem_vars in case there is no feature reduction ####### imp_cats = left_subtract(important_features,num_vars) ##################################################################################### if len(important_features) == 0: print('No important features found. Using all input features...') important_features = copy.deepcopy(red_preds) num_vars = copy.deepcopy(numvars) #### we need to set the rem_vars in case there is no feature reduction ####### imp_cats = left_subtract(important_features,num_vars) ### Training an XGBoost model to find important features train = train[important_features+[each_target]] ###################################################################### if type(orig_test) != str: test = test[important_features] ############## F E A T U R E E N G I N E E R I N G S T A R T S N O W ############## ###### From here on we do some Feature Engg using Target Variable with Data Leakage ############ ### To avoid Model Leakage, we will now split the Data into Train and CV so that Held Out Data ## is Pure and is unadulterated by learning from its own Target. This is known as Data Leakage. ################################################################################################### print('Starting Feature Engineering now...') X = train[important_features] y = train[each_target] ################ I M P O R T A N T ################################################## ### The reason we don't use train_test_split is because we want only a partial train entropy binned ### If we use the whole of Train for entropy binning then there will be data leakage and our ### cross validation test scores will not be so accurate. So don't change the next 5 lines here! ################ I M P O R T A N T ################################################## if modeltype == 'Regression': skf = KFold(n_splits=n_splits, random_state=seed) else: skf = StratifiedKFold(n_splits=n_splits, random_state=seed, shuffle=True) cv_train_index, cv_index = next(skf.split(X, y)) ################ TRAIN CV TEST SPLIT HERE ################################################## try: #### Sometimes this works but other times, it gives an error! X_train, X_cv = X.loc[cv_train_index], X.loc[cv_index] y_train, y_cv = y.loc[cv_train_index], y.loc[cv_index] ### The reason we don't use train_test_split is because we want only a partial train entropy binned part_train = train.loc[cv_train_index] part_cv = train.loc[cv_index] except: #### This works when the above method gives an error! X_train, X_cv = X.iloc[cv_train_index], X.iloc[cv_index] y_train, y_cv = y.iloc[cv_train_index], y.iloc[cv_index] ### The reason we don't use train_test_split is because we want only a partial train entropy binned part_train = train.iloc[cv_train_index] part_cv = train.iloc[cv_index] print('Train CV Split completed with', "TRAIN rows:", cv_train_index.shape[0], "CV rows:", cv_index.shape[0]) ################ IMPORTANT ENTROPY BINNING FIRST TIME ##################################### ############ Add Entropy Binning of Continuous Variables Here ############################## num_vars = np.array(important_features)[(train[important_features].dtypes==float)].tolist() saved_important_features = copy.deepcopy(important_features) ### these are original features without '_bin' added #### saved_num_vars is an important variable: it contains the orig_num_vars before they were binned saved_num_vars = copy.deepcopy(num_vars) ### these are original numeric features without '_bin' added ############### BINNING FIRST TIME ################################################## if Binning_Flag and len(saved_num_vars) > 0: #### Do binning only when there are numeric features #### #### When we Bin the first time, we set the entropy_binning flag to False so #### no numeric variables are removed. But next time, we will remove them later! part_train, num_vars, important_features, part_cv = add_entropy_binning(part_train, each_target, saved_num_vars, saved_important_features, part_cv, modeltype, entropy_binning=False,verbose=verbose) #### In saved_num_vars we send in all the continuous_vars but we bin only the top few vars. ### Those that are binned are removed from saved_num_vars and the remaining become num_vars ### Our job is to find the names of those original numeric variables which were binned. ### orig_num_vars contains original num vars. num_vars contains binned versions of those vars. ### Those binned variables have now become categorical vars and must be added to imp_cats. ### you get the name of the original vars which were binned here in this orig_num_vars variable! orig_num_vars = left_subtract(saved_num_vars,num_vars) #### you need to know the name of the binner variables. This is where you get it! binned_num_vars = left_subtract(num_vars,saved_num_vars) imp_cats += binned_num_vars #### Also note that important_features does not contain orig_num_vars which have been erased. else: print(' Binning_Flag set to False or there are no numeric vars in data set to be binned') ####################### KMEANS FIRST TIME ############################ ### Now we add another Feature tied to KMeans clustering using Predictor and Target variables ### if KMeans_Featurizer and len(saved_num_vars) > 0: ### DO KMeans Featurizer only if there are numeric features in the data set! print(' Adding one Feature named "KMeans_Clusters" based on KMeans_Featurizer_Flag=True...') km_label = 'KMeans_Clusters' if modeltype != 'Regression': #### Make the number of clusters as the same as log10 of number of rows in Train num_clusters = int(np.round(max(2,np.log10(train.shape[0])))) #### Make the number of clusters as the same as log10 of number of rows in Train train_clusters, cv_clusters = Transform_KM_Features(part_train[ important_features], part_train[each_target], part_cv[important_features], num_clusters) else: ### If it is Regression, you don't have to specify the number of clusters train_clusters, cv_clusters = Transform_KM_Features(part_train[ important_features], part_train[each_target], part_cv[important_features]) #### Since this is returning the each_target in X_train, we need to drop it here ### print(' Used KMeans to naturally cluster Train predictor variables into %d clusters' %num_clusters) part_train[km_label] = train_clusters part_cv[km_label] = cv_clusters #X_train.drop(each_target,axis=1,inplace=True) imp_cats.append(km_label) for imp_cat in imp_cats: part_train[imp_cat] = part_train[imp_cat].astype(int) part_cv[imp_cat] = part_cv[imp_cat].astype(int) ####### The features are checked again once we add the cluster feature #### important_features.append(km_label) else: print(' KMeans_Featurizer set to False or there are no numeric vars in data') km_label = '' ####################### STACKING FIRST TIME ############################ ######### This is where you do Stacking of Multi Model Results into One Column ### if Stacking_Flag: #### In order to join, you need X_train to be a Pandas Series here ## print('Alert! Stacking can produce Highly Overfit models on Training Data...') ### In order to avoid overfitting, we are going to learn from a small sample of data ### That is why we are using X_train to train on and using it to predict on X_cv! addcol, stacks1 = QuickML_Stacking(part_train[important_features],part_train[ each_target],part_train[important_features], modeltype, Boosting_Flag, scoring_parameter,verbose) addcol, stacks2 = QuickML_Stacking(part_train[important_features],part_train[ each_target],part_cv[important_features], modeltype, Boosting_Flag, scoring_parameter,verbose) part_train = part_train.join(pd.DataFrame(stacks1,index=cv_train_index, columns=addcol)) ##### Adding multiple columns for Stacking is best! Do not do the average of predictions! part_cv = part_cv.join(pd.DataFrame(stacks2,index=cv_index, columns=addcol)) print(' Adding %d Stacking feature(s) to training data' %len(addcol)) ###### We make sure that we remove any new features that are highly correlated ! ##### #addcol = remove_variables_using_fast_correlation(X_train,addcol,corr_limit,verbose) important_features += addcol ############################################################################### #### part train contains the unscaled original train. It also contains binned and orig_num_vars! #### DO NOT DO TOUCH part_train and part_cv -> we need it to recrate train later! ####################### Now do Feature Scaling Here ################################# part_train_scaled, part_cv_scaled = perform_scaling_numeric_vars(part_train, important_features, part_cv, model_name, SS) #### part_train_scaled has both predictor and target variables. Target must be removed! important_features = find_remove_duplicates(important_features) X_train = part_train_scaled[important_features] X_cv = part_cv_scaled[important_features] #### Remember that the next 2 lines are crucial: if X and y are dataframes, then predict_proba ### will return dataframes or series. Otherwise it will return Numpy array's. ## Be consistent when using dataframes with XGB. That's the best way to keep feature names! print('############### M O D E L B U I L D I N G B E G I N S ####################') print('Rows in Train data set = %d' %X_train.shape[0]) print(' Features in Train data set = %d' %X_train.shape[1]) print(' Rows in held-out data set = %d' %X_cv.shape[0]) data_dim = X_train.shape[0]*X_train.shape[1] ### Setting up the Estimators for Single Label and Multi Label targets only if modeltype == 'Regression': metrics_list = ['neg_mean_absolute_error' ,'neg_mean_squared_error', 'neg_mean_squared_log_error','neg_median_absolute_error'] eval_metric = "rmse" if scoring_parameter == 'neg_mean_absolute_error' or scoring_parameter =='mae': meae_scorer = make_scorer(gini_meae, greater_is_better=False) scorer = meae_scorer elif scoring_parameter == 'neg_mean_squared_error' or scoring_parameter =='mse': mse_scorer = make_scorer(gini_mse, greater_is_better=False) scorer = mse_scorer elif scoring_parameter == 'neg_mean_squared_log_error' or scoring_parameter == 'log_error': msle_scorer = make_scorer(gini_msle, greater_is_better=False) print(' Log Error is not recommended since predicted values might be negative and error') rmse_scorer = make_scorer(gini_rmse, greater_is_better=False) scorer = rmse_scorer elif scoring_parameter == 'neg_median_absolute_error' or scoring_parameter == 'median_error': mae_scorer = make_scorer(gini_mae, greater_is_better=False) scorer = mae_scorer elif scoring_parameter =='rmse' or scoring_parameter == 'root_mean_squared_error': rmse_scorer = make_scorer(gini_rmse, greater_is_better=False) scorer = rmse_scorer else: scoring_parameter = 'rmse' rmse_scorer = make_scorer(gini_rmse, greater_is_better=False) scorer = rmse_scorer #### HYPER PARAMETERS FOR TUNING ARE SETUP HERE ### if hyper_param == 'GS': r_params = { "Forests": { "n_estimators" : np.linspace(100, max_estims, n_steps, dtype = "int"), "max_depth": [3, 5, max_depth], #"criterion" : ['mse','mae'], }, "Linear": { 'alpha': np.logspace(-5,3), }, "XGBoost": { 'learning_rate': np.linspace(0.1,0.5,5), 'gamma': np.linspace(0, 32,7).astype(int), "max_depth": [3, 5, max_depth], }, "CatBoost": { 'learning_rate': np.logspace(Alpha_min,Alpha_max,40), }, } else: import scipy as sp r_params = { "Forests": { 'n_estimators': sp.stats.randint(100,max_estims), "max_depth": sp.stats.randint(1, 10), "min_samples_leaf": sp.stats.randint(1, 20), #"criterion" : ['mse','mae'], }, "Linear": { 'alpha': sp.stats.uniform(scale=1000), }, "XGBoost": { 'learning_rate': sp.stats.uniform(scale=1), 'gamma': sp.stats.randint(0, 32), 'n_estimators': sp.stats.randint(100,max_estims), "max_depth": sp.stats.randint(2, 10), }, "CatBoost": { 'learning_rate': np.logspace(Alpha_min,Alpha_max,40), }, } if Boosting_Flag: if model_name.lower() == 'catboost': xgbm = CatBoostRegressor(verbose=1,iterations=max_estims,random_state=99, one_hot_max_size=one_hot_size, loss_function=loss_function, eval_metric=catboost_scoring, subsample=0.7,bootstrap_type='Bernoulli', metric_period = 100, early_stopping_rounds=250,boosting_type='Plain') else: xgbm = XGBRegressor(seed=seed,n_jobs=-1,random_state=seed,subsample=subsample, colsample_bytree=col_sub_sample,n_estimators=max_estims, objective=objective) xgbm.set_params(**param) elif Boosting_Flag is None: #xgbm = Lasso(max_iter=max_iter,random_state=seed) xgbm = Lasso(max_iter=max_iter,random_state=seed) else: xgbm = RandomForestRegressor( **{ 'bootstrap': bootstrap, 'n_jobs': -1, 'warm_start': warm_start, 'random_state':seed,'min_samples_leaf':2, 'max_features': "sqrt" }) else: #### This is for Binary Classification ############################## classes = label_dict[each_target]['classes'] metrics_list = ['accuracy_score','roc_auc_score','logloss', 'precision','recall','f1'] # Create regularization hyperparameter distribution with 50 C values #### if hyper_param == 'GS': c_params['XGBoost'] = { 'learning_rate': np.linspace(0.1,0.5,5), 'gamma': np.linspace(0, 32,7).astype(int), "max_depth": [3, 5, max_depth], } c_params["CatBoost"] = { 'learning_rate': np.logspace(Alpha_min,Alpha_max,40), } if Imbalanced_Flag: c_params['Linear'] = { 'C': Cs, 'solver' : solvers, 'penalty' : penalties, 'class_weight':[None, 'balanced'], } else: c_params['Linear'] = { 'C': Cs, 'class_weight':[None, 'balanced'], 'penalty' : penalties, 'solver' : solvers, } c_params["Forests"] = { ##### I have selected these to avoid Overfitting which is a problem for small data sets "n_estimators" : np.linspace(100, max_estims, n_steps, dtype = "int"), "max_depth": [3, 5, max_depth], #'max_features': [1,2,5, max_features], #"criterion":['gini','entropy'], } else: import scipy as sp c_params['XGBoost'] = { 'learning_rate': sp.stats.uniform(scale=1), 'gamma': sp.stats.randint(0, 32), 'n_estimators': sp.stats.randint(100,max_estims), "max_depth": sp.stats.randint(1, 10), } c_params["CatBoost"] = { 'learning_rate': sp.stats.uniform(scale=1), } if Imbalanced_Flag: c_params['Linear'] = { 'C': sp.stats.uniform(scale=100), 'solver' : solvers, 'penalty' : penalties, 'class_weight':[None, 'balanced'], } else: c_params['Linear'] = { 'C': sp.stats.uniform(scale=100), 'penalty' : penalties, 'solver' : solvers, } c_params["Forests"] = { ##### I have selected these to avoid Overfitting which is a problem for small data sets 'n_estimators': sp.stats.randint(100,max_estims), "max_depth": sp.stats.randint(1, 10), "min_samples_leaf": sp.stats.randint(1, 20), #"criterion":['gini','entropy'], #'max_features': ['log', "sqrt"] , #'class_weight':[None,'balanced'] } # Create regularization hyperparameter distribution using uniform distribution if len(classes) == 2: objective = 'binary:logistic' if scoring_parameter == 'accuracy' or scoring_parameter == 'accuracy_score': accuracy_scorer = make_scorer(gini_accuracy, greater_is_better=True, needs_proba=False) scorer =accuracy_scorer elif scoring_parameter == 'gini': gini_scorer = make_scorer(gini_sklearn, greater_is_better=False, needs_proba=True) scorer =gini_scorer elif scoring_parameter == 'auc' or scoring_parameter == 'roc_auc' or scoring_parameter == 'roc_auc_score': roc_scorer = make_scorer(gini_roc, greater_is_better=True, needs_threshold=True) scorer =roc_scorer elif scoring_parameter == 'log_loss' or scoring_parameter == 'logloss': scoring_parameter = 'neg_log_loss' logloss_scorer = make_scorer(gini_log_loss, greater_is_better=False, needs_proba=False) scorer =logloss_scorer elif scoring_parameter=='balanced_accuracy' or scoring_parameter=='balanced-accuracy' or scoring_parameter=='average_accuracy': bal_accuracy_scorer = make_scorer(gini_bal_accuracy, greater_is_better=True, needs_proba=False) scorer = bal_accuracy_scorer elif scoring_parameter == 'precision' or scoring_parameter == 'precision_score': precision_scorer = make_scorer(gini_precision, greater_is_better=True, needs_proba=False, pos_label=rare_class) scorer =precision_scorer elif scoring_parameter == 'recall' or scoring_parameter == 'recall_score': recall_scorer = make_scorer(gini_recall, greater_is_better=True, needs_proba=False, pos_label=rare_class) scorer =recall_scorer elif scoring_parameter == 'f1' or scoring_parameter == 'f1_score': f1_scorer = make_scorer(gini_f1, greater_is_better=True, needs_proba=False, pos_label=rare_class) scorer =f1_scorer elif scoring_parameter == 'f2' or scoring_parameter == 'f2_score': f2_scorer = make_scorer(f2_measure, greater_is_better=True, needs_proba=False) scorer =f2_scorer else: logloss_scorer = make_scorer(gini_log_loss, greater_is_better=False, needs_proba=False) scorer =logloss_scorer #f1_scorer = make_scorer(gini_f1, greater_is_better=True, needs_proba=False, # pos_label=rare_class) #scorer = f1_scorer ### DO NOT USE NUM CLASS WITH BINARY CLASSIFICATION ###### if Boosting_Flag: if model_name.lower() == 'catboost': xgbm = CatBoostClassifier(verbose=1,iterations=max_estims, random_state=99,one_hot_max_size=one_hot_size, loss_function=loss_function, eval_metric=catboost_scoring, subsample=0.7,bootstrap_type='Bernoulli', metric_period = 100, early_stopping_rounds=250,boosting_type='Plain') else: xgbm = XGBClassifier(base_score=0.5, booster='gbtree', subsample=subsample, colsample_bytree=col_sub_sample,gamma=1, learning_rate=0.1, max_delta_step=0, max_depth=max_depth, min_child_weight=1, missing=-999, n_estimators=max_estims, n_jobs=-1, nthread=None, objective=objective, random_state=1, reg_alpha=0.5, reg_lambda=0.5, scale_pos_weight=1, seed=1) xgbm.set_params(**param) elif Boosting_Flag is None: #### I have set the Verbose to be False here since it produces too much output ### xgbm = LogisticRegression(random_state=seed,verbose=False,n_jobs=-1,solver=solver, fit_intercept=True, tol=tolerance, warm_start=warm_start, max_iter=max_iter) else: xgbm = RandomForestClassifier( **{ 'bootstrap': bootstrap, 'n_jobs': -1, 'warm_start': warm_start, 'random_state':seed,'min_samples_leaf':2,'oob_score':True, 'max_features': "sqrt" }) else: ##### This is for MULTI Classification ########################## objective = 'multi:softmax' eval_metric = "mlogloss" if scoring_parameter == 'gini': gini_scorer = make_scorer(gini_sklearn, greater_is_better=False, needs_proba=True) scorer = gini_scorer elif scoring_parameter=='balanced_accuracy' or scoring_parameter=='balanced-accuracy' or scoring_parameter=='average_accuracy': bal_accuracy_scorer = make_scorer(gini_bal_accuracy, greater_is_better=True, needs_proba=False) scorer = bal_accuracy_scorer elif scoring_parameter == 'roc_auc' or scoring_parameter == 'roc_auc_score': roc_auc_scorer = make_scorer(gini_sklearn, greater_is_better=False, needs_proba=True) scorer = roc_auc_scorer elif scoring_parameter == 'average_precision' or scoring_parameter == 'mean_precision': average_precision_scorer = make_scorer(gini_average_precision, greater_is_better=True, needs_proba=True) scorer = average_precision_scorer elif scoring_parameter == 'samples_precision': samples_precision_scorer = make_scorer(gini_samples_precision, greater_is_better=True, needs_proba=True) scorer = samples_precision_scorer elif scoring_parameter == 'weighted_precision' or scoring_parameter == 'weighted-precision': weighted_precision_scorer = make_scorer(gini_weighted_precision, greater_is_better=True, needs_proba=True) scorer = weighted_precision_scorer elif scoring_parameter == 'macro_precision': macro_precision_scorer = make_scorer(gini_macro_precision, greater_is_better=True, needs_proba=True) scorer = macro_precision_scorer elif scoring_parameter == 'micro_precision': scorer = micro_precision_scorer micro_precision_scorer = make_scorer(gini_micro_precision, greater_is_better=True, needs_proba=True) elif scoring_parameter == 'samples_recall': samples_recall_scorer = make_scorer(gini_samples_recall, greater_is_better=True, needs_proba=True) scorer = samples_recall_scorer elif scoring_parameter == 'weighted_recall' or scoring_parameter == 'weighted-recall': weighted_recall_scorer = make_scorer(gini_weighted_recall, greater_is_better=True, needs_proba=True) scorer = weighted_recall_scorer elif scoring_parameter == 'macro_recall': macro_recall_scorer = make_scorer(gini_macro_recall, greater_is_better=True, needs_proba=True) scorer = macro_recall_scorer elif scoring_parameter == 'micro_recall': micro_recall_scorer = make_scorer(gini_micro_recall, greater_is_better=True, needs_proba=True) scorer = micro_recall_scorer elif scoring_parameter == 'samples_f1': samples_f1_scorer = make_scorer(gini_samples_f1, greater_is_better=True, needs_proba=True) scorer = samples_f1_scorer elif scoring_parameter == 'weighted_f1' or scoring_parameter == 'weighted-f1': weighted_f1_scorer = make_scorer(gini_weighted_f1, greater_is_better=True, needs_proba=True) scorer = weighted_f1_scorer elif scoring_parameter == 'macro_f1': macro_f1_scorer = make_scorer(gini_macro_f1, greater_is_better=True, needs_proba=True) scorer = macro_f1_scorer elif scoring_parameter == 'micro_f1': micro_f1_scorer = make_scorer(gini_micro_f1, greater_is_better=True, needs_proba=True) scorer = micro_f1_scorer else: weighted_f1_scorer = make_scorer(gini_weighted_f1, greater_is_better=True, needs_proba=True) scorer = weighted_f1_scorer import scipy as sp if Boosting_Flag: # Create regularization hyperparameter distribution using uniform distribution if hyper_param == 'GS': c_params['XGBoost'] = { 'learning_rate': np.linspace(0.1,0.5,5), 'gamma': np.linspace(0, 32,7).astype(int), "max_depth": [3, 5, max_depth], } c_params["CatBoost"] = { 'learning_rate': np.logspace(Alpha_min,Alpha_max,40), } else: import scipy as sp c_params['XGBoost'] = { 'learning_rate': sp.stats.uniform(scale=1), 'gamma': sp.stats.randint(0, 32), 'n_estimators': sp.stats.randint(100, max_estims), 'max_depth': sp.stats.randint(1, 10) } c_params['CatBoost'] = { 'learning_rate': sp.stats.uniform(scale=1), } if model_name.lower() == 'catboost': xgbm = CatBoostClassifier(verbose=1,iterations=max_estims, random_state=99,one_hot_max_size=one_hot_size, loss_function=loss_function, eval_metric=catboost_scoring, subsample=0.7,bootstrap_type='Bernoulli', metric_period = 100, early_stopping_rounds=250,boosting_type='Plain') else: xgbm = XGBClassifier(base_score=0.5, booster='gbtree', subsample=subsample, colsample_bytree=col_sub_sample, gamma=1, learning_rate=0.1, max_delta_step=0, max_depth=max_depth, min_child_weight=1, missing=-999, n_estimators=max_estims, n_jobs=-1, nthread=None, objective=objective, random_state=1, reg_alpha=0.5, reg_lambda=0.5, scale_pos_weight=1, num_class= len(classes), seed=1) xgbm.set_params(**param) elif Boosting_Flag is None: if hyper_param == 'GS': if Imbalanced_Flag: c_params['Linear'] = { 'C': Cs, 'class_weight':[None, 'balanced'], } else: c_params['Linear'] = { 'C': Cs, } else: if Imbalanced_Flag: c_params['Linear'] = { 'C': sp.stats.uniform(scale=100), 'class_weight':[None, 'balanced'], } else: c_params['Linear'] = { 'C': sp.stats.uniform(scale=100), } #### I have set the Verbose to be False here since it produces too much output ### xgbm = LogisticRegression(random_state=seed,verbose=False,n_jobs=-1,solver=solver, fit_intercept=True, tol=tolerance, multi_class='auto', max_iter=max_iter, warm_start=False, ) else: if hyper_param == 'GS': c_params["Forests"] = { ##### I have selected these to avoid Overfitting which is a problem for small data sets "n_estimators" : np.linspace(100, max_estims, n_steps, dtype = "int"), "max_depth": [3, 5, max_depth], #"criterion":['gini','entropy'], } else: c_params["Forests"] = { ##### I have set these to avoid OverFitting which is a problem for small data sets ### 'n_estimators': sp.stats.randint(100,max_estims), "max_depth": sp.stats.randint(1, 10), "min_samples_leaf": sp.stats.randint(1, 20), #"criterion":['gini','entropy'], #'class_weight':[None,'balanced'] } xgbm = RandomForestClassifier(bootstrap=bootstrap, oob_score=True,warm_start=warm_start, n_estimators=100,max_depth=3, min_samples_leaf=2,max_features='auto', random_state=seed,n_jobs=-1) ###### Now do RandomizedSearchCV using # Early-stopping ################ if modeltype == 'Regression': #scoreFunction = {"mse": "neg_mean_squared_error", "mae": "neg_mean_absolute_error"} #### I have set the Verbose to be False here since it produces too much output ### if hyper_param == 'GS': #### I have set the Verbose to be False here since it produces too much output ### gs = GridSearchCV(xgbm,param_grid=r_params[model_name], scoring = scorer, n_jobs=-1, cv = scv, refit = refit_metric, return_train_score = True, verbose=0) elif hyper_param == 'RS': gs = RandomizedSearchCV(xgbm, param_distributions = r_params[model_name], n_iter = no_iter, scoring = scorer, refit = refit_metric, return_train_score = True, random_state = seed, cv = scv, n_jobs=-1, verbose = 0) else: #### CatBoost does not need Hyper Parameter tuning => it's great out of the box! gs = copy.deepcopy(xgbm) else: if hyper_param == 'GS': #### I have set the Verbose to be False here since it produces too much output ### gs = GridSearchCV(xgbm,param_grid=c_params[model_name], scoring = scorer, return_train_score = True, n_jobs=-1, refit = refit_metric, cv = scv, verbose=0) elif hyper_param == 'RS': #### I have set the Verbose to be False here since it produces too much output ### gs = RandomizedSearchCV(xgbm, param_distributions = c_params[model_name], n_iter = no_iter, scoring = scorer, refit = refit_metric, return_train_score = True, random_state = seed, n_jobs=-1, cv = scv, verbose = 0) else: #### CatBoost does not need Hyper Parameter tuning => it's great out of the box! gs = copy.deepcopy(xgbm) #trains and optimizes the model eval_set = [(X_train,y_train),(X_cv,y_cv)] print('Finding Best Model and Hyper Parameters for Target: %s...' %each_target) ##### Here is where we put the part_train and part_cv together ########### if modeltype != 'Regression': ### Do this only for Binary Classes and Multi-Classes, both are okay baseline_accu = 1-(train[each_target].value_counts(1).sort_values())[rare_class] print(' Baseline Accuracy Needed for Model = %0.2f%%' %(baseline_accu*100)) print('CPU Count = %s in this device' %CPU_count) if modeltype == 'Regression': if Boosting_Flag: if model_name.lower() == 'catboost': data_dim = data_dim*one_hot_size/len(preds) print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(3000000.*CPU_count))) else: print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(50000.*CPU_count))) elif Boosting_Flag is None: print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(80000.*CPU_count))) else: print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(40000.*CPU_count))) else: if hyper_param == 'GS': if Boosting_Flag: if model_name.lower() == 'catboost': data_dim = data_dim*one_hot_size/len(preds) print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(300000.*CPU_count))) else: print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(10000.*CPU_count))) elif Boosting_Flag is None: #### A Linear model is usually the fastest ########### print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(50000.*CPU_count))) else: print('Using %s Model, Estimated Training time = %0.3f mins' %(model_name,data_dim*max_class_length/(16000.*CPU_count))) else: if Boosting_Flag: if model_name.lower() == 'catboost': data_dim = data_dim*one_hot_size/len(preds) print('Using %s Model, Estimated Training time = %0.2f mins' %(model_name,data_dim*max_class_length/(3000000.*CPU_count))) else: print('Using %s Model, Estimated Training time = %0.2f mins' %(model_name,data_dim*max_class_length/(40000.*CPU_count))) elif Boosting_Flag is None: print('Using %s Model, Estimated Training time = %0.2f mins' %(model_name,data_dim*max_class_length/(100000.*CPU_count))) else: print('Using %s Model, Estimated Training time = %0.2f mins' %(model_name,data_dim*max_class_length/(25000.*CPU_count))) ##### Since we are using Multiple Models each with its own quirks, we have to make sure it is done this way ##### ############ TRAINING MODEL FIRST TIME WITH X_TRAIN AND TESTING ON X_CV ############ model_start_time = time.time() ################################################################################################################################ ##### BE VERY CAREFUL ABOUT MODIFYING THIS NEXT LINE JUST BECAUSE IT APPEARS TO BE A CODING MISTAKE. IT IS NOT!! ############# ################################################################################################################################ ####### if Imbalanced_Flag: if modeltype == 'Regression': ########### In case someone sets the Imbalanced_Flag mistakenly to True and it is Regression, you must set it to False ###### Imbalanced_Flag = False else: ####### Imbalanced with Classification ################# try: print('############## Imbalanced Flag on: Training model with SMOTE Oversampling method ###########') #### The model is the downsampled model Trained on downsampled data sets. #### model, X_train, y_train = training_with_SMOTE(X_train,y_train,eval_set, gs, Boosting_Flag, eval_metric, modeltype, model_name,training=True, minority_class=rare_class,imp_cats=imp_cats, calibrator_flag=calibrator_flag, GPU_exists=GPU_exists, params = cpu_params, verbose=verbose) if isinstance(model, str): model = copy.deepcopy(gs) #### If d_model failed, it will just be an empty string, so you try the regular model ### print('Error in training Imbalanced model first time. Trying regular model..') Imbalanced_Flag = False if Boosting_Flag: if model_name == 'XGBoost': #### Set the Verbose to 0 since we don't want too much output ## try: model.fit(X_train, y_train, early_stopping_rounds=early_stopping, eval_metric=eval_metric,eval_set=eval_set,verbose=0) except: #### On Colab, even though GPU exists, many people don't turn it on. #### In that case, XGBoost blows up when gpu_predictor is used. #### This is to turn it back to cpu_predictor in case GPU errors! if GPU_exists: print('Error: GPU exists but it is not turned on. Using CPU for predictions...') model.estimator.set_params(**cpu_params) model.fit(X_train,y_train, early_stopping_rounds=early_stopping, eval_metric=eval_metric,eval_set=eval_set,verbose=False) else: model.fit(X_train,y_train, eval_metric=eval_metric, verbose=False) else: try: model.fit(X_train, y_train, cat_features=imp_cats,eval_set=(X_cv,y_cv), use_best_model=True,plot=True) except: model.fit(X_train, y_train, cat_features=imp_cats,use_best_model=False,plot=False) else: model.fit(X_train, y_train) #### If downsampling succeeds, it will be used to get the best score and can become model again ## if hyper_param == 'RS' or hyper_param == 'GS': best_score = model.best_score_ else: val_keys = list(model.best_score_.keys()) best_score = model.best_score_[val_keys[-1]][validation_metric] except: print('Error in training Imbalanced model first time. Trying regular model..') Imbalanced_Flag = False best_score = 0 ################################################################################################################################ ####### Though this next step looks like it is a Coding Mistake by Me, don't change it!!! ################### ####### This is for case when Imbalanced with Classification succeeds, this next step is skipped ############ ################################################################################################################################ if not Imbalanced_Flag: ########### This is for both regular Regression and regular Classification Model Training. It is not a Mistake ############# ########### In case Imbalanced training fails, this method is also tried. That's why we test the Flag here!! ############# try: model = copy.deepcopy(gs) if Boosting_Flag: if model_name == 'XGBoost': try: #### Set the Verbose to 0 since we don't want too much output ## model.fit(X_train, y_train, early_stopping_rounds=early_stopping, eval_metric=eval_metric,eval_set=eval_set,verbose=0) except: #### On Colab, even though GPU exists, many people don't turn it on. #### In that case, XGBoost blows up when gpu_predictor is used. #### This is to turn it back to cpu_predictor in case GPU errors! if GPU_exists: print('Error: GPU exists but it is not turned on. Using CPU for predictions...') model.estimator.set_params(**cpu_params) model.fit(X_train,y_train, early_stopping_rounds=early_stopping, eval_metric=eval_metric,eval_set=eval_set,verbose=False) else: model.fit(X_train,y_train, eval_metric=eval_metric, verbose=False) else: try: model.fit(X_train, y_train, cat_features=imp_cats, eval_set=(X_cv,y_cv), use_best_model=True, plot=True) except: model.fit(X_train, y_train, cat_features=imp_cats, use_best_model=False, plot=False) else: model.fit(X_train, y_train) except: print('Training regular model first time is Erroring: Check if your Input is correct...') return try: if hyper_param == 'RS' or hyper_param == 'GS': best_score = model.best_score_ validation_metric = copy.deepcopy(scoring_parameter) else: val_keys = list(model.best_score_.keys()) if 'validation' in val_keys: validation_metric = list(model.best_score_['validation'].keys())[0] best_score = model.best_score_['validation'][validation_metric] else: validation_metric = list(model.best_score_['learn'].keys())[0] best_score = model.best_score_['learn'][validation_metric] except: print('Error: Not able to print validation metrics. Continuing...') ## TRAINING OF MODELS COMPLETED. NOW GET METRICS on CV DATA ################ print(' Actual training time (in seconds): %0.0f' %(time.time()-model_start_time)) print('########### S I N G L E M O D E L R E S U L T S #################') if modeltype != 'Regression': ############## This is for Classification Only !! ######################## if scoring_parameter in ['logloss','neg_log_loss','log_loss','log-loss','']: print('{}-fold Cross Validation {} = {}'.format(n_splits, 'logloss', best_score)) elif scoring_parameter in ['accuracy','balanced-accuracy','balanced_accuracy','roc_auc','roc-auc', 'f1','precision','recall','average-precision','average_precision', 'weighted_f1','weighted-f1','AUC']: print('%d-fold Cross Validation %s = %0.1f%%' %(n_splits,scoring_parameter, best_score*100)) else: print('%d-fold Cross Validation %s = %0.1f' %(n_splits,validation_metric, best_score)) else: ######### This is for Regression only ############### if best_score < 0: best_score = best_score*-1 if scoring_parameter == '': print('%d-fold Cross Validation %s Score = %0.4f' %(n_splits,'RMSE', best_score)) else: print('%d-fold Cross Validation %s Score = %0.4f' %(n_splits,validation_metric, best_score)) #### We now need to set the Best Parameters, Fit the Model on Full X_train and Predict on X_cv ### Find what the order of best params are and set the same as the original model ### if hyper_param == 'RS' or hyper_param == 'GS': best_params= model.best_params_ print(' Best Parameters for Model = %s' %model.best_params_) else: #### CatBoost does not need Hyper Parameter tuning => it's great out of the box! #### CatBoost does not need too many iterations. Just make sure you set the iterations low after the first time! if model.get_best_iteration() == 0: ### In some small data sets, the number of iterations becomes zero, hence we set it as a default number best_params = dict(zip(['iterations','learning_rate'],[1000,model.get_all_params()['learning_rate']])) else: best_params = dict(zip(['iterations','learning_rate'],[model.get_best_iteration(),model.get_all_params()['learning_rate']])) print(' %s Best Parameters for Model: Iterations = %s, learning_rate = %0.2f' %( model_name, model.get_best_iteration(), model.get_all_params()['learning_rate'])) if hyper_param == 'RS' or hyper_param == 'GS': #### In the case of CatBoost, we don't do any Hyper Parameter tuning ######### gs = copy.deepcopy(model) model = gs.best_estimator_ if modeltype == 'Multi_Classification': try: if X_cv.shape[0] <= 1000: # THis works well for small data sets and is similar to parametric method= 'sigmoid' # 'isotonic' # # else: # THis works well for large data sets and is non-parametric method= 'isotonic' model = CalibratedClassifierCV(model, method=method, cv="prefit") model.fit(X_train, y_train) print('Using a Calibrated Classifier in this Multi_Classification dataset to improve results...') calibrator_flag = True except: calibrator_flag = False pass ### Make sure you set this flag as False so that when ensembling is completed, this flag is True ## if model_name.lower() == 'catboost': print('Best Model selected and its parameters are:\n %s' %model.get_all_params()) else: print('Best Model selected and its parameters are:\n %s' %model) performed_ensembling = False if modeltype != 'Regression': m_thresh = 0.5 y_proba = model.predict_proba(X_cv) y_pred = model.predict(X_cv) if len(classes) <= 2: print('Finding Best Threshold for Highest F1 Score...') precision, recall, thresholds = precision_recall_curve(y_cv, y_proba[:,rare_class]) #precision, recall, thresholds = precision_recall_curve(y_cv, y_proba[:,1]) try: f1 = (2*precision*recall)/(precision+recall) f1 = np.nan_to_num(f1) m_idx = np.argmax(f1) m_thresh = thresholds[m_idx] best_f1 = f1[m_idx] except: best_f1 = f1_score(y_cv, y_pred) m_thresh = 0.5 # retrieve just the probabilities for the positive class pos_probs = y_proba[:, rare_class] if verbose >= 1: # create a histogram of the predicted probabilities for the Rare Class since it will help decide threshold plt.figure(figsize=(6,6)) plt.hist(pos_probs, bins=Bins, color='g') plt.title("Model's Predictive Probability Histogram for Rare Class=%s with suggested threshold in red" %rare_class_orig) plt.axvline(x=m_thresh, color='r', linestyle='--') plt.show(); print(" Using threshold=0.5. However, %0.3f provides better F1=%0.2f for rare class..." %(m_thresh,best_f1)) ###y_pred = (y_proba[:,rare_class]>=m_thresh).astype(int) predicted = copy.deepcopy(y_proba) predicted [:,0] = (predicted [:,0] >= (1-m_thresh)).astype('int') predicted [:,1] = (predicted [:,1] > m_thresh).astype('int') if m_thresh != 0.5: y_pred = predicted[:,rare_class] else: y_proba = model.predict_proba(X_cv) y_pred = model.predict(X_cv) else: y_pred = model.predict(X_cv) ### This is where you print out the First Model's Results ######## print('########################################################') ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(y_pred,pd.Series): y_pred = y_pred.values if isinstance(y_cv,pd.Series): y_cv = y_cv.values print('%s Model Prediction Results on Held Out CV Data Set:' %model_name) if modeltype == 'Regression': rmsle_calculated_m = rmse(y_cv, y_pred) print_regression_model_stats(y_cv, y_pred,'%s Model: Predicted vs Actual for %s'%(model_name,each_target)) else: if model_name == 'Forests': if calibrator_flag: print(' OOB Score = %0.3f' %model.base_estimator.oob_score_) else: print(' OOB Score = %0.3f' %model.oob_score_) rmsle_calculated_m = balanced_accuracy_score(y_cv,y_pred) if len(classes) == 2: print(' Regular Accuracy Score = %0.1f%%' %(accuracy_score(y_cv,y_pred)*100)) y_probas = model.predict_proba(X_cv) rmsle_calculated_m = print_classification_model_stats(y_cv, y_probas, m_thresh) else: ###### Use a nice classification matrix printing module here ######### print(' Balanced Accuracy Score = %0.1f%%' %(rmsle_calculated_m*100)) print(classification_report(y_cv,y_pred)) print(confusion_matrix(y_cv, y_pred)) ###### SET BEST PARAMETERS HERE ###### ### Find what the order of best params are and set the same as the original model ### ## This is where we set the best parameters from training to the model #### if modeltype == 'Regression': if not Stacking_Flag: print('################# E N S E M B L E M O D E L ##################') try: cols = [] subm = pd.DataFrame() #### This is for Ensembling Only ##### models_list, cv_ensembles = QuickML_Ensembling(X_train, y_train, X_cv, y_cv, modeltype=modeltype, Boosting_Flag=Boosting_Flag, scoring='', verbose=verbose) models_list.append(model_name) for models, each in zip(models_list, range(len(models_list))): new_col = each_target+'_'+models+'_predictions' if each+1 == len(models_list): subm[new_col] = y_pred else: subm[new_col] = cv_ensembles[:,each] cols.append(new_col) if len(cols) == 5: print(' Displaying results of weighted average ensemble of %d regressors' %len(cols)) ensem_pred = subm[cols[-1]]*0.5+0.125*(subm[cols[0]]+subm[ cols[1]]+subm[cols[2]]+subm[cols[3]]) else: print(' Calculating regular average ensemble of %d regressors' %len(cols)) ensem_pred = (subm[cols].mean(axis=1)) print('#############################################################################') performed_ensembling = True #### Since we have a new ensembled y_pred, make sure it is series or array before printing it! if isinstance(y_pred,pd.Series): print_regression_model_stats(y_cv, ensem_pred.values,'Ensemble Model: Model Predicted vs Actual for %s' %each_target) else: print_regression_model_stats(y_cv, ensem_pred,'Ensemble Model: Model Predicted vs Actual for %s' %each_target) except: print('Could not complete Ensembling predictions on held out data due to Error') else: ## This is for Classification Problems Only # ### Find what the order of best params are and set the same as the original model ### ## This is where we set the best parameters from training to the model #### if not Stacking_Flag: print('################# E N S E M B L E M O D E L ##################') #### We do Ensembling only if the Stacking_Flag is False. Otherwise, we don't! try: classes = label_dict[each_target]['classes'] cols = [] subm = pd.DataFrame() #### This is for Ensembling Only ##### if len(classes) == 2: models_list, cv_ensembles = QuickML_Ensembling(X_train, y_train, X_cv, y_cv, modeltype='Binary_Classification', Boosting_Flag=Boosting_Flag, scoring='', verbose=verbose) else: models_list, cv_ensembles = QuickML_Ensembling(X_train, y_train, X_cv, y_cv, modeltype='Multi_Classification', Boosting_Flag=Boosting_Flag, scoring='', verbose=verbose) models_list.append(model_name) for models, each in zip(models_list, range(len(models_list))): new_col = each_target+'_'+models+'_predictions' if each+1 == len(models_list): subm[new_col] = y_pred else: subm[new_col] = cv_ensembles[:,each] cols.append(new_col) if len(cols) == 5: print(' Displaying results of weighted average ensemble of %d classifiers' %len(cols)) ensem_pred = np.round(subm[cols[-1]]*0.5+0.125*(subm[cols[0]]+subm[ cols[1]]+subm[cols[2]]+subm[cols[3]])).astype(int) else: print(' Calculating regular average ensemble of %d classifiers' %len(cols)) ensem_pred = (subm[cols].mean(axis=1)).astype(int) print('#############################################################################') performed_ensembling = True ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(ensem_pred,pd.Series): ensem_pred = ensem_pred.values except: print('Could not complete Ensembling predictions on held out data due to Error') else: print('No Ensembling of models done since Stacking_Flag = True ') if verbose >= 1: if len(classes) == 2: plot_classification_results(model,X_cv, y_cv, y_pred, classes, class_nums, each_target ) else: try: Draw_ROC_MC_ML(model, X_cv, y_cv, each_target, model_name, verbose) Draw_MC_ML_PR_ROC_Curves(model,X_cv,y_cv) except: print('Could not plot PR and ROC curves. Continuing...') #### In case there are special scoring_parameter requests, you can print it here! if scoring_parameter == 'roc_auc' or scoring_parameter == 'auc': if len(classes) == 2: print(' ROC AUC Score = %0.1f%%' %(roc_auc_score(y_cv, y_proba[:,rare_class])*100)) else: print(' No ROC AUC score for multi-class problems') elif scoring_parameter == 'jaccard': accu_all = jaccard_singlelabel(y_cv, y_pred) print(' Mean Jaccard Similarity = {:,.1f}%'.format( accu_all*100)) ## This is for multi-label problems ## if count == 0: zipped = copy.deepcopy(y_pred) count += 1 else: zipped = zip(zipped,y_pred) count += 1 elif scoring_parameter == 'basket_recall': if count == 0: zipped = copy.deepcopy(y_pred) count += 1 else: zipped = zip(zipped,y_pred) count += 1 if not Stacking_Flag and performed_ensembling: if modeltype == 'Regression': rmsle_calculated_f = rmse(y_cv, y_pred) print('After multiple models, Ensemble Model Results:') print(' RMSE Score = %0.5f' %(rmsle_calculated_f,)) print('#############################################################################') if rmsle_calculated_f < rmsle_calculated_m: print('Ensembling Models is better than Single Model for this data set.') error_rate.append(rmsle_calculated_f) else: print('Single Model is better than Ensembling Models for this data set.') error_rate.append(rmsle_calculated_m) else: rmsle_calculated_f = balanced_accuracy_score(y_cv,y_pred) print('After multiple models, Ensemble Model Results:') rare_pct = y_cv[y_cv==rare_class].shape[0]/y_cv.shape[0] print(' Balanced Accuracy Score = %0.3f%%' %( rmsle_calculated_f*100)) print(classification_report(y_cv,y_pred)) print(confusion_matrix(y_cv,y_pred)) print('#############################################################################') if rmsle_calculated_f > rmsle_calculated_m: print('Ensembling Models is better than Single Model for this data set.') error_rate.append(rmsle_calculated_f) else: print('Single Model is better than Ensembling Models for this data set.') error_rate.append(rmsle_calculated_m) if verbose >= 1: if Boosting_Flag: try: if model_name.lower() == 'catboost': plot_xgb_metrics(model,catboost_scoring,eval_set,modeltype,'%s Results' %each_target, model_name) else: plot_xgb_metrics(gs.best_estimator_,eval_metric,eval_set,modeltype,'%s Results' %each_target, model_name) except: print('Could not plot Model Evaluation Results Metrics') else: try: plot_RS_params(gs.cv_results_, scoring_parameter, each_target) except: print('Could not plot Cross Validation Parameters') print(' Time taken for this Target (in seconds) = %0.0f' %(time.time()-start_time)) print('Training model on complete Train data and Predicting using give Test Data...') ################ I M P O R T A N T: C O M B I N I N G D A T A ###################### #### This is Second time: we combine train and CV into Train and Test Sets ################# train = part_train.append(part_cv) important_features = [x for x in list(train) if x not in [each_target]] ############################################################################################ ###### Now that we have used partial data to make stacking predictors, we can remove them from consideration! if Stacking_Flag: important_features = left_subtract(important_features, addcol) try: train.drop(addcol,axis=1, inplace=True) except: pass ###### Similarly we will have to create KMeans_Clusters again using full Train data! if KMeans_Featurizer: important_features = left_subtract(important_features, km_label) try: train.drop(km_label,axis=1, inplace=True) except: pass ########################## BINNING SECOND TIME ############################### new_num_vars = np.array(important_features)[(train[important_features].dtypes==float)].tolist() ## Now we re-use the saved_num_vars which contained a list of num_vars for binning now! ###### Once again we do Entropy Binning on the Full Train Data Set !! ########################## BINNING SECOND TIME ############################### if Binning_Flag and len(saved_num_vars) > 0: ### when you bin the second time, you have to send in important_features with original ### numeric variables so that it works on binning only those. Otherwise it will fail. ### Do Entropy Binning only if there are numeric variables in the data set! ##### #### When we Bin the second first time, we set the entropy_binning flag to True so #### that all numeric variables that are binned are removed. This way, only bins remain. train, num_vars, important_features, test = add_entropy_binning(train, each_target, orig_num_vars, important_features, test, modeltype, entropy_binning=True,verbose=verbose) #### In saved_num_vars we send in all the continuous_vars but we bin only the top few vars. ### Those that are binned are removed from saved_num_vars and the remaining become num_vars ### Our job is to find the names of those original numeric variables which were binned. ### orig_num_vars contains original num vars. num_vars contains binned versions of those vars. ### Those binned variables have now become categorical vars and must be added to imp_cats. #### Also note that important_features does not contain orig_num_vars which have been erased. else: print(' Binning_Flag set to False or there are no numeric vars in data set to be binned') ### Now we add another Feature tied to KMeans clustering using Predictor and Target variables ### ####################### KMEANS SECOND TIME ############################ if KMeans_Featurizer and len(saved_num_vars) > 0: #### Perform KMeans Featurizer only if there are numeric variables in data set! ######### print('Adding one feature named "KMeans_Clusters" using KMeans_Featurizer...') km_label = 'KMeans_Clusters' if modeltype != 'Regression': #### Make the number of clusters as the same as log10 of number of rows in Train train_cluster, test_cluster = Transform_KM_Features(train[important_features], train[each_target], test[important_features], num_clusters) else: train_cluster, test_cluster = Transform_KM_Features(train[important_features], train[each_target], test[important_features]) #### Now make sure that the cat features are either string or integers ###### print(' Used KMeans to naturally cluster Train predictor variables into %d clusters' %num_clusters) train[km_label] = train_cluster if not isinstance(test, str): test[km_label] = test_cluster #X_train.drop(each_target,axis=1,inplace=True) for imp_cat in imp_cats: train[imp_cat] = train[imp_cat].astype(int) if not isinstance(test, str): test[imp_cat] = test[imp_cat].astype(int) saved_num_vars.append(km_label) ### You need to add it to this variable list for Scaling later! important_features.append(km_label) ########################## STACKING SECOND TIME ############################### ######### This is where you do Stacking of Multi Model Results into One Column ### if Stacking_Flag: #### In order to join, you need X_train to be a Pandas Series here ## print('CAUTION: Stacking can produce Highly Overfit models on Training Data...') ### In order to avoid overfitting, we are going to learn from a small sample of data ### That is why we are using X_cv to train on and using it to predict on X_train! addcol, stacks1 = QuickML_Stacking(train[important_features],train[each_target],'', modeltype, Boosting_Flag, scoring_parameter,verbose) ##### Adding multiple columns for Stacking is best! Do not do the average of predictions! #### The reason we add the word "Partial_Train" is to show that these Stacking results are from Partial Train data! addcols = copy.deepcopy(addcol) ##### Adding multiple columns for Stacking is best! Do not do the average of predictions! train = train.join(pd.DataFrame(stacks1,index=train.index, columns=addcols)) ##### Leaving multiple columns for Stacking is best! Do not do the average of predictions! print(' Adding %d Stacking feature(s) to training data' %len(addcols)) if not isinstance(orig_test, str): ### In order to avoid overfitting, we are going to learn from a small sample of data ### That is why we are using X_train to train on and using it to predict on X_test _, stacks2 = QuickML_Stacking(train[important_features],train[each_target],test[important_features], modeltype, Boosting_Flag, scoring_parameter,verbose) ##### Adding multiple columns for Stacking is best! Do not do the average of predictions! test = test.join(pd.DataFrame(stacks2,index=test.index, columns=addcols)) ##### Adding multiple columns for Stacking is best! Do not do the average of predictions! #test = test.join(pd.DataFrame(stacks2.mean(axis=1).round().astype(int), # columns=[addcol],index=test.index)) ###### We make sure that we remove too many features that are highly correlated ! ##### #addcol = remove_variables_using_fast_correlation(train,addcol,corr_limit,verbose) important_features += addcols saved_num_vars.append(addcol) ### You need to add it for binning later! ############################################################################################ if len(important_features) == 0: print('No important features found. Using all input features...') important_features = copy.deepcopy(saved_important_features) #important_features = copy.deepcopy(red_preds) ############################################################################################ if model_name.lower() == 'catboost': print(' Setting best params for CatBoost model from Initial State since you cannot change params to a fitted Catboost model ') model = xgbm.set_params(**best_params) print(' Number of Categorical and Integer variables used in CatBoost training = %d' %len(imp_cats)) #### Perform Scaling of Train data a second time using FULL TRAIN data set this time ! #### important_features keeps track of all variables that we need to ensure they are scaled! train, test = perform_scaling_numeric_vars(train, important_features, test, model_name, SS) ################ T R A I N I N G M O D E L A S E C O N D T I M E ################### ### The next 2 lines are crucial: if X and y are dataframes, then next 2 should be df's ### They should not be df.values since they will become numpy arrays and XGB will error. trainm = train[important_features+[each_target]] red_preds = copy.deepcopy(important_features) X = trainm[red_preds] y = trainm[each_target] eval_set = [()] ##### ############ TRAINING MODEL SECOND TIME WITH FULL_TRAIN AND PREDICTING ON TEST ############ model_start_time = time.time() if modeltype != 'Regression': if Imbalanced_Flag: try: print('################## Imbalanced Flag Set ############################') print('Imbalanced Class Training using SMOTE Rare Class Oversampling method...') model, X, y = training_with_SMOTE(X,y, eval_set, model, Boosting_Flag, eval_metric,modeltype, model_name, training=False, minority_class=rare_class, imp_cats=imp_cats, calibrator_flag=calibrator_flag, GPU_exists=GPU_exists, params=cpu_params, verbose=verbose) if isinstance(model, str): #### If downsampling model failed, it will just be an empty string, so you can try regular model ### model = copy.deepcopy(best_model) print('Error in training Imbalanced model second time. Trying regular model..') Imbalanced_Flag = False if calibrator_flag: model.fit(X, y) else: if Boosting_Flag: #### Set the Verbose to 0 since we don't want too much output ## if model_name == 'XGBoost': #### Set the Verbose to 0 since we don't want too much output ## model.fit(X, y, eval_metric=eval_metric,verbose=0) else: model.fit(X, y, cat_features=imp_cats, plot=False) else: model.fit(X, y) except: print('Error in training Imbalanced model second time. Trying regular model..') Imbalanced_Flag = False if calibrator_flag: model.fit(X, y) else: if Boosting_Flag: if model_name == 'XGBoost': #### Set the Verbose to 0 since we don't want too much output ## model.fit(X, y, eval_metric=eval_metric,verbose=0) else: model.fit(X, y, cat_features=imp_cats, plot=False) else: model.fit(X, y) else: try: if calibrator_flag: model.fit(X, y) else: if Boosting_Flag: if model_name == 'XGBoost': ### Since second time we don't have X_cv, we remove it model.fit(X, y, eval_metric=eval_metric,verbose=0) else: model.fit(X, y, cat_features=imp_cats, plot=False) else: model.fit(X, y) except: print('Training regular model second time erroring: Check if Input is correct...') return else: try: if calibrator_flag: model.fit(X, y) else: if Boosting_Flag: if model_name == 'XGBoost': model.fit(X, y, eval_metric=eval_metric,verbose=0) else: model.fit(X, y, cat_features=imp_cats, use_best_model=False, plot=False) else: model.fit(X, y) except: print('Training model second time is Erroring: Check if Input is correct...') return print('Actual Training time taken in seconds = %0.0f' %(time.time()-model_start_time)) ## TRAINING OF MODELS COMPLETED. NOW START PREDICTIONS ON TEST DATA ################ #### new_cols is to keep track of new prediction columns we are creating ##### new_cols = [] if not isinstance(orig_test, str): ### If there is a test data frame, then let us predict on it ####### ### The next 3 lines are crucial: if X and y are dataframes, then next 2 should be df's ### They should not be df.values since they will become numpy arrays and XGB will error. try: #### We need the id columns to carry over into the predictions #### testm = orig_test[id_cols].join(test[red_preds]) except: ### if for some reason id columns are not available, then do without it testm = test[red_preds] X_test = testm[red_preds] else: ##### If there is no Test file, then do a final prediction on Train itself ### orig_index = orig_train.index trainm = train.reindex(index = orig_index) testm = orig_train[id_cols].join(trainm[red_preds]) X_test = testm[red_preds] if modeltype == 'Regression': y_pred = model.predict(X_test) ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(y_pred,pd.Series): y_pred = y_pred.values ######## This is for Regression Problems Only ########### ###### If Stacking_ Flag is False, then we do Ensembling ####### if not Stacking_Flag: try: new_cols = [] subm = pd.DataFrame() #### This is for Ensembling Only ##### #### In Test data verbose is set to zero since no results can be obtained! models_list, ensembles = QuickML_Ensembling(X, y, X_test, '', modeltype=modeltype, Boosting_Flag=Boosting_Flag, scoring='', verbose=0) models_list.append(model_name) for models, each in zip(models_list, range(len(models_list))): new_col = each_target+'_'+models+'_predictions' if each+1 == len(models_list): subm[new_col] = y_pred testm[new_col] = y_pred else: subm[new_col] = ensembles[:,each] testm[new_col] = ensembles[:,each] new_cols.append(new_col) ### After this, y_pred is a Series from now on. You need y_pred.values #### if len(new_cols) == 5: print(' Calculating weighted average ensemble of %d regressors' %len(new_cols)) ensem_pred = subm[new_cols[-1]]*0.5+0.125*(subm[new_cols[0]]+subm[ new_cols[1]]+subm[new_cols[2]]+subm[new_cols[3]]) else: print(' Calculating regular average ensemble of %d regressors' %len(cols)) ensem_pred = (subm[new_cols].mean(axis=1)) ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(y_pred,pd.Series): ensem_pred = ensem_pred.values new_col = each_target+'_Ensembled_predictions' testm[new_col] = ensem_pred new_cols.append(new_col) print('Completed Ensemble predictions on held out data') except: print('Could not complete Ensembling predictions on held out data due to Error') else: stack_cols, stacksfinal = QuickML_Stacking(X, y, X_test, modeltype, Boosting_Flag, scoring_parameter,verbose=verbose) new_col = each_target+'_Stacked_'+stack_cols[0].split("_")[0]+'_predictions' if len(stack_cols) == 1: testm[new_col] = stacksfinal else: #### Just average the predictions from each stacked model into a final pred testm[new_col] = stacksfinal.mean(axis=1) if not isinstance(sample_submission, str): sample_submission[each_target] = y_pred #### If there is a test file, it probably doesn't have target, so add predictions to it! testm[each_target+'_predictions'] = y_pred else: proba_cols = [] ######## This is for both Binary and Multi Classification Problems ########### y_proba = model.predict_proba(X_test) y_pred = model.predict(X_test) predicted = copy.deepcopy(y_proba) if len(classes) <= 2: predicted [:,0] = (predicted [:,0] >= (1-m_thresh)).astype('int') predicted [:,1] = (predicted [:,1] > m_thresh).astype('int') if predicted[:,rare_class].mean()==0 or predicted[:,rare_class].mean()==1: ### If the model is predicting all 0's or all 1's, you need to use a regular threshold m_thresh = 0.5 print(' Making test Data predictions using regular Threshold = %0.3f' %m_thresh) else: ### If the model is good with the modified threshold, then you use the modified threshold! print(' Making test Data predictions using modified Threshold = %0.3f' %m_thresh) y_pred = predicted[:,rare_class] else: ##### For multi-class, just make predictions of multiple classes here ####### y_pred = model.predict(X_test) ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(y_pred,pd.Series): y_pred = y_pred.values.astype(int) else: ### In a small number of cases, it's an array but has a shape of 1. ### This causes errors later. Hence I have to make it a singleton array. try: if y_pred.shape[1] == 1: y_pred = y_pred.ravel() except: y_pred = y_pred.astype(int) if len(label_dict[each_target]['transformer']) == 0: ######### NO T R A N S F O R M E R L O G I C B E G I N S H E R E ! ##################### ### if there is no transformer, then leave the predicted classes as is classes = label_dict[each_target]['classes'] ##### If there is no transformer, you can just predict the classes as is and save it here ### testm[each_target+'_predictions'] = y_pred ###### If Stacking_Flag is False, then we do Ensembling ####### if not Stacking_Flag: ### Ensembling is not done when the model name is CatBoost #### new_cols = [] subm = pd.DataFrame() #### This is for Ensembling Only ##### #### In Test data verbose is set to zero since no results can be obtained! if len(classes) == 2: models_list, ensembles = QuickML_Ensembling(X, y, X_test, '', modeltype='Binary_Classification', Boosting_Flag=Boosting_Flag, scoring='', verbose=0) else: models_list, ensembles = QuickML_Ensembling(X, y, X_test, '', modeltype='Multi_Classification', Boosting_Flag=Boosting_Flag, scoring='', verbose=0) models_list.append(model_name) for models, each in zip(models_list, range(len(models_list))): new_col = each_target+'_'+models+'_predictions' if each+1 == len(models_list): subm[new_col] = y_pred testm[new_col] = y_pred else: subm[new_col] = ensembles[:,each] testm[new_col] = ensembles[:,each] new_cols.append(new_col) ### You will need to create probabilities for each class here #### for each_class in classes: if isinstance(each_class, str): proba_col = each_target+'_proba_'+each_class else: proba_col = each_target+'_proba_'+str(each_class) count = int(label_dict[each_target]['dictionary'][each_class]) testm[proba_col] = y_proba[:,count] proba_cols.append(proba_col) if not Stacking_Flag: new_col = each_target+'_Ensembled_predictions' if len(new_cols) == 5: print(' Calculating weighted average ensemble of %d classifiers' %len(new_cols)) ensem_pred = np.round(subm[new_cols[-1]]*0.5+0.125*(subm[new_cols[0]]+subm[ new_cols[1]]+subm[new_cols[2]]+subm[new_cols[3]])).astype(int) else: print(' Calculating average ensemble of %d classifiers' %len(new_cols)) ensem_pred = (subm[new_cols].mean(axis=1)).astype(int) else: stack_cols, stacksfinal = QuickML_Stacking(X, y, X_test, modeltype, Boosting_Flag,scoring_parameter,verbose) new_col = each_target+'_Stacked_'+stack_cols[0].split("_")[0]+'_predictions' ensem_pred = np.argmax(stacksfinal,axis=1) ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(ensem_pred,pd.Series): ensem_pred = ensem_pred.values testm[new_col] = ensem_pred new_cols.append(new_col) if not isinstance(sample_submission, str): sample_submission[each_target] = y_pred else: ######### T R A N S F O R M E R L O G I C B E G I N S H E R E ! ##################### ### if there is a transformer, then you must convert the predicted classes to orig classes classes = label_dict[each_target]['classes'] dic = label_dict[each_target]['dictionary'] transformer = label_dict[each_target]['transformer'] class_nums = label_dict[each_target]['class_nums'] ##### If there is a transformer, you must convert predictions to original classes testm[each_target+'_predictions'] = pd.Series(y_pred).map(transformer).values for each_class in classes: if isinstance(each_class, str): proba_col = each_target+'_proba_'+each_class else: proba_col = each_target+'_proba_'+str(each_class) count = label_dict[each_target]['dictionary'][each_class] testm[proba_col] = y_proba[:,count] proba_cols.append(proba_col) ###### If Stacking_ Flag is False, then we do Ensembling ####### if not Stacking_Flag: subm = pd.DataFrame() #### This is for Ensembling Only ##### if len(classes) == 2: models_list, ensembles = QuickML_Ensembling(X, y, X_test, '', modeltype='Binary_Classification', Boosting_Flag=Boosting_Flag, scoring='', verbose=verbose) else: models_list, ensembles = QuickML_Ensembling(X, y, X_test, '', modeltype='Multi_Classification', Boosting_Flag=Boosting_Flag, scoring='', verbose=verbose) models_list.append(model_name) for models, each in zip(models_list, range(len(models_list))): new_col = each_target+'_'+models+'_predictions' if each+1 == len(models_list): subm[new_col] = y_pred testm[new_col] = pd.Series(y_pred).map(transformer).values else: subm[new_col] = ensembles[:,each] testm[new_col] = pd.Series(ensembles[:,each]).map(transformer).values new_cols.append(new_col) ### After this, y_pred is a Series from now on. You need y_pred.values #### if len(cols) == 5: print(' Calculating weighted average ensemble of %d classifiers' %len(new_cols)) ensem_pred = np.round(subm[new_cols[-1]]*0.5+0.125*(subm[new_cols[0]]+subm[ new_cols[1]]+subm[new_cols[2]]+subm[new_cols[3]])).astype(int) else: print(' Calculating regular average ensemble of %d classifiers' %len(new_cols)) ensem_pred = (subm[new_cols].mean(axis=1)).astype(int) print('########################################################') ##### This next step is very important since some models give series, others give arrays. Very painful! if isinstance(ensem_pred,pd.Series): ensem_pred = ensem_pred.values print('Completed Ensemble predictions on held out data') new_col = each_target+'_Ensembled_predictions' else: stack_cols, stacksfinal = QuickML_Stacking(X, y, X_test, modeltype, Boosting_Flag,scoring_parameter,verbose) new_col = each_target+'_Stacked_'+stack_cols[0].split("_")[0]+'_predictions' ensem_pred = np.argmax(stacksfinal,axis=1) print('########################################################') print('Completed Stacked predictions on held out data') testm[new_col] =
pd.Series(ensem_pred)
pandas.Series
import plotly.graph_objects as go import pandas as pd import plotly.express as px from datetime import datetime, timedelta import requests import json import time def read(): df1 = pd.read_csv("CSV/ETH_BTC_USD_2015-08-09_2020-04-04-CoinDesk.csv") df1.columns = ['date', 'ETH', 'BTC'] df1.date = pd.to_datetime(df1.date, dayfirst=True) df1.set_index('date', inplace=True) EOS =
pd.read_csv("ICO_coins/EOS_USD_2018-06-06_2020-04-02-CoinDesk.csv")
pandas.read_csv
import os import time import shutil import numpy as np import pandas as pd from smac.configspace import ConfigurationSpace from ConfigSpace.hyperparameters import CategoricalHyperparameter, \ UniformFloatHyperparameter, UniformIntegerHyperparameter from smac.scenario.scenario import Scenario from smac.facade.smac_facade import SMAC from .bayopt_base import BayoptBase class SMACOPT(BayoptBase): """ Interface of SMAC (Bayesian Optimization). Parameters ---------- :type para_space: dict or list of dictionaries :param para_space: It has three types: Continuous: Specify `Type` as `continuous`, and include the keys of `Range` (a list with lower-upper elements pair) and `Wrapper`, a callable function for wrapping the values. Integer: Specify `Type` as `integer`, and include the keys of `Mapping` (a list with all the sortted integer elements). Categorical: Specify `Type` as `categorical`, and include the keys of `Mapping` (a list with all the possible categories). :type max_runs: int, optional, default=100 :param max_runs: The maximum number of trials to be evaluated. When this values is reached, then the algorithm will stop. :type estimator: estimator object :param estimator: This is assumed to implement the scikit-learn estimator interface. :type cv: cross-validation method, an sklearn object. :param cv: e.g., `StratifiedKFold` and KFold` is used. :type scoring: string, callable, list/tuple, dict or None, optional, default=None :param scoring: A sklearn type scoring function. If None, the estimator's default scorer (if available) is used. See the package `sklearn` for details. :type refit: boolean, or string, optional, default=True :param refit: It controls whether to refit an estimator using the best found parameters on the whole dataset. :type random_state: int, optional, default=0 :param random_state: The random seed for optimization. :type verbose: boolean, optional, default=False :param verbose: It controls whether the searching history will be printed. Examples ---------- >>> import numpy as np >>> from sklearn import svm >>> from sklearn import datasets >>> from sequd import SMACOPT >>> from sklearn.model_selection import KFold >>> iris = datasets.load_iris() >>> ParaSpace = {'C':{'Type': 'continuous', 'Range': [-6, 16], 'Wrapper': np.exp2}, 'gamma': {'Type': 'continuous', 'Range': [-16, 6], 'Wrapper': np.exp2}} >>> estimator = svm.SVC() >>> cv = KFold(n_splits=5, random_state=0, shuffle=True) >>> clf = SMACOPT(ParaSpace, max_runs=100, estimator=estimator, cv=cv, scoring=None, refit=None, random_state=0, verbose=False) >>> clf.fit(iris.data, iris.target) Attributes ---------- :vartype best_score\_: float :ivar best_score\_: The best average cv score among the evaluated trials. :vartype best_params\_: dict :ivar best_params\_: Parameters that reaches `best_score_`. :vartype best_estimator\_: sklearn estimator :ivar best_estimator\_: The estimator refitted based on the `best_params_`. Not available if estimator = None or `refit=False`. :vartype search_time_consumed\_: float :ivar search_time_consumed\_: Seconds used for whole searching procedure. :vartype refit_time\_: float :ivar refit_time\_: Seconds used for refitting the best model on the whole dataset. Not available if estimator=None or `refit=False`. """ def __init__(self, para_space, max_runs=100, estimator=None, cv=None, scoring=None, refit=True, random_state=0, verbose=False): super(SMACOPT, self).__init__(para_space, max_runs, verbose) self.cv = cv self.refit = refit self.scoring = scoring self.estimator = estimator self.random_state = random_state self.method = "SMAC" self.cs = ConfigurationSpace() for item, values in self.para_space.items(): if values['Type'] == "continuous": para = UniformFloatHyperparameter(item, values['Range'][0], values['Range'][1]) elif values['Type'] == "integer": para = UniformIntegerHyperparameter(item, min(values['Mapping']), max(values['Mapping'])) elif values['Type'] == "categorical": para = CategoricalHyperparameter(item, values['Mapping']) self.cs.add_hyperparameter(para) def obj_func(self, cfg): cfg = {k: cfg[k] for k in cfg} next_params = pd.DataFrame(cfg, columns=self.para_names, index=[0]) parameters = {} for item, values in self.para_space.items(): if (values['Type'] == "continuous"): parameters[item] = values['Wrapper'](float(next_params[item].iloc[0])) elif (values['Type'] == "integer"): parameters[item] = int(next_params[item].iloc[0]) elif (values['Type'] == "categorical"): parameters[item] = next_params[item].iloc[0] score = self.wrapper_func(parameters) logs_aug = parameters logs_aug.update({"score": score}) logs_aug =
pd.DataFrame(logs_aug, index=[self.iteration])
pandas.DataFrame
import numpy as np import pandas as pd import random import pickle from sklearn.cluster import KMeans from sklearn.decomposition import PCA import torch from torch.nn.utils.rnn import pad_sequence from utils import _get_parcel, _get_behavioral from cc_utils import _get_clip_labels K_RUNS = 4 K_SEED = 330 def _get_clip_seq(df, subject_list, args): ''' return: X: input seq (batch_size x time x feat_size) y: label seq (batch_size x time) X_len: len of each seq (batch_size x 1) batch_size <-> number of sequences time <-> max length after padding ''' features = [ii for ii in df.columns if 'feat' in ii] X = [] y = [] for subject in subject_list: for i_class in range(args.k_class): if i_class==0: # split test-retest into 4 seqs = df[(df['Subject']==subject) & (df['y'] == 0)][features].values label_seqs = df[(df['Subject']==subject) & (df['y'] == 0)]['y'].values k_time = int(seqs.shape[0]/K_RUNS) for i_run in range(K_RUNS): seq = seqs[i_run*k_time:(i_run+1)*k_time, :] label_seq = label_seqs[i_run*k_time:(i_run+1)*k_time] if args.zscore: # zscore each seq that goes into model seq = (1/np.std(seq))*(seq - np.mean(seq)) X.append(torch.FloatTensor(seq)) y.append(torch.LongTensor(label_seq)) else: seq = df[(df['Subject']==subject) & (df['y'] == i_class)][features].values label_seq = df[(df['Subject']==subject) & (df['y'] == i_class)]['y'].values if args.zscore: # zscore each seq that goes into model seq = (1/np.std(seq))*(seq - np.mean(seq)) X.append(torch.FloatTensor(seq)) y.append(torch.LongTensor(label_seq)) X_len = torch.LongTensor([len(seq) for seq in X]) # pad sequences X = pad_sequence(X, batch_first=True, padding_value=0) y = pad_sequence(y, batch_first=True, padding_value=-100) return X.to(args.device), X_len.to(args.device), y.to(args.device) def _clip_class_df(args): ''' data for 15-way clip classification args.roi: number of ROIs args.net: number of subnetworks (7 or 17) args.subnet: subnetwork; 'wb' if all subnetworks args.invert_flag: all-but-one subnetwork args.r_roi: number of random ROIs to pick args.r_seed: random seed for picking ROIs save each timepoint as feature vector append class label based on clip return: pandas df ''' load_path = (args.input_data + '/data_MOVIE_runs_%s' %(args.roi_name) + '_%d_net_%d_ts.pkl' %(args.roi, args.net)) with open(load_path, 'rb') as f: data = pickle.load(f) # where are the clips within the run? timing_file = pd.read_csv('data/videoclip_tr_lookup.csv') ''' main ''' clip_y = _get_clip_labels() table = [] for run in range(K_RUNS): print('loading run %d/%d' %(run+1, K_RUNS)) run_name = 'MOVIE%d' %(run+1) #MOVIEx_7T_yz # timing file for run timing_df = timing_file[ timing_file['run'].str.contains(run_name)] timing_df = timing_df.reset_index(drop=True) for subject in data: # get subject data (time x roi x run) vox_ts = data[subject][:, :, run] for jj, clip in timing_df.iterrows(): start = int(np.floor(clip['start_tr'])) stop = int(np.ceil(clip['stop_tr'])) clip_length = stop - start # assign label to clip y = clip_y[clip['clip_name']] for t in range(clip_length): act = vox_ts[t + start, :] t_data = {} t_data['Subject'] = subject t_data['timepoint'] = t for feat in range(vox_ts.shape[1]): t_data['feat_%d' %(feat)] = act[feat] t_data['y'] = y table.append(t_data) df =
pd.DataFrame(table)
pandas.DataFrame
""" ETL Pipeline that takes any dataset and performs the following tasks: * Combines the two given datasets * Cleans the data * Stores it in a SQLite database """ # import libraries import sys import pandas as pd from settings import * from sqlalchemy import create_engine def retrieve_filename(): """ Accesses the filename that is passed in as a command line argument when this file is run. """ return sys.argv[1] def load_data(filename): """Load dataset Args: filename: str Contains location to data Return: df: Pandas DataFrame """ df = pd.read_csv(filename) return df def process_categorical_data(df): """Splits categories and converts categories to numbers Args: df: Pandas DataFrame Return categories: Pandas DataFrame """ # create a dataframe of the 36 individual category columns categories = df['categories'].str.split(pat = ';', expand = True) # select the first row of the categories dataframe row = categories.iloc[0] # Use this row to extract a list of new column names for categories. # one way is to apply a lambda function that takes everything # up to the second to last character of each string with slicing category_colnames = row.apply(lambda x: str(x).split('-')[0]) # rename the columns of `categories` categories.columns = category_colnames for column in categories: # set each value to be the last character of the string categories[column] = categories[column].apply(lambda x: str(x).split('-')[1]) # convert column from string to numeric categories[column] =
pd.to_numeric(categories[column])
pandas.to_numeric
import anemoi as an import pandas as pd import numpy as np import scipy as sp import statsmodels.api as sm import scipy.odr.odrpack as odrpack import warnings def compare_sorted_df_columns(cols_1, cols_2): return sorted(cols_1) == sorted(cols_2) def valid_ws_correlation_data(data, ref_ws_col='ref', site_ws_col='site'): '''Perform checks on wind speed correlation data. :Parameters: data: DataFrame DataFrame with wind speed columns ref_ws_col and site_ws_col ref_ws_col: string, default 'ref' Reference anemometer data column to use. site_ws_col: string, default 'site' Site anemometer data column to use. ''' if ref_ws_col == site_ws_col: raise ValueError("Error: Reference and site wind speed columns cannot have the same name.") return False if not compare_sorted_df_columns(data.columns.tolist(), [ref_ws_col, site_ws_col]): raise ValueError("Error: the correlation data don't match the expected format.") return False if not data.shape[0] > 6: warnings.warn("Warning: trying to correalate between less than six points.") return False if (data.loc[:,ref_ws_col] == data.loc[:,site_ws_col]).sum() == data.shape[0]: warnings.warn("Warning: it seems you are trying to correalate a single mast against itself.") return False return True def return_correlation_results_frame(ref_label='ref', site_label='site'): results = pd.DataFrame(columns=['slope', 'offset' , 'R2', 'uncert', 'points'], index=pd.MultiIndex.from_tuples([(ref_label, site_label)], names=['ref', 'site']) ) return results def return_correlation_data_from_masts(ref_mast, site_mast): '''Return a DataFrame of reference and site data for correlations. Will be extracted from each MetMast object using the primary anemometers and wind vanes. :Parameters: ref_mast: MetMast Anemoi MetMast object site_mast: MetMast Anemoi MetMast object :Returns: out: DataFrame with columns ref, site, and dir ''' ref_data = ref_mast.return_primary_ano_vane_data() ref_data.columns = ['ref', 'dir'] site_data = site_mast.return_primary_ano_vane_data() site_data.columns = ['site', 'site_dir'] data = pd.concat([ref_data, site_data.site], axis=1).dropna() data = data.loc[:, ['ref', 'site', 'dir']] if not valid_ws_correlation_data(data=data, ref_ws_col='ref', site_ws_col='site'): warning_string = "Warning: {} and {} don't seem to have valid concurrent data for a correlation.".format(ref_mast.name, site_mast.name) warnings.warn(warning_string) return data ### CORRELATION METHODS ### def calculate_R2(data, ref_ws_col='ref', site_ws_col='site'): '''Return a single R2 between two wind speed columns :Parameters: data: DataFrame DataFrame with wind speed columns ref_ws_col and site_ws_col ref_ws_col: string, default 'ref' Reference anemometer data column to use. site_ws_col: string, default 'site' Site anemometer data column to use. ''' data = data.loc[:,[ref_ws_col, site_ws_col]].dropna() if not valid_ws_correlation_data(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col): return np.nan r2 = data[ref_ws_col].corr(data[site_ws_col])**2 return r2 def calculate_IEC_uncertainty(data, ref_ws_col='ref', site_ws_col='site'): '''Calculate the IEC correlation uncertainty between two wind speed columns :Parameters: data: DataFrame DataFrame with wind speed columns ref_ws_col and site_ws_col ref_ws_col: string, default 'ref' Reference anemometer data column to use. site_ws_col: string, default 'site' Site anemometer data column to use. ''' data = data.loc[:,[ref_ws_col, site_ws_col]].dropna() if not valid_ws_correlation_data(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col): return np.nan X = data.loc[:,ref_ws_col].values Y = data.loc[:,site_ws_col].values uncert = np.std(Y/X)*100/len(X) return uncert*100.0 def calculate_EDF_uncertainty(data, ref_ws_col='ref', site_ws_col='site'): '''Calculate the EDF estimated correaltion uncetianty between two wind speed columns. Assumes a correalation forced through the origin :Parameters: data: DataFrame DataFrame with wind speed columns ref_ws_col and site_ws_col ref_ws_col: string, default 'ref' Reference anemometer data column to use. site_ws_col: string, default 'site' Site anemometer data column to use. ''' data = data.loc[:,[ref_ws_col, site_ws_col]].dropna() if not valid_ws_correlation_data(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col): return np.nan X = data.loc[:,ref_ws_col].values Y = data.loc[:,site_ws_col].values Sxx = np.sum(X**2) Syy = np.sum(Y**2) Sxy = np.sum(X*Y) B = 0.5*(Sxx - Syy)/Sxy SU = -B + np.sqrt(B**2 + 1) e2 = np.sum((Y - SU*X)**2)/(1 + SU**2) Xsi2 = e2/(data.shape[0] - 1) uncert = np.sqrt((Xsi2*SU**2)*(Sxx*Sxy**2 + 0.25*((Sxx - Syy)**2)*Sxx)/((B**2 + 1.0)*Sxy**4)) return uncert*100.0 def ws_correlation_least_squares_model(data, ref_ws_col='ref', site_ws_col='site', force_through_origin=False): '''Calculate the slope and offset between two wind speed columns using ordinary least squares regression. https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html :Parameters: data: DataFrame DataFrame with wind speed columns ref and site, and direction data dir ref_ws_col: string, default None (primary anemometer assumed) Reference anemometer data to use. Extracted from MetMast.data site_ws_col: string, default None (primary anemometer assumed) Site anemometer data to use. Extracted from MetMast.data force_through_origin: boolean, default False Force the correlation through the origin (offset equal to zero) :Returns: out: DataFrame slope, offset, R2, uncert, points ''' data = data.loc[:, [ref_ws_col, site_ws_col]].dropna() results = return_correlation_results_frame(ref_label=ref_ws_col, site_label=site_ws_col) if not valid_ws_correlation_data(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col): return results points = data.shape[0] R2 = calculate_R2(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col) uncert = calculate_IEC_uncertainty(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col) if force_through_origin: data.loc[:,'offset'] = 0 else: data.loc[:,'offset'] = 1 X = data.loc[:, [ref_ws_col,'offset']].values Y = data.loc[:, site_ws_col].values slope, offset = np.linalg.lstsq(X, Y)[0] results.loc[pd.IndexSlice[ref_ws_col, site_ws_col],['slope', 'offset' , 'R2', 'uncert', 'points']] = np.array([slope, offset, R2, uncert, points]) return results def f_with_offset(B, x): return B[0]*x + B[1] def f_without_offset(B, x): return B[0]*x def ws_correlation_orthoginal_distance_model(data, ref_ws_col='ref', site_ws_col='site', force_through_origin=False): '''Calculate the slope and offset between two wind speed columns using orthoganal distance regression. https://docs.scipy.org/doc/scipy-0.18.1/reference/odr.html :Parameters: data: DataFrame DataFrame with wind speed columns ref and site, and direction data dir ref_ws_col: string, default None (primary anemometer assumed) Reference anemometer data to use. Extracted from MetMast.data site_ws_col: string, default None (primary anemometer assumed) Site anemometer data to use. Extracted from MetMast.data force_through_origin: boolean, default False Force the correlation through the origin (offset equal to zero) :Returns: out: DataFrame slope, offset, R2, uncert, points ''' data = data.loc[:, [ref_ws_col, site_ws_col]].dropna().astype(np.float) results = return_correlation_results_frame(ref_label=ref_ws_col, site_label=site_ws_col) if not valid_ws_correlation_data(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col): return results points = data.shape[0] R2 = calculate_R2(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col) uncert = calculate_IEC_uncertainty(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col) X = data.loc[:, ref_ws_col].values Y = data.loc[:, site_ws_col].values data_mean = data.mean() slope_estimate_via_ratio = data_mean[site_ws_col]/data_mean[ref_ws_col] realdata = odrpack.RealData(X, Y) if force_through_origin: linear = odrpack.Model(f_without_offset) odr = odrpack.ODR(realdata, linear, beta0=[slope_estimate_via_ratio]) slope = odr.run().beta[0] offset = 0 else: linear = odrpack.Model(f_with_offset) odr = odrpack.ODR(realdata, linear, beta0=[slope_estimate_via_ratio, 0.0]) slope, offset = odr.run().beta[0], odr.run().beta[1] results.loc[pd.IndexSlice[ref_ws_col, site_ws_col],['slope', 'offset' , 'R2', 'uncert', 'points']] = np.array([slope, offset, R2, uncert, points]) return results def ws_correlation_robust_linear_model(data, ref_ws_col='ref', site_ws_col='site', force_through_origin=False): '''Calculate the slope and offset between two wind speed columns using robust linear model. http://www.statsmodels.org/dev/rlm.html :Parameters: data: DataFrame DataFrame with wind speed columns ref and site, and direction data dir ref_ws_col: string, default None (primary anemometer assumed) Reference anemometer data to use. Extracted from MetMast.data site_ws_col: string, default None (primary anemometer assumed) Site anemometer data to use. Extracted from MetMast.data force_through_origin: boolean, default False Force the correlation through the origin (offset equal to zero) :Returns: out: DataFrame slope, offset, R2, uncert, points ''' data = data.loc[:, [ref_ws_col, site_ws_col]].dropna().astype(np.float) results = return_correlation_results_frame(ref_label=ref_ws_col, site_label=site_ws_col) if not valid_ws_correlation_data(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col): return results points = data.shape[0] R2 = calculate_R2(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col) uncert = calculate_IEC_uncertainty(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col) X = data.loc[:, ref_ws_col].values Y = data.loc[:, site_ws_col].values if not force_through_origin: X = sm.add_constant(X) else: X = [np.zeros(X.shape[0]), X] X = np.column_stack(X) mod = sm.RLM(Y, X) resrlm = mod.fit() offset, slope = resrlm.params R2 = sm.WLS(mod.endog, mod.exog, weights=mod.fit().weights).fit().rsquared results.loc[pd.IndexSlice[ref_ws_col, site_ws_col],['slope', 'offset' , 'R2', 'uncert', 'points']] = np.array([slope, offset, R2, uncert, points]) return results def ws_correlation_method(data, ref_ws_col='ref', site_ws_col='site', method='ODR', force_through_origin=False): '''Calculate the slope and offset, for a given correlation method, between two wind speed columns. :Parameters: data: DataFrame DataFrame with wind speed columns ref and site, and direction data dir ref_ws_col: string, default None (primary anemometer assumed) Reference anemometer data to use. Extracted from MetMast.data site_ws_col: string, default None (primary anemometer assumed) Site anemometer data to use. Extracted from MetMast.data method: string, default 'ODR' Correlation method to use. * Orthoginal distance regression: 'ODR' * Ordinary least squares: 'OLS' * Robust linear models: 'RLM' force_through_origin: boolean, default False Force the correlation through the origin (offset equal to zero) :Returns: out: DataFrame slope, offset, R2, uncert, points ''' if method == 'ODR': results = ws_correlation_orthoginal_distance_model(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col, force_through_origin=force_through_origin) elif method == 'OLS': results = ws_correlation_least_squares_model(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col, force_through_origin=force_through_origin) elif method == 'RLM': results = ws_correlation_robust_linear_model(data=data, ref_ws_col=ref_ws_col, site_ws_col=site_ws_col, force_through_origin=force_through_origin) return results def ws_correlation_binned_by_direction(data, ref_ws_col='ref', site_ws_col='site', ref_dir_col='dir', dir_sectors=16, method='ODR', force_through_origin=False): '''Calculate the slope and offset, binned by direction, between two wind speed columns. :Parameters: data: DataFrame DataFrame with wind speed columns ref and site, and direction data dir ref_ws_col: string, default None (primary anemometer assumed) Reference anemometer data to use. Extracted from MetMast.data site_ws_col: string, default None (primary anemometer assumed) Site anemometer data to use. Extracted from MetMast.data ref_dir_col: string, default None (primary wind vane assumed) Reference wind vane data to use. Extracted from MetMast.data dir_sectors: int, default 16 Number of equally spaced direction sectors method: string, default 'ODR' Correlation method to use. * Orthoginal distance regression: 'ODR' * Ordinary least squares: 'OLS' * Robust linear models: 'RLM' force_through_origin: boolean, default False Force the correlation through the origin (offset equal to zero) :Returns: out: DataFrame slope, offset, R2, uncert, points ''' data = data.loc[:,[ref_ws_col, site_ws_col, ref_dir_col]].dropna().astype(np.float) results = return_correlation_results_frame(ref_label=ref_ws_col, site_label=site_ws_col) dir_bins = np.arange(1,dir_sectors+1) results = pd.concat([results]*dir_sectors, axis=0) results.index =
pd.Index(dir_bins, name='dir_bin')
pandas.Index
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, Index, MultiIndex, Series, qcut, ) import pandas._testing as tm def cartesian_product_for_groupers(result, args, names, fill_value=np.NaN): """Reindex to a cartesian production for the groupers, preserving the nature (Categorical) of each grouper """ def f(a): if isinstance(a, (CategoricalIndex, Categorical)): categories = a.categories a = Categorical.from_codes( np.arange(len(categories)), categories=categories, ordered=a.ordered ) return a index = MultiIndex.from_product(map(f, args), names=names) return result.reindex(index, fill_value=fill_value).sort_index() _results_for_groupbys_with_missing_categories = { # This maps the builtin groupby functions to their expected outputs for # missing categories when they are called on a categorical grouper with # observed=False. Some functions are expected to return NaN, some zero. # These expected values can be used across several tests (i.e. they are # the same for SeriesGroupBy and DataFrameGroupBy) but they should only be # hardcoded in one place. "all": np.NaN, "any": np.NaN, "count": 0, "corrwith": np.NaN, "first": np.NaN, "idxmax": np.NaN, "idxmin": np.NaN, "last": np.NaN, "mad": np.NaN, "max": np.NaN, "mean": np.NaN, "median": np.NaN, "min": np.NaN, "nth": np.NaN, "nunique": 0, "prod": np.NaN, "quantile": np.NaN, "sem": np.NaN, "size": 0, "skew": np.NaN, "std": np.NaN, "sum": 0, "var": np.NaN, } def test_apply_use_categorical_name(df): cats = qcut(df.C, 4) def get_stats(group): return { "min": group.min(), "max": group.max(), "count": group.count(), "mean": group.mean(), } result = df.groupby(cats, observed=False).D.apply(get_stats) assert result.index.names[0] == "C" def test_basic(): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) exp_index = CategoricalIndex(list("abcd"), name="b", ordered=True) expected = DataFrame({"a": [1, 2, 4, np.nan]}, index=exp_index) result = data.groupby("b", observed=False).mean() tm.assert_frame_equal(result, expected) cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A", observed=False) exp_idx = CategoricalIndex(["a", "b", "z"], name="A", ordered=True) expected = DataFrame({"values": Series([3, 7, 0], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) g = x.groupby(["person_id"], observed=False) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[["person_name"]]) result = x.drop_duplicates("person_name") expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates("person_name").iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name="person_id") expected["person_name"] = expected["person_name"].astype("object") tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.max(xs)), df[["a"]] ) # Filter tm.assert_series_equal(df.a.groupby(c, observed=False).filter(np.all), df["a"]) tm.assert_frame_equal(df.groupby(c, observed=False).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df[["a"]] ) # GH 9603 df = DataFrame({"a": [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list("abcd"))) result = df.groupby(c, observed=False).apply(len) exp_index = CategoricalIndex(c.values.categories, ordered=c.values.ordered) expected = Series([1, 0, 0, 0], index=exp_index) expected.index.name = "a" tm.assert_series_equal(result, expected) # more basic levels = ["foo", "bar", "baz", "qux"] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical( ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"] ) expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe() tm.assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_level_get_group(observed): # GH15155 df = DataFrame( data=np.arange(2, 22, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(10)], codes=[[0] * 5 + [1] * 5, range(10)], names=["Index1", "Index2"], ), ) g = df.groupby(level=["Index1"], observed=observed) # expected should equal test.loc[["a"]] # GH15166 expected = DataFrame( data=np.arange(2, 12, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(5)], codes=[[0] * 5, range(5)], names=["Index1", "Index2"], ), ) result = g.get_group("a") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) # GH#21636 tracking down the xfail, in some builds np.mean(df.loc[[0]]) # is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"]) # when we expect Series(0., index=["values"]) result = grouped.apply(lambda x: np.mean(x)) tm.assert_frame_equal(result, expected) # we coerce back to ints expected = expected.astype("int") result = grouped.mean() tm.assert_frame_equal(result, expected) result = grouped.agg(np.mean) tm.assert_frame_equal(result, expected) # but for transform we should still get back the original index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = Series(1, index=idx) result = grouped.apply(lambda x: 1) tm.assert_series_equal(result, expected) def test_observed(observed): # multiple groupers, don't re-expand the output space # of the grouper # gh-14942 (implement) # gh-10132 (back-compat) # gh-8138 (back-compat) # gh-8869 cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) df["C"] = ["foo", "bar"] * 2 # multiple groupers with a non-cat gb = df.groupby(["A", "B", "C"], observed=observed) exp_index = MultiIndex.from_arrays( [cat1, cat2, ["foo", "bar"] * 2], names=["A", "B", "C"] ) expected = DataFrame({"values": Series([1, 2, 3, 4], index=exp_index)}).sort_index() result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2, ["foo", "bar"]], list("ABC"), fill_value=0 ) tm.assert_frame_equal(result, expected) gb = df.groupby(["A", "B"], observed=observed) exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"]) expected = DataFrame({"values": [1, 2, 3, 4]}, index=exp_index) result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2], list("AB"), fill_value=0 ) tm.assert_frame_equal(result, expected) # https://github.com/pandas-dev/pandas/issues/8138 d = { "cat": Categorical( ["a", "b", "a", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 1, 2, 2], "val": [10, 20, 30, 40], } df = DataFrame(d) # Grouping on a single column groups_single_key = df.groupby("cat", observed=observed) result = groups_single_key.mean() exp_index = CategoricalIndex( list("ab"), name="cat", categories=list("abc"), ordered=True ) expected = DataFrame({"ints": [1.5, 1.5], "val": [20.0, 30]}, index=exp_index) if not observed: index = CategoricalIndex( list("abc"), name="cat", categories=list("abc"), ordered=True ) expected = expected.reindex(index) tm.assert_frame_equal(result, expected) # Grouping on two columns groups_double_key = df.groupby(["cat", "ints"], observed=observed) result = groups_double_key.agg("mean") expected = DataFrame( { "val": [10, 30, 20, 40], "cat": Categorical( ["a", "a", "b", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 2, 1, 2], } ).set_index(["cat", "ints"]) if not observed: expected = cartesian_product_for_groupers( expected, [df.cat.values, [1, 2]], ["cat", "ints"] ) tm.assert_frame_equal(result, expected) # GH 10132 for key in [("a", 1), ("b", 2), ("b", 1), ("a", 2)]: c, i = key result = groups_double_key.get_group(key) expected = df[(df.cat == c) & (df.ints == i)] tm.assert_frame_equal(result, expected) # gh-8869 # with as_index d = { "foo": [10, 8, 4, 8, 4, 1, 1], "bar": [10, 20, 30, 40, 50, 60, 70], "baz": ["d", "c", "e", "a", "a", "d", "c"], } df = DataFrame(d) cat = pd.cut(df["foo"], np.linspace(0, 10, 3)) df["range"] = cat groups = df.groupby(["range", "baz"], as_index=False, observed=observed) result = groups.agg("mean") groups2 = df.groupby(["range", "baz"], as_index=True, observed=observed) expected = groups2.agg("mean").reset_index() tm.assert_frame_equal(result, expected) def test_observed_codes_remap(observed): d = {"C1": [3, 3, 4, 5], "C2": [1, 2, 3, 4], "C3": [10, 100, 200, 34]} df = DataFrame(d) values = pd.cut(df["C1"], [1, 2, 3, 6]) values.name = "cat" groups_double_key = df.groupby([values, "C2"], observed=observed) idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]], names=["cat", "C2"]) expected = DataFrame({"C1": [3, 3, 4, 5], "C3": [10, 100, 200, 34]}, index=idx) if not observed: expected = cartesian_product_for_groupers( expected, [values.values, [1, 2, 3, 4]], ["cat", "C2"] ) result = groups_double_key.agg("mean") tm.assert_frame_equal(result, expected) def test_observed_perf(): # we create a cartesian product, so this is # non-performant if we don't use observed values # gh-14942 df = DataFrame( { "cat": np.random.randint(0, 255, size=30000), "int_id": np.random.randint(0, 255, size=30000), "other_id": np.random.randint(0, 10000, size=30000), "foo": 0, } ) df["cat"] = df.cat.astype(str).astype("category") grouped = df.groupby(["cat", "int_id", "other_id"], observed=True) result = grouped.count() assert result.index.levels[0].nunique() == df.cat.nunique() assert result.index.levels[1].nunique() == df.int_id.nunique() assert result.index.levels[2].nunique() == df.other_id.nunique() def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = Categorical(["a", "c", "a"], categories=["a", "b", "c"]) df = DataFrame({"cat": cat, "vals": [1, 2, 3]}) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64"), "c": Index([1], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "c": Index([1], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_groups_with_nan(observed): # GH 24740 df = DataFrame( { "cat": Categorical(["a", np.nan, "a"], categories=["a", "b", "d"]), "vals": [1, 2, 3], } ) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "d": Index([], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_nth(): # GH 26385 cat = Categorical(["a", np.nan, np.nan], categories=["a", "b", "c"]) ser = Series([1, 2, 3]) df = DataFrame({"cat": cat, "ser": ser}) result = df.groupby("cat", observed=False)["ser"].nth(0) index = Categorical(["a", "b", "c"], categories=["a", "b", "c"]) expected = Series([1, np.nan, np.nan], index=index, name="ser") expected.index.name = "cat" tm.assert_series_equal(result, expected) def test_dataframe_categorical_with_nan(observed): # GH 21151 s1 = Categorical([np.nan, "a", np.nan, "a"], categories=["a", "b", "c"]) s2 = Series([1, 2, 3, 4]) df = DataFrame({"s1": s1, "s2": s2}) result = df.groupby("s1", observed=observed).first().reset_index() if observed: expected = DataFrame( {"s1": Categorical(["a"], categories=["a", "b", "c"]), "s2": [2]} ) else: expected = DataFrame( { "s1": Categorical(["a", "b", "c"], categories=["a", "b", "c"]), "s2": [2, np.nan, np.nan], } ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) @pytest.mark.parametrize("observed", [True, False]) @pytest.mark.parametrize("sort", [True, False]) def test_dataframe_categorical_ordered_observed_sort(ordered, observed, sort): # GH 25871: Fix groupby sorting on ordered Categoricals # GH 25167: Groupby with observed=True doesn't sort # Build a dataframe with cat having one unobserved category ('missing'), # and a Series with identical values label = Categorical( ["d", "a", "b", "a", "d", "b"], categories=["a", "b", "missing", "d"], ordered=ordered, ) val = Series(["d", "a", "b", "a", "d", "b"]) df = DataFrame({"label": label, "val": val}) # aggregate on the Categorical result = df.groupby("label", observed=observed, sort=sort)["val"].aggregate("first") # If ordering works, we expect index labels equal to aggregation results, # except for 'observed=False': label 'missing' has aggregation None label = Series(result.index.array, dtype="object") aggr = Series(result.array) if not observed: aggr[aggr.isna()] = "missing" if not all(label == aggr): msg = ( "Labels and aggregation results not consistently sorted\n" f"for (ordered={ordered}, observed={observed}, sort={sort})\n" f"Result:\n{result}" ) assert False, msg def test_datetime(): # GH9049: ensure backward compatibility levels = pd.date_range("2014-01-01", periods=4) codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() expected = expected.reindex(levels) expected.index = CategoricalIndex( expected.index, categories=expected.index, ordered=True ) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = cats.take(idx) ord_data = data.take(idx) expected = ord_data.groupby(ord_labels, observed=False).describe() tm.assert_frame_equal(desc_result, expected) tm.assert_index_equal(desc_result.index, expected.index) tm.assert_index_equal( desc_result.index.get_level_values(0), expected.index.get_level_values(0) ) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_categorical_index(): s = np.random.RandomState(12345) levels = ["foo", "bar", "baz", "qux"] codes = s.randint(0, 4, size=20) cats = Categorical.from_codes(codes, levels, ordered=True) df = DataFrame(np.repeat(np.arange(20), 4).reshape(-1, 4), columns=list("abcd")) df["cats"] = cats # with a cat index result = df.set_index("cats").groupby(level=0, observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) # with a cat column, should produce a cat index result = df.groupby("cats", observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) def test_describe_categorical_columns(): # GH 11558 cats = CategoricalIndex( ["qux", "foo", "baz", "bar"], categories=["foo", "bar", "baz", "qux"], ordered=True, ) df = DataFrame(np.random.randn(20, 4), columns=cats) result = df.groupby([1, 2, 3, 4] * 5).describe() tm.assert_index_equal(result.stack().columns, cats) tm.assert_categorical_equal(result.stack().columns.values, cats.values) def test_unstack_categorical(): # GH11558 (example is taken from the original issue) df = DataFrame( {"a": range(10), "medium": ["A", "B"] * 5, "artist": list("XYXXY") * 2} ) df["medium"] = df["medium"].astype("category") gcat = df.groupby(["artist", "medium"], observed=False)["a"].count().unstack() result = gcat.describe() exp_columns = CategoricalIndex(["A", "B"], ordered=False, name="medium") tm.assert_index_equal(result.columns, exp_columns) tm.assert_categorical_equal(result.columns.values, exp_columns.values) result = gcat["A"] + gcat["B"] expected = Series([6, 4], index=Index(["X", "Y"], name="artist")) tm.assert_series_equal(result, expected) def test_bins_unequal_len(): # GH3011 series = Series([np.nan, np.nan, 1, 1, 2, 2, 3, 3, 4, 4]) bins = pd.cut(series.dropna().values, 4) # len(bins) != len(series) here msg = r"Length of grouper \(8\) and axis \(10\) must be same length" with pytest.raises(ValueError, match=msg): series.groupby(bins).mean() def test_as_index(): # GH13204 df = DataFrame( { "cat": Categorical([1, 2, 2], [1, 2, 3]), "A": [10, 11, 11], "B": [101, 102, 103], } ) result = df.groupby(["cat", "A"], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # function grouper f = lambda r: df.loc[r, "A"] result = df.groupby(["cat", f], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 22], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # another not in-axis grouper (conflicting names in index) s = Series(["a", "b", "b"], name="cat") result = df.groupby(["cat", s], as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) # is original index dropped? group_columns = ["cat", "A"] expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) for name in [None, "X", "B"]: df.index = Index(list("abc"), name=name) result = df.groupby(group_columns, as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) def test_preserve_categories(): # GH-13179 categories = list("abc") # ordered=True df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=True)}) index = CategoricalIndex(categories, categories, ordered=True, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, index ) # ordered=False df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=False)}) sort_index = CategoricalIndex(categories, categories, ordered=False, name="A") nosort_index = CategoricalIndex(list("bac"), list("bac"), ordered=False, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, sort_index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, nosort_index ) def test_preserve_categorical_dtype(): # GH13743, GH13854 df = DataFrame( { "A": [1, 2, 1, 1, 2], "B": [10, 16, 22, 28, 34], "C1": Categorical(list("abaab"), categories=list("bac"), ordered=False), "C2": Categorical(list("abaab"), categories=list("bac"), ordered=True), } ) # single grouper exp_full = DataFrame( { "A": [2.0, 1.0, np.nan], "B": [25.0, 20.0, np.nan], "C1": Categorical(list("bac"), categories=list("bac"), ordered=False), "C2": Categorical(list("bac"), categories=list("bac"), ordered=True), } ) for col in ["C1", "C2"]: result1 = df.groupby(by=col, as_index=False, observed=False).mean() result2 = df.groupby(by=col, as_index=True, observed=False).mean().reset_index() expected = exp_full.reindex(columns=result1.columns) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) @pytest.mark.parametrize( "func, values", [ ("first", ["second", "first"]), ("last", ["fourth", "third"]), ("min", ["fourth", "first"]), ("max", ["second", "third"]), ], ) def test_preserve_on_ordered_ops(func, values): # gh-18502 # preserve the categoricals on ops c = Categorical(["first", "second", "third", "fourth"], ordered=True) df = DataFrame({"payload": [-1, -2, -1, -2], "col": c}) g = df.groupby("payload") result = getattr(g, func)() expected = DataFrame( {"payload": [-2, -1], "col": Series(values, dtype=c.dtype)} ).set_index("payload") tm.assert_frame_equal(result, expected) def test_categorical_no_compress(): data = Series(np.random.randn(9)) codes = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) cats = Categorical.from_codes(codes, [0, 1, 2], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean() exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3]) cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean().reindex(cats.categories) exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) result = data.groupby("b", observed=False).mean() result = result["a"].values exp = np.array([1, 2, 4, np.nan]) tm.assert_numpy_array_equal(result, exp) def test_groupby_empty_with_category(): # GH-9614 # test fix for when group by on None resulted in # coercion of dtype categorical -> float df = DataFrame({"A": [None] * 3, "B": Categorical(["train", "train", "test"])}) result = df.groupby("A").first()["B"] expected = Series( Categorical([], categories=["test", "train"]), index=Series([], dtype="object", name="A"), name="B", ) tm.assert_series_equal(result, expected) def test_sort(): # https://stackoverflow.com/questions/23814368/sorting-pandas- # categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') df = DataFrame({"value": np.random.randint(0, 10000, 100)}) labels = [f"{i} - {i+499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) res = df.groupby(["value_group"], observed=False)["value_group"].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_sort2(): # dataframe groupby sort was being ignored # GH 8868 df = DataFrame( [ ["(7.5, 10]", 10, 10], ["(7.5, 10]", 8, 20], ["(2.5, 5]", 5, 30], ["(5, 7.5]", 6, 40], ["(2.5, 5]", 4, 50], ["(0, 2.5]", 1, 60], ["(5, 7.5]", 7, 70], ], columns=["range", "foo", "bar"], ) df["range"] =
Categorical(df["range"], ordered=True)
pandas.Categorical
""" Module for the import and manipulation of quantified targeted MS data sets. """ import copy import os import re from datetime import datetime import numpy import pandas import collections import warnings from .._toolboxPath import toolboxPath from ._dataset import Dataset from ..utilities import normalisation, rsd from ..enumerations import VariableType, AssayRole, SampleType, QuantificationType, CalibrationMethod, AnalyticalPlatform class TargetedDataset(Dataset): """ TargetedDataset(dataPath, fileType='TargetLynx', sop='Generic', \*\*kwargs) :py:class:`~TargetedDataset` extends :py:class:`Dataset` to represent quantitative datasets, where compounds are already identified, the exactitude of the quantification can be established, units are known and calibration curve or internal standards are employed. The :py:class:`~TargetedDataset` class include methods to apply limits of quantification (LLOQ and ULOQ), merge multiple analytical batch, and report accuracy and precision of each measurements. In addition to the structure of :py:class:`~Dataset`, :py:class:`~TargetedDataset` requires the following attributes: * :py:attr:`~TargetedDataset.expectedConcentration`: A :math:`n` × :math:`m` pandas dataframe of expected concentrations (matching the :py:attr:`~Dataset.intensityData` dimension), with column names matching :py:attr:`~TargetedDataset.featureMetadata[‘Feature Name’]` * :py:attr:`~TargetedDataset.calibration`: A dictionary containing pandas dataframe describing calibration samples: * :py:attr:`~TargetedDataset.calibration['calibIntensityData']`: A :math:`r` x :math:`m` numpy matrix of measurements. Features must match features in :py:attr:`~TargetedDataset.intensityData` * :py:attr:`~TargetedDataset.calibration['calibSampleMetadata']`: A :math:`r` x :math:`m` pandas dataframe of calibration sample identifiers and metadata * :py:attr:`~TargetedDataset.calibration['calibFeatureMetadata']`: A :math:`m` × :math:`q` pandas dataframe of feature identifiers and metadata * :py:attr:`~TargetedDataset.calibration['calibExpectedConcentration']`: A :math:`r` × :math:`m` pandas dataframe of calibration samples expected concentrations * :py:attr:`~TargetedDataset.Attributes` must contain the following (can be loaded from a method specific JSON on import): * ``methodName``: A (str) name of the method * ``externalID``: A list of external ID, each external ID must also be present in *Attributes* as a list of identifier (for that external ID) for each feature. For example, if ``externalID=['PubChem ID']``, ``Attributes['PubChem ID']=['ID1','ID2','','ID75']`` * :py:attr:`~TargetedDataset.featureMetadata` expects the following columns: * ``quantificationType``: A :py:class:`~nPYc.enumerations.QuantificationType` enum specifying the exactitude of the quantification procedure employed. * ``calibrationMethod``: A :py:class:`~nPYc.enumerations.CalibrationMethod` enum specifying the calibration method employed. * ``Unit``: A (str) unit corresponding the the feature measurement value. * ``LLOQ``: The lowest limit of quantification, used to filter concentrations < LLOQ * ``ULOQ``: The upper limit of quantification, used to filter concentrations > ULOQ * externalID: All externalIDs listed in :py:attr:`~TargetedDataset.Attributes['externalID']` must be present as their own column Currently targeted assay results processed using **TargetLynx** or **Bruker quantification results** can be imported. To create an import for any other form of semi-quantitative or quantitative results, the procedure is as follow: * Create a new ``fileType == 'myMethod'`` entry in :py:meth:`~TargetedDataset.__init__` * Define functions to populate all expected dataframes (using file readers, JSON,...) * Separate calibration samples from study samples (store in :py:attr:`~TargetedDataset.calibration`). *If none exist, intialise empty dataframes with the correct number of columns and column names.* * Execute pre-processing steps if required (note: all feature values should be expressed in the unit listed in :py:attr:`~TargetedDataset.featureMetadata['Unit']`) * Apply limits of quantification using :py:meth:`~TargetedDataset._applyLimitsOfQuantification`. (This function does not apply limits of quantification to features marked as :py:class:`~nPYc.enumerations.QuantificationType` == QuantificationType.Monitored for compounds monitored for relative information.) The resulting :py:class:`~TargetedDatset` created must satisfy to the criteria for *BasicTargetedDataset*, which can be checked with :py:meth:`~TargetedDataset.validatedObject` (list the minimum requirements for all class methods). * ``fileType == 'TargetLynx'`` to import data processed using **TargetLynx** TargetLynx import operates on ``xml`` files exported *via* the 'File -> Export -> XML' TargetLynx menu option. Import requires a ``calibration_report.csv`` providing lower and upper limits of quantification (LLOQ, ULOQ) with the ``calibrationReportPath`` keyword argument. Targeted data measurements as well as calibration report information are read and mapped with pre-defined SOPs. All measurments are converted to pre-defined units and measurements inferior to the lowest limits of quantification or superior to the upper limits of quantification are replaced. Once the import is finished, only analysed samples are returned (no calibration samples) and only features mapped onto the pre-defined SOP and sufficiently described. Instructions to created new ``TargetLynx`` SOP can be found on the :doc:`generation of targeted SOPs <configuration/targetedSOPs>` page. Example: ``TargetedDataset(datapath, fileType='TargetLynx', sop='OxylipinMS', calibrationReportPath=calibrationReportPath, sampleTypeToProcess=['Study Sample','QC'], noiseFilled=False, onlyLLOQ=False, responseReference=None)`` * ``sop`` Currently implemented are `'OxylipinMS'` and `'AminoAcidMS'` `AminoAcidMS`: Gray N. `et al`. Human Plasma and Serum via Precolumn Derivatization with 6‑Aminoquinolyl‑N‑hydroxysuccinimidyl Carbamate: Application to Acetaminophen-Induced Liver Failure. `Analytical Chemistry`, 2017, 89, 2478−87. `OxylipinMS`: <NAME>. `et al.` Development and Validation of a High-Throughput Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry Approach for Screening of Oxylipins and Their Precursors. `Analytical Chemistry`, 2015, 87 (23),11721–31 * ``calibrationReportPath`` Path to the calibration report `csv` following the provided report template. The following columns are required (leave an empty value to reject a compound): * Compound The compound name, identical to the one employed in the SOP `json` file. * TargetLynx ID The compound TargetLynx ID, identical to the one employed in the SOP `json` file. * LLOQ Lowest limit of quantification concentration, in the same unit as indicated in TargetLynx. * ULOQ Upper limit of quantification concentration, in the same unit as indicated in TargetLynx. The following columns are expected by :py:meth:`~TargetedDataset._targetLynxApplyLimitsOfQuantificationNoiseFilled`: * Noise (area) Area integrated in a blank sample at the same retention time as the compound of interest (if left empty noise concentration calculation cannot take place). * a :math:`a` coefficient in the calibration equation (if left empty noise concentration calculation cannot take place). * b :math:`b` coefficient in the calibration equation (if left empty noise concentration calculation cannot take place). The following columns are recommended but not expected: * Cpd Info Additional information relating to the compound (can be left empty). * r :math:`r` goodness of fit measure for the calibration equation (can be left empty). * r2 :math:`r^2` goodness of fit measure for the calibration equation (can be left empty). * ``sampleTypeToProcess`` List of *['Study Sample','Blank','QC','Other']* for the sample types to process as defined in MassLynx. Only samples in 'sampleTypeToProcess' are returned. Calibrants should not be processed and are not returned. Most uses should only require `'Study Sample'` as quality controls are identified based on sample names by subsequent functions. `Default value is '['Study Sample','QC']'`. * ``noiseFilled`` If True values <LLOQ will be replaced by a concentration equivalent to the noise level in a blank. If False <LLOQ is replaced by :math:`-inf`. `Default value is 'False'` * ``onlyLLOQ`` If True only correct <LLOQ, if False correct <LLOQ and >ULOQ. `Default value is 'False'`. * ``responseReference`` If noiseFilled=True the noise concentration needs to be calculated. Provide the 'Sample File Name' of a reference sample to use in order to establish the response to use, or list of samples to use (one per feature). If None, the middle of the calibration will be employed. `Default value is 'None'`. * ``keepPeakInfo`` If keepPeakInfo=True (default `False`) adds the :py:attr:`peakInfo` dictionary to the :py:class:`~TargetedDataset.calibration`. :py:attr:`peakInfo` contains the `peakResponse`, `peakArea`, `peakConcentrationDeviation`, `peakIntegrationFlag` and `peakRT`. * ``keepExcluded`` If keepExcluded=True (default `False`), import exclusions (:py:attr:`excludedImportSampleMetadata`, :py:attr:`excludedImportFeatureMetadata`, :py:attr:`excludedImportIntensityData` and :py:attr:`excludedImportExpectedConcentration`) are kept in the object. * ``keepIS`` If keepIS=True (default `False`), features marked as Internal Standards (IS) are retained. * ``fileType = 'Bruker Quantification'`` to import Bruker quantification results * ``nmrRawDataPath`` Path to the parent folder where all result files are stored. All subfolders will be parsed and the ``.xml`` results files matching the ``fileNamePattern`` imported. * ``fileNamePattern`` Regex to recognise the result data xml files * ``pdata`` To select the right pdata folders (default 1) Two form of Bruker quantification results are supported and selected using the ``sop`` option: *BrukerQuant-UR* and *Bruker BI-LISA* * ``sop = 'BrukerQuant-UR'`` Example: ``TargetedDataset(nmrRawDataPath, fileType='Bruker Quantification', sop='BrukerQuant-UR', fileNamePattern='.*?urine_quant_report_b\.xml$', unit='mmol/mol Crea')`` * ``unit`` If features are duplicated with different units, ``unit`` limits the import to features matching said unit. (In case of duplication and no ``unit``, all available units will be listed) * ``sop = ''BrukerBI-LISA'`` Example: ``TargetedDataset(nmrRawDataPath, fileType='Bruker Quantification', sop='BrukerBI-LISA', fileNamePattern='.*?results\.xml$')`` """ def __init__(self, datapath, fileType='TargetLynx', sop='Generic', **kwargs): """ Initialisation and pre-processing of input data (load files and match data and calibration and SOP, apply limits of quantification). """ super().__init__(sop=sop, **kwargs) self.filePath, fileName = os.path.split(datapath) self.fileName, fileExtension = os.path.splitext(fileName) self.name = self.fileName # Load files and match data, calibration report and SOP, then Apply the limits of quantification if fileType == 'TargetLynx': # Read files, filter calibration samples, filter IS, applyLLOQ, clean object self._loadTargetLynxDataset(datapath, **kwargs) # Finalise object self.VariableType = VariableType.Discrete self.AnalyticalPlatform = AnalyticalPlatform.MS self.initialiseMasks() elif fileType == 'Bruker Quantification': # Read files, clean object self._loadBrukerXMLDataset(datapath, **kwargs) # Finalise object self.VariableType = VariableType.Discrete self.AnalyticalPlatform = AnalyticalPlatform.NMR self.initialiseMasks() elif fileType == 'empty': # Build empty object for testing pass else: raise NotImplementedError # Check the final object is valid and log if fileType != 'empty': validDataset = self.validateObject(verbose=False, raiseError=False, raiseWarning=False) if not validDataset['BasicTargetedDataset']: raise ValueError('Import Error: The imported dataset does not satisfy to the Basic TargetedDataset definition') self.Attributes['Log'].append([datetime.now(), '%s instance initiated, with %d samples, %d features, from %s' % (self.__class__.__name__, self.noSamples, self.noFeatures, datapath)]) # Check later if 'Metadata Available' not in self.sampleMetadata: self.sampleMetadata['Metadata Available'] = False @property def rsdSP(self): """ Returns percentage :term:`relative standard deviations<RSD>` for each feature in the dataset, calculated on samples with the Assay Role :py:attr:`~nPYc.enumerations.AssayRole.PrecisionReference` and Sample Type :py:attr:`~nPYc.enumerations.SampleType.StudyPool` in :py:attr:`~Dataset.sampleMetadata`. Implemented as a back-up to :py:Meth:`accuracyPrecision` when no expected concentrations are known :return: Vector of feature RSDs :rtype: numpy.ndarray """ # Check we have Study Reference samples defined if not ('AssayRole' in self.sampleMetadata.keys() or 'SampleType' in self.sampleMetadata.keys()): raise ValueError('Assay Roles and Sample Types must be defined to calculate RSDs.') if not sum(self.sampleMetadata['AssayRole'].values == AssayRole.PrecisionReference) > 1: raise ValueError('More than one precision reference is required to calculate RSDs.') mask = numpy.logical_and(self.sampleMetadata['AssayRole'].values == AssayRole.PrecisionReference, self.sampleMetadata['SampleType'].values == SampleType.StudyPool) return rsd(self._intensityData[mask & self.sampleMask]) @property def rsdSS(self): """ Returns percentage :term:`relative standard deviations<RSD>` for each feature in the dataset, calculated on samples with the Assay Role :py:attr:`~nPYc.enumerations.AssayRole.Assay` and Sample Type :py:attr:`~nPYc.enumerations.SampleType.StudySample` in :py:attr:`~Dataset.sampleMetadata`. :return: Vector of feature RSDs :rtype: numpy.ndarray """ # Check we have Study Reference samples defined if not ('AssayRole' in self.sampleMetadata.keys() or 'SampleType' in self.sampleMetadata.keys()): raise ValueError('Assay Roles and Sample Types must be defined to calculate RSDs.') if not sum(self.sampleMetadata['AssayRole'].values == AssayRole.Assay) > 1: raise ValueError('More than one assay sample is required to calculate RSDs.') mask = numpy.logical_and(self.sampleMetadata['AssayRole'].values == AssayRole.Assay, self.sampleMetadata['SampleType'].values == SampleType.StudySample) return rsd(self._intensityData[mask & self.sampleMask]) def _loadTargetLynxDataset(self, datapath, calibrationReportPath, keepIS=False, noiseFilled=False, keepPeakInfo=False, keepExcluded=False, **kwargs): """ Initialise object from peak-picked and calibrated TargetLynx data. Filter calibration samples, filter IS. Targeted data measurements as well as calibration report information are read and mapped with pre-defined SOPs. All units are converted to pre-defined units and measurements inferior to the lowest limits of quantification or superior to the upper limits of quantification are replaced. Once the import is finished, only analysed samples are returned (no calibration samples) and only features mapped onto the pre-defined SOP and sufficiently described. * TargetLynx TargetLynx import operates on xml files exported *via* the 'File -> Export -> XML' menu option. Import requires a calibration_report.csv providing lower and upper limits of quantification (LLOQ, ULOQ) with the ``calibrationReportPath`` keyword argument. Example: ``TargetedDataset(datapath, fileType='TargetLynx', sop='OxylipinMS', calibrationReportPath=calibrationReportPath, sampleTypeToProcess=['Study Sample','QC'], noiseFilled=False, onlyLLOQ=False, responseReference=None)`` * ``datapath`` Path to the TargetLynx exported `xml` file. * ``calibrationReportPath`` Path to the calibration report `csv` following the provided report template (leave an empty value in the predefined columns to reject a compound). * ``sampleTypeToProcess`` List of ['Study Sample','Blank','QC','Other'] for the sample types to process as defined in MassLynx. Only samples in 'sampleTypeToProcess' are returned. Calibrants should not be processed and are not returned. Most uses should only require `'Study Sample'` as quality controls are identified based on sample names by subsequent functions. `Default value is '['Study Sample','QC']'`. * ``noiseFilled`` If True values <LLOQ will be replaced by a concentration equivalent to the noise level in a blank. If False <LLOQ is replaced by :math:`-inf`. `Default value is 'False'` * ``onlyLLOQ`` If True only correct <LLOQ, if False correct <LLOQ and >ULOQ. `Default value is 'False'`. * ``responseReference`` If noiseFilled=True the noise concentration needs to be calculated. Provide the 'Sample File Name' of a reference sample to use in order to establish the response to use, or list of samples to use (one per feature). If None, the middle of the calibration will be employed. `Default value is 'None'`. * ``keepIS If keepIS=True (default `False`), features marked as Internal Standards (IS) are retained. * ``keepPeakInfo`` If keepPeakInfo=True (default `False`) adds the :py:attr:`peakInfo` dictionary to the :py:class:`TargetedDataset` and py:attr:`calibration`. :py:attr:`peakInfo` contains the `peakResponse`, `peakArea`, `peakConcentrationDeviation`, `peakIntegrationFlag` and `peakRT`. * ``keepExcluded`` If keepExcluded=True (default `False`), import exclusions (:py:attr:`excludedImportSampleMetadata`, :py:attr:`excludedImportFeatureMetadata`, :py:attr:`excludedImportIntensityData` and :py:attr:`excludedImportExpectedConcentration`) are kept in the object. :param datapath: Path to the TargetLynx exported xml file :type datapath: str :param calibrationReportPath: Path to the calibration report csv file :type calibrationReportPath: str :param keepIS: If keepIS=True (default `False`), features marked as Internal Standards (IS) are retained. :type keepIS: bool :param noiseFilled: If noiseFilled=True (default `False`), values <LLOQ are replaced by the noise concentration :type noiseFilled: bool :param peakInfo: If keepExcluded=True (default `False`), import exclusions (:py:attr:`excludedImportSampleMetadata`, :py:attr:`excludedImportFeatureMetadata`, :py:attr:`excludedImportIntensityData` and :py:attr:`excludedImportExpectedConcentration`) are kept in the object. :type peakInfo: bool :param keepExcluded: If keepExcluded=True (default `False`), import exclusions (:py:attr:`excludedImportSampleMetadata`, :py:attr:`excludedImportFeatureMetadata`, :py:attr:`excludedImportIntensityData` and :py:attr:`excludedImportExpectedConcentration`) are kept in the object. :type keepExcluded: bool :param kwargs: Additional parameters such as `sampleTypeToProcess`, `onlyLLOQ` or `reponseReference` :return: None """ # Load TargetLynx output file self._readTargetLynxDataset(datapath, calibrationReportPath, **kwargs) # Filter calibration samples self._filterTargetLynxSamples(**kwargs) # Filter IS features (default remove them) if keepIS: print('IS features are kept for processing:', sum(self.featureMetadata['IS'].values), 'IS features,', sum(~self.featureMetadata['IS'].values), 'other features.') print('-----') self.Attributes['Log'].append([datetime.now(), 'IS features kept for processing (%d samples). %d IS, %d other features.' % (self.noSamples, sum(self.featureMetadata['IS'].values), sum(~self.featureMetadata['IS'].values))]) else: self._filterTargetLynxIS(**kwargs) # Apply limits of quantification if noiseFilled: self._targetLynxApplyLimitsOfQuantificationNoiseFilled(**kwargs) else: self._applyLimitsOfQuantification(**kwargs) # Remove peakInfo (default remove) if keepPeakInfo: self.Attributes['Log'].append([datetime.now(), 'TargetLynx peakInfo kept.']) else: delattr(self, 'peakInfo') del self.calibration['calibPeakInfo'] # Remove import exclusions as they are not useful after import if keepExcluded: self.Attributes['Log'].append([datetime.now(), 'Features and Samples excluded during import have been kept.']) else: delattr(self, 'sampleMetadataExcluded') delattr(self, 'featureMetadataExcluded') delattr(self, 'intensityDataExcluded') delattr(self, 'expectedConcentrationExcluded') delattr(self, 'excludedFlag') # clear **kwargs that have been copied to Attributes for i in list(kwargs.keys()): try: del self.Attributes[i] except: pass for j in ['keepIS','noiseFilled','keepPeakInfo','keepExcluded']: try: del self.Attributes[j] except: pass def _readTargetLynxDataset(self, datapath, calibrationReportPath, **kwargs): """ Parse a TargetLynx output file (`xml`; sample metadata, feature metadata, intensity, peak area and peak response) and the matching calibration report (`csv`; limits of quantification, noise area, calibration equation parameters), then check their agreement before returning a sufficiently described dataset. Sets :py:attr:`sampleMetadata`, :py:attr:`featureMetadata`, :py:attr:`intensityData`, :py:attr:`expectedConcentration`, :py:attr:`excludedImportSampleMetadata`, :py:attr:`excludedImportFeatureMetadata`, :py:attr:`excludedImportIntensityData` and :py:attr:`peakInfo` :param datapath: Path to the TargetLynx export xml file :type datapath: str :param calibrationReportPath: Path to the calibration report csv file :type calibrationReportPath: str :return: None """ # Read XML (dumb, no checks, no metadata alteration) sampleMetadata, featureMetadata, intensityData, expectedConcentration, peakResponse, peakArea, peakConcentrationDeviation, peakIntegrationFlag, peakRT = self.__getDatasetFromXML(datapath) # Read calibration information from .csv (dumb, no metadata alteration, only checks for required columns) calibReport = self.__getCalibrationFromReport(calibrationReportPath) # Match XML, Calibration Report & SOP sampleMetadata, featureMetadata, intensityData, expectedConcentration, excludedImportSampleMetadata, excludedImportFeatureMetadata, excludedImportIntensityData, excludedImportExpectedConcentration, excludedImportFlag, peakResponse, peakArea, peakConcentrationDeviation, peakIntegrationFlag, peakRT = self.__matchDatasetToCalibrationReport(sampleMetadata, featureMetadata, intensityData, expectedConcentration, peakResponse, peakArea, peakConcentrationDeviation, peakIntegrationFlag, peakRT, calibReport) self.sampleMetadata = sampleMetadata self.featureMetadata = featureMetadata self._intensityData = intensityData self.expectedConcentration = expectedConcentration self.sampleMetadataExcluded = excludedImportSampleMetadata self.featureMetadataExcluded = excludedImportFeatureMetadata self.intensityDataExcluded = excludedImportIntensityData self.expectedConcentrationExcluded = excludedImportExpectedConcentration self.excludedFlag = excludedImportFlag self.peakInfo = {'peakResponse': peakResponse, 'peakArea': peakArea, 'peakConcentrationDeviation': peakConcentrationDeviation, 'peakIntegrationFlag': peakIntegrationFlag, 'peakRT': peakRT} # add Dataset mandatory columns self.sampleMetadata['AssayRole'] = numpy.nan self.sampleMetadata['SampleType'] = numpy.nan self.sampleMetadata['Dilution'] = numpy.nan self.sampleMetadata['Correction Batch'] = numpy.nan self.sampleMetadata['Sample ID'] = numpy.nan self.sampleMetadata['Exclusion Details'] = numpy.nan #self.sampleMetadata['Batch'] = numpy.nan #already created # clear SOP parameters not needed after __matchDatasetToCalibrationReport AttributesToRemove = ['compoundID', 'compoundName', 'IS', 'unitFinal', 'unitCorrectionFactor', 'calibrationMethod', 'calibrationEquation', 'quantificationType'] AttributesToRemove.extend(self.Attributes['externalID']) for k in AttributesToRemove: del self.Attributes[k] self.Attributes['Log'].append([datetime.now(),'TargetLynx data file with %d samples, %d features, loaded from \%s, calibration report read from \%s\'' % (self.noSamples, self.noFeatures, datapath, calibrationReportPath)]) def __getDatasetFromXML(self, path): """ Parse information for :py:attr:`sampleMetadata`, :py:attr:`featureMetadata`, :py:attr:`intensityData`, :py:attr:`expectedConcentration`, :py:attr:`peakResponse`, :py:attr:`peakArea`, :py:attr:`peakConcentrationDeviation`, :py:attr:`peakIntegrationFlag` and :py:attr:`peakRT` from a xml export file produced by TargetLynx (using the 'File -> Export -> XML' menu option) :param path: Path to the TargetLynx export xml file :type path: str :return sampleMetadata: dataframe of sample identifiers and metadata. :rtype: pandas.DataFrame, :math:`n` × :math:`p` :return featureMetadata: pandas dataframe of feature identifiers and metadata. :rtype: pandas.DataFrame, :math:`m` × :math:`q` :return intensityData: numpy matrix of intensity measurements. :rtype: numpy.ndarray, :math:`n` × :math:`m` :return expectedConcentration: pandas dataframe of expected concentration for each sample/feature :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return peakResponse: pandas dataframe of analytical peak response. :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return peakArea: pandas dataframe of analytical peak area. :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return peakConcentrationDeviation: pandas dataframe of %deviation between expected and measured concentration for each sample/feature :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return peakIntegrationFlag: pandas dataframe of integration flag :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return peakRT: pandas dataframe of analytical peak Retention time. :rtype: pandas.DataFrame, :math:`n` × :math:`m` """ import xml.etree.ElementTree inputData = xml.etree.ElementTree.ElementTree(file=path).getroot()[2][0] nSamples = int(inputData[1].attrib['count']) nFeatures = int(inputData[2].attrib['count']) ## Initialise # sample metadata sample_file_name = list() sample_id = list() sample_number = list() sample_text = list() sample_type = list() sample_date = list() sample_time = list() sample_vial = list() sample_instrument = list() # feature metadata compound_name = list() compound_id = list() compound_IS_id = list() # intensity data peak_conc = numpy.full([nSamples, nFeatures], numpy.nan) # expected concentration peak_expconc = numpy.full([nSamples, nFeatures], numpy.nan) # Bonus peak info peak_concdev = numpy.full([nSamples, nFeatures], numpy.nan) peak_area = numpy.full([nSamples, nFeatures], numpy.nan) peak_response = numpy.full([nSamples, nFeatures], numpy.nan) peak_RT = numpy.full([nSamples, nFeatures], numpy.nan) peak_integrationFlag = pandas.DataFrame(index=range(1, nSamples + 1), columns=range(1, nFeatures + 1), dtype='str') ## Read data # sample metadata & intensity data # iterate over samples for i_spl in range(0, nSamples): spl = inputData[1][i_spl] # sample metadata sample_file_name.append(spl.attrib['name']) sample_id.append(int(spl.attrib['id'])) sample_number.append(int(spl.attrib['samplenumber'])) sample_text.append(spl.attrib['sampleid']) sample_type.append(spl.attrib['type']) sample_date.append(spl.attrib['createdate']) sample_time.append(spl.attrib['createtime']) sample_vial.append(spl.attrib['vial']) sample_instrument.append(spl.attrib['instrument']) # iterate over compounds for i_cpd in range(0, nFeatures): cpdData = spl[i_cpd][0] # intensity data # for whatever reason, TargetLynx sometimes report no peak by '0.0000' and sometimes by '' try: peak_conc[i_spl, i_cpd] = float(cpdData.attrib['analconc']) except ValueError: peak_conc[i_spl, i_cpd] = 0.0 # more peak info peak_area[i_spl, i_cpd] = float(cpdData.attrib['area']) peak_expconc[i_spl, i_cpd] = float(spl[i_cpd].attrib['stdconc']) peak_concdev[i_spl, i_cpd] = float(cpdData.attrib['conccalc']) peak_response[i_spl, i_cpd] = float(cpdData.attrib['response']) peak_RT[i_spl, i_cpd] = float(cpdData.attrib['foundrt']) peak_integrationFlag.iloc[i_spl, i_cpd] = cpdData.attrib['pkflags'] # feature metadata for j_cpd in range(0, nFeatures): cpd_calib = inputData[2][j_cpd] compound_name.append(cpd_calib.attrib['name']) compound_id.append(int(cpd_calib.attrib['id'])) compound_IS_id.append(cpd_calib[0].attrib['ref']) # not int() as some IS have ref='' ## Output Dataframe # sampleMetadata sampleMetadata = dict() sampleMetadata['Sample File Name'] = sample_file_name sampleMetadata['Sample Base Name'] = sample_file_name sampleMetadata['TargetLynx Sample ID'] = sample_id sampleMetadata['MassLynx Row ID'] = sample_number sampleMetadata['Sample Name'] = sample_text sampleMetadata['Sample Type'] = sample_type sampleMetadata['Acqu Date'] = sample_date sampleMetadata['Acqu Time'] = sample_time sampleMetadata['Vial'] = sample_vial sampleMetadata['Instrument'] = sample_instrument # featureMetadata featureMetadata = dict() featureMetadata['Feature Name'] = compound_name featureMetadata['TargetLynx Feature ID'] = compound_id featureMetadata['TargetLynx IS ID'] = compound_IS_id # intensityData intensityData = peak_conc # expectedConcentration peak_expconc[peak_expconc == 0] = numpy.nan # remove 0 and replace them by nan expectedConcentration = pandas.DataFrame(peak_expconc) # Other peak info peakResponse = pandas.DataFrame(peak_response) peakArea = pandas.DataFrame(peak_area) peakConcentrationDeviation = pandas.DataFrame(peak_concdev) peakIntegrationFlag = peak_integrationFlag # already dataframe peakIntegrationFlag.reset_index(drop=True, inplace=True) peakRT = pandas.DataFrame(peak_RT) # Convert to DataFrames featureMetadata = pandas.concat([pandas.DataFrame(featureMetadata[c], columns=[c]) for c in featureMetadata.keys()], axis=1, sort=False) sampleMetadata = pandas.concat([pandas.DataFrame(sampleMetadata[c], columns=[c]) for c in sampleMetadata.keys()], axis=1, sort=False) expectedConcentration.columns = featureMetadata['Feature Name'].values.tolist() peakIntegrationFlag.columns = featureMetadata['Feature Name'].values.tolist() peakResponse.columns = featureMetadata['Feature Name'].values.tolist() peakArea.columns = featureMetadata['Feature Name'].values.tolist() peakConcentrationDeviation.columns = featureMetadata['Feature Name'].values.tolist() peakRT.columns = featureMetadata['Feature Name'].values.tolist() sampleMetadata['Metadata Available'] = False return sampleMetadata, featureMetadata, intensityData, expectedConcentration, peakResponse, peakArea, peakConcentrationDeviation, peakIntegrationFlag, peakRT def __getCalibrationFromReport(self, path): """ Read the calibration information from a calibration report `csv` following the provided report template. The following columns are required (leave an empty value to reject a compound): * Compound The compound name, identical to the one employed in the SOP `json` file. * TargetLynx ID The compound TargetLynx ID, identical to the one employed in the SOP `json` file. * LLOQ Lowest limit of quantification concentration, in the same unit as indicated in TargetLynx. * ULOQ Upper limit of quantification concentration, in the same unit as indicated in TargetLynx. The following columns are expected by :py:meth:`~TargetedDataset._targetLynxApplyLimitsOfQuantificationNoiseFilled`: * Noise (area) Area integrated in a blank sample at the same retention time as the compound of interest (if left empty noise concentration calculation cannot take place). * a :math:`a` coefficient in the calibration equation (if left empty noise concentration calculation cannot take place). * b :math:`b` coefficient in the calibration equation (if left empty noise concentration calculation cannot take place). The following columns are recommended: * Cpd Info Additional information relating to the compound (can be left empty). * r :math:`r` goodness of fit measure for the calibration equation (can be left empty). * r2 :math:`r^2` goodness of fit measure for the calibration equation (can be left empty). :param path: Path to the calibration report csv file. :type path: str :return calibReport: pandas dataframe of feature identifiers and calibration information. :rtype: pandas.DataFrame, :math:`m` × :math:`r` :raises LookupError: if the expected columns are absent from the csv file. """ calibReport = pandas.read_csv(path) # check minimum number of columns expectedCol = ['Compound', 'TargetLynx ID', 'LLOQ', 'ULOQ'] foundCol = calibReport.columns.values.tolist() # if the set is not empty, some columns are missing from the csv if set(expectedCol) - set(foundCol) != set(): raise LookupError('Calibration report (' + os.path.split(path)[1] + ') does not contain the following expected column: ' + str(list(set(expectedCol) - set(foundCol)))) return calibReport def __matchDatasetToCalibrationReport(self, sampleMetadata, featureMetadata, intensityData, expectedConcentration, peakResponse, peakArea, peakConcentrationDeviation, peakIntegrationFlag, peakRT, calibReport): """ Check the agreement of Feature IDs and Feature Names across all inputs (TargetLynx export `xml`, calibration report `csv` and SOP `json`). First map the calibration report and SOP information, which raise errors in case of disagreement. This block is then mapped to the TargetLynx `featureMetadata` (on compound ID) and overrides the TargetLynx information (raise warnings). Features not matched are appended to an `excludedSampleMetadata`, `excludedFeatureMetadata` and `excludedIntensityData` (excluded `peakResponse`, `peakArea`, `peakConcentrationDeviation`, `peakIntegrationFlag` and `peakRT` are discarded). Additional information is added to the `sampleMetadata` (chromatography, ionisation, acquired time, run order). Apply the unitCorrectionFactor to the `intensityData`, `LLOQ` and `ULOQ` concentrations and `expectedConcentration`. :param sampleMetadata: dataframe of sample identifiers and metadata. :type sampleMetadata: pandas.DataFrame, :math:`n` × :math:`p` :param featureMetadata: pandas dataframe of feature identifiers and metadata. :type featureMetadata: pandas.DataFrame, :math:`m` × :math:`q` :param intensityData: numpy matrix of intensity measurements. :type intensityData: numpy.ndarray, :math:`n` × :math:`m` :param expectedConcentration: pandas dataframe of analytical peak expected concentrations. :type expectedConcentration: pandas.DataFrame, :math:`n` × :math:`m` :param peakResponse: pandas dataframe of analytical peak response. :type peakResponse: pandas.DataFrame, :math:`n` × :math:`m` :param peakArea: pandas dataframe of analytical peak area. :type peakArea: pandas.DataFrame, :math:`n` × :math:`m` :param peakConcentrationDeviation: pandas dataframe of analytical peak concentration deviation. :type peakConcentrationDeviation: pandas.DataFrame, :math:`n` × :math:`m` :param peakIntegrationFlag: pandas dataFrame of analytical peak integration flags. :type peakIntegrationFlag: pandas.DataFrame, :math:`n` × :math:`m` :param peakRT: pandas dataframe of analytical Retention time. :type peakRT: pandas.DataFrame, :math:`n` × :math:`m` :param calibReport: pandas dataframe of feature identifiers and calibration informations. :type calibReport: pandas.DataFrame, :math:`m` × :math:`r` :return sampleMetadata: dataframe of sample identifiers and metadata. :rtype: pandas.DataFrame, :math:`n` × :math:`p` :return finalFeatureMetadata: pandas dataframe of feature identifiers and metadata. :rtype: pandas.DataFrame, :math:`m` × :math:`q` :return finalIntensityData: numpy matrix of intensity measurements. :rtype: numpy.ndarray, :math:`n` × :math:`m` :return finalExpectedConcentration: pandas dataframe of expected concentration for each sample/feature :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return excludedSampleMetadata: list of pandas dataframe of excluded sample measurements for excluded features. :rtype: list :return excludedFeatureMetadata: list of pandas dataframe of excluded feature identifiers and metadata. :rtype: list :return excludedIntensityData: list of matrix of intensity measurements for excluded features. :rtype: list :return excludedExpectedConcentration: list of pandas dataframe of excluded expected concentration. :rtype: list :return excludedFlag: list of str of exclusion type ('Samples' or 'Features'). :rtype: list :return finalPeakResponse: pandas dataframe of analytical peak response. :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return finalPeakArea: pandas dataframe of analytical peak area. :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return finalPeakConcentrationDeviation: pandas dataframe of %deviation between expected and measured concentration for each sample/feature :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return finalPeakIntegrationFlag: pandas dataframe of integration flag :rtype: pandas.DataFrame, :math:`n` × :math:`m` :return finalPeakRT: pandas dataframe of analytical peak Retention time :rtype: pandas.DataFrame, :math:`n` × :math:`m` :raises ValueError: if the shape of sampleMetadata, featureMetadata or intensityData shape do not match. :raises ValueError: if features in the calibration report and in the SOP differ (number of compounds, compound ID or compound names). :raises ValueError: if in the SOP 'quantificationType', 'calibrationMethod' or 'IS' are mismatched. """ import warnings from datetime import datetime ## sampleMetadata, featureMetadata & intensityData should by construction have the same size if sampleMetadata.shape[0] != intensityData.shape[0]: raise ValueError('sampleMetadata and intensityData number of samples differ') if featureMetadata.shape[0] != intensityData.shape[1]: raise ValueError('featureMetadata and intensityData number of compounds differ') if intensityData.shape != peakResponse.shape: raise ValueError('intensityData and peakResponse number of compounds/samples differ') if intensityData.shape != peakArea.shape: raise ValueError('intensityData and peakArea number of compounds/samples differ') if intensityData.shape != expectedConcentration.shape: raise ValueError('intensityData and expectedConcentration number of compounds/samples differ') if intensityData.shape != peakConcentrationDeviation.shape: raise ValueError('intensityData and peakConcentrationDeviation number of compounds/samples differ') if intensityData.shape != peakIntegrationFlag.shape: raise ValueError('intensityData and peakIntegrationFlag number of compounds/samples differ') if intensityData.shape != peakRT.shape: raise ValueError('intensityData and peakRT number of compounds/samples differ') # initialise excluded import data excludedSampleMetadata = [] excludedFeatureMetadata = [] excludedIntensityData = [] excludedExpectedConcentration = [] excludedFlag = [] ## SOP is used as 'Truth', if calibReport does not match, it's a problem (Error) ## Then if featureMetadata does not match SOP/calibReport, use SOP as reference (message conflict) ## Match SOP & calibReport # Load SOP # calibrationMethod is 'backcalculatedIS' (use response), 'noIS' (use area), or 'noCalibration' (no corrections at all) # quantificationType is: # 'IS' (expects calibrationMethod=noIS) # 'QuantOwnLabeledAnalogue' (would expect 'backcalculatedIS' but could use 'noIS') # 'QuantAltLabeledAnalogue' (would expect 'backcalculatedIS' but could use 'noIS') # 'Monitored' (which expects 'noCalibration') SOPColumnsToLoad = ['compoundID', 'compoundName', 'IS', 'unitFinal', 'unitCorrectionFactor', 'calibrationMethod', 'calibrationEquation', 'quantificationType'] SOPColumnsToLoad.extend(self.Attributes['externalID']) SOPFeatureMetadata = pandas.DataFrame.from_dict(dict((k, self.Attributes[k]) for k in SOPColumnsToLoad), orient='columns') SOPFeatureMetadata['compoundID'] = pandas.to_numeric(SOPFeatureMetadata['compoundID']) SOPFeatureMetadata['unitCorrectionFactor'] = pandas.to_numeric(SOPFeatureMetadata['unitCorrectionFactor']) SOPFeatureMetadata['IS'] = SOPFeatureMetadata['IS'].map({'True': True, 'False': False}) SOPFeatureMetadata['Unit'] = SOPFeatureMetadata['unitFinal'] SOPFeatureMetadata.drop('unitFinal', inplace=True, axis=1) # convert quantificationType from str to enum if 'quantificationType' in SOPFeatureMetadata.columns: for qType in QuantificationType: SOPFeatureMetadata.loc[SOPFeatureMetadata['quantificationType'].values == qType.name, 'quantificationType'] = qType # convert calibrationMethod from str to enum if 'calibrationMethod' in SOPFeatureMetadata.columns: for cMethod in CalibrationMethod: SOPFeatureMetadata.loc[SOPFeatureMetadata['calibrationMethod'].values == cMethod.name, 'calibrationMethod'] = cMethod # check that all quantificationType='IS' are also flagged as IS # (both have same number of feature + intersection has same number of feature as one of them) if (sum((SOPFeatureMetadata['quantificationType'] == QuantificationType.IS)) != sum(SOPFeatureMetadata['IS'])) | (sum((SOPFeatureMetadata['quantificationType'] == QuantificationType.IS) & SOPFeatureMetadata['IS']) != sum(SOPFeatureMetadata['IS'])): raise ValueError('Check SOP file, features with quantificationType=\'IS\' must have been flagged as IS=\'True\'') # check that all quantificationType='Monitored' have a calibrationMethod='noCalibration' # (both have same number of feature + intersection has same number of feature as one of them) if (sum((SOPFeatureMetadata['quantificationType'] == QuantificationType.Monitored)) != (sum(SOPFeatureMetadata['calibrationMethod'] == CalibrationMethod.noCalibration))) | (sum((SOPFeatureMetadata['quantificationType'] == QuantificationType.Monitored) & (SOPFeatureMetadata['calibrationMethod'] == CalibrationMethod.noCalibration)) != sum(SOPFeatureMetadata['quantificationType'] == QuantificationType.Monitored)): raise ValueError('Check SOP file, features with quantificationType=\'Monitored\' must have a calibrationMethod=\'noCalibration\'\n quantificationType are:\n\'IS\' (expects calibrationMethod=noIS)\n\'QuantOwnLabeledAnalogue\' (would expect \'backcalculatedIS\' but could use \'noIS\' or \'otherCalibration\')\n\'QuantAltLabeledAnalogue\' (would expect \'backcalculatedIS\' but could use \'noIS\' or \'otherCalibration\')\n\'QuantOther\' (can take any CalibrationMethod)\n\'Monitored\' (which expects \'noCalibration\')') # check number of compounds in SOP & calibReport if SOPFeatureMetadata.shape[0] != calibReport.shape[0]: raise ValueError('SOP and Calibration Report number of compounds differ') featureCalibSOP = pandas.merge(left=SOPFeatureMetadata, right=calibReport, how='inner', left_on='compoundName', right_on='Compound', sort=False) featureCalibSOP.drop('TargetLynx ID', inplace=True, axis=1) # check we still have the same number of features (inner join) if featureCalibSOP.shape[0] != SOPFeatureMetadata.shape[0]: raise ValueError('SOP and Calibration Report compounds differ') # check compound names match in SOP and calibReport after join if sum(featureCalibSOP['compoundName'] != featureCalibSOP['Compound']) != 0: raise ValueError('SOP and Calibration Report compounds names differ: ' + str(featureCalibSOP.loc[(featureCalibSOP['compoundName'] != featureCalibSOP['Compound']), ['compoundName', 'Compound']].values.tolist())) featureCalibSOP.drop('Compound', inplace=True, axis=1) ## Match calibSOP & featureMetadata # left join to keep feature order and limit to features in XML finalFeatureMetadata = pandas.merge(left=featureMetadata, right=featureCalibSOP, how='left', left_on='TargetLynx Feature ID', right_on='compoundID', sort=False) # limit to compounds present in the SOP (no report of SOP compounds not in XML) if finalFeatureMetadata['compoundID'].isnull().sum() != 0: warnings.warn("Warning: Only " + str(finalFeatureMetadata['compoundID'].notnull().sum()) + " features shared across the SOP/Calibration report (" + str(featureCalibSOP.shape[0]) + " total) and the TargetLynx output file (" + str(featureMetadata.shape[0]) + " total). " + str(finalFeatureMetadata['compoundID'].isnull().sum()) + " features discarded from the TargetLynx output file.") # filter out unavailable features unavailableFeatVect = finalFeatureMetadata['compoundID'].isnull().values excludedSampleMetadata.append(sampleMetadata) excludedFeatureMetadata.append(finalFeatureMetadata.iloc[unavailableFeatVect, :]) excludedIntensityData.append(intensityData[:, unavailableFeatVect]) excludedExpectedConcentration.append(expectedConcentration.iloc[:, unavailableFeatVect]) excludedFlag.append('Features') finalFeatureMetadata = finalFeatureMetadata.iloc[~unavailableFeatVect, :] finalIntensityData = intensityData[:, ~unavailableFeatVect] finalExpectedConcentration = expectedConcentration.iloc[:, ~unavailableFeatVect] finalPeakResponse = peakResponse.iloc[:, ~unavailableFeatVect] finalPeakArea = peakArea.iloc[:, ~unavailableFeatVect] finalPeakConcentrationDeviation = peakConcentrationDeviation.iloc[:, ~unavailableFeatVect] finalPeakIntegrationFlag = peakIntegrationFlag.iloc[:, ~unavailableFeatVect] finalPeakRT = peakRT.iloc[:, ~unavailableFeatVect] # remove duplicate col finalFeatureMetadata.drop('compoundID', inplace=True, axis=1) else: finalIntensityData = intensityData finalExpectedConcentration = expectedConcentration finalPeakResponse = peakResponse finalPeakArea = peakArea finalPeakConcentrationDeviation = peakConcentrationDeviation finalPeakIntegrationFlag = peakIntegrationFlag finalPeakRT = peakRT # remove duplicate col finalFeatureMetadata.drop('compoundID', inplace=True, axis=1) # check names, keep SOP value, report differences if sum(finalFeatureMetadata['Feature Name'] != finalFeatureMetadata['compoundName']) != 0: warnings.warn('TargetLynx feature names & SOP/Calibration Report compounds names differ; SOP names will be used: ' + str(finalFeatureMetadata.loc[(finalFeatureMetadata['Feature Name'] != finalFeatureMetadata['compoundName']), ['Feature Name','compoundName']].values.tolist())) finalFeatureMetadata['Feature Name'] = finalFeatureMetadata['compoundName'] finalExpectedConcentration.columns = finalFeatureMetadata['Feature Name'].values.tolist() finalPeakResponse.columns = finalFeatureMetadata['Feature Name'].values.tolist() finalPeakArea.columns = finalFeatureMetadata['Feature Name'].values.tolist() finalPeakConcentrationDeviation.columns = finalFeatureMetadata['Feature Name'].values.tolist() finalPeakIntegrationFlag.columns = finalFeatureMetadata['Feature Name'].values.tolist() finalPeakRT.columns = finalFeatureMetadata['Feature Name'].values.tolist() finalFeatureMetadata.drop('compoundName', inplace=True, axis=1) ## Add information to the sampleMetada finalSampleMetadata = copy.deepcopy(sampleMetadata) # Add chromatography finalSampleMetadata.join(pandas.DataFrame([self.Attributes['chromatography']] * finalSampleMetadata.shape[0], columns=['Chromatograpy'])) # Add ionisation finalSampleMetadata.join(pandas.DataFrame([self.Attributes['ionisation']] * finalSampleMetadata.shape[0], columns=['Ionisation'])) # Add batch, default is 1 finalSampleMetadata.join(pandas.DataFrame([1] * finalSampleMetadata.shape[0], columns=['Batch'])) # Process Sample Type finalSampleMetadata['Calibrant'] = finalSampleMetadata['Sample Type'] == 'Standard' finalSampleMetadata['Study Sample'] = finalSampleMetadata['Sample Type'] == 'Analyte' finalSampleMetadata['Blank'] = finalSampleMetadata['Sample Type'] == 'Blank' finalSampleMetadata['QC'] = finalSampleMetadata['Sample Type'] == 'QC' # unused Sample Types # sampleMetadata['Solvent'] = sampleMetadata['Sample Type'] == 'Solvent' # sampleMetadata['Recovery'] = sampleMetadata['Sample Type'] == 'Recovery' # sampleMetadata['Donor'] = sampleMetadata['Sample Type'] == 'Donor' # sampleMetadata['Receptor'] = sampleMetadata['Sample Type'] == 'Receptor' finalSampleMetadata['Other'] = (~finalSampleMetadata['Calibrant'] & ~finalSampleMetadata['Study Sample'] & ~finalSampleMetadata['Blank'] & ~finalSampleMetadata['QC']) # & ~sampleMetadata['Solvent'] & ~sampleMetadata['Recovery'] & ~sampleMetadata['Donor'] & ~sampleMetadata['Receptor'] # Add Acquired Time finalSampleMetadata['Acquired Time'] = numpy.nan for i in range(finalSampleMetadata.shape[0]): try: finalSampleMetadata.loc[i, 'Acquired Time'] = datetime.strptime(str(finalSampleMetadata.loc[i, 'Acqu Date']) + " " + str(finalSampleMetadata.loc[i, 'Acqu Time']),'%d-%b-%y %H:%M:%S') except ValueError: pass finalSampleMetadata['Acquired Time'] = pandas.to_datetime(finalSampleMetadata['Acquired Time']) # Add Run Order finalSampleMetadata['Order'] = finalSampleMetadata.sort_values(by='Acquired Time').index finalSampleMetadata['Run Order'] = finalSampleMetadata.sort_values(by='Order').index finalSampleMetadata.drop('Order', axis=1, inplace=True) # Initialise the Batch to 1 finalSampleMetadata['Batch'] = [1]*finalSampleMetadata.shape[0] ## Apply unitCorrectionFactor finalFeatureMetadata['LLOQ'] = finalFeatureMetadata['LLOQ'] * finalFeatureMetadata['unitCorrectionFactor'] # NaN will be kept finalFeatureMetadata['ULOQ'] = finalFeatureMetadata['ULOQ'] * finalFeatureMetadata['unitCorrectionFactor'] finalIntensityData = finalIntensityData * finalFeatureMetadata['unitCorrectionFactor'].values finalExpectedConcentration = finalExpectedConcentration * finalFeatureMetadata['unitCorrectionFactor'].values ## Summary print('TagetLynx output, Calibration report and SOP information matched:') print('Targeted Method: ' + self.Attributes['methodName']) print(str(finalSampleMetadata.shape[0]) + ' samples (' + str(sum(finalSampleMetadata['Calibrant'])) + ' calibration points, ' + str(sum(finalSampleMetadata['Study Sample'])) + ' study samples)') print(str(finalFeatureMetadata.shape[0]) + ' features (' + str(sum(finalFeatureMetadata['IS'])) + ' IS, ' + str(sum(finalFeatureMetadata['quantificationType'] == QuantificationType.QuantOwnLabeledAnalogue)) + ' quantified and validated with own labeled analogue, ' + str(sum(finalFeatureMetadata['quantificationType'] == QuantificationType.QuantAltLabeledAnalogue)) + ' quantified and validated with alternative labeled analogue, ' + str(sum(finalFeatureMetadata['quantificationType'] == QuantificationType.QuantOther)) + ' other quantification, ' + str(sum(finalFeatureMetadata['quantificationType'] == QuantificationType.Monitored)) + ' monitored for relative information)') if len(excludedFeatureMetadata) != 0: print(str(excludedFeatureMetadata[0].shape[0]) + ' features excluded as missing from the SOP') print('All concentrations converted to final units') print('-----') return finalSampleMetadata, finalFeatureMetadata, finalIntensityData, finalExpectedConcentration, excludedSampleMetadata, excludedFeatureMetadata, excludedIntensityData, excludedExpectedConcentration, excludedFlag, finalPeakResponse, finalPeakArea, finalPeakConcentrationDeviation, finalPeakIntegrationFlag, finalPeakRT def _filterTargetLynxSamples(self, sampleTypeToProcess=['Study Sample', 'QC'], **kwargs): """ Isolate 'Calibrant' samples ('Sample Type' == 'Standard' in MassLynx) and create the :py:attr:`calibration` dictionary, following :py:meth:`~TargetedDataset._readTargetLynxDataset`. Exclude samples based on their MassLynx 'Sample Type'. Only the types passed in `sampleTypeToProcess` are kept. Values are 'Study Sample' ('Analyte' in MassLynx), 'Blank', 'QC' or 'Other' (for all other MassLynx entries). :param sampleTypeToProcess: list of ['Study Sample','Blank','QC','Other'] for the sample types to keep. :type sampleTypeToProcess: list of str :return: None :raises ValueError: if 'sampleTypeToProcess' is not recognised. :raises AttributeError: if the excludedImport lists do not exist. """ # check inputs if set(sampleTypeToProcess) - set(['Study Sample', 'Blank', 'QC', 'Other']) != set(): raise ValueError('sampleTypeToProcess ' + str( set(sampleTypeToProcess) - set(['Study Sample', 'Blank', 'QC', 'Other'])) + ' is not recognised') # check excluded exist if((not hasattr(self,'sampleMetadataExcluded'))|(not hasattr(self,'featureMetadataExcluded'))|(not hasattr(self,'intensityDataExcluded'))|(not hasattr(self,'expectedConcentrationExcluded'))|(not hasattr(self,'excludedFlag'))): raise AttributeError('sampleMetadataExcluded, featureMetadataExcluded, intensityDataExcluded, expectedConcentrationExcluded or excludedFlag have not bee previously initialised') sampleMetadata = copy.deepcopy(self.sampleMetadata) featureMetadata = copy.deepcopy(self.featureMetadata) intensityData = copy.deepcopy(self._intensityData) expectedConcentration = copy.deepcopy(self.expectedConcentration) excludedImportSampleMetadata = copy.deepcopy(self.sampleMetadataExcluded) excludedImportFeatureMetadata = copy.deepcopy(self.featureMetadataExcluded) excludedImportIntensityData = copy.deepcopy(self.intensityDataExcluded) excludedImportExpectedConcentration = copy.deepcopy(self.expectedConcentrationExcluded) excludedImportFlag = copy.deepcopy(self.excludedFlag) peakInfo = copy.deepcopy(self.peakInfo) # Calibration information calibFeatureMetadata = featureMetadata calibSampleMetadata = sampleMetadata.loc[sampleMetadata['Calibrant'].values, :] calibIntensityData = intensityData[sampleMetadata['Calibrant'].values, :] calibExpectedConcentration = expectedConcentration.loc[sampleMetadata['Calibrant'].values, :] calibPeakResponse = peakInfo['peakResponse'].loc[sampleMetadata['Calibrant'].values, :] calibPeakArea = peakInfo['peakArea'].loc[sampleMetadata['Calibrant'].values, :] calibPeakConcentrationDeviation = peakInfo['peakConcentrationDeviation'].loc[sampleMetadata['Calibrant'].values, :] calibPeakIntegrationFlag = peakInfo['peakIntegrationFlag'].loc[sampleMetadata['Calibrant'].values, :] calibPeakRT = peakInfo['peakRT'].loc[sampleMetadata['Calibrant'].values, :] calibPeakInfo = {'peakResponse': calibPeakResponse, 'peakArea': calibPeakArea, 'peakConcentrationDeviation': calibPeakConcentrationDeviation, 'peakIntegrationFlag': calibPeakIntegrationFlag, 'peakRT': calibPeakRT} calibration = {'calibSampleMetadata': calibSampleMetadata, 'calibFeatureMetadata': calibFeatureMetadata, 'calibIntensityData': calibIntensityData, 'calibExpectedConcentration': calibExpectedConcentration, 'calibPeakInfo': calibPeakInfo} # Samples to keep samplesToProcess = [False] * sampleMetadata.shape[0] for i in sampleTypeToProcess: samplesToProcess = (samplesToProcess | sampleMetadata[i]).values # Filter tmpSampleMetadata = sampleMetadata.loc[samplesToProcess, :] tmpIntensityData = intensityData[samplesToProcess, :] tmpExpectedConcentration = expectedConcentration.loc[samplesToProcess, :] tmpPeakResponse = peakInfo['peakResponse'].loc[samplesToProcess, :] tmpPeakArea = peakInfo['peakArea'].loc[samplesToProcess, :] tmpPeakConcentrationDeviation = peakInfo['peakConcentrationDeviation'].loc[samplesToProcess, :] tmpPeakIntegrationFlag = peakInfo['peakIntegrationFlag'].loc[samplesToProcess, :] tmpPeakRT = peakInfo['peakRT'].loc[samplesToProcess, :] tmpPeakInfo = {'peakResponse': tmpPeakResponse, 'peakArea': tmpPeakArea, 'peakConcentrationDeviation': tmpPeakConcentrationDeviation, 'peakIntegrationFlag': tmpPeakIntegrationFlag, 'peakRT': tmpPeakRT} # Samples to exclude samplesToExclude = ~samplesToProcess & ~sampleMetadata['Calibrant'].values # no need to exclude calibrant if sum(samplesToExclude) != 0: excludedImportSampleMetadata.append(sampleMetadata.loc[samplesToExclude, :]) excludedImportFeatureMetadata.append(featureMetadata) excludedImportIntensityData.append(intensityData[samplesToExclude, :]) excludedImportExpectedConcentration.append(expectedConcentration.loc[samplesToExclude, :]) excludedImportFlag.append('Samples') # Clean columns tmpSampleMetadata.reset_index(drop=True, inplace=True) tmpSampleMetadata = tmpSampleMetadata.drop(['Calibrant', 'Study Sample', 'Blank', 'QC', 'Other'], axis=1) tmpExpectedConcentration.reset_index(drop=True, inplace=True) # Output self.sampleMetadata = tmpSampleMetadata self.featureMetadata = featureMetadata self._intensityData = tmpIntensityData self.expectedConcentration = tmpExpectedConcentration self.sampleMetadataExcluded = excludedImportSampleMetadata self.featureMetadataExcluded = excludedImportFeatureMetadata self.intensityDataExcluded = excludedImportIntensityData self.expectedConcentrationExcluded = excludedImportExpectedConcentration self.excludedFlag = excludedImportFlag self.peakInfo = tmpPeakInfo self.calibration = calibration # log the modifications print(sampleTypeToProcess, 'samples are kept for processing') print('-----') self.Attributes['Log'].append([datetime.now(), '%s samples kept for processing (%d samples, %d features). %d calibration samples filtered. %d samples excluded.' % (str(sampleTypeToProcess), self.noSamples, self.noFeatures, self.calibration['calibSampleMetadata'].shape[0], sum(samplesToExclude))]) def _filterTargetLynxIS(self, **kwargs): """ Filter out Internal Standard (IS) features and add them to excludedImportSampleMetadata, excludedImportFeatureMetadata, excludedImportIntensityData and excludedImportExpectedConcentration. IS filtered from self.calibration are not saved. :return: None :raises AttributeError: if the excludedImport lists do not exist. :raises AttributeError: if the calibration dictionary does not exist. """ # check excludedImport exist (ensures functions are run in the right order) if ((not hasattr(self, 'sampleMetadataExcluded')) | (not hasattr(self, 'featureMetadataExcluded')) | (not hasattr(self, 'intensityDataExcluded')) | (not hasattr(self, 'expectedConcentrationExcluded')) | (not hasattr(self, 'excludedFlag'))): raise AttributeError('sampleMetadataExcluded, featureMetadataExcluded, intensityDataExcluded, expectedConcentrationExcluded or excludedFlag have not bee previously initialised') # check calibration dictionary exist (ensures functions are run in the right order) if not hasattr(self, 'calibration'): raise AttributeError('calibration dictionary has not been previously initialised') sampleMetadata = copy.deepcopy(self.sampleMetadata) featureMetadata = copy.deepcopy(self.featureMetadata) intensityData = copy.deepcopy(self._intensityData) expectedConcentration = copy.deepcopy(self.expectedConcentration) excludedImportSampleMetadata = copy.deepcopy(self.sampleMetadataExcluded) excludedImportFeatureMetadata = copy.deepcopy(self.featureMetadataExcluded) excludedImportIntensityData = copy.deepcopy(self.intensityDataExcluded) excludedImportExpectedConcentration = copy.deepcopy(self.expectedConcentrationExcluded) excludedImportFlag = copy.deepcopy(self.excludedFlag) calibration = copy.deepcopy(self.calibration) peakInfo = copy.deepcopy(self.peakInfo) # Feature to keep keptFeat = ~featureMetadata['IS'].values.astype(bool) # Filter tmpFeatureMetadata = featureMetadata.loc[keptFeat, :] tmpIntensityData = intensityData[:, keptFeat] tmpExpectedConcentration = expectedConcentration.loc[:, keptFeat] tmpCalibFeatureMetadata = calibration['calibFeatureMetadata'].loc[keptFeat, :] tmpCalibIntensityData = calibration['calibIntensityData'][:, keptFeat] tmpCalibExpectedConcentration = calibration['calibExpectedConcentration'].loc[:, keptFeat] tmpCalibPeakResponse = calibration['calibPeakInfo']['peakResponse'].loc[:, keptFeat] tmpCalibPeakArea = calibration['calibPeakInfo']['peakArea'].loc[:, keptFeat] tmpCalibPeakConcentrationDeviation = calibration['calibPeakInfo']['peakConcentrationDeviation'].loc[:, keptFeat] tmpCalibPeakIntegrationFlag = calibration['calibPeakInfo']['peakIntegrationFlag'].loc[:, keptFeat] tmpCalibPeakRT = calibration['calibPeakInfo']['peakRT'].loc[:, keptFeat] tmpCalibPeakInfo = {'peakResponse': tmpCalibPeakResponse, 'peakArea': tmpCalibPeakArea, 'peakConcentrationDeviation': tmpCalibPeakConcentrationDeviation, 'peakIntegrationFlag': tmpCalibPeakIntegrationFlag, 'peakRT': tmpCalibPeakRT} tmpCalibration = {'calibSampleMetadata': calibration['calibSampleMetadata'], 'calibFeatureMetadata': tmpCalibFeatureMetadata, 'calibIntensityData': tmpCalibIntensityData, 'calibExpectedConcentration': tmpCalibExpectedConcentration, 'calibPeakInfo': tmpCalibPeakInfo} tmpPeakResponse = peakInfo['peakResponse'].loc[:, keptFeat] tmpPeakArea = peakInfo['peakArea'].loc[:, keptFeat] tmpPeakConcentrationDeviation = peakInfo['peakConcentrationDeviation'].loc[:, keptFeat] tmpPeakIntegrationFlag = peakInfo['peakIntegrationFlag'].loc[:, keptFeat] tmpPeakRT = peakInfo['peakRT'].loc[:, keptFeat] tmpPeakInfo = {'peakResponse': tmpPeakResponse, 'peakArea': tmpPeakArea, 'peakConcentrationDeviation': tmpPeakConcentrationDeviation, 'peakIntegrationFlag': tmpPeakIntegrationFlag, 'peakRT': tmpPeakRT} # Features to exclude ISFeat = ~keptFeat if sum(ISFeat) != 0: excludedImportSampleMetadata.append(sampleMetadata) excludedImportFeatureMetadata.append(featureMetadata.loc[ISFeat, :]) excludedImportIntensityData.append(intensityData[:, ISFeat]) excludedImportExpectedConcentration.append(expectedConcentration.loc[:, ISFeat]) excludedImportFlag.append('Features') # Clean columns tmpFeatureMetadata.reset_index(drop=True, inplace=True) tmpCalibration['calibFeatureMetadata'].reset_index(drop=True, inplace=True) tmpFeatureMetadata = tmpFeatureMetadata.drop(['IS', 'TargetLynx IS ID'], axis=1) # Output self.featureMetadata = tmpFeatureMetadata self._intensityData = tmpIntensityData self.expectedConcentration = tmpExpectedConcentration self.sampleMetadataExcluded = excludedImportSampleMetadata self.featureMetadataExcluded = excludedImportFeatureMetadata self.intensityDataExcluded = excludedImportIntensityData self.expectedConcentrationExcluded = excludedImportExpectedConcentration self.excludedFlag = excludedImportFlag self.calibration = tmpCalibration self.peakInfo = tmpPeakInfo # log the modifications print(sum(keptFeat), 'feature are kept for processing,',sum(ISFeat),'IS removed') print('-----') self.Attributes['Log'].append([datetime.now(), '%d features kept for processing (%d samples). %d IS features filtered.' % (sum(keptFeat), self.noSamples, sum(ISFeat))]) def _loadBrukerXMLDataset(self, datapath, fileNamePattern=None, pdata=1, unit=None, **kwargs): """ Initialise object from Bruker XML files. Read files and prepare a valid TargetedDataset. Targeted data measurements are read and mapped to pre-defined SOPs. Once the import is finished, only properly read samples are returned and only features mapped onto the pre-defined SOP and sufficiently described. Only the first instance of a duplicated feature is kept. :param str datapath: Path to the folder containing all `xml` files, all directories below :file:`datapath` will be scanned for valid `xml` files. :param str fileNamePattern: Regex pattern to identify the `xml` files in `datapath` folder :param int pdata: pdata files to parse (default 1) :param unit: if features are present more than once, only keep the features with the unit passed as input. :type unit: None or str :raises TypeError: if `fileNamePattern` is not a string :raises TypeError: if `pdata` is not an integer :raises TypeError: if `unit` is not 'None' or a string :raises ValueError: if `unit` is not one of the unit in the input data :return: None """ from ..utilities._readBrukerXML import importBrukerXML from ..utilities.extractParams import buildFileList if fileNamePattern is None: fileNamePattern = self.Attributes['fileNamePattern'] # Check inputs if not isinstance(fileNamePattern, str): raise TypeError('\'fileNamePattern\' must be a string') if not isinstance(pdata, int): raise TypeError('\'pdata\' must be an integer') if unit is not None: if not isinstance(unit, str): raise TypeError('\'unit\' must be a string') ## Build a list of xml files matching the pdata in the right folder pattern = re.compile(fileNamePattern) filelist = buildFileList(datapath, pattern) pdataPattern = re.compile('.*?pdata.*?%i' % (pdata)) filelist = [x for x in filelist if pdataPattern.match(x)] ## Load intensity, sampleMetadata and featureMetadata. Files that cannot be opened raise warnings, and are filtered from the returned matrices. (self.intensityData, self.sampleMetadata, self.featureMetadata) = importBrukerXML(filelist) ## Filter unit if required avUnit = self.featureMetadata['Unit'].unique().tolist() if unit is not None: if unit not in self.featureMetadata['Unit'].unique().tolist(): raise ValueError('The unit \'' + str(unit) + '\' is not present in the input data, available units: ' + str(avUnit)) keepMask = (self.featureMetadata['Unit'] == unit).values self.featureMetadata = self.featureMetadata.loc[keepMask, :] self.featureMetadata.reset_index(drop=True, inplace=True) self.intensityData = self.intensityData[:, keepMask] ## Check all features are unique, and u_ids, u_counts = numpy.unique(self.featureMetadata['Feature Name'], return_counts=True) if not all(u_counts == 1): dupFeat = u_ids[u_counts != 1].tolist() warnings.warn('The following features are present more than once, only the first occurence will be kept: ' + str(dupFeat) + '. For further filtering, available units are: ' + str(avUnit)) # only keep the first of duplicated features keepMask = ~self.featureMetadata['Feature Name'].isin(dupFeat).values keepFirstVal = [(self.featureMetadata['Feature Name'] == Feat).idxmax() for Feat in dupFeat] keepMask[keepFirstVal] = True self.featureMetadata = self.featureMetadata.loc[keepMask, :] self.featureMetadata.reset_index(drop=True, inplace=True) self.intensityData = self.intensityData[:, keepMask] ## Reformat featureMetadata # quantificationType self.featureMetadata['quantificationType'] = numpy.nan self.featureMetadata.loc[self.featureMetadata['type'] == 'quantification', 'quantificationType'] = QuantificationType.QuantOther self.featureMetadata.loc[self.featureMetadata['type'] != 'quantification', 'quantificationType'] = QuantificationType.Monitored self.featureMetadata.drop('type', inplace=True, axis=1) # calibrationMethod self.featureMetadata['calibrationMethod'] = numpy.nan self.featureMetadata.loc[self.featureMetadata['quantificationType'] == QuantificationType.QuantOther, 'calibrationMethod'] = CalibrationMethod.otherCalibration self.featureMetadata.loc[self.featureMetadata['quantificationType'] == QuantificationType.Monitored, 'calibrationMethod'] = CalibrationMethod.noCalibration # rename columns self.featureMetadata.rename(columns={'loq': 'LLOQ', 'lod': 'LOD', 'Lower Reference Bound': 'Lower Reference Percentile', 'Upper Reference Bound': 'Upper Reference Percentile'}, inplace=True) # replace '-' with nan self.featureMetadata['LLOQ'].replace('-', numpy.nan, inplace=True) self.featureMetadata['LLOQ'] = [float(x) for x in self.featureMetadata['LLOQ'].tolist()] self.featureMetadata['LOD'].replace('-', numpy.nan, inplace=True) self.featureMetadata['LOD'] = [float(x) for x in self.featureMetadata['LOD'].tolist()] # ULOQ self.featureMetadata['ULOQ'] = numpy.nan ## Initialise sampleMetadata self.sampleMetadata['AssayRole'] = numpy.nan self.sampleMetadata['SampleType'] = numpy.nan self.sampleMetadata['Dilution'] = 100 self.sampleMetadata['Correction Batch'] = numpy.nan self.sampleMetadata['Sample ID'] = numpy.nan self.sampleMetadata['Exclusion Details'] = None # add Run Order self.sampleMetadata['Order'] = self.sampleMetadata.sort_values(by='Acquired Time').index self.sampleMetadata['Run Order'] = self.sampleMetadata.sort_values(by='Order').index self.sampleMetadata.drop('Order', axis=1, inplace=True) # initialise the Batch to 1 self.sampleMetadata['Batch'] = [1] * self.sampleMetadata.shape[0] self.sampleMetadata['Metadata Available'] = False ## Initialise expectedConcentration self.expectedConcentration = pandas.DataFrame(None, index=list(self.sampleMetadata.index), columns=self.featureMetadata['Feature Name'].tolist()) ## Initialise empty Calibration info self.calibration = dict() self.calibration['calibIntensityData'] = numpy.ndarray((0, self.featureMetadata.shape[0])) self.calibration['calibSampleMetadata'] = pandas.DataFrame(None, columns=self.sampleMetadata.columns) self.calibration['calibSampleMetadata']['Metadata Available'] = False self.calibration['calibFeatureMetadata'] = pandas.DataFrame({'Feature Name': self.featureMetadata['Feature Name'].tolist()}) self.calibration['calibExpectedConcentration'] = pandas.DataFrame(None, columns=self.featureMetadata['Feature Name'].tolist()) ## Summary print('Targeted Method: ' + self.Attributes['methodName']) print(str(self.sampleMetadata.shape[0]) + ' study samples') print(str(self.featureMetadata.shape[0]) + ' features (' + str(sum(self.featureMetadata['quantificationType'] == QuantificationType.IS)) + ' IS, ' + str(sum(self.featureMetadata['quantificationType'] == QuantificationType.QuantOwnLabeledAnalogue)) + ' quantified and validated with own labeled analogue, ' + str(sum(self.featureMetadata['quantificationType'] == QuantificationType.QuantAltLabeledAnalogue)) + ' quantified and validated with alternative labeled analogue, ' + str(sum(self.featureMetadata['quantificationType'] == QuantificationType.QuantOther)) + ' other quantification, ' + str(sum(self.featureMetadata['quantificationType'] == QuantificationType.Monitored)) + ' monitored for relative information)') print('-----') ## Apply limit of quantification? self._applyLimitsOfQuantification(**kwargs) ## clear **kwargs that have been copied to Attributes for i in list(kwargs.keys()): try: del self.Attributes[i] except: pass for j in ['fileNamePattern', 'pdata', 'unit']: try: del self.Attributes[j] except: pass def _applyLimitsOfQuantification(self, onlyLLOQ=False, **kwargs): """ For each feature, replace intensity values inferior to the lowest limit of quantification or superior to the upper limit of quantification, by a fixed value. Features missing the minimal required information are excluded from :py:attr:'featureMetadata', :py:attr:'intensityData', :py:attr:'expectedConcentration' and :py:attr:'calibration'. Features `'Monitored for relative information'` (and `'noCalibration'`) are not processed and returned without alterations. Features with `'Other quantification'` are allowed `Nan` in the LLOQ or ULOQ (no replacement takes place). Calibration data should not be processed and therefore returned without modification. Units in :py:attr:`_intensityData`, :py:attr:`featureMetadata['LLOQ'] and :py:attr:`featureMetadata['ULOQ']` are expected to be identical for a given feature. Note: In merged datasets, calibration is a list of dict, with features in each calibration dict potentially different from features in featureMetadata and _intensityData. Therefore in merged dataset, features are not filtered in each individual calibration. If features are excluded due to the lack of required featureMetadata info, the masks will be reinitialised :param onlyLLOQ: if True only correct <LLOQ, if False correct <LLOQ and >ULOQ :type onlyLLOQ: bool :return: None :raises AttributeError: if :py:attr:`featureMetadata['LLOQ']` is missing :raises AttributeError: if :py:attr:`featureMetadata['ULOQ']` is missing and onlyLLOQ==False """ sampleMetadata = copy.deepcopy(self.sampleMetadata) featureMetadata = copy.deepcopy(self.featureMetadata) intensityData = copy.deepcopy(self._intensityData) expectedConcentration = copy.deepcopy(self.expectedConcentration) calibration = copy.deepcopy(self.calibration) if ((not hasattr(self, 'sampleMetadataExcluded')) | (not hasattr(self, 'featureMetadataExcluded')) | (not hasattr(self, 'intensityDataExcluded')) | (not hasattr(self, 'expectedConcentrationExcluded')) | (not hasattr(self, 'excludedFlag'))): sampleMetadataExcluded = [] featureMetadataExcluded = [] intensityDataExcluded = [] expectedConcentrationExcluded = [] excludedFlag = [] else: sampleMetadataExcluded = copy.deepcopy(self.sampleMetadataExcluded) featureMetadataExcluded = copy.deepcopy(self.featureMetadataExcluded) intensityDataExcluded = copy.deepcopy(self.intensityDataExcluded) expectedConcentrationExcluded = copy.deepcopy(self.expectedConcentrationExcluded) excludedFlag = copy.deepcopy(self.excludedFlag) ## Check input columns if 'LLOQ' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'LLOQ\'] column is absent') if onlyLLOQ==False: if 'ULOQ' not in featureMetadata.columns: raise AttributeError('featureMetadata[\'ULOQ\'] column is absent') ## Features only Monitored are not processed and passed untouched (concatenated back at the end) untouched = (featureMetadata['quantificationType'] == QuantificationType.Monitored).values if sum(untouched) != 0: print('The following features are only monitored and therefore not processed for LOQs: ' + str(featureMetadata.loc[untouched, 'Feature Name'].values.tolist())) untouchedFeatureMetadata = featureMetadata.loc[untouched, :] featureMetadata = featureMetadata.loc[~untouched, :] untouchedIntensityData = intensityData[:, untouched] intensityData = intensityData[:, ~untouched] untouchedExpectedConcentration = expectedConcentration.loc[:, untouched] expectedConcentration = expectedConcentration.loc[:, ~untouched] # same reordering of the calibration if isinstance(calibration, dict): untouchedCalibFeatureMetadata = calibration['calibFeatureMetadata'].loc[untouched, :] calibration['calibFeatureMetadata'] = calibration['calibFeatureMetadata'].loc[~untouched, :] untouchedCalibIntensityData = calibration['calibIntensityData'][:, untouched] calibration['calibIntensityData'] = calibration['calibIntensityData'][:, ~untouched] untouchedCalibExpectedConcentration = calibration['calibExpectedConcentration'].loc[:, untouched] calibration['calibExpectedConcentration'] = calibration['calibExpectedConcentration'].loc[:, ~untouched] ## Exclude features without required information unusableFeat = featureMetadata['LLOQ'].isnull().values & (featureMetadata['quantificationType'] != QuantificationType.QuantOther).values if not onlyLLOQ: unusableFeat = unusableFeat | (featureMetadata['ULOQ'].isnull().values & (featureMetadata['quantificationType'] != QuantificationType.QuantOther).values) if sum(unusableFeat) != 0: print(str(sum(unusableFeat)) + ' features cannot be pre-processed:') print('\t' + str(sum(unusableFeat)) + ' features lack the required information to apply limits of quantification') # store sampleMetadataExcluded.append(sampleMetadata) featureMetadataExcluded.append(featureMetadata.loc[unusableFeat, :]) intensityDataExcluded.append(intensityData[:, unusableFeat]) expectedConcentrationExcluded.append(expectedConcentration.loc[:, unusableFeat]) excludedFlag.append('Features') #remove featureMetadata = featureMetadata.loc[~unusableFeat, :] intensityData = intensityData[:, ~unusableFeat] expectedConcentration = expectedConcentration.loc[:, ~unusableFeat] if isinstance(calibration, dict): calibration['calibFeatureMetadata'] = calibration['calibFeatureMetadata'].loc[~unusableFeat, :] calibration['calibIntensityData'] = calibration['calibIntensityData'][:, ~unusableFeat] calibration['calibExpectedConcentration'] = calibration['calibExpectedConcentration'].loc[:, ~unusableFeat] ## Values replacement (-inf / +inf) # iterate over the features for i in range(0, featureMetadata.shape[0]): # LLOQ if not numpy.isnan(featureMetadata['LLOQ'].values[i]): toReplaceLLOQ = intensityData[:, i] < featureMetadata['LLOQ'].values[i] intensityData[toReplaceLLOQ, i] = -numpy.inf # ULOQ if not onlyLLOQ: if not numpy.isnan(featureMetadata['ULOQ'].values[i]): toReplaceULOQ = intensityData[:, i] > featureMetadata['ULOQ'].values[i] intensityData[toReplaceULOQ, i] = numpy.inf ## Add back the untouched monitored features if sum(untouched) != 0: featureMetadata = pandas.concat([featureMetadata, untouchedFeatureMetadata], axis=0, sort=False) intensityData = numpy.concatenate((intensityData, untouchedIntensityData), axis=1) expectedConcentration = pandas.concat([expectedConcentration, untouchedExpectedConcentration], axis=1, sort=False) # reorder the calib if isinstance(calibration, dict): calibration['calibFeatureMetadata'] = pandas.concat([calibration['calibFeatureMetadata'], untouchedCalibFeatureMetadata], axis=0, sort=False) calibration['calibIntensityData'] = numpy.concatenate((calibration['calibIntensityData'], untouchedCalibIntensityData), axis=1) calibration['calibExpectedConcentration'] = pandas.concat([calibration['calibExpectedConcentration'], untouchedCalibExpectedConcentration], axis=1, sort=False) # Remove excess info featureMetadata.reset_index(drop=True, inplace=True) expectedConcentration.reset_index(drop=True, inplace=True) if isinstance(calibration, dict): calibration['calibFeatureMetadata'].reset_index(drop=True, inplace=True) calibration['calibExpectedConcentration'].reset_index(drop=True, inplace=True) ## return dataset with limits of quantification applied self.featureMetadata = featureMetadata self._intensityData = intensityData self.expectedConcentration = expectedConcentration self.calibration = calibration self.sampleMetadataExcluded = sampleMetadataExcluded self.featureMetadataExcluded = featureMetadataExcluded self.intensityDataExcluded = intensityDataExcluded self.expectedConcentrationExcluded = expectedConcentrationExcluded self.excludedFlag = excludedFlag if sum(unusableFeat) != 0: # featureMask size will be wrong, requires a reinitialisation self.initialiseMasks() ## Output and Log print('Values <LLOQ replaced by -inf') if not onlyLLOQ: print('Values >ULOQ replaced by +inf') if isinstance(calibration, dict): print('\n') # log the modifications if onlyLLOQ: logLimits = 'Limits of quantification applied to LLOQ' else: logLimits = 'Limits of quantification applied to LLOQ and ULOQ' if sum(untouched) != 0: logUntouchedFeatures = ' ' + str(sum(untouched)) + ' features only monitored and not processed: ' + str(untouchedFeatureMetadata.loc[:, 'Feature Name'].values.tolist()) + '.' else: logUntouchedFeatures = '' self.Attributes['Log'].append([datetime.now(), '%s (%i samples, %i features). LLOQ are replaced by -inf.%s' % (logLimits, self.noSamples, self.noFeatures, logUntouchedFeatures)]) def _targetLynxApplyLimitsOfQuantificationNoiseFilled(self, onlyLLOQ=False, responseReference=None, **kwargs): """ For each feature, replace intensity values inferior to the lowest limit of quantification or superior to the upper limit of quantification. Values inferior to the lowest limit of quantification are replaced by the feature noise concentration. Features missing the minimal required information are excluded from :py:attr:'featureMetadata', :py:attr:'intensityData', :py:attr:'expectedConcentration' and :py:attr:'calibration'. Features `'Monitored for relative information'` (and `'noCalibration'`) are not processed and returned without alterations. Calibration data should not be processed and therefore returned without modification. Units in :py:attr:`_intensityData`, :py:attr:`featureMetadata['LLOQ'] and :py:attr:`featureMetadata['ULOQ']` are expected to be identical for a given feature. .. Note:: To replace <LLOQ by the concentration equivalent to the noise level, the noise area, as well as the :math:`a` and :math:`b` parameters of the calibration equation must be known. For each feature, the ratio `(IS conc / IS Area)` defined as the responseFactor, is determined in a representative calibration sample. Then the concentration equivalent to the noise area is calculated, before being used to replace values <LLOQ. :param onlyLLOQ: if True only correct <LLOQ, if False correct <LLOQ and >ULOQ :type onlyLLOQ: bool :param responseReference: 'Sample File Name' of reference sample to use in order to establish the response to use, or list of samples to use (one per feature). If None, the middle of the calibration will be employed. :type responseReference: None or str or list :return: None :raises AttributeError: if :py:attr:`featureMetadata['LLOQ']` is missing :raises AttributeError: if :py:attr:`featureMetadata['ULOQ']` is missing and onlyLLOQ==False :raises AttributeError: if :py:attr:`featureMetadata['calibrationEquation']` is missing :raises AttributeError: if :py:attr:`featureMetadata['unitCorrectionFactor']` is missing :raises AttributeError: if :py:attr:`featureMetadata['Noise (area)']` is missing :raises AttributeError: if :py:attr:`featureMetadata['a']` is missing :raises AttributeError: if :py:attr:`featureMetadata['b']` is missing :raises AttributeError: if :py:attr:`calibration['calibPeakInfo']` is missing :raises ValueError: if :py:attr:`calibration['calibPeakInfo']['peakArea']` number of features or samples do not match the rest of if :py:attr:`calibration` :raises ValueError: if :py:attr:`calibration['calibPeakInfo']['peakResponse']` number of features or samples do not match the rest of if :py:attr:`calibration` :raises ValueError: if the 'responseReference' sample name is not recognised or the list is of erroneous length. :raises ValueError: if calculation using the calibrationEquation fails. """ sampleMetadata = copy.deepcopy(self.sampleMetadata) featureMetadata = copy.deepcopy(self.featureMetadata) intensityData = copy.deepcopy(self._intensityData) expectedConcentration = copy.deepcopy(self.expectedConcentration) calibration = copy.deepcopy(self.calibration) if ((not hasattr(self, 'sampleMetadataExcluded')) | (not hasattr(self, 'featureMetadataExcluded')) | (not hasattr(self, 'intensityDataExcluded')) | (not hasattr(self, 'expectedConcentrationExcluded')) | (not hasattr(self, 'excludedFlag'))): sampleMetadataExcluded = [] featureMetadataExcluded = [] intensityDataExcluded = [] expectedConcentrationExcluded = [] excludedFlag = [] else: sampleMetadataExcluded = copy.deepcopy(self.sampleMetadataExcluded) featureMetadataExcluded = copy.deepcopy(self.featureMetadataExcluded) intensityDataExcluded = copy.deepcopy(self.intensityDataExcluded) expectedConcentrationExcluded = copy.deepcopy(self.expectedConcentrationExcluded) excludedFlag = copy.deepcopy(self.excludedFlag) ## Check input columns if 'LLOQ' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'LLOQ\'] column is absent') if onlyLLOQ==False: if 'ULOQ' not in featureMetadata.columns: raise AttributeError('featureMetadata[\'ULOQ\'] column is absent') if 'calibrationEquation' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'calibrationEquation\'] column is absent') if 'unitCorrectionFactor' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'unitCorrectionFactor\'] column is absent') if 'Noise (area)' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'Noise (area)\'] column is absent') if 'a' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'a\'] column is absent') if 'b' not in featureMetadata.columns: raise AttributeError('the featureMetadata[\'b\'] column is absent') if 'calibPeakInfo' not in calibration.keys(): raise AttributeError('the calibPeakInfo dict is absent from the calibration dict') if (not numpy.array_equal(calibration['calibPeakInfo']['peakArea'].index.values, calibration['calibSampleMetadata'].index.values)) | (not numpy.array_equal(calibration['calibPeakInfo']['peakArea'].columns.values, calibration['calibFeatureMetadata']['Feature Name'].values)): raise ValueError('calibration[\'calibPeakInfo\'][\'peakArea\'] number of features or samples do not match the rest of \'calibration\'') if (not numpy.array_equal(calibration['calibPeakInfo']['peakResponse'].index.values, calibration['calibSampleMetadata'].index.values)) | (not numpy.array_equal(calibration['calibPeakInfo']['peakResponse'].columns.values, calibration['calibFeatureMetadata']['Feature Name'].values)): raise ValueError('calibration[\'calibPeakInfo\'][\'peakResponse\'] number of features or samples do not match the rest of \'calibration\'') ## Features only Monitored are not processed and passed untouched (concatenated back at the end) untouched = (featureMetadata['quantificationType'] == QuantificationType.Monitored).values if sum(untouched) != 0: print('The following features are only monitored and therefore not processed: ' + str(featureMetadata.loc[untouched, 'Feature Name'].values.tolist())) untouchedFeatureMetadata = featureMetadata.loc[untouched, :] featureMetadata = featureMetadata.loc[~untouched, :] untouchedIntensityData = intensityData[:, untouched] intensityData = intensityData[:, ~untouched] untouchedExpectedConcentration = expectedConcentration.loc[:, untouched] expectedConcentration = expectedConcentration.loc[:, ~untouched] # same reordering of the calibration untouchedCalibFeatureMetadata = calibration['calibFeatureMetadata'].loc[untouched, :] calibration['calibFeatureMetadata'] = calibration['calibFeatureMetadata'].loc[~untouched, :] untouchedCalibIntensityData = calibration['calibIntensityData'][:, untouched] calibration['calibIntensityData'] = calibration['calibIntensityData'][:, ~untouched] untouchedCalibExpectedConcentration = calibration['calibExpectedConcentration'].loc[:, untouched] calibration['calibExpectedConcentration'] = calibration['calibExpectedConcentration'].loc[:, ~untouched] untouchedCalibPeakArea = calibration['calibPeakInfo']['peakArea'].loc[:, untouched] calibration['calibPeakInfo']['peakArea'] = calibration['calibPeakInfo']['peakArea'].loc[:, ~untouched] untouchedCalibPeakResponse = calibration['calibPeakInfo']['peakResponse'].loc[:, untouched] calibration['calibPeakInfo']['peakResponse'] = calibration['calibPeakInfo']['peakResponse'].loc[:, ~untouched] untouchedCalibPeakConcentrationDeviation = calibration['calibPeakInfo']['peakConcentrationDeviation'].loc[:, untouched] calibration['calibPeakInfo']['peakConcentrationDeviation'] = calibration['calibPeakInfo']['peakConcentrationDeviation'].loc[:, ~untouched] untouchedCalibPeakIntegrationFlag = calibration['calibPeakInfo']['peakIntegrationFlag'].loc[:, untouched] calibration['calibPeakInfo']['peakIntegrationFlag'] = calibration['calibPeakInfo']['peakIntegrationFlag'].loc[:, ~untouched] untouchedCalibPeakRT = calibration['calibPeakInfo']['peakRT'].loc[:, untouched] calibration['calibPeakInfo']['peakRT'] = calibration['calibPeakInfo']['peakRT'].loc[:, ~untouched] ## Exclude features without required information unusableFeat = featureMetadata['LLOQ'].isnull().values | featureMetadata['Noise (area)'].isnull() | featureMetadata['a'].isnull() | featureMetadata['b'].isnull() if not onlyLLOQ: unusableFeat = unusableFeat | featureMetadata['ULOQ'].isnull().values unusableFeat = unusableFeat.values if sum(unusableFeat) != 0: print(str(sum(unusableFeat)) + ' features cannot be pre-processed:') print('\t' + str(sum(unusableFeat)) + ' features lack the required information to replace limits of quantification by noise level') # store sampleMetadataExcluded.append(sampleMetadata) featureMetadataExcluded.append(featureMetadata.loc[unusableFeat, :]) intensityDataExcluded.append(intensityData[:, unusableFeat]) #return(expectedConcentration, unusableFeat) expectedConcentrationExcluded.append(expectedConcentration.loc[:, unusableFeat]) excludedFlag.append('Features') #remove featureMetadata = featureMetadata.loc[~unusableFeat, :] intensityData = intensityData[:, ~unusableFeat] expectedConcentration = expectedConcentration.loc[:, ~unusableFeat] calibration['calibFeatureMetadata'] = calibration['calibFeatureMetadata'].loc[~unusableFeat, :] calibration['calibIntensityData'] = calibration['calibIntensityData'][:, ~unusableFeat] calibration['calibExpectedConcentration'] = calibration['calibExpectedConcentration'].loc[:, ~unusableFeat] calibration['calibPeakInfo']['peakResponse'] = calibration['calibPeakInfo']['peakResponse'].loc[:, ~unusableFeat] calibration['calibPeakInfo']['peakArea'] = calibration['calibPeakInfo']['peakArea'].loc[:, ~unusableFeat] calibration['calibPeakInfo']['peakConcentrationDeviation'] = calibration['calibPeakInfo']['peakConcentrationDeviation'].loc[:, ~unusableFeat] calibration['calibPeakInfo']['peakIntegrationFlag'] = calibration['calibPeakInfo']['peakIntegrationFlag'].loc[:, ~unusableFeat] calibration['calibPeakInfo']['peakRT'] = calibration['calibPeakInfo']['peakRT'].loc[:, ~unusableFeat] ## Calculate each feature's replacement noise concentration ## ## Approximate the response reference ## Needed for calibrationMethod='backcalculatedIS', for 'noIS' responseFactor=1 # responseReference: None (guessed middle of the curve), 'Sample File Name' to use, or list of 'Sample File Name' (one per feature) # # ! The calibration curve is plotted in TargetLynx as x-axis concentration, y-axis response # The calibration equation obtained is written as: response = a * concentration + b (eq. 1) # The response uses the area measured and IS: response = Area * (IS conc / IS Area) (eq. 2) [for 'noIS' response = Area] # We can define the responseFactor = (IS conc/IS Area), the ratio of IS Conc/IS Area that can changes from sample to sample. # For noise concentration calculation, using eq. 2 and a reference sample,we can approximate responseFactor = response/area [works for both calibrationMethod] # make a list of responseReference (one per feature) if isinstance(responseReference, str): # Check existance of this sample if sum(calibration['calibSampleMetadata']['Sample File Name'] == responseReference) == 0: raise ValueError('responseReference \'Sample File Name\' unknown: ' + str(responseReference)) responseReference = [responseReference] * featureMetadata.shape[0] elif isinstance(responseReference, list): # Check length to match the number of features if len(responseReference) != featureMetadata.shape[0]: raise ValueError('The number of responseReference \'Sample File Name\' provided does not match the number of features to process:\n' + str(featureMetadata['Feature Name'].values)) for i in responseReference: if sum(calibration['calibSampleMetadata']['Sample File Name'] == i) == 0: raise ValueError('ResponseReference \'Sample File Name\' unknown: ' + str(i)) elif responseReference is None: # Get a compound in the middle of the calibration run, use to your own risks responseReference = calibration['calibSampleMetadata'].sort_values(by='Run Order').iloc[int(numpy.ceil(calibration['calibSampleMetadata'].shape[0] / 2)) - 1]['Sample File Name'] # round to the highest value warnings.warn('No responseReference provided, sample in the middle of the calibration run employed: ' + str(responseReference)) responseReference = [responseReference] * featureMetadata.shape[0] else: raise ValueError('The responseReference provided is not recognised. A \'Sample File Name\', a list of \'Sample File Name\' or None are expected') # Get the right Area and Response for each feature tmpArea = list() tmpResponse = list() # iterate over features, get value in responseReference spectra for i in range(0, featureMetadata.shape[0]): tmpArea.append(calibration['calibPeakInfo']['peakArea'][(calibration['calibSampleMetadata']['Sample File Name'] == responseReference[i]).values].values.flatten()[i]) tmpResponse.append(calibration['calibPeakInfo']['peakResponse'][(calibration['calibSampleMetadata']['Sample File Name'] == responseReference[i]).values].values.flatten()[i]) # responseFactor = response/Area # Note: responseFactor will be ~equal for all compound sharing the same IS (as ISconc/ISArea will be identical) resFact = [resp / area for resp, area in zip(tmpResponse, tmpArea)] featureMetadata = featureMetadata.assign(responseFactor=resFact) ## Calculate noise concentration equivalent for each feature ## Note for equation in .json: # calibration curve in TargetLynx is defined/established as: response = a * concentration + b (eq. 1) # response is defined as: response = Area * (IS conc / IS Area) (eq. 2) [for 'noIS' response = Area] # using eq. 2, we can approximate the ratio IS Conc/IS Area in a representative sample as: responseFactor = response / area (eq. 3) # Therefore: concentration = ((area*responseFactor) - b) / a (eq. 4) # # If in TargetLynx 'axis transformation' is set to log ( but still use 'Polynomial Type'=linear and 'Fit Weighting'=None) # eq.1 is changed to: log(response) = a * log(concentration) + b (eq. 5) # and eq. 4 changed to: concentration = 10^( (log(area*responseFactor) - b) / a ) (eq. 5) # The equation filled expect the following variables: # area # responseFactor | responseFactor=(IS conc/IS Area)=response/Area, for noIS, responseFactor will be 1. # a # b # # Examples: # '((area * responseFactor)-b)/a' # '10**((numpy.log10(area * responseFactor)-b)/a)' # 'area/a' | if b not needed, set to 0 in csv [use for linear noIS, area=response, responseFactor=1, and response = a * concentration ] tmpNoiseConc = [] for i in range(0, featureMetadata.shape[0]): # set the right values before applying the equation calibrationEquation = featureMetadata['calibrationEquation'].values[i] area = featureMetadata['Noise (area)'].values[i] responseFactor = featureMetadata['responseFactor'].values[i] a = featureMetadata['a'].values[i] b = featureMetadata['b'].values[i] # apply the calibration equation, and the unitCorrectionFactor, as the equations were established with the original area/response/concentrations try: tmpNoiseConc.append(eval(calibrationEquation) * featureMetadata['unitCorrectionFactor'].values[i]) except: raise ValueError('Verify calibrationEquation: \"' + calibrationEquation + '\", only variables expected are \"area\", \"responseFactor\", \"a\" or \"b\"') featureMetadata = featureMetadata.assign(noiseConcentration=tmpNoiseConc) ## Values replacement by noise concentration (<LOQ) and +inf for (>ULOQ) # iterate over the features for i in range(0, featureMetadata.shape[0]): # LLOQ toReplaceLLOQ = intensityData[:, i] < featureMetadata['LLOQ'].values[i] intensityData[toReplaceLLOQ, i] = featureMetadata['noiseConcentration'].values[i] # ULOQ if not onlyLLOQ: toReplaceULOQ = intensityData[:, i] > featureMetadata['ULOQ'].values[i] intensityData[toReplaceULOQ, i] = numpy.inf ## Add back the untouched monitored features if sum(untouched) != 0: featureMetadata = pandas.concat([featureMetadata, untouchedFeatureMetadata], axis=0, sort=False) intensityData = numpy.concatenate((intensityData, untouchedIntensityData), axis=1) expectedConcentration = pandas.concat([expectedConcentration, untouchedExpectedConcentration], axis=1, sort=False) # reorder the calib calibration['calibFeatureMetadata'] = pandas.concat([calibration['calibFeatureMetadata'], untouchedCalibFeatureMetadata], axis=0, sort=False) calibration['calibIntensityData'] = numpy.concatenate((calibration['calibIntensityData'], untouchedCalibIntensityData), axis=1) calibration['calibExpectedConcentration'] = pandas.concat([calibration['calibExpectedConcentration'], untouchedCalibExpectedConcentration], axis=1, sort=False) calibration['calibPeakInfo']['peakArea'] = pandas.concat([calibration['calibPeakInfo']['peakArea'], untouchedCalibPeakArea], axis=1, sort=False) calibration['calibPeakInfo']['peakResponse'] = pandas.concat([calibration['calibPeakInfo']['peakResponse'], untouchedCalibPeakResponse], axis=1, sort=False) calibration['calibPeakInfo']['peakConcentrationDeviation'] = pandas.concat([calibration['calibPeakInfo']['peakConcentrationDeviation'], untouchedCalibPeakConcentrationDeviation], axis=1, sort=False) calibration['calibPeakInfo']['peakIntegrationFlag'] =
pandas.concat([calibration['calibPeakInfo']['peakIntegrationFlag'], untouchedCalibPeakIntegrationFlag], axis=1, sort=False)
pandas.concat
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Plots import matplotlib.pyplot as plt import seaborn as sns # Preprocessing from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.cluster import MiniBatchKMeans import gc # LightGBM framework import lightgbm as lgb """ From github: A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks. LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages: Faster training speed and higher efficiency Lower memory usage Better accuracy Parallel and GPU learning supported Capable of handling large-scale data """ ######## # Load the data ######## #maing train and test train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') #load supplemental taxi route data train_fastest_1 = pd.read_csv('fastest_routes_train_part_1.csv') train_fastest_2 = pd.read_csv('fastest_routes_train_part_2.csv') test_fastest = pd.read_csv('fastest_routes_test.csv') #load the hourly weather weather = pd.read_csv('weather_data_nyc_centralpark_2016.csv') weather_hour = pd.read_csv('Weather.csv') #split the training data into a train and validation set train, valid, _ , _ = train_test_split(train, train.trip_duration, test_size=0.2, random_state=2017) # Add set marker train['eval_set'] = 0; valid['eval_set'] = 1; test['eval_set'] = 2 test['trip_duration'] = np.nan; test['dropoff_datetime'] = np.nan #merge train, valid and test to a single table frame = pd.concat([train, valid, test], axis=0) frame_fastest = pd.concat([train_fastest_1, train_fastest_2, test_fastest], axis = 0) ### Memory optimization # Main dataframe frame.eval_set = frame.eval_set.astype(np.uint8) frame.passenger_count = frame.passenger_count.astype(np.int8) frame.store_and_fwd_flag = pd.get_dummies(frame['store_and_fwd_flag'], prefix='store_and_fwd_flag', drop_first=True) frame.vendor_id = frame.vendor_id.astype(np.int8) # Weather dataframe weather.replace('T', 0.001, inplace=True) weather['date'] = pd.to_datetime(weather['date'], dayfirst=True).dt.date weather['average temperature'] = weather['average temperature'].astype(np.int64) weather['precipitation'] = weather['precipitation'].astype(np.float64) weather['snow fall'] = weather['snow fall'].astype(np.float64) weather['snow depth'] = weather['snow depth'].astype(np.float64) # Weather hourly dataframe weather_hour['Datetime'] = pd.to_datetime(weather_hour['pickup_datetime'], dayfirst=True) weather_hour['date'] = weather_hour.Datetime.dt.date weather_hour['hour'] = weather_hour.Datetime.dt.hour weather_hour['hour'] = weather_hour.hour.astype(np.int8) weather_hour['fog'] = weather_hour.fog.astype(np.int8) weather_hour = weather_hour[['date', 'hour', 'tempm', 'dewptm', 'hum', 'wspdm', 'wdird', 'vism', 'pressurei', 'fog']] # Define clusters def clusters(df): coords = np.vstack((df[['pickup_longitude', 'pickup_latitude']].values, df[['dropoff_longitude', 'dropoff_latitude']].values)) sample_ind = np.random.permutation(len(coords))[:500000] kmeans = MiniBatchKMeans(n_clusters=100, batch_size=10000).fit(coords[sample_ind]) cl_pickup = kmeans.predict(df[['pickup_longitude', 'pickup_latitude']]) cl_dropoff = kmeans.predict(df[['dropoff_longitude', 'dropoff_latitude']]) return cl_pickup, cl_dropoff # Rotate the map def rotate_coords(df, col1, col2, pic=False): alpha = 0.610865 # angle = 35 degrees #alpha = 0.506145 # angle = 29 degrees # Center of rotation x_c = df[col1].mean() y_c = df[col2].mean() # Coordinates C = df[[col1, col2]] - np.array([x_c, y_c]) # Rotation matrix R = np.array([[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)]]) C_rot = np.matmul(R, C.transpose().values).transpose() + np.array([x_c, y_c]) return C_rot # Manhattan distances def my_manhattan_distances(x1, x2, y1, y2): return np.abs(x1 - x2) + np.abs(y1 - y2) # Euclidean distances def my_euclidean_distances(x1, x2, y1, y2): return np.square(x1 - x2) + np.square(y1 - y2) my_manhattan_distances = np.vectorize(my_manhattan_distances) my_euclidean_distances = np.vectorize(my_euclidean_distances) # Adding features def add_features(df, predict=False): # If predict = True, this function will prepare (add new features) # train set (all train data) and test (all test data); else, # if predict = False, the function will prepare train and validation datasets if predict: train_inds = df[(df.eval_set != 2)].index else: df = df[(df.eval_set != 2)].copy() train_inds = df[df.eval_set != 1].index ### Log trip print('Log trip duration') df['trip_duration'] = df.trip_duration.apply(np.log) ### PCA transformation print('Add PCA geo-coordinates') coords = np.vstack((df[['pickup_latitude', 'pickup_longitude']], df[['dropoff_latitude', 'dropoff_longitude']])) pca = PCA().fit(coords) # define 2 main axis df['pickup_pca0'] = pca.transform(df[['pickup_longitude', 'pickup_latitude']])[:,0] df['pickup_pca1'] = pca.transform(df[['pickup_longitude', 'pickup_latitude']])[:,1] df['dropoff_pca0'] = pca.transform(df[['dropoff_longitude', 'dropoff_latitude']])[:,0] df['dropoff_pca1'] = pca.transform(df[['dropoff_longitude', 'dropoff_latitude']])[:,1] df['distance_pca0'] = np.abs(df.pickup_pca0-df.dropoff_pca0) df['distance_pca1'] = np.abs(df.pickup_pca1-df.dropoff_pca1) print('Rotate geo-coordinates') C_rot_pickup = rotate_coords(df, 'pickup_longitude', 'pickup_latitude', not predict) C_rot_dropoff = rotate_coords(df, 'dropoff_longitude', 'dropoff_latitude', not predict) df['pickup_longitude_rot'] = C_rot_pickup[:, 0] df['pickup_latitude_rot'] = C_rot_pickup[:, 1] df['dropoff_longitude_rot'] = C_rot_dropoff[:, 0] df['dropoff_latitude_rot'] = C_rot_dropoff[:, 1] ### Add clusters print('Add clusters') cl_pu, cl_do = clusters(df)#not predict, df['pickup_clusters'] = cl_pu df['dropoff_clusters'] = cl_do ### to DateTime print('Convert to datetime format') df['pickup_datetime'] = pd.to_datetime(df['pickup_datetime']) # Add weather info df['date'] = df['pickup_datetime'].dt.date # adding date column df['hour'] = df['pickup_datetime'].dt.hour # adding hour column df = pd.merge(left=df, right=weather, on='date', how='left') # Add weather hourly df = pd.merge(left=df, right=weather_hour.drop_duplicates(subset=['date', 'hour']), on=['date', 'hour'], how='left') df.drop(['date'], axis=1, inplace=True) # Weather added df['month'] = df['pickup_datetime'].dt.month df['week_of_year'] = df['pickup_datetime'].dt.week df['day'] = df['pickup_datetime'].dt.day df['month_day'] = df['month'] + df['day'] df['day_of_year'] = df['pickup_datetime'].dt.dayofyear #df['hour'] = df['pickup_datetime'].dt.hour df['day_of_year_hour'] = 24*df['day_of_year'] + df['hour'] df['hour_minute'] = 60*df['hour'] + df['pickup_datetime'].dt.minute df['day_week'] = df['pickup_datetime'].dt.weekday df['month_day_hour'] = 31*24*df['month'] + 24*df['day'] + df['hour'] ### Some usfull averages ### print('Add averages') train_info = df.iloc[train_inds].copy() # get only train data # Month average month_avg = train_info.groupby('month').trip_duration.mean() month_avg = month_avg.reset_index(); month_avg.columns = ['month', 'month_avg'] df = pd.merge(left=df, right=month_avg, on='month', how='left') # Week of year average week_year_avg = train_info.groupby('week_of_year').trip_duration.mean() week_year_avg = week_year_avg.reset_index() week_year_avg.columns = ['week_of_year', 'week_of_year_avg'] df = pd.merge(left=df, right=week_year_avg, on='week_of_year', how='left') # Day of month average day_month_avg = train_info.groupby('day').trip_duration.mean() day_month_avg = day_month_avg.reset_index() day_month_avg.columns = ['day', 'day_of_month_avg'] df = pd.merge(left=df, right=day_month_avg, on='day', how='left') # Day of year average day_year_avg = train_info.groupby('day_of_year').trip_duration.mean() day_year_avg = day_year_avg.reset_index() day_year_avg.columns = ['day_of_year', 'day_of_year_avg'] df =
pd.merge(left=df, right=day_year_avg, on='day_of_year', how='left')
pandas.merge
#!/usr/bin/env python ''' ---------------- About the script ---------------- Assignment 3: Sentiment Analysis This script calculates sentiment scores of over a million headlines taken from the Australian news source ABC (Start Date: 2003-02-19 ; End Date: 2020-12-31) using the spaCyTextBlob approach, creates and saves two plots of sentiment over time with a 1-week and a 1-month rolling averages. Also, it creates one plot with 1-day, 1-week, 1-month and 1-year rolling averages together for a better comparison. Example: $ python sentiment.py ''' """---------------- Importing libraries ---------------- """ # importing libraries import spacy import os import sys import pandas as pd import matplotlib.pyplot as plt import numpy as np sys.path.append(os.path.join("..")) from spacytextblob.spacytextblob import SpacyTextBlob # initialising spacy nlp = spacy.load("en_core_web_sm") # initialising spaCyTextBlob and adding it as a new component to spaCy nlp pipeline. spacy_text_blob = SpacyTextBlob() nlp.add_pipe(spacy_text_blob) """---------------- Main script ---------------- """ def main(): """------ Reading data and preparation ------ """ # Defining path to the csv file in_file = os.path.join("..", "data", "abcnews-date-text", "abcnews-date-text.csv") # Reading the csv file and saving into a variable abc_news = pd.read_csv(in_file) # Presenting a sample of 10 headlines to the user print(f"\n[INFO] This is an overview of the dataset:\n") print(abc_news.sample(10)) # Geting a list of every publish date, which I will loop through later dates = sorted(abc_news["publish_date"].unique()) # Creating an empty list for total sentiment score for each day total_scores = [] # Create ouput folder, if it doesn´t exist already, for saving the plots and other output if not os.path.exists("../output"): os.makedirs("../output") """------ The loop calculating sentiment scores ------ """ print(f"\n[INFO] Calculating sentiment scores\n") # Looping through each day for day in dates: # Creating a variable to store a total sentiment score for all the headlines per day polarity_score_total = 0 # Getting a list of every headline in the day that the code is looping through headlines = abc_news[abc_news["publish_date"]==day] # Looping through each headline in a day for headline in nlp.pipe(headlines["headline_text"], batch_size=1000): # Calculating sentiment score for that headline headline_polarity = headline._.sentiment.polarity # Adding the above calculated headline score to the total score. In the end this will result in a total sentiment score from all the headlines per one day polarity_score_total = headline_polarity + polarity_score_total # Appending the total score to an empty list total_scores.append(polarity_score_total) """------ Calculating and ploting rolling averages ------ """ # Calculating 7 day rolling average smoothed_sentiment_weeks =
pd.Series(total_scores)
pandas.Series
import sys from intopt_energy_mlp import intopt_energy sys.path.insert(0,'../..') sys.path.insert(0,"../../Interior") sys.path.insert(0,"../../EnergyCost") from intopt_energy_mlp import * from KnapsackSolving import * from get_energy import * from ICON import * import itertools import scipy as sp import numpy as np import time,datetime import pandas as pd import logging from scipy.stats import poisson from get_energy import get_energy import time,datetime import logging from get_energy import get_energy import time,datetime import logging from scipy.stats import expon from scipy.stats import beta from scipy.stats import poisson if __name__ == '__main__': formatter = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(filename='ICONexp.log', level=logging.INFO,format=formatter) (X_1gtrain, y_train, X_1gtest, y_test) = get_energy("prices2013.dat") X_1gvalidation = X_1gtest[0:2880,:] y_validation = y_test[0:2880] y_test= y_test[2880:] X_1gtest = X_1gtest[2880:,:] weights = [[1 for i in range(48)]] weights = np.array(weights) X_1gtrain = X_1gtrain[:,1:] X_1gvalidation = X_1gvalidation[:,1:] X_1gtest = X_1gtest[:,1:] file = "../../EnergyCost/load1/instance34.txt" param = data_reading(file) ## twostage # clf = twostage_energy(input_size=X_1gtrain.shape[1], param=param,hidden_size=1, # optimizer= optim.SGD, lr=0.1,num_layers=1,epochs=3,validation_relax=False) # clf.fit(X_1gtrain,y_train) # test_rslt = clf.validation_result(X_1gtest,y_test) # # two_stage_rslt = {'model':'Two-stage','MSE-loss':test_rslt [1],'Regret':test_rslt[0]} # # # SPO # clf = SPO_energy(input_size=X_1gtrain.shape[1], param=param,hidden_size=1, # optimizer= optim.Adam, lr=0.7,num_layers=1,epochs=5,validation_relax=False) # clf.fit(X_1gtrain,y_train) # test_rslt = clf.validation_result(X_1gtest,y_test) # spo_rslt = {'model':'SPO','MSE-loss':test_rslt [1],'Regret':test_rslt[0] } ## Intopt HSD clf = intopt_energy(input_size=X_1gtrain.shape[1], param=param,hidden_size=1, optimizer= optim.Adam, lr=0.7,num_layers=1,epochs=8, damping= 1e-6,thr = 0.1,validation_relax=False) clf.fit(X_1gtrain,y_train) test_rslt = clf.validation_result(X_1gtest,y_test) intopt_rslt = {'model':'IntOpt','MSE-loss':test_rslt [1],'Regret':test_rslt[0]} # QPT clf = qptl_energy(input_size=X_1gtrain.shape[1], param=param,hidden_size=1,num_layers=1, optimizer= optim.Adam, lr=0.1,epochs= 6,tau=100000,validation_relax=False) clf.fit(X_1gtrain,y_train,X_test= X_1gtest,y_test= y_test) test_rslt = clf.validation_result(X_1gtest,y_test) qpt_rslt = {'model':'QPTL','MSE-loss':test_rslt [1],'Regret':test_rslt[0] } rslt=
pd.DataFrame([two_stage_rslt,spo_rslt, qpt_rslt,intopt_rslt ])
pandas.DataFrame
import io import itertools import pytest from pandas.util.testing import ( assert_series_equal, assert_frame_equal, assert_index_equal) from numpy.testing import assert_array_equal import pandas as pd import numpy as np import matplotlib.figure import matplotlib.pyplot as plt from upsetplot import plot from upsetplot import UpSet from upsetplot import generate_counts, generate_samples from upsetplot.plotting import _process_data # TODO: warnings should raise errors def is_ascending(seq): # return np.all(np.diff(seq) >= 0) return sorted(seq) == list(seq) @pytest.mark.parametrize('x', [ generate_counts(), generate_counts().iloc[1:-2], ]) @pytest.mark.parametrize('sort_by', ['cardinality', 'degree']) @pytest.mark.parametrize('sort_categories_by', [None, 'cardinality']) def test_process_data_series(x, sort_by, sort_categories_by): assert x.name == 'value' for subset_size in ['auto', 'legacy', 'sum', 'count']: for sum_over in ['abc', False]: with pytest.raises(ValueError, match='sum_over is not applicable'): _process_data(x, sort_by=sort_by, sort_categories_by=sort_categories_by, subset_size=subset_size, sum_over=sum_over) df, intersections, totals = _process_data( x, subset_size='auto', sort_by=sort_by, sort_categories_by=sort_categories_by, sum_over=None) assert intersections.name == 'value' x_reordered = (x .reorder_levels(intersections.index.names) .reindex(index=intersections.index)) assert len(x) == len(x_reordered) assert x_reordered.index.is_unique assert_series_equal(x_reordered, intersections, check_dtype=False) if sort_by == 'cardinality': assert is_ascending(intersections.values[::-1]) else: # check degree order assert is_ascending(intersections.index.to_frame().sum(axis=1)) # TODO: within a same-degree group, the tuple of active names should # be in sort-order if sort_categories_by: assert is_ascending(totals.values[::-1]) assert np.all(totals.index.values == intersections.index.names) assert np.all(df.index.names == intersections.index.names) assert set(df.columns) == {'_value', '_bin'} assert_index_equal(df['_value'].reorder_levels(x.index.names).index, x.index) assert_array_equal(df['_value'], x) assert_index_equal(intersections.iloc[df['_bin']].index, df.index) assert len(df) == len(x) @pytest.mark.parametrize('x', [ generate_samples()['value'], generate_counts(), ]) def test_subset_size_series(x): kw = {'sort_by': 'cardinality', 'sort_categories_by': 'cardinality', 'sum_over': None} df_sum, intersections_sum, totals_sum = _process_data( x, subset_size='sum', **kw) if x.index.is_unique: expected_warning = None else: expected_warning = FutureWarning with pytest.warns(expected_warning): df, intersections, totals = _process_data( x, subset_size='legacy', **kw) assert_frame_equal(df, df_sum) assert_series_equal(intersections, intersections_sum) assert_series_equal(totals, totals_sum) if x.index.is_unique: df, intersections, totals = _process_data( x, subset_size='auto', **kw) assert_frame_equal(df, df_sum) assert_series_equal(intersections, intersections_sum)
assert_series_equal(totals, totals_sum)
pandas.util.testing.assert_series_equal
import pandas as pd def cleaner(extractor): tables = extractor.get_all_tables() df = extractor.get_column_list(tables) df['default'] = df['default'].fillna('0') df['default'][df['default'].str.contains('next', na=False)] = '1' df['default'][df['default'].isin(['0', '1']) == False] = '2' df = pd.concat([df,
pd.get_dummies(df['default'])
pandas.get_dummies
# coding=utf-8 """This is the core implementation of the evaluation.""" import concurrent.futures from threading import Lock, Thread import numpy as np import pandas as pd import torch from tensorboardX import SummaryWriter from tqdm.autonotebook import tqdm from ..utils import evaluation as eval_model from ..utils.common_util import print_dict_as_table, save_to_csv, timeit from ..utils.constants import ( DEFAULT_ITEM_COL, DEFAULT_PREDICTION_COL, DEFAULT_RATING_COL, DEFAULT_USER_COL, ) from ..utils.seq_evaluation import mrr, ndcg, precision, recall lock_train_eval = Lock() lock_test_eval = Lock() def computeRePos(time_seq, time_span): """Compute position matrix for a user. Args: time_seq ([type]): [description] time_span ([type]): [description] Returns: [type]: [description] """ size = time_seq.shape[0] time_matrix = np.zeros([size, size], dtype=np.int32) for i in range(size): for j in range(size): span = abs(time_seq[i] - time_seq[j]) if span > time_span: time_matrix[i][j] = time_span else: time_matrix[i][j] = span return time_matrix def evaluate(data_df, predictions, metrics, k_li): """Evaluate the performance of a prediction by different metrics. Args: data_df (DataFrame): the dataset to be evaluated. predictions (narray): 1-D array. The predicted scores for each user-item pair in the dataset. metrics (list): metrics to be evaluated. k_li (int or list): top k (s) to be evaluated. Returns: result_dic (dict): Performance result. """ user_ids = data_df[DEFAULT_USER_COL].to_numpy() item_ids = data_df[DEFAULT_ITEM_COL].to_numpy() pred_df = pd.DataFrame( { DEFAULT_USER_COL: user_ids, DEFAULT_ITEM_COL: item_ids, DEFAULT_PREDICTION_COL: predictions, } ) metric_mapping = { "rmse": eval_model.rmse, "mae": eval_model.mae, "rsquared": eval_model.rsquared, "ndcg": eval_model.ndcg_at_k, "map": eval_model.map_at_k, "precision": eval_model.precision_at_k, "recall": eval_model.recall_at_k, } result_dic = {} if type(k_li) != list: k_li = [k_li] for k in k_li: for metric in metrics: result = metric_mapping[metric](data_df, pred_df, k=k) result_dic[f"{metric}@{k}"] = result return result_dic @timeit def train_eval_worker(testEngine, valid_df, test_df, valid_pred, test_pred, epoch): """Start a worker for the evaluation during training. Args: testEngine: valid_df: test_df: valid_pred: test_pred: epoch (int): Returns: (dict,dict): dictionary with performances on validation and testing sets. """ testEngine.n_worker += 1 valid_result = evaluate( valid_df, valid_pred, testEngine.metrics, testEngine.valid_k ) test_result = evaluate(test_df, test_pred, testEngine.metrics, testEngine.valid_k) lock_train_eval.acquire() testEngine.record_performance(valid_result, test_result, epoch) if ( valid_result[f"{testEngine.valid_metric}@{testEngine.valid_k}"] > testEngine.best_valid_performance ): testEngine.n_no_update = 0 print( "Current testEngine.best_valid_performance" f" {testEngine.best_valid_performance}" ) testEngine.best_valid_performance = valid_result[ f"{testEngine.valid_metric}@{testEngine.valid_k}" ] print_dict_as_table( valid_result, tag=f"performance on validation at epoch {epoch}", columns=["metrics", "values"], ) print_dict_as_table( test_result, tag=f"performance on testing at epoch {epoch}", columns=["metrics", "values"], ) else: testEngine.n_no_update += 1 print(f"number of epochs that have no update {testEngine.n_no_update}") testEngine.n_worker -= 1 lock_train_eval.release() # lock record and get best performance return valid_result, test_result @timeit def test_eval_worker(testEngine, eval_data_df, prediction): """Start a worker for the evaluation during training. Prediction and evaluation on the testing set. """ config = testEngine.config["system"] result_para = { "run_time": [testEngine.config["run_time"]], } testEngine.n_worker += 1 for cfg in ["model", "dataset"]: for col in testEngine.config[cfg]["result_col"]: result_para[col] = [testEngine.config[cfg][col]] test_result_dic = evaluate( eval_data_df, prediction, testEngine.metrics, testEngine.k ) print_dict_as_table( test_result_dic, tag="performance on test", columns=["metrics", "values"], ) test_result_dic.update(result_para) lock_test_eval.acquire() # need to be test result_df =
pd.DataFrame(test_result_dic)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import matplotlib.pyplot as plt # In[2]: # In[3]: def ptetaplot(ptbins,etabins,data,ax,title): etabinstext=[] ptbinstext=[] for i in range(len(ptbins)): if i==len(ptbins)-1: ptbinstext.append('overflow') continue ptbinstext.append(str(ptbins[i])+'-'+str(ptbins[i+1])) for i in range(len(etabins)): if i==len(etabins)-1: etabinstext.append('overflow') continue etabinstext.append(str(etabins[i])+'-'+str(etabins[i+1])) import seaborn as sns ptbinstext.reverse() import pandas as pd df =
pd.DataFrame(data=data, columns=etabinstext, index=ptbinstext)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 5 11:52:00 2020 @author: <NAME> Ewp Takes a little while to run. This code is a pretty average (poorly named variables and reuse of dat, and different names for the moorings). All of the values are calculated on the fly and printed. Not saved anywhere. Quite inefficient, but provided as is. Recommended to turn warnings off to save the data and put in text. Could have turned this into a function. Have refractored where possible but this script is provided as is. Requirements: processed/combined_dataset/month_data_exports.nc processed/flux/pco2grams.nc Produces: figs/Figure5a_ENSO_seasonality.png """ import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from carbon_math import * from matplotlib.dates import MonthLocator, DateFormatter from matplotlib.ticker import FuncFormatter xl0=0.0 yl0=0.18 xl1=0.0 yl1=0.18 xl2=-0.09 yl2=0 lanina=pd.read_csv('processed/indexes/la_nina_events.csv') cp_nino=pd.read_csv('processed/indexes/cp_events.csv') ep_nino=
pd.read_csv('processed/indexes/ep_events.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 15 11:21:51 2020 @author: jcampbellwhite001 """ import time from matplotlib import * from matplotlib.pyplot import * import numpy as np import pandas as pd import astropy from astropy.time import Time import astropy.units as u from astropy.stats import sigma_clip from astroquery.simbad import Simbad from astropy.timeseries import LombScargle import numpy.ma as ma import os from PyAstronomy import pyasl from lmfit.models import GaussianModel, LinearModel from scipy.interpolate import interp1d from scipy.optimize import curve_fit from scipy.signal import savgol_filter from scipy.signal import find_peaks_cwt from scipy.signal import argrelextrema from ESO_fits_get_spectra import * from ESP_fits_get_spectra import * from utils_data import * from utils_spec import * #variables shared between module files target='USH' instrument='USH' radvel=0 vsini=0 #figure sizes used in module file fig_size_s=(6,6) fig_size_sn=(4.5,5) fig_size_l=(9,6) fig_size_n=(9,4) #Read in line files lines_file='Line_Resources/JCW_all_lines_2_20kA_100321.csv' line_table = pd.read_csv(lines_file,delimiter='\t',index_col=False,comment='#',skip_blank_lines=True) line_table['Ei']=line_table['Ei'].str.replace('[^\d.]', '',regex=True).astype(float) line_table['Ek']=line_table['Ek'].str.replace('[^\d.]', '',regex=True).astype(float) line_table.drop(columns=('rm'),inplace=True) line_table['obs_wl_air']=np.round(line_table['obs_wl_air'],2) line_table.sort_values(['obs_wl_air','Aki'],ascending=[True,False],inplace=True)#keep the highest Aki for duplicated obs_wl_air entries? line_table.drop_duplicates('obs_wl_air',inplace=True) line_table.reset_index(drop=True,inplace=True) xr_lines_file='Line_Resources/JCW_XR_lines_2_50A.csv' xr_line_table = pd.read_csv(xr_lines_file,delimiter='\t',index_col=False,comment='#',skip_blank_lines=True) xr_line_table['Ei']=xr_line_table['Ei'].str.replace('[^\d.]', '',regex=True).astype(float) xr_line_table['Ek']=xr_line_table['Ek'].str.replace('[^\d.]', '',regex=True).astype(float) xr_line_table['ritz_wl_vac']=xr_line_table['ritz_wl_vac'].str.replace('[^\d.]', '',regex=True).astype(float) xr_line_table['ritz_wl_vac']=np.round(xr_line_table['ritz_wl_vac'],3) xrs_lines_file='Line_Resources/JCW_Stelzer_XR_lines_2_50A.csv' xrs_line_table =
pd.read_csv(xrs_lines_file,delimiter=',',index_col=False,comment='#',skip_blank_lines=True)
pandas.read_csv
#!/usr/bin/python3 import pandas as pd import subprocess import os import matplotlib.pyplot as plt import numpy as np import time import glob pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # Set up a bunch of settings to test, more than will be plotted to ensure that I can change things around to plot different values dimensions = [(660, 120), (1000, 200), (2000, 400), (4000, 800), (8000, 1600)] sim_times = [0.5, 0.2, 0.05, 0.01, 0.004] omp_num_threads_tested = [1, 2, 3, 4, 5, 6] sbatch_nodes_tested = [1, 2, 3, 4, 8] # List of items to actually plot as different lines omp_num_threads_plot = [1, 2, 4, 6] sbatch_nodes_plot = [1, 2, 4, 8] dimensions_plot = [(660, 120), (2000, 400), (8000, 1600)] # Extract timing data from line def get_time_from_timing_line(line): string_time = line.split(" ")[3] return float(string_time) class CFDRunner: """ Class to handle running a configuration via slurm and process the output """ def __init__(self, id): """ Set the default parameters Takes an id to keep config files separate """ self.x = 660 self.y = 120 self.t = 0.2 self.sbatch_nodes = 1 self.sbatch_tasks = 0.5 self.sbatch_time = "00:07:00" self.omp_threads = 6 self.in_file = os.path.join("test", f"initial-{id}.bin") self.out_file = os.path.join("test", f"completed-{id}.bin") self.sbatch_file = os.path.join("test", f"submit-{id}.sbatch") self.single_thread = False def run(self): """ Run the slurm batch file and extract the slurm job id to read the file later """ process_output = subprocess.run(["sbatch", self.sbatch_file], stdout=subprocess.PIPE) output_lines = process_output.stdout.decode().split("\n") self.sbatch_id = output_lines[0].split(" ")[3] def is_still_running(self): """ Check if the job still appears in the queue -> probably still running """ process_output = subprocess.run(["squeue"], stdout=subprocess.PIPE) output_lines = process_output.stdout.decode().split("\n") return any([self.sbatch_id in line for line in output_lines]) def parse_output(self): """ Parse the output into a dataframe of timing data """ with open(f"slurm-{self.sbatch_id}.out", "r") as fh: lines = fh.readlines() i = 0 # while i < len(lines) and "I am process" not in lines[i]: # i += 1 # shape_output = lines[i] timing_results = [] # Basically go line by line and extract the timing data # If a timestep label is seen it knows a new set of measurements is starting # Add the current of the data to the dataframe # Note: Uses this weird method because it wasn't known which order the measurements would be output in current_time = None timestep_time_taken = None compute_velocity_time_taken = None rhs_time_taken = None possion_time_taken = None update_velocity_time_taken = None boundary_time_taken = None sync_time_taken = None possion_p_loop_time_taken = None possion_res_loop_time_taken = None for line in lines[i:]: try: if "--- Timestep" in line: if current_time is not None: timing_results.append([ current_time, timestep_time_taken, compute_velocity_time_taken, rhs_time_taken, possion_time_taken, update_velocity_time_taken, boundary_time_taken, sync_time_taken, possion_p_loop_time_taken, possion_res_loop_time_taken, ]) current_time = float(line.split(" ")[3]) elif "timestep_time_taken" in line: timestep_time_taken = float(line.split(" ")[1]) elif "compute_velocity_time_taken" in line: compute_velocity_time_taken = float(line.split(" ")[1]) elif "rhs_time_taken" in line: rhs_time_taken = float(line.split(" ")[1]) elif "possion_time_taken" in line: possion_time_taken = float(line.split(" ")[1]) elif "update_velocity_time_taken" in line: update_velocity_time_taken = float(line.split(" ")[1]) elif "boundary_time_taken" in line: boundary_time_taken = float(line.split(" ")[1]) elif "sync_time_taken" in line: sync_time_taken = float(line.split(" ")[1]) elif "possion_p_loop_time_taken" in line: possion_p_loop_time_taken = float(line.split(" ")[1]) elif "possion_res_loop_time_taken" in line: possion_res_loop_time_taken = float(line.split(" ")[1]) except Exception as e: print("Exception", e) # Label the dataframe columns and return df = pd.DataFrame(timing_results, columns=("Timestep", "timestep_time_taken", "compute_velocity_time_taken", "rhs_time_taken", "possion_time_taken", "update_velocity_time_taken", "boundary_time_taken", "sync_time_taken", "possion_p_loop_time_taken", "possion_res_loop_time_taken")) return df def save_sbatch(self): """ Export the configuration as a file to be run by sbatch Bind to socket to avoid performing openmp across two sockets to avoid memory latency """ # Default to using the parallel implementation command = f"time mpirun -n {self.sbatch_nodes} -npernode 1 --bind-to socket ./karman-par -x {self.x} -y {self.y} --infile {self.in_file} -o {self.out_file} -t {self.t}\n" omp_line = f"export OMP_NUM_THREADS={self.omp_threads}\n" # If singlethread use the other executable if self.single_thread: command = f"time ./karman -x {self.x} -y {self.y} --infile {self.in_file} -o {self.out_file} -t {self.t}\n" omp_line = "\n" # Write out the file with open(self.sbatch_file, "w") as fh: fh.writelines([ "#!/bin/bash\n", "#SBATCH --job-name=cfd-graphs\n", "#SBATCH --partition=cs402\n", "#SBATCH --nice=9000\n", "#SBATCH --ntasks-per-socket=1\n", # avoid going from socket to socket with openmp f"#SBATCH --nodes={self.sbatch_nodes}\n", f"#SBATCH --ntasks-per-node=1\n", f"#SBATCH --cpus-per-task=12\n" # required for 6x scaling running on slurm scaled correctly with openmp up to 6 threads but after that failed to improve. I think it is only allocating one socket. f"#SBATCH --time={self.sbatch_time}\n", ". /etc/profile.d/modules.sh\n", "module purge\n", "module load cs402-mpi\n", omp_line, command, "#gprof ./karman\n", "./bin2ppm < karman.bin > karman.ppm\n", "./diffbin karman.vanilla.bin karman.bin\n", ]) def collect_data(): """ Run all configurations """ all_df = pd.DataFrame({ "x": pd.Series(dtype='int32'), "y": pd.Series(dtype='int32'), "sbatch_nodes": pd.Series(dtype='int32'), "sbatch_tasks": pd.Series(dtype='int32'), "omp_threads":
pd.Series(dtype='int32')
pandas.Series
from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [
Timestamp("20130101")
pandas.Timestamp
import json import re import pandas as pd import os import numpy as np from tqdm import tqdm def get_stop_words(json_file="./word2vec_af_wikipedia.json", number_of_stop_words=None, word_count_threshold=0.30, remove_punctuation=True, lowercase_words=True, remove_proper_nouns=True): with open(json_file, "r") as read_file: data = json.load(read_file) token_counts = data["token_counts"] if remove_punctuation: token_counts = [(re.sub(r"[^a-zA-Z]", "", x), y) for x, y in token_counts if re.sub(r"[^a-zA-Z]", "", x) != ""] if lowercase_words: token_counts = [(x.lower(), y) for x, y in token_counts] if remove_proper_nouns: proper_nouns = ["January", "january", "Januarie", "januarie", "February", "february", "Februarie", "februarie", "March", "march", "Maart", "maart", "April", "april", "April", "april", "May", "may", "Mei", "mei", "June", "june", "Junie", "junie", "July", "july", "Julie", "julie", "August", "august", "Augustus", "augustus", "September", "september", "September", "september", "October", "october", "Oktober", "oktober", "November", "november", "November", "november", "December", "december", "Desember", "desember"] token_counts = [(x, y) for x, y in token_counts if x not in proper_nouns] token_dict = {} for token, count in token_counts: if token in token_dict: token_dict[token] = token_dict[token] + count else: token_dict[token] = count tokens_sorted = sorted(token_dict.items(), key=lambda x: x[1], reverse=True) if not number_of_stop_words: count_total = sum(token_dict.values()) # print("count_total :", count_total) threshold_count = count_total * word_count_threshold # print("threshold_count :", threshold_count) running_total = 0 idx = 0 for _, count in token_counts: running_total += count idx += 1 if running_total > threshold_count: break return_tokens = [x for x, y in tokens_sorted] return_tokens = return_tokens[:idx] else: return_tokens = [x for x, y in tokens_sorted] return_tokens = return_tokens[:number_of_stop_words] return return_tokens def convert_df_to_text(input_df, section_name): len_input = len(input_df) if len_input == 0: return "", 0 else: if len(section_name) > 0: return_text = section_name # return_text += "\n" else: return_text = "" rows = input_df.values for row in rows: return_text += "\n" return_text += " ".join(row.tolist()) return return_text, len(rows) def create_question_words_file_from_excel(source_excel_file, words_file_dir="./", words_file_name="question-words-afrikaans.txt"): excel_data =
pd.ExcelFile(source_excel_file)
pandas.ExcelFile
import pandas, sys import pandas as pd a = pd.read_csv("/home/risana/Downloads/Signal-Processing--master/5.Py_Scripts/kushagra_lie_R.csv") b = pd.read_csv("/home/risana/Downloads/Signal-Processing--master/5.Py_Scripts/kushagra_truth_R.csv") c=pd.read_csv("/home/risana/Downloads/Signal-Processing--master/5.Py_Scripts/komal_lie_R.csv") d=
pd.read_csv("/home/risana/Downloads/Signal-Processing--master/5.Py_Scripts/komal_truth_R.csv")
pandas.read_csv
""" Download, transform and simulate various datasets. """ # Author: <NAME> <<EMAIL>> # License: MIT from os.path import join from urllib.parse import urljoin from string import ascii_lowercase from sqlite3 import connect from rich.progress import track import numpy as np import pandas as pd from .base import Datasets, FETCH_URLS class ContinuousCategoricalDatasets(Datasets): """Class to download, transform and save datasets with both continuous and categorical features.""" @staticmethod def _modify_columns(data, categorical_features): """Rename and reorder columns of dataframe.""" X, y = data.drop(columns="target"), data.target X.columns = range(len(X.columns)) return pd.concat([X, y], axis=1), categorical_features def download(self): """Download the datasets.""" if self.names == "all": func_names = [func_name for func_name in dir(self) if "fetch_" in func_name] else: func_names = [ f"fetch_{name}".lower().replace(" ", "_") for name in self.names ] self.content_ = [] for func_name in track(func_names, description="Datasets"): name = func_name.replace("fetch_", "").upper().replace("_", " ") fetch_data = getattr(self, func_name) data, categorical_features = self._modify_columns(*fetch_data()) self.content_.append((name, data, categorical_features)) return self def save(self, path, db_name): """Save datasets.""" with connect(join(path, f"{db_name}.db")) as connection: for name, data in self.content_: data.to_sql(name, connection, index=False, if_exists="replace") def fetch_adult(self): """Download and transform the Adult Data Set. https://archive.ics.uci.edu/ml/datasets/Adult """ data = pd.read_csv(FETCH_URLS["adult"], header=None, na_values=" ?").dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 3, 5, 6, 7, 8, 9, 13] return data, categorical_features def fetch_abalone(self): """Download and transform the Abalone Data Set. https://archive.ics.uci.edu/ml/datasets/Abalone """ data = pd.read_csv(FETCH_URLS["abalone"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0] return data, categorical_features def fetch_acute(self): """Download and transform the Acute Inflammations Data Set. https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations """ data = pd.read_csv( FETCH_URLS["acute"], header=None, sep="\t", decimal=",", encoding="UTF-16" ) data["target"] = data[6].str[0] + data[7].str[0] data.drop(columns=[6, 7], inplace=True) categorical_features = list(range(1, 6)) return data, categorical_features def fetch_annealing(self): """Download and transform the Annealing Data Set. https://archive.ics.uci.edu/ml/datasets/Annealing """ data = pd.read_csv(FETCH_URLS["annealing"], header=None, na_values="?") # some features are dropped; they have too many missing values missing_feats = (data.isnull().sum(0) / data.shape[0]) < 0.1 data = data.iloc[:, missing_feats.values] data[2].fillna(data[2].mode().squeeze(), inplace=True) data = data.T.reset_index(drop=True).T data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0, 1, 5, 9] return data, categorical_features def fetch_census(self): """Download and transform the Census-Income (KDD) Data Set. https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29 """ data = pd.read_csv(FETCH_URLS["census"], header=None) categorical_features = ( list(range(1, 5)) + list(range(6, 16)) + list(range(19, 29)) + list(range(30, 38)) + [39] ) # some features are dropped; they have too many missing values cols_ids = [1, 6, 9, 13, 14, 20, 21, 29, 31, 37] categorical_features = np.argwhere( np.delete( data.rename(columns={k: f"nom_{k}" for k in categorical_features}) .columns.astype("str") .str.startswith("nom_"), cols_ids, ) ).squeeze() data = data.drop(columns=cols_ids).T.reset_index(drop=True).T # some rows are dropped; they have rare missing values data = data.iloc[ data.applymap(lambda x: x != " Not in universe").all(1).values, : ] data.rename(columns={data.columns[-1]: "target"}, inplace=True) return data, categorical_features def fetch_contraceptive(self): """Download and transform the Contraceptive Method Choice Data Set. https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice """ data = pd.read_csv(FETCH_URLS["contraceptive"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [4, 5, 6, 8] return data, categorical_features def fetch_covertype(self): """Download and transform the Covertype Data Set. https://archive.ics.uci.edu/ml/datasets/Covertype """ data = pd.read_csv(FETCH_URLS["covertype"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) wilderness_area = pd.Series( np.argmax(data.iloc[:, 10:14].values, axis=1), name=10 ) soil_type = pd.Series(np.argmax(data.iloc[:, 14:54].values, axis=1), name=11) data = ( data.drop(columns=list(range(10, 54))) .join(wilderness_area) .join(soil_type)[list(range(0, 12)) + ["target"]] ) categorical_features = [10, 11] return data, categorical_features def fetch_credit_approval(self): """Download and transform the Credit Approval Data Set. https://archive.ics.uci.edu/ml/datasets/Credit+Approval """ data = pd.read_csv( FETCH_URLS["credit_approval"], header=None, na_values="?" ).dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12] return data, categorical_features def fetch_dermatology(self): """Download and transform the Dermatology Data Set. https://archive.ics.uci.edu/ml/datasets/Dermatology """ data = pd.read_csv( FETCH_URLS["dermatology"], header=None, na_values="?" ).dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = list(range(data.shape[1] - 1)) categorical_features.remove(33) return data, categorical_features def fetch_echocardiogram(self): """Download and transform the Echocardiogram Data Set. https://archive.ics.uci.edu/ml/datasets/Echocardiogram """ data = pd.read_csv( FETCH_URLS["echocardiogram"], header=None, error_bad_lines=False, warn_bad_lines=False, na_values="?", ) data.drop(columns=[10, 11], inplace=True) data.dropna(inplace=True) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 3] return data, categorical_features def fetch_flags(self): """Download and transform the Flags Data Set. https://archive.ics.uci.edu/ml/datasets/Flags """ data = pd.read_csv(FETCH_URLS["flags"], header=None) target = data[6].rename("target") data = data.drop(columns=[0, 6]).T.reset_index(drop=True).T.join(target) categorical_features = [ 0, 1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, ] return data, categorical_features def fetch_heart_disease(self): """Download and transform the Heart Disease Data Set. https://archive.ics.uci.edu/ml/datasets/Heart+Disease """ data = ( pd.concat( [ pd.read_csv(url, header=None, na_values="?") for url in FETCH_URLS["heart_disease"] ], ignore_index=True, ) .drop(columns=[10, 11, 12]) .dropna() ) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 2, 5, 6, 8] return data, categorical_features def fetch_hepatitis(self): """Download and transform the Hepatitis Data Set. https://archive.ics.uci.edu/ml/datasets/Hepatitis """ data = ( pd.read_csv(FETCH_URLS["hepatitis"], header=None, na_values="?") .drop(columns=[15, 18]) .dropna() ) target = data[0].rename("target") data = data.drop(columns=[0]).T.reset_index(drop=True).T.join(target) categorical_features = list(range(1, 13)) + [16] return data, categorical_features def fetch_german_credit(self): """Download and transform the German Credit Data Set. https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 """ data = pd.read_csv(FETCH_URLS["german_credit"], header=None, sep=" ") data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = ( np.argwhere(data.iloc[0, :-1].apply(lambda x: str(x)[0] == "A").values) .squeeze() .tolist() ) return data, categorical_features def fetch_heart(self): """Download and transform the Heart Data Set. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data = pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 2, 5, 6, 8, 10, 12] return data, categorical_features def fetch_thyroid(self): """Download and transform the Thyroid Disease Data Set. Label 0 corresponds to no disease found. Label 1 corresponds to one or multiple diseases found. https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease """ data = ( pd.read_csv(FETCH_URLS["thyroid"], header=None, na_values="?") .drop(columns=27) .dropna() .T.reset_index(drop=True) .T ) data.rename(columns={data.columns[-1]: "target"}, inplace=True) data["target"] = ( data["target"].apply(lambda x: x.split("[")[0]) != "-" ).astype(int) categorical_features = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 27, ] return data, categorical_features class MultiClassDatasets(Datasets): """Class to download, transform and save multi-class datasets.""" def fetch_first_order_theorem(self): """Download and transform the First Order Theorem Data Set. https://www.openml.org/d/1475 """ data = pd.read_csv(FETCH_URLS["first_order_theorem"]) data.rename(columns={"Class": "target"}, inplace=True) return data def fetch_gas_drift(self): """Download and transform the Gas Drift Data Set. https://www.openml.org/d/1476 """ data = pd.read_csv(FETCH_URLS["gas_drift"]) data.rename(columns={"Class": "target"}, inplace=True) return data def fetch_autouniv_au7(self): """Download and transform the AutoUniv au7 Data Set https://www.openml.org/d/1552 """ data = pd.read_csv(FETCH_URLS["autouniv_au7"]) data.rename(columns={"Class": "target"}, inplace=True) data.target = data.target.apply(lambda x: x.replace("class", "")).astype(int) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_autouniv_au4(self): """Download and transform the AutoUniv au4 Data Set https://www.openml.org/d/1548 """ data = pd.read_csv(FETCH_URLS["autouniv_au4"]) data.rename(columns={"Class": "target"}, inplace=True) data.target = data.target.apply(lambda x: x.replace("class", "")).astype(int) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_mice_protein(self): """Download and transform the Mice Protein Data Set https://www.openml.org/d/40966 """ data = pd.read_csv(FETCH_URLS["mice_protein"]) data.rename(columns={"class": "target"}, inplace=True) data.drop(columns=["MouseID"], inplace=True) data.replace("?", np.nan, inplace=True) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) mask2 = data.isna().sum() < 10 data = data.loc[:, mask & mask2].dropna().copy() data.iloc[:, :-1] = data.iloc[:, :-1].astype(float) mapper = {v: k for k, v in enumerate(data.target.unique())} data.target = data.target.map(mapper) return data def fetch_steel_plates(self): """Download and transform the Steel Plates Fault Data Set. https://www.openml.org/d/40982 """ data = pd.read_csv(FETCH_URLS["steel_plates"]) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() mapper = {v: k for k, v in enumerate(data.target.unique())} data.target = data.target.map(mapper) return data def fetch_cardiotocography(self): """Download and transform the Cardiotocography Data Set. https://www.openml.org/d/1560 """ data = pd.read_csv(FETCH_URLS["cardiotocography"]) data.rename(columns={"Class": "target"}, inplace=True) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_waveform(self): """Download and transform the Waveform Database Generator (version 2) Data Set. https://www.openml.org/d/60 """ data = pd.read_csv(FETCH_URLS["waveform"]) data.rename(columns={"class": "target"}, inplace=True) return data def fetch_volkert(self): """Download and transform the Volkert Data Set. https://www.openml.org/d/41166 """ data = pd.read_csv(FETCH_URLS["volkert"]) data.rename(columns={"class": "target"}, inplace=True) mask = (data.iloc[:, 1:].nunique() > 100).tolist() mask.insert(0, True) data = data.loc[:, mask].copy() return data def fetch_vehicle(self): """Download and transform the Vehicle Silhouettes Data Set. https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes) """ data =
pd.DataFrame()
pandas.DataFrame
from pathlib import Path from abc import ABC, abstractmethod from typing import List, Dict from pandas import DataFrame import pickle import os import datetime import pandas as pd import numpy as np SORTED_COLUMNS = ['global_cell_id', 'date', 'session_cell_id', 'mouse_line', 'sex', 'age', 'brain_region', 'cell_type', 'recording_type', 'internal_solution', 'stimulation_in_percent', 'pharmacology', 'stimulation_string', 'stimulation_frequency-Hz', 'stimulation_duration-ms', 'filepath_main_excel_sheet', 'filepath_detected_events'] #'Recordings and cell properties' for reasons of backwards compatibility VOLTAGE_CLAMP_IDENTIFIERS = ['Voltage-clamp', 'voltage-clamp', 'Voltage_clamp', 'voltage_clamp', 'Recordings and cell properties'] CURRENT_CLAMP_IDENTIFIERS = ['Current-clamp', 'current-clamp', 'Current_clamp', 'current_clamp'] def listdir_nohidden(path: Path) -> List: return [f for f in os.listdir(path.as_posix()) if f.startswith('.') == False] class Database: """ The database is supposed to hold all information about all recorded cells that were added to it. These information exclude the raw data (only contain filepaths to raw data), but include general metadata like celltype, stimulus type, brain region, pharamacological treatment. Potentially, some intermediate data could be added (like how the cell reacted upon stimulation, see dashboard). Overall, the database should allow the selection of cells based on mix-and-match criteria for further (statistical) analyses and plotting. """ def __init__(self, root_dir: Path): self.root_dir = root_dir self.subdirectories = Subdirectories(root_dir = root_dir) self.global_cell_id = 0 self.cells_in_database = list() def list_all_column_values(self, global_cell_id: str, recording_type: str, column_name: str) -> List: if recording_type not in ['current_clamp', 'IPSPs', 'EPSPs']: raise ValueError('The attribute "recording_type" has to be one of the following: "current_clamp", "IPSPs", or "EPSPs"') if recording_type == 'current_clamp': attribute = 'current_clamp_recordings' elif recording_type == 'IPSPs': attribute = 'inhibitory_voltage_clamp_recordings' elif recording_type == 'EPSPs': attribute = 'excitatory_voltage_clamp_recordings' if hasattr(self, attribute): df_to_use = getattr(self, attribute) if global_cell_id in df_to_use['global_cell_id'].unique(): values = list(df_to_use.loc[df_to_use['global_cell_id'] == global_cell_id, column_name].values) return values else: raise ValueError(f'{global_cell_id} is not in the database yet!') else: print('No entries in the database yet') def add_new_cell_recording(self, cell_recordings_dir: Path, overwrite: bool): increase_global_cell_id_count = True if overwrite: if cell_recordings_dir.name in self.cells_in_database: date = cell_recordings_dir.name[:10] session_cell_id = cell_recordings_dir.name[cell_recordings_dir.name.rfind('_')+1:] global_cell_id = self.cell_recordings_metadata.loc[(self.cell_recordings_metadata['date'] == date) & (self.cell_recordings_metadata['session_cell_id'] == session_cell_id), 'global_cell_id'].iloc[0] increase_global_cell_id_count = False self.cell_recordings_metadata.drop(self.cell_recordings_metadata.loc[self.cell_recordings_metadata['global_cell_id'] == global_cell_id].index, inplace = True) self.cells_in_database.remove(cell_recordings_dir.name) else: global_cell_id = self.global_cell_id else: global_cell_id = self.global_cell_id if cell_recordings_dir.name not in self.cells_in_database: new_recording = CellRecording(cell_recordings_dir = cell_recordings_dir, global_cell_id = global_cell_id) recording_overview = new_recording.create_recordings_overview() if hasattr(self, 'cell_recordings_metadata') == False: for column_name in list(recording_overview.columns): if column_name not in SORTED_COLUMNS: print(f'Warning: {column_name} not defined in SORTED_COLUMNS.') self.cell_recordings_metadata = recording_overview[SORTED_COLUMNS] else: for column_name in list(recording_overview.columns): if column_name not in list(self.cell_recordings_metadata.columns): print(f'Warning: {column_name} represents a new column. Consider updating of all previously added cell recordings.') self.cell_recordings_metadata = pd.concat([self.cell_recordings_metadata, recording_overview], ignore_index = True) self.cell_recordings_metadata.sort_values(by=['global_cell_id'], inplace = True, ignore_index = True) for recording_type_key, dataframe in new_recording.recording_type_specific_datasets.items(): if type(dataframe) == DataFrame: if hasattr(self, recording_type_key) == False: setattr(self, recording_type_key, dataframe) else: # check if all columns are matching? current_df = getattr(self, recording_type_key) updated_df = pd.concat([current_df, dataframe], ignore_index = True) updated_df.sort_values(by = ['global_cell_id'], inplace = True, ignore_index = True) setattr(self, recording_type_key, updated_df) self.cells_in_database.append(cell_recordings_dir) #simply add .name to get cell_id (probably requires adaptations at multiple other sites too) if increase_global_cell_id_count: self.global_cell_id += 1 # Trigger update of mix-and-match categories? else: note_line1 = f'Note: The recordings in "{cell_recordings_dir.as_posix()}" were already added to the database.\n' note_line2 = ' Consider passing "overwrite = True" when calling this function in order to update the information.' print(note_line1 + note_line2) def save_all(self): self.save_all_attributes_as_pickle() self.save_cell_recordings_metadata_as_csv() def save_all_attributes_as_pickle(self): project_summary = self.__dict__.copy() filepath = f'{self.subdirectories.project_summary.as_posix()}/{datetime.datetime.now().strftime("%Y_%m_%d")}_dclpatch_project_summary.p' with open(filepath, 'wb') as io: pickle.dump(project_summary, io) def save_cell_recordings_metadata_as_csv(self): filepath = f'{self.subdirectories.project_summary.as_posix()}/{datetime.datetime.now().strftime("%Y_%m_%d")}_dclpatch_database_overview.csv' self.cell_recordings_metadata.to_csv(filepath) def load_all(self): result_files = [fname for fname in listdir_nohidden(self.subdirectories.project_summary) if fname.endswith('dclpatch_project_summary.p')] result_files.sort(reverse = True) with open(f'{self.subdirectories.project_summary.as_posix()}/{result_files[0]}', 'rb') as io: project_summary = pickle.load(io) for key, value in project_summary.items(): if hasattr(self, key) == False: setattr(self, key, value) class CellRecording: def __init__(self, cell_recordings_dir: Path, global_cell_id: int) -> None: self.cell_recordings_dir = cell_recordings_dir self.global_cell_id = str(global_cell_id).zfill(4) self.recording_type_specific_datasets = {'excitatory_voltage_clamp_recordings': None, 'inhibitory_voltage_clamp_recordings': None, 'current_clamp_recordings': None} self.extract_all_data_from_directory() def extract_all_data_from_directory(self) -> None: self.general_metadata_df = self.create_general_metadata_df() recording_type_data_extractors = self.prepare_all_recording_type_data_extractors() for data_extractor in recording_type_data_extractors: extracted_df = data_extractor.create_recording_specific_dataframe(cell_recording_obj = self) self.recording_type_specific_datasets[data_extractor.recording_type_key] = extracted_df def create_general_metadata_df(self) -> DataFrame: metadata_df = pd.read_excel(self.cell_recordings_dir.joinpath(f'{self.cell_recordings_dir.name}.xlsx'), sheet_name = 'General information') general_metadata = {'date': self.cell_recordings_dir.name[:10], 'session_cell_id': self.cell_recordings_dir.name[self.cell_recordings_dir.name.rfind('_') + 1:], 'mouse_line': metadata_df['Animal line'][0], 'brain_region': metadata_df['Region'][0], 'cell_type': metadata_df['Type'][0], 'sex': metadata_df['Sex'][0], 'age': metadata_df['Age (days)'][0], 'stimulation_in_percent': metadata_df['Stimulation (%)'][0], 'internal_solution': metadata_df['Internal used'][0]} return pd.DataFrame(general_metadata, index=[0]) def prepare_all_recording_type_data_extractors(self) -> List: #returns a list of DataExtractor objects main_excel_sheet = pd.read_excel(self.cell_recordings_dir.joinpath(f'{self.cell_recordings_dir.name}.xlsx'), sheet_name = None) recording_type_data_extractors = list() for tab_name in main_excel_sheet.keys(): if tab_name in VOLTAGE_CLAMP_IDENTIFIERS: recording_type_data_extractors.append(ExtractVoltageClampData(df = main_excel_sheet[tab_name])) elif tab_name in CURRENT_CLAMP_IDENTIFIERS: recording_type_data_extractors.append(ExtractCurrentClampData(df = main_excel_sheet[tab_name])) elif tab_name == 'General information': continue else: raise ValueError(f'"{tab_name}" is not a valid identifier of recording type for {self.cell_recordings_dir.as_posix()}') return recording_type_data_extractors def create_recordings_overview(self) -> DataFrame: recording_specific_dataframes = [] for recording_type, value in self.recording_type_specific_datasets.items(): if type(value) == DataFrame: relevant_columns1 = ['global_cell_id', 'recording_type','pharmacology', 'filepath_main_excel_sheet', 'filepath_detected_events'] relevant_columns2 = ['stimulation_string', 'stimulation_frequency-Hz', 'stimulation_duration-ms'] df_tmp = value[relevant_columns1 + relevant_columns2].copy() recording_specific_dataframes.append(df_tmp) overview_df = pd.concat(recording_specific_dataframes) overview_df = overview_df.reset_index(drop = True) shape_adapted_general_metadata_df =
pd.concat([self.general_metadata_df]*overview_df.shape[0], ignore_index = True)
pandas.concat
import os import json import click import logging import itertools import pandas as pd from tqdm import tqdm from collections import OrderedDict from more_itertools import ichunked from twarc.expansions import flatten log = logging.getLogger("twarc") DEFAULT_TWEET_COLUMNS = """__twarc.retrieved_at __twarc.url __twarc.version attachments.media attachments.media_keys attachments.poll.duration_minutes attachments.poll.end_datetime attachments.poll.id attachments.poll.options attachments.poll.voting_status attachments.poll_ids author.created_at author.description author.entities.description.cashtags author.entities.description.hashtags author.entities.description.mentions author.entities.description.urls author.entities.url.urls author.id author.location author.name author.pinned_tweet_id author.profile_image_url author.protected author.public_metrics.followers_count author.public_metrics.following_count author.public_metrics.listed_count author.public_metrics.tweet_count author.url author.username author.verified author.withheld.country_codes author_id context_annotations conversation_id created_at entities.annotations entities.cashtags entities.hashtags entities.mentions entities.urls geo.coordinates.coordinates geo.coordinates.type geo.country geo.country_code geo.full_name geo.geo.bbox geo.geo.type geo.id geo.name geo.place_id geo.place_type id in_reply_to_user.created_at in_reply_to_user.description in_reply_to_user.entities.description.cashtags in_reply_to_user.entities.description.hashtags in_reply_to_user.entities.description.mentions in_reply_to_user.entities.description.urls in_reply_to_user.entities.url.urls in_reply_to_user.id in_reply_to_user.location in_reply_to_user.name in_reply_to_user.pinned_tweet_id in_reply_to_user.profile_image_url in_reply_to_user.protected in_reply_to_user.public_metrics.followers_count in_reply_to_user.public_metrics.following_count in_reply_to_user.public_metrics.listed_count in_reply_to_user.public_metrics.tweet_count in_reply_to_user.url in_reply_to_user.username in_reply_to_user.verified in_reply_to_user.withheld.country_codes in_reply_to_user_id lang possibly_sensitive public_metrics.like_count public_metrics.quote_count public_metrics.reply_count public_metrics.retweet_count referenced_tweets reply_settings source text type withheld.copyright withheld.country_codes""".split( "\n" ) DEFAULT_USERS_COLUMNS = """__twarc.retrieved_at __twarc.url __twarc.version created_at description entities.description.cashtags entities.description.hashtags entities.description.mentions entities.description.urls entities.url.urls id location name pinned_tweet_id pinned_tweet profile_image_url protected public_metrics.followers_count public_metrics.following_count public_metrics.listed_count public_metrics.tweet_count url username verified withheld.country_codes""".split( "\n" ) class CSVConverter: def __init__( self, infile, outfile, json_encode_all=False, json_encode_lists=True, json_encode_text=False, inline_referenced_tweets=True, inline_pinned_tweets=False, allow_duplicates=False, input_tweet_columns=True, input_users_columns=False, input_columns="", output_columns="", batch_size=5000, ): self.infile = infile self.outfile = outfile self.json_encode_all = json_encode_all self.json_encode_lists = json_encode_lists self.json_encode_text = json_encode_text self.inline_referenced_tweets = inline_referenced_tweets self.inline_pinned_tweets = inline_pinned_tweets self.allow_duplicates = allow_duplicates self.batch_size = batch_size self.dataset_ids = set() self.std = infile.name == "<stdin>" or outfile.name == "<stdout>" self.progress = tqdm( unit="B", unit_scale=True, unit_divisor=1024, total=os.stat(infile.name).st_size if not self.std else 1, disable=self.std, ) self.columns = list() if input_tweet_columns: self.columns.extend(DEFAULT_TWEET_COLUMNS) if input_users_columns: self.columns.extend(DEFAULT_USERS_COLUMNS) if input_columns: self.columns.extend(manual_columns.split(",")) self.output_columns = ( output_columns.split(",") if output_columns else self.columns ) self.counts = { "lines": 0, "tweets": 0, "referenced_tweets": 0, "parse_errors": 0, "duplicates": 0, "rows": 0, "input_columns": len(self.columns), "output_columns": len(self.output_columns), } def _read_lines(self): """ Generator for reading files line byline from a file. Progress bar is based on file size. """ line = self.infile.readline() while line: self.counts["lines"] = self.counts["lines"] + 1 if line.strip() != "": try: o = json.loads(line) yield o except Exception as ex: self.counts["parse_errors"] = self.counts["parse_errors"] + 1 log.error(f"Error when trying to parse json: '{line}' {ex}") if not self.std: self.progress.update(self.infile.tell() - self.progress.n) line = self.infile.readline() def _handle_formats(self, batch): """ Handle different types of json formats, generating 1 tweet at a time a batch is a number of lines from a json, these can be full pages of requests or individual tweets. """ for item in batch: # if it has a "data" key ensure data it is flattened if "data" in item: # flatten a list of tweets if isinstance(item["data"], list): for i in flatten(item)["data"]: yield i # flatten a single tweet, eg, from stream else: yield flatten(item)["data"] else: # this assumes the data is flattened yield item def _inline_referenced_tweets(self, tweet): """ Insert referenced tweets into the main CSV """ if "referenced_tweets" in tweet and self.inline_referenced_tweets: for referenced_tweet in tweet["referenced_tweets"]: # extract the referenced tweet as a new row self.counts["referenced_tweets"] = self.counts["referenced_tweets"] + 1 yield referenced_tweet # leave behind the reference, but not the full tweet tweet["referenced_tweets"] = [ {"type": r["type"], "id": r["id"]} for r in tweet["referenced_tweets"] ] # Deal with pinned tweets for user datasets: # Todo: This is not fully implemented! if self.inline_pinned_tweets: if "pinned_tweet" in tweet: # extract the referenced tweet as a new row tweet["pinned_tweet"]["type"] = "pinned_tweet" self.counts["referenced_tweets"] = self.counts["referenced_tweets"] + 1 yield referenced_tweet # pinned_tweet_id remains: tweet.pop("pinned_tweet") yield tweet def _process_tweets(self, tweets): """ Process a single tweet before adding it to the dataframe. ToDo: Drop columns and dedupe etc here. """ for tweet in tweets: # Order the fields in the json, because JSON key order isn't guaranteed. # Needed so that different batches won't produce different ordered columns json_keys = sorted(tweet.keys()) selected_field_order = list() # Opinion: always put in id,created_at,text first, and then the rest if "id" in json_keys: selected_field_order.append(json_keys.pop(json_keys.index("id"))) if "created_at" in json_keys: selected_field_order.append( json_keys.pop(json_keys.index("created_at")) ) if "text" in json_keys: selected_field_order.append(json_keys.pop(json_keys.index("text"))) selected_field_order.extend(json_keys) tweet = OrderedDict((k, tweet[k]) for k in selected_field_order) self.counts["tweets"] = self.counts["tweets"] + 1 if tweet["id"] in self.dataset_ids: self.counts["duplicates"] = self.counts["duplicates"] + 1 if self.allow_duplicates: yield tweet else: if tweet["id"] not in self.dataset_ids: yield tweet self.dataset_ids.add(tweet["id"]) def _process_dataframe(self, _df): # (Optional) json encode all if self.json_encode_all: _df = _df.applymap(json.dumps, na_action="ignore") else: # (Optional) text escape for any text fields if self.json_encode_text: _df = _df.applymap( lambda x: json.dumps(x) if type(x) is str else x, na_action="ignore", ) else: # Mandatory newline escape to prevent breaking csv format: _df = _df.applymap( lambda x: x.replace("\r", "").replace("\n", r"\n") if type(x) is str else x, na_action="ignore", ) # (Optional) json for lists if self.json_encode_lists: _df = _df.applymap( lambda x: json.dumps(x) if pd.api.types.is_list_like(x) else x, na_action="ignore", ) return _df def _process_batch(self, batch): # (Optional) append referenced tweets as new rows tweet_batch = itertools.chain.from_iterable( self._process_tweets(self._inline_referenced_tweets(tweet)) for tweet in self._handle_formats(batch) ) _df = pd.json_normalize([tweet for tweet in tweet_batch], errors="ignore") # Check for mismatched columns if len(_df.columns) > len(self.columns): diff = set(_df.columns) - set(self.columns) click.echo( click.style( f"💔 ERROR: Unexpected Data: \n\"{','.join(diff)}\"\n to fix, add these with --input-columns. Skipping entire batch of {len(_df)} tweets!", fg="red", ), err=True, ) return
pd.DataFrame(columns=self.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]}) df.ix[[0, 2, ], 'b'] = [100, -100] expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df.ix[[1, 3], 'b'] = [100, -100] expected = DataFrame({'a': [0, 1, 2, 3], 'b': [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignement it will work with option_context('chained_assignment', None): df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df['b'].ix[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame(np.arange(16).reshape((4, 4)), columns=['a', 'b', 8, 'c'], index=['e', 7, 'f', 'g']) self.assertEqual(df.ix['e', 8], 2) self.assertEqual(df.loc['e', 8], 2) df.ix['e', 8] = 42 self.assertEqual(df.ix['e', 8], 42) self.assertEqual(df.loc['e', 8], 42) df.loc['e', 8] = 45 self.assertEqual(df.ix['e', 8], 45) self.assertEqual(df.loc['e', 8], 45) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) mask = (df.a % 2 == 0) self.assertRaises(ValueError, df.iloc.__getitem__, tuple([mask])) mask.index = lrange(len(mask)) self.assertRaises(NotImplementedError, df.iloc.__getitem__, tuple([mask])) # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2 ** locs reps = lmap(bin, nums) df = DataFrame({'locs': locs, 'nums': nums}, reps) expected = { (None, ''): '0b1100', (None, '.loc'): '0b1100', (None, '.iloc'): '0b1100', ('index', ''): '0b11', ('index', '.loc'): '0b11', ('index', '.iloc'): ('iLocation based boolean indexing ' 'cannot use an indexable as a mask'), ('locs', ''): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the indexed ' 'object do not match', ('locs', '.loc'): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the ' 'indexed object do not match', ('locs', '.iloc'): ('iLocation based boolean indexing on an ' 'integer type is not available'), } # UserWarnings from reindex of a boolean mask with warnings.catch_warnings(record=True): result = dict() for idx in [None, 'index', 'locs']: mask = (df.nums > 2).values if idx: mask = Series(mask, list(reversed(getattr(df, idx)))) for method in ['', '.loc', '.iloc']: try: if method: accessor = getattr(df, method[1:]) else: accessor = df ans = str(bin(accessor[mask]['nums'].sum())) except Exception as e: ans = str(e) key = tuple([idx, method]) r = expected.get(key) if r != ans: raise AssertionError( "[%s] does not match [%s], received [%s]" % (key, ans, r)) def test_ix_slicing_strings(self): # GH3836 data = {'Classification': ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'], 'Random': [1, 2, 3, 4, 5], 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']} df = DataFrame(data) x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF' ])] df.ix[x.index, 'X'] = df['Classification'] expected = DataFrame({'Classification': {0: 'SA EQUITY CFD', 1: 'bbb', 2: 'SA EQUITY', 3: 'SA SSF', 4: 'aaa'}, 'Random': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, 'X': {0: 'correct', 1: 'bbb', 2: 'correct', 3: 'correct', 4: 'aaa'}}) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_non_unique_loc(self): # GH3659 # non-unique indexer with loc slice # https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs # these are going to raise becuase the we are non monotonic df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)])) # monotonic are ok df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0) result = df.loc[1:] expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]}, index=[1, 1, 2, 3]) tm.assert_frame_equal(result, expected) result = df.loc[0:] tm.assert_frame_equal(result, df) result = df.loc[1:2] expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]}, index=[1, 1, 2]) tm.assert_frame_equal(result, expected) def test_loc_name(self): # GH 3880 df = DataFrame([[1, 1], [1, 1]]) df.index.name = 'index_name' result = df.iloc[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.ix[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.loc[[0, 1]].index.name self.assertEqual(result, 'index_name') def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({'A': [0.1] * 3000, 'B': [1] * 3000}) idx = np.array(lrange(30)) * 99 expected = df.iloc[idx] df3 = pd.concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({'A': [0.1] * 1000, 'B': [1] * 1000}) df2 = pd.concat([df2, 2 * df2, 3 * df2]) sidx = df2.index.to_series() expected = df2.iloc[idx[idx <= sidx.max()]] new_list = [] for r, s in expected.iterrows(): new_list.append(s) new_list.append(s * 2) new_list.append(s * 3) expected = DataFrame(new_list) expected = pd.concat([expected, DataFrame(index=idx[idx > sidx.max()]) ]) result = df2.loc[idx] tm.assert_frame_equal(result, expected, check_index_type=False) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) self.assertTrue(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] df = pd.DataFrame() self.assertFalse(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_non_unique_loc_memory_error(self): # GH 4280 # non_unique index with a large selection triggers a memory error columns = list('ABCDEFG') def gen_test(l, l2): return pd.concat([DataFrame(randn(l, len(columns)), index=lrange(l), columns=columns), DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns)]) def gen_expected(df, mask): l = len(mask) return pd.concat([df.take([0], convert=False), DataFrame(np.ones((l, len(columns))), index=[0] * l, columns=columns), df.take(mask[1:], convert=False)]) df = gen_test(900, 100) self.assertFalse(df.index.is_unique) mask = np.arange(100) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) df = gen_test(900000, 100000) self.assertFalse(df.index.is_unique) mask = np.arange(100000) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) self.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() def test_dups_loc(self): # GH4726 # dup indexing with iloc/loc df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]], columns=['a', 'a', 'a', 'a', 'a'], index=[1]) expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')], index=['a', 'a', 'a', 'a', 'a'], name=1) result = df.iloc[0] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. self.assertRaises(IndexError, f) def f(): s.iat[3] = 5. self.assertRaises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. self.assertRaises(IndexError, f) def f(): df.iat[4, 2] = 5. self.assertRaises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': Series([0, 2, 4])})) df = df_orig.copy() df['B'] = df['B'].astype(np.float64) df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # ## panel ## p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') # panel setting via item p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') expected = p_orig.copy() expected['Item3'] = expected['Item1'] p = p_orig.copy() p.loc['Item3'] = p['Item1'] tm.assert_panel_equal(p, expected) # panel with aligned series expected = p_orig.copy() expected = expected.transpose(2, 1, 0) expected['C'] = DataFrame({'Item1': [30, 30, 30, 30], 'Item2': [32, 32, 32, 32]}, index=p_orig.major_axis) expected = expected.transpose(2, 1, 0) p = p_orig.copy() p.loc[:, :, 'C'] = Series([30, 32], index=p_orig.items) tm.assert_panel_equal(p, expected) # GH 8473 dates = date_range('1/1/2000', periods=8) df_orig = DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) expected = pd.concat([df_orig, DataFrame( {'A': 7}, index=[dates[-1] + 1])]) df = df_orig.copy() df.loc[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=[dates[-1] + 1]) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=['A', 'B'], index=[0])) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=['B']) exp = DataFrame([[np.nan, 1]], columns=['A', 'B'], index=[0], dtype='float64') tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=['A', 'B']) def f(): df.loc[0] = [1, 2, 3] self.assertRaises(ValueError, f) # these are coerced to float unavoidably (as its a list-like to begin) df = DataFrame(columns=['A', 'B']) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=['A', 'B'], dtype='float64') tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, 'x']) result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, 'x', 1]) result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) result = Series([0.1, 0.2, 0.3], index=[1, 2, 3]).loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) result = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]).loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype='int64', name='idx') ser = Series([0.1, 0.2], index=idx, name='s') # loc exp_idx = Index([3, 2, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 2, 3, 'x'], dtype='object', name='idx') expected = Series([np.nan, 0.2, np.nan, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 'x', 1], dtype='object', name='idx') expected = Series([0.2, 0.2, np.nan, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) exp_idx = Index([2, 2, 3], dtype='int64', name='idx') expected = Series([0.2, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 4, 4], dtype='int64', name='idx') expected = Series([0.3, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3], index=idx, name='s').loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 3, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.3, 0.3], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 4, 4], dtype='int64', name='idx') expected = Series([np.nan, 0.4, 0.4], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([7, 2, 2], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([4, 5, 6, 7], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([4, 5, 5], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc exp_idx = Index([2, 2, 1, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name='s') result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_partial_set_invalid(self): # GH 4940 # allow only setting of 'valid' values orig =
tm.makeTimeDataFrame()
pandas.util.testing.makeTimeDataFrame
import argparse import glob import json import logging import os import re import msgpack import numpy as np import pandas as pd import torch import torch.nn as nn import torchvision.models as model_zoo import torchvision.transforms as transforms from PIL import Image from pycocotools.mask import decode from scipy import ndimage from torch.utils.data import DataLoader, TensorDataset from cameras import _2D_to_planar_world def config(): parser = argparse.ArgumentParser() parser.add_argument('segmentations_dir') parser.add_argument('--output-dir', type=str, required=True) parser.add_argument('--log', type=str, required=True) parser.add_argument('--backbone', type=str, required=True) parser.add_argument('--model', type=str, nargs='*', required=True) parser.add_argument('--n-parameters', type=int, required=True) parser.add_argument('--glob', type=str, default='\.msgpack$') parser.add_argument( '--categories', type=json.loads, default='{"obj0": 0, "obj1": 1, "obj2": 2, "obj3": 3, "obj4": 4, "obj5": 5, "obj6": 6, "obj7": 7}') parser.add_argument('--fixed_categories', type=str, nargs='*', default=['obj0', 'obj4', 'obj6', 'obj8']) parser.add_argument('--elevated_areas', type=str, nargs='*', default=['obj4']) parser.add_argument('--elevated_categories', type=str, nargs='*', default=['obj2']) parser.add_argument('--point_categories', type=str, nargs='*', default=['obj1', 'obj2']) parser.add_argument('--mesh_categories', type=str, nargs='*', default=['obj3', 'obj5', 'obj7']) parser.add_argument('--elevation_value', type=float, default=0.1) return parser.parse_args() class Model: """Contains either 1 general neural network or 1 neural network for each object categories""" def __init__(self, model, backbone, n_parameters, categories): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if len(model) > 1: self.model = {} for weight_file in model: category_idx = categories[os.path.splitext(os.path.basename(weight_file))[0]] self.model[category_idx] = self.load_model(weight_file, backbone, n_parameters) else: self.model = self.load_model(model[0], args) self.transforms = transforms.Compose( [transforms.Resize((224, 224)), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) def load_model(self, weight_file, backbone, n_parameters): model = eval(f'model_zoo.{backbone}(pretrained=True)') model.fc = nn.Linear(model.fc.in_features, n_parameters) model.load_state_dict(torch.load(weight_file, map_location=self.device)) model = model.to(self.device) model.eval() return model def infer(self, data, cat): """Read data in batches and apply specific neural network""" spatial_parameters = [] if isinstance(self.model, dict): with torch.no_grad(): for batch in DataLoader(data, batch_size=128): spatial_parameters.append(self.model[cat](batch.to(self.device)).cpu().numpy()) else: with torch.no_grad(): for batch in DataLoader(data, batch_size=128): spatial_parameters.append(self.model(batch.to(self.device)).cpu().numpy()) return np.vstack(spatial_parameters) class Inference: def __init__(self, model, segmentations_input, output_dir, categories, fixed_cat, elevated_areas, elevated_cat, point_cat, mesh_cat, elevation_value): self.model = model self.segmentations_input = segmentations_input basename = os.path.basename(segmentations_input) output_fname = os.path.join(output_dir, basename) output_fname = os.path.splitext(output_fname)[0] + ".h5" if os.path.exists(output_fname): os.remove(output_fname) self.store = pd.HDFStore(output_fname) self.categories = categories self.fixed_categories = [self.categories[cat] for cat in fixed_cat if self.categories.get(cat) is not None] self.elevated_area_categories = [ self.categories[cat] for cat in elevated_areas if self.categories.get(cat) is not None ] self.elevated_categories = [ self.categories[cat] for cat in elevated_cat if self.categories.get(cat) is not None ] self.point_categories = [self.categories[cat] for cat in point_cat if self.categories.get(cat) is not None] self.mesh_categories = [self.categories[cat] for cat in mesh_cat if self.categories.get(cat) is not None] self.elevation_value = elevation_value def _read_mspgack(self): with open(self.segmentations_input, 'rb') as f: yield from msgpack.Unpacker(f) def create_df_chunks(self, maxlen=1024): """Chunks of frames generator Join chunks of frames (represented as lines in msgpack file) in a pandas dataframe As video files typically have >100'000 frames with 10-60 segmented objects each, it is necessary to efficiently read the data by chunks. """ buffer = [] for count, frame in enumerate(self._read_mspgack(), start=1): buffer.append(
pd.DataFrame(frame)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Benchmark Results # This notebook visualizes the output from the different models on different classification problems # In[1]: import collections import glob import json import os import numpy as np import pandas as pd from plotnine import * from saged.utils import split_sample_names, create_dataset_stat_df, get_dataset_stats, parse_map_file # ## Set Up Functions and Get Metadata # In[3]: def return_unlabeled(): # For use in a defaultdict return 'unlabeled' # In[4]: data_dir = '../../data/' map_file = os.path.join(data_dir, 'sample_classifications.pkl') sample_to_label = parse_map_file(map_file) sample_to_label = collections.defaultdict(return_unlabeled, sample_to_label) # In[ ]: metadata_path = os.path.join(data_dir, 'aggregated_metadata.json') metadata = None with open(metadata_path) as json_file: metadata = json.load(json_file) sample_metadata = metadata['samples'] # In[ ]: experiments = metadata['experiments'] sample_to_study = {} for study in experiments: for accession in experiments[study]['sample_accession_codes']: sample_to_study[accession] = study # ## Sepsis classification # In[8]: in_files = glob.glob('../../results/single_label.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[9]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics # In[10]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # In[11]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=3) plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # ## All labels # In[12]: in_files = glob.glob('../../results/all_labels.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[13]: metrics = None for path in in_files: if metrics is None: metrics = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] metrics['unsupervised'] = unsupervised_model metrics['supervised'] = supervised_model else: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model metrics = pd.concat([metrics, new_df]) metrics # In[14]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # In[15]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=2) plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # # Subsets of healthy labels # In[16]: in_files = glob.glob('../../results/subset_label.sepsis*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[17]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[18]: print(sepsis_metrics[sepsis_metrics['healthy_used'] == 1]) # In[19]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[20]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[21]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Same analysis, but with tb instead of sepsis # In[22]: in_files = glob.glob('../../results/subset_label.tb*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[23]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[24]: print(tuberculosis_metrics[tuberculosis_metrics['healthy_used'] == 1]) # In[25]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[26]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[27]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Supervised Results Only # The results above show that unsupervised learning mostly hurts performance rather than helping. # The visualizations below compare each model based only on its supervised results. # In[28]: supervised_sepsis = sepsis_metrics[sepsis_metrics['unsupervised'] == 'untransformed'] # In[29]: plot = ggplot(supervised_sepsis, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[30]: supervised_tb = tuberculosis_metrics[tuberculosis_metrics['unsupervised'] == 'untransformed'] # In[31]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[32]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Batch Effect Correction # In[33]: in_files = glob.glob('../../results/subset_label.sepsis*be_corrected.tsv') print(in_files[:5]) # In[34]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] print(model_info) model_info = model_info.split('.') print(model_info) supervised_model = model_info[0] new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[35]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[36]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## TB Batch effect corrected # In[37]: in_files = glob.glob('../../results/subset_label.tb*be_corrected.tsv') print(in_files[:5]) # In[38]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[39]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[40]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Better Metrics, Same Label Distribution in Train and Val sets # In[11]: in_files = glob.glob('../../results/keep_ratios.sepsis*be_corrected.tsv') print(in_files[:5]) # In[12]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of data used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[13]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[14]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[15]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='balanced_accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[16]: sepsis_stat_df = create_dataset_stat_df(sepsis_metrics, sample_to_study, sample_metadata, sample_to_label, 'sepsis') sepsis_stat_df.tail(5) # In[17]: ggplot(sepsis_stat_df, aes(x='train_val_diff', y='balanced_accuracy', color='val_disease_count')) + geom_point() + facet_grid('model ~ .') # In[18]: plot = ggplot(sepsis_metrics, aes(x='train sample count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Effect of All Sepsis Data') plot # ## Same Distribution Tuberculosis # In[19]: in_files = glob.glob('../../results/keep_ratios.tb*be_corrected.tsv') print(in_files[:5]) # In[20]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics = tb_metrics.rename({'fraction of data used': 'healthy_used'}, axis='columns') tb_metrics['healthy_used'] = tb_metrics['healthy_used'].round(1) tb_metrics # In[21]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[22]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[23]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='balanced_accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[24]: tb_stat_df = create_dataset_stat_df(tb_metrics, sample_to_study, sample_metadata, sample_to_label, 'tb') tb_stat_df.tail(5) # In[55]: ggplot(tb_stat_df, aes(x='train_val_diff', y='balanced_accuracy', color='val_disease_count')) + geom_point() + facet_grid('model ~ .') # In[25]: plot = ggplot(tb_metrics, aes(x='train sample count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot # ## Results from Small Datasets # In[57]: in_files = glob.glob('../../results/small_subsets.sepsis*be_corrected.tsv') print(in_files[:5]) # In[58]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics['train_count'] = sepsis_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[59]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('Sepsis Dataset Size Effects (equal label counts)') print(plot) # In[60]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Sepsis Datset Size by Model (equal label counts)') print(plot) # In[61]: plot = ggplot(sepsis_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Sepsis Crossover Point') plot # ## Small Training Set TB # In[62]: in_files = glob.glob('../../results/small_subsets.tb*be_corrected.tsv') print(in_files[:5]) # In[63]: tb_metrics = pd.DataFrame() for path in in_files: new_df =
pd.read_csv(path, sep='\t')
pandas.read_csv
""" Author: <NAME> Date: October 2016 File: supervised_labels.py This python code gives the top supervised labels for that topic. The paramters needed are passed through get_labels.py. It generates letter_trigram,pagerank, Topic overlap and num of words in features. Then puts it into SVM classify format and finally uses the already trained supervised model to make ranking predictions and get the best label. You will need SVM classify binary from SVM rank. The URL is provided in readme. (adapted and refactored to Python 3 and our current data scheme. January 2019, <NAME>) """ from os.path import join import numpy as np import re import os import argparse import pandas as pd from constants import DATA_BASE, DSETS from rank_labels_train_svm import load_topics, load_labels, load_pageranks, generate_lt_feature, \ change_format, prepare_features, convert_dataset parser = argparse.ArgumentParser() parser.add_argument("num_top_labels") # number of top labels parser.add_argument("ratings_version") args = parser.parse_args() # Global parameters for the model. ratings_version = args.ratings_version svm_path = join(DATA_BASE, 'ranker') topics_path = join(svm_path, 'topics.csv') labels_path = join(svm_path, f'ratings_{ratings_version}.csv') svm_model = join(svm_path, f'svm_model_{ratings_version}') tmp_file_path = join(svm_path, f"test_temp_{ratings_version}.dat") output_path = join(svm_path, f"supervised_labels_{ratings_version}") svm_classify_path = join(svm_path, 'svm_rank_classify') pagerank_path = join(svm_path, 'pagerank-titles-sorted_de_categories_removed.txt') tesets = ['dewac'] datasets = [DSETS.get(d, d) for d in tesets] testsets = ('_' + '-'.join(tesets)) if tesets else '' trsets = ['N'] trainsets = ('_'+'-'.join(trsets)) if trsets else '' svm_model = join(svm_path, f'svm_model_{ratings_version}{trainsets}') output_path = join( svm_path, f"supervised_labels_{ratings_version}__testset{testsets}__trainset{trainsets}" ) def chunks(l, n): n = max(1, n) return [l[i:i + n] for i in range(0, len(l), n)] def predict(test_set, pred_chunk_size, tmp_file, svm_classifier_file, svm_model_file, out_file): """ calls SVM classify and gets predictions for each topic. """ with open(tmp_file, "w") as fp: for item in test_set: fp.write("%s\n" % item) query = ' '.join([ svm_classifier_file, tmp_file, svm_model_file, "predictionstemp" ]) print(query) print() os.system(query) h = open("predictionstemp") pred_list = [] for line in h: pred_list.append(line.strip()) h.close() pred_chunks = chunks(pred_list, pred_chunk_size) test_chunks = chunks(test_set, pred_chunk_size) df_pred =
pd.DataFrame.from_records(pred_chunks)
pandas.DataFrame.from_records
#%% Load Libs import geopandas from pathlib import Path import pandas as pd import datetime from geopandas.tools import sjoin #%% Setup paths INPUT_PATH = Path.cwd() / "input" # Paths to field boundaries ce_boundary_path = INPUT_PATH / "20170206_CafRoughBoundaries" / "CafCookEastArea.shp" cw_boundary_path = INPUT_PATH / "FromIanLeslie_CafGeospatial" / "CE_CW_WGS1984" / "CookWestBoundariesWGS1984" / "CookWestBoundariesWGS1984.shp" # Paths to georeference points ce_gp_path = INPUT_PATH / "CookEast_GeoReferencePoints_2016_IL" / "All_CookEast.shp" cw_gp_path = INPUT_PATH / "FromIanLeslie_CafGeospatial" / "CE_CW_WGS1984" / "CookWestGeoRefPointsWGS1984" / "CookWestGeoRefPoints_WGS1984.shp" # Paths to treatment boundaries ce_treatment_path_1999To2016 = INPUT_PATH / "CookEastStrips" / "Field_Plan_Final.shp" ce_treatment_path_2016 = INPUT_PATH / "CE_WGS1984_2016_OperationalFieldBoundaries" / "C01" / "C0117001.shp" ce_treatment_path_2017 = INPUT_PATH / "20200408_CookEastFertZones" / "CE_SW_2zones2017rates" / "CE_SW_2zones2017rates.shp" #%% Load and clean inputs # CE Gridpoints ce_gp_utm_11n = geopandas.read_file(ce_gp_path) ce_gp_utm_11n.crs = {"init": "epsg:26911"} ce_gp = (ce_gp_utm_11n .to_crs({"init": "epsg:4326"}) .drop( ["FID_1", "COLUMN", "ROW", "ROW2", "COL_ROW", "COL_ROW2", "EASTING", "NORTHING", "CROP", "AREA", "PERIMETER", "AREA_AC", "TARGET"], axis = 1)) #%% # CE strips ce_tx_1999To2016_utm_11n = geopandas.read_file(ce_treatment_path_1999To2016) ce_tx_1999To2016_utm_11n.crs = {"init": "epsg:26911"} ce_tx_1999To2016 = (ce_tx_1999To2016_utm_11n .to_crs({"init": "epsg:4326"}) .drop( ["Crop", "Area", "Perimeter", "Area_ac", "Ind_Field"], axis = 1)) #ce_tx_1999To2016.plot() # %% pointInPolys = sjoin(ce_gp, ce_tx_1999To2016, how="left") # Check if original Strip and Field id's were assigned correctly if((pointInPolys["STRIP"] == pointInPolys["Strip"]).any() != True): raise Exception("Strips not equal") if((pointInPolys["FIELD"] == pointInPolys["Field"]).any() != True): raise Exception("Fields not equal") # Clean up ce_1999To2016 = (pointInPolys .assign(TreatmentId = pointInPolys["Field"].astype(str) + pointInPolys["Strip"].astype(str)) .assign(StartYear = 1999) .assign(EndYear = 2015) .drop(["geometry", "STRIP", "FIELD", "index_right", "Strip", "Field"], axis = 1)) # Reassign TreatmentIds at Field C; some treatments in Field C were split between two strips due to smaller area of the strips relative to those in Field A and Field B ce_1999To2016.loc[(ce_1999To2016["TreatmentId"] == "C8"), "TreatmentId"] = "C5" ce_1999To2016.loc[(ce_1999To2016["TreatmentId"] == "C7"), "TreatmentId"] = "C6" # %% points_in_treatment = pd.DataFrame(ce_1999To2016).to_csv("foo.csv", index = False) #%% Create data dictionaries data_dictionary_columns = ["FieldName", "Units", "Description", "DataType"] georef_treatment_data_dictionary = pd.DataFrame( data = [ ["ID2", "unitless", "Numeric value used to identify georeferenced points for long-term sample collection. Values are unique among both Cook fields (CE and CW). Use 'ID2' instead of 'Id' for historic reasons.", "Int"], ["TreatmentId", "unitless", "String designation used to identify the treatment that the georeference point was located within for the given timespan between start and end year", "String"], ["StartYear", "unitless", "The harvest year that the treatment designation was first assigned, inclusive", "String"], ["EndYear", "unitless", "The harvest year that the treatment designation ended, inclusive", "String"] ], columns = data_dictionary_columns ) #%% Output files date = datetime.datetime.now().strftime("%Y%m%d") OUT_PATH = Path.cwd() / "output" OUT_PATH.mkdir(parents = True, exist_ok = True)
pd.DataFrame(ce_1999To2016)
pandas.DataFrame
import numpy as np import pandas as pd import akshare as ak import matplotlib.pyplot as plt import matplotlib matplotlib.rc("font",family='PingFang HK') def get_fund_categories(open_fund=False): fund_em_fund_name_df = ak.fund_em_fund_name() if open_fund: fund_em_open_fund_daily_df = ak.fund_em_open_fund_daily() df = pd.merge(fund_em_open_fund_daily_df, fund_em_fund_name_df, on='基金代码') fund_categories = np.unique(df['基金类型'].values) else: fund_categories = np.unique(fund_em_fund_name_df['基金类型'].values) return fund_categories def get_category_all_funds(category): df = ak.fund_em_fund_name() df = df[df['基金类型'] == category] fund_code = df['基金代码'].values return df, fund_code def get_fund_net_worth(fund_code, start_date, end_date, fund_category): """ :param fund_code: string, input a fund code :param start_date: string, input a date format 'yyyy-mm-dd' :param end_date: string, input a date format 'yyyy-mm-dd' :param fund_category: string, input either ['open', 'money', 'financial', 'etf'] :return: dataframe, sliced dataframe between start_date and end_date """ start_date = pd.to_datetime(start_date, format='%Y/%m/%d') end_date = pd.to_datetime(end_date, format='%Y/%m/%d') if fund_category == 'open': df = ak.fund_em_open_fund_info(fund=fund_code) elif fund_category == 'money': df = ak.fund_em_money_fund_info(fund=fund_code) df['净值日期'] = pd.to_datetime(df['净值日期'], format='%Y/%m/%d') elif fund_category == 'financial': df = ak.fund_em_financial_fund_info(fund=fund_code) df['净值日期'] = pd.to_datetime(df['净值日期'], format='%Y/%m/%d') elif fund_category == 'etf': df = ak.fund_em_etf_fund_info(fund=fund_code) df['净值日期'] = pd.to_datetime(df['净值日期'], format='%Y/%m/%d') mask = (df['净值日期'] >= start_date) & (df['净值日期'] <= end_date) df = df.loc[mask].reset_index().drop('index', axis=1) return df def get_open_fund_rank(category, rank, order_by, ascending=False): """ :param category: string, input ['股票型','混合型',"指数型",'QDII','LOF','FOF'] :param rank: int, return how many rows of the dataframe :param order_by: string, input ['近1周', '近1月', '近3月', '近6月', '近1年', '近2年', '近3年'] :param ascending: bool, default False :return: dataframe, with specific sorted dataframe """ if category == '股票型': df = ak.fund_em_open_fund_rank(symbol="股票型").sort_values(by=[order_by], ascending=ascending) elif category == '混合型': df = ak.fund_em_open_fund_rank(symbol="混合型").sort_values(by=[order_by], ascending=ascending) elif category == '债券型': df = ak.fund_em_open_fund_rank(symbol="债券型").sort_values(by=[order_by], ascending=ascending) elif category == "指数型": df = ak.fund_em_open_fund_rank(symbol="指数型").sort_values(by=[order_by], ascending=ascending) elif category == 'QDII': df = ak.fund_em_open_fund_rank(symbol="QDII").sort_values(by=[order_by], ascending=ascending) elif category == 'LOF': df = ak.fund_em_open_fund_rank(symbol="LOF").sort_values(by=[order_by], ascending=ascending) elif category == 'FOF': df = ak.fund_em_open_fund_rank(symbol="FOF").sort_values(by=[order_by], ascending=ascending) return df.head(rank) def get_etf_rank(rank, order_by, ascending=False): """ :param rank: int, return how many rows of the dataframe :param order_by: string, input ['近1周', '近1月', '近3月', '近6月', '近1年', '近2年', '近3年', '今年来', '成立来'] :param ascending: bool, default False :return: dataframe, with specific sorted dataframe """ df = ak.fund_em_exchange_rank() df = df.sort_values(by=[order_by], ascending=ascending) return df.head(rank) def get_money_fund_rank(rank, order_by, ascending=False): """ :param rank: int, return how many rows of the dataframe :param order_by: string, input ['万份收益', '年化收益率7日', '年化收益率14日', '年化收益率28日', '近1月', '近3月', '近6月', '近1年', '近2年', '近3年', '近5年', '今年来', '成立来'] :param ascending: bool, default False :return: dataframe, with specific sorted dataframe """ df = ak.fund_em_money_rank().sort_values(by=[order_by], ascending=ascending) return df.head(rank) def get_fund_cumulative_return(fund_code, start_date, end_date): start_date = pd.to_datetime(start_date, format='%Y/%m/%d') end_date = pd.to_datetime(end_date, format='%Y/%m/%d') df = ak.fund_em_open_fund_info(fund=fund_code, indicator="累计收益率走势") mask = (df['净值日期'] > start_date) & (df['净值日期'] <= end_date) df = df.loc[mask].reset_index().drop('index', axis=1) return df def sw_industry_return_plot(start_date, end_date, year_start_date='2021-01-01', save_pic=True): """ :param start_date: string, start date of the week :param end_date: string, end date of the week :param year_start_date: string, start date of the year :param save_pic: bool, save picture or not :return: dataframe """ startDate =
pd.to_datetime(start_date, format='%Y/%m/%d')
pandas.to_datetime
import os import re import zipfile from io import BytesIO from pathlib import Path import numpy as np import pandas as pd import pandas_read_xml as pdx from pandas_read_xml import flatten, fully_flatten import requests import typer from eu_state_aids.utils import validate_year, validate_year_month app = typer.Typer() def normalize_cod_ce(x): c = re.compile(r'SA[. ](\d+)') m = re.match(c, x) if m and len(m.groups()) == 1: return f"SA.{m.group(1)}" else: return np.NAN @app.command() def generate_measures( local_path: str = typer.Option( "./data/it", help="Local path to use for XML files. Always use forward slashes." ) ): """Fetch all Misure XML files locally, generate a DataFrame with the fields: - COD_CE, - DESC_FONDO and store a CSV in local_path. Create local_path if it does not exist. Forward slaches based paths are translated into proper paths using `pathlib`, so, even on Windows, there's no need to use backward slashes. """ # create directory if not existing local_path = Path(local_path) if not os.path.exists(local_path): os.makedirs(local_path) # build remote url and filepath, out of the year, typer.echo("Fetching all misure files") df = pd.DataFrame() for year in range(2014, 2022): for month in range(1, 13): if year == 2021 and month in (8, 10): continue if year == 2014 and month < 5: continue xml_url = f"http://eu-state-aids.s3-eu-west-1.amazonaws.com/it/rna_mirror/" \ f"OpenDataMisure/OpenData_Misura_{year}_{month:02}.xml.zip" typer.echo(f"Processing {xml_url}") # read remote excel file content r = requests.get(xml_url) z = zipfile.ZipFile(BytesIO(r.content)) z_filename = [f.filename for f in z.filelist][0] with z.open(z_filename, "r") as zf: ydf = pdx.read_xml(zf.read().decode(), ["ns0:LISTA_MISURE_TYPE"]) ydf = ydf.pipe(flatten).pipe(flatten) if "MISURA|LISTA_COFINANZIAMENTI" not in ydf.columns: continue ydf = ydf[ ydf.notnull()["MISURA|LISTA_COFINANZIAMENTI"] ][['MISURA|COD_CE', 'MISURA|LISTA_COFINANZIAMENTI']] ydf = ydf.pipe(flatten).pipe(flatten).pipe(flatten) ydf.rename(columns={ 'MISURA|COD_CE': 'cod_ce', 'MISURA|LISTA_COFINANZIAMENTI|COFINANZIAMENTO|DESCRIZIONE_FONDO': 'fondo_desc', }, inplace=True) ydf = ydf[ydf.notnull()["cod_ce"]] if 'MISURA|LISTA_COFINANZIAMENTI|COFINANZIAMENTO|COD_FONDO' in ydf.columns: del ydf['MISURA|LISTA_COFINANZIAMENTI|COFINANZIAMENTO|COD_FONDO'] del ydf['MISURA|LISTA_COFINANZIAMENTI|COFINANZIAMENTO|IMPORTO'] ydf['cod_ce'] = ydf.cod_ce.apply(normalize_cod_ce) ydf = ydf[ydf.notnull()["cod_ce"]].drop_duplicates() df = df.append(ydf) df = df.drop_duplicates() # emit csv typer.echo(f"{len(df)} recordss found.") csv_filepath = local_path / "misure.csv" if len(df): typer.echo(f"Writing results to {csv_filepath}") df.to_csv(csv_filepath, na_rep='', index=False) @app.command() def fetch( year_month: str, local_path: str = typer.Option( "./data/it", help="Local path to use for XML files. Always use forward slashes." ) ) -> bool: """Fetch Aiuti XML file for the given year and month from the source and store it locally. Create the directory if it does not exist. Default directory is ./data/it, and it can be changed with local_path. Forward slaches based paths are translated into proper paths using `pathlib`, so, even on Windows, there's no need to use backward slashes. Returns True if the operation fetched the file successfully, False otherwise. """ # script parameters validations assert(validate_year_month(year_month)) year, month = year_month.split("_") # create directory if not existing local_path = Path(local_path) if not os.path.exists(local_path): os.makedirs(local_path) # build remote url and filepath, out of the year, typer.echo(f"Fetching Aiuti data for year: {year}, month: {month}") z_url = f"http://eu-state-aids.s3-eu-west-1.amazonaws.com/it/rna_mirror/" \ f"OpenDataAiuti/OpenData_Aiuti_{year}_{month}.xml.zip" # read remote excel file content r = requests.get(z_url) if r.status_code == 200: # store it locally filepath = local_path / f"aiuti_{year}_{month}.xml.zip" with open(filepath, 'wb') as f: f.write(r.content) typer.echo(f"File saved to {filepath}") return True else: typer.echo("File not found") return False @app.command() def export( year_month: str, local_path: str = typer.Option( "./data/it", help="Local path to use for XML files. " ), delete_processed: bool = typer.Option(False, help="Delete zipped xml file after processing") ): """Read XML from local path, filter with misure from misure.csv, then compute and emit data as CSV file. Local path defaults to ./data/it, and can be changed with local_path. """ # script parameters validations # for both use cases: single month (YYYY_MM) and full year (YYYY) if validate_year_month(year_month): year, month = year_month.split("_") elif validate_year(year_month): year, month = year_month, None else: typer.echo(f"Invalid year, month value: {year_month}. Use YYYY or YYYY_MM.") return # read misure csv from local_path csv_filepath = Path(local_path) / "misure.csv" misure_df = pd.read_csv(csv_filepath) typer.echo(f"Misure dataframe read from {csv_filepath}.") # define months range in both cases if month is None: months = range(1, 13) else: months = [int(month)] df =
pd.DataFrame()
pandas.DataFrame
from pandas import read_csv from datetime import datetime from math import sqrt from numpy import concatenate from matplotlib import pyplot from pandas import read_csv from pandas import DataFrame from pandas import concat from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM # load and process data def parse(x): return datetime.strptime(x, '%Y %m %d %H') dataset = read_csv('data.csv', parse_dates = [['year', 'month', 'day', 'hour']], index_col=0, date_parser=parse) dataset.drop('No', axis=1, inplace=True) dataset.columns = ['pollution', 'dew', 'temp', 'press', 'wnd_dir', 'wnd_spd', 'snow', 'rain'] dataset.index.name = 'date' dataset['pollution'].fillna(0, inplace=True) dataset = dataset[24:] print("||"*40) print("** DATA PROCESSING COMPLETED **") print(dataset.head(5)) print("||"*40) dataset.to_csv('pollution.csv') # generating dataset plot from pandas import read_csv from matplotlib import pyplot dataset =
read_csv('pollution.csv', header=0, index_col=0)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2018 Open Energy Efficiency, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datetime import datetime import pandas as pd import pytest import pytz from eeweather import ( ISDStation, get_isd_station_metadata, get_isd_filenames, get_gsod_filenames, get_isd_file_metadata, fetch_isd_raw_temp_data, fetch_isd_hourly_temp_data, fetch_isd_daily_temp_data, fetch_gsod_raw_temp_data, fetch_gsod_daily_temp_data, fetch_tmy3_hourly_temp_data, fetch_cz2010_hourly_temp_data, get_isd_hourly_temp_data_cache_key, get_isd_daily_temp_data_cache_key, get_gsod_daily_temp_data_cache_key, get_tmy3_hourly_temp_data_cache_key, get_cz2010_hourly_temp_data_cache_key, cached_isd_hourly_temp_data_is_expired, cached_isd_daily_temp_data_is_expired, cached_gsod_daily_temp_data_is_expired, validate_isd_hourly_temp_data_cache, validate_isd_daily_temp_data_cache, validate_gsod_daily_temp_data_cache, validate_tmy3_hourly_temp_data_cache, validate_cz2010_hourly_temp_data_cache, serialize_isd_hourly_temp_data, serialize_isd_daily_temp_data, serialize_gsod_daily_temp_data, serialize_tmy3_hourly_temp_data, serialize_cz2010_hourly_temp_data, deserialize_isd_hourly_temp_data, deserialize_isd_daily_temp_data, deserialize_gsod_daily_temp_data, deserialize_tmy3_hourly_temp_data, deserialize_cz2010_hourly_temp_data, read_isd_hourly_temp_data_from_cache, read_isd_daily_temp_data_from_cache, read_gsod_daily_temp_data_from_cache, read_tmy3_hourly_temp_data_from_cache, read_cz2010_hourly_temp_data_from_cache, write_isd_hourly_temp_data_to_cache, write_isd_daily_temp_data_to_cache, write_gsod_daily_temp_data_to_cache, write_tmy3_hourly_temp_data_to_cache, write_cz2010_hourly_temp_data_to_cache, destroy_cached_isd_hourly_temp_data, destroy_cached_isd_daily_temp_data, destroy_cached_gsod_daily_temp_data, destroy_cached_tmy3_hourly_temp_data, destroy_cached_cz2010_hourly_temp_data, load_isd_hourly_temp_data_cached_proxy, load_isd_daily_temp_data_cached_proxy, load_gsod_daily_temp_data_cached_proxy, load_tmy3_hourly_temp_data_cached_proxy, load_cz2010_hourly_temp_data_cached_proxy, load_isd_hourly_temp_data, load_isd_daily_temp_data, load_gsod_daily_temp_data, load_tmy3_hourly_temp_data, load_cz2010_hourly_temp_data, load_cached_isd_hourly_temp_data, load_cached_isd_daily_temp_data, load_cached_gsod_daily_temp_data, load_cached_tmy3_hourly_temp_data, load_cached_cz2010_hourly_temp_data, ) from eeweather.exceptions import ( UnrecognizedUSAFIDError, ISDDataNotAvailableError, GSODDataNotAvailableError, TMY3DataNotAvailableError, CZ2010DataNotAvailableError, NonUTCTimezoneInfoError, ) from eeweather.testing import ( MockNOAAFTPConnectionProxy, MockKeyValueStoreProxy, mock_request_text_tmy3, mock_request_text_cz2010, ) @pytest.fixture def monkeypatch_noaa_ftp(monkeypatch): monkeypatch.setattr( "eeweather.connections.noaa_ftp_connection_proxy", MockNOAAFTPConnectionProxy() ) @pytest.fixture def monkeypatch_tmy3_request(monkeypatch): monkeypatch.setattr("eeweather.mockable.request_text", mock_request_text_tmy3) @pytest.fixture def monkeypatch_cz2010_request(monkeypatch): monkeypatch.setattr("eeweather.mockable.request_text", mock_request_text_cz2010) @pytest.fixture def monkeypatch_key_value_store(monkeypatch): key_value_store_proxy = MockKeyValueStoreProxy() monkeypatch.setattr( "eeweather.connections.key_value_store_proxy", key_value_store_proxy ) return key_value_store_proxy.get_store() def test_get_isd_station_metadata(): assert get_isd_station_metadata("722874") == { "ba_climate_zone": "Hot-Dry", "ca_climate_zone": "CA_08", "elevation": "+0054.6", "icao_code": "KCQT", "iecc_climate_zone": "3", "iecc_moisture_regime": "B", "latitude": "+34.024", "longitude": "-118.291", "name": "DOWNTOWN L.A./USC CAMPUS", "quality": "high", "recent_wban_id": "93134", "state": "CA", "usaf_id": "722874", "wban_ids": "93134", } def test_isd_station_no_load_metadata(): station = ISDStation("722880", load_metadata=False) assert station.usaf_id == "722880" assert station.iecc_climate_zone is None assert station.iecc_moisture_regime is None assert station.ba_climate_zone is None assert station.ca_climate_zone is None assert station.elevation is None assert station.latitude is None assert station.longitude is None assert station.coords is None assert station.name is None assert station.quality is None assert station.wban_ids is None assert station.recent_wban_id is None assert station.climate_zones == {} assert str(station) == "722880" assert repr(station) == "ISDStation('722880')" def test_isd_station_no_load_metadata_invalid(): with pytest.raises(UnrecognizedUSAFIDError): station = ISDStation("FAKE", load_metadata=False) def test_isd_station_with_load_metadata(): station = ISDStation("722880", load_metadata=True) assert station.usaf_id == "722880" assert station.iecc_climate_zone == "3" assert station.iecc_moisture_regime == "B" assert station.ba_climate_zone == "Hot-Dry" assert station.ca_climate_zone == "CA_09" assert station.elevation == 236.2 assert station.icao_code == "KBUR" assert station.latitude == 34.201 assert station.longitude == -118.358 assert station.coords == (34.201, -118.358) assert station.name == "<NAME>" assert station.quality == "high" assert station.wban_ids == ["23152", "99999"] assert station.recent_wban_id == "23152" assert station.climate_zones == { "ba_climate_zone": "Hot-Dry", "ca_climate_zone": "CA_09", "iecc_climate_zone": "3", "iecc_moisture_regime": "B", } def test_isd_station_json(): station = ISDStation("722880", load_metadata=True) assert station.json() == { "elevation": 236.2, "icao_code": "KBUR", "latitude": 34.201, "longitude": -118.358, "name": "<NAME>", "quality": "high", "recent_wban_id": "23152", "wban_ids": ["23152", "99999"], "climate_zones": { "ba_climate_zone": "Hot-Dry", "ca_climate_zone": "CA_09", "iecc_climate_zone": "3", "iecc_moisture_regime": "B", }, } def test_isd_station_unrecognized_usaf_id(): with pytest.raises(UnrecognizedUSAFIDError): station = ISDStation("FAKE", load_metadata=True) def test_get_isd_filenames_bad_usaf_id(): with pytest.raises(UnrecognizedUSAFIDError) as excinfo: get_isd_filenames("000000", 2007) assert excinfo.value.value == "000000" def test_get_isd_filenames_single_year(snapshot): filenames = get_isd_filenames("722860", 2007) snapshot.assert_match(filenames, "filenames") def test_get_isd_filenames_multiple_year(snapshot): filenames = get_isd_filenames("722860") snapshot.assert_match(filenames, "filenames") def test_get_isd_filenames_future_year(): filenames = get_isd_filenames("722860", 2050) assert filenames == ["/pub/data/noaa/2050/722860-23119-2050.gz"] def test_get_isd_filenames_with_host(): filenames = get_isd_filenames("722860", 2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2017/722860-23119-2017.gz" ] def test_isd_station_get_isd_filenames(snapshot): station = ISDStation("722860") filenames = station.get_isd_filenames() snapshot.assert_match(filenames, "filenames") def test_isd_station_get_isd_filenames_with_year(snapshot): station = ISDStation("722860") filenames = station.get_isd_filenames(2007) snapshot.assert_match(filenames, "filenames") def test_isd_station_get_isd_filenames_with_host(): station = ISDStation("722860") filenames = station.get_isd_filenames(2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2017/722860-23119-2017.gz" ] def test_get_gsod_filenames_bad_usaf_id(): with pytest.raises(UnrecognizedUSAFIDError) as excinfo: get_gsod_filenames("000000", 2007) assert excinfo.value.value == "000000" def test_get_gsod_filenames_single_year(snapshot): filenames = get_gsod_filenames("722860", 2007) snapshot.assert_match(filenames, "filenames") def test_get_gsod_filenames_multiple_year(snapshot): filenames = get_gsod_filenames("722860") snapshot.assert_match(filenames, "filenames") def test_get_gsod_filenames_future_year(): filenames = get_gsod_filenames("722860", 2050) assert filenames == ["/pub/data/gsod/2050/722860-23119-2050.op.gz"] def test_get_gsod_filenames_with_host(): filenames = get_gsod_filenames("722860", 2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2017/722860-23119-2017.op.gz" ] def test_isd_station_get_gsod_filenames(snapshot): station = ISDStation("722860") filenames = station.get_gsod_filenames() snapshot.assert_match(filenames, "filenames") def test_isd_station_get_gsod_filenames_with_year(snapshot): station = ISDStation("722860") filenames = station.get_gsod_filenames(2007) snapshot.assert_match(filenames, "filenames") def test_isd_station_get_gsod_filenames_with_host(): station = ISDStation("722860") filenames = station.get_gsod_filenames(2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2017/722860-23119-2017.op.gz" ] def test_get_isd_file_metadata(): assert get_isd_file_metadata("722874") == [ {"usaf_id": "722874", "wban_id": "93134", "year": "2006"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2007"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2008"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2009"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2010"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2011"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2012"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2013"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2014"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2015"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2016"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2017"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2018"}, ] with pytest.raises(UnrecognizedUSAFIDError) as excinfo: get_isd_file_metadata("000000") assert excinfo.value.value == "000000" def test_isd_station_get_isd_file_metadata(): station = ISDStation("722874") assert station.get_isd_file_metadata() == [ {"usaf_id": "722874", "wban_id": "93134", "year": "2006"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2007"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2008"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2009"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2010"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2011"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2012"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2013"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2014"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2015"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2016"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2017"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2018"}, ] # fetch raw def test_fetch_isd_raw_temp_data(monkeypatch_noaa_ftp): data = fetch_isd_raw_temp_data("722874", 2007) assert round(data.sum()) == 185945 assert data.shape == (11094,) def test_fetch_gsod_raw_temp_data(monkeypatch_noaa_ftp): data = fetch_gsod_raw_temp_data("722874", 2007) assert data.sum() == 6509.5 assert data.shape == (365,) # station fetch raw def test_isd_station_fetch_isd_raw_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_isd_raw_temp_data(2007) assert round(data.sum()) == 185945 assert data.shape == (11094,) def test_isd_station_fetch_gsod_raw_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_gsod_raw_temp_data(2007) assert data.sum() == 6509.5 assert data.shape == (365,) # fetch raw invalid station def test_fetch_isd_raw_temp_data_invalid_station(): with pytest.raises(UnrecognizedUSAFIDError): fetch_isd_raw_temp_data("INVALID", 2007) def test_fetch_gsod_raw_temp_data_invalid_station(): with pytest.raises(UnrecognizedUSAFIDError): fetch_gsod_raw_temp_data("INVALID", 2007) # fetch raw invalid year def test_fetch_isd_raw_temp_data_invalid_year(monkeypatch_noaa_ftp): with pytest.raises(ISDDataNotAvailableError): fetch_isd_raw_temp_data("722874", 1800) def test_fetch_gsod_raw_temp_data_invalid_year(monkeypatch_noaa_ftp): with pytest.raises(GSODDataNotAvailableError): fetch_gsod_raw_temp_data("722874", 1800) # fetch file full of nans def test_isd_station_fetch_isd_raw_temp_data_all_nan(monkeypatch_noaa_ftp): station = ISDStation("994035") data = station.fetch_isd_raw_temp_data(2013) assert round(data.sum()) == 0 assert data.shape == (8611,) # fetch def test_fetch_isd_hourly_temp_data(monkeypatch_noaa_ftp): data = fetch_isd_hourly_temp_data("722874", 2007) assert data.sum() == 156160.0355 assert data.shape == (8760,) def test_fetch_isd_daily_temp_data(monkeypatch_noaa_ftp): data = fetch_isd_daily_temp_data("722874", 2007) assert data.sum() == 6510.002260821784 assert data.shape == (365,) def test_fetch_gsod_daily_temp_data(monkeypatch_noaa_ftp): data = fetch_gsod_daily_temp_data("722874", 2007) assert data.sum() == 6509.5 assert data.shape == (365,) def test_fetch_tmy3_hourly_temp_data(monkeypatch_tmy3_request): data = fetch_tmy3_hourly_temp_data("722880") assert data.sum() == 156194.3 assert data.shape == (8760,) def test_fetch_cz2010_hourly_temp_data(monkeypatch_cz2010_request): data = fetch_cz2010_hourly_temp_data("722880") assert data.sum() == 153430.90000000002 assert data.shape == (8760,) # station fetch def test_isd_station_fetch_isd_hourly_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_isd_hourly_temp_data(2007) assert data.sum() == 156160.0355 assert data.shape == (8760,) def test_isd_station_fetch_isd_daily_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_isd_daily_temp_data(2007) assert data.sum() == 6510.002260821784 assert data.shape == (365,) def test_isd_station_fetch_gsod_daily_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_gsod_daily_temp_data(2007) assert data.sum() == 6509.5 assert data.shape == (365,) def test_tmy3_station_hourly_temp_data(monkeypatch_tmy3_request): station = ISDStation("722880") data = station.fetch_tmy3_hourly_temp_data() assert data.sum() == 156194.3 assert data.shape == (8760,) def test_cz2010_station_hourly_temp_data(monkeypatch_cz2010_request): station = ISDStation("722880") data = station.fetch_cz2010_hourly_temp_data() assert data.sum() == 153430.90000000002 assert data.shape == (8760,) # fetch invalid station def test_fetch_isd_hourly_temp_data_invalid(): with pytest.raises(UnrecognizedUSAFIDError): fetch_isd_hourly_temp_data("INVALID", 2007) def test_fetch_isd_daily_temp_data_invalid(): with pytest.raises(UnrecognizedUSAFIDError): fetch_isd_daily_temp_data("INVALID", 2007) def test_fetch_gsod_daily_temp_data_invalid(): with pytest.raises(UnrecognizedUSAFIDError): fetch_gsod_daily_temp_data("INVALID", 2007) def test_fetch_tmy3_hourly_temp_data_invalid(): with pytest.raises(TMY3DataNotAvailableError): fetch_tmy3_hourly_temp_data("INVALID") def test_fetch_cz2010_hourly_temp_data_invalid(): with pytest.raises(CZ2010DataNotAvailableError): fetch_cz2010_hourly_temp_data("INVALID") def test_fetch_tmy3_hourly_temp_data_not_in_tmy3_list(monkeypatch_noaa_ftp): data = fetch_isd_hourly_temp_data("722874", 2007) assert data.sum() == 156160.0355 assert data.shape == (8760,) with pytest.raises(TMY3DataNotAvailableError): fetch_tmy3_hourly_temp_data("722874") def test_fetch_cz2010_hourly_temp_data_not_in_cz2010_list(monkeypatch_cz2010_request): data = fetch_cz2010_hourly_temp_data("722880") assert data.sum() == 153430.90000000002 assert data.shape == (8760,) with pytest.raises(CZ2010DataNotAvailableError): fetch_cz2010_hourly_temp_data("725340") # get cache key def test_get_isd_hourly_temp_data_cache_key(): assert ( get_isd_hourly_temp_data_cache_key("722874", 2007) == "isd-hourly-722874-2007" ) def test_get_isd_daily_temp_data_cache_key(): assert get_isd_daily_temp_data_cache_key("722874", 2007) == "isd-daily-722874-2007" def test_get_gsod_daily_temp_data_cache_key(): assert ( get_gsod_daily_temp_data_cache_key("722874", 2007) == "gsod-daily-722874-2007" ) def test_get_tmy3_hourly_temp_data_cache_key(): assert get_tmy3_hourly_temp_data_cache_key("722880") == "tmy3-hourly-722880" def test_get_cz2010_hourly_temp_data_cache_key(): assert get_cz2010_hourly_temp_data_cache_key("722880") == "cz2010-hourly-722880" # station get cache key def test_isd_station_get_isd_hourly_temp_data_cache_key(): station = ISDStation("722874") assert station.get_isd_hourly_temp_data_cache_key(2007) == "isd-hourly-722874-2007" def test_isd_station_get_isd_daily_temp_data_cache_key(): station = ISDStation("722874") assert station.get_isd_daily_temp_data_cache_key(2007) == "isd-daily-722874-2007" def test_isd_station_get_gsod_daily_temp_data_cache_key(): station = ISDStation("722874") assert station.get_gsod_daily_temp_data_cache_key(2007) == "gsod-daily-722874-2007" def test_tmy3_station_get_isd_hourly_temp_data_cache_key(): station = ISDStation("722880") assert station.get_tmy3_hourly_temp_data_cache_key() == "tmy3-hourly-722880" def test_cz2010_station_get_isd_hourly_temp_data_cache_key(): station = ISDStation("722880") assert station.get_cz2010_hourly_temp_data_cache_key() == "cz2010-hourly-722880" # cache expired empty def test_cached_isd_hourly_temp_data_is_expired_empty(monkeypatch_key_value_store): assert cached_isd_hourly_temp_data_is_expired("722874", 2007) is True def test_cached_isd_daily_temp_data_is_expired_empty(monkeypatch_key_value_store): assert cached_isd_daily_temp_data_is_expired("722874", 2007) is True def test_cached_gsod_daily_temp_data_is_expired_empty(monkeypatch_key_value_store): assert cached_gsod_daily_temp_data_is_expired("722874", 2007) is True # station cache expired empty def test_isd_station_cached_isd_hourly_temp_data_is_expired_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.cached_isd_hourly_temp_data_is_expired(2007) is True def test_isd_station_cached_isd_daily_temp_data_is_expired_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.cached_isd_daily_temp_data_is_expired(2007) is True def test_isd_station_cached_gsod_daily_temp_data_is_expired_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.cached_gsod_daily_temp_data_is_expired(2007) is True # cache expired false def test_cached_isd_hourly_temp_data_is_expired_false( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) assert cached_isd_hourly_temp_data_is_expired("722874", 2007) is False def test_cached_isd_daily_temp_data_is_expired_false( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) assert cached_isd_daily_temp_data_is_expired("722874", 2007) is False def test_cached_gsod_daily_temp_data_is_expired_false( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) assert cached_gsod_daily_temp_data_is_expired("722874", 2007) is False # cache expired true def test_cached_isd_hourly_temp_data_is_expired_true( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_hourly_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert cached_isd_hourly_temp_data_is_expired("722874", 2007) is True def test_cached_isd_daily_temp_data_is_expired_true( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert cached_isd_daily_temp_data_is_expired("722874", 2007) is True def test_cached_gsod_daily_temp_data_is_expired_true( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_gsod_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert cached_gsod_daily_temp_data_is_expired("722874", 2007) is True # validate cache empty def test_validate_isd_hourly_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_isd_hourly_temp_data_cache("722874", 2007) is False def test_validate_isd_daily_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_isd_daily_temp_data_cache("722874", 2007) is False def test_validate_gsod_daily_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_gsod_daily_temp_data_cache("722874", 2007) is False def test_validate_tmy3_hourly_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_tmy3_hourly_temp_data_cache("722880") is False def test_validate_cz2010_hourly_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_cz2010_hourly_temp_data_cache("722880") is False # station validate cache empty def test_isd_station_validate_isd_hourly_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.validate_isd_hourly_temp_data_cache(2007) is False def test_isd_station_validate_isd_daily_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.validate_isd_daily_temp_data_cache(2007) is False def test_isd_station_validate_gsod_daily_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.validate_gsod_daily_temp_data_cache(2007) is False def test_isd_station_validate_tmy3_hourly_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722880") assert station.validate_tmy3_hourly_temp_data_cache() is False def test_isd_station_validate_cz2010_hourly_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722880") assert station.validate_cz2010_hourly_temp_data_cache() is False # error on non-existent when relying on cache def test_raise_on_missing_isd_hourly_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(ISDDataNotAvailableError): load_isd_hourly_temp_data_cached_proxy("722874", 1907, fetch_from_web=False) def test_raise_on_missing_isd_daily_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(ISDDataNotAvailableError): load_isd_daily_temp_data_cached_proxy("722874", 1907, fetch_from_web=False) def test_raise_on_missing_gsod_daily_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(GSODDataNotAvailableError): load_gsod_daily_temp_data_cached_proxy("722874", 1907, fetch_from_web=False) def test_raise_on_missing_tmy3_hourly_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(TMY3DataNotAvailableError): load_tmy3_hourly_temp_data_cached_proxy("722874", fetch_from_web=False) def test_raise_on_missing_cz2010_hourly_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(CZ2010DataNotAvailableError): load_cz2010_hourly_temp_data_cached_proxy("722874", fetch_from_web=False) # validate updated recently def test_validate_isd_hourly_temp_data_cache_updated_recently( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) assert validate_isd_hourly_temp_data_cache("722874", 2007) is True def test_validate_isd_daily_temp_data_cache_updated_recently( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) assert validate_isd_daily_temp_data_cache("722874", 2007) is True def test_validate_gsod_daily_temp_data_cache_updated_recently( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) assert validate_gsod_daily_temp_data_cache("722874", 2007) is True def test_validate_tmy3_hourly_temp_data_cache_updated_recently( monkeypatch_tmy3_request, monkeypatch_key_value_store ): load_tmy3_hourly_temp_data_cached_proxy("722880") assert validate_tmy3_hourly_temp_data_cache("722880") is True def test_validate_cz2010_hourly_temp_data_cache_updated_recently( monkeypatch_cz2010_request, monkeypatch_key_value_store ): load_cz2010_hourly_temp_data_cached_proxy("722880") assert validate_cz2010_hourly_temp_data_cache("722880") is True # validate expired def test_validate_isd_hourly_temp_data_cache_expired( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_hourly_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert validate_isd_hourly_temp_data_cache("722874", 2007) is False def test_validate_isd_daily_temp_data_cache_expired( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert validate_isd_daily_temp_data_cache("722874", 2007) is False def test_validate_gsod_daily_temp_data_cache_expired( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_gsod_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert validate_gsod_daily_temp_data_cache("722874", 2007) is False # serialize def test_serialize_isd_hourly_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_isd_hourly_temp_data(ts) == [["2017010100", 1]] def test_serialize_isd_daily_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_isd_daily_temp_data(ts) == [["20170101", 1]] def test_serialize_gsod_daily_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_gsod_daily_temp_data(ts) == [["20170101", 1]] def test_serialize_tmy3_hourly_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_tmy3_hourly_temp_data(ts) == [["2017010100", 1]] def test_serialize_cz2010_hourly_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_cz2010_hourly_temp_data(ts) == [["2017010100", 1]] # station serialize def test_isd_station_serialize_isd_hourly_temp_data(): station = ISDStation("722874") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_isd_hourly_temp_data(ts) == [["2017010100", 1]] def test_isd_station_serialize_isd_daily_temp_data(): station = ISDStation("722874") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_isd_daily_temp_data(ts) == [["20170101", 1]] def test_isd_station_serialize_gsod_daily_temp_data(): station = ISDStation("722874") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_gsod_daily_temp_data(ts) == [["20170101", 1]] def test_isd_station_serialize_tmy3_hourly_temp_data(): station = ISDStation("722880") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_tmy3_hourly_temp_data(ts) == [["2017010100", 1]] def test_isd_station_serialize_cz2010_hourly_temp_data(): station = ISDStation("722880") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_cz2010_hourly_temp_data(ts) == [["2017010100", 1]] # deserialize def test_deserialize_isd_hourly_temp_data(): ts = deserialize_isd_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_deserialize_isd_daily_temp_data(): ts = deserialize_isd_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_deserialize_gsod_daily_temp_data(): ts = deserialize_gsod_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_deserialize_tmy3_hourly_temp_data(): ts = deserialize_tmy3_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_deserialize_cz2010_hourly_temp_data(): ts = deserialize_cz2010_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" # station deserialize def test_isd_station_deserialize_isd_hourly_temp_data(): station = ISDStation("722874") ts = station.deserialize_isd_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_isd_station_deserialize_isd_daily_temp_data(): station = ISDStation("722874") ts = station.deserialize_isd_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_isd_station_deserialize_gsod_daily_temp_data(): station = ISDStation("722874") ts = station.deserialize_gsod_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_isd_station_deserialize_tmy3_hourly_temp_data(): station = ISDStation("722880") ts = station.deserialize_tmy3_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_isd_station_deserialize_cz2010_hourly_temp_data(): station = ISDStation("722880") ts = station.deserialize_cz2010_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" # write read destroy def test_write_read_destroy_isd_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_isd_hourly_temp_data_cache_key("123456", 1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_isd_hourly_temp_data_to_cache("123456", 1990, ts1) assert store.key_exists(key) is True ts2 = read_isd_hourly_temp_data_from_cache("123456", 1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_isd_hourly_temp_data("123456", 1990) assert store.key_exists(key) is False def test_write_read_destroy_isd_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_isd_daily_temp_data_cache_key("123456", 1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_isd_daily_temp_data_to_cache("123456", 1990, ts1) assert store.key_exists(key) is True ts2 = read_isd_daily_temp_data_from_cache("123456", 1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_isd_daily_temp_data("123456", 1990) assert store.key_exists(key) is False def test_write_read_destroy_gsod_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_gsod_daily_temp_data_cache_key("123456", 1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_gsod_daily_temp_data_to_cache("123456", 1990, ts1) assert store.key_exists(key) is True ts2 = read_gsod_daily_temp_data_from_cache("123456", 1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_gsod_daily_temp_data("123456", 1990) assert store.key_exists(key) is False def test_write_read_destroy_tmy3_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_tmy3_hourly_temp_data_cache_key("123456") assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_tmy3_hourly_temp_data_to_cache("123456", ts1) assert store.key_exists(key) is True ts2 = read_tmy3_hourly_temp_data_from_cache("123456") assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_tmy3_hourly_temp_data("123456") assert store.key_exists(key) is False def test_write_read_destroy_cz2010_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_cz2010_hourly_temp_data_cache_key("123456") assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_cz2010_hourly_temp_data_to_cache("123456", ts1) assert store.key_exists(key) is True ts2 = read_cz2010_hourly_temp_data_from_cache("123456") assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_cz2010_hourly_temp_data("123456") assert store.key_exists(key) is False # station write read destroy def test_isd_station_write_read_destroy_isd_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722874") store = monkeypatch_key_value_store key = station.get_isd_hourly_temp_data_cache_key(1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_isd_hourly_temp_data_to_cache(1990, ts1) assert store.key_exists(key) is True ts2 = station.read_isd_hourly_temp_data_from_cache(1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_isd_hourly_temp_data(1990) assert store.key_exists(key) is False def test_isd_station_write_read_destroy_isd_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722874") store = monkeypatch_key_value_store key = station.get_isd_daily_temp_data_cache_key(1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_isd_daily_temp_data_to_cache(1990, ts1) assert store.key_exists(key) is True ts2 = station.read_isd_daily_temp_data_from_cache(1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_isd_daily_temp_data(1990) assert store.key_exists(key) is False def test_isd_station_write_read_destroy_gsod_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722874") store = monkeypatch_key_value_store key = station.get_gsod_daily_temp_data_cache_key(1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_gsod_daily_temp_data_to_cache(1990, ts1) assert store.key_exists(key) is True ts2 = station.read_gsod_daily_temp_data_from_cache(1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_gsod_daily_temp_data(1990) assert store.key_exists(key) is False def test_isd_station_write_read_destroy_tmy3_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722880") store = monkeypatch_key_value_store key = station.get_tmy3_hourly_temp_data_cache_key() assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_tmy3_hourly_temp_data_to_cache(ts1) assert store.key_exists(key) is True ts2 = station.read_tmy3_hourly_temp_data_from_cache() assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_tmy3_hourly_temp_data() assert store.key_exists(key) is False def test_isd_station_write_read_destroy_cz2010_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722880") store = monkeypatch_key_value_store key = station.get_cz2010_hourly_temp_data_cache_key() assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_cz2010_hourly_temp_data_to_cache(ts1) assert store.key_exists(key) is True ts2 = station.read_cz2010_hourly_temp_data_from_cache() assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_cz2010_hourly_temp_data() assert store.key_exists(key) is False # load cached proxy def test_load_isd_hourly_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_isd_hourly_temp_data_cached_proxy("722874", 2007) ts2 = load_isd_hourly_temp_data_cached_proxy("722874", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_isd_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_isd_daily_temp_data_cached_proxy("722874", 2007) ts2 = load_isd_daily_temp_data_cached_proxy("722874", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_gsod_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_gsod_daily_temp_data_cached_proxy("722874", 2007) ts2 = load_gsod_daily_temp_data_cached_proxy("722874", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_tmy3_hourly_temp_data_cached_proxy( monkeypatch_tmy3_request, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_tmy3_hourly_temp_data_cached_proxy("722880", 2007) ts2 = load_tmy3_hourly_temp_data_cached_proxy("722880", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_cz2010_hourly_temp_data_cached_proxy( monkeypatch_cz2010_request, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_cz2010_hourly_temp_data_cached_proxy("722880", 2007) ts2 = load_cz2010_hourly_temp_data_cached_proxy("722880", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape # station load cached proxy def test_isd_station_load_isd_hourly_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): station = ISDStation("722874") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_isd_hourly_temp_data_cached_proxy(2007) ts2 = station.load_isd_hourly_temp_data_cached_proxy(2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_isd_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): station = ISDStation("722874") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_isd_daily_temp_data_cached_proxy(2007) ts2 = station.load_isd_daily_temp_data_cached_proxy(2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_gsod_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): station = ISDStation("722874") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_gsod_daily_temp_data_cached_proxy(2007) ts2 = station.load_gsod_daily_temp_data_cached_proxy(2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_tmy3_hourly_temp_data_cached_proxy( monkeypatch_tmy3_request, monkeypatch_key_value_store ): station = ISDStation("722880") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_tmy3_hourly_temp_data_cached_proxy() ts2 = station.load_tmy3_hourly_temp_data_cached_proxy() assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_cz2010_hourly_temp_data_cached_proxy( monkeypatch_cz2010_request, monkeypatch_key_value_store ): station = ISDStation("722880") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_cz2010_hourly_temp_data_cached_proxy() ts2 = station.load_cz2010_hourly_temp_data_cached_proxy() assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape # load data between dates def test_load_isd_hourly_temp_data(monkeypatch_noaa_ftp, monkeypatch_key_value_store): start = datetime(2006, 1, 3, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, tzinfo=pytz.UTC) ts, warnings = load_isd_hourly_temp_data("722874", start, end) assert ts.index[0] == start assert
pd.isnull(ts[0])
pandas.isnull
# coding: utf-8 # # Comparison between Chamber of Deputies CEAP datasets 1.0 and 2.0 # # This notebook compares the old Chamber's CEAP dataset (the huge XML files) with the new one (CSV by year). The main objective of this comparison is to show we didn't lose any data on the migration from the 1.0 to the much more efficient 2.0 version of the data. This validates changes to serenata-toolbox so we can ditch 1.0 datasets for good and be prepare to their extinction by the Chamber's Open Data team. # # Let's begin by loading both old and new datasets # # In[1]: import pandas as pd pd.set_option('max_columns', 500) # In[2]: from serenata_toolbox.datasets import Datasets datasets = Datasets('../data') datasets.downloader.download('2017-05-21-reimbursements.old.xz') datasets.downloader.download('2017-05-21-reimbursements.new.xz') # In[3]: old_dataset = pd.read_csv('../data/2017-05-21-reimbursements.old.xz', compression='xz', low_memory=False) # In[4]: new_dataset = pd.read_csv('../data/2017-05-21-reimbursements.new.xz', compression='xz', low_memory=False) # First we need to check if both datasets have the same columns, even in they are in the same order: # In[5]: old_keys = old_dataset.keys() new_keys = new_dataset.keys() print(old_keys==new_keys) # We can also make sure they have the same types for all columns # In[6]: new_dataset.dtypes == old_dataset.dtypes # Now we can take a slice of the datasets by year and compare their sizes. We also remove the current year, because this ongoing registry seems to have different update pace between versions, so it makes no sense comparing them: # In[7]: old_dataset = old_dataset[old_dataset['year'] != 2017] new_dataset = new_dataset[new_dataset['year'] != 2017] for year in
pd.unique(old_dataset['year'])
pandas.unique
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from numpy import mean, var, median from scipy import stats from collections import Counter def find_gene_index(gene_list,gene): j = [i for i,x in enumerate(gene_list) if x == gene] return j def find_patients_index(patients, p): j = [i for i,x in enumerate(patients) if x == p] return j[0] filename = "log_modified_LAML_TPM.csv" filename2 = "patients.txt" filename3 = "FAB.txt" filename4 = "sex.txt" filename5 = "age.txt" filename6 = "BM_blasts.txt" filename7 = "WBC.txt" #filename = "modified_raw_counts.csv" data = pd.read_csv(filename) patients = pd.read_csv(filename2) FAB = pd.read_csv(filename3) sex = pd.read_csv(filename4) age = pd.read_csv(filename5) blasts =
pd.read_csv(filename6)
pandas.read_csv
from __future__ import division from unittest import TestCase from nose_parameterized import parameterized from pandas import ( Series, DataFrame, date_range, datetime, Panel ) from pandas.util.testing import (assert_frame_equal, assert_series_equal) from pyfolio.capacity import (days_to_liquidate_positions, get_max_days_to_liquidate_by_ticker, get_low_liquidity_transactions, daily_txns_with_bar_data, apply_slippage_penalty) class CapacityTestCase(TestCase): dates = date_range(start='2015-01-01', freq='D', periods=3) positions = DataFrame([[1.0, 3.0, 0.0], [0.0, 1.0, 1.0], [3.0, 0.0, 1.0]], columns=['A', 'B', 'cash'], index=dates) transactions = DataFrame(data=[[1, 100000, 10, 'A']] * len(dates), columns=['sid', 'amount', 'price', 'symbol'], index=dates) volume = DataFrame([[1.0, 3.0], [2.0, 2.0], [3.0, 1.0]], columns=['A', 'B'], index=dates) volume = volume * 1000000 price = DataFrame([[1.0, 1.0]] * len(dates), columns=['A', 'B'], index=dates) market_data = Panel({'volume': volume, 'price': price}) def test_days_to_liquidate_positions(self): dtlp = days_to_liquidate_positions(self.positions, self.market_data, max_bar_consumption=1, capital_base=1e6, mean_volume_window=1) expected = DataFrame([[0.0, .5/3], [0.75/2, 0.0]], columns=['A', 'B'], index=self.dates[1:]) assert_frame_equal(dtlp, expected) def test_get_max_days_to_liquidate_by_ticker(self): mdtl = get_max_days_to_liquidate_by_ticker(self.positions, self.market_data, max_bar_consumption=1, capital_base=1e6, mean_volume_window=1) expected = DataFrame([[datetime(2015, 1, 3), .75/2, 75.], [datetime(2015, 1, 2), .5/3, 50.]], columns=[ 'date', 'days_to_liquidate', 'pos_alloc_pct'], index=['A', 'B']) expected.index.name = 'symbol' assert_frame_equal(mdtl, expected) @parameterized.expand([(DataFrame([[datetime(2015, 1, 1), 100.], [datetime(2015, 1, 2), 100]], columns=['date', 'max_pct_bar_consumed'], index=['A', 'B']), None), (DataFrame([[datetime(2015, 1, 3), (1/3)*100.]], columns=['date', 'max_pct_bar_consumed'], index=['A']), 1)]) def test_get_low_liquidity_transactions(self, expected, last_n_days): txn_daily = DataFrame(data=[[1, 1000000, 1, 'A'], [2, 2000000, 1, 'B'], [1, 1000000, 1, 'A']], columns=['sid', 'amount', 'price', 'symbol'], index=self.dates) llt = get_low_liquidity_transactions(txn_daily, self.market_data, last_n_days=last_n_days) expected.index.name = 'symbol' assert_frame_equal(llt, expected) def test_daily_txns_with_bar_data(self): daily_txn = daily_txns_with_bar_data( self.transactions, self.market_data) expected = DataFrame(data=[['A', 100000, 1.0, 1000000.], ['A', 100000, 1.0, 2000000.], ['A', 100000, 1.0, 3000000.]], columns=['symbol', 'amount', 'price', 'volume'], index=self.dates) assert_frame_equal(daily_txn, expected, check_less_precise=True) @parameterized.expand([(1000000, 1, [0.9995, 0.9999375, 0.99998611]), (10000000, 1, [0.95, 0.99375, 0.998611]), (100000, 1, [0.999995, 0.999999375, 0.9999998611]), (1000000, .1, [0.99995, 0.99999375, 0.999998611])]) def test_apply_slippage_penalty(self, starting_base, impact, expected_adj_returns): returns = Series([1., 1., 1.], index=self.dates) daily_txn = daily_txns_with_bar_data( self.transactions, self.market_data) adj_returns = apply_slippage_penalty( returns, daily_txn, starting_base, 1000000, impact=impact) expected_adj_returns =
Series(expected_adj_returns, index=self.dates)
pandas.Series
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os from config import test_snr_dB import pandas as pd from scipy.stats import ttest_1samp def plot_paper_results(folder_envtfs, folder_stft): sns.set(style="whitegrid") df_env = pd.read_csv('models\\' + folder_envtfs + '\\results.csv', sep=';') df_stft = pd.read_csv('models\\' + folder_stft + '\\results.csv', sep=';') df_orig = df_env.copy() df_orig = df_orig.drop(['eSTOI pred.'],axis=1) df_orig = df_orig.drop(['PESQ pred.'],axis=1) df_orig = df_orig.rename(columns={'eSTOI orig.':'eSTOI pred.'}) df_orig = df_orig.rename(columns={'PESQ orig.':'PESQ pred.'}) df_orig[' '] = 'Original' df_env[' '] = 'ENV-TFS' df_stft[' '] = 'STFT' df = pd.concat([df_orig, df_stft, df_env]) sns.set(style="ticks",font='STIXGeneral') fig = plt.figure(figsize=(11, 4.5)) size=16 plt.subplot(121) ax = sns.boxplot(x='SNR', y='eSTOI pred.', hue=' ', data=df, fliersize=1) plt.xlabel('SNR (dB)', {'size': size}) plt.ylabel('eSTOI', {'size': size}) ax.legend_.remove() # ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.8) ax.tick_params(labelsize=size) lines, labels = ax.get_legend_handles_labels() # fig.legend(lines, labels, loc='upper center') fig.legend(lines, labels, loc='upper center', bbox_to_anchor=(0.53, 0.10), shadow = False, ncol = 3, prop={'size': size-3}) plt.tight_layout() # plt.savefig('fig4.1_estoi_total.pdf',dpi=2000) # plt.show() # plt.figure(figsize=(11, 4.5)) plt.subplot(122) ax = sns.boxplot(x='SNR', y='PESQ pred.', hue=' ', data=df, fliersize=1) ax.legend_.remove() ax.tick_params(labelsize=size) # ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.11), ncol = 3) plt.xlabel('SNR (dB)',{'size': size}) plt.ylabel('PESQ', {'size': size}) # ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.8) plt.tight_layout() plt.savefig('fig4_estoi_pesq_total.pdf',dpi=2000) plt.show() # multi plot sns.set(style="ticks",font='STIXGeneral',font_scale=1.3) g = sns.relplot(x="SNR", y="eSTOI pred.", hue = " ", col = "Noise", data = df, kind = "line", col_wrap=5, height=2.5, aspect=0.8, legend='full') # plt.tight_layout() g.fig.subplots_adjust(wspace=0.10) g.set_ylabels('eSTOI') g.set_xlabels('SNR (dB)') g.set(xticks=[-6, 0, 6]) g.set(xlim=(min(test_snr_dB), max(test_snr_dB))) g.set(ylim=(0, 1)) g.set_titles("{col_name}",) # for a in g.axes: # a.axhline(a.get_yticks()[1], alpha=0.5, color='grey') leg = g._legend leg.set_bbox_to_anchor([0.84, 0.86]) # coordinates of lower left of bounding box leg._loc = 1 plt.savefig('fig5_estoi_per_noise.pdf',bbox_inches='tight',dpi=2000) plt.show() # eSTOI increase histogram plt.figure() ax = sns.distplot(df_env['eSTOI pred.'] - df_env['eSTOI orig.'], kde_kws={"shade": True}, norm_hist=True, label='ENV-TFS') sns.distplot(df_stft['eSTOI pred.'] - df_stft['eSTOI orig.'], kde_kws={"shade": True}, norm_hist=True, label='STFT') plt.legend() vals = ax.get_xticks() ax.set_xticklabels(['{:,.0%}'.format(x) for x in vals]) plt.xlabel('eSTOI increase') plt.ylabel('density') plt.tight_layout() plt.show() # PESQ increase per snr histogram # ax = sns.kdeplot(df_env['SNR'], df_env['PESQ pred.'] - df_env['PESQ orig.'], cmap="Reds", shade=True,shade_lowest=False, label='ENV') # sns.kdeplot(df_stft['SNR'], df_stft['PESQ pred.'] - df_stft['PESQ orig.'], cmap="Blues", shade=True,shade_lowest=False, label='STFT') ax = sns.distplot(df_env['PESQ pred.'] - df_env['PESQ orig.'], kde_kws={"shade": True}, norm_hist=True, label='ENV-TFS') sns.distplot(df_stft['PESQ pred.'] - df_stft['PESQ orig.'], kde_kws={"shade": True}, norm_hist=True, label='STFT') plt.legend() vals = ax.get_xticks() plt.xlabel('PESQ increase') plt.ylabel('density') plt.tight_layout() plt.show() return def plot_matlab_results(folder_envtfs, folder_stft): df_env1 = pd.read_excel('models\\' + folder_envtfs + '\\HA_1.xls') df_env2 = pd.read_excel('models\\' + folder_envtfs + '\\HA_2.xls') df_env3 = pd.read_excel('models\\' + folder_envtfs + '\\HA_3.xls') df_env4 = pd.read_excel('models\\' + folder_envtfs + '\\HA_4.xls') df_env5 = pd.read_excel('models\\' + folder_envtfs + '\\HA_5.xls') df_env6 = pd.read_excel('models\\' + folder_envtfs + '\\HA_6.xls') df_stft1 = pd.read_excel('models\\' + folder_stft + '\\HA_1.xls') df_stft2 = pd.read_excel('models\\' + folder_stft + '\\HA_2.xls') df_stft3 = pd.read_excel('models\\' + folder_stft + '\\HA_3.xls') df_stft4 = pd.read_excel('models\\' + folder_stft + '\\HA_4.xls') df_stft5 = pd.read_excel('models\\' + folder_stft + '\\HA_5.xls') df_stft6 = pd.read_excel('models\\' + folder_stft + '\\HA_6.xls') df_env1['Profile'] = 'HL1' df_env2['Profile'] = 'HL2' df_env3['Profile'] = 'HL3' df_env4['Profile'] = 'HL4' df_env5['Profile'] = 'HL5' df_env6['Profile'] = 'HL6' df_stft1['Profile'] = 'HL1' df_stft2['Profile'] = 'HL2' df_stft3['Profile'] = 'HL3' df_stft4['Profile'] = 'HL4' df_stft5['Profile'] = 'HL5' df_stft6['Profile'] = 'HL6' df_env = pd.concat([df_env1, df_env2, df_env3, df_env4, df_env5, df_env6]) df_stft = pd.concat([df_stft1, df_stft2, df_stft3, df_stft4, df_stft5, df_stft6]) df_envtemp = [df_env1, df_env2, df_env3, df_env4, df_env5, df_env6] df_stftemp = [df_stft1, df_stft2, df_stft3, df_stft4, df_stft5, df_stft6] for i in range(6): df = df_envtemp[i] dfstft = df_stftemp[i] print('HASPI', i+1) print("Origin: %.1f ± %.1f" % (100* df.mean()['HASPI_orig'], 100*df.std()['HASPI_orig'])) print("STFT: %.1f ± %.1f" %(100* dfstft.mean()['HASPI_predi'], 100*dfstft.std()['HASPI_predi'])) print("ENVTFS: %.1f ± %.1f" %(100* df.mean()['HASPI_predi'], 100*df.std()['HASPI_predi'])) for i in range(6): df = df_envtemp[i] dfstft = df_stftemp[i] print('HASQI', i + 1) print("Origin: %.1f ± %.1f" % (100 * df.mean()['HASQI_orig'], 100 * df.std()['HASQI_orig'])) print("STFT: %.1f ± %.1f" %(100* dfstft.mean()['HASqI_predi'], 100*dfstft.std()['HASqI_predi'])) print("ENVTFS: %.1f ± %.1f" % (100 * df.mean()['HASqI_predi'], 100 * df.std()['HASqI_predi'])) df_orig = df_env.copy() df_orig = df_orig.drop(['HASPI_predi'], axis=1) df_orig = df_orig.rename(columns={'HASPI_orig': 'HASPI_predi'}) df_orig[' '] = 'Original' df_env[' '] = 'ENV-TFS' df_stft[' '] = 'STFT' df = pd.concat([df_orig, df_stft, df_env]) sns.set(style="ticks", font='STIXGeneral', font_scale=1.3) g = sns.relplot(x="snrs", y="HASPI_predi", hue=' ', col="Profile", data=df, kind="line", col_wrap=3, height=2.5, aspect=0.8, legend='full') # plt.tight_layout() g.fig.subplots_adjust(wspace=0.10) g.set_ylabels('HASPI') g.set_xlabels('SNR (dB)') g.set(xticks=[-6, 0, 6]) g.set(xlim=(min(test_snr_dB), max(test_snr_dB))) g.set(ylim=(0, 1)) g.set_titles("{col_name}", ) # for a in g.axes: # a.axhline(a.get_yticks()[1], alpha=0.5, color='grey') leg = g._legend leg.set_bbox_to_anchor([0.89, 0.84]) # coordinates of lower left of bounding box leg._loc = 1 from matplotlib.transforms import Bbox plt.savefig('fig6_haspi_per_audiogram.pdf', bbox_inches=Bbox([[0., 0.], [6.8, 5.]]),dpi=2000) plt.show() def print_matlab_results(folder_envtfs, folder_stft): df_env1 = pd.read_excel('models\\' + folder_envtfs + '\\HA_1.xls') df_env2 = pd.read_excel('models\\' + folder_envtfs + '\\HA_2.xls') df_env3 = pd.read_excel('models\\' + folder_envtfs + '\\HA_3.xls') df_env4 = pd.read_excel('models\\' + folder_envtfs + '\\HA_4.xls') df_env5 = pd.read_excel('models\\' + folder_envtfs + '\\HA_5.xls') df_env6 = pd.read_excel('models\\' + folder_envtfs + '\\HA_6.xls') df_stft1 = pd.read_excel('models\\' + folder_stft + '\\HA_1.xls') df_stft2 = pd.read_excel('models\\' + folder_stft + '\\HA_2.xls') df_stft3 = pd.read_excel('models\\' + folder_stft + '\\HA_3.xls') df_stft4 = pd.read_excel('models\\' + folder_stft + '\\HA_4.xls') df_stft5 =
pd.read_excel('models\\' + folder_stft + '\\HA_5.xls')
pandas.read_excel
# -*- coding: utf-8 -*- import os from itertools import chain from typing import Any, List, Optional, Union, Iterator, Iterable import numpy as np import pandas as pd import swifter from joblib import Parallel, delayed from pandas.io.parsers import TextFileReader as PandasTextFileReader from sklearn.utils import shuffle from scipy.stats import median_absolute_deviation as MAD from tqdm.auto import tqdm from .fingerprint import Fingerprint, MorganFingerprint from .subsim_search import FPSubSim2 def equalize_cell_size_in_row(row, cols=None, fill_mode='internal', fill_value: object = ''): """Equalize the number of values in each list-containing cell of a pandas dataframe. Slightly adapted from user nphaibk (https://stackoverflow.com/questions/45846765/efficient-way-to-unnest-explode-multiple-list-columns-in-a-pandas-dataframe) :param row: pandas row the function should be applied to :param cols: columns for which equalization must be performed :param fill_mode: 'internal' to repeat the only/last value of a cell as much as needed 'external' to repeat fill_value as much as needed 'trim' to remove unaligned values :param fill_value: value to repeat as much as needed to equalize cells :return: the row with each cell having the same number of values """ if not cols: cols = row.index jcols = [j for j, v in enumerate(row.index) if v in cols] if len(jcols) < 1: jcols = range(len(row.index)) Ls = [len(x) for x in row.values] if not Ls[:-1] == Ls[1:]: vals = [v if isinstance(v, list) else [v] for v in row.values] if fill_mode == 'external': vals = [[e] + [fill_value] * (max(Ls) - 1) if (not j in jcols) and (isinstance(row.values[j], list)) else e + [fill_value] * (max(Ls) - len(e)) for j, e in enumerate(vals)] elif fill_mode == 'internal': vals = [[e] + [e] * (max(Ls) - 1) if (not j in jcols) and (isinstance(row.values[j], list)) else e + [e[-1]] * (max(Ls) - len(e)) for j, e in enumerate(vals)] elif fill_mode == 'trim': vals = [e[0:min(Ls)] for e in vals] else: raise ValueError("fill_mode must be one of ['internal', 'external', 'trim']") row = pd.Series(vals, index=row.index.tolist()) return row def keep_quality(data: Union[pd.DataFrame, PandasTextFileReader, Iterator], min_quality: str = 'high') -> Union[ pd.DataFrame, Iterator]: """Keep only the data with the minimum defined quality :param data: the dataframe, chunked or not into a pandas TextFileReader, containing data to be filtered or an Iterator of data chunks :param min_quality: minimal quality {'high', 'medium', 'low'} to be kept e.g. if 'medium', data of 'medium' and 'high' quality are kept :return: the data with minimal required quality. If input is a TextFileReader or an Iterator, the return type is an Iterator """ qualities = ["low", "medium", "high"] if min_quality.lower() not in qualities: raise ValueError(f'Quality not supported, must be one of {qualities}') index = qualities.index(min_quality.lower()) if isinstance(data, pd.DataFrame): filtered = data[data['Quality'].str.lower().isin(qualities[index:])] return filtered if isinstance(data, (PandasTextFileReader, Iterator)): return _chunked_keep_quality(data, min_quality) raise ValueError('data can only be a pandas DataFrame, TextFileReader or an Iterator') def _chunked_keep_quality(chunks: Union[PandasTextFileReader, Iterator], min_quality: str = 'high'): for chunk in chunks: filtered_chunk = keep_quality(chunk, min_quality) yield filtered_chunk def process_group(group): """Aggregate data from one group accordingly""" if (group.values[0] == group.values).all(): # If all values are equal, return first record group['pchembl_value_Mean'] = group['pchembl_value'] group['pchembl_value_StdDev'] = np.NaN group['pchembl_value_SEM'] = np.NaN group['pchembl_value_N'] = 1 group['pchembl_value_Median'] = group['pchembl_value'] group['pchembl_value_MAD'] = np.NaN return group.iloc[:1, :] listvals = lambda x: ';'.join(set(str(y) for y in x)) if (x.values[0] == x.values).all() else ';'.join( str(y) for y in x) listallvals = lambda x: ';'.join(str(y) for y in x) mappings = {'source': 'first', 'CID': listvals, 'AID': listvals, 'type_IC50': listallvals, 'type_EC50': listallvals, 'type_KD': listallvals, 'type_Ki': listallvals, 'type_other': listallvals, 'relation': listvals, 'pchembl_value': listallvals} return pd.concat([group.groupby('Activity_ID').aggregate(mappings).reset_index(), group.groupby('Activity_ID')['pchembl_value'].aggregate(pchembl_value_Mean='mean', pchembl_value_StdDev='std', pchembl_value_SEM='sem', pchembl_value_N='count', pchembl_value_Median='median', pchembl_value_MAD=MAD ).reset_index(drop=True)], axis=1) def process_groups(groups): """Aggregate data from multiple groups""" return pd.concat([process_group(group) for group in groups]) def keep_source(data: Union[pd.DataFrame, PandasTextFileReader, Iterator], source: Union[List[str], str] = 'all', njobs: int = 1, verbose: bool = False) -> pd.DataFrame: """Keep only the data from the defined source(s). :param data: the dataframe containing data to be filtered :param source: source(s) to be kept, 'all' or ''any' to keep all data :param njobs: number of cores on which multiple processes are spawned to speed up filtering :param verbose: whether to show progress bars :return: the data with only from the specified source(s),; aggregated data (mean, meadians, SEM, ...) are re-calculated to match only the specified source(s) """ # Deal with chunked data if isinstance(data, (PandasTextFileReader, Iterator)): return _chunked_keep_source(data, source, njobs) # Raise error if not correct type elif not isinstance(data, pd.DataFrame): raise ValueError('data can only be a pandas DataFrame, TextFileReader or an Iterator') # Get sources of dataset sources_ = set(chain.from_iterable(map(lambda x: x.split(';'), data['source'].unique()))) sources = set(map(str.lower, sources_)) # Change type of source if str if isinstance(source, str): source = [source] source = list(map(str.lower, source)) # Keep all data if source is a list containing 'any', 'all' or all accepted values if 'any' in source or 'all' in source or len(set(source).intersection(sources)) == len(sources): return data # Source not defined elif set(source).difference(sources): raise ValueError(f'Source not supported, must be one of {sources}') # Sources are defined else: # Columns with optional multiple values cols2split = ['source', 'CID', 'AID', 'type_IC50', 'type_EC50', 'type_KD', 'type_Ki', 'type_other', 'relation', 'pchembl_value'] # Keep trace of order of columns ordered_columns = data.columns.tolist() # Keep binary data associated to source preserved_binary = data[~data['Activity_class'].isna() & data['source'].str.lower().isin(source)] # Separate data with multiple sources binary_data = data[ ~data['Activity_class'].isna() & data['source'].str.contains(';') & data['source'].str.contains( '|'.join(source), case=False)] data = data[data['Activity_class'].isna()] if not binary_data.empty: # Keep columns and index binary_included = binary_data[[x for x in binary_data.columns if x in cols2split + ['Activity_ID']]] binary_excluded = binary_data[ [x for x in binary_data.columns if x not in cols2split and not x.startswith('pchembl_value_')]] del binary_data binary_included = ( binary_included.set_index('Activity_ID') # Alows unnesting data without messing with Activity_ID .swifter.progress_bar(verbose) # Uses swifter without progress bar for apply .apply(lambda x: x.str.split(';')) # Split mutiple values into lists .swifter.progress_bar(verbose) .apply(equalize_cell_size_in_row, axis=1) # Set same length of lists in each row .swifter.progress_bar(verbose) .apply(pd.Series.explode) # Unnest the data .reset_index()) # Recover Activity_ID # Filter by sources binary_included = binary_included[binary_included['source'].str.lower().isin(source)] # Join back with remove columns binary_data = binary_included.merge(binary_excluded, how='inner', on='Activity_ID')[ordered_columns] del binary_included, binary_excluded # Separate records not needing any processing preserved = data[data['source'].str.lower().isin(source)] # Remove records with non-matching non-unique source data = data[ ~data['source'].str.lower().isin(source) & data['source'].str.contains(';') & data['source'].str.contains( '|'.join(source), case=False)] if not data.empty: # Keep columns and index included = data[[x for x in data.columns if x in cols2split + ['Activity_ID']]] excluded = data[[x for x in data.columns if x not in cols2split and not x.startswith('pchembl_value_')]] del data included = (included.set_index('Activity_ID') # Alows unnesting data without messing with Activity_ID .swifter.progress_bar(verbose) # Uses swifter without progress bar for apply .apply(lambda x: x.str.split(';')) # Split mutiple values into lists .swifter.progress_bar(verbose) .apply(equalize_cell_size_in_row, axis=1) # Set same length of lists in each row .swifter.progress_bar(verbose) .apply(pd.Series.explode) # Unnest the data .reset_index()) # Recover Activity_ID # Filter by sources included = included[included['source'].str.lower().isin(source)] # Aggregate data on Activity_ID _, grouped = list(zip(*included.swifter.progress_bar(verbose).apply(pd.to_numeric, errors='ignore').groupby( 'Activity_ID'))) del included # Use joblib to speed up the aggregation process filtered = pd.concat(Parallel(n_jobs=njobs, backend='loky', verbose=int(verbose))( delayed(process_groups)(grouped[i:i + 1000]) for i in range(0, len(grouped), 1000))).reset_index( drop=True) del grouped # Join back with remove columns data = filtered.fillna(0).merge(excluded, how='inner', on='Activity_ID')[ordered_columns] del excluded, filtered # Add back binary data (might be empty) data = pd.concat([preserved, data, preserved_binary, binary_data]) del preserved, preserved_binary, binary_data return data def _chunked_keep_source(data: Union[PandasTextFileReader, Iterator], source: Union[List[str], str], njobs) -> pd.DataFrame: for chunk in data: yield keep_source(chunk, source, njobs) def is_activity_type(row, activity_types: List[str]): """Check if the row matches one of the activity types :param row: pandas row the function should be applied to :param activity_types: activity types the row should partially match """ return np.any([str(row[activity_type]) == '1' for activity_type in activity_types]) and np.all( [';' not in str(row[activity_type]) for activity_type in activity_types]) def is_multiple_types(row, activity_types: List[str]): """Check if the row matches one of the activity types and if they contain multiple values :param row: pandas row the function should be applied to :param activity_types: activity types with multiple values the row should partially match """ return np.any([';' in str(row[activity_type]) for activity_type in activity_types]) def keep_type(data: Union[pd.DataFrame, PandasTextFileReader, Iterator], activity_types: Union[List[str], str] = 'ic50', njobs: int = 1, verbose: bool = False): """Keep only the data matching desired activity types :param data: the dataframe containing data to be filtered :param activity_types: type of activity to keep: {'IC50', 'EC50', 'KD', 'Ki', 'all'} :param njobs: number of cores on which multiple processes are spawned to speed up filtering :param verbose: whether to show progress bars :return: the data with desired activity type(s) """ # Deal with chunked data if isinstance(data, (PandasTextFileReader, Iterator)): return _chunked_keep_type(data, activity_types, njobs) # Raise error if not correct type elif not isinstance(data, pd.DataFrame): raise ValueError('data can only be a pandas DataFrame, TextFileReader or an Iterator') # Define accepted data types types = ['IC50', 'EC50', 'KD', 'Ki', 'other'] types_ = [x.lower() for x in types] if isinstance(activity_types, str): activity_types = [activity_types] activity_types = set([x.lower() for x in activity_types]) # Keep all data if type is a list containing 'any', 'all' or all accepted values if 'any' in activity_types or 'all' in activity_types or len(activity_types.intersection(types_)) == len(types_): return data # Type not defined elif activity_types.difference(types_): raise ValueError(f'Type not supported, must be one of {types}') else: # Transform activity_types to column names activity_types = [f"type_{types[i]}" for i in range(len(types)) if types_[i] in activity_types] # Columns with optional multiple values cols2split = ['source', 'CID', 'AID', 'type_IC50', 'type_EC50', 'type_KD', 'type_Ki', 'type_other', 'relation', 'pchembl_value'] # Keep trace of order of columns ordered_columns = data.columns.tolist() # Keep binary data associated to type preserved_binary = data[ ~data['Activity_class'].isna() & data.apply(is_activity_type, activity_types=activity_types, axis=1)] # Separate data with multiple types binary_data = data[ ~data['Activity_class'].isna() & data.apply(is_multiple_types, activity_types=activity_types, axis=1)] data = data[data['Activity_class'].isna()] if not binary_data.empty: # Keep columns and index binary_included = binary_data[[x for x in binary_data.columns if x in cols2split + ['Activity_ID']]] binary_excluded = binary_data[ [x for x in binary_data.columns if x not in cols2split and not x.startswith('pchembl_value_')]] del binary_data binary_included = ( binary_included.set_index('Activity_ID') # Allows unnesting data without messing with Activity_ID .astype(str) # Required for following split .swifter.progress_bar(verbose) # Uses swifter without progress bar for apply .apply(lambda x: x.str.split(';')) # Split multiple values into lists .swifter.progress_bar(verbose) .apply(equalize_cell_size_in_row, axis=1) # Set same length of lists in each row .swifter.progress_bar(verbose) .apply(pd.Series.explode) # Unnest the data .reset_index()) # Recover Activity_ID # Filter by type binary_included = binary_included[ binary_included.swifter.progress_bar(verbose).apply(is_activity_type, activity_types=activity_types, axis=1)] # Join back with remove columns binary_data = binary_included.merge(binary_excluded, how='inner', on='Activity_ID')[ordered_columns] del binary_included, binary_excluded # Separate records not needing any processing preserved = data[data.apply(is_activity_type, activity_types=activity_types, axis=1)] # Remove records with non-matching non-unique type data = data[data.apply(is_multiple_types, activity_types=activity_types, axis=1)] if not data.empty: # Keep columns and index included = data[[x for x in data.columns if x in cols2split + ['Activity_ID']]] excluded = data[[x for x in data.columns if x not in cols2split and not x.startswith('pchembl_value_')]] del data included = (included.set_index('Activity_ID') # Alows unnesting data without messing with Activity_ID .astype(str) # Required for following split .swifter.progress_bar(verbose) # Uses swifter without progress bar for apply .apply(lambda x: x.str.split(';')) # Split multiple values into lists .swifter.progress_bar(verbose) .apply(equalize_cell_size_in_row, axis=1) # Set same length of lists in each row .swifter.progress_bar(verbose) .apply(pd.Series.explode) # Unnest the data .reset_index()) # Recover Activity_ID # Filter by types included = included[included.apply(is_activity_type, activity_types=activity_types, axis=1)] # Aggregate data on Activity_ID _, grouped = list(zip(*included.swifter.progress_bar(verbose).apply(pd.to_numeric, errors='ignore').groupby( 'Activity_ID'))) del included # Use joblib to speed up the aggregation process filtered = pd.concat(Parallel(n_jobs=njobs, backend='loky', verbose=int(verbose))( delayed(process_groups)(grouped[i:i + 1000]) for i in range(0, len(grouped), 1000))).reset_index( drop=True) del grouped # Join back with remove columns data = filtered.fillna(0).merge(excluded, how='inner', on='Activity_ID')[ordered_columns] del excluded, filtered # Add back binary data (might be empty) data = pd.concat([preserved, data, preserved_binary, binary_data]) del preserved, preserved_binary, binary_data return data def _chunked_keep_type(data: Union[PandasTextFileReader, Iterator], activity_types: Union[List[str], str], njobs: int): for chunk in data: yield keep_type(chunk, activity_types, njobs) def keep_accession(data: Union[pd.DataFrame, PandasTextFileReader, Iterator], accession: Union[List[str], str] = 'all'): """Keep only the data matching desired accession. :param data: the dataframe containing data to be filtered :param accession: accession to keep (e.g. 'P30542'); mutation can be specified (e.g. '') :return: the data with desired accession(s) """ # Deal with chunked data if isinstance(data, (PandasTextFileReader, Iterator)): return _chunked_keep_accession(data, accession) # Raise error if not correct type elif not isinstance(data, pd.DataFrame): raise ValueError('data can only be a pandas DataFrame, TextFileReader or an Iterator') if isinstance(accession, str): accession = [accession] return data[data['target_id'].str.lower().str.contains('|'.join(accession).lower())] def _chunked_keep_accession(data: Union[PandasTextFileReader, Iterator], accession: Union[List[str], str]): for chunk in data: filtered_chunk = keep_accession(chunk, accession) yield filtered_chunk def equalize_cell_size_in_column(col, fill_mode='internal', fill_value: object = ''): """Equalize the number of values in each list-containing cell of a pandas dataframe. Adapted from user nphaibk (https://stackoverflow.com/questions/45846765/efficient-way-to-unnest-explode-multiple-list-columns-in-a-pandas-dataframe) :param col: pandas Series the function should be applied to :param fill_mode: 'internal' to repeat the only/last value of a cell as much as needed 'external' to repeat fill_value as much as needed 'trim' to remove unaligned values :param fill_value: value to repeat as much as needed to equalize cells :return: the column with each cell having the same number of values """ Ls = [len(x) for x in col.values] if not Ls[:-1] == Ls[1:]: vals = [v if isinstance(v, list) else [v] for v in col.values] if fill_mode == 'external': vals = [e + [fill_value] * (max(Ls) - len(e)) for j, e in enumerate(vals)] elif fill_mode == 'internal': vals = [e + [e[-1]] * (max(Ls) - len(e)) for j, e in enumerate(vals)] elif fill_mode == 'trim': vals = [e[0:min(Ls)] for e in vals] else: raise ValueError("fill_mode must be one of ['internal', 'external', 'trim']") col = pd.Series(vals, index=col.index.tolist()) return col def keep_protein_class(data: Union[pd.DataFrame, PandasTextFileReader, Iterator], protein_data: pd.DataFrame, classes: Optional[Union[dict, List[dict]]] = [{'l2': 'Kinase'}, {'l5': 'Adenosine receptor'}], generic_regex: bool = False): """Keep only the data matching desired protein classifications. :param data: the dataframe containing data to be filtered :param protein_data: the dataframe of Papyrus protein targets :param classes: protein classes to keep (case insensitive). - {'l2': 'Kinase'} matches all proteins with classification 'Enzyme->Kinase' - {'l5': 'Adenosine receptor'} matches 'Membrane receptor->Family A G protein-coupled receptor->Small molecule receptor (family A GPCR)->Nucleotide-like receptor (family A GPCR)-> Adenosine receptor' - All levels in the same dict are enforced, e.g. {'l1': ''Epigenetic regulator', 'l3': 'HDAC class IIb'} does not match records without the specified l1 AND l3 - If given a list of dicts, results in a union of the dicts, e.g. [{'l2': 'Kinase'}, {'l1': 'Membrane receptor'}] matches records with classification either 'Enzyme->Kinase' or 'Membrane receptor' - Level-independent patterns can be specified with the 'l?' key, e.g. {'l?': 'SLC'} matches any classification level containing the 'SLC' keyword Only one 'l?' per dict is supported. Mixed usage of 'l?' and level-specific patterns (e.f. 'l1') is not supported :param generic_regex: whether to consider generic patterns 'l?' as regex, allowing for partial match. :return: the data with desired protein classes """ # Deal with chunked data if isinstance(data, (PandasTextFileReader, Iterator)): return _chunked_keep_protein_class(data, protein_data, classes, generic_regex) # Raise error if not correct type elif not isinstance(data, pd.DataFrame): raise ValueError('data can only be a pandas DataFrame, TextFileReader or an Iterator') # If no filter return entire dataset if classes is None: return data if isinstance(classes, dict): classes = [classes] # Verify classification keys keys = set(key for keys in classes for key in keys.keys()) allowed_keys = ['l?', 'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'l7', 'l8'] if keys.difference(allowed_keys): raise ValueError(f'levels of protein classes must be of {allowed_keys}') lvl_dependent, lvl_independent = False, False for key in classes: if 'l?' in key.keys(): lvl_independent = True if len(key.keys()) > 1: raise ValueError(f'only one pattern per "l?" is accepted') else: lvl_dependent = True # Split classifications ## 1) Handle multiple classifications split_classes = protein_data['Classification'].str.split(';') split_classes = equalize_cell_size_in_column(split_classes, 'external', '') split_classes = pd.DataFrame(split_classes.tolist()) ## 2) Split into classification levels multiplicity = len(split_classes.columns) # Number of max classifications for j in range(multiplicity): split_classes.iloc[:, j] = split_classes.iloc[:, j].str.split('->') split_classes.iloc[:, j] = equalize_cell_size_in_column(split_classes.iloc[:, j], 'external', '') # Ensure 8 levels of classification for _ in range(8 - len(split_classes.iloc[0, j])): split_classes.iloc[0, j].append('') split_classes.iloc[:, j] = equalize_cell_size_in_column(split_classes.iloc[:, j]) ## 3) Create DataFrame with all annotations split_classes = pd.concat( [pd.DataFrame(split_classes.iloc[:, j].tolist(), columns=[f'l{x + 1}_{j + 1}' for x in range(8)]) for j in range(multiplicity)], axis=1) # Ensure case insensitivity split_classes = split_classes.apply(lambda s: s.str.lower()) # Filter classes ## 1) Deal with specific protein classes (i.e. l1 to l8) if lvl_dependent: query_dpd = ') or ('.join([') or ('.join([' and '.join([f'`{subkey.lower()}_{k + 1}` == "{subval.lower()}"' for subkey, subval in key.items() ]) for k in range(multiplicity) ]) for key in classes if 'l?' not in key.keys() ]) ## 2) Deal with 'l?' regex_indices = [] if lvl_independent: query_idpd = "" if generic_regex: # Use regex regex_indices = split_classes[ eval('|'.join([f'split_classes["{subkey.lower()}"].str.lower().str.contains("{subval.lower()}", regex=True)' for key in classes for subkey in split_classes.columns for subval in key.values() if 'l?' in key.keys()]) )].index.tolist() else: # Complete match query_idpd = ') or ('.join([') or ('.join([' and '.join([f'`{subkey.lower()}` == "{subval.lower()}"' for subval in key.values() ]) for subkey in split_classes.columns ]) for key in classes if 'l?' in key.keys() ]) query = (f"{('(' + query_dpd + ')') if lvl_dependent else ''}" f"{' or ' if lvl_dependent and lvl_independent and not generic_regex else ''}" f"{('(' + query_idpd + ')') if lvl_independent and not generic_regex else ''}") ## 3) Execute filter if len(query): indices = split_classes.query(query).index.tolist() else: indices = [] if generic_regex: indices = sorted(set(indices + regex_indices)) # Obtain targets from filtered indices targets = protein_data.loc[indices, 'target_id'] # Map back to activity data return data[data['target_id'].isin(targets)].merge(protein_data.loc[indices, ('target_id', 'Classification')], on='target_id') def _chunked_keep_protein_class(data: Union[PandasTextFileReader, Iterator], protein_data: pd.DataFrame, classes: Optional[Union[dict, List[dict]]], generic_regex: bool): for chunk in data: filtered_chunk = keep_protein_class(chunk, protein_data, classes, generic_regex) yield filtered_chunk def consume_chunks(generator: Union[PandasTextFileReader, Iterator], progress: bool = True, total: int = None): """Transform the result of chained filters into a pandas DataFrame :param generator: iterator to be transformed into a dataframe :param progress: whether to show progress :param total: total number of chunks the input is divided in """ data = [] if progress: pbar = tqdm(generator, total=total) else: pbar = generator for item in pbar: if not isinstance(item, pd.DataFrame): consumed = _consume_deeper_chunks(item) data.extend(consumed) else: data.append(item) if not len(data): return pd.DataFrame() return pd.concat(data, axis=0) def _consume_deeper_chunks(generator: Union[PandasTextFileReader, Iterator]): """Transform the result of chained filters into a pandas DataFrame. Internal function. One must use consume_chunks instead. :param generator: iterator to be transformed into a dataframe """ data = [] for item in generator: if not isinstance(item, pd.DataFrame): consumed = consume_chunks(item) data.extend(consumed) else: data.append(item) if not len(data): return pd.DataFrame() return
pd.concat(data, axis=0)
pandas.concat
#%% [markdown] # # Credit Card Fraud Detection # # ## Group 12 #%% #Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # to do the grid of plots #%% [markdown] # ### Loading Data #%% # reading data from csv file df = pd.read_csv('creditcard.csv') #%% # prinitng 1st 5 rows with headings data_top = df.head() data_top.to_csv("data_head.csv") df.head(10) #There are no null values in the dataset. #%% [markdown] # ## Salient Features of data: # Total 31 attributes (including class) # Time is a Discrete-valued numeric attribute. # V1 to V28 are Principal Components of the orginial dataset not avaliable to us. # They are a result of Principal Component Analysis. # They are continuous valued numeric attributes. We cannot say whether they are ratio-scaled or interval-scaled # Amount is a continuous-valued numeric attribute. # Class is a discrete-valued Binary attribute that takes value 0 for non-fraudulent transaction and 1 for fraud transaction. # V1 to V28 are distributed aroud 0 and are scaled. # From V1 to V28, the variance of attributes decreases from left to right, as expected from a PCA output. #%% # prinitng 5 number summary, basic info about the data data_summary = df.describe() data_summary.to_csv("data_summary.csv") df.describe() #%% [markdown] # ### Checking on Amount and Time Data #%% df[['Time', 'Amount']].describe() # Time and Amount are not scaled. #%% [markdown] # # Visualizing Data Distribution #%% # Time and Amount Distribution print('Non Fraudulent: ', round(df['Class'].value_counts()[0]/len(df) * 100,3), '% of the dataset') print('Fraudulent: ', round(df['Class'].value_counts()[1]/len(df) * 100,3), '% of the dataset') # colors = ["#0101DF", "#DF0101"] # sns.countplot('Class', data=df, palette=colors) # plt.title('Class Distributions \n (0: No Fraud || 1: Fraud)', fontsize=14) # plt.show() fig, ax = plt.subplots(1, 2, figsize=(18,4)) amount_val = df['Amount'].values time_val = df['Time'].values sns.distplot(amount_val, ax=ax[0], color='r') ax[0].set_title('Distribution of Transaction Amount', fontsize=14) ax[0].set_xlim([min(amount_val), max(amount_val)]) sns.distplot(time_val, ax=ax[1], color='b') ax[1].set_title('Distribution of Transaction Time', fontsize=14) ax[1].set_xlim([min(time_val), max(time_val)]) # for i =1:30: plt.show() #%% [markdown] # ### distribution of amount with Class: #%% counts = df.Class.value_counts() normal = counts[0] fraudulent = counts[1] plt.figure(figsize=(8,6)) sns.barplot(x=counts.index, y=counts) plt.title('Count of Fraudulent vs. Non-Fraudulent Transactions') plt.ylabel('Count') plt.xlabel('Class (0:Non-Fraudulent, 1:Fraudulent)') #%% # Class - Amount Plot plt.subplot(121) ax = sns.boxplot(x ="Class",y="Amount", data=df) ax.set_title("Class x Amount", fontsize=20) ax.set_xlabel("Is Fraud?", fontsize=16) ax.set_ylabel("Amount", fontsize = 16) # Total Data Objects with Class 0: 2,84,315 (99.83%) - non-fraud transactions # Total Data Objects with Class 1: 492 (0.17%) - fraud transactions #Therefore, the dataset has a strong imbalanced nature, where the problem is two-class classification. #%% [markdown] # There are __only 7__ points out of 2.8 Lakh having Amount > 10,000. # Therefore these values should be excluded from dataset. #%% df[df.Amount > 10000] #%% df = df[df.Amount < 10000] df.describe() #%% #New distribution of amount with Class: plt.subplot(121) ax = sns.boxplot(x ="Class",y="Amount", data=df) ax.set_title("Class x Amount", fontsize=20) ax.set_xlabel("Is Fraud?", fontsize=16) ax.set_ylabel("Amount", fontsize = 16) #%% [markdown] # ### Creating new columns for ease in visualization #%% data_new = df timedelta =
pd.to_timedelta(data_new['Time'], unit='s')
pandas.to_timedelta
#TODO: regression without constant import pandas as pd import numpy as np import scipy as sp from statsmodels.formula.api import ols, logit from statsmodels.tools.tools import add_constant from statsmodels.api import OLS, Logit from statsmodels.stats.outliers_influence import OLSInfluence from IPython.display import display from pandas.api.types import is_numeric_dtype from .utils import get_categories class LinearRegression: """ Class for OLS regression models based on the excellent statsmodels package. Parameters ---------- method : 'enter' or 'backward' Method for predictors selection include_constant : bool (CURRENTLY UNAVAILIABLE) Whether to include constant in the model sig_level_entry : float (CURRENTLY UNAVAILIABLE) Max significance level to include predictor in the model sig_level_removal : float Min significance level to exclude predictor from the model Attributes ---------- variables_excluded : list Variables excluded because of zero variance variables_included : list Variables included in a model predictions : pd.Series Predicted values N : int Number of observations included in a model r2 : float R-squared (coefficient of determination) r2_adjusted : float Adjusted r-squared F : float F-statistic F_pvalue : float P-value for F-statistic ess : float Explained sum of squares rss : float Residual sum of squares tss : float Total sum of squares coefficients : pd.Series Regression coefficients coefficients_sterrors : pd.Series Standard errors of regression coefficients coefficients_tvalues : pd.Series T-statistics of regression coefficients coefficients_pvalues : pd.Series P-values of regression coefficients """ def __init__( self, method='enter', include_constant=True, sig_level_entry=0.05, sig_level_removal=0.05 ): self.method = method.lower().strip() self.include_constant = include_constant self.sig_level_entry = sig_level_entry self.sig_level_removal = sig_level_removal def fit( self, data, formula, categorical_variables=None, show_results=True, confidence_intervals=True, collinearity_statistics=False, use_patsy_notation=False, n_decimals=3 ): """ Fit model to the given data using formula. Parameters ---------- data : pd.DataFrame Data to fit a model formula : str Formula of a model specification, e.g. 'y ~ x1 + x2'; should be passed either in Patsy (statsmodels) notation or using the following rules: '*' for interaction of the variables, ':' for interaction & main effects, i.e., 'y ~ x:z' equals to 'y ~ x + z + x*z' (unlike the Patsy notation). If you use Patsy notation, please specify the parameter use_patsy_notation=True. categorical_variables : list List of names of the variables that should be considered categorical. These variables would be automatically converted into sets of dummy variables. If you want to use this option, please make sure that you don't have nested names of variables (e.g. 'imdb' and 'imdb_rate' at the same time), otherwise this option results in an incorrect procedure. show_results : bool Whether to show results of analysis confidence_intervals : bool Whether to include coefficients' confidence intervals in the summary table collinearity_statistics : bool whether to include coefficients' tolerance and VIF in the summary table use_patsy_notation : bool turn this on if you use strictly Patsy's rules to define a formula. See more: https://patsy.readthedocs.io/en/latest/quickstart.html n_decimals : int Number of digits to round results when showing them Returns ------- self The current instance of the LinearRegression class """ self._data = data.copy() self.categorical_variables = categorical_variables self._show_ci = confidence_intervals self._show_col = collinearity_statistics if '=' in formula: formula = formula.replace('=', '~') if not use_patsy_notation: formula = formula.replace('*', '^').replace(':', '*').replace('^', ':') self.formula = formula #won't work correctly if some variables have similar names (e.g. kinopoisk_rate and kinopoisk_rate_count) if categorical_variables is not None: if not isinstance(categorical_variables, list): raise ValueError(f"""Categorical variables should be passed as list. Type {type(categorical_variables)} was passed instead.""") else: for variable in categorical_variables: formula = formula.replace(variable, f'C({variable})') self._model = ols(formula=formula, data=data).fit() self._observations_idx = list(self._model.fittedvalues.index) self.dependent_variable = self._model.model.endog_names self.variables_excluded = self._identify_variables_without_variation() if len(self.variables_excluded) > 0: y = pd.Series(self._model.model.endog.copy(), index=self._observations_idx, name=self.dependent_variable) X = self._remove_variables_without_variation() self._model = OLS(y, X, missing = 'drop').fit() self.variables_excluded = [LinearRegression._translate_from_patsy_notation(x) for x in self.variables_excluded] if self.method == 'backward': self._fit_backward() self._get_statistics_from_model() self.predictions = self.predict() if show_results: self.show_results(n_decimals) if len(self.variables_excluded) > 0: print('------------------\n') print(f"Following variables were excluded due to zero variance: {'; '.join(self.variables_excluded)}") return self def predict( self, data=None, add_to_data=False, ): """ Predict values of a dependent variable for the given data using the fitted model. Parameters ---------- data : pd.DataFrame Data for predictions, may be not specified if you want to predict values for the same data that were used to fit a model add_to_data : bool Whether to merge predictions with the given data. Currently, this option returns data with a sorted index Returns ------- pd.DataFrame Predictions """ name = f'{self.dependent_variable} (predicted)' if data is None: data_init = self._data.copy() result = self._model.fittedvalues data_init[name] = result if add_to_data: return data_init else: return data_init[name].copy() else: aux_model = ols(self.formula, data).fit() aux_data_idx = aux_model.fittedvalues.index aux_data_cols = aux_model.model.exog_names aux_data_cols = [LinearRegression._translate_from_patsy_notation(x)\ for x in aux_data_cols] aux_data = pd.DataFrame(aux_model.model.exog, index=aux_data_idx, columns=aux_data_cols) aux_X = add_constant(aux_data[self.variables_included].copy()) aux_y = aux_model.model.endog.copy() aux_model = OLS(aux_y, aux_X, missing='drop').fit() result = aux_model.fittedvalues result.name = name if add_to_data: result = pd.concat([data, result], axis=1, sort=False) return result def _get_statistics_from_model(self): self.N = self._model.nobs self.r2 = self._model.rsquared self.r2_adjusted = self._model.rsquared_adj self.F = self._model.fvalue self.F_pvalue = self._model.f_pvalue self.ess = self._model.ess self.rss = self._model.ssr if self.include_constant: self.tss = self._model.centered_tss else: self.tss = self._model.uncentered_tss self.ms_model = self._model.mse_model self.ms_resid = self._model.mse_resid self.ms_total = self._model.mse_total self.dof_model = self._model.df_model self.dof_resid = self._model.df_resid self.dof_total = self.dof_model + self.dof_resid self.coefficients = self._model.params.copy() self.coefficients_sterrors = self._model.bse.copy() self.coefficients_tvalues = self._model.tvalues.copy() self.coefficients_pvalues = self._model.pvalues.copy() variables_included = [x for x in list(self.coefficients.index) if x!='Intercept'] self._variables_included_patsy = variables_included.copy() variables_included = [LinearRegression._translate_from_patsy_notation(x) for x in variables_included] self.variables_included = variables_included #self._independent_variables = if self.include_constant: self._params_idx = ['Constant'] + variables_included else: self._params_idx = variables_included.copy() for stats in [self.coefficients, self.coefficients_pvalues, self.coefficients_sterrors, self.coefficients_tvalues]: stats.index = self._params_idx return @property def coefficients_beta(self): b = np.array(self._model.params)[1:] std_y = self._model.model.endog.std(axis=0) std_x = self._model.model.exog.std(axis=0)[1:] beta = list(b * (std_x / std_y)) if self.include_constant: beta = [np.nan] + beta result = pd.Series(beta, index=self._params_idx) return result @property def coefficients_confidence_interval(self): ci = self._model.conf_int() ci.index = self._params_idx ci.columns = [f'LB CI (95%)', f'UB CI (95%)'] return ci @property def coefficients_VIF(self): #eps = 1e-20 x = self._model.model.exog[:, 1:].copy() inv_corr = np.linalg.inv(sp.corrcoef(x, rowvar=False)) diag = list(inv_corr.diagonal()) if self.include_constant: diag = [np.nan] + diag return pd.Series(diag, index=self._params_idx) @property def coefficients_tolerance(self): return 1 / self.coefficients_VIF @staticmethod def _translate_from_patsy_notation(effect): effect = effect\ .replace(':', ' * ')\ .replace('C(', '')\ .replace('T.', '')\ .replace('[', ' = "')\ .replace(']', '"')\ .replace(')', '') return effect def show_results(self, n_decimals): """ Show results of the analysis in a readable form. Parameters ---------- n_decimals : int Number of digits to round results when showing them """ phrase = 'method {}' print('\nLINEAR REGRESSION SUMMARY') print('------------------\n') print('Model summary') display(self.summary_r2().style\ .set_caption(phrase.format('.summary_r2()'))\ .set_precision(n_decimals)) print('------------------\n') print('ANOVA') display(self.summary_F().style\ .format(None, na_rep="")\ .set_caption(phrase.format('.summary_F()'))\ .set_precision(n_decimals)) print('------------------\n') print('Coefficients') display(self.summary().style\ .format(None, na_rep="")\ .set_caption(phrase.format('.summary()'))\ .set_precision(n_decimals)) def summary(self): """ Summary table with requested information related to regression coefficients. Returns ------- pd.DataFrame A summary table """ statistics = [ self.coefficients, self.coefficients_sterrors, self.coefficients_beta, self.coefficients_tvalues, self.coefficients_pvalues ] columns = [ 'B', 'Std. Error', 'Beta', 't', 'p-value' ] if self._show_ci: statistics.append(self.coefficients_confidence_interval) columns.extend(list(self.coefficients_confidence_interval.columns)) if self._show_col: statistics.append(self.coefficients_tolerance) statistics.append(self.coefficients_VIF) columns.extend(['Tolerance', 'VIF']) statistics = pd.concat(statistics, axis=1) statistics.columns = columns statistics.index = self._params_idx return statistics def summary_r2(self): """ Summary table with information related to coefficient of determination. Returns ------- pd.DataFrame A summary table """ r = self.r2 ** 0.5 r2 = self.r2 r2_adj = self.r2_adjusted statistics = [[r, r2, r2_adj]] columns = [ 'R', 'R Squared', 'Adj. R Squared' ] statistics = pd.DataFrame( statistics, columns=columns, index = [''] ) return statistics def summary_F(self): """ Summary table with information related to F-statistic. Returns ------- pd.DataFrame A summary table """ results = [[self.ess, self.dof_model, self.ms_model, self.F, self.F_pvalue], [self.rss, self.dof_resid, self.ms_resid, np.nan, np.nan], [self.tss, self.dof_total, np.nan, np.nan, np.nan]] results = pd.DataFrame(results, columns = ['Sum of Squares', 'df', 'Mean Square', 'F', 'p-value'], index = ['Regression', 'Residual', 'Total']) return results def _fit_backward(self): y_train = pd.Series(self._model.model.endog.copy(), name=self.dependent_variable, index=self._observations_idx) X_train = pd.DataFrame(self._model.model.exog, columns=self._model.model.exog_names, index=self._observations_idx) model = OLS(y_train, X_train, missing = 'drop') results = model.fit() max_pvalue = results.pvalues.drop('Intercept').max() while max_pvalue > self.sig_level_removal: x_to_drop = results.pvalues.drop('Intercept').idxmax() X_train = X_train.drop(x_to_drop, axis = 1) model = OLS(y_train, X_train, missing = 'drop') results = model.fit() max_pvalue = results.pvalues.drop('Intercept').max() self._model = results return def _identify_variables_without_variation(self): if self.include_constant: mask = self._model.model.exog.var(axis=0)[1:] == 0 else: mask = self._model.model.exog.var(axis=0) == 0 variables_included = [x for x in list(self._model.params.index) if x!='Intercept'] return list(np.array(variables_included)[mask]) def _remove_variables_without_variation(self): X = pd.DataFrame(self._model.model.exog, columns=self._model.model.exog_names, index=self._observations_idx) X = X.drop(self.variables_excluded, axis = 1) return X def save_independent_variables( self, data=None, add_to_data=False ): """ Produce values of independent variable remained in a fitted model. This option is useful if you don't create dummy variables or interaction effects manually but want to use them in a further analysis. Only variables remained in a model are returned (those that are shown in a summary table). Parameters ---------- data : pd.DataFrame Data for which independent variables are requested; may be not specified if you want to save values for the same data that were used to fit a model add_to_data : bool Whether to merge new values with the given data. Currently, this option returns data with a sorted index Returns ------- pd.DataFrame Values of independent variables """ if data is None: data = self._data.copy() if self.include_constant: result = self._model.model.exog[:, 1:].copy() else: result = self._model.model.exog.copy() columns = [x for x in self.variables_included if x!='Constant'] result = pd.DataFrame( result, columns=columns, index=self._observations_idx) else: aux_model = ols(self.formula, data).fit() aux_data_idx = aux_model.fittedvalues.index aux_data_cols = aux_model.model.exog_names aux_data_cols = [LinearRegression._translate_from_patsy_notation(x)\ for x in aux_data_cols] aux_data = pd.DataFrame(aux_model.model.exog, index=aux_data_idx, columns=aux_data_cols) result = aux_data[self.variables_included] if add_to_data: result = pd.concat([data, result], axis=1, sort=False) return result def save_residuals(self, unstandardized=True, standardized=False, studentized=False, deleted=False, studentized_deleted=False, add_to_data=False): """ Produce values of various residuals. Residuals are returned only for data used to fit a model. Parameters ---------- unstandardized : bool Whether to save unstandardized (raw) residuals standardized : bool Whether to save standardized (z-scores) residuals studentized : bool Whether to save studentized residuals deleted : bool Whether to save deleted residuals studentized_deleted : bool Whether to save studentized deleted residuals add_to_data : bool Whether to merge new values with data. Currently, this option returns data with a sorted index Returns ------- pd.DataFrame Requested residuals """ columns_to_show = [f'{k.capitalize().replace("ized", ".").replace("eted", ".").replace("_", " ")} res.' \ for k, v in vars().items() if v==True and k!='add_to_data'] infl = OLSInfluence(self._model) result = [] res_unstand = infl.resid res_unstand.name = 'Unstandard. res.' res_stand = (res_unstand - res_unstand.mean()) / res_unstand.std() res_stand.name = 'Standard. res.' res_stud = infl.resid_studentized_internal res_stud.name = 'Student. res.' result.extend([ res_unstand, res_stand, res_stud]) if deleted: res_del = infl.resid_press res_del.name = 'Del. res.' result.append(res_del) if studentized_deleted: res_stud_del = infl.resid_studentized_external res_stud_del.name = 'Student. del. res.' result.append(res_stud_del) result = pd.concat(result, axis=1) result = result[columns_to_show].copy() if add_to_data: result = pd.concat([self._data, result], axis=1) return result #following two methods are still in progress @staticmethod def _turn_all_rows_to_fancy(summary): return summary.apply(lambda x: LinearRegression._turn_one_row_to_fancy(x), axis=1) @staticmethod def _turn_one_row_to_fancy(row): coef = round(row['B'].item(), 3) sterr = round(row['Std. Error'].item(), 3) pval = row['p-value'].item() if pval <= 0.01: mark = '***' elif pval <= 0.05: mark = '**' elif pval <= 0.1: mark = '*' else: mark = '' result = f'{coef}{mark} \n ({sterr})' return result class BinaryLogisticRegression: """ Class for binary logistic regression models based on the excellent statsmodels package. Parameters ---------- method : 'enter' or 'backward' Method for predictors selection include_constant : bool (CURRENTLY UNAVAILIABLE) Whether to include constant in the model classification_cutoff : float Minimum probability to assign a prediction value 1 sig_level_entry : float (CURRENTLY UNAVAILIABLE) Max significance level to include predictor in the model sig_level_removal : float Min significance level to exclude predictor from the model Attributes ---------- predictions : pd.Series Predicted values classification_table : pd.DataFrame A classification table precision_and_recall : pd.DataFrame Table with precision, recall, and F1-score of the model variables_excluded : list Variables excluded because of zero variance variables_included : list Variables included in a model N : int Number of observations included in a model r2_pseudo_macfadden : float MacFadden's pseudo coefficient of determination r2_pseudo_cox_snell : float Cox&Snell's pseudo coefficient of determination r2_pseudo_nagelkerke : float Nagelkerke's pseudo coefficient of determination loglikelihood : float -2LL coefficients : pd.Series Regression coefficients coefficients_sterrors : pd.Series Standard errors of regression coefficients coefficients_wald_statistics : pd.Series Wald statistic of regression coefficients coefficients_zvalues : pd.Series z-statistic of regression coefficients coefficients_pvalues : pd.Series P-values of regression coefficients coefficients_exp : pd.Series e ** regression coefficients """ def __init__( self, method='enter', include_constant=True, classification_cutoff=0.5, sig_level_entry=0.05, sig_level_removal=0.05, ): self.method = method.lower().strip() self.include_constant = include_constant self.classification_cutoff = classification_cutoff self.sig_level_entry = sig_level_entry self.sig_level_removal = sig_level_removal def fit( self, data, formula, categorical_variables=None, max_iterations=100, show_results=True, confidence_intervals=True, use_patsy_notation=False, n_decimals=3 ): """ Fit model to the given data using formula. Parameters ---------- data : pd.DataFrame Data to fit a model formula : str Formula of a model specification, e.g. 'y ~ x1 + x2'; should be passed either in Patsy (statsmodels) notation or using the following rules: '*' for interaction of the variables, ':' for interaction & main effects, i.e., 'y ~ x:z' equals to 'y ~ x + z + x*z' (unlike the Patsy notation). If you use Patsy notation, please specify the parameter use_patsy_notation=True. categorical_variables : list List of names of the variables that should be considered categorical. These variables would be automatically converted into sets of dummy variables. If you want to use this option, please make sure that you don't have nested names of variables (e.g. 'imdb' and 'imdb_rate' at the same time), otherwise this option results in an incorrect procedure. max_iterations : int Maximum iterations for convergence show_results : bool Whether to show results of analysis confidence_intervals : bool Whether to include coefficients' confidence intervals in the summary table use_patsy_notation : bool Turn this on if you use strictly Patsy's rules to define a formula. See more: https://patsy.readthedocs.io/en/latest/quickstart.html n_decimals : int Number of digits to round results when showing them Returns ------- self The current instance of the BinaryLogisticRegression class """ self._data = data.copy() self.categorical_variables = categorical_variables self._show_ci = confidence_intervals self.max_iterations = max_iterations if '=' in formula: formula = formula.replace('=', '~') if not use_patsy_notation: formula = formula.replace('*', '^').replace(':', '*').replace('^', ':') self.formula = formula self.dependent_variable = self.formula.split('~')[0].strip() dep_cats = get_categories(self._data[self.dependent_variable]) self._dep_cats = dep_cats if len(dep_cats) != 2: raise ValueError(f"""A dependent variable should have exactly 2 unique categories. The provided variable has {len(dep_cats)}.""") self._mapper = {dep_cats[0]: 0, dep_cats[1]: 1} self._inv_mapper = {0: dep_cats[0], 1: dep_cats[1]} if not is_numeric_dtype(self._data[self.dependent_variable]): self._data[self.dependent_variable] = self._data[self.dependent_variable].map(self._mapper).astype(int) #won't work correctly if some variables have nested names (e.g. kinopoisk_rate and kinopoisk_rate_count) if categorical_variables is not None: if not isinstance(categorical_variables, list): raise ValueError(f"""Categorical variables should be passed as list. Type {type(categorical_variables)} was passed instead.""") else: for variable in categorical_variables: formula = formula.replace(variable, f'C({variable})') self._optimizer = 'newton' try: self._model = logit(formula=formula, data=self._data).fit( maxiter=self.max_iterations, warn_convergence=False, disp=False, method=self._optimizer, full_output=True ) except np.linalg.LinAlgError: self._optimizer = 'bfgs' self._model = logit(formula=formula, data=self._data).fit( maxiter=self.max_iterations, warn_convergence=False, disp=False, method=self._optimizer, full_output=True ) self._model_params = { 'maxiter': self.max_iterations, 'warn_convergence': False, 'disp': False, 'method': self._optimizer, 'full_output': True } self._observations_idx = list(self._model.fittedvalues.index) self.variables_excluded = self._identify_variables_without_variation() if len(self.variables_excluded) > 0: y = pd.Series(self._model.model.endog.copy(), index=self._observations_idx, name=self.dependent_variable) X = self._remove_variables_without_variation() self._model = Logit(y, X, missing = 'drop').fit(**self._model_params) self.variables_excluded = [BinaryLogisticRegression._translate_from_patsy_notation(x) for x in self.variables_excluded] if self.method == 'backward': self._fit_backward() self._get_statistics_from_model() self.predictions = self.predict() self.classification_table = self.get_classification_table() self.precision_and_recall = self.get_precision_and_recall() if show_results: self.show_results(n_decimals) if len(self.variables_excluded) > 0: print('------------------\n') print(f"Following variables were excluded due to zero variance: {'; '.join(self.variables_excluded)}") return self def _fit_backward(self): y_train = pd.Series(self._model.model.endog.copy(), name=self.dependent_variable, index=self._observations_idx) X_train = pd.DataFrame(self._model.model.exog, columns=self._model.model.exog_names, index=self._observations_idx) model = Logit(y_train, X_train, missing = 'drop') results = model.fit(**self._model_params) max_pvalue = results.pvalues.drop('Intercept').max() while max_pvalue > self.sig_level_removal: x_to_drop = results.pvalues.drop('Intercept').idxmax() X_train = X_train.drop(x_to_drop, axis = 1) model = Logit(y_train, X_train, missing = 'drop') results = model.fit(**self._model_params) max_pvalue = results.pvalues.drop('Intercept').max() self._model = results return def _identify_variables_without_variation(self): if self.include_constant: mask = self._model.model.exog.var(axis=0)[1:] == 0 else: mask = self._model.model.exog.var(axis=0) == 0 variables_included = [x for x in list(self._model.params.index) if x!='Intercept'] return list(np.array(variables_included)[mask]) def _remove_variables_without_variation(self): X = pd.DataFrame(self._model.model.exog, columns=self._model.model.exog_names, index=self._observations_idx) X = X.drop(self.variables_excluded, axis = 1) return X @staticmethod def _translate_from_patsy_notation(effect): effect = effect\ .replace(':', ' * ')\ .replace('C(', '')\ .replace('T.', '')\ .replace('[', ' = "')\ .replace(']', '"')\ .replace(')', '') return effect def _get_statistics_from_model(self): self.N = self._model.nobs self.r2_pseudo_macfadden = self._model.prsquared self.r2_pseudo_cox_snell = 1 - np.exp(-self._model.llr/self.N) self.r2_pseudo_nagelkerke = self.r2_pseudo_cox_snell / (1 - np.exp(-(-2*self._model.llnull)/self.N)) self.loglikelihood = -2 * self._model.llf self.coefficients = self._model.params.copy() self.coefficients_sterrors = self._model.bse.copy() self.coefficients_wald_statistics = self._model.tvalues.copy() ** 2 self.coefficients_zvalues = self._model.tvalues.copy() self.coefficients_pvalues = self._model.pvalues.copy() self.coefficients_exp = self.coefficients.apply(np.exp) variables_included = [x for x in list(self.coefficients.index) if x!='Intercept'] self._variables_included_patsy = variables_included.copy() variables_included = [BinaryLogisticRegression._translate_from_patsy_notation(x) for x in variables_included] self.variables_included = variables_included if self.include_constant: self._params_idx = ['Constant'] + variables_included else: self._params_idx = variables_included.copy() for stats in [self.coefficients, self.coefficients_pvalues, self.coefficients_sterrors, self.coefficients_zvalues, self.coefficients_wald_statistics, self.coefficients_exp]: stats.index = self._params_idx return def summary(self): """ Summary table with requested information related to regression coefficients. Returns ------- pd.DataFrame A summary table """ statistics = [ self.coefficients, self.coefficients_sterrors, self.coefficients_wald_statistics, self.coefficients_pvalues, self.coefficients_exp ] columns = [ 'B', 'Std. Error', 'Wald', 'p-value', 'Exp(B)' ] if self._show_ci: statistics.append(self.coefficients_confidence_interval) columns.extend(list(self.coefficients_confidence_interval.columns)) statistics = pd.concat(statistics, axis=1) statistics.columns = columns statistics.index = self._params_idx return statistics @property def coefficients_confidence_interval(self): ci = self._model.conf_int() ci.index = self._params_idx ci.columns = [f'LB CI (95%)', f'UB CI (95%)'] return ci def show_results(self, n_decimals): """ Show results of the analysis in a readable form. Parameters ---------- n_decimals : int Number of digits to round results when showing them """ phrase = 'method {}' print('\nLOGISTIC REGRESSION SUMMARY\n') if self._model.mle_retvals['converged']==True: print('Estimation was converged successfully.') else: print('Estimation was NOT converged successfully.') print('Please enlarge the number of iterations.') print('------------------\n') print('Dependent variable encoding') display(self.get_dependent_variable_codes().style\ .set_caption(phrase.format('.get_dependent_variable_codes()'))) print('------------------\n') print('Model summary') display(self.summary_r2().style\ .set_caption(phrase.format('.summary_r2()'))\ .set_precision(n_decimals)) print('------------------\n') print('Classification table') display(self.get_classification_table().style\ .set_caption(phrase.format('.get_classification_table()'))\ .set_precision(n_decimals)) print('------------------\n') print('Precision and recall') display(self.get_precision_and_recall().style\ .set_caption(phrase.format('.get_precision_and_recall()'))\ .set_precision(n_decimals)) print('------------------\n') print('Coefficients') display(self.summary().style\ .format(None, na_rep="")\ .set_caption(phrase.format('.summary()'))\ .set_precision(n_decimals)) def summary_r2(self): """ Summary table with information related to pseudo coefficients of determination. Returns ------- pd.DataFrame A summary table """ ll = self.loglikelihood mf = self.r2_pseudo_macfadden cs = self.r2_pseudo_cox_snell nk = self.r2_pseudo_nagelkerke statistics = [[ll, mf, cs, nk]] columns = [ '-2 Log likelihood', "MacFadden's Pseudo R2", "Cox&Snell's Pseudo R2", "Nagelkerke's Pseudo R2", ] statistics = pd.DataFrame( statistics, columns=columns, index = [''] ) return statistics def get_dependent_variable_codes(self): """ Get information on how categories of a dependent variable were encoded. Returns ------- pd.DataFrame A table explaining encodings """ mapper = self._mapper result = pd.DataFrame( [list(mapper.items())[0], list(mapper.items())[1]], columns = ['Original value', 'Model value'], index = ['', ' '] ) return result def get_classification_table(self): """ Get a classification table. Returns ------- pd.DataFrame A classification table """ all_categories = self._dep_cats classification = pd.DataFrame( self._model.pred_table(), columns=self._dep_cats, index=self._dep_cats ) classification.index.name = 'Observed' classification.columns.name = 'Predicted' classification['All'] = classification.sum(axis=1) classification.loc['All'] = classification.sum() n = classification.loc['All', 'All'] for category in all_categories: classification.loc[category, 'All'] = classification.loc[category, category] / classification.loc[category, 'All'] * 100 classification.loc['All', category] = classification.loc['All', category] / n * 100 classification.loc['All', 'All'] = np.diagonal(classification.loc[all_categories, all_categories]).sum() / n * 100 classification.index = all_categories + ['Percent predicted'] classification.index.name = 'Observed' classification.columns = all_categories + ['Percent correct'] classification.columns.name = 'Predicted' return classification def get_precision_and_recall(self): """ Estimate precision, recall, and F-score for all the categories. Returns ------- pd.DataFrame A table with estimated metrics """ preds = self.classification_table.iloc[:-1, :-1] results = [] categories = list(preds.index) for current_category in categories: idx = [cat for cat in categories if cat!=current_category] tp = preds.loc[current_category, current_category] fp = preds.loc[idx, current_category].sum() fn = preds.loc[current_category, idx].sum() if fp == 0: precision = 0 else: precision = tp / (tp + fp) recall = tp / (tp + fn) if precision + recall != 0: f1 = 2 * (precision * recall) / (precision + recall) else: f1 = 0 results.append([precision, recall, f1]) results = pd.DataFrame(results, index=categories, columns = ['Precision', 'Recall', 'F score']) results.loc['Mean'] = results.mean() return results def predict( self, data=None, group_membership=True, probability=False, logit=False, add_to_data=False, ): """ Predict values of a dependent variable using the fitted model. Parameters ---------- data : pd.DataFrame Data for prediction; may be not specified if you want to predict values for the same data that were used to fit a model group_membership : bool Whether to predict observation's membership to categories of a dependent variable probability : bool Whether to predict exact probability logit : bool Whether to predict a logit value add_to_data : bool Whether to merge predictions with the given data. Currently, this option returns data with a sorted index Returns ------- pd.DataFrame Predictions """ name_memb = f'{self.dependent_variable} (predicted)' name_prob = f'{self.dependent_variable} (predicted prob.)' name_logit = f'{self.dependent_variable} (predicted logit)' all_columns = [name_memb, name_prob, name_logit] columns_to_show = [] if group_membership: columns_to_show.append(name_memb) if probability: columns_to_show.append(name_prob) if logit: columns_to_show.append(name_logit) cutoff = self.classification_cutoff if data is None: data_init = self._data.copy() logit = self._model.fittedvalues prob = logit.apply(lambda x: np.exp(x) / (1 + np.exp(x))) memb = prob.apply(lambda x: 1 if x >= cutoff else 0).map(self._inv_mapper) result = pd.DataFrame(index=self._observations_idx, columns=all_columns) result[name_memb] = memb result[name_prob] = prob result[name_logit] = logit result = result[columns_to_show] if add_to_data: return pd.concat([data_init, result], axis=1) else: return result else: aux_model = logit(self.formula, data).fit(**self._model_params) aux_data_idx = aux_model.fittedvalues.index aux_data_cols = aux_model.model.exog_names aux_data_cols = [BinaryLogisticRegression._translate_from_patsy_notation(x)\ for x in aux_data_cols] aux_data = pd.DataFrame(aux_model.model.exog, index=aux_data_idx, columns=aux_data_cols) aux_X = add_constant(aux_data[self.variables_included].copy()) aux_y = aux_model.model.endog.copy() aux_model = Logit(aux_y, aux_X, missing='drop').fit(**self._model_params) logit = aux_model.fittedvalues prob = logit.apply(lambda x: np.exp(x) / (1 + np.exp(x))) memb = prob.apply(lambda x: 1 if x >= cutoff else 0).map(self._inv_mapper) result = pd.DataFrame(index=aux_data_idx, columns=all_columns) result[name_memb] = memb result[name_prob] = prob result[name_logit] = logit result = result[columns_to_show] if add_to_data: return
pd.concat([data, result], axis=1)
pandas.concat
import numpy as np import matplotlib.pyplot as plt import random import pandas as pd import pybitup import heat_conduction # Create fake data in a tsv (tab-separated values) file param = [0.95, 0.95, 2.37, 21.29, -18.41, 0.00191] x = np.arange(10.0, 70.0, 4.0) model_def = heat_conduction.HeatConduction() model_def.param = param model_def.x = x std_y=0.2604 array_std_y = np.ones(len(x)) array_std_y *= std_y # Generate experimental data from deterministic simulation and random error from std #y = model_def.compute_temperature() #num_data = len(x) #rn_data=np.zeros((1, num_data)) #for i in range(0, num_data): # rn_data[0,i]=random.gauss(0, std_y) #y += rn_data[0,:] # Experimental data provided (see Smith. Tab. 3.2 p. 57, aluminium rod) y = [96.14, 80.12, 67.66, 57.96, 50.90, 44.84, 39.75, 36.16, 33.31, 31.15, 29.28, 27.88, 27.18, 26.40, 25.86] df =
pd.DataFrame({'x': x, 'T': y, 'std_T': array_std_y})
pandas.DataFrame
import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from tools import utils import datetime import io import time import shutil import boto import botocore.config import xarray as xr import numpy as np import pandas as pd import scipy.misc import psutil from joblib import delayed, Parallel import torch from torch.utils.data import Dataset, DataLoader import tools ## Interact with NOAA GOES ABI dataset via S3 and local paths class NOAAGOESS3(object): '<Key: noaa-goes16,ABI-L1b-RadC/2000/001/12/OR_ABI-L1b-RadC-M3C01_G16_s20000011200000_e20000011200000_c20170671748180.nc>' def __init__(self, product='ABI-L1b-RadM', channels=range(1,17), save_directory='./GOES16', skip_connection=False): self.bucket_name = 'noaa-goes16' self.product = product self.channels = channels self.save_directory = os.path.join(save_directory, product) if not skip_connection: self._connect_to_s3() def _connect_to_s3(self): config = botocore.config.Config(connect_timeout=5, retries={'max_attempts': 1}) self.conn = boto.connect_s3() #host='s3.amazonaws.com', config=config) self.goes_bucket = self.conn.get_bucket(self.bucket_name) def year_day_pairs(self): ''' Gets all year and day pairs in S3 for the given product Return: list of pairs ''' days = [] for key_year in self.goes_bucket.list(self.product+"/", "/"): y = int(key_year.name.split('/')[1]) if y == 2000: continue for key_day in self.goes_bucket.list(key_year.name, "/"): d = int(key_day.name.split('/')[2]) days += [(y, d)] return days def day_keys(self, year, day, hours=range(12,24)): keybase = '%(product)s/%(year)04i/%(day)03i/' % dict(product=self.product, year=year, day=day) data = [] for key_hour in self.goes_bucket.list(keybase, "/"): hour = int(key_hour.name.split('/')[3]) if hour not in hours: continue for key_nc in self.goes_bucket.list(key_hour.name, '/'): fname = key_nc.name.split('/')[4] info = fname.split('-')[3] c, g, t, _, _ = info.split("_") spatial = fname.split('-')[2] c = int(c[3:]) if c not in self.channels: continue minute = int(t[10:12]) second = int(t[12:15]) data.append(dict(channel=c, year=year, day=day, hour=hour, minute=minute, second=second, spatial=spatial, keyname=key_nc.name)) #if len(data) > 100: # break return pd.DataFrame(data) def _open_file(self, f, normalize=True): try: ds = xr.open_dataset(f) except IOError: os.remove(f) return None if normalize: mn = ds['min_radiance_value_of_valid_pixels'].values mx = ds['max_radiance_value_of_valid_pixels'].values ds['Rad'] = (ds['Rad'] - mn) / (mx - mn) return ds def download_from_s3(self, keyname, directory): if not os.path.exists(directory): os.makedirs(directory) k = boto.s3.key.Key(self.goes_bucket) k.key = keyname data_file = os.path.join(directory, os.path.basename(keyname)) if os.path.exists(data_file): pass elif k.exists(): print("writing file to {}".format(data_file)) k.get_contents_to_filename(data_file) else: data_file = None return data_file def read_nc_from_s3(self, keyname, normalize=True): data_file = self.download_from_s3(keyname, self.save_directory) if data_file is not None: ds = self._open_file(data_file, normalize=normalize) if ds is None: self.read_nc_from_s3(keyname, normalize=normalize) else: ds = None data_file = None return ds, data_file def download_day(self, year, day, hours=range(12, 25)): ''' Downloads all files for a given year and dayofyear for the defined channels ''' keys_df = self.day_keys(year, day, hours=hours) for i, row in keys_df.iterrows(): save_dir= os.path.join(self.save_directory, '%04i/%03i/%02i/' % (year, day, row.hour)) data_file = self.download_from_s3(row.keyname, save_dir) def local_files(self, year=None, dayofyear=None): tmp_path = os.path.join(os.path.dirname(__file__), '.cache') filelist_file = tmp_path + '/localfilelist_{}_{}_{}.pkl'.format(self.product, year, dayofyear) if not os.path.exists(tmp_path): os.makedirs(tmp_path) if False: #os.path.exists(filelist_file): data = pd.read_pickle(filelist_file) else: data = [] base_dir = self.save_directory if year is not None: base_dir = os.path.join(base_dir, '%04i' % year) if dayofyear is not None: base_dir = os.path.join(base_dir, '%03i' % dayofyear) #for f in os.listdir(self.save_directory): if not os.path.exists(base_dir): return pd.DataFrame() for directory, folders, files in os.walk(base_dir): for f in files: if (f[-3:] == '.nc') and ("L1b" in f): meta = get_filename_metadata(f) meta['file'] = os.path.join(directory, f) data.append(meta) data =
pd.DataFrame(data)
pandas.DataFrame
import string, os, itertools, pickle from time import time import pandas as pd import numpy as np from scipy import interp from sklearn.preprocessing import LabelBinarizer, label_binarize from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import GridSearchCV, StratifiedKFold from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import SGDClassifier from sklearn.metrics import precision_recall_fscore_support, roc_curve, auc, precision_recall_curve, \ average_precision_score, confusion_matrix, classification_report from imblearn.pipeline import Pipeline import matplotlib.pyplot as plt class TwoLabelBinarizer(LabelBinarizer): """my label binarizer so that it would give same result in binary cases as in multiclass default binarizer turns out funny format when dealing with binary classification problem""" def transform(self, y): Y = super().transform(y) if self.y_type_ == 'binary': return np.hstack((Y, 1 - Y)) else: return Y class ClassifierCv(object): """class for general classifier""" def __init__(self, data_labels, data_text): """initalizes classifier object -INPUT: -data_labels: series, labels for classes -data_text: series, texts for classification -OUTPUT: -initialized classifier object""" self.text = data_text.reset_index(drop=True) self.labels = data_labels.reset_index(drop=True) if data_labels is not None: # should be none only if unpickle # turn into binary labels self.labels_unique = [label for label in self.labels.unique()] # for some reason in two classes label binareizer gives different output if len(self.labels_unique) == 2: my_label_binarizer = TwoLabelBinarizer() self.labels_bin = my_label_binarizer.fit_transform(self.labels) else: self.labels_bin = label_binarize(self.labels, classes=self.labels_unique) else: self.labels_unique = None self.labels_bin = None # metrics (recall, prec, f1) self.metrics_per_class = None self.metrics_average = None # cv labels self.cv_labels_real = [] self.cv_labels_predicted = [] # roc auc self.fpr = None self.tpr = None self.roc_auc = None # precision-recall curve self.recall = None self.precision = None self.average_precision = None # needed for precison recall, keeps cv results self.y_real = None self.y_proba = None # grid search self.grid_search = None # time self.times_cv = [] self.time_train = [] def text_process(self, mess): """ Default text cleaning. Takes in a string of text, then performs the following: 1. Remove all punctuation 2. Remove all stopwords 3. Returns a list of the cleaned text """ # Check characters to see if they are in punctuation nopunc = [char for char in mess if char not in string.punctuation] # Join the characters again to form the string. nopunc = ''.join(nopunc) # Now just remove any stopwords return [word for word in nopunc.split() if word.lower() not in stopwords.words('english')] def prepare_pipeline(self, custom_pipeline=None): """prepares pipeline for model - INPUT: - custom_pipeline: Pipeline, if None, use default pipeline, else input list for sklearn Pipeline -OUTPUT: - initialises sklearn pipeline""" if custom_pipeline is None: self.text_clf = Pipeline([('vect', CountVectorizer(analyzer=self.text_process)), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier(loss='hinge', penalty='l2', alpha=1e-3, random_state=42, max_iter=5, tol=None)), ]) else: self.text_clf = Pipeline(custom_pipeline) def perform_random_search(self, param_grid, scoring='f1_weighted', num_cv=3, n_jobs=1, **kwargs): """perform grid search to find best parameters -INPUT: - param_grid: dict or list of dictionaries, Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. - scoring: string from http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter - num_cv: int, number of cross-validation iterations - n_jobs: Number of jobs to run in parallel. -OUTPUT: - fitted gridsearch""" self.grid_search = GridSearchCV(self.text_clf, cv=num_cv, scoring=scoring, n_jobs=n_jobs, param_grid=param_grid, **kwargs) self.grid_search.fit(self.text, self.labels) def print_top_random_search(self, num_top=3): """print grid search results -INPUT: -num_top: int, number of top search results to print -OUTPUT: - printed top results""" results = self.grid_search.cv_results_ for i in range(1, num_top + 1): candidates = pd.np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( results['mean_test_score'][candidate], results['std_test_score'][candidate])) print("Parameters: {0}".format(results['params'][candidate])) print("") def get_top_random_search_parameters(self, num): """get parameters of top grid search -INPUT: - num: int, number of nth top rank parameters -OUTPUT: - dict of nth top parameters""" results = self.grid_search.cv_results_ candidates = pd.np.flatnonzero(results['rank_test_score'] == num) for candidate in candidates: return results['params'][candidate] def prepare_cv(self, n_iter, shuffle=True, random_state=1): """initialises stratified cross-validaton INPUT: - n_iter: int, number of cross validation iterations OUTPUT: - prepares k-fold cross validation object""" self.kf = StratifiedKFold(n_splits=n_iter, shuffle=shuffle, random_state=random_state) self.unique_labels = list(self.labels.unique()) def init_metrics_(self): """ initialise metrics, remove previous training metrics """ self.metrics_per_class = [] self.metrics_average = [] self.fpr = dict() self.tpr = dict() self.roc_auc = dict() self.precision = dict() self.recall = dict() self.average_precision = dict() self.y_proba = dict() self.y_real = dict() self.cv_labels_predicted = [] self.cv_labels_real = [] self.times_cv = [] self.time_train = [] for label_bin in range(len(self.labels_unique)): self.fpr[label_bin] = [] self.tpr[label_bin] = [] self.roc_auc[label_bin] = [] self.precision[label_bin] = [] self.recall[label_bin] = [] self.average_precision[label_bin] = [] self.y_real[label_bin] = [] self.y_proba[label_bin] = [] self.fpr["micro"] = [] self.tpr["micro"] = [] self.roc_auc["micro"] = [] self.precision["micro"] = [] self.recall["micro"] = [] self.average_precision["micro"] = [] self.y_real["micro"] = [] self.y_proba["micro"] = [] def calc_store_rocauc_precrec_(self, classifier_rocauc, proba_method, train_ids, test_ids): """calculate and store ROC AUC and precision recall curve metrics -INPUT: -classifier_roc_auc: sklearn OneVsRest classifier -proba_method: string, classifier method name for predicting label probability -train_ids: list of ids of samples used for training -test_ids: list of ids of samples used for testing -OUTPUT: -stored metrics for ROC AUC and precision recall curve """ y_score = None # roc auc stuff # some classifiers have method decision function, others predict proba to get scores if proba_method == "decision_function": y_score = classifier_rocauc.fit(self.text[train_ids], self.labels_bin[train_ids]).decision_function( self.text[test_ids]) elif proba_method == "predict_proba": y_score = classifier_rocauc.fit(self.text[train_ids], self.labels_bin[train_ids]).predict_proba( list(self.text[test_ids])) if y_score is None: return for i in range(len(self.unique_labels)): fpr_temp, tpr_temp, _ = roc_curve(self.labels_bin[test_ids][:, i], y_score[:, i]) self.fpr[i].append(fpr_temp) self.tpr[i].append(tpr_temp) self.roc_auc[i].append(auc(fpr_temp, tpr_temp)) # precison -recall metrics precision_temp, recall_temp, _ = precision_recall_curve(self.labels_bin[test_ids][:, i], y_score[:, i]) self.precision[i].append(precision_temp) self.recall[i].append(recall_temp) self.average_precision[i].append(average_precision_score(self.labels_bin[test_ids][:, i], y_score[:, i])) self.y_real[i].append(self.labels_bin[test_ids][:, i]) self.y_proba[i].append(y_score[:, i]) # Compute micro-average ROC curve and ROC area fpr_micro_temp, tpr_micro_temp, _ = roc_curve(self.labels_bin[test_ids].ravel(), y_score.ravel()) self.fpr["micro"].append(fpr_micro_temp) self.tpr["micro"].append(tpr_micro_temp) self.roc_auc["micro"].append(auc(fpr_micro_temp, tpr_micro_temp)) # precision recall. A "micro-average": quantifying score on all classes jointly prec_micro_temp, recall_micro_temp, _ = precision_recall_curve(self.labels_bin[test_ids].ravel(), y_score.ravel()) self.precision["micro"].append(prec_micro_temp) self.recall["micro"].append(recall_micro_temp) self.average_precision["micro"] = average_precision_score(self.labels_bin[test_ids], y_score, average="micro") self.y_real["micro"].append(self.labels_bin[test_ids].ravel()) self.y_proba["micro"].append(y_score.ravel()) def get_classifier_proba_method_(self, classifier): """get label probability method of classifier. Some mehtods don't support predict_proba -INPUT: -classifier: sklearn classifier, which probability calculation method is to be detected -OUTPUT: -string with method name """ proba_method = None if callable(getattr(classifier, "decision_function", None)): proba_method = "decision_function" elif callable(getattr(classifier, "predict_proba", None)): proba_method = "predict_proba" return proba_method def train(self, roc_auc=True): """train model, save metrics -INPUT: - roc_auc: boolean, should roc_auc (includeing precision -recall plot) metrics be saved _OUTPUT: - trained model with metrics""" self.init_metrics_() classifier_rocauc = OneVsRestClassifier(self.text_clf) # check if classifier has predict_proba or decison_function method proba_method = self.get_classifier_proba_method_(classifier_rocauc) for train, test in self.kf.split(self.text, self.labels): t0 = time() self.text_clf.fit(self.text[train], self.labels[train]) time_cv = time() - t0 self.times_cv.append(time_cv) labels_predict = self.text_clf.predict(list(self.text[test])) self.cv_labels_predicted.append(labels_predict) self.cv_labels_real.append(self.labels[test]) labels_predict_label = labels_predict # per class metric, not average self.metrics_per_class.append(precision_recall_fscore_support(self.labels[test], labels_predict_label, average=None, labels=self.unique_labels)) self.metrics_average.append(precision_recall_fscore_support(self.labels[test], labels_predict_label, average='weighted', labels=self.unique_labels)) if roc_auc: self.calc_store_rocauc_precrec_(classifier_rocauc, proba_method, train, test) self.metrics_df = pd.DataFrame(self.metrics_per_class) self.metrics_average_df = pd.DataFrame(self.metrics_average) # finally make model with all training data t0 = time() self.text_clf.fit(self.text, self.labels) time_train = time() - t0 self.time_train.append(time_train) def predict(self, text_list, proba=False): """"predict labels based on trained classifier - INPUT: - text_list: list of texts which label will be predicted - proba: boolean, if true probability will be predicted - OUTPUT: - dataframe labels (with probas if proba True) """ if proba: probas = [] if callable(getattr(self.text_clf, "predict_proba", None)): probas = self.text_clf.predict_proba(text_list) if callable(getattr(self.text_clf, "decision_function", None)): probas = self.text_clf.decision_function(text_list) return
pd.DataFrame(probas, columns=self.unique_labels)
pandas.DataFrame
import pandas as pd import numpy as np import cv2 import sys import os from keras.models import Sequential from keras.callbacks import Callback, ModelCheckpoint from keras.layers import (Flatten, Dense, Convolution2D, MaxPool2D, BatchNormalization, Dropout, Activation, Cropping2D, Lambda) from keras.optimizers import Adam from keras.regularizers import l2 from keras.preprocessing.image import ImageDataGenerator from keras.backend import tf as ktf from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from scipy.misc import imread import scipy import matplotlib import matplotlib.pyplot as plt import argparse import json import random matplotlib.style.use('ggplot') ########################### Utilities ######################################### def print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, bar_length=100): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) bar_length - Optional : character length of bar (Int) """ str_format = "{0:." + str(decimals) + "f}" percents = str_format.format(100 * (iteration / float(total))) filled_length = int(round(bar_length * iteration / float(total))) bar = '█' * filled_length + '-' * (bar_length - filled_length) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() ### ############################# VISUALIZATION #################################### def show_data_distribution(df): binwidth = 0.025 # histogram before image augmentation plt.hist(df.steering_angle, bins=np.arange(min(df.steering_angle), max(df.steering_angle) + binwidth, binwidth)) plt.title('Number of images per steering angle') plt.xlabel('Steering Angle') plt.ylabel('# Frames') plt.show() ############################### NETWORK ######################################## def nvidia_end_to_end(shape, l2_regularization_scale): print("Training Nvidia End To End of input shape %s" % str(shape)) height = shape[0] crop_factor = 0.2 # Top 40% to be removed crop_size = (int)(crop_factor * height) model = Sequential() model.add(Cropping2D(cropping=((crop_size, 0), (0, 0)), input_shape=shape)) model.add(Lambda(lambda x: (x / 255.0) - 0.5)) model.add(BatchNormalization(axis=1, input_shape=shape)) model.add(Convolution2D(16, (3, 3), padding='valid', strides=(2, 2), activation='elu', kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Convolution2D(24, (3, 3), padding='valid', strides=(1, 2), activation='elu', kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Convolution2D(36, (3, 3), padding='valid', activation='elu', kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Convolution2D(48, (2, 2), padding='valid', activation='elu', kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Convolution2D(48, (2, 2), padding='valid', activation='elu', kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Flatten()) model.add(Dense(512, kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Dropout(.5)) model.add(Activation('elu')) model.add(Dense(10, kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.add(Activation('elu')) model.add(Dense(1, kernel_regularizer=l2(l2_regularization_scale), bias_regularizer=l2(l2_regularization_scale))) model.summary() adam = Adam(lr=0.0001) model.compile(loss='mse', optimizer=adam) return model ################################# Dataset Manipulation Functions ############################## def flip_image(img): fimg = np.fliplr(img) return fimg def read_image(filename): img = imread(filename).astype(np.float32) img = scipy.misc.imresize(img, 50) return img def change_brightness(img): change_pct = int(random.uniform(0, 100)) mask = (255 - img) < change_pct img = np.where((255 - img) < change_pct, 255, img + change_pct) return img def read_csv(filename, cols): print("Reading Training file: %s" % filename) return pd.read_csv(filename, names=cols) def drop_zero_value_steering_angle_rows(df, drop_to): """ df: The dataframe to drop rows from col_name: The column to check from for steering_angle drop_to: How many rows to drop to """ # print("Total rows: %s" % len(df)) # indices = df[df[col_name] == 0.0].index # total_existing = indices.shape[0] # print("Total Zero Value rows: %s" % total_existing) # print("Dropping %s rows from df" % (total_existing - drop_to)) # remove_indices = np.random.choice(indices, size=total_existing - drop_to) # new_df = df.drop(remove_indices) # indices = new_df[new_df[col_name] == 0.0].index # print("Remaining zero value %s" % len(indices)) # # print("Total rows: %s" % len(new_df)) # print("Dropped %s rows" % (total_existing - drop_to)) # assert(len(df) - len(new_df) == (total_existing - drop_to)) # return new_df df_with_zero = df[df.steering_angle == 0] df_without_zero = df[df.steering_angle != 0] df_with_zero = df_with_zero.sample(n=drop_to) new_df = pd.concat([df_with_zero, df_without_zero]) return new_df def align_steering_angles_data(df): """ Given a dataframe drop the 0 value steering angles to bring it at par """ new_df = drop_zero_value_steering_angle_rows(df, 600) return new_df ############################# Data Reading Routines ################################# def read_training_data(track): cols = ['center_image', 'left_image', 'right_image', 'steering_angle', 'throttle', 'brake', 'speed'] data_dirs = [entry.path for entry in os.scandir('data') if entry.is_dir()] dfs = [] for ddir in data_dirs: # Ignore the recovery tracks since they will be loaded later if "recovery" not in ddir: if track in ddir: dfs.append(read_csv(ddir + '/driving_log.csv', cols)) elif track == "both": dfs.append(read_csv(ddir + '/driving_log.csv', cols)) df = pd.concat(dfs) return df def read_sample_training(df): """ df: Original DF from our training data which is to be augmented """ cols = ['center_image', 'left_image', 'right_image', 'steering_angle', 'throttle', 'brake', 'speed'] sample_df = read_csv('sample_training_data/driving_log.csv', cols) df = pd.concat([df, sample_df]) return df def preprocess(img): return img def augment_image(img, technique): if technique == "flip": return flip_image(img) elif technique == "brightness": return change_brightness(img) assert("No Valid technique passed for image augmentation") def load_data(df): all_samples = [] measurements = [] shape = None total_images = len(df) index = 0 for i, row in df.iterrows(): print_progress_bar(index, total_images) index += 1 center_image = preprocess(read_image(row[0])) all_samples.append(center_image) measurements.append(float(row[3])) left_image = preprocess(read_image(row[1])) all_samples.append(left_image) measurements.append(float(row[3]) + (0.25)) right_image = preprocess(read_image(row[2])) all_samples.append(right_image) measurements.append(float(row[3]) - (0.25)) shape = center_image.shape # Add an image for the flipped version of the center image flipped_center_image = flip_image(center_image) all_samples.append(flipped_center_image) measurements.append(-float(row[3])) return np.array(all_samples), np.array(measurements), shape # def setup_probabilistic_distribution(df): # binwidth = 0.025 # num_bins = int((max(df.steering_angle) - min(df.steering_angle)) / binwidth) # # histogram before image augmentation # counts, bins = np.histogram(df['steering_angle']) # total = len(df.index) def rearrange_and_augment_dataframe(df, shuffle_data): """ Rearrange the dataframe to linearize the steering angle images and also add a column to indicate whether augmentation is required or not and what kind of augmentation is required. """ center_df = pd.DataFrame() left_df = pd.DataFrame() right_df = pd.DataFrame() flipped_center = pd.DataFrame() center_df['image'] = df['center_image'] flipped_center['image'] = df['center_image'] left_df['image'] = df['left_image'] right_df['image'] = df['right_image'] center_df['steering_angle'] = df['steering_angle'] left_df['steering_angle'] = df['steering_angle'] + 0.25 right_df['steering_angle'] = df['steering_angle'] - 0.25 flipped_center['steering_angle'] = -1.0 * df['steering_angle'] # Set the dataframe columns for augmentation to false for some center_df['augmentation'] = False left_df['augmentation'] = False right_df['augmentation'] = False flipped_center['augmentation'] = True # Set the augmentation techniques we need center_df['techniques'] = "" left_df['techniques'] = "" right_df['techniques'] = "" flipped_center['techniques'] = "flip" # Change the brightness for images with different steering angles and add them brightness_df = center_df.loc[(center_df.steering_angle < -0.025) | (center_df.steering_angle > 0.025)] BRIGHTNESS_AUG_FACTOR = 20 brightness_df = brightness_df.append([brightness_df]*BRIGHTNESS_AUG_FACTOR, ignore_index=True) brightness_df.steering_angle = brightness_df.steering_angle + (np.random.uniform(-1, 1)/30.0) brightness_df.augmentation = True brightness_df.techniques = "brightness" new_df = pd.concat([center_df, left_df, right_df, flipped_center, brightness_df]) if shuffle_data: shuffle(new_df) return new_df def read_recovery_track_data(): # Read the recovery track data for track 2 cols = ['center_image', 'left_image', 'right_image', 'steering_angle', 'throttle', 'brake', 'speed'] df = read_csv('data/track2_recovery/driving_log.csv', cols) recovery_df = rearrange_and_augment_dataframe(df, shuffle_data=True) return recovery_df def save_experiment(name, network_used, epochs, model, hist): # Based on the experiment name, save the history and the model for future use experiments_folder = "experiments/" history_filename = experiments_folder + name + ".json" fp = open(history_filename, 'w') json.dump(hist.history, fp) print(hist.history) fp.close() model_filename = experiments_folder + name + "_" + str(epochs) + "_epochs_" + network_used + '.h5' model.save(model_filename) print("Wrote History file: %s" % history_filename) print("Wrote Model file: %s" % model_filename) NETWORKS = { "nvidia": nvidia_end_to_end, } ################################# GENERATORS ################################### def new_generator(samples, batch_size=32): num_samples = len(samples) while 1: shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset: offset + batch_size] images = [] angles = [] for i, batch_sample in batch_samples.iterrows(): img = read_image(batch_sample.image) steering_angle = float(batch_sample.steering_angle) augment = batch_sample.augmentation techniques = batch_sample.techniques if augment: # Techniques should be setup like this for multiple ones # flip,brightness techniques = techniques.split(",") for technique in techniques: img = augment_image(img, technique) images.append(img) angles.append(steering_angle) X = np.array(images) y = np.array(angles) yield X, y def generator(samples, batch_size=32): num_samples = len(samples) while 1: shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset: offset + batch_size] images = [] angles = [] for i, batch_sample in batch_samples.iterrows(): center_image = read_image(batch_sample[0]) center_angle = float(batch_sample[3]) images.append(center_image) angles.append(center_angle) left_image = read_image(batch_sample[1]) left_angle = float(batch_sample[3] + 0.25) images.append(left_image) angles.append(left_angle) right_image = read_image(batch_sample[0]) right_angle = float(batch_sample[3] - 0.25) images.append(right_image) angles.append(right_angle) X = np.array(images) y = np.array(angles) yield shuffle(X, y) def training_generator(samples, batch_size=32): num_samples = len(samples) images = [] angles = [] # Drop all the rows and just keep 10 # drop_indices = np.random.choice(samples.index, size=len(samples.index) - 100, replace=False) # samples = samples.drop(drop_indices) # First create the proper training data. print("Creating Initial Training Data...") for i, batch_sample in samples.iterrows(): center_image = read_image(batch_sample[0]) center_angle = float(batch_sample[3]) images.append(center_image) angles.append(center_angle) left_image = read_image(batch_sample[1]) left_angle = float(batch_sample[3] + 0.25) images.append(left_image) angles.append(left_angle) right_image = read_image(batch_sample[0]) right_angle = float(batch_sample[3] - 0.25) images.append(right_image) angles.append(right_angle) # Also flip the center image and change the steering angle. flipped_center_image = flip_image(center_image) images.append(flipped_center_image) angles.append(-center_angle) images = np.array(images) angles = np.array(angles) print("Feeding to Keras Generator...") datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=10, width_shift_range=0.2, height_shift_range=0.2, zca_whitening=False, channel_shift_range=0.2, zoom_range=0.2) # datagen.fit(images) while 1: X, y = shuffle(images, angles) for X_train, y_train in datagen.flow(X, y, batch_size=batch_size): yield shuffle(X_train, y_train) ################################# MAIN METHODS ################################# def args_definition(): parser = argparse.ArgumentParser() parser.add_argument("--epochs", help="Number of Epochs to train the network for" ,type=int, default=20) parser.add_argument("--network", help="Specify which Neural Network to execute" ,choices=list(NETWORKS.keys()) + ["all"], default="simple_network") parser.add_argument("--track", help="Specify which track data to use", choices=["track1", "track2", "both"], default="both") parser.add_argument("--use_sample_training", help="Use the sample training data", action='store_true') parser.add_argument("--experiment", help="Give the run an experiment name", type=str) parser.add_argument("--show_data_distribution", help="Show the data distribution for the training data", action='store_true') args = parser.parse_args() return args def main(): global NETWORKS args = args_definition() df = read_training_data(args.track) if args.use_sample_training: df = read_sample_training(df) frames, steering_angles, shape = load_data(df) model = NETWORKS[args.network](shape) hist = model.fit(frames, steering_angles, validation_split=0.2, shuffle=True, epochs=args.epochs) model_name = args.network + '.h5' model.save(model_name) if args.experiment != "": save_experiment(args.experiment, args.network, model, hist) from keras import backend as K K.clear_session() class EarlyStoppingByLossVal(Callback): def __init__(self, monitor='val_loss', value=0.00001, verbose=0): super(Callback, self).__init__() self.monitor = monitor self.value = value self.verbose = verbose def on_epoch_end(self, epoch, logs={}): current = logs.get(self.monitor) if current is None: warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning) if current < self.value: if self.verbose > 0: print("Epoch %05d: early stopping THR" % epoch) self.model.stop_training = True def main_generator(): global NETWORKS args = args_definition() df = read_training_data(args.track) if args.use_sample_training: df = read_sample_training(df) df = rearrange_and_augment_dataframe(df, shuffle_data=True) if args.track == "track2" or args.track == "both": recovery_df = read_recovery_track_data() df =
pd.concat([df, recovery_df])
pandas.concat
# Assignment Package import pandas # Define function to split dates and return into multiple columns def date_split(X, header): ''' Converts a dataframe with a column of dates, adding corresponding columns of year, month and day. Params: X: a pandas.DataFrame with a column including dates. header: the column header to split into year, month, day. Must include quotations around column header name. Example: date_split(pandas.DataFrame({'date': ['4/25/2017', '5/5/2018', '5/30/2020']}), 'date') Returns: a pandas.DataFrame with the original columns as well as a column for 'year', 'month', and 'day'. ''' # Convert date_recorded to datetime X[header] =
pandas.to_datetime(X[header], infer_datetime_format=True)
pandas.to_datetime
import numpy as np import pandas as pd import pickle as pkl from tqdm import tqdm from numpy import load import tensorflow as tf import keras.backend as K from keras.layers import Flatten from keras.engine.topology import Layer from sklearn.model_selection import train_test_split from tensorflow.keras.layers import MultiHeadAttention from keras import activations, initializers, constraints, regularizers tqdm.pandas() gpu_devices = tf.config.experimental.list_physical_devices("GPU") for device in gpu_devices: tf.config.experimental.set_memory_growth(device, True) def f1_score(y_true, y_pred): tp = K.sum(K.cast(y_true*y_pred, 'float'), axis=0) tn = K.sum(K.cast((1-y_true)*(1-y_pred), 'float'), axis=0) fp = K.sum(K.cast((1-y_true)*y_pred, 'float'), axis=0) fn = K.sum(K.cast(y_true*(1-y_pred), 'float'), axis=0) p = tp / (tp + fp + K.epsilon()) r = tp / (tp + fn + K.epsilon()) f1 = 2*p*r / (p+r+K.epsilon()) f1 = tf.where(tf.math.is_nan(f1), tf.zeros_like(f1), f1) return f1 class MultiGraphCNN(Layer): def __init__(self, output_dim, num_filters, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='glorot_uniform', kernel_regularizer='l1', bias_regularizer='l1', activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(MultiGraphCNN, self).__init__(**kwargs) self.output_dim = output_dim self.num_filters = num_filters self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.kernel_initializer.__name__ = kernel_initializer self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) def build(self, input_shape): if self.num_filters != int(input_shape[1][-2]/input_shape[1][-1]): raise ValueError('num_filters does not match with graph_conv_filters dimensions.') self.input_dim = input_shape[0][-1] kernel_shape = (self.num_filters * self.input_dim, self.output_dim) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.output_dim,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def call(self, inputs): output = graph_conv_op(inputs[0], self.num_filters, inputs[1], self.kernel) if self.use_bias: output = K.bias_add(output, self.bias) if self.activation is not None: output = self.activation(output) return output def compute_output_shape(self, input_shape): output_shape = (input_shape[0][0], input_shape[0][1], self.output_dim) return output_shape def get_config(self): config = { 'output_dim': self.output_dim, 'num_filters': self.num_filters, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(MultiGraphCNN, self).get_config() return dict(list(base_config.items()) + list(config.items())) def normalize_adj_numpy(adj, symmetric=True): if symmetric: d = np.diag(np.power(np.array(adj.sum(1)), -0.5).flatten(), 0) a_norm = adj.dot(d).transpose().dot(d) else: d = np.diag(np.power(np.array(adj.sum(1)), -1).flatten(), 0) a_norm = d.dot(adj) return a_norm def preprocess_adj_tensor(adj_tensor, symmetric=True): adj_out_tensor = [] for i in range(adj_tensor.shape[0]): adj = adj_tensor[i] adj = adj + np.eye(adj.shape[0]) adj = normalize_adj_numpy(adj, symmetric) adj_out_tensor.append(adj) adj_out_tensor = np.array(adj_out_tensor) return adj_out_tensor def graph_conv_op(x, num_filters, graph_conv_filters, kernel): if len(x.get_shape()) == 2: conv_op = K.dot(graph_conv_filters, x) conv_op = tf.split(conv_op, num_filters, axis=0) conv_op = K.concatenate(conv_op, axis=1) elif len(x.get_shape()) == 3: conv_op = K.batch_dot(graph_conv_filters, x) conv_op = tf.split(conv_op, num_filters, axis=1) conv_op = K.concatenate(conv_op, axis=2) else: raise ValueError('x must be either 2 or 3 dimension tensor' 'Got input shape: ' + str(x.get_shape())) conv_out = K.dot(conv_op, kernel) return conv_out def Model(paths): required_articles = pkl.load(open(f'{paths["reqd_articles_path"]}', 'rb')) publisher =
pd.read_csv(f'{paths["publisher_path"]}', index_col=0)
pandas.read_csv
import os import time import pandas as pd import numpy as np import json from hydroDL import kPath from hydroDL.data import usgs, gageII, gridMET, ntn from hydroDL.post import axplot, figplot import matplotlib.pyplot as plt dirInv = os.path.join(kPath.dirData, 'USGS', 'inventory') fileSiteNo = os.path.join(dirInv, 'siteNoLst-1979') siteNoLstAll = pd.read_csv(fileSiteNo, header=None, dtype=str)[0].tolist() tabG = gageII.readData( varLst=['NWIS_DRAIN_SQKM', 'BASIN_BOUNDARY_CONFIDENCE'], siteNoLst=siteNoLstAll) # read NTN dirNTN = os.path.join(kPath.dirData, 'EPA', 'NTN') fileData = os.path.join(dirNTN, 'NTN-All-w.csv') fileSite = os.path.join(dirNTN, 'NTNsites.csv') ntnData = pd.read_csv(fileData) ntnSite = pd.read_csv(fileSite) ntnData['siteID'] = ntnData['siteID'].apply(lambda x: x.upper()) ntnData = ntnData.replace(-9, np.nan) ntnIdLst = ntnData['siteID'].unique().tolist() crdNTN = pd.read_csv(os.path.join(dirNTN, 'crdNTN.csv'), index_col='siteid') crdNTN = crdNTN.drop(['CO83', 'NC30', 'WI19']) crdUSGS = pd.read_csv(os.path.join( dirNTN, 'crdUSGS.csv'), dtype={'STAID': str}) crdUSGS = crdUSGS.set_index('STAID') t = pd.date_range(start='1979-01-01', end='2019-12-31', freq='W-TUE') t = t[1:] # varC = usgs.varC varC = ['00940'] varNtn = ['Cl', 'subppt'] # siteNoLst = ['0422026250', '04232050', '0423205010'] siteNo = '04193500' # siteNo = '01184000' siteNoLstAll.index(siteNo) # find NTN sites usgsId = siteNo x = crdUSGS.loc[usgsId]['x'] y = crdUSGS.loc[usgsId]['y'] dist = np.sqrt((x-crdNTN['x'])**2+(y-crdNTN['y'])**2) dist = dist.drop(dist[dist > 500*1000].index) data = np.full([len(t), len(varNtn)], np.nan) distOut = np.full(len(t), np.nan) idOut = np.full(len(t), np.nan, dtype=object) while len(dist) > 0: ntnId = dist.idxmin() # temp = dictNTN[ntnId].values tab = ntnData[ntnData['siteID'] == ntnId] tab.index = pd.to_datetime(tab['dateoff']) out =
pd.DataFrame(index=t)
pandas.DataFrame
# -*- coding: utf-8 -*- import xarray as xr import numpy as np import pandas as pd import pathlib class BaselineDatabase(object): def __init__(self): self.line_table = pd.DataFrame(columns=['site','install', 'line', 'instrument_id', 'comment']) self.instrument_table = pd.DataFrame(columns = ['instrument_id','type_id', 'sn', 'config']) def add2line_table(self, site,install_datetime, line_id, instrument_id, comment = ''):#20200205 install_datetime = pd.to_datetime(install_datetime) new_line_table_entry = pd.DataFrame({'site':site,'install': install_datetime, 'line': line_id, 'instrument_id': instrument_id, 'comment': comment}, index = [instrument_id]) # self.line_table = self.line_table.append(new_line_table_entry, ignore_index=True) self.line_table = pd.concat([self.line_table, new_line_table_entry], ignore_index=True) return def addnewinstrument(self, instrument_id, type_id, sn, config): # self.instrument_table = self.instrument_table.append({'instrument_id': instrument_id,'type_id':type_id, 'sn': sn, 'config':config_id}, ignore_index=True) # new_instrument = pd.DataFrame({'instrument_id': instrument_id,'type_id':type_id, 'sn': sn, 'config':config}, index = [instrument_id]) new_instrument = pd.DataFrame( [[instrument_id, type_id, sn, config]], columns = ['instrument_id', 'type_id', 'sn', 'config'],index = [instrument_id]) self.instrument_table = pd.concat([self.instrument_table, new_instrument])#, ignore_index=True) return def get_instrument(self, site, line, date): # site = 'mlo' # line = 121 # date = df_all.index[0] lt_site_line = self.line_table[np.logical_and(self.line_table.site == site, self.line_table.line == line)] previous_installs = lt_site_line[lt_site_line.install <= date] if previous_installs.shape[0] == 0: raise IndexError(f'Instrument not installed (line:{line}, site: {site}, date: {date}') lt_found = previous_installs.iloc[-1] instrument_found = self.instrument_table[self.instrument_table.instrument_id == lt_found.instrument_id].iloc[0] return instrument_found database = BaselineDatabase() #### filter comfigurations conf_1= {'A': 368, 'B': 1050, 'C': 610, 'D': 778} conf_2= {'A': 412, 'B': 500, 'C': 675, 'D': 862} #### Instruments database.addnewinstrument(1,1,1032,conf_2) database.addnewinstrument(2,1,1046,conf_1) database.addnewinstrument(3,1,1022,conf_2) #### instrument linups installdate = '20131126' database.add2line_table('mlo', installdate, 121, 2) database.add2line_table('mlo', installdate, 221, 1) installdate = '20140104' # something is statring to go wrong on that day! database.add2line_table('mlo', installdate, 121, 1) database.add2line_table('mlo', installdate, 221, 2) installdate = '20141204' database.add2line_table('mlo', installdate, 121, 2) database.add2line_table('mlo', installdate, 221, 1) installdate = '20151203' database.add2line_table('mlo', installdate, 121, 1) database.add2line_table('mlo', installdate, 221, 2) installdate = '20161211' database.add2line_table('mlo', installdate, 121, 1) database.add2line_table('mlo', installdate, 221, 2) installdate = '20171207' database.add2line_table('mlo', installdate, 121, 2) database.add2line_table('mlo', installdate, 221, 1) database.add2line_table('mlo', '20200205', 121, 1) database.add2line_table('mlo', '20200205', 221, 2) database.add2line_table('mlo', '20200620', 121, 2) database.add2line_table('mlo', '20200620', 221, 1) installdate = '20210204' database.add2line_table('mlo', installdate, 121, 1) database.add2line_table('mlo', installdate, 221, 2) # # testing: installation in BRW... # installdate = '20210318' # uninstalldate = '20211008' # database.add2line_table('brw', installdate, 121, 1) # # database.add2line_table('brw', installdate, 101, 1) # database.add2line_table('brw', installdate, 221, 2) # database.add2line_table('brw', installdate, 221, 2) installdate = '20220101' database.add2line_table('mlo', installdate, 121, 1) database.add2line_table('mlo', installdate, 221, 2) installdate = '20220309' database.add2line_table('mlo', installdate, 121, 3) def get_lines_from_station_header(path = '/nfs/grad/gradobs/documentation/station_headers/MLO_header.xlsx', line_ids = [121, 221]): path2header = pathlib.Path(path) df = pd.read_excel(path2header) col_names = {} lines = [] for line_id in line_ids: idx = (df['Unnamed: 1'] == line_id).argmax() header = df.iloc[idx-1].dropna().values[1:] col_names[line_id] = header lines.append(dict(line_id = line_id, column_labels = header)) return lines def read_file(path2raw, lines = None, # collabels = ['lineID', 'Year', 'DOY', 'HHMM', 'A', 'B', 'C', 'D','temp'], collabels = ['lineID', 'Year', 'DOY', 'HHMM'], database = None, site = None ): """ The particular way I am reading here allows for later implementation of reading old data from Longenecker. And also allows to read other raw files Parameters ---------- path2raw : str, list, pathlib.Path Single or list of path(s) to file(s). lines : list, optional List of lines to consider (e.g. [121, 221] for sp02 at MLO). The default is None -> all. collabels : TYPE, optional DESCRIPTION. The default is ['lineID', 'Year', 'DOY', 'HHMM']. database : TYPE, optional DESCRIPTION. The default is None. site : str, optional DESCRIPTION. The default is None. If None the site is infered from the file path. Set if the path is not the standard path Returns ------- out_list : TYPE DESCRIPTION. """ out = {} collabels = np.array(collabels) #open if not isinstance(path2raw, list): path2raw = [path2raw,] df_all = pd.concat([pd.read_csv(p2r, header=None) for p2r in path2raw]) # df_all = pd.read_csv(path2raw, header=None # # names = False # ) # out['df_all_01'] = df_all.copy() colsis = df_all.columns.values colsis = [int(col) for col in colsis] # todo: assigne collumn labels accoreding to instrument info # if 0: colsis[:collabels.shape[0]] = collabels df_all.columns = colsis # out['df_all_02'] = df_all.copy() # df_all = pd.read_csv(path2raw, names=lines[0]['column_labels']) # make datetime index df_all['HHMM'] = df_all.apply(lambda row: f'{int(row.HHMM):04d}', axis=1) df_all.index = df_all.apply(lambda row: pd.to_datetime(f'{int(row.Year)}0101') + pd.to_timedelta(row.DOY - 1 , 'd') + pd.to_timedelta(int(row.HHMM[:2]), 'h') + pd.to_timedelta(int(row.HHMM[2:]), 'm'), axis=1) df_all.index.name = 'datetime' # data_list = [] # df_inst_temp = pd.DataFrame() # df_inst_channels = pd.DataFrame() out['df_all'] = df_all.copy() # return out out_list = [] date = df_all.index[0] # print(df_all.lineID.unique()) for lid in df_all.lineID.unique(): if isinstance(lines, list): if lid not in lines: print(f'{lid} not in lines ({lines})') continue df_lid = df_all[df_all.lineID == lid].copy() # there was the case that Longenecker must have created an overlab when stiching two days together ... therefor -> df_lid = df_lid[~df_lid.index.duplicated()] df_lid.sort_index(inplace=True) instrument = database.get_instrument(site, lid, date) df_lid = df_lid.drop(['lineID', 'Year','DOY', 'HHMM'], axis=1) df_lid.columns = ['A', 'B', 'C', 'D', 'temp'] # replace invalid values with nan df_lid[df_lid == -99999] = np.nan df_lid[df_lid == -7999.0] = np.nan # seperate photo detector readings from temp df_temp = df_lid.temp df_voltages = df_lid.reindex(['A', 'B', 'C', 'D'], axis= 1) df_voltages.columns.name = 'channel' # create dataset ds = xr.Dataset() ds['raw_data'] = df_voltages ds['internal_temperature'] = df_temp ser = pd.Series(instrument.config) ser.index.name = 'channel' ds['channle_wavelengths'] = ser ds['line_id'] = lid sn = instrument['sn'] ds['serial_no'] = sn # ds_by_instrument[f'sp02_{lid}_{sn}'] = ds out_list.append(ds) return out_list # for line in lines: # lid = line['line_id'] # dft = df_all[df_all.lineID == lid].copy() # dft = dft.dropna(axis = 1) # # replace placeholder with correct column labels # dft.columns = line['column_labels'] # line['df'] = dft.copy() # # clean up the channel voltages # df_channels = dft.drop(['lineID', 'Year', 'DOY', 'HHMM', 'SPO2 internal temp [degC]'], axis=1) # channels = [int(col.split(' ')[2]) for col in df_channels.columns] # df_channels.columns = channels # # df_channels.columns.name = f'wavelength_lid{lid}' # df_channels[df_channels == -99999] = np.nan # df_channels[df_channels == -7999.0] = np.nan # data_list.append(df_channels.copy()) # # clean up temp # temp = dft['SPO2 internal temp [degC]'].copy() # temp[temp == -99999] = np.nan # temp[temp == -7999.0] = np.nan # df_inst_temp[lid] = temp # # print(len(channels)) # # print(channels) # df_inst_channels[lid] = channels # # line['raw_data'] = df_channels # # ds[f'rawdata_line_id_{lid}'] = df_channels # # ds[f'instrument_temperature_line_id_{lid}'] = temp # # ds['line_ids'] = lines # ds = xr.Dataset() # data = pd.concat(data_list, axis=1).sort_index(axis=1) # data.columns.name = 'channel_wavelength' # ds['raw_data'] = data # df_inst_temp.columns.name = 'line_id' # ds['instrument_temperatures'] = df_inst_temp # df_inst_channels.columns.name = 'line_id' # df_inst_channels.index = [chr(ord('A') + i) for i in df_inst_channels.index] # df_inst_channels.index.name = 'channel' # ds['instrument_channels'] = df_inst_channels # return ds def convert_raw2nc(path2rawfolder = '/nfs/grad/gradobs/raw/mlo/2020/', path2netcdf = '/mnt/telg/data/baseline/mlo/2020/', # database = None, start_date = '2020-02-06', pattern = '*sp02.*', sernos = [1032, 1046], site = 'mlo', overwrite = False, verbose = False, raise_error = True, test = False): """ Parameters ---------- path2rawfolder : TYPE, optional DESCRIPTION. The default is '/nfs/grad/gradobs/raw/mlo/2020/'. path2netcdf : TYPE, optional DESCRIPTION. The default is '/mnt/telg/data/baseline/mlo/2020/'. # database : TYPE, optional DESCRIPTION. The default is None. start_date : TYPE, optional DESCRIPTION. The default is '2020-02-06'. pattern : str, optional Only files with this pattern are considered. In newer raw data versions this would be '*sp02.*'. In older ones: 'MLOD*' sernos : TYPE, optional DESCRIPTION. The default is [1032, 1046]. overwrite : TYPE, optional DESCRIPTION. The default is False. verbose : TYPE, optional DESCRIPTION. The default is False. test : TYPE, optional If True only one file is processed. The default is False. Returns ------- None. """ # lines = get_lines_from_station_header() path2rawfolder = pathlib.Path(path2rawfolder) path2netcdf = pathlib.Path(path2netcdf) try: path2netcdf.mkdir(exist_ok=True) except FileNotFoundError: path2netcdf.parent.mkdir() path2netcdf.mkdir() file_list = list(path2rawfolder.glob(pattern)) # print(len(file_list)) # file_contents = [] # return file_list df_in = pd.DataFrame(file_list, columns=['path_in']) # test what format, old or new. p2f = file_list[0] nl = p2f.name.split('.') if len(nl) == 2: # old format like /nfs/grad/gradobs/raw/mlo/2013/sp02/MLOD013A.113 # get year from path def path2date(path2file): year = path2file.parent.parent.name jul = int(''.join(filter(str.isdigit, path2file.name.split('.')[0]))) date =
pd.to_datetime(year)
pandas.to_datetime
import pickle import numpy as np import pandas as pd from AlchemicalAssistant.FEPBOSSReader import bossPdbAtom2Element,ucomb,tor_cent from AlchemicalAssistant.Vector_algebra import pairing_func,AtomNum2Symb,AtomNum2Mass from AlchemicalAssistant.MolReaders import ang_id,tor_id from AlchemicalAssistant.TINKER_Rel_FEP import xyz_prep,tinker_prm def pdb_prep(atoms, coos, resid='A2B',pdbname='COMBO'): opdb = open(pdbname+'_NAMD.pdb', 'w+') opdb.write('REMARK LIGPARGEN GENERATED PDB FILE\n') num = 0 for (i, j) in zip(atoms, coos): num += 1 opdb.write('%-6s%5d %4s %3s %4d %8.3f%8.3f%8.3f\n' % ('ATOM', num, i, resid, 1, j[0], j[1], j[2])) opdb.write('END\n') opdb.close() return None ### def MapMolecules(map_dict,num): if num in map_dict.keys(): return map_dict[num] else: return num+1 def TranslateICs(amol,bmol,map_dict,zdf): amol['BONDS'][['cl1','cl2']] = amol['BONDS'][['cl1','cl2']].apply(lambda x: x+3) bmol['BONDS'][['cl1','cl2']] = bmol['BONDS'][['cl1','cl2']].applymap(lambda x: MapMolecules(map_dict,x+3)) all_bonds = pd.concat([amol['BONDS'],bmol['BONDS']],axis=0) all_bonds['UID'] = [pairing_func(i,j) for i,j in zip(all_bonds.cl1,all_bonds.cl2)] amol['ANGLES'][['cl1','cl2','cl3']] = amol['ANGLES'][['cl1','cl2','cl3']].apply(lambda x: x+3) bmol['ANGLES'][['cl1','cl2','cl3']] = bmol['ANGLES'][['cl1','cl2','cl3']].applymap(lambda x: MapMolecules(map_dict,x+3)) all_angles =
pd.concat([amol['ANGLES'],bmol['ANGLES']],axis=0)
pandas.concat
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan]) .reshape(2, 3), index=[datetime(2013, 1, 1), datetime(2013, 7, 1)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) # passing the name df = df.reset_index() result = pivot_table(df, index=Grouper(freq='6MS', key='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(KeyError, lambda: pivot_table( df, index=Grouper(freq='6MS', key='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(KeyError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', key='foo'), values='Quantity', aggfunc=np.sum)) # passing the level df = df.set_index('Date') result = pivot_table(df, index=Grouper(freq='6MS', level='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', level='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(ValueError, lambda: pivot_table( df, index=Grouper(freq='6MS', level='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(ValueError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', level='foo'), values='Quantity', aggfunc=np.sum)) # double grouper df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 11, 1, 13, 0), datetime(2013, 9, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 11, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 2, 12, 0), datetime(2013, 12, 5, 14, 0)], 'PayDay': [datetime(2013, 10, 4, 0, 0), datetime(2013, 10, 15, 13, 5), datetime(2013, 9, 5, 20, 0), datetime(2013, 11, 2, 10, 0), datetime(2013, 10, 7, 20, 0), datetime(2013, 9, 5, 10, 0), datetime(2013, 12, 30, 12, 0), datetime(2013, 11, 20, 14, 0), ]}) result = pivot_table(df, index=Grouper(freq='M', key='Date'), columns=Grouper(freq='M', key='PayDay'), values='Quantity', aggfunc=np.sum) expected = DataFrame(np.array([np.nan, 3, np.nan, np.nan, 6, np.nan, 1, 9, np.nan, 9, np.nan, np.nan, np.nan, np.nan, 3, np.nan]).reshape(4, 4), index=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)], columns=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)]) expected.index.name = 'Date' expected.columns.name = 'PayDay' tm.assert_frame_equal(result, expected) result = pivot_table(df, index=Grouper(freq='M', key='PayDay'), columns=Grouper(freq='M', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) tuples = [(datetime(2013, 9, 30), datetime(2013, 10, 31)), (datetime(2013, 10, 31), datetime(2013, 9, 30)), (datetime(2013, 10, 31), datetime(2013, 11, 30)), (datetime(2013, 10, 31), datetime(2013, 12, 31)), (datetime(2013, 11, 30), datetime(2013, 10, 31)), (datetime(2013, 12, 31), datetime(2013, 11, 30)), ] idx = MultiIndex.from_tuples(tuples, names=['Date', 'PayDay']) expected = DataFrame(np.array([3, np.nan, 6, np.nan, 1, np.nan, 9, np.nan, 9, np.nan, np.nan, 3]).reshape(6, 2), index=idx, columns=['A', 'B']) expected.columns.name = 'Branch' result = pivot_table( df, index=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], columns=['Branch'], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=['Branch'], columns=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) def test_pivot_datetime_tz(self): dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Pacific', name='dt1') exp_col1 = Index(['value1', 'value1']) exp_col2 = Index(['a', 'b'], name='label') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 3], [1, 4], [2, 5]], index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=[ 'label'], values=['value1']) tm.assert_frame_equal(result, expected) exp_col1 = Index(['sum', 'sum', 'sum', 'sum', 'mean', 'mean', 'mean', 'mean']) exp_col2 = Index(['value1', 'value1', 'value2', 'value2'] * 2) exp_col3 = pd.DatetimeIndex(['2013-01-01 15:00:00', '2013-02-01 15:00:00'] * 4, tz='Asia/Tokyo', name='dt2') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3]) expected = DataFrame(np.array([[0, 3, 1, 2, 0, 3, 1, 2], [1, 4, 2, 1, 1, 4, 2, 1], [2, 5, 1, 2, 2, 5, 1, 2]], dtype='int64'), index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=['dt2'], values=['value1', 'value2'], aggfunc=[np.sum, np.mean]) tm.assert_frame_equal(result, expected) def test_pivot_dtaccessor(self): # GH 8103 dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d)) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d)) result = pivot_table(df, index='label', columns=df['dt1'].dt.hour, values='value1') exp_idx = Index(['a', 'b'], name='label') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=exp_idx, columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.month, columns=df['dt1'].dt.hour, values='value1') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=Index([1, 2], name='dt2'), columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.year.values, columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') exp_col = MultiIndex.from_arrays( [[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2']) expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'), index=[2013], columns=exp_col) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=np.array(['X', 'X', 'X', 'X', 'Y', 'Y']), columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan], [np.nan, np.nan, np.nan, 4, np.nan, 5]]), index=['X', 'Y'], columns=exp_col) tm.assert_frame_equal(result, expected) def test_daily(self): rng = date_range('1/1/2000', '12/31/2004', freq='D') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(DataFrame(ts), index=ts.index.year, columns=ts.index.dayofyear) annual.columns = annual.columns.droplevel(0) doy = np.asarray(ts.index.dayofyear) for i in range(1, 367): subset = ts[doy == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_monthly(self): rng = date_range('1/1/2000', '12/31/2004', freq='M') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(pd.DataFrame(ts), index=ts.index.year, columns=ts.index.month) annual.columns = annual.columns.droplevel(0) month = ts.index.month for i in range(1, 13): subset = ts[month == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_pivot_table_with_iterator_values(self): # GH 12017 aggs = {'D': 'sum', 'E': 'mean'} pivot_values_list = pd.pivot_table( self.data, index=['A'], values=list(aggs.keys()), aggfunc=aggs, ) pivot_values_keys = pd.pivot_table( self.data, index=['A'], values=aggs.keys(), aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_keys, pivot_values_list) agg_values_gen = (value for value in aggs.keys()) pivot_values_gen = pd.pivot_table( self.data, index=['A'], values=agg_values_gen, aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_gen, pivot_values_list) def test_pivot_table_margins_name_with_aggfunc_list(self): # GH 13354 margins_name = 'Weekly' costs = pd.DataFrame( {'item': ['bacon', 'cheese', 'bacon', 'cheese'], 'cost': [2.5, 4.5, 3.2, 3.3], 'day': ['M', 'M', 'T', 'T']} ) table = costs.pivot_table( index="item", columns="day", margins=True, margins_name=margins_name, aggfunc=[np.mean, max] ) ix = pd.Index( ['bacon', 'cheese', margins_name], dtype='object', name='item' ) tups = [('mean', 'cost', 'M'), ('mean', 'cost', 'T'), ('mean', 'cost', margins_name), ('max', 'cost', 'M'), ('max', 'cost', 'T'), ('max', 'cost', margins_name)] cols = pd.MultiIndex.from_tuples(tups, names=[None, None, 'day']) expected = pd.DataFrame(table.values, index=ix, columns=cols) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins(self, observed): # GH 10989 df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins_category(self, observed): df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') df.y = df.y.astype('category') df.z = df.z.astype('category') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) def test_categorical_aggfunc(self, observed): # GH 9534 df = pd.DataFrame({"C1": ["A", "B", "C", "C"], "C2": ["a", "a", "b", "b"], "V": [1, 2, 3, 4]}) df["C1"] = df["C1"].astype("category") result = df.pivot_table("V", index="C1", columns="C2", dropna=observed, aggfunc="count") expected_index = pd.CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, name='C1') expected_columns = pd.Index(['a', 'b'], name='C2') expected_data = np.array([[1., np.nan], [1., np.nan], [np.nan, 2.]]) expected = pd.DataFrame(expected_data, index=expected_index, columns=expected_columns) tm.assert_frame_equal(result, expected) def test_categorical_pivot_index_ordering(self, observed): # GH 8731 df = pd.DataFrame({'Sales': [100, 120, 220], 'Month': ['January', 'January', 'January'], 'Year': [2013, 2014, 2013]}) months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] df['Month'] = df['Month'].astype('category').cat.set_categories(months) result = df.pivot_table(values='Sales', index='Month', columns='Year', dropna=observed, aggfunc='sum') expected_columns = pd.Int64Index([2013, 2014], name='Year') expected_index = pd.CategoricalIndex(['January'], categories=months, ordered=False, name='Month') expected = pd.DataFrame([[320, 120]], index=expected_index, columns=expected_columns) if not observed: result = result.dropna().astype(np.int64) tm.assert_frame_equal(result, expected) def test_pivot_table_not_series(self): # GH 4386 # pivot_table always returns a DataFrame # when values is not list like and columns is None # and aggfunc is not instance of list df = DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E'], 'col3': [1, 3, 9]}) result = df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum) m = MultiIndex.from_arrays([[1, 3, 9], ['C', 'D', 'E']], names=['col3', 'col2']) expected = DataFrame([3, 4, 5], index=m, columns=['col1']) tm.assert_frame_equal(result, expected) result = df.pivot_table( 'col1', index='col3', columns='col2', aggfunc=np.sum ) expected = DataFrame([[3, np.NaN, np.NaN], [np.NaN, 4, np.NaN], [np.NaN, np.NaN, 5]], index=Index([1, 3, 9], name='col3'), columns=Index(['C', 'D', 'E'], name='col2')) tm.assert_frame_equal(result, expected) result = df.pivot_table('col1', index='col3', aggfunc=[np.sum]) m = MultiIndex.from_arrays([['sum'], ['col1']]) expected = DataFrame([3, 4, 5], index=Index([1, 3, 9], name='col3'), columns=m) tm.assert_frame_equal(result, expected) def test_pivot_margins_name_unicode(self): # issue #13292 greek = u'\u0394\u03bf\u03ba\u03b9\u03bc\u03ae' frame = pd.DataFrame({'foo': [1, 2, 3]}) table = pd.pivot_table(frame, index=['foo'], aggfunc=len, margins=True, margins_name=greek) index = pd.Index([1, 2, 3, greek], dtype='object', name='foo') expected = pd.DataFrame(index=index) tm.assert_frame_equal(table, expected) def test_pivot_string_as_func(self): # GH #18713 # for correctness purposes data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': range(11)}) result = pivot_table(data, index='A', columns='B', aggfunc='sum') mi = MultiIndex(levels=[['C'], ['one', 'two']], codes=[[0, 0], [0, 1]], names=[None, 'B']) expected = DataFrame({('C', 'one'): {'bar': 15, 'foo': 13}, ('C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) result = pivot_table(data, index='A', columns='B', aggfunc=['sum', 'mean']) mi = MultiIndex(levels=[['sum', 'mean'], ['C'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]], names=[None, None, 'B']) expected = DataFrame({('mean', 'C', 'one'): {'bar': 5.0, 'foo': 3.25}, ('mean', 'C', 'two'): {'bar': 7.0, 'foo': 6.666666666666667}, ('sum', 'C', 'one'): {'bar': 15, 'foo': 13}, ('sum', 'C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('f, f_numpy', [('sum', np.sum), ('mean', np.mean), ('std', np.std), (['sum', 'mean'], [np.sum, np.mean]), (['sum', 'std'], [np.sum, np.std]), (['std', 'mean'], [np.std, np.mean])]) def test_pivot_string_func_vs_func(self, f, f_numpy): # GH #18713 # for consistency purposes result = pivot_table(self.data, index='A', columns='B', aggfunc=f) expected = pivot_table(self.data, index='A', columns='B', aggfunc=f_numpy) tm.assert_frame_equal(result, expected) @pytest.mark.slow def test_pivot_number_of_levels_larger_than_int32(self): # GH 20601 df = DataFrame({'ind1': np.arange(2 ** 16), 'ind2': np.arange(2 ** 16), 'count': 0}) with pytest.raises(ValueError, match='int32 overflow'): df.pivot_table(index='ind1', columns='ind2', values='count', aggfunc='count') class TestCrosstab(object): def setup_method(self, method): df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) self.df = df.append(df, ignore_index=True) def test_crosstab_single(self): df = self.df result = crosstab(df['A'], df['C']) expected = df.groupby(['A', 'C']).size().unstack() tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64)) def test_crosstab_multiple(self): df = self.df result = crosstab(df['A'], [df['B'], df['C']]) expected = df.groupby(['A', 'B', 'C']).size() expected = expected.unstack( 'B').unstack('C').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) result = crosstab([df['B'], df['C']], df['A']) expected = df.groupby(['B', 'C', 'A']).size() expected = expected.unstack('A').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) def test_crosstab_ndarray(self): a = np.random.randint(0, 5, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 10, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c')) expected = crosstab(df['a'], [df['b'], df['c']]) tm.assert_frame_equal(result, expected) result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c')) expected = crosstab([df['b'], df['c']], df['a']) tm.assert_frame_equal(result, expected) # assign arbitrary names result = crosstab(self.df['A'].values, self.df['C'].values) assert result.index.name == 'row_0' assert result.columns.name == 'col_0' def test_crosstab_non_aligned(self): # GH 17005 a = pd.Series([0, 1, 1], index=['a', 'b', 'c']) b = pd.Series([3, 4, 3, 4, 3], index=['a', 'b', 'c', 'd', 'f']) c = np.array([3, 4, 3]) expected = pd.DataFrame([[1, 0], [1, 1]], index=Index([0, 1], name='row_0'), columns=Index([3, 4], name='col_0')) result = crosstab(a, b) tm.assert_frame_equal(result, expected) result = crosstab(a, c) tm.assert_frame_equal(result, expected) def test_crosstab_margins(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True) assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['All', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['All'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('All', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['All'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')])) exp_rows.name = 'All' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) def test_crosstab_margins_set_margin_name(self): # GH 15972 a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name='TOTAL') assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['TOTAL', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['TOTAL'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('TOTAL', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['TOTAL'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('TOTAL', '')])) exp_rows.name = 'TOTAL' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) for margins_name in [666, None, ['a', 'b']]: with pytest.raises(ValueError): crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name=margins_name) def test_crosstab_pass_values(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) values = np.random.randn(100) table = crosstab([a, b], c, values, aggfunc=np.sum, rownames=['foo', 'bar'], colnames=['baz']) df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values}) expected = df.pivot_table('values', index=['foo', 'bar'], columns='baz', aggfunc=np.sum) tm.assert_frame_equal(table, expected) def test_crosstab_dropna(self): # GH 3820 a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', 'two', 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) res = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], dropna=False) m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'), ('two', 'dull'), ('two', 'shiny')], names=['b', 'c']) tm.assert_index_equal(res.columns, m) def test_crosstab_no_overlap(self): # GS 10291 s1 = pd.Series([1, 2, 3], index=[1, 2, 3]) s2 = pd.Series([4, 5, 6], index=[4, 5, 6]) actual = crosstab(s1, s2) expected = pd.DataFrame() tm.assert_frame_equal(actual, expected) def test_margin_dropna(self): # GH 12577 # pivot_table counts null into margin ('All') # when margins=true and dropna=true df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, np.nan, 2], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) # GH 12642 # _add_margins raises KeyError: Level None not found # when margins=True and dropna=False df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=False) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=False) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', np.nan, 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) actual = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], margins=True, dropna=False) m = MultiIndex.from_arrays([['one', 'one', 'two', 'two', 'All'], ['dull', 'shiny', 'dull', 'shiny', '']], names=['b', 'c']) expected = DataFrame([[1, 0, 1, 0, 2], [2, 0, 1, 1, 5], [3, 0, 2, 1, 7]], columns=m) expected.index = Index(['bar', 'foo', 'All'], name='a') tm.assert_frame_equal(actual, expected) actual = pd.crosstab([a, b], c, rownames=['a', 'b'], colnames=['c'], margins=True, dropna=False) m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'], ['one', 'two', 'one', 'two', '']], names=['a', 'b']) expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 2, 7]], index=m) expected.columns = Index(['dull', 'shiny', 'All'], name='c') tm.assert_frame_equal(actual, expected) actual = pd.crosstab([a, b], c, rownames=['a', 'b'], colnames=['c'], margins=True, dropna=True) m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'], ['one', 'two', 'one', 'two', '']], names=['a', 'b']) expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 1, 6]], index=m) expected.columns = Index(['dull', 'shiny', 'All'], name='c') tm.assert_frame_equal(actual, expected) def test_crosstab_normalize(self): # Issue 12578 df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [1, 1, np.nan, 1, 1]}) rindex = pd.Index([1, 2], name='a') cindex = pd.Index([3, 4], name='b') full_normal = pd.DataFrame([[0.2, 0], [0.2, 0.6]], index=rindex, columns=cindex) row_normal = pd.DataFrame([[1.0, 0], [0.25, 0.75]], index=rindex, columns=cindex) col_normal = pd.DataFrame([[0.5, 0], [0.5, 1.0]], index=rindex, columns=cindex) # Check all normalize args tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='all'), full_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True), full_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index'), row_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns'), col_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=1), pd.crosstab(df.a, df.b, normalize='columns')) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=0), pd.crosstab(df.a, df.b, normalize='index')) row_normal_margins = pd.DataFrame([[1.0, 0], [0.25, 0.75], [0.4, 0.6]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4], name='b', dtype='object')) col_normal_margins = pd.DataFrame([[0.5, 0, 0.2], [0.5, 1.0, 0.8]], index=pd.Index([1, 2], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b', dtype='object')) all_normal_margins = pd.DataFrame([[0.2, 0, 0.2], [0.2, 0.6, 0.8], [0.4, 0.6, 1]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b', dtype='object')) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index', margins=True), row_normal_margins) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns', margins=True), col_normal_margins) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True, margins=True), all_normal_margins) # Test arrays pd.crosstab([np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])], np.array([1, 2, 1, 2])) # Test with aggfunc norm_counts = pd.DataFrame([[0.25, 0, 0.25], [0.25, 0.5, 0.75], [0.5, 0.5, 1]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b')) test_case = pd.crosstab(df.a, df.b, df.c, aggfunc='count', normalize='all', margins=True) tm.assert_frame_equal(test_case, norm_counts) df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [0, 4, np.nan, 3, 3]}) norm_sum = pd.DataFrame([[0, 0, 0.], [0.4, 0.6, 1], [0.4, 0.6, 1]], index=pd.Index([1, 2, 'All'], name='a', dtype='object'), columns=pd.Index([3, 4, 'All'], name='b', dtype='object')) test_case = pd.crosstab(df.a, df.b, df.c, aggfunc=np.sum, normalize='all', margins=True) tm.assert_frame_equal(test_case, norm_sum) def test_crosstab_with_empties(self): # Check handling of empties df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [np.nan, np.nan, np.nan, np.nan, np.nan]}) empty = pd.DataFrame([[0.0, 0.0], [0.0, 0.0]], index=pd.Index([1, 2], name='a', dtype='int64'), columns=pd.Index([3, 4], name='b')) for i in [True, 'index', 'columns']: calculated = pd.crosstab(df.a, df.b, values=df.c, aggfunc='count', normalize=i) tm.assert_frame_equal(empty, calculated) nans = pd.DataFrame([[0.0, np.nan], [0.0, 0.0]], index=pd.Index([1, 2], name='a', dtype='int64'), columns=pd.Index([3, 4], name='b')) calculated = pd.crosstab(df.a, df.b, values=df.c, aggfunc='count', normalize=False) tm.assert_frame_equal(nans, calculated) def test_crosstab_errors(self): # Issue 12578 df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [1, 1, np.nan, 1, 1]}) error = 'values cannot be used without an aggfunc.' with pytest.raises(ValueError, match=error): pd.crosstab(df.a, df.b, values=df.c) error = 'aggfunc cannot be used without values' with pytest.raises(ValueError, match=error): pd.crosstab(df.a, df.b, aggfunc=np.mean) error = 'Not a valid normalize argument' with pytest.raises(ValueError, match=error): pd.crosstab(df.a, df.b, normalize='42') with pytest.raises(ValueError, match=error): pd.crosstab(df.a, df.b, normalize=42) error = 'Not a valid margins argument' with pytest.raises(ValueError, match=error): pd.crosstab(df.a, df.b, normalize='all', margins=42) def test_crosstab_with_categorial_columns(self): # GH 8860 df = pd.DataFrame({'MAKE': ['Honda', 'Acura', 'Tesla', 'Honda', 'Honda', 'Acura'], 'MODEL': ['Sedan', 'Sedan', 'Electric', 'Pickup', 'Sedan', 'Sedan']}) categories = ['Sedan', 'Electric', 'Pickup'] df['MODEL'] = (df['MODEL'].astype('category') .cat.set_categories(categories)) result = pd.crosstab(df['MAKE'], df['MODEL']) expected_index = pd.Index(['Acura', 'Honda', 'Tesla'], name='MAKE') expected_columns = pd.CategoricalIndex(categories, categories=categories, ordered=False, name='MODEL') expected_data = [[2, 0, 0], [2, 0, 1], [0, 1, 0]] expected = pd.DataFrame(expected_data, index=expected_index, columns=expected_columns)
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd from os import listdir filenames = listdir("/home/debian/datalake/sirene/2020-08/rna/") globdf = pd.DataFrame(columns=['id', 'id_ex', 'siret', 'rup_mi', 'gestion', 'date_creat', 'date_decla', 'date_publi', 'date_disso', 'nature', 'groupement', 'titre', 'titre_court', 'objet', 'objet_social1', 'objet_social2', 'adrs_complement', 'adrs_numvoie', 'adrs_repetition', 'adrs_typevoie', 'adrs_libvoie', 'adrs_distrib', 'adrs_codeinsee', 'adrs_codepostal', 'adrs_libcommune', 'adrg_declarant', 'adrg_complemid', 'adrg_complemgeo', 'adrg_libvoie', 'adrg_distrib', 'adrg_codepostal', 'adrg_achemine', 'adrg_pays', 'dir_civilite', 'siteweb', 'publiweb', 'observation', 'position', 'maj_time', 'mois_crea', 'mois_ferm', 'objet_social_parent_id', 'objet_social_lib', 'objet_social_parent_lib', 'reg', 'dep']) dfnom =
pd.read_csv("/home/debian/projects/postgres-playground/db/utils/rna_nomenclature_objet_social.csv",dtype=str)
pandas.read_csv
import pandas as pd import numpy as np from datetime import datetime from sklearn.pipeline import Pipeline from pandas_datareader import data from sklearn.ensemble import RandomForestRegressor import sys import pickle import argparse import warnings warnings.filterwarnings("ignore") def load_data(symbols, start_date, end_date): """ INPUT: tickers : list containing the tickers of the stocks whose prices will be predicted start_date : initial date to gather data end_data : final date to gather data OUTPUT: prices_base : dataframe containing the adjusted closing price for the stocks on the desired time frame """ df = data.DataReader( symbols, 'yahoo', start_date, end_date) df =
pd.DataFrame(df)
pandas.DataFrame
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index =
pd.Index(["a", "b", "c", "d", "e"])
pandas.Index
import http.client import json import pandas as pd REQUEST_URL = 'api.huobi.com' KLINE_TT_COLS = ['date', 'open', 'high', 'low', 'close', 'volume'] def http_get(url, resource, params=''): conn = http.client.HTTPSConnection(url, timeout=10) conn.request("GET", resource + '?' + params) response = conn.getresponse() data = response.read().decode('utf-8') return json.loads(data) def ticker(symbol=''): ticker_resource = "/staticmarket/%(symbol)s_kline_100_json.js" % {'symbol': symbol} params = '' if symbol: params = 'length=2000' k_data = http_get(REQUEST_URL, ticker_resource, params) if len(k_data) == 0: raise ValueError('Can not obtain the data.') else: df =
pd.DataFrame(k_data, columns=KLINE_TT_COLS)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Ball detector - Deeplearning Exercice 1 - Part 1 .. moduleauthor:: <NAME> .. See https://perso.liris.cnrs.fr/christian.wolf/teaching/deeplearning/tp.html and https://github.com/PaulEmmanuelSotir/BallDetectionAndForecasting """ import os import re import types import random import importlib import pandas as pd import pprint as pp import operator as op from pathlib import Path from typing import Iterable, Optional, List, Tuple import numpy as np from tqdm import tqdm import torch import torch.nn as nn __all__ = ['layer', 'conv_layer', 'fc_layer', 'Flatten', 'flatten_batch', 'get_gain_name', 'parrallelize', 'set_seeds', 'progess_bar', 'import_pickle', 'source_dir', 'extract_from_hp_search_log', 'summarize_hp_search'] __author__ = '<NAME> <<EMAIL>>' def layer(layer_op: nn.Module, act_fn: nn.Module, dropout_prob: float, batch_norm: Optional[dict] = None) -> Iterable[nn.Module]: ops = (layer_op, act_fn) weight_rank = len(layer_op.weight.data.shape) if dropout_prob is not None and dropout_prob != 0.: ops = (nn.Dropout(p=dropout_prob),) + ops if batch_norm is not None: # Applies Batch_narm after activation function : see reddit thread about it : https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/ if weight_rank == 4: ops += (nn.BatchNorm2d(layer_op.out_channels, **batch_norm),) elif weight_rank < 4: ops += (nn.BatchNorm1d(layer_op.out_features, **batch_norm),) return ops def conv_layer(conv2d: dict, act_fn: type = nn.Identity, dropout_prob: float = 0., batch_norm: Optional[dict] = None) -> nn.Module: return nn.Sequential(*layer(nn.Conv2d(**conv2d), act_fn(), dropout_prob, batch_norm)) def fc_layer(linear: dict, act_fn: type = nn.Identity, dropout_prob: float = 0., batch_norm: Optional[dict] = None) -> nn.Module: return nn.Sequential(*layer(nn.Linear(**linear), act_fn(), dropout_prob, batch_norm)) class Flatten(nn.Module): def __init__(self) -> None: super(Flatten, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: return flatten_batch(x) def flatten_batch(tensor): return tensor.view(tensor.size(0), -1) # Flattens target bounding boxes and positions def get_gain_name(act_fn: type) -> str: """ Intended to be used with nn.init.calculate_gain(str): .. Example: nn.init.calculate_gain(get_gain_act_name(nn.ReLU)) """ if act_fn is nn.ReLU: return 'relu' elif act_fn is nn.LeakyReLU: return 'leaky_relu' elif act_fn is nn.Tanh: return 'tanh' elif act_fn is nn.Identity: return 'linear' else: raise Exception("Unsupported activation function, can't initialize it.") def parrallelize(model: nn.Module) -> nn.Module: """ Make use of all available GPU using nn.DataParallel NOTE: ensure to be using different random seeds for each process if you use techniques like data-augmentation or any other techniques which needs random numbers different for each steps. TODO: make sure this isn't already done by Pytorch? """ if torch.cuda.device_count() > 1: print(f'> Using "nn.DataParallel(model)" on {torch.cuda.device_count()} GPUs.') model = nn.DataParallel(model) return model def set_seeds(all_seeds: int = 345349): set_seeds(torch_seed=all_seeds, cuda_seed=all_seeds, np_seed=all_seeds, python_seed=all_seeds) def set_seeds(torch_seed: Optional[int] = None, cuda_seed: Optional[int] = None, np_seed: Optional[int] = None, python_seed: Optional[int] = None): if torch_seed is not None: torch.manual_seed(torch_seed) if cuda_seed is not None and torch.cuda.is_available(): torch.cuda.manual_seed_all(cuda_seed) if np_seed is not None: np.random.seed(np_seed) if python_seed is not None: random.seed(python_seed) def progess_bar(iterable, desc, batch_size, custom_vars: bool = False, disable: bool = False): t = tqdm(iterable, unit='batch', ncols=180, desc=desc, postfix=f'BatchSize={batch_size}', ascii=False, position=0, disable=disable, bar_format='{desc} {percentage:3.0f}%|' '{bar}' '| {n_fmt}/{total_fmt} [Elapsed={elapsed}, Remaining={remaining}, Speed={rate_fmt}{postfix}]') if custom_vars: def callback(**kwargs): t.set_postfix(batch_size=batch_size, **kwargs) return t, callback return t def import_pickle() -> types.ModuleType: """ Returns cPickle module if available, returns imported pickle module otherwise """ try: pickle = importlib.import_module('cPickle') except ImportError: pickle = importlib.import_module('pickle') return pickle def source_dir(source_file: str = __file__) -> Path: return Path(os.path.dirname(os.path.realpath(source_file))) def extract_from_hp_search_log(log_path: Path) -> Tuple[Optional[List[dict]], Optional[int], Optional[dict]]: def _to_float(iterable): return list(map(float, iterable)) with open(log_path, 'r') as f: log = f.read() # Split hyperparameter search into trials experiments = re.split('HYPERPARAMETERS TRIAL', log) del log flags = re.MULTILINE + re.IGNORECASE trials = [] for i, exp in enumerate(experiments): hp_match = re.findall(r'#+\s*\n\r?\s*(\{.*\})\s*\n\r?', exp, flags) if hp_match is not None and len(hp_match) > 0: epoch_matches = list(map(int, re.findall(r'Epoch\s+([0-9]+)/[0-9]+\s*\n\r?', exp, flags))) train_matches = _to_float(re.findall(r'TRAIN_(?:LOSS|MSE)\s*=\s*([\.0-9]+)\n\r?', exp, flags)) valid_matches = _to_float(re.findall(r'(?:VALID|TEST)_(?:LOSS|MSE)\s*=\s*([\.0-9]+)\n\r?', exp, flags)) if epoch_matches and train_matches and valid_matches: trials.append({'hyperparameters': hp_match[0], 'train_losses': _to_float(train_matches), 'valid_losses': _to_float(valid_matches), 'best_epoch': np.argmin(valid_matches), 'epochs': np.max(epoch_matches)}) else: print(f"WARNING: Can't parse resulting losses of hyperparameter search trial NO#{i}.") else: print(f"WARNING: Can't parse hyperparameter search trial NO#{i}.") if len(trials) == 0: return [], None, None else: best_idx = np.argmin([np.min(t['valid_losses']) for t in trials]) return trials, best_idx, trials[best_idx] def summarize_hp_search(trials: List[dict], best_idx: int, hp_search_name: str = ''): best_trial = trials[best_idx] hp_search_name = hp_search_name.upper() valid_losses = list(map(op.itemgetter('valid_losses'), trials)) pd.DataFrame(valid_losses).T.plot(figsize=(18, 8), legend=False, logy=True, title=f'{hp_search_name} HYPERPARAMETER SEARCH - VALID LOSSES') train_losses = list(map(op.itemgetter('train_losses'), trials))
pd.DataFrame(train_losses)
pandas.DataFrame