prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from datetime import timedelta import numpy as np import pytest from pandas._libs import iNaT import pandas as pd from pandas import ( Categorical, DataFrame, Index, IntervalIndex, NaT, Series, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesMissingData: def test_categorical_nan_equality(self): cat = Series(Categorical(["a", "b", "c", np.nan])) exp = Series([True, True, True, False]) res = cat == cat tm.assert_series_equal(res, exp) def test_categorical_nan_handling(self): # NaNs are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) tm.assert_index_equal(s.cat.categories, Index(["a", "b"])) tm.assert_numpy_array_equal( s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8) ) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_isna_for_inf(self): s = Series(["a", np.inf, np.nan, pd.NA, 1.0]) with pd.option_context("mode.use_inf_as_na", True): r = s.isna() dr = s.dropna() e = Series([False, True, True, True, False]) de = Series(["a", 1.0], index=[0, 4]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) def test_isnull_for_inf_deprecated(self): # gh-17115 s = Series(["a", np.inf, np.nan, 1.0]) with pd.option_context("mode.use_inf_as_null", True): r = s.isna() dr = s.dropna() e = Series([False, True, True, False]) de = Series(["a", 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) def test_timedelta64_nan(self): td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan assert isna(td1[0]) assert td1[0].value == iNaT td1[0] = td[0] assert not isna(td1[0]) # GH#16674 iNaT is treated as an integer when given by the user td1[1] = iNaT assert not isna(td1[1]) assert td1.dtype == np.object_ assert td1[1] == iNaT td1[1] = td[1] assert not isna(td1[1]) td1[2] = NaT assert isna(td1[2]) assert td1[2].value == iNaT td1[2] = td[2] assert not isna(td1[2]) # FIXME: don't leave commented-out # boolean setting # this doesn't work, not sure numpy even supports it # result = td[(td>np.timedelta64(timedelta(days=3))) & # td<np.timedelta64(timedelta(days=7)))] = np.nan # assert isna(result).sum() == 7 # NumPy limitation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= datetime_series <= 0.5 # expected = (datetime_series >= -0.5) & (datetime_series <= 0.5) # tm.assert_series_equal(selector, expected) def test_dropna_empty(self): s = Series([], dtype=object) assert len(s.dropna()) == 0 return_value = s.dropna(inplace=True) assert return_value is None assert len(s) == 0 # invalid axis msg = "No axis named 1 for object type Series" with pytest.raises(ValueError, match=msg): s.dropna(axis=1) def test_datetime64_tz_dropna(self): # DatetimeBlock s = Series( [ Timestamp("2011-01-01 10:00"), pd.NaT, Timestamp("2011-01-03 10:00"), pd.NaT, ] ) result = s.dropna() expected = Series( [
Timestamp("2011-01-01 10:00")
pandas.Timestamp
# Author: <NAME> # Date: 26 November 2016 # Python version: 3.5 # Updated June 2018 by <NAME> (KTH dESA) # Modified grid algorithm and population calibration to improve computational speed import logging import pandas as pd from math import pi, exp, log, sqrt, ceil # from pyproj import Proj import numpy as np from collections import defaultdict import os logging.basicConfig(format='%(asctime)s\t\t%(message)s', level=logging.DEBUG) # general LHV_DIESEL = 9.9445485 # (kWh/l) lower heating value HOURS_PER_YEAR = 8760 # Columns in settlements file must match these exactly SET_COUNTRY = 'Country' # This cannot be changed, lots of code will break SET_X = 'X' # Coordinate in metres/kilometres SET_Y = 'Y' # Coordinate in metres/kilometres SET_X_DEG = 'X_deg' # Coordinates in degrees SET_Y_DEG = 'Y_deg' SET_POP = 'Pop' # Population in people per point (equally, people per km2) SET_POP_CALIB = 'PopStartCalibrated' # Calibrated population to reference year, same units SET_POP_FUTURE = 'PopFuture' # Project future population, same units SET_GRID_DIST_CURRENT = 'GridDistCurrent' # Distance in km from current grid SET_GRID_DIST_PLANNED = 'GridDistPlan' # Distance in km from current and future grid SET_ROAD_DIST = 'RoadDist' # Distance in km from road network SET_NIGHT_LIGHTS = 'VIIRS' # Intensity of night time lights (from NASA), range 0 - 63 SET_TRAVEL_HOURS = 'TravelHours' # Travel time to large city in hours SET_GHI = 'GHI' # Global horizontal irradiance in kWh/m2/day SET_WINDVEL = 'WindVel' # Wind velocity in m/s SET_WINDCF = 'WindCF' # Wind capacity factor as percentage (range 0 - 1) SET_HYDRO = 'Hydropower' # Hydropower potential in kW SET_HYDRO_DIST = 'HydropowerDist' # Distance to hydropower site in km SET_HYDRO_FID = 'HydropowerFID' # the unique tag for eah hydropower, to not over-utilise SET_SUBSTATION_DIST = 'SubstationDist' SET_ELEVATION = 'Elevation' # in metres SET_SLOPE = 'Slope' # in degrees SET_LAND_COVER = 'LandCover' SET_SOLAR_RESTRICTION = 'SolarRestriction' SET_ROAD_DIST_CLASSIFIED = 'RoadDistClassified' SET_SUBSTATION_DIST_CLASSIFIED = 'SubstationDistClassified' SET_ELEVATION_CLASSIFIED = 'ElevationClassified' SET_SLOPE_CLASSIFIED = 'SlopeClassified' SET_LAND_COVER_CLASSIFIED = 'LandCoverClassified' SET_COMBINED_CLASSIFICATION = 'GridClassification' SET_GRID_PENALTY = 'GridPenalty' SET_URBAN = 'IsUrban' # Whether the site is urban (0 or 1) SET_ENERGY_PER_HH = 'EnergyPerHH' SET_NUM_PEOPLE_PER_HH = 'NumPeoplePerHH' SET_ELEC_CURRENT = 'ElecStart' # If the site is currently electrified (0 or 1) SET_ELEC_FUTURE = 'ElecFuture' # If the site has the potential to be 'easily' electrified in future SET_NEW_CONNECTIONS = 'NewConnections' # Number of new people with electricity connections SET_NEW_CONNECTIONS_PROD = 'New_Connections_Prod' # Number of new people with electricity connections plus productive uses corresponding SET_MIN_GRID_DIST = 'MinGridDist' SET_LCOE_GRID = 'Grid' # All lcoes in USD/kWh SET_LCOE_SA_PV = 'SA_PV' SET_LCOE_SA_DIESEL = 'SA_Diesel' SET_LCOE_MG_WIND = 'MG_Wind' SET_LCOE_MG_DIESEL = 'MG_Diesel' SET_LCOE_MG_PV = 'MG_PV' SET_LCOE_MG_HYDRO = 'MG_Hydro' SET_LCOE_MG_HYBRID = 'MG_Hybrid' SET_MIN_OFFGRID = 'MinimumOffgrid' # The technology with lowest lcoe (excluding grid) SET_MIN_OVERALL = 'MinimumOverall' # Same as above, but including grid SET_MIN_OFFGRID_LCOE = 'MinimumTechLCOE' # The lcoe value for minimum tech SET_MIN_OVERALL_LCOE = 'MinimumOverallLCOE' # The lcoe value for overall minimum SET_MIN_OVERALL_CODE = 'MinimumOverallCode' # And a code from 1 - 7 to represent that option SET_MIN_CATEGORY = 'MinimumCategory' # The category with minimum lcoe (grid, minigrid or standalone) SET_NEW_CAPACITY = 'NewCapacity' # Capacity in kW SET_INVESTMENT_COST = 'InvestmentCost' # The investment cost in USD # Columns in the specs file must match these exactly SPE_COUNTRY = 'Country' SPE_POP = 'Pop2016' # The actual population in the base year SPE_URBAN = 'UrbanRatio2016' # The ratio of urban population (range 0 - 1) in base year SPE_POP_FUTURE = 'Pop2030' SPE_URBAN_FUTURE = 'UrbanRatio2030' SPE_URBAN_MODELLED = 'UrbanRatioModelled' # The urban ratio in the model after calibration (for comparison) SPE_URBAN_CUTOFF = 'UrbanCutOff' # The urban cutoff population calirated by the model, in people per km2 SPE_URBAN_GROWTH = 'UrbanGrowth' # The urban growth rate as a simple multplier (urban pop future / urban pop present) SPE_RURAL_GROWTH = 'RuralGrowth' # Same as for urban SPE_NUM_PEOPLE_PER_HH_RURAL = 'NumPeoplePerHHRural' SPE_NUM_PEOPLE_PER_HH_URBAN = 'NumPeoplePerHHUrban' SPE_DIESEL_PRICE_LOW = 'DieselPriceLow' # Diesel price in USD/litre SPE_DIESEL_PRICE_HIGH = 'DieselPriceHigh' # Same, with a high forecast var SPE_GRID_PRICE = 'GridPrice' # Grid price of electricity in USD/kWh SPE_GRID_CAPACITY_INVESTMENT = 'GridCapacityInvestmentCost' # grid capacity investments costs from TEMBA USD/kW SPE_GRID_LOSSES = 'GridLosses' # As a ratio (0 - 1) SPE_BASE_TO_PEAK = 'BaseToPeak' # As a ratio (0 - 1) SPE_EXISTING_GRID_COST_RATIO = 'ExistingGridCostRatio' SPE_MAX_GRID_DIST = 'MaxGridDist' SPE_ELEC = 'ElecActual' # Actual current percentage electrified population (0 - 1) SPE_ELEC_MODELLED = 'ElecModelled' # The modelled version after calibration (for comparison) SPE_MIN_NIGHT_LIGHTS = 'MinNightLights' SPE_MAX_GRID_EXTENSION_DIST = 'MaxGridExtensionDist' SPE_MAX_ROAD_DIST = 'MaxRoadDist' SPE_POP_CUTOFF1 = 'PopCutOffRoundOne' SPE_POP_CUTOFF2 = 'PopCutOffRoundTwo' class Technology: """ Used to define the parameters for each electricity access technology, and to calculate the LCOE depending on input parameters. """ start_year = 2016 end_year = 2030 discount_rate = 0.08 grid_cell_area = 1 # in km2, normally 1km2 mv_line_cost = 9000 # USD/km lv_line_cost = 5000 # USD/km mv_line_capacity = 50 # kW/line lv_line_capacity = 10 # kW/line lv_line_max_length = 30 # km hv_line_cost = 53000 # USD/km mv_line_max_length = 50 # km hv_lv_transformer_cost = 5000 # USD/unit mv_increase_rate = 0.1 # percentage def __init__(self, tech_life, # in years base_to_peak_load_ratio, distribution_losses=0, # percentage connection_cost_per_hh=0, # USD/hh om_costs=0.0, # OM costs as percentage of capital costs capital_cost=0, # USD/kW capacity_factor=1.0, # percentage efficiency=1.0, # percentage diesel_price=0.0, # USD/litre grid_price=0.0, # USD/kWh for grid electricity standalone=False, mg_pv=False, mg_wind=False, mg_diesel=False, mg_hydro=False, grid_capacity_investment=0.0, # USD/kW for on-grid capacity investments (excluding grid itself) diesel_truck_consumption=0, # litres/hour diesel_truck_volume=0, # litres om_of_td_lines=0): # percentage self.distribution_losses = distribution_losses self.connection_cost_per_hh = connection_cost_per_hh self.base_to_peak_load_ratio = base_to_peak_load_ratio self.tech_life = tech_life self.om_costs = om_costs self.capital_cost = capital_cost self.capacity_factor = capacity_factor self.efficiency = efficiency self.diesel_price = diesel_price self.grid_price = grid_price self.standalone = standalone self.mg_pv = mg_pv self.mg_wind = mg_wind self.mg_diesel = mg_diesel self.mg_hydro = mg_hydro self.grid_capacity_investment = grid_capacity_investment self.diesel_truck_consumption = diesel_truck_consumption self.diesel_truck_volume = diesel_truck_volume self.om_of_td_lines = om_of_td_lines def pv_diesel_hybrid(self, energy_per_hh, # kWh/household/year as defined max_ghi, # highest annual GHI value encountered in the GIS data max_travel_hours, # highest value for travel hours encountered in the GIS data diesel_no=1, # 50, # number of diesel generators simulated pv_no=1, #70, # number of PV panel sizes simulated n_chg=0.92, # charge efficiency of battery n_dis=0.92, # discharge efficiency of battery lpsp=0.05, # maximum loss of load allowed over the year, in share of kWh battery_cost=150, # battery capital capital cost, USD/kWh of storage capacity pv_cost=2490, # PV panel capital cost, USD/kW peak power diesel_cost=550, # diesel generator capital cost, USD/kW rated power pv_life=20, # PV panel expected lifetime, years diesel_life=15, # diesel generator expected lifetime, years pv_om=0.015, # annual OM cost of PV panels diesel_om=0.1, # annual OM cost of diesel generator k_t=0.005): # temperature factor of PV panels ghi = pd.read_csv('Supplementary_files\GHI_hourly.csv', usecols=[4], sep=';', skiprows=21).as_matrix() # hourly GHI values downloaded from SoDa for one location in the country temp = pd.read_csv('Supplementary_files\Temperature_hourly.csv', usecols=[4], sep=';', skiprows=21).as_matrix() # hourly temperature values downloaded from SoDa for one location in the country hour_numbers = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23) * 365 LHV_DIESEL = 9.9445485 dod_max = 0.8 # maximum depth of discharge of battery # the values below define the load curve for the five tiers. The values reflect the share of the daily demand # expected in each hour of the day (sum of all values for one tier = 1) tier5_load_curve = np.array([0.021008403, 0.021008403, 0.021008403, 0.021008403, 0.027310924, 0.037815126, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.042016807, 0.046218487, 0.050420168, 0.067226891, 0.084033613, 0.073529412, 0.052521008, 0.033613445, 0.023109244]) tier4_load_curve = np.array([0.017167382, 0.017167382, 0.017167382, 0.017167382, 0.025751073, 0.038626609, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.042918455, 0.0472103, 0.051502146, 0.068669528, 0.08583691, 0.075107296, 0.053648069, 0.034334764, 0.021459227]) tier3_load_curve = np.array([0.013297872, 0.013297872, 0.013297872, 0.013297872, 0.019060284, 0.034574468, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.044326241, 0.048758865, 0.053191489, 0.070921986, 0.088652482, 0.077570922, 0.055407801, 0.035460993, 0.019946809]) tier2_load_curve = np.array([0.010224949, 0.010224949, 0.010224949, 0.010224949, 0.019427403, 0.034764826, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.040899796, 0.04601227, 0.056237219, 0.081799591, 0.102249489, 0.089468303, 0.06390593, 0.038343558, 0.017893661]) tier1_load_curve = np.array([0, 0, 0, 0, 0.012578616, 0.031446541, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.037735849, 0.044025157, 0.062893082, 0.100628931, 0.125786164, 0.110062893, 0.078616352, 0.044025157, 0.012578616]) if energy_per_hh < 75: load_curve = tier1_load_curve * energy_per_hh / 365 elif energy_per_hh < 365: load_curve = tier2_load_curve * energy_per_hh / 365 elif energy_per_hh < 1241: load_curve = tier3_load_curve * energy_per_hh / 365 elif energy_per_hh < 2993: load_curve = tier4_load_curve * energy_per_hh / 365 else: load_curve = tier5_load_curve * energy_per_hh / 365 def pv_diesel_capacities(pv_capacity, battery_size, diesel_capacity, initital_condition=False): condition = 1 ren_limit = 0 break_hour = 17 while condition > lpsp: dod = np.zeros(24) battery_use = np.zeros(24) # Stores the amount of battery discharge during the day fuel_result = 0 battery_life = 0 soc = 0.5 unmet_demand = 0 annual_diesel_gen = 0 for i in range(8760): diesel_gen = 0 battery_use[hour_numbers[i]] = 0.0002 * soc # Battery self-discharge soc *= 0.9998 t_cell = temp[i] + 0.0256 * ghi[i] # PV cell temperature pv_gen = pv_capacity * 0.9 * ghi[i] / 1000 * ( 1 - k_t * (t_cell - 298.15)) # PV generation in the hour net_load = load_curve[hour_numbers[i]] - pv_gen # remaining load not met by PV panels if net_load <= 0: # If pv generation is greater than load the excess energy is stored in battery if battery_size > 0: soc -= n_chg * net_load / battery_size net_load = 0 max_diesel = min(diesel_capacity, net_load + (1 - soc) * battery_size / n_chg) # Maximum aount of diesel needed to supply load and charge battery, limited by rated diesel capacity # Below is the dispatch strategy for the diesel generator as described in word document if break_hour + 1 > hour_numbers[i] > 4 and net_load > soc * battery_size * n_dis: diesel_gen = min(diesel_capacity, max(0.4 * diesel_capacity, net_load)) elif 23 > hour_numbers[i] > break_hour and max_diesel > 0.40 * diesel_capacity: diesel_gen = max_diesel elif n_dis * soc * battery_size < net_load: diesel_gen = max(0.4 * diesel_capacity, max_diesel) if diesel_gen > 0: # Fuel consumption is stored fuel_result += diesel_capacity * 0.08145 + diesel_gen * 0.246 annual_diesel_gen += diesel_gen if (net_load - diesel_gen) > 0: # If diesel generator cannot meet load the battery is also used if battery_size > 0: soc -= (net_load - diesel_gen) / n_dis / battery_size battery_use[hour_numbers[i]] += (net_load - diesel_gen) / n_dis / battery_size if soc < 0: # If battery and diesel generator cannot supply load there is unmet demand unmet_demand -= soc * n_dis * battery_size battery_use[hour_numbers[i]] += soc soc = 0 else: # If diesel generation is larger than load the excess energy is stored in battery if battery_size > 0: soc += (diesel_gen - net_load) * n_chg / battery_size if battery_size == 0: # If no battery and diesel generation < net load there is unmet demand unmet_demand += net_load - diesel_gen soc = min(soc, 1) # Battery state of charge cannot be >1 dod[hour_numbers[i]] = 1 - soc # The depth of discharge in every hour of the day is storeed if hour_numbers[i] == 23 and max(dod) > 0: # The battery wear during the last day is calculated battery_life += sum(battery_use) / (531.52764 * max(0.1, (max(dod) * dod_max)) ** -1.12297) condition = unmet_demand / energy_per_hh # lpsp is calculated if initital_condition: # During the first calculation the minimum PV size with no diesel generator is calculated if condition > lpsp: pv_capacity *= (1 + unmet_demand / energy_per_hh / 4) elif condition > lpsp or (annual_diesel_gen > (1 - ren_limit) * energy_per_hh): # For the remaining configurations the solution is considered unusable if lpsp criteria is not met diesel_capacity = 99 condition = 0 battery_life = 1 elif condition < lpsp: # If lpsp criteria is met the expected battery life is stored battery_life = np.round(1 / battery_life) return pv_capacity, diesel_capacity, battery_size, fuel_result, battery_life # Initial PV size when no diesel generator is used is calculated and used as reference ref = pv_diesel_capacities(energy_per_hh / 3000, 2 * energy_per_hh / 365, 0, initital_condition=True) battery_sizes = [0.3 * energy_per_hh / 365, 0.5 * energy_per_hh / 365, 0.75 * energy_per_hh / 365, energy_per_hh / 365, 2 * energy_per_hh / 365, 0] # [2 * energy_per_hh / 365, energy_per_hh / 365, 0] ref_battery_size = np.zeros((len(battery_sizes), pv_no, diesel_no)) ref_panel_size = np.zeros((len(battery_sizes), pv_no, diesel_no)) ref_diesel_cap = np.zeros((len(battery_sizes), pv_no, diesel_no)) ref_fuel_result = np.zeros((len(battery_sizes), pv_no, diesel_no)) ref_battery_life = np.zeros((len(battery_sizes), pv_no, diesel_no)) # For the number of diesel, pv and battery capacities the lpsp, battery lifetime and fuel usage is calculated for k in range(len(battery_sizes)): for i in range(pv_no): for j in range(diesel_no): a = pv_diesel_capacities(ref[0] * (pv_no - i) / pv_no, battery_sizes[k], j * max(load_curve) / diesel_no) ref_panel_size[k, i, j] = a[0] ref_diesel_cap[k, i, j] = a[1] ref_battery_size[k, i, j] = a[2] ref_fuel_result[k, i, j] = a[3] ref_battery_life[k, i, j] = min(20, a[4]) # Battery life limited to maximum 20 years # Neccessary information for calculation of LCOE is defined project_life = self.end_year - self.start_year ghi_steps = int( ceil((max_ghi - 1000) / 50) + 1) # GHI values rounded to nearest 50 are used for reference matrix diesel_cost_max = 2 * self.diesel_price * self.diesel_truck_consumption * max_travel_hours / self.diesel_truck_volume / LHV_DIESEL diesel_steps = int( ceil(diesel_cost_max * 100) + 1) # Diesel values rounded to 0.01 USD used for reference matrix generation = np.ones(project_life) * energy_per_hh generation[0] = 0 year = np.arange(project_life) discount_factor = (1 + self.discount_rate) ** year investment_table = np.zeros((ghi_steps, diesel_steps)) # Stores least-cost configuration investments pv_table = np.zeros((ghi_steps, diesel_steps)) # Stores PV size for least-cost configuraton diesel_table = np.zeros((ghi_steps, diesel_steps)) # Stores diesel capacity for least-cost configuration lcoe_table = np.ones((ghi_steps, diesel_steps)) * 99 # Stores LCOE for least-cost configuration choice_table = np.zeros((ghi_steps, diesel_steps)) # For each combination of GHI and diesel price the least costly configuration is calculated by iterating through # the different configurations specified above for i in range(ghi_steps): pv_size = ref_panel_size * ghi.sum() / 1000 / (1000 + 50 * i) for j in range(diesel_steps): for k in range(pv_no): for l in range(diesel_no): for m in range(len(battery_sizes)): investments = np.zeros(project_life) salvage = np.zeros(project_life) fuel_costs = np.ones(project_life) * ref_fuel_result[m, k, l] * (self.diesel_price + 0.01 * j) investments[0] = pv_size[m, k, l] * pv_cost + ref_diesel_cap[m, k, l] * diesel_cost salvage[-1] = ref_diesel_cap[m, k, l] * diesel_cost * (1 - project_life / diesel_life) + \ pv_size[m, k, l] * pv_cost * (1 - project_life / pv_life) om = np.ones(project_life) * ( pv_size[m, k, l] * pv_cost * pv_om + ref_diesel_cap[m, k, l] * diesel_cost * diesel_om) if pv_life < project_life: investments[pv_life] = pv_size[m, k, l] * pv_cost if diesel_life < project_life: investments[diesel_life] = ref_diesel_cap[m, k, l] * diesel_cost for n in range(project_life): if year[n] % ref_battery_life[m, k, l] == 0: investments[n] += ref_battery_size[m, k, l] * battery_cost / dod_max salvage[-1] += (1 - ( (project_life % ref_battery_life[m, k, l]) / ref_battery_life[m, k, l])) * \ battery_cost * ref_battery_size[m, k, l] / dod_max + ref_diesel_cap[ m, k, l] * \ diesel_cost * (1 - ( project_life % diesel_life) / diesel_life) \ + pv_size[m, k, l] * pv_cost * (1 - (project_life % pv_life) / pv_life) discount_investments = (investments + fuel_costs - salvage + om) / discount_factor discount_generation = generation / discount_factor lcoe = np.sum(discount_investments) / np.sum(discount_generation) if lcoe < lcoe_table[i, j]: lcoe_table[i, j] = lcoe pv_table[i, j] = pv_size[m, k, l] diesel_table[i, j] = ref_diesel_cap[m, k, l] investment_table[i, j] = np.sum(discount_investments) choice_table[i, j] = (l + 1) * 10 + (k + 1) * 10000 + m + 1 # first number is PV size, second is diesel, third is battery return lcoe_table, pv_table, diesel_table, investment_table, load_curve[19], choice_table @classmethod def set_default_values(cls, start_year, end_year, discount_rate, grid_cell_area, mv_line_cost, lv_line_cost, mv_line_capacity, lv_line_capacity, lv_line_max_length, hv_line_cost, mv_line_max_length, hv_lv_transformer_cost, mv_increase_rate): cls.start_year = start_year cls.end_year = end_year cls.discount_rate = discount_rate cls.grid_cell_area = grid_cell_area cls.mv_line_cost = mv_line_cost cls.lv_line_cost = lv_line_cost cls.mv_line_capacity = mv_line_capacity cls.lv_line_capacity = lv_line_capacity cls.lv_line_max_length = lv_line_max_length cls.hv_line_cost = hv_line_cost cls.mv_line_max_length = mv_line_max_length cls.hv_lv_transformer_cost = hv_lv_transformer_cost cls.mv_increase_rate = mv_increase_rate def get_lcoe(self, energy_per_hh, people, num_people_per_hh, additional_mv_line_length=0, capacity_factor=0, mv_line_length=0, travel_hours=0, ghi=0, urban=0, get_capacity=False, mini_grid=False, pv=False, urban_hybrid=0, rural_hybrid=0, get_investment_cost=False, mg_pv=False, mg_wind=False, mg_hydro=False, mg_diesel=False, mg_hybrid=False): """ Calculates the LCOE depending on the parameters. Optionally calculates the investment cost instead. The only required parameters are energy_per_hh, people and num_people_per_hh additional_mv_line_length requried for grid capacity_factor required for PV and wind mv_line_length required for hydro travel_hours required for diesel """ if people == 0: # If there are no people, the investment cost is zero. if get_investment_cost: return 0 # Otherwise we set the people low (prevent div/0 error) and continue. else: people = 0.00001 # If a new capacity factor isn't given, use the class capacity factor (for hydro, diesel etc) if capacity_factor == 0: capacity_factor = self.capacity_factor consumption = people / num_people_per_hh * energy_per_hh # kWh/year average_load = consumption / (1 - self.distribution_losses) / HOURS_PER_YEAR # kW if mg_hybrid and urban == 1: peak_load = urban_hybrid[4] * consumption # peak_load = people / num_people_per_hh * urban_hybrid[4] * (1 + self.distribution_losses) elif mg_hybrid and urban == 0: peak_load = rural_hybrid[4] * consumption # peak_load = people / num_people_per_hh * rural_hybrid[4] * (1 + self.distribution_losses) else: peak_load = average_load / self.base_to_peak_load_ratio # kW no_mv_lines = peak_load / self.mv_line_capacity no_lv_lines = peak_load / self.lv_line_capacity lv_networks_lim_capacity = no_lv_lines / no_mv_lines lv_networks_lim_length = ((self.grid_cell_area / no_mv_lines) / (self.lv_line_max_length / sqrt(2))) ** 2 actual_lv_lines = min([people / num_people_per_hh, max([lv_networks_lim_capacity, lv_networks_lim_length])]) hh_per_lv_network = (people / num_people_per_hh) / (actual_lv_lines * no_mv_lines) lv_unit_length = sqrt(self.grid_cell_area / (people / num_people_per_hh)) * sqrt(2) / 2 lv_lines_length_per_lv_network = 1.333 * hh_per_lv_network * lv_unit_length total_lv_lines_length = no_mv_lines * actual_lv_lines * lv_lines_length_per_lv_network line_reach = (self.grid_cell_area / no_mv_lines) / (2 * sqrt(self.grid_cell_area / no_lv_lines)) total_length_of_lines = min([line_reach, self.mv_line_max_length]) * no_mv_lines additional_hv_lines = max( [0, round(sqrt(self.grid_cell_area) / (2 * min([line_reach, self.mv_line_max_length])) / 10, 3) - 1]) hv_lines_total_length = (sqrt(self.grid_cell_area) / 2) * additional_hv_lines * sqrt(self.grid_cell_area) num_transformers = additional_hv_lines + no_mv_lines + (no_mv_lines * actual_lv_lines) generation_per_year = average_load * HOURS_PER_YEAR # The investment and O&M costs are different for grid and non-grid solutions if self.grid_price > 0 : td_investment_cost = hv_lines_total_length * self.hv_line_cost + \ total_length_of_lines * self.mv_line_cost + \ total_lv_lines_length * self.lv_line_cost + \ num_transformers * self.hv_lv_transformer_cost + \ (people / num_people_per_hh) * self.connection_cost_per_hh + \ additional_mv_line_length * ( self.mv_line_cost * (1 + self.mv_increase_rate) ** ((additional_mv_line_length / 5) - 1)) td_om_cost = td_investment_cost * self.om_of_td_lines total_investment_cost = td_investment_cost total_om_cost = td_om_cost fuel_cost = self.grid_price else: total_lv_lines_length *= 0 if self.standalone else 0.75 mv_total_line_cost = self.mv_line_cost * mv_line_length lv_total_line_cost = self.lv_line_cost * total_lv_lines_length td_investment_cost = mv_total_line_cost + lv_total_line_cost + ( people / num_people_per_hh) * self.connection_cost_per_hh td_om_cost = td_investment_cost * self.om_of_td_lines installed_capacity = peak_load / capacity_factor if self.standalone: if self.diesel_price > 0: if (installed_capacity / people / num_people_per_hh) < 1: installed_capacity = 1 * people / num_people_per_hh if installed_capacity / (people / num_people_per_hh) < 0.020: capital_investment = installed_capacity * self.capital_cost[0.020] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[0.020] * self.om_costs * installed_capacity) elif installed_capacity / (people / num_people_per_hh) < 0.050: capital_investment = installed_capacity * self.capital_cost[0.050] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[0.050] * self.om_costs * installed_capacity) elif installed_capacity / (people / num_people_per_hh) < 0.100: capital_investment = installed_capacity * self.capital_cost[0.100] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[0.100] * self.om_costs * installed_capacity) elif installed_capacity / (people / num_people_per_hh) < 0.200: capital_investment = installed_capacity * self.capital_cost[0.200] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[0.200] * self.om_costs * installed_capacity) else: capital_investment = installed_capacity * self.capital_cost[0.300] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[0.300] * self.om_costs * installed_capacity) elif self.mg_pv: if installed_capacity < 50: capital_investment = installed_capacity * self.capital_cost[50] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[50] * self.om_costs * installed_capacity) elif installed_capacity < 75: capital_investment = installed_capacity * self.capital_cost[75] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[75] * self.om_costs * installed_capacity) elif installed_capacity < 100: capital_investment = installed_capacity * self.capital_cost[100] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[100] * self.om_costs * installed_capacity) else: capital_investment = installed_capacity * self.capital_cost[200] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[200] * self.om_costs * installed_capacity) elif self.mg_wind: if installed_capacity < 100: capital_investment = installed_capacity * self.capital_cost[100] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[100] * self.om_costs * installed_capacity) elif installed_capacity < 1000: capital_investment = installed_capacity * self.capital_cost[1000] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[1000] * self.om_costs * installed_capacity) else: capital_investment = installed_capacity * self.capital_cost[10000] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[10000] * self.om_costs * installed_capacity) elif self.mg_hydro: if installed_capacity < 1: capital_investment = installed_capacity * self.capital_cost[1] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[1] * self.om_costs * installed_capacity) elif installed_capacity < 100: capital_investment = installed_capacity * self.capital_cost[100] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[100] * self.om_costs * installed_capacity) else: capital_investment = installed_capacity * self.capital_cost[5000] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[5000] * self.om_costs * installed_capacity) elif self.mg_diesel: if installed_capacity < 100: capital_investment = installed_capacity * self.capital_cost[100] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[100] * self.om_costs * installed_capacity) elif installed_capacity < 1000: capital_investment = installed_capacity * self.capital_cost[1000] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[1000] * self.om_costs * installed_capacity) elif installed_capacity < 5000: capital_investment = installed_capacity * self.capital_cost[5000] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[5000] * self.om_costs * installed_capacity) else: capital_investment = installed_capacity * self.capital_cost[25000] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost[25000] * self.om_costs * installed_capacity) elif mg_hybrid: capital_investment = installed_capacity * self.capital_cost total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost * self.om_costs * installed_capacity) # If a diesel price has been passed, the technology is diesel if self.diesel_price > 0 and not mg_hybrid: # And we apply the Szabo formula to calculate the transport cost for the diesel # p = (p_d + 2*p_d*consumption*time/volume)*(1/mu)*(1/LHVd) fuel_cost = (self.diesel_price + 2 * self.diesel_price * self.diesel_truck_consumption * travel_hours / self.diesel_truck_volume) / LHV_DIESEL / self.efficiency # Otherwise it's hydro/wind etc with no fuel cost else: fuel_cost = 0 # Perform the time-value LCOE calculation project_life = self.end_year - self.start_year reinvest_year = 0 # If the technology life is less than the project life, we will have to invest twice to buy it again if self.tech_life < project_life: reinvest_year = self.tech_life year = np.arange(project_life) el_gen = generation_per_year * np.ones(project_life) el_gen[0] = 0 discount_factor = (1 + self.discount_rate) ** year investments = np.zeros(project_life) investments[0] = total_investment_cost if reinvest_year: investments[reinvest_year] = total_investment_cost salvage = np.zeros(project_life) used_life = project_life if reinvest_year: # so salvage will come from the remaining life after the re-investment used_life = project_life - self.tech_life salvage[-1] = total_investment_cost * (1 - used_life / self.tech_life) operation_and_maintenance = total_om_cost * np.ones(project_life) operation_and_maintenance[0] = 0 fuel = el_gen * fuel_cost fuel[0] = 0 if mg_hybrid: diesel_lookup = int(round(2 * self.diesel_price * self.diesel_truck_consumption * travel_hours / self.diesel_truck_volume / LHV_DIESEL * 100)) renewable_lookup = int(round((ghi - 1000) / 50)) if urban == 1 and pv: ref_table = urban_hybrid[0] ref_investments = urban_hybrid[3] ref_capacity = urban_hybrid[1] + urban_hybrid[2] elif urban == 0 and pv: ref_table = rural_hybrid[0] ref_investments = rural_hybrid[3] ref_capacity = rural_hybrid[1] + rural_hybrid[2] add_lcoe = ref_table[renewable_lookup, diesel_lookup] add_investments = ref_investments[renewable_lookup, diesel_lookup] * people / num_people_per_hh add_capacity = ref_capacity[renewable_lookup, diesel_lookup] * people / num_people_per_hh # So we also return the total investment cost for this number of people if get_investment_cost: discounted_investments = investments / discount_factor if mini_grid: return add_investments + np.sum(discounted_investments) else: return np.sum(discounted_investments) + self.grid_capacity_investment * peak_load # return np.sum(discounted_investments) + self.grid_capacity_investment * peak_load elif get_capacity: return add_capacity else: discounted_costs = (investments + operation_and_maintenance + fuel - salvage) / discount_factor discounted_generation = el_gen / discount_factor if mini_grid: return np.sum(discounted_costs) / np.sum(discounted_generation) + add_lcoe else: return np.sum(discounted_costs) / np.sum(discounted_generation) # return np.sum(discounted_costs) / np.sum(discounted_generation) def get_grid_table(self, energy_per_hh, num_people_per_hh, max_dist): """ Uses calc_lcoe to generate a 2D grid with the grid LCOEs, for faster access in teh electrification algorithm """ logging.info('Creating a grid table for {} kWh/hh/year'.format(energy_per_hh)) # Coarser resolution at the high end (just to catch the few places with exceptional population density) # The electrification algorithm must round off with the same scheme people_arr_direct = list(range(1000)) + list(range(1000, 10000, 10)) + list(range(10000, 350000, 1000)) elec_dists = range(0, int(max_dist) + 20) # add twenty to handle edge cases grid_lcoes = pd.DataFrame(index=elec_dists, columns=people_arr_direct) for people in people_arr_direct: for additional_mv_line_length in elec_dists: grid_lcoes[people][additional_mv_line_length] = self.get_lcoe( energy_per_hh=energy_per_hh, people=people, num_people_per_hh=num_people_per_hh, additional_mv_line_length=additional_mv_line_length) return grid_lcoes.to_dict() class SettlementProcessor: """ Processes the dataframe and adds all the columns to determine the cheapest option and the final costs and summaries """ def __init__(self, path): try: self.df = pd.read_csv(path) except FileNotFoundError: print('Could not find the calibrated and prepped csv file') raise try: self.df[SET_GHI] except ValueError: self.df = pd.read_csv(path, sep=';') try: self.df[SET_GHI] except ValueError: print('Column "GHI" not found, check column names in calibrated csv-file') raise def condition_df(self): """ Do any initial data conditioning that may be required. """ logging.info('Ensure that columns that are supposed to be numeric are numeric') self.df[SET_GHI] = pd.to_numeric(self.df[SET_GHI], errors='coerce') self.df[SET_WINDVEL] = pd.to_numeric(self.df[SET_WINDVEL], errors='coerce') self.df[SET_NIGHT_LIGHTS] = pd.to_numeric(self.df[SET_NIGHT_LIGHTS], errors='coerce') self.df[SET_ELEVATION] = pd.to_numeric(self.df[SET_ELEVATION], errors='coerce') self.df[SET_SLOPE] = pd.to_numeric(self.df[SET_SLOPE], errors='coerce') self.df[SET_LAND_COVER] = pd.to_numeric(self.df[SET_LAND_COVER], errors='coerce') self.df[SET_GRID_DIST_CURRENT] = pd.to_numeric(self.df[SET_GRID_DIST_CURRENT], errors='coerce') self.df[SET_GRID_DIST_PLANNED] =
pd.to_numeric(self.df[SET_GRID_DIST_PLANNED], errors='coerce')
pandas.to_numeric
# -*- coding: utf-8 -*- """Copy of final.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1JsZAdNd67Fcn-S5prbt1w33R4wxE_9ep """ # Commented out IPython magic to ensure Python compatibility. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') from sklearn.preprocessing import LabelEncoder from tqdm import tqdm_notebook as tqdm # %matplotlib inline """## Data loading """ application_train = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/application_train.csv") application_test = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/application_test.csv") # pos_cash = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/POS_CASH_balance.csv") # installments = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/installments_payments.csv") # credit_df = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/credit_card_balance.csv"); # b=pd.read_csv("/content/drive/MyDrive/Home Credit/Data/bureau.csv") # bur=pd.read_csv("/content/drive/MyDrive/Home Credit/Data/bureau_balance.csv") # prev=pd.read_csv("/content/drive/MyDrive/Home Credit/Data/previous_application.csv") print("application_train.shape:",application_train.shape) print("application_test.shape :",application_test.shape) train_id = application_train["SK_ID_CURR"] train_target = application_train["TARGET"] test_id = application_test["SK_ID_CURR"] application_train.head() application_test.head() """we have one extra column in the application_train data , i.e TARGET """ application_train['TARGET'].value_counts() fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["TARGET"].value_counts(),labels = ["TARGET=0","TARGET=1"],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """Imbalanced dataset""" application_train.dtypes.value_counts() obj_type = application_train.dtypes[application_train.dtypes=='object'].index float_type = application_train.dtypes[application_train.dtypes=='float64'].index int_type = application_train.dtypes[application_train.dtypes=='int64'].index def missing_data(data): total = data.isnull().sum().sort_values(ascending = False) percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending = False) return pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) """# Handling categorical data """ print(obj_type) label_list = [] one_hot_list = [] drop_list = [] application_train[obj_type].head() """Missing Values in categorical data""" missing_data(application_train[obj_type]) application_train["CODE_GENDER"].value_counts() application_train['CODE_GENDER'].replace('XNA','F', inplace=True) fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["CODE_GENDER"].value_counts(),labels = ["Female","Male"],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="CODE_GENDER",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """Observation : Male having difficulty in repaying is high compared to Female from the above graph More No of Female Applicants than Male Applicants. """ def plot_hist(col): plt.suptitle(col, fontsize=30) application_train.loc[application_train['TARGET'] == 0, col].hist( ) application_train.loc[application_train['TARGET'] == 1, col].hist( ) plt.legend(['TARGET(0)', 'TARGET(1)']) plt.show() plot_hist("CODE_GENDER") """# NAME_CONTRACT_TYPE""" fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["NAME_CONTRACT_TYPE"].value_counts(),labels = ["Cash_Loans","Revolving_Loans"],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="NAME_CONTRACT_TYPE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """Cash Loans are More than Revolving loans . ## FLAG_OWN_CAR """ fig = plt.figure(figsize =(15, 3)) plt.subplot(1,2,1) plt.pie(application_train["FLAG_OWN_CAR"].value_counts(),labels = ["YES","NO"],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="FLAG_OWN_CAR",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## FLAG_OWN_REALTY""" fig = plt.figure(figsize =(15, 3)) plt.subplot(1,2,1) plt.pie(application_train["FLAG_OWN_REALTY"].value_counts(),labels = ["YES","NO"],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="FLAG_OWN_REALTY",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## NAME_EDUCATION_TYPE""" application_train["NAME_EDUCATION_TYPE"].value_counts().index fig = plt.figure(figsize =(15, 3)) plt.subplot(1,2,1) plt.pie(application_train["NAME_EDUCATION_TYPE"].value_counts(),labels =['Secondary / secondary special', 'Higher education', 'Incomplete higher', 'Lower secondary', 'Academic degree'],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="NAME_EDUCATION_TYPE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## NAME_TYPE_SUITE""" application_train["NAME_TYPE_SUITE"].value_counts().index fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["NAME_TYPE_SUITE"].value_counts(),labels =['Unaccompanied', 'Family', 'Spouse, partner', 'Children', 'Other_B', 'Other_A', 'Group of people'],autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="NAME_TYPE_SUITE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## NAME_INCOME_TYPE""" l=application_train["NAME_INCOME_TYPE"].value_counts() l fig = plt.figure(figsize =(20, 5)) plt.subplot(1,2,1) plt.pie(application_train["NAME_INCOME_TYPE"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="NAME_INCOME_TYPE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## NAME_FAMILY_STATUS""" l=application_train["NAME_FAMILY_STATUS"].value_counts() l fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["NAME_FAMILY_STATUS"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="NAME_FAMILY_STATUS",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## NAME_HOUSING_TYPE""" l= application_train["NAME_HOUSING_TYPE"].value_counts() l fig = plt.figure(figsize =(20, 5)) plt.subplot(1,2,1) plt.pie(application_train["NAME_HOUSING_TYPE"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="NAME_HOUSING_TYPE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## OCCUPATION_TYPE""" l=application_train["OCCUPATION_TYPE"].value_counts() l """## WEEKDAY_APPR_PROCESS_START """ l=application_train["WEEKDAY_APPR_PROCESS_START"].value_counts() l fig = plt.figure(figsize =(20, 5)) plt.subplot(1,2,1) plt.pie(application_train["WEEKDAY_APPR_PROCESS_START"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="WEEKDAY_APPR_PROCESS_START",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## ORGANIZATION_TYPE""" l=application_train["ORGANIZATION_TYPE"].value_counts() l """## FONDKAPREMONT_MODE""" l=application_train["FONDKAPREMONT_MODE"].value_counts() l fig = plt.figure(figsize =(20, 5)) plt.subplot(1,2,1) plt.pie(application_train["FONDKAPREMONT_MODE"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="FONDKAPREMONT_MODE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## HOUSETYPE_MODE""" l=application_train["HOUSETYPE_MODE"].value_counts() l fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["HOUSETYPE_MODE"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="HOUSETYPE_MODE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## WALLSMATERIAL_MODE """ l=application_train["WALLSMATERIAL_MODE"].value_counts() l fig = plt.figure(figsize =(15, 5)) plt.subplot(1,2,1) plt.pie(application_train["WALLSMATERIAL_MODE"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="WALLSMATERIAL_MODE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## EMERGENCYSTATE_MODE""" l=application_train["EMERGENCYSTATE_MODE"].value_counts() l fig = plt.figure(figsize =(10, 5)) plt.subplot(1,2,1) plt.pie(application_train["EMERGENCYSTATE_MODE"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="EMERGENCYSTATE_MODE",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() obj_type label_list = ['NAME_CONTRACT_TYPE', 'CODE_GENDER', 'FLAG_OWN_CAR','FLAG_OWN_REALTY', 'ORGANIZATION_TYPE'] one_hot_list = ['NAME_TYPE_SUITE', 'NAME_INCOME_TYPE','NAME_EDUCATION_TYPE','NAME_FAMILY_STATUS','NAME_HOUSING_TYPE','OCCUPATION_TYPE', 'WEEKDAY_APPR_PROCESS_START','FONDKAPREMONT_MODE','WALLSMATERIAL_MODE'] drop_list = ["HOUSETYPE_MODE","EMERGENCYSTATE_MODE"] le = LabelEncoder() for x in label_list: le.fit(application_train[x]) application_train[x] = le.transform(application_train[x]) application_test[x] = le.transform(application_test[x]) application_train.drop(drop_list,axis=1,inplace=True) application_test.drop(drop_list,axis=1,inplace=True) train_id = application_train["SK_ID_CURR"] test_id = application_test["SK_ID_CURR"] train_target = application_train["TARGET"] application_train.drop(["SK_ID_CURR","TARGET"],axis=1,inplace=True) application_test.drop(["SK_ID_CURR"],axis=1,inplace=True) print(application_train.shape) print(application_test.shape) obj_type = application_train.dtypes[application_train.dtypes=='object'].index obj_type application_train = pd.get_dummies(application_train,columns=one_hot_list) application_test = pd.get_dummies(application_test,columns=one_hot_list) print(application_train.shape) print(application_test.shape) application_train, application_test = application_train.align(application_test, join ='inner', axis = 1) print(application_train.shape) print(application_test.shape) application_test["SK_ID_CURR"] = test_id application_train["SK_ID_CURR"] = train_id application_train["TARGET"] = train_target """## Handling NUMERICAL DATA""" application_train[int_type].head() for x in int_type: print(x) """## CNT_CHILDREN""" l=application_train['CNT_CHILDREN'].value_counts() l fig = plt.figure(figsize =(10, 5)) plt.subplot(1,2,1) plt.pie(application_train["CNT_CHILDREN"].value_counts(),labels =l.index,autopct='%1.2f%%') plt.subplot(1,2,2) sns.countplot(x="CNT_CHILDREN",hue="TARGET",palette ="Set2",data=application_train) plt.tight_layout() plt.show() """## DAYS_BIRTH Client's age in days at the time of application ,time only relative to the application """ application_train['DAYS_BIRTH'].apply(lambda x : -1*x/365).plot.hist() application_train['DAYS_BIRTH'].apply(lambda x : -1*x/365).describe() """## DAYS_EMPLOYED""" application_train['DAYS_EMPLOYED'].describe() application_train['DAYS_EMPLOYED'].apply(lambda x : -1*x/365).describe() """here we see that max no of days employed showing 1000 years and showing positive . these are outliers.""" application_train['DAYS_EMPLOYED'].apply(lambda x : x/365).plot.hist() """So the DAYS_EMPLOYED greater than the 100 years are considered as outliers , we must Delete the Outliers """ application_train['DAYS_EMPLOYED'].apply(lambda x : x/365).value_counts() """35869 rows has the Days employed value 1000 years ,changing these rows to nan""" application_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace = True) application_test['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace = True) application_train['DAYS_EMPLOYED'].plot.hist() """## FLAG_MOBIL : Did client provide mobile phone (1=YES, 0=NO) """ l=application_train['FLAG_MOBIL'].value_counts() l fig = plt.figure(figsize =(8, 3)) plt.subplot(1,2,1) plt.pie(application_train["FLAG_MOBIL"].value_counts(),labels =l.index) # plt.subplot(1,2,2) # sns.countplot(x="CNT_CHILDREN",hue="TARGET",palette ="Set2",data=application_train) # plt.tight_layout() plt.show() application_train['FLAG_MOBIL'].value_counts() application_test['FLAG_MOBIL'].value_counts() """so droping the column FLAG_MOBIL""" application_train.drop(['FLAG_MOBIL'],axis=1,inplace=True) application_test.drop(['FLAG_MOBIL'],axis=1,inplace=True) """## FLAG_DOCUMENT_# The below are the documents may the necessary documents ,They are submitted by all most all, so they do not contribute to any information in prediction """ d=['FLAG_DOCUMENT_2','FLAG_DOCUMENT_4','FLAG_DOCUMENT_6','FLAG_DOCUMENT_7','FLAG_DOCUMENT_9','FLAG_DOCUMENT_10','FLAG_DOCUMENT_11','FLAG_DOCUMENT_12','FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14','FLAG_DOCUMENT_15','FLAG_DOCUMENT_16','FLAG_DOCUMENT_17','FLAG_DOCUMENT_18','FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20','FLAG_DOCUMENT_21'] #for example : l=application_train['FLAG_DOCUMENT_4'].value_counts() l fig = plt.figure(figsize =(8, 3)) plt.subplot(1,2,1) plt.pie(application_train["FLAG_DOCUMENT_4"].value_counts(),labels =l.index) plt.show() l=application_train['FLAG_DOCUMENT_9'].value_counts() l fig = plt.figure(figsize =(8, 3)) plt.subplot(1,2,1) plt.pie(application_train["FLAG_DOCUMENT_9"].value_counts(),labels =l.index) plt.show() application_train.drop(d,axis=1,inplace=True) application_test.drop(d,axis=1,inplace=True) print(application_train.shape) print(application_test.shape) """## Handling Float""" def plot_kde(col): plt.suptitle(col, fontsize=30) sns.kdeplot(application_train.loc[application_train['TARGET'] == 0, col],label='TARGET=0') sns.kdeplot(application_train.loc[application_train['TARGET'] == 1, col],label='TARGET=1') plt.legend(['TARGET(0)', 'TARGET(1)']) plt.show() def plot_hist(col): plt.suptitle(col, fontsize=30) application_train.loc[application_train['TARGET'] == 0, col].hist( ) application_train.loc[application_train['TARGET'] == 1, col].hist( ) plt.legend(['TARGET(0)', 'TARGET(1)']) plt.show() def kde_hist(col): plt.suptitle(col, fontsize=30) fig, ax = plt.subplots(1, 2, figsize=(16, 8)) sns.kdeplot(application_train.loc[application_train['TARGET'] == 0,col], ax=ax[0], label='TARGET(0)') sns.kdeplot(application_train.loc[application_train['TARGET'] == 1,col], ax=ax[0], label='TARGET(1)') ax[0].set_title('KDE plot') ax[1].set_title('Histogram plot') application_train.loc[application_train['TARGET'] == 0, col].hist(ax=ax[1]) application_train.loc[application_train["TARGET"] == 1, col].hist(ax=ax[1]) ax[1].legend(['TARGET(0)', 'TARGET(1)']) plt.show() """## AMT_INCOME_TOTAL""" missing_data(pd.DataFrame(application_train["AMT_INCOME_TOTAL"])) application_train["AMT_INCOME_TOTAL"].describe() plt.figure(figsize=(5,5)) sns.boxplot(application_train["AMT_INCOME_TOTAL"]) kde_hist("AMT_INCOME_TOTAL") """we can observe that higher income does not have any problem in repaying the loan ## AMT_CREDIT : Credit amount of the loan """ missing_data(pd.DataFrame(application_train["AMT_CREDIT"])) plot_kde("AMT_CREDIT") """## AMT_ANNUITY : Loan annuity""" missing_data(pd.DataFrame(application_train["AMT_ANNUITY"])) plot_kde("AMT_ANNUITY") plt.figure(figsize=(5,5)) sns.boxplot(application_train["AMT_ANNUITY"]) """## OWN_CAR_AGE :Age of client's car""" missing_data(pd.DataFrame(application_train["OWN_CAR_AGE"])) application_train["OWN_CAR_AGE"].describe() plot_kde("OWN_CAR_AGE") """considering nan value means no car ,so no age so filling with zero.""" application_train["OWN_CAR_AGE"].fillna(0,inplace=True) application_test["OWN_CAR_AGE"].fillna(0,inplace=True) """## CNT_FAM_MEMBERS : How many family members does client have""" missing_data(pd.DataFrame(application_train["CNT_FAM_MEMBERS"])) application_train["CNT_FAM_MEMBERS"].value_counts() plot_hist("CNT_FAM_MEMBERS") """we can observer that more the family members difficulty in paying loan . ## EXT_SOURCE_1 ,EXT_SOURCE_2,EXT_SOURCE_3 : Normalized score from external data source """ missing_data(pd.DataFrame(application_train[["EXT_SOURCE_1","EXT_SOURCE_2","EXT_SOURCE_3"]])) # #droping EXT_SOURCE_1 # application_train.drop(["EXT_SOURCE_1"],axis=1,inplace=True) # application_test.drop(["EXT_SOURCE_1"],axis=1,inplace=True) kde_hist("EXT_SOURCE_2") kde_hist("EXT_SOURCE_3") """## TOTALAREA_MODE""" missing_data(pd.DataFrame(application_train["TOTALAREA_MODE"])) application_train["TOTALAREA_MODE"].describe() application_train["TOTALAREA_MODE"].fillna(0,inplace=True) application_test["TOTALAREA_MODE"].fillna(0,inplace=True) kde_hist("TOTALAREA_MODE") """## OBS_30_CNT_SOCIAL_CIRCLE ,OBS_60 _CNT_SOCIAL_CIRCLE How many observation of client's social surroundings with observable 30 DPD (days past due) default How many observation of client's social surroundings with observable 60 DPD (days past due) default """ missing_data(pd.DataFrame(application_train[["OBS_30_CNT_SOCIAL_CIRCLE","OBS_60_CNT_SOCIAL_CIRCLE"]])) application_train["OBS_30_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_test["OBS_30_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_train["OBS_60_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_test["OBS_60_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_train["OBS_30_CNT_SOCIAL_CIRCLE"].value_counts() sns.boxplot(application_train["OBS_30_CNT_SOCIAL_CIRCLE"]) application_train["OBS_30_CNT_SOCIAL_CIRCLE"] = application_train["OBS_30_CNT_SOCIAL_CIRCLE"].apply(lambda x: 25 if x>25 else x) application_test["OBS_30_CNT_SOCIAL_CIRCLE"]= application_test["OBS_30_CNT_SOCIAL_CIRCLE"].apply(lambda x: 25 if x>25 else x) application_train["OBS_60_CNT_SOCIAL_CIRCLE"] = application_train["OBS_60_CNT_SOCIAL_CIRCLE"].apply(lambda x: 25 if x>25 else x) application_test["OBS_60_CNT_SOCIAL_CIRCLE"]= application_test["OBS_60_CNT_SOCIAL_CIRCLE"].apply(lambda x: 25 if x>25 else x) sns.boxplot(application_train["OBS_60_CNT_SOCIAL_CIRCLE"]) """## DEF_30_CNT_SOCIAL_CIRCLE, DEF_60_CNT_SOCIAL_CIRCLE, How many observation of client's social surroundings defaulted on 30 (days past due) DPD How many observation of client's social surroundings defaulted on 60 (days past due) DPD """ missing_data(pd.DataFrame(application_train[["DEF_30_CNT_SOCIAL_CIRCLE","DEF_60_CNT_SOCIAL_CIRCLE"]])) application_train["DEF_30_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_test["DEF_30_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_train["DEF_60_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_test["DEF_60_CNT_SOCIAL_CIRCLE"].fillna(0,inplace=True) application_train["DEF_30_CNT_SOCIAL_CIRCLE"].value_counts() application_train["DEF_60_CNT_SOCIAL_CIRCLE"].value_counts() sns.boxplot(application_train["DEF_30_CNT_SOCIAL_CIRCLE"]) application_train["DEF_30_CNT_SOCIAL_CIRCLE"] = application_train["DEF_30_CNT_SOCIAL_CIRCLE"].apply(lambda x: 5 if x>4 else x) application_test["DEF_30_CNT_SOCIAL_CIRCLE"]= application_test["DEF_30_CNT_SOCIAL_CIRCLE"].apply(lambda x: 5 if x>4 else x) application_train["DEF_60_CNT_SOCIAL_CIRCLE"] = application_train["DEF_60_CNT_SOCIAL_CIRCLE"].apply(lambda x: 5 if x>4 else x) application_test["DEF_60_CNT_SOCIAL_CIRCLE"]= application_test["DEF_60_CNT_SOCIAL_CIRCLE"].apply(lambda x: 5 if x>4 else x) """## DAYS_LAST_PHONE_CHANGE : How many days before application did client change phone """ missing_data(pd.DataFrame(application_train["DAYS_LAST_PHONE_CHANGE"])) application_train["DAYS_LAST_PHONE_CHANGE"].describe() application_train["DAYS_LAST_PHONE_CHANGE"]=application_train["DAYS_LAST_PHONE_CHANGE"].apply(lambda x: x*-1) application_test["DAYS_LAST_PHONE_CHANGE"]=application_test["DAYS_LAST_PHONE_CHANGE"].apply(lambda x: x*-1) kde_hist("DAYS_LAST_PHONE_CHANGE") """## 'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY', 'AMT_REQ_CREDIT_BUREAU_WEEK', 'AMT_REQ_CREDIT_BUREAU_MON', 'AMT_REQ_CREDIT_BUREAU_QRT', 'AMT_REQ_CREDIT_BUREAU_YEAR' Number of enquiries to Credit Bureau about the client _____ hour before application """ AMT_REQ = ['AMT_REQ_CREDIT_BUREAU_HOUR','AMT_REQ_CREDIT_BUREAU_DAY','AMT_REQ_CREDIT_BUREAU_WEEK','AMT_REQ_CREDIT_BUREAU_MON', 'AMT_REQ_CREDIT_BUREAU_QRT', 'AMT_REQ_CREDIT_BUREAU_YEAR'] missing_data(application_train[AMT_REQ]) application_train[AMT_REQ]=application_train[AMT_REQ].fillna(0) application_test[AMT_REQ]=application_train[AMT_REQ].fillna(0) AVG = [ 'APARTMENTS_AVG', 'BASEMENTAREA_AVG', 'YEARS_BEGINEXPLUATATION_AVG','YEARS_BUILD_AVG', 'COMMONAREA_AVG', 'ELEVATORS_AVG', 'ENTRANCES_AVG', 'FLOORSMAX_AVG', 'FLOORSMIN_AVG', 'LANDAREA_AVG', 'LIVINGAPARTMENTS_AVG', 'LIVINGAREA_AVG', 'NONLIVINGAPARTMENTS_AVG','NONLIVINGAREA_AVG'] MODE = ['APARTMENTS_MODE','BASEMENTAREA_MODE', 'YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE','COMMONAREA_MODE','ELEVATORS_MODE', 'ENTRANCES_MODE', 'FLOORSMAX_MODE', 'FLOORSMIN_MODE', 'LANDAREA_MODE', 'LIVINGAPARTMENTS_MODE', 'LIVINGAREA_MODE', 'NONLIVINGAPARTMENTS_MODE', 'NONLIVINGAREA_MODE'] MEDI = ['APARTMENTS_MEDI','BASEMENTAREA_MEDI','YEARS_BEGINEXPLUATATION_MEDI','YEARS_BUILD_MEDI','COMMONAREA_MEDI','ELEVATORS_MEDI','ENTRANCES_MEDI','FLOORSMAX_MEDI', 'FLOORSMIN_MEDI','LANDAREA_MEDI','LIVINGAPARTMENTS_MEDI','LIVINGAREA_MEDI','NONLIVINGAPARTMENTS_MEDI','NONLIVINGAREA_MEDI'] missing_data(application_train[AVG]) missing_data(application_train[MODE]) missing_data(application_train[MEDI]) obj_type = application_train.dtypes[application_train.dtypes=='object'].index float_type = application_train.dtypes[application_train.dtypes=='float64'].index int_type = application_train.dtypes[application_train.dtypes=='int64'].index missing_data(application_train[float_type]).head(50) # application_train.to_csv("/content/drive/MyDrive/Home Credit/preprocessed_data/app_train.csv",index=False) # application_test.to_csv("/content/drive/MyDrive/Home Credit/preprocessed_data/app_test.csv",index=False) """## CREDIT_CARD""" credit_df = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/credit_card_balance.csv"); credit_features_train = application_train[["SK_ID_CURR","TARGET"]] credit_features_test =pd.DataFrame(application_test["SK_ID_CURR"]) credit_df.dtypes.value_counts() def plot_kde_2(col): plt.suptitle(col, fontsize=30) sns.kdeplot(credit_features_train.loc[credit_features_train['TARGET'] == 0, col],label='TARGET=0') sns.kdeplot(credit_features_train.loc[credit_features_train['TARGET'] == 1, col],label='TARGET=1') plt.legend(['TARGET(0)', 'TARGET(1)']) plt.show() def plot_hist_2(col): plt.suptitle(col, fontsize=30) credit_features_train.loc[credit_features_train['TARGET'] == 0, col].hist( ) credit_features_train.loc[credit_features_train['TARGET'] == 1, col].hist( ) plt.legend(['TARGET(0)', 'TARGET(1)']) plt.show() def kde_hist_2(col): plt.suptitle(col, fontsize=30) fig, ax = plt.subplots(1, 2, figsize=(16, 8)) sns.kdeplot(credit_features_train.loc[credit_features_train['TARGET'] == 0,col], ax=ax[0], label='TARGET(0)') sns.kdeplot(credit_features_train.loc[credit_features_train['TARGET'] == 1,col], ax=ax[0], label='TARGET(1)') ax[0].set_title('KDE plot') ax[1].set_title('Histogram plot') credit_features_train.loc[credit_features_train['TARGET'] == 0, col].hist(ax=ax[1]) credit_features_train.loc[credit_features_train["TARGET"] == 1, col].hist(ax=ax[1]) ax[1].legend(['TARGET(0)', 'TARGET(1)']) plt.show() def plot_count_2(col): sns.countplot(x=col, data=credit_features_train) missing_data(credit_df).head(23) obj_type = credit_df.dtypes[credit_df.dtypes=='object'].index float_type = credit_df.dtypes[credit_df.dtypes=='float64'].index int_type = credit_df.dtypes[credit_df.dtypes=='int64'].index credit_df[obj_type].head() """## NO of previous loans per coutomer""" NO_LOANS = credit_df.groupby(by = ['SK_ID_CURR'])['SK_ID_PREV'].nunique().reset_index().rename(index = str, columns = {'SK_ID_PREV': 'NO_LOANS'}) NO_LOANS["NO_LOANS"].value_counts() credit_features_train = credit_features_train.merge(NO_LOANS,on=["SK_ID_CURR"],how="left") credit_features_test = credit_features_test.merge(NO_LOANS,on=["SK_ID_CURR"],how="left") print(credit_features_train.shape) print(credit_features_test.shape) credit_features_train["NO_LOANS"].value_counts() credit_features_train["NO_LOANS"].fillna(0,inplace=True) credit_features_test["NO_LOANS"].fillna(0,inplace=True) fig = plt.figure(figsize =(15, 3)) plt.subplot(1,2,1) plt.pie(credit_features_train["NO_LOANS"].value_counts(),colors=['C1','C2','C3','C4','C5'], labels = ["NO_LOANS=0","NO_LOANS=1","NO_LOANS=2","NO_LOANS=3","NO_LOANS=4"]) plt.subplot(1,2,2) sns.countplot(x="NO_LOANS",hue="TARGET",palette = "Set2",data=credit_features_train) plt.tight_layout() plt.show() credit_df[int_type].head() missing_data(credit_df[int_type]) AVG_DPD = credit_df.groupby(by= ['SK_ID_CURR'])['SK_DPD'].mean().reset_index().rename(index = str, columns = {'SK_DPD': 'AVG_DPD'}) credit_features_train = credit_features_train.merge(AVG_DPD, on = ['SK_ID_CURR'], how = 'left') credit_features_test = credit_features_test.merge(AVG_DPD, on = ['SK_ID_CURR'], how = 'left') print(credit_features_train.shape) print(credit_features_test.shape) credit_features_test.head() credit_features_train.fillna(0,inplace=True) credit_features_test.fillna(0,inplace=True) missing_data(credit_df[float_type]) credit_df[float_type].head() """## NO OF INSTALMENTS PAID BY CUSTOMER PER LOAN CNT_INSTALMENT_MATURE_CUM : Gives Number of paid installments on the previous credit. """ grp = credit_df.groupby(by = ['SK_ID_CURR', 'SK_ID_PREV'])['CNT_INSTALMENT_MATURE_CUM'].max().reset_index().rename(index = str, columns = {'CNT_INSTALMENT_MATURE_CUM': 'NO_INSTALMENTS'}) grp1 = grp.groupby(by = ['SK_ID_CURR'])['NO_INSTALMENTS'].sum().reset_index().rename(index = str, columns = {'NO_INSTALMENTS': 'TOTAL_INSTALMENTS'}) credit_features_train = credit_features_train.merge(grp1,on = ['SK_ID_CURR'], how = 'left') credit_features_test = credit_features_test.merge(grp1,on=['SK_ID_CURR'],how='left') credit_features_train.fillna(0,inplace=True) credit_features_test.fillna(0,inplace=True) print(credit_features_train.shape) print(credit_features_test.shape) credit_features_train.drop(["SK_ID_CURR","TARGET"],axis=1,inplace=True) credit_features_test.drop(["SK_ID_CURR"],axis=1,inplace=True) application_train=pd.concat([application_train, credit_features_train], axis=1) application_test=pd.concat([application_test, credit_features_test],axis=1) del credit_df del credit_features_test del credit_features_train """## installments""" installments = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/installments_payments.csv") installment_train = application_train[["SK_ID_CURR","TARGET"]] installment_test =pd.DataFrame(application_test["SK_ID_CURR"]) installments.shape missing_data(installments) installments.fillna(0,inplace=True) installments['Days_Extra_Taken']=installments['DAYS_INSTALMENT']-installments['DAYS_ENTRY_PAYMENT'] installments['AMT_INSTALMENT_difference']=installments['AMT_INSTALMENT']-installments['AMT_PAYMENT'] installments.drop(["DAYS_INSTALMENT","AMT_INSTALMENT"],axis=1,inplace=True) installments.drop(["DAYS_ENTRY_PAYMENT","AMT_PAYMENT"],axis=1,inplace=True) temp = installments.drop(["NUM_INSTALMENT_VERSION","NUM_INSTALMENT_NUMBER"],axis=1) grp = temp.groupby(["SK_ID_CURR"])["Days_Extra_Taken","AMT_INSTALMENT_difference"].max().reset_index().rename(index = str, columns = {"Days_Extra_Taken": 'MAX_Days_Extra_Taken',"AMT_INSTALMENT_difference":"MAX_AMT_INSTALMENT_difference"}) grp["MAX_Days_Extra_Taken"].describe() installment_train = installment_train.merge(grp,on=["SK_ID_CURR"],how="left") installment_test = installment_test.merge(grp,on=["SK_ID_CURR"],how="left") del temp del grp del grp1 print(installment_test.shape) print(installment_train.shape) installment_test.fillna(0,inplace=True) installment_train.fillna(0,inplace=True) missing_data(installment_train) installment_train.drop(["SK_ID_CURR","TARGET"],axis=1,inplace=True) installment_test.drop(["SK_ID_CURR"],axis=1,inplace=True) application_train=pd.concat([application_train, installment_train],axis=1) application_test=pd.concat([application_test, installment_test], axis=1) print(application_train.shape) print(application_test.shape) del installment_test del installment_train del installments """##POS_CASH :""" pos_cash = pd.read_csv("/content/drive/MyDrive/Home Credit/Data/POS_CASH_balance.csv") pos_train = application_train[["SK_ID_CURR","TARGET"]] pos_test =pd.DataFrame(application_test["SK_ID_CURR"]) temp1 = pos_cash.groupby(by= ['SK_ID_CURR'])['SK_DPD'].mean().reset_index().rename(index = str, columns = {'SK_DPD': 'AVG_DPD'}) temp2 = pos_cash.groupby(by= ['SK_ID_CURR'])['SK_DPD_DEF'].mean().reset_index().rename(index = str, columns = {'SK_DPD_DEF': 'AVG_DPD_DEF'}) pos_train = pos_train.merge(temp1, on = ['SK_ID_CURR'], how = 'left') pos_test = pos_test.merge(temp1, on = ['SK_ID_CURR'], how = 'left') pos_train = pos_train.merge(temp2, on = ['SK_ID_CURR'], how = 'left') pos_test = pos_test.merge(temp2, on = ['SK_ID_CURR'], how = 'left') del temp1 del temp2 """# CNT_INSTALMENT_MATURE_CUM : Gives Number of paid installments on the previous credit.""" grp = pos_cash.groupby(by = ['SK_ID_CURR', 'SK_ID_PREV'])['CNT_INSTALMENT'].max().reset_index().rename(index = str, columns = {'CNT_INSTALMENT': 'POS_PAID_INSTALMENTS'}) grp1 = grp.groupby(by = ['SK_ID_CURR'])['POS_PAID_INSTALMENTS'].sum().reset_index().rename(index = str, columns = {'POS_PAID_INSTALMENTS': 'POS_TOTAL_PAID_INSTALMENTS'}) grp2 = pos_cash.groupby(by = ['SK_ID_CURR', 'SK_ID_PREV'])['CNT_INSTALMENT_FUTURE'].min().reset_index().rename(index = str, columns = {'CNT_INSTALMENT_FUTURE': 'POS_NOTPAID_INSTALMENTS'}) grp3 = grp2.groupby(by = ['SK_ID_CURR'])['POS_NOTPAID_INSTALMENTS'].sum().reset_index().rename(index = str, columns = {'POS_NOTPAID_INSTALMENTS': 'POS_TOTAL_NOTPAID_INSTALMENTS'}) pos_train = pos_train.merge(grp1, on = ['SK_ID_CURR'], how = 'left') pos_test = pos_test.merge(grp1, on = ['SK_ID_CURR'], how = 'left') pos_train = pos_train.merge(grp3, on = ['SK_ID_CURR'], how = 'left') pos_test = pos_test.merge(grp3, on = ['SK_ID_CURR'], how = 'left') del grp1 del grp2 del grp3 del grp POS_NO_LOANS = pos_cash.groupby(by = ['SK_ID_CURR'])['SK_ID_PREV'].nunique().reset_index().rename(index = str, columns = {'SK_ID_PREV': 'NO_LOANS'}) pos_train = pos_train.merge(POS_NO_LOANS, on = ['SK_ID_CURR'], how = 'left') pos_test = pos_test.merge(POS_NO_LOANS, on = ['SK_ID_CURR'], how = 'left') del POS_NO_LOANS print(pos_train.shape) print(pos_test.shape) pos_train.fillna(0,inplace=True) pos_test.fillna(0,inplace=True) pos_train.drop(["SK_ID_CURR","TARGET"],axis=1,inplace=True) pos_test.drop(["SK_ID_CURR"],axis=1,inplace=True) application_train=pd.concat([application_train, pos_train],axis=1) application_test=pd.concat([application_test, pos_test], axis=1) del pos_cash del pos_train del pos_test print(application_train.shape) print(application_test.shape) """## bureau""" b1=
pd.read_csv("/content/drive/MyDrive/Home Credit/Data/bureau.csv")
pandas.read_csv
import finterstellar as fs import pandas as pd import numpy as np import datetime as dt class LoadData: def read_investing_price(self, path, cd): file_name = path + cd + ' Historical Data.csv' df = pd.read_csv(file_name, index_col='Date') return (df) def create_portfolio_df(self, path, p_name, p_cd): new_df = self.make_historical_price_df(path, p_cd) prices_df = self.create_master_file(path, p_name, new_df) prices_df = self.update_master_file(path, p_name, new_df) return (prices_df) def make_historical_price_df(self, path, s_cd): cds = fs.str_list(s_cd) dates = pd.Series() for c in cds: prices_df = self.read_investing_price(path, c) prices_df = self.date_formatting(prices_df) c = prices_df['Price'] dates_new = pd.Series(prices_df.index) dates = dates.append(dates_new) dates = dates.drop_duplicates().sort_values().reset_index() dates = dates.drop(['index'], axis=1) universe_df = pd.DataFrame(index=dates[0]) universe_df.index.name = 'Date' for c in cds: prices_df = self.read_investing_price(path, c) prices_df = self.date_formatting(prices_df) prices_df = self.price_df_trimming(prices_df, c) universe_df[c] = prices_df[c] universe_df universe_df = universe_df.fillna(method='ffill') return (universe_df) def create_master_file(self, path, f_name, df): file_name = path + 'fs ' + f_name + '.csv' try: f = open(file_name) print('Updating master file') f.close() except IOError as e: df.index = pd.to_datetime(df.index) df.index.name = 'Date' #df = df.fillna(method='ffill') #today_date = pd.Timestamp.today().date().strftime('%y%m%d') df.to_csv(file_name) return (df) def update_master_file(self, path, n, new_df): try: file_name = 'fs ' + n + '.csv' master_df = self.read_master_file(path, n) universe_df = new_df.combine_first(master_df) universe_df.index.name = 'Date' #universe_df = universe_df.fillna(method='ffill') universe_df.to_csv(path + file_name) except IOError as e: print('Creating master file') self.create_master_file(path, n, new_df) universe_df = new_df return (universe_df) def read_master_file(self, path, n): file_name = path + 'fs ' + n + '.csv' prices_df = pd.read_csv(file_name, index_col='Date') dates = [] for i in prices_df.index: d = pd.to_datetime(i) dates.append(d) prices_df['Date'] = dates # Date 값 교체 prices_df = prices_df.set_index('Date') return (prices_df) def get_codes(self, prices_df): codes = prices_df.columns.values return (codes) def read_raw_csv(self, path, n): file_name = path + n + '.csv' df = pd.read_csv(file_name, index_col='Date') dates = [] for i in df.index: #d = dt.datetime.strptime(i, '%Y-%m-%d') d = pd.to_datetime(i) dates.append(d) df['Date'] = dates # Date 값 교체 df = df.set_index('Date') df.sort_index(axis=0, inplace=True) return (df) def read_raw_excel(self, path, n, sheet=None): file_name = path + n df = pd.read_excel(file_name, index_col=0) dates = [] for i in df.index: d =
pd.to_datetime(i)
pandas.to_datetime
import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from datetime import datetime, timedelta # 记录outputs_time,记录循环用时 # matplotlib.use('Agg' from IPython import display #%matplotlib inline import torch from pprint import pprint import itertools from pathlib import Path from stable_baselines3 import A2C import sys, os import hashlib from finrl.neo_finrl.preprocessor.yahoodownloader import YahooDownloader from finrl.neo_finrl.preprocessor.preprocessors import FeatureEngineer #%load_ext autoreload #%autoreload 2 mpl.rcParams.update({"font.size": 16}) # import sys # sys.path.append("../FinRL-Library") # import sys,os # sys.path.append(os.path.dirname(os.path.realpath("."))) import yfinance as yf DATASETS_FULL_PATH = [ "dow_full.csv", "nas_full.csv", "sp_full.csv", ] def data_split(df, start, end): """ split the dataset into training or testing using date :param data: (df) pandas dataframe, start, end :return: (df) pandas dataframe """ data = df[(df.date >= start) & (df.date < end)] data = data.sort_values(["date", "tic"], ignore_index=True) data.index = data.date.factorize()[0] return data def preprocess( dataset_dir, market_id, start_date, end_date, ticker_list, train_start, train_end, val_start, val_end, test_start, test_end, tech_indicators, cache_dir, ): ticker_list.sort() encoder = hashlib.sha256() encoder.update("_".join(list(ticker_list)).encode()) encoder.update("_".join(list(tech_indicators)).encode()) cache_path = cache_dir/ f"data_{market_id}_{start_date}_{end_date}_{encoder.hexdigest()}.csv" # 缓存原始数据 if os.path.exists(cache_path): processed_full = pd.read_csv(cache_path) print(f"load data from cahe: {cache_path} .") else: """ df = YahooDownloader( start_date, #'2000-01-01', end_date, # 2021-01-01,预计将改日期改为'2021-06-20'(今日日期) ticker_list=ticker_list, ).fetch_data() # DOW_30_TICKER)道琼斯30只股票 assert len(df["tic"].unique().tolist()) == len(ticker_list) """ # load raw data from cache file df = pd.read_csv(dataset_dir / DATASETS_FULL_PATH[market_id]) df = df[ (df.date >= start_date) & (df.date < end_date) & df.tic.isin(ticker_list) ] # 数据预处理############################### df.sort_values(["date", "tic"]).head() # tech_indicators = ["macd", "rsi_30", "cci_30", "dx_30"] fe = FeatureEngineer( use_technical_indicator=True, tech_indicator_list=tech_indicators, use_turbulence=False, user_defined_feature=False, ) processed = fe.preprocess_data(df) list_date = list( pd.date_range(processed["date"].min(), processed["date"].max()).astype(str) ) # 成一个固定频率的时间索引 combination = list(itertools.product(list_date, ticker_list)) """ 1.pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs) 由于import pandas as pd,所以也可以写成pd.date_range(start=None, end=None) 该函数主要用于生成一个固定频率的时间索引,使用时必须指定start、end、periods中的两个参数值,否则报错。 2.df.astype('str') #改变整个df变成str数据类型 3.itertools.product(*iterables[, repeat]) # 对应有序的重复抽样过程 itertools.product(a,b),将a,b元组中的每个分量依次乘开。 """ processed_full =
pd.DataFrame(combination, columns=["date", "tic"])
pandas.DataFrame
""" Plot full psychometric functions as a function of choice history, and separately for 20/80 and 80/20 blocks """ import pandas as pd import numpy as np import time, os import matplotlib.pyplot as plt import seaborn as sns import datajoint as dj from IPython import embed as shell # for debugging ## INITIALIZE A FEW THINGS sns.set(style="darkgrid", context="paper", font='Arial') sns.set(style="darkgrid", context="paper") sns.set(style="darkgrid", context="paper", font_scale=1.3) # import wrappers etc from ibl_pipeline import reference, subject, action, acquisition, data, behavior from ibl_pipeline.utils import psychofit as psy from ibl_pipeline.analyses import behavior as behavioral_analyses from dj_tools import * new_criteria = dj.create_virtual_module('analyses', 'user_anneurai_analyses') figpath = os.path.join(os.path.expanduser('~'), 'Data/Figures_IBL') # ================================= # # 1. get training status from original DJ table # ================================= # use_subjects = subject.Subject * subject.SubjectProject & 'subject_project = "ibl_neuropixel_brainwide_01"' use_sessions = use_subjects * subject.SubjectLab * subject.Subject.aggr(behavior.TrialSet, session_start_time='max(session_start_time)') # QUICK PIE PLOT plt.close('all') sns.set_palette("cubehelix") fig, ax = plt.subplots(1, 2, figsize=(13, 13)) # ================================= # # v0 # ================================= # sess = behavioral_analyses.SessionTrainingStatus() * use_sessions df1 = pd.DataFrame(sess.fetch(as_dict=True)) df2 = df1.groupby(['training_status'])['subject_uuid'].count().reset_index() df2.index = df2.training_status df2 = df2.reindex(['-', 'over40days', 'training in progress', 'trained', '.', 'ready for ephys', '..']) df2.fillna(0, inplace=True) original = df2.copy() print(df2) ax[0].pie(df2['subject_uuid'], autopct='%1.2f%%', labels=df2.index) ax[0].set_title('Original criteria (v0), n = %d'%df2['subject_uuid'].sum()) # ================================= # # v1 # ================================= # # sns.set_palette("Set2") sess = new_criteria.SessionTrainingStatus() * use_sessions df3 = pd.DataFrame(sess.fetch(as_dict=True)) df4 = df3.groupby(['training_status'])['subject_uuid'].count().reset_index() df4.index = df4.training_status df4 = df4.reindex(['unbiasable', 'untrainable', 'in_training', 'trained_1a', 'trained_1b', 'ready4ephysrig', 'ready4recording']) df4.fillna(0, inplace=True) print(df4) new = df4.copy() ax[1].pie(df4['subject_uuid'], autopct='%1.2f%%', labels=df4.index) ax[1].set_title('Alternative criteria (v1), n = %d'%df4['subject_uuid'].sum()) fig.savefig(os.path.join(figpath, "training_success.pdf")) fig.savefig(os.path.join(figpath, "training_success.png"), dpi=300) plt.close('all') # ================================= # # COMPARE PER LAB # ================================= # # WRITE A SUMMARY DOCUMENT df5 =
pd.merge(df1, df3, on='subject_nickname')
pandas.merge
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2
assert_panel_equal(result, expected)
pandas.util.testing.assert_panel_equal
# -*- coding: utf-8 -*- # Original Code by <NAME> for VOST Portugal # 18 MAR 2022 # ----------------------------------------------- # LIBRARIES # ----------------------------------------------- # Import Dash and Dash Bootstrap Components import dash import dash_bootstrap_components as dbc from dash import Input, Output, dcc, html # Import Core Libraries import pandas as pd import plotly.express as px # ----------------------------------------------- # APP STARTS HERE # ----------------------------------------------- app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], title='CONFIRM - BAJATT 2022', update_title=None, meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=0.7, minimum-scale=0.4"}], ) server = app.server CONFIRM_LOGO = app.get_asset_url('CONFIRM_Logotype.png') color_map = { "WARNING":"#C81D25", "ACIDENTE":"#4F5D75", "AVARIA MECÂNICA":"#DE6E4B", "DESISTÊNCIA CONFIRMADA":"#2D3142", "DESISTÊNCIA NÃO CONFIRMADA":"#242424" } app.layout = dbc.Container( [ dbc.Row( [ # AUTOMATIC UPDATER dcc.Interval( id='interval-component', interval=20*1000, # in milliseconds n_intervals=0 ), dbc.Col( [ dbc.Row( [ dbc.Row(html.Hr()), dbc.Col(width=2,xs=12, sm=12,md=1,lg=1,xl=1), dbc.Col(html.H3("BAJA TT 2022"),width=4,xs=12, sm=12,md=4,lg=4,xl=4), dbc.Col(width=4,xs=12, sm=12,md=1,lg=4,xl=4), dbc.Col(html.Img(src=CONFIRM_LOGO, height="37px"),width=2,xs=12, sm=12,md=1,lg=1,xl=1), # CONFIRM LOGO - DO NOT REMOVE ], ), ], ), dbc.Row( [ dbc.Col(width=2,xs=12, sm=12,md=1,lg=2,xl=1), dbc.Col( html.P("CONFIRM by VOST PORTUGAL ") ), ], ), ], style={"height": "20%", "background-color": "#1D1E2C"}, ), dbc.Row( [ dbc.Col( dcc.Graph(id='map'), width=2,xs=12, sm=12,md=12,lg=12,xl=4, ), dbc.Col( dbc.Row( [ dbc.Card( [ dbc.CardHeader("TOTAL INCIDENTS", style={"background": "#FF495C","color":"white"}), dbc.CardBody( [ html.H6("TOTAL INCIDENTES", style={"color":"#FF495C"}, className="card-title"), html.H4(id="totals"), ], ), ], ), dbc.Card( [ dbc.CardHeader("TOTAL WARNINGS", style={"background": "#C81D25","color":"white"}), dbc.CardBody( [ html.H6("RACE DIRECTOR", style={"color":"#C81D25"}, className="card-title"), html.H4(id="total_warnings"), ], ), ], ), dbc.Card( [ dbc.CardHeader("BREAKDOWNS", style={"background": "#DE6E4B","color":"white"}), dbc.CardBody( [ html.H6("AVARIAS", style={"color":"#DE6E4B"}, className="card-title"), html.H4(id="total_breakdowns"), ], ), ], ), ], ), width=2,xs=12, sm=12,md=12,lg=6,xl=2, ), dbc.Col( dbc.Row( [ dbc.Card( [ dbc.CardHeader("ACCIDENTS", style={"background": "#4F5D75","color":"white"}), dbc.CardBody( [ html.H6("ACIDENTES", style={"color":"#4F5D75"}, className="card-title"), html.H4(id="total_accidents"), ], ), ], ), dbc.Card( [ dbc.CardHeader("CONFIRMED OUT OF RACE", style={"background": "#2D3142","color":"white"}), dbc.CardBody( [ html.H6("DESISTÊNCIA", style={"color":"#2D3142"}, className="card-title"), html.H4(id="total_gaveup_confirmed"), ], ), ], ), dbc.Card( [ dbc.CardHeader("NON-CONFIRMED OUT OF RACE", style={"background": "#242424","color":"white"}), dbc.CardBody( [ html.H6("DESISTÊNCIA NC", style={"color":"#242424"}, className="card-title"), html.H4(id="total_gaveup_nconfirmed"), ], ), ], ), ], ), width=2,xs=12, sm=12,md=12,lg=6,xl=2, ), dbc.Col( dbc.Row(dcc.Graph(id='pie')), width=3,xs=12, sm=12,md=12,lg=12,xl=3, ), ], ), dbc.Row( [ dbc.Col( [ dbc.Row(dcc.Graph(id='timeline')) ], ), ], style={"height": "10%", "background-color": "#242424"}, ), dbc.Row( [ dbc.Col( [ dbc.Row( [ dbc.Col(width=4,xs=12, sm=12,md=4,lg=4,xl=4), dbc.Col( dbc.Row( [ dbc.Row(dbc.Col(width=12),), dbc.Row(html.H6("POWERED BY VOST PORTUGAL",style={"align":"center"}),), dbc.Row(html.H6("VOST PORTUGAL for ACP MOTORSPORTS",style={"align":"center"}),), dbc.Row(html.H6("CC BY-NC-SA 2022",style={"align":"center"}),), ], ), ), ], style={"height": "20%", "background-color": "#242424"}, ), ], ), ], style={"height": "30%", "background-color": "#242424"}, ), ], style={"width":"100vw","height": "97vh"}, ) # DEFINE CALL BACKS @app.callback( Output(component_id="map",component_property="figure"), Output(component_id="totals",component_property="children"), Output(component_id="total_warnings",component_property="children"), # returns variable Output(component_id="total_breakdowns",component_property="children"), Output(component_id="total_accidents",component_property="children"), Output(component_id="total_gaveup_confirmed",component_property="children"), # returns variable Output(component_id="total_gaveup_nconfirmed",component_property="children"), # returns table # returns table Output(component_id="pie",component_property="figure"), Output(component_id="timeline",component_property="figure"), Input(component_id="interval-component", component_property="n_intervals"), # Triggers Call Back based on time update ) # WHAT HAPPENS WHEN CALL BACK IS TRIGGERED def confirmUupdate(value): # DATA TREATMENT df_ss1_cc = pd.read_csv('ss1_cc.csv') df_live_incidents = pd.read_csv('https://docs.google.com/spreadsheets/d/e/2PACX-1vT_L10XsTy6OEUN6OOOdEbLDeMzAW000x2bmgXF5acnOY6v8lJpooMiOg4uFQ3e3CI2MfFdDB07I5X_/pub?gid=812677681&single=true&output=csv') df_live_cc =
pd.read_csv('https://docs.google.com/spreadsheets/d/e/2PACX-1vT_L10XsTy6OEUN6OOOdEbLDeMzAW000x2bmgXF5acnOY6v8lJpooMiOg4uFQ3e3CI2MfFdDB07I5X_/pub?gid=1268287201&single=true&output=csv')
pandas.read_csv
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from msticpy.analysis.anomalous_sequence import sessionize class TestSessionize(unittest.TestCase): def setUp(self): self.df1 = pd.DataFrame({"UserId": [], "time": [], "operation": []}) self.df1_with_ses_col = pd.DataFrame( {"UserId": [], "time": [], "operation": [], "session_ind": []} ) self.df1_sessionized = pd.DataFrame( { "UserId": [], "time_min": [], "time_max": [], "operation_list": [], "duration": [], "number_events": [], } ) self.df2 = pd.DataFrame( { "UserId": [1, 1, 2, 3, 1, 2, 2], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-06 11:06:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), ], "operation": ["A", "B", "C", "A", "A", "B", "C"], } ) self.df2_with_ses_col_1 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"),
pd.to_datetime("2020-01-03 01:00:00")
pandas.to_datetime
# pylint: disable=E1101 from pandas.util.py3compat import StringIO, BytesIO, PY3 from datetime import datetime from os.path import split as psplit import csv import os import sys import re import unittest import nose from numpy import nan import numpy as np from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, ExcelFile, TextFileReader, TextParser) from pandas.util.testing import (assert_almost_equal, assert_series_equal, network, ensure_clean) import pandas.util.testing as tm import pandas as pd import pandas.lib as lib from pandas.util import py3compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow from pandas._parser import OverflowError from pandas.io.parsers import (ExcelFile, ExcelWriter, read_csv) def _skip_if_no_xlrd(): try: import xlrd ver = tuple(map(int, xlrd.__VERSION__.split(".")[:2])) if ver < (0, 9): raise nose.SkipTest('xlrd not installed, skipping') except ImportError: raise nose.SkipTest('xlrd not installed, skipping') def _skip_if_no_xlwt(): try: import xlwt except ImportError: raise nose.SkipTest('xlwt not installed, skipping') def _skip_if_no_openpyxl(): try: import openpyxl except ImportError: raise nose.SkipTest('openpyxl not installed, skipping') def _skip_if_no_excelsuite(): _skip_if_no_xlrd() _skip_if_no_xlwt() _skip_if_no_openpyxl() _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd)[:10] _frame2 = DataFrame(_seriesd, columns=['D', 'C', 'B', 'A'])[:10] _tsframe = tm.makeTimeDataFrame()[:5] _mixed_frame = _frame.copy() _mixed_frame['foo'] = 'bar' class ExcelTests(unittest.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') self.frame = _frame.copy() self.frame2 = _frame2.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() def test_parse_cols_int(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols=3) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['A', 'B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols=3) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file) tm.assert_frame_equal(df3, df2, check_names=False) def test_parse_cols_list(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols=[0, 2, 3]) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols=[0, 2, 3]) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file tm.assert_frame_equal(df3, df2, check_names=False) def test_parse_cols_str(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A:D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['A', 'B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A:D') tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df3, df2, check_names=False) del df, df2, df3 df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A,C,D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A,C,D') tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file tm.assert_frame_equal(df3, df2, check_names=False) del df, df2, df3 df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A,C:D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A,C:D') tm.assert_frame_equal(df, df2, check_names=False) tm.assert_frame_equal(df3, df2, check_names=False) def test_excel_stop_iterator(self): _skip_if_no_xlrd() excel_data = ExcelFile(os.path.join(self.dirpath, 'test2.xls')) parsed = excel_data.parse('Sheet1') expected = DataFrame([['aaaa', 'bbbbb']], columns=['Test', 'Test1']) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self): _skip_if_no_xlrd() excel_data = ExcelFile(os.path.join(self.dirpath, 'test3.xls')) parsed = excel_data.parse('Sheet1') expected =
DataFrame([[np.nan]], columns=['Test'])
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33":
pandas.StringDtype()
pandas.StringDtype
# Test for evaluering af hvert forecast og sammenligning mellem forecast import pandas as pd import numpy as np from numpy.random import rand from numpy import ix_ from itertools import product import chart_studio.plotly as py import chart_studio import plotly.graph_objs as go import statsmodels.api as sm chart_studio.tools.set_credentials_file(username='Emborg', api_key='<KEY>') np.random.seed(1337) # Predictions from each forecast data = pd.read_csv('Data/All_Merged.csv') # , parse_dates=[0], date_parser=dateparse data.isna().sum() data.fillna(0, inplace=True) data = data.set_index('date') data = data.loc[~data.index.duplicated(keep='first')] data = data.drop('2018-10-29') # Forecasts LSTM = pd.read_csv('Data/LSTM_Pred.csv', index_col=0) LSTM = LSTM.loc[~LSTM.index.duplicated(keep='first')] LSTM = LSTM.iloc[:-11, :] LSTM = LSTM.drop('2018-10-29') LSTM_NS = pd.read_csv('Data/LSTM_Pred_NoSent.csv', index_col=0) LSTM_NS = LSTM_NS.loc[~LSTM_NS.index.duplicated(keep='first')] LSTM_NS = LSTM_NS.iloc[:-11, :] LSTM_NS = LSTM_NS.drop('2018-10-29') ARIMA = pd.read_csv('Data/ARIMA_Pred.csv', index_col=0) ARIMA = ARIMA.iloc[:-11, :] ARIMA_NS = pd.read_csv('Data/ARIMA_Pred_NoSent.csv', index_col=0) ARIMA_NS = ARIMA_NS.iloc[:-11, :] XGB = pd.read_csv('Data/XGB_Pred.csv', index_col=0) XGB = XGB.loc[~XGB.index.duplicated(keep='first')] XGB = XGB.iloc[1:, :] XGB = XGB.drop('2018-10-29') XGB_NS = pd.read_csv('Data/XGB_Pred_nosenti.csv', index_col=0) XGB_NS = XGB_NS.loc[~XGB_NS.index.duplicated(keep='first')] XGB_NS = XGB_NS.iloc[1:, :] XGB_NS = XGB_NS.drop('2018-10-29') AR1 = pd.read_csv('Data/AR1.csv', index_col=0) AR1 = AR1.iloc[:-11, :] VAR = pd.read_csv('Data/VAR_pred.csv', index_col=0) VAR = VAR.loc[~VAR.index.duplicated(keep='first')] VAR = VAR[VAR.index.isin(LSTM.index)]['price'] VAR_NS = pd.read_csv('Data/VAR_pred_nosenti.csv', index_col=0) VAR_NS = VAR_NS.loc[~VAR_NS.index.duplicated(keep='first')] VAR_NS = VAR_NS[VAR_NS.index.isin(LSTM.index)]['price'] # Price for the forecasting period price = data[data.index.isin(LSTM.index)] price = price[['price']] ARIMA.index = price.index ARIMA_NS.index = price.index XGB.index = price.index XGB_NS.index = price.index colors = [ '#1f77b4', # muted blue '#ff7f0e', # safety orange '#2ca02c', # cooked asparagus green '#d62728', # brick red '#9467bd', # muted purple '#8c564b', # chestnut brown '#e377c2', # raspberry yogurt pink '#7f7f7f', # middle gray '#bcbd22', # curry yellow-green '#17becf' # blue-teal ] # Combined Forecast DataFrame fc = pd.DataFrame() fc = price fc = fc.merge(AR1[['forecast']], how='left', left_index=True, right_index=True) fc = fc.merge(ARIMA[['forecast']], how='left', left_index=True, right_index=True) fc = fc.merge(ARIMA_NS[['forecast']], how='left', left_index=True, right_index=True) fc = fc.merge(VAR, how='left', left_index=True, right_index=True) fc = fc.merge(VAR_NS, how='left', left_index=True, right_index=True) fc = fc.merge(XGB, how='left', left_index=True, right_index=True) fc = fc.merge(XGB_NS, how='left', left_index=True, right_index=True) fc = fc.merge(LSTM[['LSTM']], how='left', left_index=True, right_index=True) fc = fc.merge(LSTM_NS[['LSTM']], how='left', left_index=True, right_index=True) # fc = fc.merge(XGB_NS, how='left', left_index=True, right_index=True) fc.columns = ['Price', 'AR1', 'ARIMAX', 'ARIMAX_NS', 'VAR', 'VAR_NS', 'XGB', 'XGB_NS', 'LSTM', 'LSTM_NS'] # fc.to_csv(r'Data\All_Forecasts.csv') fig = go.Figure() n = 0 for key in fc.columns: fig.add_trace(go.Scatter(x=fc.index, y=fc[key], mode='lines', name=key, line=dict(color=colors[n % len(colors)]))) n = n + 1 fig.update_layout(yaxis=dict(title='USD'), xaxis=dict(title='date')) py.plot(fig, filename='price_all_fc') # Actual price actual = fc[['Price']] fc = fc.iloc[:, 1:] # Error metrics def RMSE(fc, actual): actual = actual.values fc = fc.values losses = fc - actual RMSE = np.sqrt(np.mean(losses ** 2, axis=0)) return (RMSE) def MAE(fc, actual): actual = actual.values fc = fc.values losses = fc - actual MAE = np.mean(np.abs(losses), axis=0) return (MAE) def residual_bar_plot(fc_1, fc_2, actuals, name1, name2): df = pd.DataFrame(fc_1.values - actuals.values) df[name2] = fc_2.values - actuals.values df.columns = [name1,name2] df.hist() print(name1) print(round(sm.tsa.stattools.adfuller(df[name1])[1],4)) print(round(sm.stats.stattools.jarque_bera(df[name1])[1],4)) print(name2) print(round(sm.tsa.stattools.adfuller(df[name2])[1],4)) print(round(sm.stats.stattools.jarque_bera(df[name2])[1],4)) residual_bar_plot(fc[['ARIMAX']], fc[['ARIMAX_NS']], actual, 'ARIMA', 'ARIMA_NS') residual_bar_plot(fc[['LSTM']], fc[['LSTM_NS']], actual, 'LSTM', 'LSTM_NS') residual_bar_plot(fc[['VAR']], fc[['VAR_NS']], actual, 'VAR', 'VAR_NS') residual_bar_plot(fc[['XGB']], fc[['XGB_NS']], actual, 'XGB', 'XGB_NS') name1 = 'ARIMAX' fc_1 = fc[['ARIMAX']] # split_date = '2019-05-01' # fc = fc.loc[fc.index >= split_date] # actual = actual.loc[actual.index >= split_date] rmse = RMSE(fc, actual) mae = MAE(fc, actual) print(pd.DataFrame(rmse).to_latex()) # <NAME> testing dm_result = list() done_models = list() models_list = fc.columns for model1 in models_list: for model2 in models_list: if model1 != model2: dm_result.append(dm_test(fc[[model1]], fc[[model2]], actual)) dm_result = pd.DataFrame(dm_result) # dm_result['t-stat'] = np.abs(dm_result['t-stat']) dm_result = dm_result.loc[~np.abs(dm_result['t-stat']).duplicated(keep='first')] dm_result['t-stat'] = round(dm_result['t-stat'],2) dm_result['p-value'] = round(dm_result['p-value'],4) print(dm_result.to_latex()) # <NAME> cw1 = cw_test(ARIMA, ARIMA_NS, actual) print(cw1) cw2 = cw_test(LSTM[['LSTM']], LSTM_NS[['LSTM']], actual) print(cw2) cw3 = cw_test(XGB[['est']], XGB_NS[['est']], actual) print(cw3) cspe_plot(fc[['XGB_NS']], fc[['XGB']], actual) # Model Confidence Set # https://michael-gong.com/blogs/model-confidence-set/?fbclid=IwAR38oo302TSJ4BFqTpluh5aeivkyM6A1cc0tnZ_JUX08PNwRzQkIi4WPlps # Wrap data and compute the Mean Absolute Error MCS_data = pd.DataFrame(np.c_[fc.AR1, fc.ARIMAX, fc.ARIMAX_NS, fc.LSTM, fc.LSTM_NS, fc.VAR, fc.VAR_NS, fc.XGB, fc.XGB_NS, actual.Price], columns=['AR1','ARIMAX', 'ARIMAX_NS', 'LSTM', 'LSTM_NS','VAR','VAR_NS','XGB','XGB_NS', 'Actual']) losses = pd.DataFrame() for model in MCS_data.columns: #['ARIMA', 'ARIMA_NS', 'LSTM', 'LSTM_NS']: losses[model] = np.abs(MCS_data[model] - MCS_data['Actual']) losses=losses.iloc[:,:-1] mcs = ModelConfidenceSet(losses, 0.1, 3, 1000).run() mcs.included mcs.pvalues # Forecast combinations fc.columns[1:] l1 = fc.columns[1:].values l2 = ['ARIMAX', 'VAR', 'XGB','LSTM'] l3 = ['ARIMAX_NS', 'VAR_NS', 'XGB_NS','LSTM_NS'] comb_results = pd.DataFrame([[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]) comb_results.index = ['All','S','NS'] comb_results.columns = ['Equal', 'MSE', 'Rank', 'Time(1)','Time(7)'] l_list = [l1,l2,l3] i = 0 for l in l_list: print(l) pred = fc[l] # Combinations eq = fc_comb(actual=actual, fc=pred, weights="equal") #bgw = fc_comb(actual=actual, fc=fc[fc.columns[1:]], weights="BGW") mse = fc_comb(actual=actual, fc=pred, weights="MSE") rank = fc_comb(actual=actual, fc=pred, weights="rank") time = fc_comb(actual=actual, fc=pred, weights="time") time7 = fc_comb(actual=actual, fc=pred, weights="time", window=7) time14 = fc_comb(actual=actual, fc=pred, weights="time", window=14) time30 = fc_comb(actual=actual, fc=pred, weights="time", window=30) time60 = fc_comb(actual=actual, fc=pred, weights="time", window=60) comb_results.iloc[i,0] = MAE(eq, actual) comb_results.iloc[i,1] = MAE(mse, actual) comb_results.iloc[i,2] = MAE(rank, actual) comb_results.iloc[i,3] = MAE(time, actual) comb_results.iloc[i,4] = MAE(time7, actual) i = i + 1 print(round(comb_results,2).to_latex()) rank = pd.DataFrame(rank) rank.columns = ['Rank'] eq = pd.DataFrame(eq) eq.columns = ['Eq'] dm_test(rank[['Rank']], eq[['Eq']], actual) # Fun # ctions # <NAME> test function def dm_test(fc, fc_nested, actual): fc_name = fc.columns[0] fc_nested_name = fc_nested.columns[0] import statsmodels.formula.api as smf from sklearn.metrics import mean_squared_error fc = fc.values fc_nested = fc_nested.values actual = price.values e_fc = actual - fc e_nested = actual - fc_nested f_dm = e_nested ** 2 - e_fc ** 2 f_dm = pd.DataFrame(f_dm, columns=['f_dm']) nwResult = smf.ols('f_dm ~ 1', data=f_dm).fit(cov_type='HAC', cov_kwds={'maxlags': 1}) dm_out = dict() dm_out['t-stat'] = nwResult.tvalues[0] dm_out['p-value'] = round(nwResult.pvalues[0], 4) if dm_out['p-value'] < 0.05: if mean_squared_error(actual, fc) < mean_squared_error(actual, fc_nested): dm_out['conclusion'] = 'First forecast is best ' + fc_name + ' better then ' + fc_nested_name else: dm_out['conclusion'] = 'Second forecast is best' + fc_nested_name + ' better then ' + fc_name else: dm_out['conclusion'] = 'Forecasts have equal predictive power between ' + fc_nested_name + ' and ' + fc_name return dm_out # Clark West test function def cw_test(fc, fc_nested, actual): import statsmodels.formula.api as smf from sklearn.metrics import mean_squared_error fc = fc.values fc_nested = fc_nested.values actual = price.values e_fc = actual - fc e_nested = actual - fc_nested e_diff = fc - fc_nested f_CW = e_nested ** 2 - e_fc ** 2 + e_diff ** 2 f_CW =
pd.DataFrame(f_CW, columns=['f_CW'])
pandas.DataFrame
''' Copyright <NAME> and <NAME> 2015, 2016, 2017, 2018 ''' from __future__ import print_function # Python 2.7 and 3 compatibility import os import sys import time import shutil #import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt # Standard imports from numpy import pi from numpy.linalg import inv from stat import S_ISREG, ST_CTIME, ST_MODE from pandas import HDFStore, Series, DataFrame from collections import OrderedDict from pathlib import Path # pyEPR custom imports from . import hfss from . import logger from . import config from . import AttrDict from .hfss import ureg, CalcObject, ConstantVecCalcObject, set_property from .toolbox import print_NoNewLine, print_color, deprecated, fact, epsilon_0, hbar, Planck, fluxQ, nck, \ divide_diagonal_by_2, print_matrix, DataFrame_col_diff, get_instance_vars,\ sort_df_col, sort_Series_idx from .toolbox_circuits import Calcs_basic from .toolbox_plotting import cmap_discrete, legend_translucent from .numeric_diag import bbq_hmt, make_dispersive import matplotlib as mpl from .toolbox_report import plot_convergence_f_vspass, plot_convergence_max_df, plot_convergence_solved_elem, plot_convergence_maxdf_vs_sol class Project_Info(object): """ Class containing options and information about the manipulation and analysis in HFSS. Junction info: ----------------------- self.junctions : OrderedDict() A Josephson tunnel junction has to have its parameters specified here for the analysis. Each junction is given a name and is specified by a dictionary. It has the following properties: 1. `Lj_variable` : Name of HFSS variable that specifies junction inductance Lj defined on the boundary condition in HFSS. DO NOT USE Global names that start with $. 2. `rect` : Name of HFSS rectangle on which lumped boundary condition is specified. 3. `line` : Name of HFSS polyline which spans the length of the recntalge. Used to define the voltage across the junction. Used to define the current orientation for each junction. Used to define sign of ZPF. 4. `length` : Length in HFSS of the junction rectangle and line (specified in meters). Example definition: ..code-block python # Define a single junction pinfo = Project_Info('') pinfo.junctions['j1'] = {'Lj_variable' : 'Lj1', 'rect' : 'JJrect1', 'line' : 'JJline1', 'length' : parse_units('50um')} # Length is in meters # Specify multiple junctions in HFSS model n_junctions = 5 for i in range(1, 1+n_junctions): pinfo.junctions[f'j{i}'] = {'Lj_variable' : f'Lj{i}', 'rect' : f'JJrect{i}', 'line' : f'JJline{i}', 'length' : parse_units('50um')} HFSS app connection settings ----------------------- project_path : str Directory path to the hfss project file. Should be the directory, not the file. default = None: Assumes the project is open, and thus gets the project based on `project_name` project_name : str, None Name of the project within the project_path. "None" will get the current active one. design_name : str, None Name of the design within the project. "None" will get the current active one. setup_name : str, None Name of the setup within the design. "None" will get the current active one. Additional init setting: ----------------------- do_connect : True by default. Connect to HFSS HFSS desgin settings ----------------------- describe junction parameters junc_rects = None Name of junction rectangles in HFSS junc_lines = None Name of lines in HFSS used to define the current orientation for each junction junc_LJ_names = None Name of junction inductance variables in HFSS. Note, DO NOT USE Global names that start with $. junc_lens = None Junciton rect. length, measured in meters. """ class _Dissipative: #TODO: remove and turn to dict def __init__(self): self.dielectrics_bulk = None self.dielectric_surfaces = None self.resistive_surfaces = None self.seams = None def __init__(self, project_path=None, project_name=None, design_name=None, do_connect = True): self.project_path = str(Path(project_path)) if not (project_path is None) else None # Path: format path correctly to system convention self.project_name = project_name self.design_name = design_name self.setup_name = None ## HFSS desgin: describe junction parameters # TODO: introduce modal labels self.junctions = OrderedDict() # See above for help self.ports = OrderedDict() ## Dissipative HFSS volumes and surfaces self.dissipative = self._Dissipative() self.options = config.options_hfss # Conected to HFSS variable self.app = None self.desktop = None self.project = None self.design = None self.setup = None if do_connect: self.connect() _Forbidden = ['app', 'design', 'desktop', 'project', 'dissipative', 'setup', '_Forbidden', 'junctions'] def save(self, hdf): ''' hdf : pd.HDFStore ''' hdf['project_info'] = pd.Series(get_instance_vars(self, self._Forbidden)) hdf['project_info_dissip'] = pd.Series(get_instance_vars(self.dissipative)) hdf['project_info_options'] = pd.Series(get_instance_vars(self.options)) hdf['project_info_junctions'] = pd.DataFrame(self.junctions) hdf['project_info_ports'] = pd.DataFrame(self.ports) @deprecated def connect_to_project(self): return self.connect() def connect(self): ''' Connect to HFSS design. ''' #logger.info('Connecting to HFSS ...') self.app, self.desktop, self.project = hfss.load_ansys_project( self.project_name, self.project_path) self.project_name = self.project.name self.project_path = self.project.get_path() # Design if self.design_name is None: self.design = self.project.get_active_design() self.design_name = self.design.name logger.info(f'\tOpened active design\n\tDesign: {self.design_name} [Solution type: {self.design.solution_type}]') else: try: self.design = self.project.get_design(self.design_name) except Exception as e: tb = sys.exc_info()[2] logger.error(f"Original error: {e}\n") raise(Exception(' Did you provide the correct design name? Failed to pull up design.').with_traceback(tb)) #if not ('Eigenmode' == self.design.solution_type): # logger.warning('\tWarning: The design tpye is not Eigenmode. Are you sure you dont want eigenmode?') # Setup try: n_setups = len(self.design.get_setup_names()) if n_setups == 0: logger.warning('\tNo design setup detected.') if self.design.solution_type == 'Eigenmode': logger.warning('\tCreating eigenmode default setup one.') self.design.create_em_setup() self.setup_name = 'Setup' self.setup = self.design.get_setup(name=self.setup_name) self.setup_name = self.setup.name logger.info(f'\tOpened setup: {self.setup_name} [{type(self.setup)}]') except Exception as e: tb = sys.exc_info()[2] logger.error(f"Original error: {e}\n") raise(Exception(' Did you provide the correct setup name? Failed to pull up setup.').with_traceback(tb)) # Finalize self.project_name = self.project.name self.design_name = self.design.name logger.info('\tConnected successfully.\t :)\t :)\t :)\t\n') return self def check_connected(self): """Checks if fully connected including setup """ return\ (self.setup is not None) and\ (self.design is not None) and\ (self.project is not None) and\ (self.desktop is not None) and\ (self.app is not None) def disconnect(self): ''' Disconnect from existing HFSS design. ''' assert self.check_connected( ) is True, "it does not appear that you have connected to HFSS yet. use connect()" self.project.release() self.desktop.release() self.app.release() hfss.release() ### UTILITY FUNCTIONS def get_dm(self): ''' Get the design and modeler .. code-block:: python oDesign, oModeler = projec.get_dm() ''' oDesign = self.design oModeler = oDesign.modeler return oDesign, oModeler def get_all_variables_names(self): """Returns array of all project and local design names.""" return self.project.get_variable_names() + self.design.get_variable_names() def get_all_object_names(self): """Returns array of strings""" oObjects = [] for s in ["Non Model", "Solids", "Unclassified", "Sheets", "Lines"]: oObjects += self.design.modeler.get_objects_in_group(s) return oObjects def validate_junction_info(self): """ Validate that the user has put in the junction info correctly. Do no also forget to check the length of the rectangles/line of the junction if you change it. """ all_variables_names = self.get_all_variables_names() all_object_names = self.get_all_object_names() for jjnm, jj in self.junctions.items(): assert jj['Lj_variable'] in all_variables_names, "pyEPR project_info user error found: Seems like for junction `%s` you specified a design or project variable for `Lj_variable` that does not exist in HFSS by the name: `%s` " % ( jjnm, jj['Lj_variable']) for name in ['rect', 'line']: assert jj[name] in all_object_names, "pyEPR project_info user error found: Seems like for junction `%s` you specified a %s that does not exist in HFSS by the name: `%s` " % ( jjnm, name, jj[name]) #TODO: Check the length of the rectnagle #============================================================================== #%% Main compuation class & interface with HFSS #============================================================================== class pyEPR_HFSS(object): """ This class defines a pyEPR_HFSS object which calculates and saves Hamiltonian parameters from an HFSS simulation. Further, it allows one to calcualte dissipation, etc """ def __init__(self, *args, **kwargs): ''' Parameters: ------------------- project_info : Project_Info Suplpy the project info or the parameters to create pinfo Example use: ------------------- ''' if (len(args) == 1) and (args[0].__class__.__name__ == 'Project_Info'): #isinstance(args[0], Project_Info): # fails on module repload with changes project_info = args[0] else: assert len(args) == 0, 'Since you did not pass a Project_info object as a arguemnt, we now assuem you are trying to create a project info object here by apassing its arguments. See Project_Info. It does not take any arguments, only kwargs.' project_info = Project_Info(*args, **kwargs) # Input self.pinfo = project_info if self.pinfo.check_connected() is False: self.pinfo.connect() self.verbose = True #TODO: change verbose to logger. remove verbose flags self.append_analysis = False #TODO # hfss connect module self.fields = self.setup.get_fields() self.solutions = self.setup.get_solutions() # Variations - the following get updated in update_variation_information self.nmodes = int(1) self.listvariations = ("",) self.nominalvariation = '0' self.nvariations = 0 self.update_variation_information() self.hfss_variables = OrderedDict() # container for eBBQ list of varibles if self.verbose: print('Design \"%s\" info:'%self.design.name) print('\t%-15s %d\n\t%-15s %d' %('# eigenmodes', self.nmodes, '# variations', self.nvariations)) # Setup data saving self.setup_data() self.latest_h5_path = None # #self.get_latest_h5() ''' #TODO: to be implemented to use old files if self.latest_h5_path is not None and self.append_analysis: latest_bbq_analysis = pyEPR_Analysis(self.latest_h5_path) if self.verbose: print( 'Varied variables and values : ', latest_bbq_analysis.get_swept_variables(), \ 'Variations : ', latest_bbq_analysis.variations) ''' @property def setup(self): return self.pinfo.setup @property def design(self): return self.pinfo.design @property def project(self): return self.pinfo.project @property def desktop(self): return self.pinfo.desktop @property def app(self): return self.pinfo.app @property def junctions(self): return self.pinfo.junctions @property def ports(self): return self.pinfo.ports @property def options(self): return self.pinfo.options def get_latest_h5(self): ''' No longer used. Could be added back in. ''' dirpath = self.data_dir entries1 = (os.path.join(dirpath, fn) for fn in os.listdir(dirpath)) # get all entries in the directory w/ stats entries2 = ((os.stat(path), path) for path in entries1) entries3 = ((stat[ST_CTIME], path) # leave only regular files, insert creation date for stat, path in entries2 if S_ISREG(stat[ST_MODE]) and path[-4:]=='hdf5') #NOTE: on Windows `ST_CTIME` is a creation date but on Unix it could be something else #NOTE: use `ST_MTIME` to sort by a modification date paths_sorted = [] for cdate, path in sorted(entries3): paths_sorted.append(path) #print time.ctime(cdate), os.path.basename(path) if len(paths_sorted) > 0: self.latest_h5_path = paths_sorted[-1] if self.verbose: print('This simulations has been analyzed, latest data in ' + self.latest_h5_path) else: self.latest_h5_path = None if self.verbose: print('This simulation has never been analyzed') def setup_data(self): ''' Set up folder paths for saving data to. ''' data_dir = Path(config.root_dir) / \ Path(self.project.name)/Path(self.design.name) #if self.verbose: # print("\nResults will be saved to:\n" +'- '*20+'\n\t'+ str(data_dir)+'\n'+'- '*20+'\n') if len(self.design.name) > 50: print_color('WARNING! DESING FILENAME MAY BE TOO LONG! ') if not data_dir.is_dir(): data_dir.mkdir(parents=True, exist_ok=True) self.data_dir = str(data_dir) self.data_filename = str( data_dir / (time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) + '.hdf5')) """ @deprecated def calc_p_j(self, modes=None, variation=None): ''' Calculates the p_j for all the modes. Requires a calculator expression called P_J. ''' lv = self.get_lv(variation) if modes is None: modes = range(self.nmodes) pjs = OrderedDict() for ii, m in enumerate(modes): print('Calculating p_j for mode ' + str(m) + ' (' + str(ii) + '/' + str(np.size(modes)-1) + ')') self.solutions.set_mode(m+1, 0) self.fields = self.setup.get_fields() P_J = self.fields.P_J pjs['pj_'+str(m)] = P_J.evaluate(lv=lv) self.pjs = pjs if self.verbose: print(pjs) return pjs """ def calc_p_junction_single(self, mode): ''' This function is used in the case of a single junction only. For multiple junctions, see `calc_p_junction`. Assumes no lumped capacitive elements. ''' pj = OrderedDict() pj_val = (self.U_E-self.U_H)/self.U_E pj['pj_'+str(mode)] = np.abs(pj_val) print(' p_j_' + str(mode) + ' = ' + str(pj_val)) return pj #TODO: replace this method with the one below, here because osme funcs use it still def get_freqs_bare(self, variation): #str(self.get_lv(variation)) freqs_bare_vals = [] freqs_bare_dict = OrderedDict() freqs, kappa_over_2pis = self.solutions.eigenmodes( self.get_lv_EM(variation)) for m in range(self.nmodes): freqs_bare_dict['freq_bare_'+str(m)] = 1e9*freqs[m] freqs_bare_vals.append(1e9*freqs[m]) if kappa_over_2pis is not None: freqs_bare_dict['Q_'+str(m)] = freqs[m]/kappa_over_2pis[m] else: freqs_bare_dict['Q_'+str(m)] = 0 self.freqs_bare = freqs_bare_dict self.freqs_bare_vals = freqs_bare_vals return freqs_bare_dict, freqs_bare_vals def get_freqs_bare_pd(self, variation): ''' Retun pd.Sereis of modal freq and qs for given variation ''' freqs, kappa_over_2pis = self.solutions.eigenmodes( self.get_lv_EM(variation)) if kappa_over_2pis is None: kappa_over_2pis = np.zeros(len(freqs)) freqs = pd.Series(freqs, index=range(len(freqs))) # GHz Qs = freqs / pd.Series(kappa_over_2pis, index=range(len(freqs))) return freqs, Qs def get_lv(self, variation=None): ''' List of variation variables. Returns list of var names and var values. Such as ['Lj1:=','13nH', 'QubitGap:=','100um'] Parameters ----------- variation : string number such as '0' or '1' or ... ''' if variation is None: lv = self.nominalvariation lv = self.parse_listvariations(lv) else: lv = self.listvariations[ureg(variation)] lv = self.parse_listvariations(lv) return lv def get_lv_EM(self, variation): if variation is None: lv = self.nominalvariation #lv = self.parse_listvariations_EM(lv) else: lv = self.listvariations[ureg(variation)] #lv = self.parse_listvariations_EM(lv) return str(lv) def parse_listvariations_EM(self, lv): lv = str(lv) lv = lv.replace("=", ":=,") lv = lv.replace(' ', ',') lv = lv.replace("'", "") lv = lv.split(",") return lv def parse_listvariations(self, lv): lv = str(lv) lv = lv.replace("=", ":=,") lv = lv.replace(' ', ',') lv = lv.replace("'", "") lv = lv.split(",") return lv def get_variables(self, variation=None): lv = self.get_lv(variation) variables = OrderedDict() for ii in range(int(len(lv)/2)): variables['_'+lv[2*ii][:-2]] = lv[2*ii+1] self.variables = variables return variables def calc_energy_electric(self, variation=None, volume='AllObjects', smooth=False): r''' Calculates two times the peak electric energy, or 4 times the RMS, :math:`4*\mathcal{E}_{\mathrm{elec}}` (since we do not divide by 2 and use the peak phasors). .. math:: \mathcal{E}_{\mathrm{elec}}=\frac{1}{4}\mathrm{Re}\int_{V}\mathrm{d}v\vec{E}_{\text{max}}^{*}\overleftrightarrow{\epsilon}\vec{E}_{\text{max}} volume : string | 'AllObjects' smooth : bool | False Smooth the electric field or not when performing calculation Example use to calcualte the energy participation of a substrate .. code-block python ℰ_total = epr_hfss.calc_energy_electric(volume='AllObjects') ℰ_substr = epr_hfss.calc_energy_electric(volume='Box1') print(f'Energy in substrate = {100*ℰ_substr/ℰ_total:.1f}%') ''' calcobject = CalcObject([], self.setup) vecE = calcobject.getQty("E") if smooth: vecE = vecE.smooth() A = vecE.times_eps() B = vecE.conj() A = A.dot(B) A = A.real() A = A.integrate_vol(name=volume) lv = self.get_lv(variation) return A.evaluate(lv=lv) def calc_energy_magnetic(self, variation=None, volume='AllObjects', smooth=True): ''' See calc_energy_electric ''' calcobject = CalcObject([], self.setup) vecH = calcobject.getQty("H") if smooth: vecH = vecH.smooth() A = vecH.times_mu() B = vecH.conj() A = A.dot(B) A = A.real() A = A.integrate_vol(name=volume) lv = self.get_lv(variation) return A.evaluate(lv=lv) def calc_p_electric_volume(self, name_dielectric3D, relative_to='AllObjects', E_total=None ): r''' Calculate the dielectric energy-participatio ratio of a 3D object (one that has volume) relative to the dielectric energy of a list of object objects. This is as a function relative to another object or all objects. When all objects are specified, this does not include any energy that might be stored in any lumped elements or lumped capacitors. Returns: --------- ℰ_object/ℰ_total, (ℰ_object, _total) ''' if E_total is None: logger.debug('Calculating ℰ_total') ℰ_total = self.calc_energy_electric(volume=relative_to) else: ℰ_total = E_total logger.debug('Calculating ℰ_object') ℰ_object = self.calc_energy_electric(volume=name_dielectric3D) return ℰ_object/ℰ_total, (ℰ_object, ℰ_total) def calc_current(self, fields, line): ''' Function to calculate Current based on line. Not in use line : integration line between plates - name ''' self.design.Clear_Field_Clac_Stack() comp = fields.Vector_H exp = comp.integrate_line_tangent(line) I = exp.evaluate(phase = 90) self.design.Clear_Field_Clac_Stack() return I def calc_avg_current_J_surf_mag(self, variation, junc_rect, junc_line): ''' Peak current I_max for mdoe J in junction J The avg. is over the surface of the junction. I.e., spatial. ''' lv = self.get_lv(variation) jl, uj = self.get_junc_len_dir(variation, junc_line) uj = ConstantVecCalcObject(uj, self.setup) calc = CalcObject([], self.setup) #calc = calc.getQty("Jsurf").mag().integrate_surf(name = junc_rect) calc = (((calc.getQty("Jsurf")).dot(uj)).imag() ).integrate_surf(name=junc_rect) I = calc.evaluate(lv=lv) / jl # phase = 90 #self.design.Clear_Field_Clac_Stack() return I def calc_current_line_voltage(self, variation, junc_line_name, junc_L_Henries): ''' Peak current I_max for prespecified mode calculating line voltage across junction. Parameters: ------------------------------------------------ variation: variation number junc_line_name: name of the HFSS line spanning the junction junc_L_Henries: junction inductance in henries TODO: Smooth? ''' lv = self.get_lv(variation) v_calc_real = CalcObject([], self.setup).getQty( "E").real().integrate_line_tangent(name=junc_line_name) v_calc_imag = CalcObject([], self.setup).getQty( "E").imag().integrate_line_tangent(name=junc_line_name) V = np.sqrt(v_calc_real.evaluate(lv=lv)**2 + v_calc_imag.evaluate(lv=lv)**2) freq = CalcObject( [('EnterOutputVar', ('Freq', "Complex"))], self.setup).real().evaluate() return V/(2*np.pi*freq*junc_L_Henries) # I=V/(wL)s def calc_line_current(self, variation, junc_line_name): lv = self.get_lv(variation) calc = CalcObject([], self.setup) calc = calc.getQty("H").imag().integrate_line_tangent( name=junc_line_name) #self.design.Clear_Field_Clac_Stack() return calc.evaluate(lv=lv) def get_junc_len_dir(self, variation, junc_line): ''' Return the length and direction of a junction defined by a line Inputs: variation: simulation variation junc_line: polyline object Outputs: jl (float) junction length uj (list of 3 floats) x,y,z coordinates of the unit vector tangent to the junction line ''' # lv = self.get_lv(variation) u = [] for coor in ['X', 'Y', 'Z']: calc = CalcObject([], self.setup) calc = calc.line_tangent_coor(junc_line, coor) u.append(calc.evaluate(lv=lv)) jl = float(np.sqrt(u[0]**2+u[1]**2+u[2]**2)) uj = [float(u[0]/jl), float(u[1]/jl), float(u[2]/jl)] return jl, uj def get_Qseam(self, seam, mode, variation): r''' Caculate the contribution to Q of a seam, by integrating the current in the seam with finite conductance: set in the config file ref: http://arxiv.org/pdf/1509.01119.pdf ''' lv = self.get_lv(variation) Qseam = OrderedDict() print('Calculating Qseam_' + seam + ' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') # overestimating the loss by taking norm2 of j, rather than jperp**2 j_2_norm = self.fields.Vector_Jsurf.norm_2() int_j_2 = j_2_norm.integrate_line(seam) int_j_2_val = int_j_2.evaluate(lv=lv, phase=90) yseam = int_j_2_val/self.U_H/self.omega Qseam['Qseam_'+seam+'_' + str(mode)] = config.Dissipation_params.gseam/yseam print('Qseam_' + seam + '_' + str(mode) + str(' = ') + str(config.Dissipation_params.gseam/config.Dissipation_params.yseam)) return Series(Qseam) def get_Qseam_sweep(self, seam, mode, variation, variable, values, unit, pltresult=True): # values = ['5mm','6mm','7mm'] # ref: http://arxiv.org/pdf/1509.01119.pdf self.solutions.set_mode(mode+1, 0) self.fields = self.setup.get_fields() freqs_bare_dict, freqs_bare_vals = self.get_freqs_bare(variation) self.omega = 2*np.pi*freqs_bare_vals[mode] print(variation) print(type(variation)) print(ureg(variation)) self.U_H = self.calc_energy_magnetic(variation) lv = self.get_lv(variation) Qseamsweep = [] print('Calculating Qseam_' + seam + ' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') for value in values: self.design.set_variable(variable, str(value)+unit) # overestimating the loss by taking norm2 of j, rather than jperp**2 j_2_norm = self.fields.Vector_Jsurf.norm_2() int_j_2 = j_2_norm.integrate_line(seam) int_j_2_val = int_j_2.evaluate(lv=lv, phase=90) yseam = int_j_2_val/self.U_H/self.omega Qseamsweep.append(config.Dissipation_params.gseam/yseam) # Qseamsweep['Qseam_sweep_'+seam+'_'+str(mode)] = gseam/yseam #Cprint 'Qseam_' + seam + '_' + str(mode) + str(' = ') + str(gseam/yseam) if pltresult: _, ax = plt.subplots() ax.plot(values, Qseamsweep) ax.set_yscale('log') ax.set_xlabel(variable+' ('+unit+')') ax.set_ylabel('Q'+'_'+seam) return Qseamsweep def get_Qdielectric(self, dielectric, mode, variation): Qdielectric = OrderedDict() print('Calculating Qdielectric_' + dielectric + ' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') U_dielectric = self.calc_energy_electric(variation, volume=dielectric) p_dielectric = U_dielectric/self.U_E #TODO: Update make p saved sep. and get Q for diff materials, indep. specify in pinfo Qdielectric['Qdielectric_'+dielectric+'_' + str(mode)] = 1/(p_dielectric*config.Dissipation_params.tan_delta_sapp) print('p_dielectric'+'_'+dielectric+'_' + str(mode)+' = ' + str(p_dielectric)) return Series(Qdielectric) def get_Qsurface_all(self, mode, variation): ''' caculate the contribution to Q of a dieletric layer of dirt on all surfaces set the dirt thickness and loss tangent in the config file ref: http://arxiv.org/pdf/1509.01854.pdf ''' lv = self.get_lv(variation) Qsurf = OrderedDict() print('Calculating Qsurface for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') # A = self.fields.Mag_E**2 # A = A.integrate_vol(name='AllObjects') # U_surf = A.evaluate(lv=lv) calcobject = CalcObject([], self.setup) vecE = calcobject.getQty("E") A = vecE B = vecE.conj() A = A.dot(B) A = A.real() A = A.integrate_surf(name='AllObjects') U_surf = A.evaluate(lv=lv) U_surf *= config.Dissipation_params.th*epsilon_0*config.Dissipation_params.eps_r p_surf = U_surf/self.U_E Qsurf['Qsurf_'+str(mode)] = 1 / \ (p_surf*config.Dissipation_params.tan_delta_surf) print('p_surf'+'_'+str(mode)+' = ' + str(p_surf)) return
Series(Qsurf)
pandas.Series
import unittest import numpy as np import pandas as pd from pyalink.alink import * class TestPinyi(unittest.TestCase): def test_pca(self): data = np.array([ ["1.0 2.0 4.0", "a"], ["-1.0 -3.0 4.0", "a"], ["4.0 2.0 3.0", "b"], ["3.4 5.1 5.0", "b"] ]) df = pd.DataFrame({"vec": data[:, 0], "lable": data[:, 1]}) source = dataframeToOperator(df, schemaStr='vec string, label string', op_type='batch') pca = PCA() \ .setK(2) \ .setCalculationType("CORR") \ .setPredictionCol("pred") \ .setReservedCols(["label"]) \ .setVectorCol("vec") model = pca.fit(source) model.transform(source).print() def test_pca2(self): data = np.array([ [0.0, 0.0, 0.0], [0.1, 0.2, 0.1], [0.2, 0.2, 0.8], [9.0, 9.5, 9.7], [9.1, 9.1, 9.6], [9.2, 9.3, 9.9] ]) df =
pd.DataFrame({"x1": data[:, 0], "x2": data[:, 1], "x3": data[:, 2]})
pandas.DataFrame
import os import gc import sys import time import copy import joblib import numpy as np import pandas as pd import warnings # Suppress warnings if not sys.warnoptions: warnings.simplefilter("ignore") from pathlib import Path from sklearn import preprocessing from sklearn.base import TransformerMixin from sklearn.pipeline import Pipeline from sklearn.feature_extraction import FeatureHasher from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.utils.metaestimators import if_delegate_has_method # Workaround for Keras issue #1406 # "Using X backend." always printed to stdout #1406 # https://github.com/keras-team/keras/issues/1406 stderr = sys.stderr sys.stderr = open(os.devnull, 'w') import keras from keras import backend as kerasbackend from keras.wrappers.scikit_learn import KerasClassifier from keras.wrappers.scikit_learn import KerasRegressor sys.stderr = stderr import _utils as utils class PersistentModel: """ A general class to manage persistent models """ def __init__(self): """ Basic contructor """ self.name = None self.state = None self.state_timestamp = None self.using_keras = False def save(self, name, path, overwrite=True, compress=3, locked_timeout=2): """ Save the model to disk at the specified path. If the model already exists and overwrite=False, throw an exception. If overwrite=True, replace any existing file with the same name at the path. If the model is found to be locked, wait 'locked_timeout' seconds and try again before quitting. """ # Create string for path and file name f = path + name + '.joblib' # Create a path for the lock file f_lock = f + '.lock' # Create the directory if required try: Path(path).mkdir(parents=True, exist_ok=False) except FileExistsError: pass # If the file exists and overwriting is not allowed, raise an exception if Path(f).exists() and not overwrite: raise FileExistsError("The specified model name already exists: {0}.".format(name + '.joblib')\ +"\nPass overwrite=True if it is ok to overwrite.") # Check if the file is currently locked elif Path(f_lock).exists(): # Wait a few seconds and check again time.sleep(locked_timeout) # If the file is still locked raise an exception if Path(f_lock).exists(): raise TimeoutError("The specified model is locked. If you believe this to be wrong, please delete file {0}".format(f_lock)) else: # Update properties self.name = name self.state = 'saved' self.state_timestamp = time.time() # Keras models are excluded from the joblib file as they are saved to a special HDF5 file in _sklearn.py try: if self.using_keras: # Get the trained keras model from the pipeline's estimator keras_model = self.pipe.named_steps['estimator'].model # Save the keras model architecture and weights to disk keras_model.save(path + name + '.h5', overwrite=overwrite) # The Keras estimator is excluded from the model saved to the joblib file self.pipe.named_steps['estimator'].model = None except AttributeError: pass # Create the lock file joblib.dump(f_lock, filename=Path(f_lock), compress=compress) try: # Store this instance to file joblib.dump(self, filename=Path(f), compress=compress) finally: # Delete the lock file Path(f_lock).unlink() return self def load(self, name, path): """ Check if the model exists at the specified path and return it to the caller. If the model is not found throw an exception. """ with open(Path(path + name + '.joblib'), 'rb') as f: self = joblib.load(f) # If using Keras we need to load the HDF5 file as well # The model will only be available if the fit method has been called previously if self.using_keras and hasattr(self, 'pipe'): # Avoid tensorflow error for keras models # https://github.com/tensorflow/tensorflow/issues/14356 # https://stackoverflow.com/questions/40785224/tensorflow-cannot-interpret-feed-dict-key-as-tensor kerasbackend.clear_session() # Load the keras model architecture and weights from disk keras_model = keras.models.load_model(path + name + '.h5') keras_model._make_predict_function() # Point the estimator in the sklearn pipeline to the keras model architecture and weights self.pipe.named_steps['estimator'].model = keras_model return self class Preprocessor(TransformerMixin): """ A class that preprocesses a given dataset based on feature definitions passed as a dataframe. This class automates One Hot Encoding, Hashing, Text Vectorizing and Scaling. """ def __init__(self, features, return_type='np', scale_hashed=True, scale_vectors=True, missing="zeros", scaler="StandardScaler", logfile=None, **kwargs): """ Initialize the Preprocessor object based on the features dataframe. **kwargs are keyword arguments passed to the sklearn scaler instance. The features dataframe must include these columns: name, variable_type, feature_strategy. If Feature_Strategy includes hashing or text vectorizing, the strategy_args column must also be included. The dataframe must be indexed by name. For further information on the columns refer to the project documentation: https://github.com/nabeel-oz/qlik-py-tools """ self.features = features self.return_type = return_type self.scale_hashed = scale_hashed self.scale_vectors = scale_vectors self.missing = missing self.scaler = scaler self.kwargs = kwargs self.ohe = False self.hash = False self.cv = False self.tfidf = False self.text = False self.scale = False self.no_prep = False self.log = logfile # Collect features for one hot encoding self.ohe_meta = features.loc[features["feature_strategy"] == "one hot encoding"].copy() # Set a flag if one hot encoding will be required if len(self.ohe_meta) > 0: self.ohe = True # Collect features for hashing self.hash_meta = features.loc[features["feature_strategy"] == "hashing"].copy() # Set a flag if feature hashing will be required if len(self.hash_meta) > 0: self.hash = True # Convert strategy_args column to integers self.hash_meta.loc[:,"strategy_args"] = self.hash_meta.loc[:,"strategy_args"].astype(np.int64, errors="ignore") # Collect features for count vectorizing self.cv_meta = features.loc[features["feature_strategy"] == "count_vectorizing"].copy() # Set a flag if count vectorizing will be required if len(self.cv_meta) > 0: self.cv = True # Convert strategy_args column to key word arguments for the sklearn CountVectorizer class self.cv_meta.loc[:,"strategy_args"] = self.cv_meta.loc[:,"strategy_args"].apply(utils.get_kwargs).\ apply(utils.get_kwargs_by_type) # Collect features for term frequency inverse document frequency (TF-IDF) vectorizing self.tfidf_meta = features.loc[features["feature_strategy"] == "tf_idf"].copy() # Set a flag if tfidf vectorizing will be required if len(self.tfidf_meta) > 0: self.tfidf = True # Convert strategy_args column to key word arguments for the sklearn TfidfVectorizer class self.tfidf_meta.loc[:,"strategy_args"] = self.tfidf_meta.loc[:,"strategy_args"].apply(utils.get_kwargs).\ apply(utils.get_kwargs_by_type) # Collect features for text similarity one hot encoding self.text_meta = features.loc[features["feature_strategy"] == "text_similarity"].copy() # Set a flag if text similarity OHE will be required if len(self.text_meta) > 0: self.text = True # Collect features for scaling self.scale_meta = features.loc[features["feature_strategy"] == "scaling"].copy() # Set a flag if scaling will be required if len(self.scale_meta) > 0: self.scale = True # Collect other features self.none_meta = features.loc[features["feature_strategy"] == "none"].copy() # Set a flag if there are features that don't require preprocessing if len(self.none_meta) > 0: self.no_prep = True # Output information to the terminal and log file if required if self.log is not None: self._print_log(1) def fit(self, X, y=None, features=None, retrain=False): """ Fit to the training dataset, storing information that will be needed for the transform dataset. Return the Preprocessor object. Optionally re-initizialise the object by passing retrain=True, and resending the features dataframe """ # Reinitialize this Preprocessor instance if required if retrain: if features is None: features = self.features self.__init__(features) # Set up an empty data frame for data to be scaled scale_df = pd.DataFrame() ohe_df = None hash_df = None cv_df = None tfidf_df = None text_df = None if self.ohe: # Get a subset of the data that requires one hot encoding ohe_df = X[self.ohe_meta.index.tolist()] # Apply one hot encoding to relevant columns ohe_df = pd.get_dummies(ohe_df, columns=ohe_df.columns) # Keep a copy of the OHE dataframe structure so we can align the transform dataset self.ohe_df_structure = pd.DataFrame().reindex_like(ohe_df) # Scaling needs to be fit exclusively on the training data so as not to influence the results if self.scale: # Get a subset of the data that requires scaling scale_df = X[self.scale_meta.index.tolist()] if self.hash: # Get a subset of the data that requires feature hashing hash_df = X[self.hash_meta.index.tolist()] hash_cols = hash_df.columns # Hash unique values for each relevant column and then join to a dataframe for hashed data for c in hash_cols: unique = self.hasher(hash_df, c, self.hash_meta["strategy_args"].loc[c]) hash_df = hash_df.join(unique, on=c) hash_df = hash_df.drop(c, axis=1) # If hashed columns need to be scaled, these need to be considered when setting up the scaler as well if self.scale_hashed: if self.scale: scale_df = scale_df.join(hash_df) else: scale_df = hash_df if self.cv: # Get a subset of the data that requires count vectorizing cv_df = X[self.cv_meta.index.tolist()] cv_cols = cv_df.columns # Get count vectors for each relevant column and then join to a dataframe for count vectorized data for c in cv_cols: unique = self.text_vectorizer(cv_df, c, type="count", **self.cv_meta["strategy_args"].loc[c]) cv_df = cv_df.join(unique, on=c) cv_df = cv_df.drop(c, axis=1) # Keep a copy of the count vectorized dataframe structure so we can align the transform dataset self.cv_df_structure = pd.DataFrame().reindex_like(cv_df) # If text vector columns need to be scaled, these need to be considered when setting up the scaler as well if self.scale_vectors: if self.scale or (self.scale_hashed and self.hash): scale_df = scale_df.join(cv_df) else: scale_df = cv_df if self.tfidf: # Get a subset of the data that requires tfidf vectorizing tfidf_df = X[self.tfidf_meta.index.tolist()] tfidf_cols = tfidf_df.columns # Get tfidf vectors for each relevant column and then join to a dataframe for tfidf vectorized data for c in tfidf_cols: unique = self.text_vectorizer(tfidf_df, c, type="tfidf", **self.tfidf_meta["strategy_args"].loc[c]) tfidf_df = tfidf_df.join(unique, on=c) tfidf_df = tfidf_df.drop(c, axis=1) # Keep a copy of the tfidf vectorized dataframe structure so we can align the transform dataset self.tfidf_df_structure = pd.DataFrame().reindex_like(tfidf_df) # If text vector columns need to be scaled, these need to be considered when setting up the scaler as well if self.scale_vectors: if self.scale or (self.scale_hashed and self.hash) or self.cv: scale_df = scale_df.join(tfidf_df) else: scale_df = tfidf_df if self.text: # Get a subset of the data that requires text similarity OHE text_df = X[self.text_meta.index.tolist()] text_cols = text_df.columns # Get text similarity OHE for each relevant column and then join to a dataframe for text similarity OHE data for c in text_cols: unique = self.text_similarity(text_df, c) text_df = text_df.join(unique, on=c) text_df = text_df.drop(c, axis=1) # Keep a copy of the text similarity OHE dataframe structure so we can align the transform dataset self.text_df_structure = pd.DataFrame().reindex_like(text_df) try: if len(scale_df) > 0: # Get an instance of the sklearn scaler fit to X self.scaler_instance = utils.get_scaler(scale_df, missing=self.missing, scaler=self.scaler, **self.kwargs) # Keep a copy of the scaling dataframe structure so we can align the transform dataset self.scale_df_structure = pd.DataFrame().reindex_like(scale_df) except AttributeError: pass # Output information to the terminal and log file if required if self.log is not None: self._print_log(2, ohe_df=ohe_df, scale_df=scale_df, hash_df=hash_df, cv_df=cv_df, tfidf_df=tfidf_df, text_df=text_df) return self def transform(self, X, y=None): """ Transform X with the encoding and scaling requirements set by fit(). This function will perform One Hot Encoding, Feature Hashing and Scaling on X. Returns X_transform as a numpy array or a pandas dataframe based on return_type set in constructor. """ X_transform = None scale_df = pd.DataFrame() # Initialize as empty Data Frame for convenience of concat operations below ohe_df = None hash_df = None cv_df = None tfidf_df = None text_df = None if self.ohe: # Get a subset of the data that requires one hot encoding ohe_df = X[self.ohe_meta.index.tolist()] # Apply one hot encoding to relevant columns ohe_df = pd.get_dummies(ohe_df, columns=ohe_df.columns) # Align the columns with the original dataset. # This is to prevent different number or order of features between training and test datasets. ohe_df = ohe_df.align(self.ohe_df_structure, join='right', axis=1)[0] # Fill missing values in the OHE dataframe, that may appear after alignment, with zeros. ohe_df = utils.fillna(ohe_df, method="zeros") # Add the encoded columns to the result dataset X_transform = ohe_df if self.hash: # Get a subset of the data that requires feature hashing hash_df = X[self.hash_meta.index.tolist()] hash_cols = hash_df.columns # Hash unique values for each relevant column and then join to a dataframe for hashed data for c in hash_cols: unique = self.hasher(hash_df, c, self.hash_meta["strategy_args"].loc[c]) hash_df = hash_df.join(unique, on=c) hash_df = hash_df.drop(c, axis=1) # Fill any missing values in the hash dataframe hash_df = utils.fillna(hash_df, method="zeros") if self.cv: # Get a subset of the data that requires count vectorizing cv_df = X[self.cv_meta.index.tolist()] cv_cols = cv_df.columns # Get count vectors for each relevant column and then join to a dataframe for count vectorized data for c in cv_cols: unique = self.text_vectorizer(cv_df, c, type="count", **self.cv_meta["strategy_args"].loc[c]) cv_df = cv_df.join(unique, on=c) cv_df = cv_df.drop(c, axis=1) # Align the columns with the original dataset. # This is to prevent different number or order of features between training and test datasets. cv_df = cv_df.align(self.cv_df_structure, join='right', axis=1)[0] # Fill missing values in the dataframe that may appear after alignment with zeros. cv_df = utils.fillna(cv_df, method="zeros") if self.tfidf: # Get a subset of the data that requires tfidf vectorizing tfidf_df = X[self.tfidf_meta.index.tolist()] tfidf_cols = tfidf_df.columns # Get tfidf vectors for each relevant column and then join to a dataframe for tfidf vectorized data for c in tfidf_cols: unique = self.text_vectorizer(tfidf_df, c, type="tfidf", **self.tfidf_meta["strategy_args"].loc[c]) tfidf_df = tfidf_df.join(unique, on=c) tfidf_df = tfidf_df.drop(c, axis=1) # Align the columns with the original dataset. # This is to prevent different number or order of features between training and test datasets. tfidf_df = tfidf_df.align(self.tfidf_df_structure, join='right', axis=1)[0] # Fill missing values in the dataframe that may appear after alignment with zeros. tfidf_df = utils.fillna(tfidf_df, method="zeros") if self.text: # Get a subset of the data that requires text similarity OHE text_df = X[self.text_meta.index.tolist()] text_cols = text_df.columns # Get text similarity OHE for each relevant column and then join to a dataframe for text similarity OHE data for c in text_cols: unique = self.text_similarity(text_df, c) text_df = text_df.join(unique, on=c) text_df = text_df.drop(c, axis=1) # Align the columns with the original dataset. # This is to prevent different number or order of features between training and test datasets. text_df = text_df.align(self.text_df_structure, join='right', axis=1)[0] # Fill missing values in the dataframe that may appear after alignment with zeros. text_df = utils.fillna(text_df, method="zeros") # Add the text similary OHE data to the result dataset if X_transform is None: X_transform = text_df else: X_transform = pd.concat([X_transform, text_df], join='outer', axis=1, sort=False) if self.scale: # Get a subset of the data that requires scaling scale_df = X[self.scale_meta.index.tolist()] # If scale_hashed = True join the hashed columns to the scaling dataframe if self.hash and self.scale_hashed: if self.scale: scale_df = pd.concat([scale_df, hash_df], join='outer', axis=1, sort=False) else: scale_df = hash_df # If only hashed columns are being scaled, the scaler needs to be instantiated self.scaler_instance = utils.get_scaler(scale_df, missing=self.missing, scaler=self.scaler, **self.kwargs) elif self.hash: # Add the hashed columns to the result dataset if X_transform is None: X_transform = hash_df else: X_transform = pd.concat([X_transform, hash_df], join='outer', axis=1, sort=False) # If scale_vectors = True join the count vectorized columns to the scaling dataframe if self.cv and self.scale_vectors: if self.scale or (self.hash and self.scale_hashed): scale_df = pd.concat([scale_df, cv_df], join='outer', axis=1, sort=False) else: scale_df = cv_df # If only count vectorized columns are being scaled, the scaler needs to be instantiated self.scaler_instance = utils.get_scaler(scale_df, missing=self.missing, scaler=self.scaler, **self.kwargs) elif self.cv: # Add the count vectorized columns to the result dataset if X_transform is None: X_transform = cv_df else: X_transform = pd.concat([X_transform, cv_df], join='outer', axis=1, sort=False) # If scale_vectors = True join the tfidf vectorized columns to the scaling dataframe if self.tfidf and self.scale_vectors: if self.scale or (self.hash and self.scale_hashed) or self.cv: scale_df = pd.concat([scale_df, tfidf_df], join='outer', axis=1, sort=False) else: scale_df = tfidf_df # If only tfidf vectorized columns are being scaled, the scaler needs to be instantiated self.scaler_instance = utils.get_scaler(scale_df, missing=self.missing, scaler=self.scaler, **self.kwargs) elif self.tfidf: # Add the count vectorized columns to the result dataset if X_transform is None: X_transform = tfidf_df else: X_transform = pd.concat([X_transform, tfidf_df], join='outer', axis=1, sort=False) try: # Perform scaling on the relevant data if len(scale_df) > 0: # Align the columns with the original dataset. # This is to prevent different number or order of features between training and test datasets. scale_df = scale_df.align(self.scale_df_structure, join='right', axis=1)[0] scale_df = utils.fillna(scale_df, method=self.missing) scale_df = pd.DataFrame(self.scaler_instance.transform(scale_df), index=scale_df.index, columns=scale_df.columns) # Add the scaled columns to the result dataset if X_transform is None: X_transform = scale_df else: X_transform = pd.concat([X_transform, scale_df], join='outer', axis=1, sort=False) except AttributeError: pass if self.no_prep: # Get a subset of the data that doesn't require preprocessing no_prep_df = X[self.none_meta.index.tolist()] # Fill any missing values in the no prep dataframe no_prep_df = utils.fillna(no_prep_df, method="zeros") # Finally join the columns that do not require preprocessing to the result dataset if X_transform is None: X_transform = no_prep_df else: X_transform = pd.concat([X_transform, no_prep_df], join='outer', axis=1, sort=False) # Output information to the terminal and log file if required if self.log is not None: self._print_log(3, ohe_df=ohe_df, scale_df=scale_df, hash_df=hash_df, cv_df=cv_df, tfidf_df=tfidf_df, text_df=text_df, X_transform=X_transform) if self.return_type == 'np': return X_transform.values return X_transform def fit_transform(self, X, y=None, features=None, retrain=False): """ Apply fit() then transform() """ if features is None: features = self.features return self.fit(X, y, features, retrain).transform(X, y) def _print_log(self, step, **kwargs): """ Output useful information to stdout and the log file if debugging is required. step: Print the corresponding step in the log kwargs: dictionary of dataframes to be used in the log """ if step == 1: if self.ohe: sys.stdout.write("Features for one hot encoding: \n{0}\n\n".format(self.ohe_meta)) with open(self.log,'a', encoding='utf-8') as f: f.write("Features for one hot encoding: \n{0}\n\n".format(self.ohe_meta)) if self.hash: sys.stdout.write("Features for hashing: \n{0}\n\n".format(self.hash_meta)) with open(self.log,'a', encoding='utf-8') as f: f.write("Features for hashing: \n{0}\n\n".format(self.hash_meta)) if self.cv: sys.stdout.write("Features for count vectorization: \n{0}\n\n".format(self.cv_meta)) with open(self.log,'a', encoding='utf-8') as f: f.write("Features for count vectorization: \n{0}\n\n".format(self.cv_meta)) if self.tfidf: sys.stdout.write("Features for tfidf vectorization: \n{0}\n\n".format(self.tfidf_meta)) with open(self.log,'a', encoding='utf-8') as f: f.write("Features for tfidf vectorization: \n{0}\n\n".format(self.tfidf_meta)) if self.scale: sys.stdout.write("Features for scaling: \n{0}\n\n".format(self.scale_meta)) with open(self.log,'a', encoding='utf-8') as f: f.write("Features for scaling: \n{0}\n\n".format(self.scale_meta)) elif step == 2: if self.ohe: sys.stdout.write("Fit ohe_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['ohe_df'].shape, kwargs['ohe_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Fit ohe_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['ohe_df'].shape, kwargs['ohe_df'].head())) if self.hash: sys.stdout.write("Fit hash_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['hash_df'].shape, kwargs['hash_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Fit hash_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['hash_df'].shape, kwargs['hash_df'].head())) if self.cv: sys.stdout.write("Fit cv_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['cv_df'].shape, kwargs['cv_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Fit cv_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['cv_df'].shape, kwargs['cv_df'].head())) if self.tfidf: sys.stdout.write("Fit tfidf_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['tfidf_df'].shape, kwargs['tfidf_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Fit tfidf_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['tfidf_df'].shape, kwargs['tfidf_df'].head())) try: if len(kwargs['scale_df']) > 0: sys.stdout.write("Fit scale_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['scale_df'].shape, kwargs['scale_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Fit scale_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['scale_df'].shape, kwargs['scale_df'].head())) except AttributeError: pass elif step == 3: if self.ohe: sys.stdout.write("Transform ohe_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['ohe_df'].shape, kwargs['ohe_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Transform ohe_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['ohe_df'].shape, kwargs['ohe_df'].head())) if self.hash: sys.stdout.write("Transform hash_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['hash_df'].shape, kwargs['hash_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Transform hash_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['hash_df'].shape, kwargs['hash_df'].head())) if self.cv: sys.stdout.write("Transform cv_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['cv_df'].shape, kwargs['cv_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Transform cv_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['cv_df'].shape, kwargs['cv_df'].head())) if self.tfidf: sys.stdout.write("Transform tfidf_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['tfidf_df'].shape, kwargs['tfidf_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Transform tfidf_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['tfidf_df'].shape, kwargs['tfidf_df'].head())) try: if len(kwargs['scale_df']) > 0: sys.stdout.write("Transform scale_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['scale_df'].shape, kwargs['scale_df'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("Transform scale_df shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['scale_df'].shape, kwargs['scale_df'].head())) except AttributeError: pass try: sys.stdout.write("X_transform shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['X_transform'].shape, kwargs['X_transform'].head())) with open(self.log,'a', encoding='utf-8') as f: f.write("X_transform shape:{0}\nSample Data:\n{1}\n\n".format(kwargs['X_transform'].shape, kwargs['X_transform'].head())) except AttributeError: pass @staticmethod def hasher(df, col, n_features): """ Hash the unique values in the specified column in the given dataframe, creating n_features """ unique = pd.DataFrame(df[col].unique(), columns=[col]) fh = FeatureHasher(n_features=n_features, input_type="string") hashed = fh.fit_transform(unique.loc[:, col]) unique = unique.join(pd.DataFrame(hashed.toarray()).add_prefix(col)) return unique.set_index(col) @staticmethod def text_vectorizer(df, col, type="count", **kwargs): """ Create count vectors using the sklearn TfidfVectorizer or CountVectorizer for the specified column in the given dataframe. The type argument can be "tfidf" referring to TfidfVectorizer, anything else defaults to CountVectorizer. """ unique = pd.DataFrame(df[col].unique(), columns=[col]) if type == "tfidf": v = TfidfVectorizer(**kwargs) else: v = CountVectorizer(**kwargs) vectorized = v.fit_transform(unique.loc[:, col]) feature_names = v.get_feature_names() col_names = [] for i,j in enumerate(feature_names): col_names.append("{}_{}".format(i,j)) unique = unique.join(pd.DataFrame(vectorized.toarray(), columns=col_names).add_prefix(col+"_")) return unique.set_index(col) @staticmethod def text_similarity(df, col): """ Convert strings to their unicode representation and then apply one hot encoding, creating one feature for each unique character in the column. This can be useful when similarity between strings is significant. """ unique = pd.DataFrame(df[col].unique(), columns=[col]) encoded = pd.DataFrame(unique.loc[:,col].apply(lambda s: [ord(a) for a in s]), index=unique.index) mlb = preprocessing.MultiLabelBinarizer() encoded = pd.DataFrame(mlb.fit_transform(encoded[col]),columns=mlb.classes_, index=encoded.index).add_prefix(col+"_") unique = unique.join(encoded) return unique.set_index(col) class TargetTransformer: """ A class to transform the target variable. This class can scale the target using the specified sklearn scaler. It can also make the series stationary by differencing the values. Note that this is only valid when predictions will include multiple samples. An inverse transform method allows for reversing the transformations. """ def __init__(self, scale=True, make_stationary=None, missing="zeros", scaler="StandardScaler", logfile=None, **kwargs): """ Initialize the TargetTransformer instance. scale is a boolean parameter to determine if the target will be scaled. make_stationary is a parameter to determine if the target will be made stationary. This should only be used for sequential data. Passing make_stationary='log' will apply a logarithm to the target and use an exponential for the inverse transform. Passing make_stationary='difference' will difference the values to make the target series stationary. By default the difference will be done with lag = 1. Alternate lags can be provided by passing a list of lags as a kwarg. e.g. lags=[1, 12] missing deteremines how missing values are dealt with before the scaling is applied. Valid options specified through the missing parameter are: zeros, mean, median, mode Valid options for scaler are the scaler classes in sklearn.preprocessing Other kwargs are keyword arguments passed to the sklearn scaler instance. """ self.scale = scale self.make_stationary = make_stationary self.missing = missing self.scaler = scaler self.logfile = logfile if make_stationary and 'lags' in kwargs: self.lags = kwargs.pop('lags') else: self.lags = [1] self.kwargs = kwargs def fit(self, y): """ Fit the scaler to target values from the training set. """ if self.scale: # Get an instance of the sklearn scaler fit to y self.scaler_instance = utils.get_scaler(y, missing=self.missing, scaler=self.scaler, **self.kwargs) return self def transform(self, y, array_like=True): """ Transform new targets using the previously fit scaler. Also apply a logarithm or differencing if required for making the series stationary. array_like determines if y is expected to be multiple values or a single value. Note that the differencing won't be done if array_like=False. """ y_transform = y # Scale the targets using the previously fit scaler if self.scale: y_transform = self.scaler_instance.transform(y) if isinstance(y, pd.DataFrame): # The scaler returns a numpy array which needs to be converted back to a data frame y_transform = pd.DataFrame(y_transform, columns=y.columns, index=y.index) # Apply a logarithm to make the array stationary if self.make_stationary == 'log': y_transform = np.log(y) # Apply stationarity lags by differencing the array elif self.make_stationary == 'difference' and array_like: y_diff = y_transform.copy() len_y = len(y_diff) for i in range(max(self.lags), len_y): for lag in self.lags: if isinstance(y_diff, (pd.Series, pd.DataFrame)): y_diff.iloc[i] = y_diff.iloc[i] - y_transform.iloc[i - lag] else: y_diff[i] = y_diff[i] - y_transform[i - lag] # Remove targets with insufficient lag periods # NOTE: The corresponding samples will need to be dropped at this function call's origin if isinstance(y_diff, (pd.Series, pd.DataFrame)): y_transform = y_diff.iloc[max(self.lags):] else: y_transform = y_diff[max(self.lags):] if self.logfile is not None: self._print_log(1, data=y_transform, array_like=array_like) return y_transform def fit_transform(self, y): """ Apply fit then transform """ return self.fit(y).transform(y) def inverse_transform(self, y_transform, array_like=True): """ Reverse the transformations and return the target in it's original form. array_like determines if y_transform is expected to be multiple values or a single value. Note that the differencing won't be done if array_like=False. """ if self.scale: if isinstance(y_transform, pd.DataFrame): y = self.scaler_instance.inverse_transform(np.reshape(y_transform.values, (-1, 1))) # The scaler returns a numpy array which needs to be converted back to a data frame y = pd.DataFrame(y, columns=y_transform.columns, index=y_transform.index) else: y = self.scaler_instance.inverse_transform(np.reshape(y_transform, (-1, 1))) # Apply an exponential to reverse the logarithm applied during transform if self.make_stationary == 'log': y = np.exp(y_transform) # Reverse the differencing applied during transform # NOTE: y_transform will need to include actual values preceding the lags elif self.make_stationary == 'difference' and array_like: y = y_transform.copy() len_y = len(y_transform) for i in range(max(self.lags), len_y): for lag in self.lags: if isinstance(y, (pd.Series, pd.DataFrame)): y.iloc[i] = y.iloc[i] + y.iloc[i - lag] else: y[i] = y[i] + y[i - lag] if self.logfile is not None: self._print_log(2, data=y, array_like=array_like) return y def _print_log(self, step, data=None, array_like=True): """ Print debug info to the log """ # Set mode to append to log file mode = 'a' output = '' if step == 1: # Output the transformed targets output = "Targets transformed" elif step == 2: # Output sample data after adding lag observations output = "Targets inverse transformed" if array_like: output += " {0}:\nSample Data:\n{1}\n\n".format(data.shape, data.head()) else: output += " {0}".format(data) sys.stdout.write(output) with open(self.logfile, mode, encoding='utf-8') as f: f.write(output) class Reshaper(TransformerMixin): """ A class that reshapes the feature matrix based on the input_shape. This class is built for Keras estimators where recurrent and convolutional layers can require 3D or 4D inputs. It is meant to be used after preprocessing and before fitting the estimator. """ def __init__(self, first_layer_kwargs=None, logfile=None, **kwargs): """ Initialize the Reshaper with the Keras model first layer's kwargs. Additionally take in the number of lag observations to be used in reshaping the data. If lag_target is True, an additional feature will be created for each sample i.e. the previous value of y. first_layer_kwargs should be a reference to the first layer kwargs of the Keras architecture being used to build the model. Optional arguments are a logfile to output debug info. """ self.first_layer_kwargs = first_layer_kwargs self.logfile = logfile def fit(self, X, y=None): """ Update the input shape based on the number of samples in X. Return this Reshaper object. """ # Create the input_shape property as a list self.input_shape = list(self.first_layer_kwargs['input_shape']) # Debug information is printed to the terminal and logs if required if self.logfile: self._print_log(1) return self def transform(self, X, y=None): """ Apply the new shape to the data provided in X. X is expected to be a 2D DataFrame of samples and features. The data will be reshaped according to self.input_shape. """ # Add the number of samples to the input_shape input_shape = self.input_shape.copy() input_shape.insert(0, X.shape[0]) # Debug information is printed to the terminal and logs if required if self.logfile: self._print_log(2, data=input_shape) # If the final shape is n_samples by n_features we have nothing to do here if (len(input_shape) == 2): return X # 2D, 3D and 4D data is valid. # e.g. The input_shape can be a tuple of (samples, subsequences, timesteps, features), with subsequences and timesteps as optional. # A 5D shape may be valid for e.g. a ConvLSTM with (samples, timesteps, rows, columns, features) if len(input_shape) > 5: err = "Unsupported input_shape: {}".format(input_shape) raise Exception(err) # Reshape the data elif len(input_shape) > 2: # Reshape input data using numpy X_transform = X.values.reshape(input_shape) # Debug information is printed to the terminal and logs if required if self.logfile: self._print_log(3, data=X_transform) return X_transform def fit_transform(self, X, y=None): """ Apply fit() then transform() """ return self.fit(X, y).transform(X, y) def _print_log(self, step, data=None): """ Print debug info to the log """ # Set mode to append to log file mode = 'a' if step == 1: # Output the updated input shape output = "Input shape specification for Keras: {0}\n\n".format(self.first_layer_kwargs['input_shape']) elif step == 2: # Output the updated input shape output = "{0} samples added to the input shape. Data will be reshaped to: {1}\n\n".format(data[0], tuple(data)) elif step == 3: # Output sample data after reshaping output = "Input data reshaped to {0}.\nSample Data:\n{1}\n\n".format(data.shape, data[:5]) sys.stdout.write(output) with open(self.logfile, mode, encoding='utf-8') as f: f.write(output) class KerasClassifierForQlik(KerasClassifier): """ A subclass of the KerasClassifier Scikit-Learn wrapper. This class takes in a compiled Keras model as part of sk_params and uses the __call__ method as the default build_fn. It also stores a histories dataframe to provide metrics for each time the model is fit. """ def __init__(self, **sk_params): """ Initialize the KerasClassifierForQlik. The compiled Keras model should be included in sk_params under the 'neural_net' keyword argument. """ # Assign the parameters to a class variable self.sk_params = sk_params # Set build_fn to the function supplied in sk_params self.build_fn = self.sk_params.pop('build_fn') # DataFrame to contain history of every training cycle # This DataFrame will provide metrics such as loss for each run of the fit method # Columns will be ['iteration', 'epoch', 'loss'] and any other metrics being calculated during training self.histories = pd.DataFrame() self.iteration = 0 # Check the parameters using the super class method self.check_params(self.sk_params) def get_params(self, **params): """Gets parameters for this estimator. # Arguments **params: ignored (exists for API compatibility). # Returns Dictionary of parameter names mapped to their values. """ res = self.sk_params # Add back the Keras build function that was popped out of sk_params res.update({'build_fn': self.build_fn}) return res def fit(self, x, y, sample_weight=None, **kwargs): """ Call the super class' fit method and store metrics from the history. Also cater for multi-step predictions. """ # Match the samples to the targets. # x and y can be out of sync due to dropped samples in the Reshaper transformer. if len(y) > len(x): y = y[len(y)-len(x):] # Fit the model to the data and store information on the training history = super().fit(x, y, sample_weight, **kwargs) sys.stdout.write("\n\nKeras Model Summary:\n") self.model.summary() sys.stdout.write("\n\n") # Set up a data frame with the epochs and a counter to track multiple histories history_df = pd.DataFrame({'iteration': self.iteration+1, 'epoch': history.epoch}) # Add a column per metric for each epoch e.g. loss, acc for key in history.history: history_df[key] = pd.Series(history.history[key]) # Concatenate results from the training to the history data frame self.histories = pd.concat([self.histories, history_df], sort=True).sort_values(by=['iteration', 'epoch']).reset_index(drop=True) self.iteration += 1 return history class KerasRegressorForQlik(KerasRegressor): """ A subclass of the KerasRegressor Scikit-Learn wrapper. This class takes in a compiled Keras model as part of sk_params and uses the __call__ method as the default build_fn. It also stores a histories dataframe to provide metrics for each time the model is fit. """ def __init__(self, **sk_params): """ Initialize the KerasRegressorForQlik. The compiled Keras model should be included in sk_params under the 'neural_net' keyword argument. """ # Assign the parameters to a class variable self.sk_params = sk_params # Set build_fn to the function supplied in sk_params self.build_fn = self.sk_params.pop('build_fn') # DataFrame to contain history of every training cycle # This DataFrame will provide metrics such as loss for each run of the fit method # Columns will be ['iteration', 'epoch', 'loss'] and any other metrics being calculated during training self.histories = pd.DataFrame() self.iteration = 0 # Check the parameters using the super class method self.check_params(self.sk_params) def get_params(self, **params): """ Gets parameters for this estimator. Overrides super class method for compatibility with sklearn cross_validate. """ res = self.sk_params # Add back the Keras build function that was popped out of sk_params res.update({'build_fn': self.build_fn}) return res def fit(self, x, y, **kwargs): """ Call the super class' fit method and store metrics from the history. Also cater for multi-step predictions. """ # Match the samples to the targets. # x and y can be out of sync due to dropped samples in the Reshaper transformer. if len(y) > len(x): y = y[len(y)-len(x):] # Fit the model to the data and store information on the training history = super().fit(x, y, **kwargs) sys.stdout.write("\n\nKeras Model Summary:\n") self.model.summary() sys.stdout.write("\n\n") # Set up a data frame with the epochs and a counter to track multiple histories history_df = pd.DataFrame({'iteration': self.iteration+1, 'epoch': history.epoch}) # Add a column per metric for each epoch e.g. loss for key in history.history: history_df[key] = pd.Series(history.history[key]) # Concatenate results from the training to the history data frame self.histories =
pd.concat([self.histories, history_df], sort=True)
pandas.concat
import unittest, logging, os, sys from autologging import logged, traced # Add this path first so it picks up the newest changes without having to rebuild this_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, this_dir + "/..") from ffx_helper import FFXEncrypt from custom_provider import CustomProvider import util_methods import pandas as pd import numpy as np import datetime from faker import Faker logging.basicConfig(level=os.getenv("log_level", "TRACE")) @logged class TestAnonymizer(unittest.TestCase): @classmethod def setUpClass(cls): cls.ffx = FFXEncrypt("<PASSWORD>") cls.faker = Faker() cls.faker.add_provider(CustomProvider) @staticmethod def sampleAccessDF(): """Create a sample set of 10 users with access times every 5 minutes """ time_start = datetime.datetime(2018, 1, 1) data = [] types = ['leccap', 'canvas'] for id in range(0,20): # Create some sample files and 3 users data.append([id, types[id%2], f'user{id%3}',time_start + datetime.timedelta(minutes=5*id)]) # Create the pandas DataFrame return pd.DataFrame(data, columns=['file_id', 'file_type', 'user_id', 'access_time']) def test_ffx_encrypt(self): self.assertEqual(self.ffx.encrypt("ABC"), 'HZC') def test_ffx_prefix(self): self.assertEqual(self.ffx.encrypt(123456, addition=123000), 123000+self.ffx.encrypt(456)) # Test if no prefix found self.assertEqual(self.ffx.encrypt(995), 643) def test_ffx_font_case(self): self.assertEqual(self.ffx.encrypt("something"), "zkcofcwmq") self.assertEqual(self.ffx.encrypt("someTHing"), "KHbVXLxYV") self.assertEqual(self.ffx.encrypt("SOMETHING"), "ZKCOFCWMQ") def test_ffx_decimal(self): self.assertEqual(self.ffx.encrypt('10.123'), '80.680') self.assertEqual(self.ffx.encrypt('0.123'), '4.680') self.assertEqual(self.ffx.encrypt('.567'), '.80') self.assertEqual(self.ffx.encrypt('-100.0'), '-149.4') self.assertEqual(self.ffx.encrypt('23.55'), '58.68') self.assertEqual(self.ffx.encrypt('-.567'), '-.80') self.assertEqual(self.ffx.encrypt('-12.567'), '-25.80') self.assertEqual(self.ffx.encrypt('6.000'), '0.923') self.assertEqual(self.ffx.encrypt('1.23E-2'), '5.58C-6') self.assertEqual(self.ffx.encrypt('-1.23e2'), '-5.58c6') def test_ffx_special(self): self.assertEqual(self.ffx.encrypt('<EMAIL>'), '<EMAIL>') self.assertEqual(self.ffx.encrypt('test@@@@gmail.colll099m'), 'cafw@@@@nyzav.ddzvu628k') self.assertEqual(self.ffx.encrypt('123abc.456.bda123'), '680hzc.605.qfu680') def test_assignment_custom(self): self.faker.seed(util_methods.hash_string_to_int("testpasstestpass", 16)) # pylint: disable=no-member self.assertEqual(self.faker.assignment(),"Practice Assignment #196") # pylint: disable=no-member self.assertEqual(self.faker.assignment(), "Architecture Assignment #819") def test_date_time_on_date(self): self.faker.seed(util_methods.hash_string_to_int("testpasstestpass", 16)) # pylint: disable=no-member self.assertEqual(self.faker.date_time_on_date(datetime.datetime(2019, 1, 1, 1, 1, 1)), datetime.datetime(2019, 1, 1, 6, 58, 12)) # Adding the string case for date_time_on_date # pylint: disable=no-member self.assertEqual(self.faker.date_time_on_date("2019-05-01 13:14:15"), datetime.datetime(2019, 5, 1, 11, 58, 39)) def test_course_id(self): self.faker.seed(util_methods.hash_string_to_int("testpasstestpass", 16)) self.assertEqual(self.faker.course(),"AUTO 296 006 FA 2073") #pylint: disable=no-member self.assertEqual(self.faker.course(), "AUTO 273 007 SP 2026") #pylint: disable=no-member def test_resample(self): # These will always be different values returnsd, just verify that the length is the same and they are within the original range test_vals = [21, 129, 123, 94] map_sample = util_methods.kde_resample(test_vals) self.assertEqual(len(map_sample), 4) self.assertTrue(min(test_vals) <= min(map_sample)) self.assertTrue(max(test_vals) >= max(map_sample)) def test_shuffle(self): df = self.sampleAccessDF() # Seed the randomizer so it's predictable for test np.random.seed(util_methods.hash_string_to_int("testpasstestpass", 8)) # Assert the 9th row is 45 minutes self.assertEqual(df.at[9, 'access_time'], pd.Timestamp('2018-01-01 00:45:00')) util_methods.shuffle(df, shuffle_col='access_time') # Assert the 3rd row is 45 minutes self.assertEqual(df.at[3, 'access_time'],
pd.Timestamp('2018-01-01 00:45:00')
pandas.Timestamp
from datetime import datetime as dt import pandas as pd import numpy as np from adsb_track.const import * import adsb_track.const as const class SessionData: def __init__(self, df_ident, df_velocity, df_position): self.df_ident = df_ident self.df_velocity = df_velocity self.df_position = df_position self.unique_icao = np.unique( np.concatenate([ x[const.ICAO].unique() for x in (df_ident, df_velocity, df_position) ])) def unique_icao(self): """Unique ICAO addresses in the message dataframes. Args: message_dataframes (Iterable[pandas.DataFrame]): The dataframes from the session output. The column with ICAO24 codes is expected to be 'icao'. Returns: Iterable[str]: The unique ICAO24 codes found across the input dataframes. """ return self.unique_icao def isolate_icao(self, icao): """Isolates the messages of an aircraft from many dataframes. Args: icao (str): The ICAO24 code to isolate. Returns: Iterable[pandas.DataFrame]: A deepcopy of a subset of the input message_dataframes where the ICAO24 code matches the icao input parameter. """ if icao not in self.unique_icao: return ValueError(f'The ICAO24 code {icao} could not be found in ' 'any messages.') return tuple([ x[x[const.ICAO] == icao].copy() for x in (self.df_ident, self.df_velocity, self.df_position) ]) def build_track(self, icao): """Constructs the track of an aircraft from different types of messages. Args: icao (str): The ICAO24 code to isolate. Returns: pandas.DataFrame: A single dataframe constructed with the most recent information of each type. """ if icao not in self.unique_icao: return ValueError(f'The ICAO24 code {icao} could not be found in ' 'any messages.') df_ident, df_velocity, df_position = self.isolate_icao(icao) df_ident[const.MSG_TYPE] = const.IDENT df_velocity[const.MSG_TYPE] = const.VELOCITY df_position[const.MSG_TYPE] = const.POSITION df =
pd.concat([df_ident, df_velocity, df_position])
pandas.concat
''' Google API-based feature extraction classes. ''' from pliers.extractors.image import ImageExtractor from pliers.extractors.text import TextExtractor from pliers.extractors.video import VideoExtractor from pliers.transformers import (GoogleAPITransformer, GoogleVisionAPITransformer, GoogleAPITransformer) from pliers.extractors.base import ExtractorResult from pliers.utils import flatten_dict import numpy as np import pandas as pd import logging import time import warnings import os from collections import defaultdict class GoogleVisionAPIExtractor(GoogleVisionAPITransformer, ImageExtractor): ''' Base class for all Extractors that use the Google Vision API. ''' VERSION = '1.0' def _extract(self, stims): request = self._build_request(stims) responses = self._query_api(request) results = [] for i, response in enumerate(responses): if response and self.response_object in response: raw = response[self.response_object] results.append(ExtractorResult(raw, stims[i], self)) elif 'error' in response: raise Exception(response['error']['message']) else: results.append(ExtractorResult([{}], stims[i], self)) return results class GoogleVisionAPIFaceExtractor(GoogleVisionAPIExtractor): ''' Identifies faces in images using the Google Cloud Vision API. ''' request_type = 'FACE_DETECTION' response_object = 'faceAnnotations' def _to_df(self, result, handle_annotations=None): ''' Converts a Google API Face JSON response into a Pandas Dataframe. Args: result (ExtractorResult): Result object from which to parse out a Dataframe. handle_annotations (str): How returned face annotations should be handled in cases where there are multiple faces. 'first' indicates to only use the first face JSON object, all other values will default to including every face. ''' annotations = result._data if handle_annotations == 'first': annotations = [annotations[0]] face_results = [] for i, annotation in enumerate(annotations): data_dict = {} for field, val in annotation.items(): if 'Confidence' in field: data_dict['face_' + field] = val elif 'oundingPoly' in field: for j, vertex in enumerate(val['vertices']): for dim in ['x', 'y']: name = '%s_vertex%d_%s' % (field, j+1, dim) val = vertex[dim] if dim in vertex else np.nan data_dict[name] = val elif field == 'landmarks': for lm in val: name = 'landmark_' + lm['type'] + '_%s' lm_pos = {name % k: v for (k, v) in lm['position'].items()} data_dict.update(lm_pos) else: data_dict[field] = val face_results.append(data_dict) return pd.DataFrame(face_results) class GoogleVisionAPILabelExtractor(GoogleVisionAPIExtractor): ''' Labels objects in images using the Google Cloud Vision API. ''' request_type = 'LABEL_DETECTION' response_object = 'labelAnnotations' def _to_df(self, result): res = {label['description']: label['score'] for label in result._data if label} return
pd.DataFrame([res])
pandas.DataFrame
""" DatabaseRates object created from rates downloaded from the URDB, https://openei.org. """ #public import sys import glob import logging import warnings import numpy as np import pandas as pd from datetime import datetime sys.path.append('../') import config as config import lcoc.readwrite as readwrite import lcoc.helpers as helpers #settings pd.options.mode.chained_assignment = None class DatabaseRates(object): """ Object for working with data downloaded from NREL's Utility Rate Database (URDB). Rates in the URDB are checked at updated annually by NREL under funding from the U.S. Department of Energy's Solar Energy Technologies Program, in partnership with Illinois State University's Intstitute for Regulatory Policy Studies. Attributes ----------- source: URL used to download URDB data rate_data: pandas.DataFrame where each row represents a unique utility rate, unfiltered & unprocessed from the URDB. res_rate_data: pandas.DataFrame where each row represents a unique residential utility rate com_rate_data: pandas.DataFrame where each row represents a unique commerical utility rate prev_exists: Boolean indicating whether version of dataset has been previously ran """ def __init__(self, urdb_file=None): # Download URDB data self.source='https://openei.org/apps/USURDB/download/usurdb.csv.gz' # Load URDB data if urdb_file is not None: self.rate_data =
pd.read_csv(urdb_file, low_memory=False)
pandas.read_csv
import logging import os from enum import Enum import numpy as np import pandas as pd from natsort import index_natsorted, order_by_index LOG = logging.getLogger() class CorrectnessResult: def __init__(self, status, detail=None, truth=[], result=[]): self.status = status self.detail = detail self.truth = truth self.result = result @classmethod def make_mismatch_result(cls, detail, truth, result): return cls('MISMATCH', detail=detail, truth=truth, result=result) @classmethod def make_ok_result(cls): return cls('OK') @property def is_ok(self): return self.status == 'OK' @property def is_mismatch(self): return self.status == 'MISMATCH' def to_html(self): status = self.status if self.is_ok: return status def check_for_empty_df_then_convert_to_html(df): if isinstance(df, list) and df == []: return 'None' else: return df.to_html() # HTML here, since it'll be used for reporting to HTML truth_html = check_for_empty_df_then_convert_to_html(self.truth) result_html = check_for_empty_df_then_convert_to_html(self.result) return f'{status}<br /><div>{truth_html}</div><br /><div>{result_html}</div>' def __repr__(self): return self.status class ResultDetail(Enum): OK = 1 TRUTH_EMPTY = 2 RESULT_EMPTY = 3 SHAPE_MISMATCH = 4 COLUMNS_MISMATCH = 5 VALUE_MISMATCH = 6 class Correctness: def __init__(self, scale_factor, benchmark): self.scale_factor = scale_factor self.query_output_folder = os.path.join('results', 'query_results') self.correctness_results_folder = os.path.join('correctness_results', benchmark, f'sf{self.scale_factor}') def get_correctness_filepath(self, query_id): filepath = os.path.join(self.correctness_results_folder, f'{query_id}.csv') return filepath @classmethod def round_to_precision(cls, value): rounded = ('%.2f' % value) if "." in rounded: return rounded[0:13] else: return rounded[0:12] @classmethod def match_double_precision(cls, truth_value, result_value): truth_rounded = cls.round_to_precision(truth_value) result_rounded = cls.round_to_precision(result_value) return truth_rounded == result_rounded or abs(truth_value - result_value) <= 0.01 def prepare(self, df): # Sort columns df = df.sort_index(axis=1) # Natsort all rows df = df.reindex(index=order_by_index(df.index, index_natsorted(zip(df.to_numpy())))) # Recreate index for comparison later df.reset_index(level=0, drop=True, inplace=True) return df @classmethod def check_for_mismatches(cls, truth, result): merge = truth.merge(result, indicator=True, how='left') differences = merge.loc[lambda x: x['_merge'] != 'both'] mismatches = [] for index, _ in differences.iterrows(): truth_row = truth.iloc[index] result_row = result.iloc[index] for column_name, truth_datum in truth_row.iteritems(): result_datum = result_row[column_name] if truth.dtypes[column_name] == 'float64': if np.isnan(truth_datum): matches = (np.isnan(result_datum) == True) elif np.isinf(truth_datum): matches = (np.isinf(result_datum) == True) else: matches = cls.match_double_precision(truth_datum, result_datum) elif truth.dtypes[column_name] == 'object': matches = (str(truth_datum) == str(result_datum)) else: matches = (truth_datum == result_datum) if not matches: mismatches.append(index) break return mismatches def _check_correctness_impl(self, truth, result): if truth.empty != result.empty: return (ResultDetail.TRUTH_EMPTY, None) if truth.empty else (ResultDetail.RESULT_EMPTY, None) if truth.shape != result.shape: return (ResultDetail.SHAPE_MISMATCH, None) truth.drop_duplicates(inplace=True, ignore_index=True) result.drop_duplicates(inplace=True, ignore_index=True) if truth.shape != result.shape: LOG.debug("Rows mismatch after dropping duplicates") return (ResultDetail.SHAPE_MISMATCH, None) truth = self.prepare(truth) result = self.prepare(result) # Column names must be same if not truth.columns.difference(result.columns).empty: return (ResultDetail.COLUMNS_MISMATCH, None) mismatch_indices = Correctness.check_for_mismatches(truth, result) if mismatch_indices: return (ResultDetail.VALUE_MISMATCH, mismatch_indices) return (ResultDetail.OK, None) def check_correctness(self, stream_id, query_number): LOG.debug(f'Checking Stream={stream_id}, Query={query_number}') correctness_path = self.get_correctness_filepath(query_number) benchmark_path = os.path.join(self.query_output_folder, f'{stream_id}_{query_number}.csv') # Reading truth try: truth =
pd.read_csv(correctness_path)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 4 22:33:07 2018 @author: bruce """ import pandas as pd import numpy as np from scipy import fftpack from scipy import signal import matplotlib.pyplot as plt import os # set saving path path_result_freq = "/home/bruce/Dropbox/Project/5.Result/5.Result_Nov/2.freq_domain/" def correlation_matrix(corr_mx, cm_title): fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(corr_mx, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) #plt.title('cross correlation of test and retest') ylabels = ['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels = ['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels #fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) plt.show() def correlation_matrix_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first # otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) # cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='binary') # cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) # fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_min_01_comb(corr_mx1 ,corr_mx2, cm_title1, cm_title2): # find the minimum in each row # input corr_mx is a dataframe # need to convert it into a array first # otherwise it is not working temp = np.asarray(corr_mx1) output1 = (temp == temp.min(axis=1)[:,None]) # along rows temp = np.asarray(corr_mx2) output2 = (temp == temp.min(axis=1)[:,None]) # along rows fig, (ax1, ax2) = plt.subplots(1, 2) # figure 1 im1 = ax1.matshow(output1, cmap='binary') #fig.colorbar(im1, ax1) ax1.grid(False) ax1.set_title(cm_title1) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # figure 2 im2 = ax2.matshow(output2, cmap='binary') #fig.colorbar(im2, ax2) ax2.grid(False) ax2.set_title(cm_title2) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax2.set_xticks(np.arange(len(xlabels))) ax2.set_yticks(np.arange(len(ylabels))) ax2.set_xticklabels(xlabels,fontsize=6) ax2.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_tt_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first # otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels, fontsize=6) ax1.set_yticklabels(ylabels, fontsize=6) plt.show() def correlation_matrix_rr_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) # cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') # cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() # eg: plot_mag_db(df_as_85_vsc, 1, "Subject") def fig_mag_db(signal_in, subject_number = 'subject_number', title = 'title', filename = 'filename'): plt.figure() plt.subplot(2,1,1) plt.plot(signal_in.iloc[2*(subject_number-1), :48030], '-') plt.plot(signal_in.iloc[2*(subject_number-1)+1, :48030], '-') plt.ylabel('magnitude') plt.legend(('Retest', 'Test'), loc='upper right') plt.title(title) # plt.subplot(2,1,2) # plt.plot(signal_in.iloc[2*(subject_number-1), :48030].apply(f_dB), '-') # plt.plot(signal_in.iloc[2*(subject_number-1)+1, :48030].apply(f_dB), '-') # plt.xlabel('Frequency(Hz)') # plt.ylabel('dB') # plt.xlim(0,10000) # plt.legend(('Retest', 'Test'), loc='lower right') plt.show() plt.savefig(filename) # plot time domain signal in one figure def fig_time_in_1(signal_in, title = 'title'): plt.figure() sub_title = ['1', '2', '3', '4', '6', '7', '8', '9', '11', '12',\ '13', '14', '15', '16', '17', '18', '19', '20', '21',\ '22', '23', '25'] for i in range(22): plt.subplot(11,2,i+1) x_label = np.arange(0, 100, 0.09765625) plt.plot(x_label, signal_in.iloc[2*i, :1024], '-') plt.plot(x_label, signal_in.iloc[2*i+1, :1024], '-') plt.ylabel(sub_title[i]) plt.legend(('Retest', 'Test'), loc='upper right', fontsize='xx-small') if i < 20: plt.xticks([]) else: plt.xlabel('Time (ms)') plt.suptitle(title) # add a centered title to the figure plt.show() # plot frequency domain signal in one figure def fig_mag_in_1(signal_in, title = 'title'): plt.figure() sub_title = ['1', '2', '3', '4', '6', '7', '8', '9', '11', '12',\ '13', '14', '15', '16', '17', '18', '19', '20', '21',\ '22', '23', '25'] for i in range(22): plt.subplot(11,2,i+1) x_label = np.arange(0, 4803, 0.1) plt.plot(x_label, signal_in.iloc[2*i, :48030], '-') plt.plot(x_label, signal_in.iloc[2*i+1, :48030], '-') plt.ylabel(sub_title[i]) plt.xlim(0,1300) plt.legend(('Retest', 'Test'), loc='upper right', fontsize='xx-small') if i < 20: plt.xticks([]) else: plt.xlabel('Frequency(Hz)') plt.suptitle(title) # add a centered title to the figure plt.show() def fig_test_in_1(signal_in_1, signal_in_2, title = 'title', path = 'path', filename = 'filename'): plt.figure() sub_title = ['1', '2', '3', '4', '6', '7', '8', '9', '11', '12',\ '13', '14', '15', '16', '17', '18', '19', '20', '21',\ '22', '23', '25'] for i in range(22): plt.subplot(11,2,i+1) x_label = np.arange(0, 4803, 0.1) plt.plot(x_label, signal_in_1.iloc[2*i, :48030], '-') plt.plot(x_label, signal_in_2.iloc[2*i, :48030], '-') plt.ylabel(sub_title[i]) plt.xlim(0,1000) plt.legend(('no window', 'window'), loc='upper right', fontsize='xx-small') plt.suptitle(title) # add a centered title to the figure plt.show() plt.savefig(os.path.join(path, filename), dpi=300) def fig_retest_in_1(signal_in_1, signal_in_2, title = 'title', path = 'path', filename = 'filename'): plt.figure() sub_title = ['1', '2', '3', '4', '6', '7', '8', '9', '11', '12',\ '13', '14', '15', '16', '17', '18', '19', '20', '21',\ '22', '23', '25'] for i in range(22): plt.subplot(11,2,i+1) x_label = np.arange(0, 4803, 0.1) plt.plot(x_label, signal_in_1.iloc[2*i+1, :48030], '-') plt.plot(x_label, signal_in_2.iloc[2*i+1, :48030], '-') plt.ylabel(sub_title[i]) plt.xlim(0,1000) plt.legend(('no window', 'window'), loc='upper right', fontsize='xx-small') plt.suptitle(title) # add a centered title to the figure plt.show() plt.savefig(os.path.join(path, filename), dpi=300) def distance_mx(sig_in): # freq_range -> from 0 to ??? freq_range = 13000 matrix_temp = np.zeros((22, 22)) matrix_temp_square = np.zeros((22, 22)) for i in range(22): for j in range(22): temp = np.asarray(sig_in.iloc[2*i, 0:freq_range] - sig_in.iloc[2*j+1, 0:freq_range]) temp_sum = 0 temp_square_sum = 0 for k in range(freq_range): #test_t3 = (abs(temp_series[k]))**2 #print(test_t3) temp_sum = temp_sum + abs(temp[k]) temp_square_sum = temp_square_sum + (abs(temp[k]))**2 matrix_temp[i][j] = temp_sum matrix_temp_square[i][j] = temp_square_sum output_1 = pd.DataFrame(matrix_temp) output_2 = pd.DataFrame(matrix_temp_square) # output 1 is similar with euclidian diatance eg. x1+jy1 -> sqrt(x1**2 + y1**2) # output 1 is square result eg. x1+jy1 -> x1**2 + y1**2 return output_1, output_2 def complex_coherence_mx(input_signal): # compute the magnitude squared coherence based on signal.coherence # then create the matrix with values # higher value -> better coherence value sig_in = input_signal.copy() matrix_temp = np.zeros((22, 22)) for i in range(22): for j in range(22): # temp here is the temp_sum = 0 sig_in_1 = np.array(sig_in.iloc[2*i, :]) sig_in_2 = np.array(sig_in.iloc[2*j+1, :]) # signal 9606Hz length 106.6ms window length 10ms -> nperseg=96 f, temp_Cxy = signal.coherence(sig_in_1, sig_in_2, fs=9606, nperseg=96) # delete values lower than 0.01 for l in range(len(temp_Cxy)): if temp_Cxy[l] < 0.1: temp_Cxy[l] = 0 # delete finish # test ''' if i ==0 and j == 0: plt.figure() plt.semilogy(f, temp_Cxy) plt.title("test in complex_coherence_mx") plt.show() ''' # test finish for k in range(len(temp_Cxy)): #test_t3 = (abs(temp_series[k]))**2 #print(test_t3) temp_sum = temp_sum + abs(temp_Cxy[k]) matrix_temp[i][j] = temp_sum output_3 = pd.DataFrame(matrix_temp) return output_3 def fig_coherence_in_1(signal_in, threshold_Cxy = None, title = 'title', title2 = 'title2'): # threshold_Cxy is used for setting minimum value Cxy_sum = pd.DataFrame() plt.figure() sub_title = ['1', '2', '3', '4', '6', '7', '8', '9', '11', '12',\ '13', '14', '15', '16', '17', '18', '19', '20', '21',\ '22', '23', '25'] for i in range(22): sig_in_1 = signal_in.iloc[i, :] sig_in_2 = signal_in.iloc[i+22, :] # signal 9606Hz length 106.6ms window length 10ms -> nperseg=96 # no zero padding # f, temp_Cxy = signal.coherence(sig_in_1, sig_in_2, fs=9606, nperseg=128) # with zero padding f, temp_Cxy = signal.coherence(sig_in_1, sig_in_2, fs = 9606, nperseg=512, nfft=19210) # print("shape of temp_Cxy is") # print (temp_Cxy.shape) # delete value lower than 0.05 if (threshold_Cxy != None): for l in range(len(temp_Cxy)): if temp_Cxy[l] < threshold_Cxy: temp_Cxy[l] = 0 # delete finish Cxy_sum = Cxy_sum.append(pd.DataFrame(np.reshape(temp_Cxy, (1,9606))), ignore_index=True) plt.subplot(11,2,i+1) plt.plot(f, temp_Cxy) plt.ylabel(sub_title[i]) plt.xlim(0,2000) plt.legend(('Retest', 'Test'), loc='upper right', fontsize='xx-small') plt.suptitle(title) # add a centered title to the figure plt.show() # plot aveerage of 22 subjects plt.figure() plt.subplot(1,1,1) Cxy_avg = Cxy_sum.mean(axis=0) plt.plot(f, Cxy_avg) plt.title('average of 22 subjects based on '+ title2) plt.xlim(0,2000) plt.show() ################################# f_dB = lambda x : 20 * np.log10(np.abs(x)) # import the pkl file # for linux df_EFR=pd.read_pickle('/home/bruce/Dropbox/4.Project/4.Code for Linux/df_EFR.pkl') # for mac # df_EFR=pd.read_pickle('/Users/bruce/Dropbox/Project/4.Code for Linux/df_EFR.pkl') # remove DC offset df_EFR_detrend = pd.DataFrame() for i in range(1408): # combine next two rows later df_EFR_detrend_data = pd.DataFrame(signal.detrend(df_EFR.iloc[i: i+1, 0:1024], type='constant').reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[i, 1024:1031].values.reshape(1,7)) df_EFR_detrend = df_EFR_detrend.append(pd.concat([df_EFR_detrend_data, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_detrend.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_detrend = df_EFR_detrend.reset_index(drop=True) df_EFR = df_EFR_detrend # Time domain # Define window function win_kaiser = signal.kaiser(1024, beta=14) win_hamming = signal.hamming(1024) # average the df_EFR df_EFR_avg = pd.DataFrame() df_EFR_avg_win = pd.DataFrame() # average test1 and test2 for i in range(704): # combine next two rows later df_EFR_avg_t = pd.DataFrame(df_EFR.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows # implement the window function df_EFR_avg_t_win = pd.DataFrame((df_EFR_avg_t.iloc[0,:] * win_hamming).values.reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_avg = df_EFR_avg.append(
pd.concat([df_EFR_avg_t, df_EFR_label], axis=1, ignore_index=True)
pandas.concat
#Import necessary package import requests import re from bs4 import BeautifulSoup import pandas as pd import numpy as np import datetime as dt import configparser import os import json #Configure parameter config = configparser.ConfigParser() config.read(os.path.join(os.path.dirname(__file__), 'config.ini')) mall = config['general']['mall'] shoplisturl = config['url']['shoplisturl'] fnblisturl = config['url']['fnblisturl'] shopdetailbasicurl = config['url']['shopdetailbasicurl'] #Get shop category data and export into csv def getShopCategory(): #Create empty DataFrame for shop category shopcategory = pd.DataFrame() for type, url in zip(['Shopping','Dining'],[shoplisturl,fnblisturl]): #Get shop category page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') for category_selected in soup.find_all('select', class_ = 'categorySelected'): for cat in category_selected.find_all('option'): try: shop_category_id = cat.get('value') except: shop_category_id = np.nan try: shop_category_name = cat.text.split('\r\n')[0].strip() except: shop_category_name = np.nan shopcategory = shopcategory.append( { 'type':type, 'shop_category_id':shop_category_id, 'shop_category_name':shop_category_name }, ignore_index=True ) shopcategory['update_date'] = dt.date.today() shopcategory['mall'] = mall shopcategory.drop(shopcategory[shopcategory.shop_category_name == 'All'].index, inplace = True) shopcategory = shopcategory.loc[:, ['mall','type','shop_category_id','shop_category_name','update_date']] return shopcategory #Get shop master data and export into csv def getShopMaster(): shopcategory = getShopCategory() #Create empty DataFrame for shop master shoplist = pd.DataFrame() shoplisttc = pd.DataFrame() shopdetail =
pd.DataFrame()
pandas.DataFrame
""" lineage tools for genetic genealogy and the analysis of consumer DNA test results """ """ MIT License Copyright (c) 2016 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime from itertools import chain, combinations import logging import os import numpy as np import pandas as pd from snps.utils import Parallelizer, create_dir, save_df_as_csv from lineage.individual import Individual from lineage.resources import Resources from lineage.visualization import plot_chromosomes # set version string with Versioneer from lineage._version import get_versions __version__ = get_versions()["version"] del get_versions logger = logging.getLogger(__name__) class Lineage: """ Object used to interact with the `lineage` framework. """ def __init__( self, output_dir="output", resources_dir="resources", parallelize=False, processes=os.cpu_count(), ): """ Initialize a ``Lineage`` object. Parameters ---------- output_dir : str name / path of output directory resources_dir : str name / path of resources directory parallelize : bool utilize multiprocessing to speedup calculations processes : int processes to launch if multiprocessing """ self._output_dir = output_dir self._resources_dir = resources_dir self._resources = Resources(resources_dir=resources_dir) self._parallelizer = Parallelizer(parallelize=parallelize, processes=processes) def create_individual(self, name, raw_data=(), **kwargs): """ Initialize an individual in the context of the `lineage` framework. Parameters ---------- name : str name of the individual raw_data : str, bytes, ``SNPs`` (or list or tuple thereof) path(s) to file(s), bytes, or ``SNPs`` object(s) with raw genotype data **kwargs parameters to ``snps.SNPs`` and/or ``snps.SNPs.merge`` Returns ------- Individual ``Individual`` initialized in the context of the `lineage` framework """ if "output_dir" not in kwargs: kwargs["output_dir"] = self._output_dir if "resources_dir" not in kwargs: kwargs["resources_dir"] = self._resources_dir return Individual(name, raw_data, **kwargs) def download_example_datasets(self): """ Download example datasets from `openSNP <https://opensnp.org>`_. Per openSNP, "the data is donated into the public domain using `CC0 1.0 <http://creativecommons.org/publicdomain/zero/1.0/>`_." Returns ------- paths : list of str or empty str paths to example datasets References ---------- 1. <NAME>, <NAME>, <NAME>, <NAME> (2014), "openSNP-A Crowdsourced Web Resource for Personal Genomics," PLOS ONE, 9(3): e89204, https://doi.org/10.1371/journal.pone.0089204 """ paths = self._resources.download_example_datasets() if "" in paths: logger.warning("Example dataset(s) not currently available") return paths def find_discordant_snps( self, individual1, individual2, individual3=None, save_output=False ): """ Find discordant SNPs between two or three individuals. Parameters ---------- individual1 : Individual reference individual (child if `individual2` and `individual3` are parents) individual2 : Individual comparison individual individual3 : Individual other parent if `individual1` is child and `individual2` is a parent save_output : bool specifies whether to save output to a CSV file in the output directory Returns ------- pandas.DataFrame discordant SNPs and associated genetic data References ---------- 1. <NAME>, "Search for Discordant SNPs in Parent-Child Raw Data Files," David Pike's Utilities, http://www.math.mun.ca/~dapike/FF23utils/pair-discord.php 2. <NAME>, "Search for Discordant SNPs when given data for child and both parents," David Pike's Utilities, http://www.math.mun.ca/~dapike/FF23utils/trio-discord.php """ self._remap_snps_to_GRCh37([individual1, individual2, individual3]) df = individual1.snps # remove nulls for reference individual df = df.loc[df["genotype"].notnull()] # add SNPs shared with `individual2` df = df.join(individual2.snps["genotype"], rsuffix="2") genotype1 = "genotype_" + individual1.get_var_name() genotype2 = "genotype_" + individual2.get_var_name() if individual3 is None: df = df.rename(columns={"genotype": genotype1, "genotype2": genotype2}) # find discordant SNPs between reference and comparison individuals df = df.loc[ df[genotype2].notnull() & ( (df[genotype1].str.len() == 1) & (df[genotype2].str.len() == 1) & (df[genotype1] != df[genotype2]) ) | ( (df[genotype1].str.len() == 2) & (df[genotype2].str.len() == 2) & (df[genotype1].str[0] != df[genotype2].str[0]) & (df[genotype1].str[0] != df[genotype2].str[1]) & (df[genotype1].str[1] != df[genotype2].str[0]) & (df[genotype1].str[1] != df[genotype2].str[1]) ) ] if save_output: save_df_as_csv( df, self._output_dir, "discordant_snps_{}_{}_GRCh37.csv".format( individual1.get_var_name(), individual2.get_var_name() ), comment=self._get_csv_header(), prepend_info=False, ) else: # add SNPs shared with `individual3` df = df.join(individual3.snps["genotype"], rsuffix="3") genotype3 = "genotype_" + individual3.get_var_name() df = df.rename( columns={ "genotype": genotype1, "genotype2": genotype2, "genotype3": genotype3, } ) # find discordant SNPs between child and two parents df = df.loc[ ( df[genotype2].notnull() & ( (df[genotype1].str.len() == 1) & (df[genotype2].str.len() == 1) & (df[genotype1] != df[genotype2]) ) | ( (df[genotype1].str.len() == 2) & (df[genotype2].str.len() == 2) & (df[genotype1].str[0] != df[genotype2].str[0]) & (df[genotype1].str[0] != df[genotype2].str[1]) & (df[genotype1].str[1] != df[genotype2].str[0]) & (df[genotype1].str[1] != df[genotype2].str[1]) ) ) | ( df[genotype3].notnull() & ( (df[genotype1].str.len() == 1) & (df[genotype3].str.len() == 1) & (df[genotype1] != df[genotype3]) ) | ( (df[genotype1].str.len() == 2) & (df[genotype3].str.len() == 2) & (df[genotype1].str[0] != df[genotype3].str[0]) & (df[genotype1].str[0] != df[genotype3].str[1]) & (df[genotype1].str[1] != df[genotype3].str[0]) & (df[genotype1].str[1] != df[genotype3].str[1]) ) ) | ( df[genotype2].notnull() & df[genotype3].notnull() & (df[genotype2].str.len() == 2) & (df[genotype2].str[0] == df[genotype2].str[1]) & (df[genotype2] == df[genotype3]) & (df[genotype1] != df[genotype2]) ) ] if save_output: save_df_as_csv( df, self._output_dir, "discordant_snps_{}_{}_{}_GRCh37.csv".format( individual1.get_var_name(), individual2.get_var_name(), individual3.get_var_name(), ), comment=self._get_csv_header(), prepend_info=False, ) return df def find_shared_dna( self, individuals=(), cM_threshold=0.75, snp_threshold=1100, shared_genes=False, save_output=True, genetic_map="HapMap2", ): """ Find the shared DNA between individuals. Computes the genetic distance in centiMorgans (cMs) between SNPs using the specified genetic map. Applies thresholds to determine the shared DNA. Plots shared DNA. Optionally determines shared genes (i.e., genes transcribed from the shared DNA). All output is saved to the output directory as `CSV` or `PNG` files. Notes ----- The code is commented throughout to help describe the algorithm and its operation. To summarize, the algorithm first computes the genetic distance in cMs between SNPs common to all individuals using the specified genetic map. Then, individuals are compared for whether they share one or two alleles for each SNP in common; in this manner, where all individuals share one chromosome, for example, there will be several SNPs in a row where at least one allele is shared between individuals for each SNP. The ``cM_threshold`` is then applied to each of these "matching segments" to determine whether the segment could be a potential shared DNA segment (i.e., whether each segment has a cM value greater than the threshold). The matching segments that passed the ``cM_threshold`` are then checked to see if they are adjacent to another matching segment, and if so, the segments are stitched together, and the single SNP separating the segments is flagged as potentially discrepant. (This means that multiple smaller matching segments passing the ``cM_threshold`` could be stitched, identifying the SNP between each segment as discrepant.) Next, the ``snp_threshold`` is applied to each segment to ensure there are enough SNPs in the segment and the segment is not only a few SNPs in a region with a high recombination rate; for each segment that passes this test, we have a segment of shared DNA, and the total cMs for this segment are computed. Finally, discrepant SNPs are checked to ensure that only SNPs internal to a shared DNA segment are reported as discrepant (i.e., don't report a discrepant SNP if it was part of a segment that didn't pass the ``snp_threshold``). Currently, no action other than reporting is taken on discrepant SNPs. Parameters ---------- individuals : iterable of Individuals cM_threshold : float minimum centiMorgans for each shared DNA segment snp_threshold : int minimum SNPs for each shared DNA segment shared_genes : bool determine shared genes save_output : bool specifies whether to save output files in the output directory genetic_map : {'HapMap2', 'ACB', 'ASW', 'CDX', 'CEU', 'CHB', 'CHS', 'CLM', 'FIN', 'GBR', 'GIH', 'IBS', 'JPT', 'KHV', 'LWK', 'MKK', 'MXL', 'PEL', 'PUR', 'TSI', 'YRI'} genetic map to use for computation of shared DNA; `HapMap2` corresponds to the HapMap Phase II genetic map from the `International HapMap Project <https://www.genome.gov/10001688/international-hapmap-project/>`_ and all others correspond to the `population-specific <https://www.internationalgenome.org/faq/which-populations-are-part-your-study/>`_ genetic maps generated from the `1000 Genomes Project <https://www.internationalgenome.org>`_ phased OMNI data. Note that shared DNA is not computed on the X chromosome with the 1000 Genomes Project genetic maps since the X chromosome is not included in these genetic maps. Returns ------- dict dict with the following items: one_chrom_shared_dna (pandas.DataFrame) segments of shared DNA on one chromosome two_chrom_shared_dna (pandas.DataFrame) segments of shared DNA on two chromosomes one_chrom_shared_genes (pandas.DataFrame) shared genes on one chromosome two_chrom_shared_genes (pandas.DataFrame) shared genes on two chromosomes one_chrom_discrepant_snps (pandas.Index) discrepant SNPs discovered while finding shared DNA on one chromosome two_chrom_discrepant_snps (pandas.Index) discrepant SNPs discovered while finding shared DNA on two chromosomes """ # initialize all objects to be returned to be empty to start one_chrom_shared_dna =
pd.DataFrame()
pandas.DataFrame
import sys import pandas as pd import numpy as np from sqlalchemy import create_engine # How to process duplicates keepDuplicatesStrategy = "first" def load_data(messages_filepath, categories_filepath): """ Load the data from the passed paths to csv files. Args: messages_filepath: Path to the messages csv file. categories_filepath: Path to the categories csv file. """ messages = pd.read_csv(messages_filepath) categories =
pd.read_csv(categories_filepath)
pandas.read_csv
import argparse import os import re import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from scipy import stats MIN_TEXT_SIZE = 1000 MAX_TEXT_SIZE = 100000 def relative_file(*paths): return os.path.join(os.path.dirname(__file__), *paths) def read_csv(filename): print('reading:', filename) return pd.read_csv(filename) parser = argparse.ArgumentParser() parser.add_argument( '--output', help='path the the output directory', default=relative_file('../results') ) parser.add_argument( '--countries', help='path the the country metadata', default=relative_file('../data/pmc_metadata.affiliations.countries.csv'), ) parser.add_argument( '--size', help='path the the text size metadata', default=relative_file('../data/pmc_articles.text_size.csv'), ) parser.add_argument( '--pubtype', help='path the the publication type metadata', default=relative_file('../data/pmc_metadata.entrez.csv'), ) parser.add_argument( '--scores', help='path the the LDA scores data', default=relative_file('../data/pmc_articles.lda_coherence.csv'), ) args = parser.parse_args() sns.set_style('whitegrid') def savefig(ax, plot_name): plot_name = os.path.join(args.output, plot_name) print('writing:', plot_name) try: ax.figure.savefig(plot_name, bbox_inches='tight') except AttributeError: ax.savefig(plot_name, bbox_inches='tight') plt.close() loc_df = read_csv(args.countries)[['PMCID', 'country']] pubtype_df = read_csv(args.pubtype) pubtype_df = pubtype_df[pubtype_df.lang == 'eng'] text_size_df = read_csv(args.size) df = read_csv(args.scores) df['PMCID'] = df.filename.str.split('.').str[0] df = df.merge(loc_df, on=['PMCID'], how='inner') df = df.merge(pubtype_df, on=['PMCID'], how='inner') df = df.merge(text_size_df.copy(), on=['PMCID'], how='inner') df['is_english'] = df.country.isin({'US', 'UK', 'Canada', 'Australia'}) df['short_text'] = df.text_size < MIN_TEXT_SIZE df['text_size_bin'] = df['text_size'].apply(lambda x: round(x, -2)) ax = sns.relplot(kind='scatter', data=df, x='text_size', y='score', hue='is_english') plt.axvline(MIN_TEXT_SIZE) plt.axvline(MAX_TEXT_SIZE) ax.set(xscale='log') savefig(ax, 'pmc.lda_coherence.text_size.scatter.png') # now drop low text size df = df[(df.text_size >= MIN_TEXT_SIZE) & (df.text_size <= MAX_TEXT_SIZE)].copy() print(df[(df.score == 1) & (df.text_size >= 1000)]) # create stats for sheets output ttest = stats.ttest_ind(df[df.is_english].text_size, df[~df.is_english].text_size, equal_var=False) ttest_scores = [('text_size', ttest.statistic, ttest.pvalue)] ttest = stats.ttest_ind(df[df.is_english].score, df[~df.is_english].score, equal_var=False) ttest_scores.append(('lda_coherence', ttest.statistic, ttest.pvalue)) ttest_scores = pd.DataFrame(ttest_scores, columns=['measure', 'ttest_statistic', 'ttest_pvalue']) ttest_df = ( df.groupby(['is_english']) .agg( { 'score': ['mean', 'median', 'std'], 'PMCID': 'nunique', } ) .reset_index() ) ttest_df.columns = [col[1] if len(col) > 1 else ''.join(col) for col in ttest_df.columns.values] ttest_df['measure'] = 'lda_coherence' temp_df = ( df.groupby(['is_english']) .agg( { 'text_size': ['mean', 'median', 'std'], 'PMCID': 'nunique', } ) .reset_index() ) temp_df.columns = [col[1] if len(col) > 1 else ''.join(col) for col in temp_df.columns.values] temp_df['measure'] = 'text_size' ttest_df =
pd.concat([ttest_df, temp_df])
pandas.concat
from .io import read_annotations, save_annotations import warnings import glob import os import os.path as path import numpy as np import pandas as pd class AnnotationFormat: """ Class containing useful data for accessing and manipulating annotations. I've tried to extract as many "magic constants" out of the actual methods as possible so that they can be grouped here and changed easily in the future. """ # Column Names LEFT_COL = "Begin Time (s)" RIGHT_COL = "End Time (s)" TOP_COL = "High Freq (Hz)" BOT_COL = "Low Freq (Hz)" CLASS_COL = "Species" CLASS_CONF_COL = "Species Confidence" CALL_UNCERTAINTY_COL = "Call Uncertainty" # Column which cannot be left as NA or NaN REQUIRED_COLS = [ LEFT_COL, RIGHT_COL, TOP_COL, BOT_COL, CLASS_COL, CLASS_CONF_COL, CALL_UNCERTAINTY_COL ] # Dictionary mapping annotator's noisy labels to a constant class name CLASS_LABEL_MAP = { "humpback whale": "hb", "hb whale": "hb", "hb?": "hb", "hhb": "hb", "hb": "hb", "jn": "hb", "sea lion": "sl", "sl": "sl", "rockfish": "rf", "rf": "rf", "killer whale": "kw", "kw": "kw", "?": "?", "mech": "?", "mechanical": "?" } # Boxes need to span at least 1ms and 1/100 Hz # If a box is dropped for this reason, it was likely created by mistake. BOX_MIN_DURATION = 1e-3 BOX_MIN_FREQ_RANGE = 1e-2 # Useful glob patterns for finding annotation files and mispellings PATTERN = "*.*-*.txt" BAD_PATTERNS = ["*.*_*.txt"] _format = AnnotationFormat() def get_all_classes(annotation_paths, verbose=False): """ Returns a list of all classes seen in the annotation files. Parameters annotation_paths : list of str paths to the .txt annotation files (eg: ['/foo/bar/annots.txt']) verbose : bool, optional (default: False) flag to control whether debug information is printed Returns classes : list of str List containing all unique classes """ classes = set() for annot_fname in annotation_paths: classes.update(list(read_annotations(annot_fname)[_format.CLASS_COL].unique())) classes = sorted([s for s in list(classes)]) if verbose: print("Classes found: ", classes) return classes def get_area(annotation): """ Calculates the area of a single annotation box. Parameters annotation : pandas Series a single annotation Returns area : float Area of the bounding box (Hz*Seconds) """ return ((annotation[_format.RIGHT_COL] - annotation[_format.LEFT_COL]) * (annotation[_format.TOP_COL] - annotation[_format.BOT_COL])) def get_all_annotations_in_directory(directory, check_misnomers=True): """ Uses glob to construct a list of paths to each file in the provided directory which matches the correct formatting of an annotation file name. Parameters directory : str path to the directory of interest check_misnomers : bool, optional (default: True) flag to control whether to warn about potential filename mistakes Returns good_results : List of str Paths found in the given directory which match the filename pattern """ good_results = glob.glob(path.join(directory, _format.PATTERN)) if check_misnomers: # Check if there are any incorrectly named files that may be overlooked bad_results = [] for bad_pattern in _format.BAD_PATTERNS: bad_results.extend(glob.glob(path.join(directory, bad_pattern))) if len(bad_results) > 0: warnings.warn( "({}) Some files in {} may be incorrectly named: " \ "[\n {}\n]".format( "get_all_annotations_in_directory", directory, ",\n ".join(bad_results) ) ) return good_results def levenshteinDistanceDP(token1, token2): """ Efficiently calculates the Levenshtein distance (edit distance) between two strings. Useful for determining if a column name has been misspelled. The cost of insertions, deletions, and substitutions are all set to 1. Parameters token1 : str first token token2 : str second token Returns distance : int the number of single-character edits required to turn token1 into token2 """ distances = np.zeros((len(token1) + 1, len(token2) + 1)) for t1 in range(len(token1) + 1): distances[t1][0] = t1 for t2 in range(len(token2) + 1): distances[0][t2] = t2 a, b, c = 0, 0, 0 for t1 in range(1, len(token1) + 1): for t2 in range(1, len(token2) + 1): if (token1[t1-1] == token2[t2-1]): distances[t1][t2] = distances[t1 - 1][t2 - 1] else: a = distances[t1][t2 - 1] b = distances[t1 - 1][t2] c = distances[t1 - 1][t2 - 1] if (a <= b and a <= c): distances[t1][t2] = a + 1 elif (b <= a and b <= c): distances[t1][t2] = b + 1 else: distances[t1][t2] = c + 1 return distances[len(token1)][len(token2)] def _print_n_rejected(n_rejected, reason): if n_rejected > 0: print("Rejecting {} annotation(s) for {}".format( n_rejected, reason )) def clean_annotations(annotations, verbose=False): """ Cleans a single DataFrame of annotations by identifying invalid annotations and separating them from the valid annotations. Additionally checks for other formatting issues such as misnamed columns. Parameters annotations : DataFrame a set of annotations from a single recording verbose : bool, optional (default: False) flag to control whether debug information is printed Returns valid_annotations : DataFrame the annotations that passed every filter invalid_annotations : DataFrame the annotations that failed at least one filter """ annotations = annotations.copy() original_size = len(annotations) # Check for misnamed columns column_map = {} for req_col in _format.REQUIRED_COLS: # For each required column, find the column with a dist <= 1. matches = [] for col in annotations.columns: dist = levenshteinDistanceDP(col, req_col) if dist <= 1: matches.append(col) if dist > 0: column_map[col] = req_col if len(matches) > 1: warnings.warn( "({}) Required Column '{}' matches multiple " \ "columns: [{}]".format( "clean_annotations", req_col, ", ".join(matches) ) ) # This required column is ambiguous. Stop and reject all. # TODO: Write logic to combine ambiguous columns automatically return
pd.DataFrame(columns=annotations.columns)
pandas.DataFrame
import numpy import pyearth import pandas as pd from pyearth import Earth pathToInputData = 'C:\\__DEMO1\\Memory.csv' dateTimeFormat = '%d/%m/%Y %H:%M' pathToOutputData = 'C:\\__DEMO1\\output.txt' # Write array to file def array_to_file(the_array, file_name): the_file = open(file_name, 'w') for item in the_array: the_file.write('%s\n' % item) def buildModel(): # Read our data data =
pd.read_csv(pathToInputData,index_col=0)
pandas.read_csv
import pandas as pd import pytest import woodwork as ww from pandas.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) from evalml.pipelines.components import LabelEncoder def test_label_encoder_init(): encoder = LabelEncoder() assert encoder.parameters == {"positive_label": None} assert encoder.random_seed == 0 def test_label_encoder_fit_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() with pytest.raises(ValueError, match="y cannot be None"): encoder.fit(X) encoder.fit(X, y) with pytest.raises(ValueError, match="y cannot be None"): encoder.inverse_transform(None) def test_label_encoder_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X) assert_frame_equal(X, X_t) assert y_t is None def test_label_encoder_fit_transform_with_numeric_values_does_not_encode(): X = pd.DataFrame({}) # binary y = pd.Series([0, 1, 1, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) # multiclass X = pd.DataFrame({}) y = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) def test_label_encoder_fit_transform_with_numeric_values_needs_encoding(): X = pd.DataFrame({}) # binary y = pd.Series([2, 1, 2, 1]) y_expected = pd.Series([1, 0, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series([0, 1, 1, 3, 0, 3]) y_expected = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_with_categorical_values(): X = pd.DataFrame({}) # binary y = pd.Series(["b", "a", "b", "b"]) y_expected = pd.Series([1, 0, 1, 1]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series(["c", "a", "b", "c", "d"]) y_expected = pd.Series([2, 0, 1, 2, 3]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_equals_fit_and_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder() X_fit_transformed, y_fit_transformed = encoder.fit_transform(X, y) encoder_duplicate = LabelEncoder() encoder_duplicate.fit(X, y) X_transformed, y_transformed = encoder_duplicate.transform(X, y) assert_frame_equal(X_fit_transformed, X_transformed) assert_series_equal(y_fit_transformed, y_transformed) def test_label_encoder_inverse_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) y_expected = ww.init_series(y) encoder = LabelEncoder() _, y_fit_transformed = encoder.fit_transform(X, y) y_inverse_transformed = encoder.inverse_transform(y_fit_transformed) assert_series_equal(y_expected, y_inverse_transformed) y_encoded = pd.Series([1, 0, 2, 1]) y_expected = ww.init_series(
pd.Series(["b", "a", "c", "b"])
pandas.Series
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import UserList import io import pathlib import pytest import socket import threading import weakref import numpy as np import pyarrow as pa from pyarrow.tests.util import changed_environ try: from pandas.testing import assert_frame_equal, assert_series_equal import pandas as pd except ImportError: pass class IpcFixture: write_stats = None def __init__(self, sink_factory=lambda: io.BytesIO()): self._sink_factory = sink_factory self.sink = self.get_sink() def get_sink(self): return self._sink_factory() def get_source(self): return self.sink.getvalue() def write_batches(self, num_batches=5, as_table=False): nrows = 5 schema = pa.schema([('one', pa.float64()), ('two', pa.utf8())]) writer = self._get_writer(self.sink, schema) batches = [] for i in range(num_batches): batch = pa.record_batch( [np.random.randn(nrows), ['foo', None, 'bar', 'bazbaz', 'qux']], schema=schema) batches.append(batch) if as_table: table = pa.Table.from_batches(batches) writer.write_table(table) else: for batch in batches: writer.write_batch(batch) self.write_stats = writer.stats writer.close() return batches class FileFormatFixture(IpcFixture): is_file = True options = None def _get_writer(self, sink, schema): return pa.ipc.new_file(sink, schema, options=self.options) def _check_roundtrip(self, as_table=False): batches = self.write_batches(as_table=as_table) file_contents = pa.BufferReader(self.get_source()) reader = pa.ipc.open_file(file_contents) assert reader.num_record_batches == len(batches) for i, batch in enumerate(batches): # it works. Must convert back to DataFrame batch = reader.get_batch(i) assert batches[i].equals(batch) assert reader.schema.equals(batches[0].schema) assert isinstance(reader.stats, pa.ipc.ReadStats) assert isinstance(self.write_stats, pa.ipc.WriteStats) assert tuple(reader.stats) == tuple(self.write_stats) class StreamFormatFixture(IpcFixture): # ARROW-6474, for testing writing old IPC protocol with 4-byte prefix use_legacy_ipc_format = False # ARROW-9395, for testing writing old metadata version options = None is_file = False def _get_writer(self, sink, schema): return pa.ipc.new_stream( sink, schema, use_legacy_format=self.use_legacy_ipc_format, options=self.options, ) class MessageFixture(IpcFixture): def _get_writer(self, sink, schema): return pa.RecordBatchStreamWriter(sink, schema) @pytest.fixture def ipc_fixture(): return IpcFixture() @pytest.fixture def file_fixture(): return FileFormatFixture() @pytest.fixture def stream_fixture(): return StreamFormatFixture() @pytest.fixture(params=[ pytest.param( pytest.lazy_fixture('file_fixture'), id='File Format' ), pytest.param( pytest.lazy_fixture('stream_fixture'), id='Stream Format' ) ]) def format_fixture(request): return request.param def test_empty_file(): buf = b'' with pytest.raises(pa.ArrowInvalid): pa.ipc.open_file(pa.BufferReader(buf)) def test_file_simple_roundtrip(file_fixture): file_fixture._check_roundtrip(as_table=False) def test_file_write_table(file_fixture): file_fixture._check_roundtrip(as_table=True) @pytest.mark.parametrize("sink_factory", [ lambda: io.BytesIO(), lambda: pa.BufferOutputStream() ]) def test_file_read_all(sink_factory): fixture = FileFormatFixture(sink_factory) batches = fixture.write_batches() file_contents = pa.BufferReader(fixture.get_source()) reader = pa.ipc.open_file(file_contents) result = reader.read_all() expected = pa.Table.from_batches(batches) assert result.equals(expected) def test_open_file_from_buffer(file_fixture): # ARROW-2859; APIs accept the buffer protocol file_fixture.write_batches() source = file_fixture.get_source() reader1 = pa.ipc.open_file(source) reader2 = pa.ipc.open_file(pa.BufferReader(source)) reader3 = pa.RecordBatchFileReader(source) result1 = reader1.read_all() result2 = reader2.read_all() result3 = reader3.read_all() assert result1.equals(result2) assert result1.equals(result3) st1 = reader1.stats assert st1.num_messages == 6 assert st1.num_record_batches == 5 assert reader2.stats == st1 assert reader3.stats == st1 @pytest.mark.pandas def test_file_read_pandas(file_fixture): frames = [batch.to_pandas() for batch in file_fixture.write_batches()] file_contents = pa.BufferReader(file_fixture.get_source()) reader = pa.ipc.open_file(file_contents) result = reader.read_pandas() expected = pd.concat(frames).reset_index(drop=True) assert_frame_equal(result, expected) def test_file_pathlib(file_fixture, tmpdir): file_fixture.write_batches() source = file_fixture.get_source() path = tmpdir.join('file.arrow').strpath with open(path, 'wb') as f: f.write(source) t1 = pa.ipc.open_file(pathlib.Path(path)).read_all() t2 = pa.ipc.open_file(pa.OSFile(path)).read_all() assert t1.equals(t2) def test_empty_stream(): buf = io.BytesIO(b'') with pytest.raises(pa.ArrowInvalid): pa.ipc.open_stream(buf) @pytest.mark.pandas def test_stream_categorical_roundtrip(stream_fixture): df = pd.DataFrame({ 'one': np.random.randn(5), 'two': pd.Categorical(['foo', np.nan, 'bar', 'foo', 'foo'], categories=['foo', 'bar'], ordered=True) }) batch = pa.RecordBatch.from_pandas(df) with stream_fixture._get_writer(stream_fixture.sink, batch.schema) as wr: wr.write_batch(batch) table = (pa.ipc.open_stream(pa.BufferReader(stream_fixture.get_source())) .read_all()) assert_frame_equal(table.to_pandas(), df) def test_open_stream_from_buffer(stream_fixture): # ARROW-2859 stream_fixture.write_batches() source = stream_fixture.get_source() reader1 = pa.ipc.open_stream(source) reader2 = pa.ipc.open_stream(pa.BufferReader(source)) reader3 = pa.RecordBatchStreamReader(source) result1 = reader1.read_all() result2 = reader2.read_all() result3 = reader3.read_all() assert result1.equals(result2) assert result1.equals(result3) st1 = reader1.stats assert st1.num_messages == 6 assert st1.num_record_batches == 5 assert reader2.stats == st1 assert reader3.stats == st1 assert tuple(st1) == tuple(stream_fixture.write_stats) @pytest.mark.pandas def test_stream_write_dispatch(stream_fixture): # ARROW-1616 df = pd.DataFrame({ 'one': np.random.randn(5), 'two': pd.Categorical(['foo', np.nan, 'bar', 'foo', 'foo'], categories=['foo', 'bar'], ordered=True) }) table = pa.Table.from_pandas(df, preserve_index=False) batch = pa.RecordBatch.from_pandas(df, preserve_index=False) with stream_fixture._get_writer(stream_fixture.sink, table.schema) as wr: wr.write(table) wr.write(batch) table = (pa.ipc.open_stream(pa.BufferReader(stream_fixture.get_source())) .read_all()) assert_frame_equal(table.to_pandas(), pd.concat([df, df], ignore_index=True)) @pytest.mark.pandas def test_stream_write_table_batches(stream_fixture): # ARROW-504 df = pd.DataFrame({ 'one': np.random.randn(20), }) b1 = pa.RecordBatch.from_pandas(df[:10], preserve_index=False) b2 = pa.RecordBatch.from_pandas(df, preserve_index=False) table = pa.Table.from_batches([b1, b2, b1]) with stream_fixture._get_writer(stream_fixture.sink, table.schema) as wr: wr.write_table(table, max_chunksize=15) batches = list(pa.ipc.open_stream(stream_fixture.get_source())) assert list(map(len, batches)) == [10, 15, 5, 10] result_table = pa.Table.from_batches(batches) assert_frame_equal(result_table.to_pandas(), pd.concat([df[:10], df, df[:10]], ignore_index=True)) @pytest.mark.parametrize('use_legacy_ipc_format', [False, True]) def test_stream_simple_roundtrip(stream_fixture, use_legacy_ipc_format): stream_fixture.use_legacy_ipc_format = use_legacy_ipc_format batches = stream_fixture.write_batches() file_contents = pa.BufferReader(stream_fixture.get_source()) reader = pa.ipc.open_stream(file_contents) assert reader.schema.equals(batches[0].schema) total = 0 for i, next_batch in enumerate(reader): assert next_batch.equals(batches[i]) total += 1 assert total == len(batches) with pytest.raises(StopIteration): reader.read_next_batch() @pytest.mark.zstd def test_compression_roundtrip(): sink = io.BytesIO() values = np.random.randint(0, 3, 10000) table = pa.Table.from_arrays([values], names=["values"]) options = pa.ipc.IpcWriteOptions(compression='zstd') with pa.ipc.RecordBatchFileWriter( sink, table.schema, options=options) as writer: writer.write_table(table) len1 = len(sink.getvalue()) sink2 = io.BytesIO() codec = pa.Codec('zstd', compression_level=5) options = pa.ipc.IpcWriteOptions(compression=codec) with pa.ipc.RecordBatchFileWriter( sink2, table.schema, options=options) as writer: writer.write_table(table) len2 = len(sink2.getvalue()) # In theory len2 should be less than len1 but for this test we just want # to ensure compression_level is being correctly passed down to the C++ # layer so we don't really care if it makes it worse or better assert len2 != len1 t1 = pa.ipc.open_file(sink).read_all() t2 = pa.ipc.open_file(sink2).read_all() assert t1 == t2 def test_write_options(): options = pa.ipc.IpcWriteOptions() assert options.allow_64bit is False assert options.use_legacy_format is False assert options.metadata_version == pa.ipc.MetadataVersion.V5 options.allow_64bit = True assert options.allow_64bit is True options.use_legacy_format = True assert options.use_legacy_format is True options.metadata_version = pa.ipc.MetadataVersion.V4 assert options.metadata_version == pa.ipc.MetadataVersion.V4 for value in ('V5', 42): with pytest.raises((TypeError, ValueError)): options.metadata_version = value assert options.compression is None for value in ['lz4', 'zstd']: if pa.Codec.is_available(value): options.compression = value assert options.compression == value options.compression = value.upper() assert options.compression == value options.compression = None assert options.compression is None with pytest.raises(TypeError): options.compression = 0 assert options.use_threads is True options.use_threads = False assert options.use_threads is False if pa.Codec.is_available('lz4'): options = pa.ipc.IpcWriteOptions( metadata_version=pa.ipc.MetadataVersion.V4, allow_64bit=True, use_legacy_format=True, compression='lz4', use_threads=False) assert options.metadata_version == pa.ipc.MetadataVersion.V4 assert options.allow_64bit is True assert options.use_legacy_format is True assert options.compression == 'lz4' assert options.use_threads is False def test_write_options_legacy_exclusive(stream_fixture): with pytest.raises( ValueError, match="provide at most one of options and use_legacy_format"): stream_fixture.use_legacy_ipc_format = True stream_fixture.options = pa.ipc.IpcWriteOptions() stream_fixture.write_batches() @pytest.mark.parametrize('options', [ pa.ipc.IpcWriteOptions(), pa.ipc.IpcWriteOptions(allow_64bit=True), pa.ipc.IpcWriteOptions(use_legacy_format=True), pa.ipc.IpcWriteOptions(metadata_version=pa.ipc.MetadataVersion.V4), pa.ipc.IpcWriteOptions(use_legacy_format=True, metadata_version=pa.ipc.MetadataVersion.V4), ]) def test_stream_options_roundtrip(stream_fixture, options): stream_fixture.use_legacy_ipc_format = None stream_fixture.options = options batches = stream_fixture.write_batches() file_contents = pa.BufferReader(stream_fixture.get_source()) message = pa.ipc.read_message(stream_fixture.get_source()) assert message.metadata_version == options.metadata_version reader = pa.ipc.open_stream(file_contents) assert reader.schema.equals(batches[0].schema) total = 0 for i, next_batch in enumerate(reader): assert next_batch.equals(batches[i]) total += 1 assert total == len(batches) with pytest.raises(StopIteration): reader.read_next_batch() def test_dictionary_delta(format_fixture): ty = pa.dictionary(pa.int8(), pa.utf8()) data = [["foo", "foo", None], ["foo", "bar", "foo"], # potential delta ["foo", "bar"], # nothing new ["foo", None, "bar", "quux"], # potential delta ["bar", "quux"], # replacement ] batches = [ pa.RecordBatch.from_arrays([pa.array(v, type=ty)], names=['dicts']) for v in data] batches_delta_only = batches[:4] schema = batches[0].schema def write_batches(batches, as_table=False): with format_fixture._get_writer(pa.MockOutputStream(), schema) as writer: if as_table: table = pa.Table.from_batches(batches) writer.write_table(table) else: for batch in batches: writer.write_batch(batch) return writer.stats if format_fixture.is_file: # File format cannot handle replacement with pytest.raises(pa.ArrowInvalid): write_batches(batches) # File format cannot handle delta if emit_deltas # is not provided with pytest.raises(pa.ArrowInvalid): write_batches(batches_delta_only) else: st = write_batches(batches) assert st.num_record_batches == 5 assert st.num_dictionary_batches == 4 assert st.num_replaced_dictionaries == 3 assert st.num_dictionary_deltas == 0 format_fixture.use_legacy_ipc_format = None format_fixture.options = pa.ipc.IpcWriteOptions( emit_dictionary_deltas=True) if format_fixture.is_file: # File format cannot handle replacement with pytest.raises(pa.ArrowInvalid): write_batches(batches) else: st = write_batches(batches) assert st.num_record_batches == 5 assert st.num_dictionary_batches == 4 assert st.num_replaced_dictionaries == 1 assert st.num_dictionary_deltas == 2 st = write_batches(batches_delta_only) assert st.num_record_batches == 4 assert st.num_dictionary_batches == 3 assert st.num_replaced_dictionaries == 0 assert st.num_dictionary_deltas == 2 format_fixture.options = pa.ipc.IpcWriteOptions( unify_dictionaries=True ) st = write_batches(batches, as_table=True) assert st.num_record_batches == 5 if format_fixture.is_file: assert st.num_dictionary_batches == 1 assert st.num_replaced_dictionaries == 0 assert st.num_dictionary_deltas == 0 else: assert st.num_dictionary_batches == 4 assert st.num_replaced_dictionaries == 3 assert st.num_dictionary_deltas == 0 def test_envvar_set_legacy_ipc_format(): schema = pa.schema([pa.field('foo', pa.int32())]) writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema) assert not writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V5 writer = pa.ipc.new_file(pa.BufferOutputStream(), schema) assert not writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V5 with changed_environ('ARROW_PRE_0_15_IPC_FORMAT', '1'): writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema) assert writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V5 writer = pa.ipc.new_file(pa.BufferOutputStream(), schema) assert writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V5 with changed_environ('ARROW_PRE_1_0_METADATA_VERSION', '1'): writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema) assert not writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V4 writer = pa.ipc.new_file(pa.BufferOutputStream(), schema) assert not writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V4 with changed_environ('ARROW_PRE_1_0_METADATA_VERSION', '1'): with changed_environ('ARROW_PRE_0_15_IPC_FORMAT', '1'): writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema) assert writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V4 writer = pa.ipc.new_file(pa.BufferOutputStream(), schema) assert writer._use_legacy_format assert writer._metadata_version == pa.ipc.MetadataVersion.V4 def test_stream_read_all(stream_fixture): batches = stream_fixture.write_batches() file_contents = pa.BufferReader(stream_fixture.get_source()) reader = pa.ipc.open_stream(file_contents) result = reader.read_all() expected = pa.Table.from_batches(batches) assert result.equals(expected) @pytest.mark.pandas def test_stream_read_pandas(stream_fixture): frames = [batch.to_pandas() for batch in stream_fixture.write_batches()] file_contents = stream_fixture.get_source() reader = pa.ipc.open_stream(file_contents) result = reader.read_pandas() expected = pd.concat(frames).reset_index(drop=True) assert_frame_equal(result, expected) @pytest.fixture def example_messages(stream_fixture): batches = stream_fixture.write_batches() file_contents = stream_fixture.get_source() buf_reader = pa.BufferReader(file_contents) reader = pa.MessageReader.open_stream(buf_reader) return batches, list(reader) def test_message_ctors_no_segfault(): with pytest.raises(TypeError): repr(pa.Message()) with pytest.raises(TypeError): repr(pa.MessageReader()) def test_message_reader(example_messages): _, messages = example_messages assert len(messages) == 6 assert messages[0].type == 'schema' assert isinstance(messages[0].metadata, pa.Buffer) assert isinstance(messages[0].body, pa.Buffer) assert messages[0].metadata_version == pa.MetadataVersion.V5 for msg in messages[1:]: assert msg.type == 'record batch' assert isinstance(msg.metadata, pa.Buffer) assert isinstance(msg.body, pa.Buffer) assert msg.metadata_version == pa.MetadataVersion.V5 def test_message_serialize_read_message(example_messages): _, messages = example_messages msg = messages[0] buf = msg.serialize() reader = pa.BufferReader(buf.to_pybytes() * 2) restored = pa.ipc.read_message(buf) restored2 = pa.ipc.read_message(reader) restored3 = pa.ipc.read_message(buf.to_pybytes()) restored4 = pa.ipc.read_message(reader) assert msg.equals(restored) assert msg.equals(restored2) assert msg.equals(restored3) assert msg.equals(restored4) with pytest.raises(pa.ArrowInvalid, match="Corrupted message"): pa.ipc.read_message(pa.BufferReader(b'ab')) with pytest.raises(EOFError): pa.ipc.read_message(reader) @pytest.mark.gzip def test_message_read_from_compressed(example_messages): # Part of ARROW-5910 _, messages = example_messages for message in messages: raw_out = pa.BufferOutputStream() with pa.output_stream(raw_out, compression='gzip') as compressed_out: message.serialize_to(compressed_out) compressed_buf = raw_out.getvalue() result = pa.ipc.read_message(pa.input_stream(compressed_buf, compression='gzip')) assert result.equals(message) def test_message_read_record_batch(example_messages): batches, messages = example_messages for batch, message in zip(batches, messages[1:]): read_batch = pa.ipc.read_record_batch(message, batch.schema) assert read_batch.equals(batch) def test_read_record_batch_on_stream_error_message(): # ARROW-5374 batch = pa.record_batch([pa.array([b"foo"], type=pa.utf8())], names=['strs']) stream = pa.BufferOutputStream() with pa.ipc.new_stream(stream, batch.schema) as writer: writer.write_batch(batch) buf = stream.getvalue() with pytest.raises(IOError, match="type record batch but got schema"): pa.ipc.read_record_batch(buf, batch.schema) # ---------------------------------------------------------------------- # Socket streaming testa class StreamReaderServer(threading.Thread): def init(self, do_read_all): self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.bind(('127.0.0.1', 0)) self._sock.listen(1) host, port = self._sock.getsockname() self._do_read_all = do_read_all self._schema = None self._batches = [] self._table = None return port def run(self): connection, client_address = self._sock.accept() try: source = connection.makefile(mode='rb') reader = pa.ipc.open_stream(source) self._schema = reader.schema if self._do_read_all: self._table = reader.read_all() else: for i, batch in enumerate(reader): self._batches.append(batch) finally: connection.close() def get_result(self): return(self._schema, self._table if self._do_read_all else self._batches) class SocketStreamFixture(IpcFixture): def __init__(self): # XXX(wesm): test will decide when to start socket server. This should # probably be refactored pass def start_server(self, do_read_all): self._server = StreamReaderServer() port = self._server.init(do_read_all) self._server.start() self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.connect(('127.0.0.1', port)) self.sink = self.get_sink() def stop_and_get_result(self): import struct self.sink.write(struct.pack('Q', 0)) self.sink.flush() self._sock.close() self._server.join() return self._server.get_result() def get_sink(self): return self._sock.makefile(mode='wb') def _get_writer(self, sink, schema): return pa.RecordBatchStreamWriter(sink, schema) @pytest.fixture def socket_fixture(): return SocketStreamFixture() def test_socket_simple_roundtrip(socket_fixture): socket_fixture.start_server(do_read_all=False) writer_batches = socket_fixture.write_batches() reader_schema, reader_batches = socket_fixture.stop_and_get_result() assert reader_schema.equals(writer_batches[0].schema) assert len(reader_batches) == len(writer_batches) for i, batch in enumerate(writer_batches): assert reader_batches[i].equals(batch) def test_socket_read_all(socket_fixture): socket_fixture.start_server(do_read_all=True) writer_batches = socket_fixture.write_batches() _, result = socket_fixture.stop_and_get_result() expected = pa.Table.from_batches(writer_batches) assert result.equals(expected) # ---------------------------------------------------------------------- # Miscellaneous IPC tests @pytest.mark.pandas def test_ipc_file_stream_has_eos(): # ARROW-5395 df = pd.DataFrame({'foo': [1.5]}) batch = pa.RecordBatch.from_pandas(df) sink = pa.BufferOutputStream() write_file(batch, sink) buffer = sink.getvalue() # skip the file magic reader = pa.ipc.open_stream(buffer[8:]) # will fail if encounters footer data instead of eos rdf = reader.read_pandas() assert_frame_equal(df, rdf) @pytest.mark.pandas def test_ipc_zero_copy_numpy(): df = pd.DataFrame({'foo': [1.5]}) batch = pa.RecordBatch.from_pandas(df) sink = pa.BufferOutputStream() write_file(batch, sink) buffer = sink.getvalue() reader = pa.BufferReader(buffer) batches = read_file(reader) data = batches[0].to_pandas() rdf = pd.DataFrame(data)
assert_frame_equal(df, rdf)
pandas.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # In[ ]: import pandas as pd from datetime import date import matplotlib.pyplot as plt import matplotlib.dates as md import matplotlib import seaborn as sns import numpy as np # In[1350]: def setPandasOptions(): pd.set_option('display.max_rows', 200) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', 30)
pd.set_option('display.max_seq_items', 100)
pandas.set_option
import sqlite3 import pandas as pd import hues from collections import defaultdict from tqdm import tqdm import sklearn def is_number(s): try: float(s) return True except ValueError: return False def reshape_tags(data, index=None, columns=None, values=None): if (index is None) or (columns is None) or (values is None): return None cols = [str(x) for x in data[columns].unique()] inds = [int(x) for x in data[index].unique()] num_duplicates = defaultdict(lambda: defaultdict(set)) other_duplicates = defaultdict(lambda: defaultdict(set)) df = pd.DataFrame(columns=cols, index=inds) for i in tqdm(range(len(data))): ind, col, val = data.iloc[i][[index, columns, values]] ind = int(ind) old_val = df.loc[ind, col] if
pd.isnull(old_val)
pandas.isnull
# # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # import pandas as pd from mlos.Logger import create_logger from mlos.Tracer import trace from mlos.Spaces import CategoricalDimension, DiscreteDimension, Point, SimpleHypergrid, DefaultConfigMeta from mlos.Optimizers.BayesianOptimizerConvergenceState import BayesianOptimizerConvergenceState from mlos.Optimizers.OptimizerInterface import OptimizerInterface from mlos.Optimizers.OptimizationProblem import OptimizationProblem from mlos.Optimizers.ExperimentDesigner.ExperimentDesigner import ExperimentDesigner, ExperimentDesignerConfig from mlos.Optimizers.RegressionModels.GoodnessOfFitMetrics import DataSetType from mlos.Optimizers.RegressionModels.HomogeneousRandomForestRegressionModel import HomogeneousRandomForestRegressionModel,\ HomogeneousRandomForestRegressionModelConfig class BayesianOptimizerConfig(metaclass=DefaultConfigMeta): CONFIG_SPACE = SimpleHypergrid( name="bayesian_optimizer_config", dimensions=[ CategoricalDimension(name="surrogate_model_implementation", values=[HomogeneousRandomForestRegressionModel.__name__]), CategoricalDimension(name="experiment_designer_implementation", values=[ExperimentDesigner.__name__]), DiscreteDimension(name="min_samples_required_for_guided_design_of_experiments", min=2, max=10000) ] ).join( subgrid=HomogeneousRandomForestRegressionModelConfig.CONFIG_SPACE, on_external_dimension=CategoricalDimension(name="surrogate_model_implementation", values=[HomogeneousRandomForestRegressionModel.__name__]) ).join( subgrid=ExperimentDesignerConfig.CONFIG_SPACE, on_external_dimension=CategoricalDimension(name="experiment_designer_implementation", values=[ExperimentDesigner.__name__]) ) _DEFAULT = Point( surrogate_model_implementation=HomogeneousRandomForestRegressionModel.__name__, experiment_designer_implementation=ExperimentDesigner.__name__, min_samples_required_for_guided_design_of_experiments=10, homogeneous_random_forest_regression_model_config=HomogeneousRandomForestRegressionModelConfig.DEFAULT, experiment_designer_config=ExperimentDesignerConfig.DEFAULT ) class BayesianOptimizer(OptimizerInterface): """Generic Bayesian Optimizer based on regresson model Uses extra trees as surrogate model and confidence bound acquisition function by default. Attributes ---------- logger : Logger optimization_problem : OptimizationProblem surrogate_model : HomogeneousRandomForestRegressionModel optimizer_config : Point experiment_designer: ExperimentDesigner """ def __init__( self, optimization_problem: OptimizationProblem, optimizer_config: Point, logger=None ): if logger is None: logger = create_logger("BayesianOptimizer") self.logger = logger # Let's initialize the optimizer. # assert len(optimization_problem.objectives) == 1, "For now this is a single-objective optimizer." OptimizerInterface.__init__(self, optimization_problem) assert optimizer_config in BayesianOptimizerConfig.CONFIG_SPACE, "Invalid config." self.optimizer_config = optimizer_config # Now let's put together the surrogate model. # assert self.optimizer_config.surrogate_model_implementation == HomogeneousRandomForestRegressionModel.__name__, "TODO: implement more" self.surrogate_model = HomogeneousRandomForestRegressionModel( model_config=self.optimizer_config.homogeneous_random_forest_regression_model_config, input_space=self.optimization_problem.parameter_space, # TODO: change to feature space output_space=self.optimization_problem.objective_space, logger=self.logger ) # Now let's put together the experiment designer that will suggest parameters for each experiment. # assert self.optimizer_config.experiment_designer_implementation == ExperimentDesigner.__name__ self.experiment_designer = ExperimentDesigner( designer_config=self.optimizer_config.experiment_designer_config, optimization_problem=self.optimization_problem, surrogate_model=self.surrogate_model, logger=self.logger ) self._optimizer_convergence_state = BayesianOptimizerConvergenceState( surrogate_model_fit_state=self.surrogate_model.fit_state ) # Also let's make sure we have the dataframes we need for the surrogate model. # TODO: this will need a better home - either a DataSet class or the surrogate model itself. self._feature_values_df = pd.DataFrame(columns=[dimension.name for dimension in self.optimization_problem.parameter_space.dimensions]) self._target_values_df =
pd.DataFrame(columns=[dimension.name for dimension in self.optimization_problem.objective_space.dimensions])
pandas.DataFrame
import multiprocessing import os import time from datetime import datetime, timedelta import sys from functools import partial import mongo_proxy from pymongo import UpdateOne, ReplaceOne, DeleteMany, MongoClient sys.path.extend([sys.argv[1]]) import settings from mongo_orm import MongoDB, AnyField from project_customization.flexcoop.models import DataPoint, Device from project_customization.flexcoop.reports.telemetry_usage import get_data_model from project_customization.flexcoop.timeseries_utils import timeseries_mapping, indoor_sensing, occupancy, meter, \ status_devices, device_status, atw_heatpumps from project_customization.flexcoop.utils import convert_snake_case import pandas as pd import numpy as np import pytz """We define the cronjobs to be executed to deal with the raw data recieved""" #define the final timeseries models: timezone = pytz.timezone("Europe/Madrid") NUM_PROCESSES = 10 DEVICES_BY_PROC = 10 device_exception = ["76f899f2-323b-11ea-92d1-ac1f6b403fbc"] def no_outliers_stats(series, lowq=2.5, highq=97.5): hh = series[(series <= np.nanquantile(series, highq/100))& (series >= np.nanquantile(series, lowq/100))] return {"mean": hh.mean(), "median": hh.median(), "std": hh.std()} def clean_znorm_data(series, th, lowq=2.5, highq=97.5): series1 = series.round(2).value_counts() series1 = series1 / series1.sum() series2 = series.copy() for c in series1.iteritems(): if c[1] > 0.20: series2 = series[series.round(2) != c[0]] else: break stats = no_outliers_stats(series2, lowq, highq) zscore = np.abs( (series - stats['median']) / stats['std']) return series[zscore < th] def znorm_value(series, window, th, lowq=2.5, highq=97.5): val_index = int(window / 2) if len(series) < val_index: return 0 current = series.iloc[val_index] stats = no_outliers_stats(series, lowq, highq) if np.isnan(stats['std']): zscore = 0 else: zscore = np.abs((current - stats['median']) / stats['std']) return zscore def clean_znorm_window(series, th, lowq=2.5, highq=97.5): zscore = series.rolling(window=49, center=True, min_periods=1).apply(znorm_value, raw=False, args=(49, th)) return series[zscore < th] def clean_threshold_data(series, min_th=None, max_th=None): if min_th is not None and max_th is not None: return series[(min_th<=series) & (series<=max_th)] elif min_th is not None: return series[series >= min_th] elif max_th is not None: return series[series <= max_th] else: return series def cleaning_data(series, period, operations): df = pd.DataFrame(series) for operation in operations: if operation['type'] == 'threshold': df.value = clean_threshold_data(df.value, min_th=operation['params'][0], max_th=operation['params'][1]) if operation['type'] == "znorm": df.value = clean_znorm_data(df.value, operation['params']) # if period == "backups": # #print(len(series)) # df.value = clean_znorm_window(df.value, operation['params']) return df.value def clean_device_data_status(today, now, devices): conn = mongo_proxy.MongoProxy(MongoClient(settings.MONGO_URI)) databasem = conn.get_database("flexcoop") devicep = databasem['devices'] for device in devices: print("starting ", device) point = devicep.find_one({"device_id": device}) if not point: continue device_df = [] #fdsfa for key in point['status'].keys(): try: database = "{}_{}".format("status",convert_snake_case(key)) value = status_devices[database] except: continue raw_model = databasem[database] data = list(raw_model.find({"device_id": device})) print("readed data ", key) if not data: continue df = pd.DataFrame.from_records(data) df.index = pd.to_datetime(df.dtstart, errors='coerce') df = df[~df.index.isna()] df = df.sort_index() account_id = df.account_id.unique()[0] aggregator_id = df.aggregator_id.unique()[0] device_class = point['rid'] # instant values, expand the value tu the current time df = df[['value']].append(pd.DataFrame({"value": np.nan}, index=[now])) data_clean = df.fillna(method="pad") if data_clean.empty: continue df = pd.DataFrame(data_clean) df = df.rename(columns={"value": value['field']}) device_df.append(df) print("treated data") #fdsafdf if device_df: device_df_final = device_df.pop(0) device_df_final = device_df_final.join(device_df, how="outer") device_df_final = device_df_final.fillna(method="pad") device_df_final['account_id'] = account_id device_df_final['aggregator_id'] = aggregator_id device_df_final['device_class'] = device_class device_df_final['device_id'] = device device_df_final['timestamp'] = device_df_final.index.to_pydatetime() device_df_final['_created_at'] = datetime.utcnow() device_df_final['_updated_at'] = datetime.utcnow() device_df_final = device_df_final[device_df_final.index >= today.replace(tzinfo=None)] df_ini = min(device_df_final.index) df_max = max(device_df_final.index) documents = device_df_final.to_dict('records') print("writting_status_data {}".format(len(documents))) databasem['device_status'].delete_many({"device_id": device, "timestamp": {"$gte":df_ini.to_pydatetime(), "$lte": df_max.to_pydatetime()}}) databasem['device_status'].insert_many(documents) def aggregate_device_status(now): print("********* START STATUS CLEAN {} *************", datetime.now()) today = timezone.localize(datetime(now.year,now.month,now.day)).astimezone(pytz.UTC) devices = set() for key, value in status_devices.items(): raw_model = get_data_model(key) devices.update(raw_model.__mongo__.distinct("device_id")) devices = list(devices) # iterate for each device to obtain the clean data of each type. a_pool = multiprocessing.Pool(NUM_PROCESSES) devices_per_thread = DEVICES_BY_PROC; a_pool.map(partial(clean_device_data_status, today, now), [devices[x:x+devices_per_thread] for x in range(0, len(devices), devices_per_thread)]) print("********* END STATUS CLEAN {} *************", datetime.now()) """ data_clean = pd.DataFrame(df.value.resample("1s").mean()) mask = pd.DataFrame(data_clean.copy()) data_clean = mask.copy() grp = ((mask.notnull() != mask.shift().notnull()).cumsum()) grp['ones'] = 1 mask['value'] = (grp.groupby('value')['ones'].transform('count') < 3600) | data_clean['value'].notnull() data_clean.value = data_clean.value.interpolate(limit_direction="backward")[mask.value].diff() data_clean.value = clean_threshold_data(data_clean.value, 0 , 0.004166) data_clean_value = data_clean.value.resample(freq).mean() data_clean_value = data_clean_value * 60 * 15 data_clean = pd.DataFrame(data_clean_value) plt.plot(data_clean.value) plt.show() """ def clean_device_data_timeseries(today, now, last_period, freq, period, device): conn = MongoClient(settings.MONGO_URI) database = conn.get_database("flexcoop") datap = database['data_points'] print("starting ", device) point = datap.find_one({"device_id": device}) if not point: conn.close() return atw_heatpumps_df = [] indoor_sensing_df = [] occupancy_df = [] meter_df = [] for key in point['reporting_items'].keys(): try: value = timeseries_mapping[key] except: continue raw_model = database[key] data = list(raw_model.find({"device_id": device, "dtstart":{"$lte":now.strftime("%Y-%m-%dT%H:%M:%S.%f"), "$gte": last_period.strftime("%Y-%m-%dT%H:%M:%S.%f")}})) if not data: #no data in the last period, get the last value ever. print("nodata") data =list(raw_model.find({"device_id": device, "dtstart": {"$lte": now.strftime("%Y-%m-%dT%H:%M:%S.%f")}})) if not data: print("nodata2") continue else: print("data2") #get the last value of the request df = pd.DataFrame.from_records(data) df.index = pd.to_datetime(df.dtstart, errors='coerce') df = df[~df.index.isna()] df = df.sort_index() df = df.iloc[[-1]] else: df = pd.DataFrame.from_records(data) df.index = pd.to_datetime(df.dtstart, errors='coerce') df = df[~df.index.isna()] df = df.sort_index() # get the data_point information point_info = point['reporting_items'][key] reading_type = point_info['reading_type'] account_id = df.account_id.unique()[0] aggregator_id = df.aggregator_id.unique()[0] device_class = point['rid'] df = df.loc[~df.index.duplicated(keep='last')] print("readed data ", key) if reading_type == "Direct Read": if value['operation'] == "SUM": try: df.value = pd.to_numeric(df.value) except: print("AVG is only valid for numeric values") continue data_check = df.value.diff() data_clean = df.value[data_check.shift(-1) >=0] data_clean = data_clean[data_check >= 0] data_clean = pd.DataFrame(data_clean.resample("1s").mean()) data_clean['verified'] = data_clean.value.notna() data_clean.verified = data_clean.verified[data_clean.value.notna()] copy = pd.DataFrame(data_clean.value.resample("3H", label='right').max()) copy['verified'] = False copy.value = copy.value.fillna(method='ffill') data_clean = pd.concat([data_clean, copy], sort=True) data_clean = data_clean[~data_clean.index.duplicated(keep='last')] data_clean = data_clean.sort_index() data_clean.value = data_clean.value.interpolate(limit_direction="backward").diff() data_clean['verified_0'] = data_clean.verified.fillna(method='ffill') data_clean['verified_1'] = data_clean.verified.fillna(method='bfill') data_clean['verified'] = data_clean.verified_0 & data_clean.verified_1 data_clean.value = clean_threshold_data(data_clean.value, 0 , 0.004166) data_clean_value = data_clean.value.resample(freq).mean() data_clean_value = data_clean_value * 60 * 15 data_clean_verified = data_clean.verified.resample(freq).apply(all) data_clean = pd.DataFrame(data_clean_value) data_clean['verified_kwh'] = data_clean_verified else: data_clean = pd.DataFrame() elif reading_type == "Net": # instant values, expand the value tu the current time df = df[['value']].append(
pd.DataFrame({"value": np.nan}, index=[now])
pandas.DataFrame
import pandas as pd import numpy as np import lightgbm as lgbm from scipy import sparse from datetime import datetime def load_sparse_matrix(filename): y = np.load(filename) z = sparse.coo_matrix((y['data'], (y['row'], y['col'])), shape=y['shape']) return z x_train = load_sparse_matrix('../input/train_tfidf.npz') x_test = load_sparse_matrix('../input/test_tfidf.npz') target = pd.read_csv('../input/train.csv', usecols=['final_status']) train = pd.read_csv('../input/train.csv', usecols=['created_at', 'deadline', 'launched_at', 'state_changed_at']) test = pd.read_csv('../input/test.csv', usecols=['created_at', 'deadline', 'launched_at', 'state_changed_at', 'project_id']) train['created_at'] = pd.to_datetime(train['created_at'], unit='s') train['state_changed_at'] = pd.to_datetime(train['state_changed_at'], unit='s') train['deadline'] = pd.to_datetime(train['deadline'], unit='s') train['launched_at'] =
pd.to_datetime(train['launched_at'], unit='s')
pandas.to_datetime
import os import pickle import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import StandardScaler, MinMaxScaler from utils.timefeatures import time_features import warnings warnings.filterwarnings('ignore') class Dataset_ETT_hour(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) border1s = [0, 12*30*24 - self.seq_len, 12*30*24+4*30*24 - self.seq_len] border2s = [12*30*24, 12*30*24+4*30*24, 12*30*24+8*30*24] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq) self.data_x = data[border1:border2] if self.inverse: self.data_y = df_data.values[border1:border2] else: self.data_y = data[border1:border2] self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] if self.inverse: seq_y = np.concatenate([self.data_x[r_begin:r_begin+self.label_len], self.data_y[r_begin+self.label_len:r_end]], 0) else: seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len- self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) class NASA_Anomaly(Dataset): def __init__(self, root_path, flag='train', size=None, features='M', data_path='SMAP', target=0, scale=True): # size [seq_len, label_len pred_len] # info if size == None: self.seq_len = 8*60 self.label_len = 2*60 self.pred_len = 2*60 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.flag = flag self.features = features self.target = target self.scale = scale self.root_path = root_path self.data_path = data_path self.__read_data__() def get_data_dim(self, dataset): if dataset == 'SMAP': return 25 elif dataset == 'MSL': return 55 elif str(dataset).startswith('machine'): return 38 else: raise ValueError('unknown dataset '+str(dataset)) def __read_data__(self): """ get data from pkl files return shape: (([train_size, x_dim], [train_size] or None), ([test_size, x_dim], [test_size])) """ x_dim = self.get_data_dim(self.data_path) if self.flag == 'train': f = open(os.path.join(self.root_path, self.data_path, '{}_train.pkl'.format(self.data_path)), "rb") data = pickle.load(f).reshape((-1, x_dim)) f.close() elif self.flag in ['val', 'test']: try: f = open(os.path.join(self.root_path, self.data_path, '{}_test.pkl'.format(self.data_path)), "rb") data = pickle.load(f).reshape((-1, x_dim)) f.close() except (KeyError, FileNotFoundError): data = None try: f = open(os.path.join(self.root_path, self.data_path, '{}_test_label.pkl'.format(self.data_path)), "rb") label = pickle.load(f).reshape((-1)) f.close() except (KeyError, FileNotFoundError): label = None assert len(data) == len(label), "length of test data shoube the same as label" if self.scale: data = self.preprocess(data) df_stamp = pd.DataFrame(columns=['date']) date = pd.date_range(start='1/1/2015', periods=len(data), freq='4s') df_stamp['date'] = date df_stamp['month'] = df_stamp.date.apply(lambda row:row.month,1) df_stamp['day'] = df_stamp.date.apply(lambda row:row.day,1) df_stamp['weekday'] = df_stamp.date.apply(lambda row:row.weekday(),1) df_stamp['hour'] = df_stamp.date.apply(lambda row:row.hour,1) df_stamp['minute'] = df_stamp.date.apply(lambda row:row.minute,1) # df_stamp['minute'] = df_stamp.minute.map(lambda x:x//10) df_stamp['second'] = df_stamp.date.apply(lambda row:row.second,1) data_stamp = df_stamp.drop(['date'],1).values if self.flag == 'train': if self.features=='M': self.data_x = data self.data_y = data elif self.features=='S': df_data = data[:, [self.target]] self.data_x = df_data self.data_y = df_data else: border1s = [0, 0, 0] border2s = [None, len(data)//4, len(data)] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M': self.data_x = data[border1:border2] self.data_y = data[border1:border2] self.label = label[border1:border2] elif self.features=='S': df_data = data[:, [self.target]] self.data_x = df_data[border1:border2] self.data_y = df_data[border1:border2] self.label = label[border1:border2] self.data_stamp = data_stamp def preprocess(self, df): """returns normalized and standardized data. """ df = np.asarray(df, dtype=np.float32) if len(df.shape) == 1: raise ValueError('Data must be a 2-D array') if np.any(sum(np.isnan(df)) != 0): print('Data contains null values. Will be replaced with 0') df = np.nan_to_num() # normalize data df = MinMaxScaler().fit_transform(df) print('Data normalized') return df def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = s_end + self.pred_len seq_x = self.data_x[s_begin:s_end] seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] if self.flag == 'train': return seq_x, seq_y, seq_x_mark, seq_y_mark else: seq_label = self.label[s_end:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark, seq_label def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 class WADI(Dataset): def __init__(self, root_path, flag='train', size=None, features='M', data_path='WADI_14days_downsampled.csv', target='1_AIT_001_PV', scale=True): # size [seq_len, label_len pred_len] # info if size == None: self.seq_len = 8*60 self.label_len = 2*60 self.pred_len = 2*60 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] self.flag = flag type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): scaler = MinMaxScaler() if self.flag == 'train': df_raw = pd.read_csv(os.path.join(self.root_path, 'WADI_14days_downsampled.csv')) if self.features=='M': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] df_stamp = df_raw[['date']] if self.scale: data = scaler.fit_transform(df_data.values) else: data = df_data.values self.data_x = data self.data_y = data else: df_raw = pd.read_csv(os.path.join(self.root_path, 'WADI_attackdata_downsampled.csv')) border1s = [0, 0, 0] border2s = [None, len(df_raw)//4, len(df_raw)] border1 = border1s[self.set_type] border2 = border2s[self.set_type] df_stamp = df_raw[['date']][border1:border2] if self.features=='M': cols_data = df_raw.columns[1:-1] df_data = df_raw[cols_data] label = df_raw['label'].values elif self.features=='S': df_data = df_raw[[self.target]] label = df_raw['label'].values if self.scale: data = scaler.fit_transform(df_data.values) else: data = df_data.values self.data_x = data[border1:border2] self.data_y = data[border1:border2] self.label = label[border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) df_stamp['month'] = df_stamp.date.apply(lambda row:row.month,1) df_stamp['day'] = df_stamp.date.apply(lambda row:row.day,1) df_stamp['weekday'] = df_stamp.date.apply(lambda row:row.weekday(),1) df_stamp['hour'] = df_stamp.date.apply(lambda row:row.hour,1) df_stamp['minute'] = df_stamp.date.apply(lambda row:row.minute,1) # df_stamp['minute'] = df_stamp.minute.map(lambda x:x//10) df_stamp['second'] = df_stamp.date.apply(lambda row:row.second,1) df_stamp['second'] = df_stamp.second.map(lambda x:x//10) data_stamp = df_stamp.drop(['date'],1).values self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = s_end + self.pred_len seq_x = self.data_x[s_begin:s_end] seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] if self.flag == 'train': return seq_x, seq_y, seq_x_mark, seq_y_mark else: seq_label = self.label[s_end:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark, seq_label def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 class SWaT(Dataset): def __init__(self, root_path, flag='train', size=None, features='M', data_path='SWaT_normaldata_downsampled.csv', target='FIT_101', scale=True): # size [seq_len, label_len pred_len] # info if size == None: self.seq_len = 8*60 self.label_len = 2*60 self.pred_len = 2*60 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] self.flag = flag type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): scaler = MinMaxScaler() if self.flag == 'train': df_raw = pd.read_csv(os.path.join(self.root_path, 'SWaT_normaldata_downsampled.csv')) if self.features=='M': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] df_stamp = df_raw[[' Timestamp']] if self.scale: data = scaler.fit_transform(df_data.values) else: data = df_data.values self.data_x = data self.data_y = data else: df_raw = pd.read_csv(os.path.join(self.root_path, 'SWaT_attackdata_downsampled.csv')) border1s = [0, 0, 0] border2s = [None, len(df_raw)//4, len(df_raw)] border1 = border1s[self.set_type] border2 = border2s[self.set_type] df_stamp = df_raw[[' Timestamp']][border1:border2] if self.features=='M': cols_data = df_raw.columns[1:-1] df_data = df_raw[cols_data] label = df_raw['Normal/Attack'].values elif self.features=='S': df_data = df_raw[[self.target]] label = df_raw['Normal/Attack'].values if self.scale: data = scaler.fit_transform(df_data.values) else: data = df_data.values self.data_x = data[border1:border2] self.data_y = data[border1:border2] self.label = label[border1:border2] df_stamp[' Timestamp'] =
pd.to_datetime(df_stamp[' Timestamp'])
pandas.to_datetime
import pandas as pd from datetime import datetime, timedelta from matplotlib import pyplot as plt from matplotlib import dates as mpl_dates plt.style.use('seaborn') data =
pd.read_csv('data.csv')
pandas.read_csv
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shift(codes.copy(), periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill: # convert user-provided `fill_value` to codes fill_value = self._validate_fill_value(fill_value) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` See Also -------- pandas.unique CategoricalIndex.unique Series.unique Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list("baabc")).unique() [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list("baabc"), categories=list("abc")).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).unique() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.unique, unique1d does not sort unique_codes =
unique1d(self.codes)
pandas.core.algorithms.unique1d
import numpy as np import pandas as pd from numpy import inf, nan from numpy.testing import assert_array_almost_equal, assert_array_equal from pandas import DataFrame, Series, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from shapely.geometry.point import Point from pymove import MoveDataFrame from pymove.utils import integration from pymove.utils.constants import ( ADDRESS, CITY, DATETIME, DIST_EVENT, DIST_HOME, DIST_POI, EVENT_ID, EVENT_TYPE, GEOMETRY, HOME, ID_POI, LATITUDE, LONGITUDE, NAME_POI, POI, TRAJ_ID, TYPE_POI, VIOLATING, ) list_random_banks = [ [39.984094, 116.319236, 1, 'bank'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bancos_postos'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'bancos_PAE'], [39.984710, 116.319865, 6, 'bancos_postos'], [39.984674, 116.319810, 7, 'bancos_agencias'], [39.984623, 116.319773, 8, 'bancos_filiais'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ] list_random_bus_station = [ [39.984094, 116.319236, 1, 'transit_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'transit_station'], [39.984211, 116.319389, 4, 'pontos_de_onibus'], [39.984217, 116.319422, 5, 'transit_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ] list_random_bar_restaurant = [ [39.984094, 116.319236, 1, 'restaurant'], [39.984198, 116.319322, 2, 'restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar'], [39.984217, 116.319422, 5, 'bar'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ] list_random_parks = [ [39.984094, 116.319236, 1, 'pracas_e_parques'], [39.984198, 116.319322, 2, 'park'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'park'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'pracas_e_parques'], ] list_random_police = [ [39.984094, 116.319236, 1, 'distritos_policiais'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'distritos_policiais'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ] list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3], ] list_pois = [ [39.984094, 116.319236, 1, 'policia', 'distrito_pol_1'], [39.991013, 116.326384, 2, 'policia', 'policia_federal'], [40.01, 116.312615, 3, 'comercio', 'supermercado_aroldo'], [40.013821, 116.306531, 4, 'show', 'forro_tropykalia'], [40.008099, 116.31771100000002, 5, 'risca-faca', 'rinha_de_galo_world_cup'], [39.985704, 116.326877, 6, 'evento', 'adocao_de_animais'], [39.979393, 116.3119, 7, 'show', 'dia_do_municipio'] ] # Testes de Unions def test_union_poi_bank(): pois_df = DataFrame( data=list_random_banks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'banks'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'banks'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'banks'], [39.984710, 116.319865, 6, 'banks'], [39.984674, 116.319810, 7, 'banks'], [39.984623, 116.319773, 8, 'banks'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) integration.union_poi_bank(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bus_station(): pois_df = DataFrame( data=list_random_bus_station, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bus_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bus_station'], [39.984211, 116.319389, 4, 'bus_station'], [39.984217, 116.319422, 5, 'bus_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bus_station(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bar_restaurant(): pois_df = DataFrame( data=list_random_bar_restaurant, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bar-restaurant'], [39.984198, 116.319322, 2, 'bar-restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar-restaurant'], [39.984217, 116.319422, 5, 'bar-restaurant'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bar_restaurant(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_parks(): pois_df = DataFrame( data=list_random_parks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'parks'], [39.984198, 116.319322, 2, 'parks'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'parks'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'parks'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_parks(pois_df, TYPE_POI, inplace=True)
assert_frame_equal(pois_df, expected)
pandas.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 import xlrd import numpy as np from math import sqrt import pandas as pd import time import datetime import matplotlib.pyplot as plt import math import random as rd import calendar import torch from torch import nn from torch.autograd import Variable from sklearn.preprocessing import minmax_scale from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from sklearn import preprocessing import csv # Global variables record_path = '../data/record/' weather_path = '../data/weather/' park_all_cnt = 10 weather_all_cnt = 6 park_table_id = ['P1','P2','P3','P4','P5','P6','P7','P8','P9','P10'] park_weather_idx = [0,0,1,1,1,2,2,2,2,2] weather_name = ['Ningbo','Ningbo Yinzhou','Changsha'] # util function def read_park_table(index, debug = False): park_table_path = record_path + park_table_id[index] + '.csv' park_book = pd.read_csv(park_table_path,encoding='ISO-8859-1')########## if debug: print('open table ' + park_table_name[i] + ' with lines ' + str(len(park_book))) return park_book def read_weather_table(index, debug = False): weather_table_path = weather_path + str(index) + '.csv' weather_book = pd.read_csv(weather_table_path,encoding='ISO-8859-1') if debug: print ('open table ' + weather_name[i] + ' with lines ' + str(len(weather_book))) return weather_book def trans_record_to_count(data, debug = False): invalid_record = 0 valid_record = 0 p_dict = {} for stime,etime in zip(data['Lockdown Time'],data['Lockup Time']): start_tss = time.strptime(stime, "%Y/%m/%d %H:%M")########## end_tss = time.strptime(etime, "%Y/%m/%d %H:%M")######### # Converts start and end times to seconds start_tsp = int(time.mktime(start_tss)) end_tsp = int(time.mktime(end_tss)) # A parking record which has duration less than 5 mins are regard as invalid record if end_tsp - start_tsp <= 5*60: invalid_record = invalid_record + 1 continue valid_record = valid_record + 1 start_hour = int(start_tsp//(60*60)) end_hour = int(end_tsp//(60*60)) # Calculate the parking numbers per hour for j in range(start_hour,end_hour+1): if j not in p_dict: p_dict[j] = {} p_dict[j]['cnt'] = 1 else: p_dict[j]['cnt'] = p_dict[j]['cnt'] + 1 if debug: print('valid record is ' + str(valid_record)) print('invalid record is ' + str(invalid_record)) return p_dict def calc_park_cnt_from_dict(p_dict, debug = False): if debug: print('calcing parking count from dict ...') park_cnt = [] st = min(p_dict.keys()) ed = max(p_dict.keys()) for i in range(st,ed+1): if i in p_dict: park_cnt.append(p_dict[i]['cnt']) else: park_cnt.append(0) return park_cnt def process_weather(data, debug= False): output = [] start_h = data['DAY'][0] start_h = int(time.mktime(time.strptime(start_h,"%Y/%m/%d %H:%M")) // (60*60))############ output.append(start_h) for i in range(5): output.append([]) output.append({}) for i in range(len(data['HOUR'])): output[1].append(data['TEM'][i]) output[2].append(data['RHU'][i]) output[3].append(data['WIN_S'][i]) output[4].append(data['PRE_1h'][i]) output[5].append(time.strptime(data['DAY'][i],"%Y/%m/%d %H:%M").tm_wday)############## output[6][int(time.mktime(time.strptime(data['DAY'][i],"%Y/%m/%d %H:%M")) // (60*60))] = i############ return output def invalid(w_list,idx): if w_list[1][idx] > 999: return True if w_list[2][idx] > 999: return True if w_list[3][idx] > 999: return True if w_list[4][idx] > 999: return True return False def gen_series(park_cnt, weather_rec, start_h, end_h, debug=False): tt = [] for i in range(len(park_cnt)): tt.append(start_h + i) """if debug: print(tt[-1])""" temp = [] for i in range(5): temp.append([]) for i in range(len(park_cnt)): if tt[i] in weather_rec[6]: idx = weather_rec[6][tt[i]] if invalid(weather_rec,idx): continue temp[0].append(park_cnt[i]) temp[1].append(weather_rec[1][idx]) temp[2].append(weather_rec[2][idx]) temp[3].append(weather_rec[3][idx]) temp[4].append(weather_rec[4][idx]) #if debug: #print('The length of temp array is ' + str(len(temp[0]))) park_cnt = pd.Series(temp[0], name='cnt') tem = pd.Series(temp[1], name='tem') rhu = pd.Series(temp[2], name='rhu') winds = pd.Series(temp[3], name='wind_s') pre_1h =
pd.Series(temp[4],name='pre_ih')
pandas.Series
import os import gentle import numpy as np import pandas as pd import codecs import logging import time import datetime import math import wave import contextlib import librosa import librosa.display import pathlib import matplotlib.pyplot as plt #import sounddevice as sd import operator from shutil import copyfile from tqdm import tqdm from pprint import pprint from ffmpy import FFmpeg from trimmer import get_vad_ranges # DOWNLOAD THE DB AND CHANGE THIS PATH #path='/data2/sungjaecho/data_tts/EmoV-DB/EmoV-DB_sorted' resources = gentle.Resources() emov_db_path = '/data4/data/EmoV-DB' emov_db_16000 = '02_EmoV-DB-sr-16000' #emov_db_version = '01_EmoV-DB-original' #emov_db_version = '02_EmoV-DB-sr-22050' #emov_db_version = '02_EmoV-DB-sr-16000' emov_db_version = '03_EmoV-DB-sr-22050-trim-vad' path_alignments = 'alignments/EmoV-DB_sorted' people_list = ['bea', 'jenie', 'josh', 'sam'] emo_list = ['Amused', 'Angry', 'Disgusted', 'Neutral', 'Sleepy'] data_stat_path = 'data_stat' emo_csv_name = 'emov_db.csv' path_emov_db = os.path.join(emov_db_path, emov_db_version) emo_csv_path = os.path.join(data_stat_path, emov_db_version, emo_csv_name) def on_progress(p): for k,v in p.items(): logging.debug("%s: %s" % (k, v)) def load_emov_db_postprocessed(): db_path = os.path.join(emov_db_path, '02_EmoV-DB-sr-22050', 'emov_db_postprocessed.xlsx') df = pd.read_excel(db_path) return df def load_emov_db(path_to_EmoV_DB=None, load_csv=False, load_script_from_postprocessed=True): if load_csv and os.path.exists(emo_csv_path): data = load_csv_db() print("DB loaded from {} !".format(emo_csv_path)) return data print('Start to load wavs.') script = os.path.join(path_to_EmoV_DB, 'cmuarctic.data') lines = codecs.open(script, 'r', 'utf-8').readlines() df_pp = load_emov_db_postprocessed() # in our database, we use only files beginning with arctic_a. And the number of these sentences correspond. # Here we build a dataframe with number and text of each of these lines sentences = [] for line in lines: temp = {} idx_n_0 = line.find('arctic_a') + len('arctic_a') if line.find('arctic_a') != -1: #print(line) #print(idx_n_0) idx_n_end = idx_n_0 + 4 number = line[idx_n_0:idx_n_end] #print(number) temp['n'] = number idx_text_0 = idx_n_end + 2 text = line.strip()[idx_text_0:-3] temp['text'] = text # print(text) sentences.append(temp) sentences =
pd.DataFrame(sentences)
pandas.DataFrame
""" snhpdata.py - household projections """ import os.path import zipfile import pandas as pd import requests import tempfile from openpyxl import load_workbook import ukpopulation.utils as utils import pyexcel class SNHPData: """ Functionality for downloading and collating UK Subnational Household Projection (SNHP) data """ def __init__(self, cache_dir=utils.default_cache_dir()): self.cache_dir = cache_dir self.data = {} self.data[utils.EN] = self.__do_england() self.data[utils.WA] = self.__do_wales() self.data[utils.SC] = self.__do_scotland() self.data[utils.NI] = self.__do_nireland() def unified(self): """ Creates a unified dataset containing values for - the year range present in all datasets (2016-2039 at time of typing) - a lowest-common denimator set of household types (that maps to OA-level census categories) """ raise NotImplementedError("The categories used in each country have no clear common denominator") # TODO best I can do is probably differentiate between single-person, multi-person including children, and multi-person no children households def min_year(self, code): """ Returns the first year in the projection, assumes a single LAD or country code """ # convert to country if necessary if "0" in code: code = utils.country(code)[0] return min(self.data[code].PROJECTED_YEAR_NAME.unique().astype(int)) def max_year(self, code): """ Returns the final year in the projection, assumes a single LAD or country code """ # convert to country if necessary if "0" in code: code = utils.country(code)[0] return max(self.data[code].PROJECTED_YEAR_NAME.unique().astype(int)) def filter(self, categories, geog_codes, years=None): # see unified... raise NotImplementedError("The categories used in each country have no clear common denominator") def aggregate(self, geog_codes, years=None): """ Returns aggregate counts of household for specified geographies and years """ # convert geog_codes and years to arrays if single values supplied (for isin) if isinstance(geog_codes, str): geog_codes = [geog_codes] countries = utils.country(geog_codes) # TODO fix incorrect assumption is that all countries have the same year range years = utils.trim_range(years, self.min_year(countries[0]), self.max_year(countries[0])) retval = pd.DataFrame() # loop over datasets as needed for country in countries: # apply filters retval = retval.append(self.data[country][(self.data[country].GEOGRAPHY_CODE.isin(geog_codes)) & (self.data[country].PROJECTED_YEAR_NAME.isin(years))] \ , ignore_index=True, sort=False) return retval.groupby(["GEOGRAPHY_CODE", "PROJECTED_YEAR_NAME"]).sum().reset_index() def __do_england(self): print("Collating SNHP data for England...") england_src = "https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/populationandmigration/populationprojections/datasets/householdprojectionsforenglanddetaileddataformodellingandanalysis/2016based/detailedtablesstage1and2.zip" england_raw = os.path.join(self.cache_dir, os.path.basename(england_src)) england_processed = self.cache_dir + "/snhp_e.csv" if os.path.isfile(england_processed): snhp_e = pd.read_csv(england_processed) else: response = requests.get(england_src) with open(england_raw, 'wb') as fd: for chunk in response.iter_content(chunk_size=1024): fd.write(chunk) print("Downloaded", england_raw) # this doesnt work if you directly supply the file in the zip to load_workbook # workaround is to extract the file to a tmp dir and load from there z = zipfile.ZipFile(england_raw) tmpdir = tempfile.TemporaryDirectory().name # print(tmpdir) z.extract("detailedtablesstage1and2/s2 Households.xlsx", tmpdir) sheet = load_workbook(os.path.join(tmpdir, "detailedtablesstage1and2/s2 Households.xlsx"), read_only=True)[ "Households"] raw = utils.read_cell_range(sheet, "A7", "AS32263") snhp_e = pd.DataFrame(raw[1:, :], columns=raw[0, :]) # remove years before 2011 census and switch years from columns to rows snhp_e = snhp_e.drop([str(y) for y in range(2001, 2011)], axis=1) \ .melt(id_vars=["CODE", "AREA", "AGE GROUP", "HOUSEHOLD TYPE"]).drop("AREA", axis=1) # ensure count is numeric snhp_e.value = snhp_e.value.astype(float) # remove age categories and standardise column names snhp_e = snhp_e.groupby(["CODE", "HOUSEHOLD TYPE", "variable"]).sum().reset_index() \ .rename({"CODE": "GEOGRAPHY_CODE", "HOUSEHOLD TYPE": "HOUSEHOLD_TYPE", "variable": "PROJECTED_YEAR_NAME", "value": "OBS_VALUE"}, axis=1) snhp_e.to_csv(england_processed, index=False) return snhp_e def __do_wales(self): print("Collating SNHP data for Wales...") wales_raw = self.cache_dir + "/snhp_w.csv" if not os.path.isfile(wales_raw): fields = ['Area_AltCode1', 'Year_Code', 'Data', 'Area_Hierarchy', 'Variant_Code', 'Householdtype_ItemName_ENG'] # StatsWales is an OData endpoint, so select fields of interest url = "http://open.statswales.gov.wales/dataset/hous0115?$select={}".format(",".join(fields)) # use OData syntax to filter P (persons), AllAges (all ages), Area_Hierarchy 596 (LADs) url += "&$filter=Variant_Code eq 1 and Area_Hierarchy eq 'W92000004'" # Householdtype_ItemName_ENG data = [] while True: print(url) r = requests.get(url) r.raise_for_status() r_data = r.json() data += r_data['value'] if "odata.nextLink" in r_data: url = r_data["odata.nextLink"] else: break snhp_w = pd.DataFrame(data) # # Remove unwanted and rename wanted columns snhp_w = snhp_w.drop(["Area_Hierarchy", "Variant_Code"], axis=1) snhp_w = snhp_w.rename(columns={"Area_AltCode1": "GEOGRAPHY_CODE", "Data": "OBS_VALUE", "Householdtype_ItemName_ENG": "HOUSEHOLD_TYPE", "Year_Code": "PROJECTED_YEAR_NAME"}) # reinstate + signs that went missing snhp_w.HOUSEHOLD_TYPE.replace( ['4 person (2 adults, 1 children)', '5 person (No children)', '5 person (2 adults, 1 children)', '5 person (1 adult, 4 children)'], ['4 person (2+ adults, 1+ children)', '5+ person (No children)', '5+ person (2+ adults, 1+ children)', '5+ person (1 adult, 4+ children)'], inplace=True) # Drop occupancy and population (for now, might be useful?) snhp_w = snhp_w[~snhp_w.HOUSEHOLD_TYPE.isin( ["Households", "Projected Private Household Population", "Average Household Size"])] snhp_w.to_csv(wales_raw, index=False) # this avoids any issues with the index (which was dropped on save) snhp_w = pd.read_csv(wales_raw) return snhp_w def __do_scotland(self): print("Collating SNHP data for Scotland...") scotland_processed = os.path.join(self.cache_dir, "snhp_s.csv") scotland_src = "https://www.nrscotland.gov.uk/files//statistics/household-projections/16/2016-house-proj-detailed-coun-princ.zip" scotland_raw = os.path.join(self.cache_dir, os.path.basename(scotland_src)) if os.path.isfile(scotland_processed): snhp_s = pd.read_csv(scotland_processed) else: response = requests.get(scotland_src) with open(scotland_raw, 'wb') as fd: for chunk in response.iter_content(chunk_size=1024): fd.write(chunk) print("Downloaded", scotland_raw) lookup = {"Aberdeen City": "S12000033", "Aberdeenshire": "S12000034", "Angus": "S12000041", "Argyll and Bute": "S12000035", "Scottish Borders": "S12000026", "Clackmannanshire": "S12000005", "West Dunbartonshire": "S12000039", "Dumfries and Galloway": "S12000006", "Dundee City": "S12000042", "East Ayrshire": "S12000008", "East Dunbartonshire": "S12000045", "East Lothian": "S12000010", "East Renfrewshire": "S12000011", "City of Edinburgh": "S12000036", "Falkirk": "S12000014", "Fife": "S12000015", "Glasgow City": "S12000046", "Highland": "S12000017", "Inverclyde": "S12000018", "Midlothian": "S12000019", "Moray": "S12000020", "North Ayrshire": "S12000021", "North Lanarkshire": "S12000044", "Orkney Islands": "S12000023", "Perth and Kinross": "S12000024", "Renfrewshire": "S12000038", "Shetland Islands": "S12000027", "South Ayrshire": "S12000028", "South Lanarkshire": "S12000029", "Stirling": "S12000030", "West Lothian": "S12000040", "Na h-Eileanan Siar": "S12000013"} z = zipfile.ZipFile(scotland_raw) snhp_s =
pd.DataFrame()
pandas.DataFrame
from abc import abstractmethod import datetime as dt import numpy as np from numpy.random import RandomState from numpy.testing import assert_equal from pandas import DataFrame, Series, Timedelta, date_range import pytest from arch import doc from arch.univariate.base import implicit_constant from arch.utility.array import ( ConcreteClassMeta, DocStringInheritor, cutoff_to_index, date_to_index, ensure1d, ensure2d, find_index, parse_dataframe, ) @pytest.fixture(scope="function") def rng(): return RandomState(12345) def test_ensure1d(): out = ensure1d(1.0, "y") assert_equal(out, np.array([1.0])) out = ensure1d(np.arange(5.0), "y") assert_equal(out, np.arange(5.0)) out = ensure1d(np.arange(5.0)[:, None], "y") assert_equal(out, np.arange(5.0)) in_array = np.reshape(np.arange(16.0), (4, 4)) with pytest.raises(ValueError): ensure1d(in_array, "y") y = Series(np.arange(5.0)) ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) y = DataFrame(y) ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) y.columns = [1] ys = ensure1d(y, "y", True) assert isinstance(ys, Series) assert ys.name == "1" y = Series(np.arange(5.0), name="series") ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) y = DataFrame(y) ys = ensure1d(y, "y") assert isinstance(ys, np.ndarray) ys = ensure1d(y, "y", True) assert isinstance(ys, Series) ys.name = 1 ys = ensure1d(ys, None, True) assert isinstance(ys, Series) assert ys.name == "1" y = DataFrame(np.reshape(np.arange(10), (5, 2))) with pytest.raises(ValueError): ensure1d(y, "y") def test_ensure2d(): s = Series([1, 2, 3], name="x") df = ensure2d(s, "x") assert isinstance(df, DataFrame) df2 = ensure2d(df, "x") assert df is df2 npa = ensure2d(s.values, "x") assert isinstance(npa, np.ndarray) assert npa.ndim == 2 npa = ensure2d(np.array(1.0), "x") assert isinstance(npa, np.ndarray) assert npa.ndim == 2 with pytest.raises(ValueError): ensure2d(np.array([[[1]]]), "x") with pytest.raises(TypeError): ensure2d([1], "x") def test_parse_dataframe(): s = Series(np.arange(10.0), name="variable") out = parse_dataframe(s, "y") assert_equal(out[1], np.arange(10.0)) assert_equal(out[0], ["variable"]) df = DataFrame(s) out = parse_dataframe(df, "y") assert_equal(out[1], np.arange(10.0)) assert_equal(out[0], ["variable"]) out = parse_dataframe(np.arange(10.0), "y") assert_equal(out[1], np.arange(10.0)) assert_equal(out[0], ["y"]) out = parse_dataframe(None, "name") assert out[0] == ["name"] assert isinstance(out[1], np.ndarray) assert out[1].shape == (0,) def test_implicit_constant(rng): x = rng.standard_normal((1000, 2)) assert not implicit_constant(x) x[:, 0] = 1.0 assert implicit_constant(x) x = rng.standard_normal((1000, 3)) x[:, 0] = x[:, 0] > 0 x[:, 1] = 1 - x[:, 0] assert implicit_constant(x) def test_docstring_inheritor(): class A(object, metaclass=DocStringInheritor): """ Docstring """ class B(A): pass assert_equal(B.__doc__, A.__doc__) def test_date_to_index(): dr = date_range("20000101", periods=3000, freq="W") y = Series(np.arange(3000.0), index=dr) date_index = y.index index = date_to_index(date_index[0], date_index) assert_equal(index, 0) index = date_to_index(date_index[-1], date_index) assert_equal(index, date_index.shape[0] - 1) index = date_to_index("2009-08-02", date_index) assert_equal(index, 500) index = date_to_index("2009-08-04", date_index) assert_equal(index, 501) index = date_to_index("2009-08-01", date_index) assert_equal(index, 500) index = date_to_index(dt.datetime(2009, 8, 1), date_index) assert_equal(index, 500) with pytest.raises(ValueError): date_to_index(dt.date(2009, 8, 1), date_index) z = y + 0.0 z.index = np.arange(3000) num_index = z.index with pytest.raises(ValueError): date_to_index(dt.datetime(2009, 8, 1), num_index) idx = date_range("1999-12-31", periods=3) df = DataFrame([1, 2, 3], index=idx[::-1]) with pytest.raises(ValueError): date_to_index(idx[0], df.index) df = DataFrame([1, 2, 3], index=[idx[0]] * 3) with pytest.raises(ValueError): date_to_index(idx[0], df.index) with pytest.raises(ValueError): date_to_index("NaT", idx) # check whether this also works for a localized datetimeindex date_index = date_range("20000101", periods=3000, freq="W", tz="Europe/Berlin") index = date_to_index(date_index[0], date_index) assert_equal(index, 0) def test_date_to_index_timestamp(): dr = date_range("20000101", periods=3000, freq="W") y = Series(np.arange(3000.0), index=dr) date_index = y.index date = y.index[1000] date_pydt = date.to_pydatetime() date_npdt = date.to_datetime64() date_str = date_pydt.strftime("%Y-%m-%d") index = date_to_index(date, date_index) index_pydt = date_to_index(date_pydt, date_index) index_npdt = date_to_index(date_npdt, date_index) index_str = date_to_index(date_str, date_index) assert_equal(index, 1000) assert_equal(index, index_npdt) assert_equal(index, index_pydt) assert_equal(index, index_str) def test_(): dr = date_range("20000101", periods=3000, freq="W") y = Series(np.arange(3000.0), index=dr) date_index = y.index date = date_index[1000] + Timedelta(1, "D") date_pydt = date.to_pydatetime() date_npdt = date.to_datetime64() date_str = date_pydt.strftime("%Y-%m-%d") index = date_to_index(date, date_index) index_pydt = date_to_index(date_pydt, date_index) index_npdt = date_to_index(date_npdt, date_index) index_str = date_to_index(date_str, date_index) assert_equal(index, 1001) assert_equal(index, index_npdt) assert_equal(index, index_pydt) assert_equal(index, index_str) date = date_index[0] -
Timedelta(1, "D")
pandas.Timedelta
import pandas as pd import numpy as np from datetime import date """ dataset split: (date_received) dateset3: 20160701~20160731 (113640),features3 from 20160315~20160630 (off_test) dateset2: 20160515~20160615 (258446),features2 from 20160201~20160514 dateset1: 20160414~20160514 (138303),features1 from 20160101~20160413 1.merchant related: sales_use_coupon. total_coupon transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon total_sales. coupon_rate = sales_use_coupon/total_sales. 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) 3.user related: distance. user_avg_distance, user_min_distance,user_max_distance. buy_use_coupon. buy_total. coupon_received. buy_use_coupon/coupon_received. avg_diff_date_datereceived. min_diff_date_datereceived. max_diff_date_datereceived. count_merchant. 4.user_merchant: times_user_buy_merchant_before. 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #1754884 record,1053282 with coupon_id,9738 coupon. date_received:20160101~20160615,date:20160101~20160630, 539438 users, 8415 merchants off_train = pd.read_csv('data/ccf_offline_stage1_train.csv',header=None) off_train.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received','date'] #2050 coupon_id. date_received:20160701~20160731, 76309 users(76307 in trainset, 35965 in online_trainset), 1559 merchants(1558 in trainset) off_test = pd.read_csv('data/ccf_offline_stage1_test_revised.csv',header=None) off_test.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received'] #11429826 record(872357 with coupon_id),762858 user(267448 in off_train) on_train = pd.read_csv('data/ccf_online_stage1_train.csv',header=None) on_train.columns = ['user_id','merchant_id','action','coupon_id','discount_rate','date_received','date'] dataset3 = off_test feature3 = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset2 = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature2 = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset1 = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature1 = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))] ############# other feature ##################3 """ 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #for dataset3 t = dataset3[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset3[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset3[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset3[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset3[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset3[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset3[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset3[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature3 = pd.merge(t1,t,on='user_id') other_feature3 = pd.merge(other_feature3,t3,on=['user_id','coupon_id']) other_feature3 = pd.merge(other_feature3,t4,on=['user_id','date_received']) other_feature3 = pd.merge(other_feature3,t5,on=['user_id','coupon_id','date_received']) other_feature3 = pd.merge(other_feature3,t7,on=['user_id','coupon_id','date_received']) other_feature3.to_csv('data/other_feature3.csv',index=None) print(other_feature3.shape) #for dataset2 t = dataset2[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset2[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset2[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset2[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset2[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset2[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset2[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset2[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature2 = pd.merge(t1,t,on='user_id') other_feature2 = pd.merge(other_feature2,t3,on=['user_id','coupon_id']) other_feature2 = pd.merge(other_feature2,t4,on=['user_id','date_received']) other_feature2 = pd.merge(other_feature2,t5,on=['user_id','coupon_id','date_received']) other_feature2 = pd.merge(other_feature2,t7,on=['user_id','coupon_id','date_received']) other_feature2.to_csv('data/other_feature2.csv',index=None) print(other_feature2.shape) #for dataset1 t = dataset1[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset1[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset1[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset1[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset1[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset1[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset1[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset1[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature1 = pd.merge(t1,t,on='user_id') other_feature1 = pd.merge(other_feature1,t3,on=['user_id','coupon_id']) other_feature1 = pd.merge(other_feature1,t4,on=['user_id','date_received']) other_feature1 = pd.merge(other_feature1,t5,on=['user_id','coupon_id','date_received']) other_feature1 = pd.merge(other_feature1,t7,on=['user_id','coupon_id','date_received']) other_feature1.to_csv('data/other_feature1.csv',index=None) print(other_feature1.shape) ############# coupon related feature ############# """ 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) """ def calc_discount_rate(s): s =str(s) s = s.split(':') if len(s)==1: return float(s[0]) else: return 1.0-float(s[1])/float(s[0]) def get_discount_man(s): s =str(s) s = s.split(':') if len(s)==1: return 'null' else: return int(s[0]) def get_discount_jian(s): s =str(s) s = s.split(':') if len(s)==1: return 'null' else: return int(s[1]) def is_man_jian(s): s =str(s) s = s.split(':') if len(s)==1: return 0 else: return 1 #dataset3 dataset3['day_of_week'] = dataset3.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset3['day_of_month'] = dataset3.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset3['days_distance'] = dataset3.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,6,30)).days) dataset3['discount_man'] = dataset3.discount_rate.apply(get_discount_man) dataset3['discount_jian'] = dataset3.discount_rate.apply(get_discount_jian) dataset3['is_man_jian'] = dataset3.discount_rate.apply(is_man_jian) dataset3['discount_rate'] = dataset3.discount_rate.apply(calc_discount_rate) d = dataset3[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset3 = pd.merge(dataset3,d,on='coupon_id',how='left') dataset3.to_csv('data/coupon3_feature.csv',index=None) #dataset2 dataset2['day_of_week'] = dataset2.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset2['day_of_month'] = dataset2.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset2['days_distance'] = dataset2.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,5,14)).days) dataset2['discount_man'] = dataset2.discount_rate.apply(get_discount_man) dataset2['discount_jian'] = dataset2.discount_rate.apply(get_discount_jian) dataset2['is_man_jian'] = dataset2.discount_rate.apply(is_man_jian) dataset2['discount_rate'] = dataset2.discount_rate.apply(calc_discount_rate) d = dataset2[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset2 = pd.merge(dataset2,d,on='coupon_id',how='left') dataset2.to_csv('data/coupon2_feature.csv',index=None) #dataset1 dataset1['day_of_week'] = dataset1.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset1['day_of_month'] = dataset1.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset1['days_distance'] = dataset1.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,4,13)).days) dataset1['discount_man'] = dataset1.discount_rate.apply(get_discount_man) dataset1['discount_jian'] = dataset1.discount_rate.apply(get_discount_jian) dataset1['is_man_jian'] = dataset1.discount_rate.apply(is_man_jian) dataset1['discount_rate'] = dataset1.discount_rate.apply(calc_discount_rate) d = dataset1[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset1 = pd.merge(dataset1,d,on='coupon_id',how='left') dataset1.to_csv('data/coupon1_feature.csv',index=None) ############# merchant related feature ############# """ 1.merchant related: total_sales. sales_use_coupon. total_coupon coupon_rate = sales_use_coupon/total_sales. transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon """ #for dataset3 merchant3 = feature3[['merchant_id','coupon_id','distance','date_received','date']] t = merchant3[['merchant_id']] t.drop_duplicates(inplace=True) t1 = merchant3[merchant3.date!='null'][['merchant_id']] t1['total_sales'] = 1 t1 = t1.groupby('merchant_id').agg('sum').reset_index() t2 = merchant3[(merchant3.date!='null')&(merchant3.coupon_id!='null')][['merchant_id']] t2['sales_use_coupon'] = 1 t2 = t2.groupby('merchant_id').agg('sum').reset_index() t3 = merchant3[merchant3.coupon_id!='null'][['merchant_id']] t3['total_coupon'] = 1 t3 = t3.groupby('merchant_id').agg('sum').reset_index() t4 = merchant3[(merchant3.date!='null')&(merchant3.coupon_id!='null')][['merchant_id','distance']] t4.replace('null',-1,inplace=True) t4.distance = t4.distance.astype('int') t4.replace(-1,np.nan,inplace=True) t5 = t4.groupby('merchant_id').agg('min').reset_index() t5.rename(columns={'distance':'merchant_min_distance'},inplace=True) t6 = t4.groupby('merchant_id').agg('max').reset_index() t6.rename(columns={'distance':'merchant_max_distance'},inplace=True) t7 = t4.groupby('merchant_id').agg('mean').reset_index() t7.rename(columns={'distance':'merchant_mean_distance'},inplace=True) t8 = t4.groupby('merchant_id').agg('median').reset_index() t8.rename(columns={'distance':'merchant_median_distance'},inplace=True) merchant3_feature = pd.merge(t,t1,on='merchant_id',how='left') merchant3_feature =
pd.merge(merchant3_feature,t2,on='merchant_id',how='left')
pandas.merge
import arviz import numpy as np import pandas import seaborn as sns import torch import torch.distributions as dist from matplotlib import pyplot import test_stan import generate_data sns.set() # np.random.seed(1) def user_simulator_typezero(action, W, a, educability=0.6): # action is either a tuple, or -1 for educate. # Educate action if isinstance(action, int): print("Educate!") educate_o = dist.Bernoulli(educability).sample() return educate_o else: probs = a + action @ W a_o = dist.Bernoulli(logits=probs).sample() return int(a_o.item()) def user_simulator_typeone(action, W, a, educability=0.6): # action is either a tuple, or -1 for educate. # Educate action if isinstance(action, int): print("Educate!") educate_o = dist.Bernoulli(educability).sample() return educate_o else: probs = a + action @ W a_o = dist.Bernoulli(logits=probs).sample() return int(a_o.item()) def user_simulator_switching(action, W, a, educability=0.1, user_type=0, forgetting=0.0): # action is either a tuple, or -1 for educate. # W[0] is the type-zero user weights, W[1] type-one. # Educate action educability_per_type = [educability, 1.0] if isinstance(action, int): user_type_ = int(dist.Bernoulli(educability_per_type[user_type]).sample().item()) #if user_type != user_type_: # print("User Type Changed!") return user_type_ else: probs = a + action @ W[user_type] a_o = dist.Bernoulli(logits=probs).sample() return int(a_o.item()) def test_user_typezero(): training_X, training_y, test_X, test_y, _, _ = generate_data(n_noncollinear=50, n_collinear=100, n=100) corr_mat = np.abs(np.corrcoef(torch.transpose(torch.cat((training_X, training_y.unsqueeze(dim=1)), dim=1), 0, 1))) W_typezero = [5.0, 0.0] W_typeone = [5.0, -5.0] n_covars = training_X.shape[1] data_dict = {"N": 0, "x": [], "y": [], "beta": [W_typezero, W_typeone]} aux_data_dict = {"xi": torch.zeros(n_covars + 1, dtype=torch.bool)} n_iterations = 100 teacher_actions = list(np.random.choice(n_covars, n_iterations)) model_file = None for i in range(n_iterations): act_in = teacher_actions[i] if act_in != -1: mask = aux_data_dict["xi"].numpy().copy() mask[act_in] = False masked = corr_mat[act_in, mask] if masked.size != 0: max_cross_corr = np.max(masked) else: max_cross_corr = 0.0 action = torch.tensor([corr_mat[act_in, -1], max_cross_corr]) outcome = user_simulator_typezero(action, torch.tensor(W_typezero, dtype=torch.double), a=1.0) if outcome == 1.0: aux_data_dict["xi"][act_in] = True else: aux_data_dict["xi"][act_in] = False data_dict["x"].append(action.tolist()) data_dict["y"].append(outcome) data_dict["N"] += 1 fit, model_file = test_stan.fit_model_w_education(data_dict, model_file) arviz.plot_trace(fit) pyplot.show() def test_user_typeone(): training_X, training_y, test_X, test_y, _, _ = generate_data(n_noncollinear=50, n_collinear=100, n=100) corr_mat = np.abs(np.corrcoef(torch.transpose(torch.cat((training_X, training_y.unsqueeze(dim=1)), dim=1), 0, 1))) W_typezero = [5.0, 0.0] W_typeone = [5.0, -5.0] n_covars = training_X.shape[1] data_dict = {"N": 0, "x": [], "y": [], "beta": [W_typezero, W_typeone]} aux_data_dict = {"xi": torch.zeros(n_covars + 1, dtype=torch.bool)} n_iterations = 20 teacher_actions = list(np.random.choice(n_covars, n_iterations)) model_file = None for i in range(n_iterations): act_in = teacher_actions[i] if act_in != -1: mask = aux_data_dict["xi"].numpy().copy() mask[act_in] = False masked = corr_mat[act_in, mask] if masked.size != 0: max_cross_corr = np.max(masked) else: max_cross_corr = 0.0 action = torch.tensor([corr_mat[act_in, -1], max_cross_corr]) outcome = user_simulator_typeone(action, torch.tensor(W_typeone, dtype=torch.double), a=1.0) if outcome == 1.0: aux_data_dict["xi"][act_in] = True else: aux_data_dict["xi"][act_in] = False data_dict["x"].append(action.tolist()) data_dict["y"].append(outcome) data_dict["N"] += 1 fit, model_file = test_stan.fit_model_w_education(data_dict, model_file) arviz.plot_trace(fit) pyplot.show() def test_user_switching(educability=0.01): training_X, training_y, test_X, test_y, _, _ = generate_data(n_noncollinear=50, n_collinear=100, n=100) corr_mat = np.abs(np.corrcoef(torch.transpose(torch.cat((training_X, training_y.unsqueeze(dim=1)), dim=1), 0, 1))) sns.heatmap(corr_mat) pyplot.show() W_typezero = [5.0, 0.0] W_typeone = [5.0, -5.0] n_covars = training_X.shape[1] data_dict = {"N": 0, "x": [], "y": [], "beta": [W_typezero, W_typeone], "educability": educability, "forgetting": 0.0} aux_data_dict = {"xi": torch.zeros(n_covars + 1, dtype=torch.bool)} n_iterations = 100 recommend_actions = list(np.random.choice(n_covars, n_iterations)) educate_or_recommend = list(np.random.choice(2, n_iterations, p=(0.5, 0.5))) educate_or_recommend[0] = 1 model_file = None user_type = 0 change_point = 0 for i in range(n_iterations): #print("Step: {}".format(i)) if educate_or_recommend[i] == 0: act_in = -1 else: act_in = recommend_actions[i] if act_in != -1: mask = aux_data_dict["xi"].numpy().copy() mask[act_in] = False masked = corr_mat[act_in, mask] if masked.size != 0: max_cross_corr = np.max(masked) else: max_cross_corr = 0.0 action = torch.tensor([corr_mat[act_in, -1], max_cross_corr]) outcome = user_simulator_switching(action, torch.tensor([W_typezero, W_typeone], dtype=torch.double), a=1.0, educability=data_dict["educability"], user_type=user_type) if outcome == 1: aux_data_dict["xi"][act_in] = True else: aux_data_dict["xi"][act_in] = False data_dict["x"].append(action.tolist()) data_dict["y"].append(outcome) else: _user_type = 0 + user_type user_type = user_simulator_switching(act_in, torch.tensor([W_typezero, W_typeone], dtype=torch.double), a=1.0, educability=data_dict["educability"], user_type=user_type) action = [-1.0, -1.0] outcome = 0 data_dict["x"].append(action) data_dict["y"].append(outcome) if user_type == 1 and _user_type == 0: print("State Changed to Type 1 at iteration: {}".format(i)) change_point += i data_dict["N"] += 1 fit, model_file = test_stan.fit_model_w_education(data_dict, model_file) # if i % 100 ==0: s = fit.summary() print(fit) arviz.plot_trace(fit) pyplot.show() summary =
pandas.DataFrame(s['summary'], columns=s['summary_colnames'], index=s['summary_rownames'])
pandas.DataFrame
# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. import numpy as np import pandas as pd from pathlib import Path import matplotlib.pyplot as plt import sys sys.path.append("..") from plot_config import * # need cameraready for original thresh rundata = list(Path("../data/cameraready/").glob("*out.csv")) sensitivity_rundata = list(Path("../data/thresh_sensitivity").glob("*out.csv")) def compile_results(): orig_dfiles = pd.concat([pd.read_csv(d) for d in rundata]) thresh_dfiles = pd.concat([pd.read_csv(d) for d in sensitivity_rundata]) # the hartmann thresh=0.5 runs were duplicated so drop them idx = np.logical_not(np.logical_and( thresh_dfiles.problem == "hartmann6_binary", thresh_dfiles.opt_strat_target == 0.5, )) df =
pd.concat([orig_dfiles, thresh_dfiles[idx]])
pandas.concat
import pickle import pandas as pd import numpy as np import xlsxwriter import csv import random from collections import defaultdict from sklearn.preprocessing import MultiLabelBinarizer from sklearn.decomposition import PCA from sklearn.preprocessing import scale, MinMaxScaler, StandardScaler from sklearn.preprocessing import MultiLabelBinarizer from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import fbeta_score, precision_score, make_scorer, average_precision_score, recall_score from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB import datetime from sklearn.metrics import auc, roc_curve, roc_auc_score mlb = MultiLabelBinarizer() misc = list() df = pd.read_excel("../data/misc.xlsx") for i in df.MISCELLANEOUS: misc.append(i) all_se = list() df = pd.read_csv("../data/unique_SE.csv") for i in df.side_effect_name: all_se.append(i) s1 = set(all_se) s2 = set(misc) s3 = list(s1 - s2) print ("Total:",len(s1)) print ("Misc:",len(s2)) print ("Total excluding misc:",len(s3)) l1 = s3 columns = [ 'stitch_id_flat', 'stitch_id_sterio', 'umls_cui_from_label', 'meddra_type', 'umls_cui_from_meddra', 'side_effect_name', ] sedf = pd.read_table('../data/meddra_all_se.tsv', names=columns) sedf.drop(sedf[sedf.meddra_type == "LLT"].index, inplace=True) sedf = sedf.groupby('stitch_id_flat').side_effect_name.apply(list).reset_index() sedf['labels'] = None d2 = pd.read_excel("../data/2d_prop.xlsx") d3 =
pd.read_excel("../data/3d_prop.xlsx")
pandas.read_excel
#!/usr/bin/env python3 """ USAGE: python create-protein-table.py --infile_peptide input.fa --infile_taxonomy tax.txt --outfile_json protein-species-map.json --output output_table.txt [--delim delimiter --column column] Generates table useable for taxonomic placment with EUKulele. If no delimiter is provided, default is '/'. If no column header is provided, default is SOURCE_ID. python EUKulele/scripts/create_protein_table.py --infile_peptide EUKulele/tests/aux_data/mmetsp/reference-pep-trunc.pep.faa --infile_taxonomy EUKulele/tests/aux_data/mmetsp/taxonomy-table.txt --outfile_json EUKulele/tests/aux_data/mmetsp/protein-map.json --output EUKulele/tests/aux_data/mmetsp/tax-table.txt --delim "/" --strain_col_id strain_name --taxonomy_col_id taxonomy --column SOURCE_ID create_protein_table.py --infile_peptide reference.pep.fa --infile_taxonomy taxonomy-table.txt --outfile_json prot-map.json --output tax-table.txt --delim "/" --col_source_id strain_name --taxonomy_col_id taxonomy --column 2 python /vortexfs1/omics/alexander/akrinos/remodeling/EUKulele/scripts/create_protein_table.py --infile_peptide /vortexfs1/omics/alexander/akrinos/EUKulele-Reference/phylodb_db/reference.pep.fa --infile_taxonomy /vortexfs1/omics/alexander/akrinos/EUKulele-Reference/phylodb_db/tax-table.txt --outfile_json /vortexfs1/omics/alexander/akrinos/EUKulele-Reference/phylodb_db/prot-map.json --output /vortexfs1/omics/alexander/akrinos/EUKulele-Reference/phylodb_db/taxonomy_table.txt --delim "\t" --strain_col_id strain_name --taxonomy_col_id taxonomy --column 2 """ import os import argparse import json from Bio import SeqIO import pandas as pd def createProteinTable(args=None): ''' Main function; intended to parse and create required files for EUKulele database creation. ''' parser = argparse.ArgumentParser() parser.add_argument('--infile_peptide', type = list, nargs='+', required=True) # this should be given as a list of the input files parser.add_argument('--infile_taxonomy', default='') # the original taxonomy file parser.add_argument('--outfile_json', default = 'prot-map.json') # the protein json file to be written parser.add_argument('--output', default = 'tax-table.txt') # the output taxonomy table (formatted) to be written parser.add_argument('--delim', type=str, default = '/') parser.add_argument('--col_source_id', type=str, default = 'Source_ID') # the column which indicates the name of the strain in the taxonomy file parser.add_argument('--taxonomy_col_id', type=str, default = 'taxonomy') # the column which indicates the taxonomy of the strain in the taxonomy file parser.add_argument('--column', type=str, default = 'SOURCE_ID') # can be numeric, zero-indexed, if it's a delimited part of header # set to true if there is a column called "taxonomy" that we wish to split parser.add_argument('--reformat_tax', dest='reformat', default=False, action='store_true') parser.add_argument('--euk-prot', dest='eukprot', default=False, action='store_true') # eukprot's taxonomy is too unique if args is not None: args = parser.parse_args(args) else: args = parser.parse_args() # if the input is a folder, you also need to add the first token in the # underscore-separated name to a dictionary for that # one - ultimately we want to know which MMETSP or whatever it came from odict = {} for curr_pepfile in list(args.infile_peptide): pepfile = "".join(curr_pepfile) for record in SeqIO.parse(pepfile, "fasta"): header = record.description rid = record.id.replace(".","N") #record.id.split(".")[0] #record.id.replace(".","N") counter = 2 while rid in odict: if "_" in rid: rid = "_".join(rid.split("_")[0:-1]) + "_" + str(counter) else: rid = rid + "_" + str(counter) counter = counter + 1 if 't' in args.delim: # why is this tab thing not working otherwise?? even the equality tester = "".join(list(str(header))).replace('\t', ' ') hlist = tester.split(" ") else: header = str(header).replace(args.delim, "hello") hlist = header.split("hello") if len(args.infile_peptide) > 1: # if there is a list of files, use the filename as the ID sid = pepfile.split("/")[-1].split("_")[0] odict[rid] = sid elif args.column.isdigit(): sid = hlist[int(args.column)] odict[rid] = sid else: for h_curr in hlist: if args.column in h_curr: #h.startswith(args.column): sid = h_curr.split('=')[1].strip() odict[rid] = sid break print("Modifying...",pepfile,flush=True) os.system("cut -f 1 " + str(pepfile) + " > " + str(pepfile) + ".tester.pep.fa") os.system("perl -i -pe 's/$/_$seen{$_}/ if ++$seen{$_}>1 and /^>/; ' " + \ str(pepfile) + ".tester.pep.fa") os.system("mv " + str(pepfile) + ".tester.pep.fa " + str(pepfile)) tax_file = pd.read_csv(args.infile_taxonomy, sep = "\t", encoding='latin-1') if args.reformat: colnames_tax = ["Source_ID","Supergroup","Division","Class", "Order","Family","Genus","Species"] tax_out =
pd.DataFrame(columns=colnames_tax)
pandas.DataFrame
""" Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Callable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from pandas._libs import reduction as libreduction from pandas._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from pandas.util._decorators import ( Appender, Substitution, doc, ) from pandas.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from pandas.core.dtypes.missing import ( isna, notna, ) from pandas.core import ( algorithms, nanops, ) from pandas.core.apply import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from pandas.core.base import SpecificationError import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _agg_template, _apply_docs, _transform_template, warn_dropping_nuisance_columns_deprecated, ) from pandas.core.indexes.api import ( Index, MultiIndex, all_indexes_same, ) from pandas.core.series import Series from pandas.core.util.numba_ import maybe_use_numba from pandas.plotting import boxplot_frame_groupby # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[DataFrame | Series]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_allowlisted_properties( klass: type[DataFrame | Series], allowlist: frozenset[str] ): """ Create GroupBy member defs for DataFrame/Series names in a allowlist. Parameters ---------- klass : DataFrame or Series class class where members are defined. allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in allowlist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_allowlisted_properties(Series, base.series_apply_allowlist) class SeriesGroupBy(GroupBy[Series]): _apply_allowlist = base.series_apply_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Series: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.iget(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: caller is responsible for setting ser.index return ser def _get_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Series]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.groupby([1, 1, 2, 2]).agg(lambda x: x.astype(float).min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Series") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.ravel(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if isinstance(func, str): return getattr(self, func)(*args, **kwargs) elif isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in assignment (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[assignment] return ret else: cyfunc = com.get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_groupby.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_series_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> DataFrame: if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renamer is not supported") elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, DataFrame | Series] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): from pandas import concat res_df = concat( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_df indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindex_output(output) return output def _indexed_output_to_ndframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Series: """ Wrap the dict result of a GroupBy aggregation into a Series. """ assert len(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Series, values: list[Any], not_indexed_same: bool = False, ) -> DataFrame | Series: """ Wrap the output of SeriesGroupBy.apply into the expected result. Parameters ---------- data : Series Input data for groupby operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- DataFrame or Series """ if len(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if isinstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_df = self.obj._constructor_expanddim(values, index=index) res_df = self._reindex_output(res_df) # if self.observed is False, # keep all-NaN rows created while re-indexing res_ser = res_df.stack(dropna=self.observed) res_ser.name = self.obj.name return res_ser elif isinstance(values[0], (Series, DataFrame)): return self._concat_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_series_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Series") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by caller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Callable, *args, **kwargs) -> Series: """ Transform with a callable func`. """ assert callable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.append(klass(res, index=group.index)) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat concatenated = concat(results) result = self._set_result_index_ordered(concatenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, dropna: bool = True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna: bool = True) -> Series: """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new unique observation mask = codes == -1 if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindex_output(result, fill_value=0) @doc(Series.describe) def describe(self, **kwargs): return super().describe(**kwargs) def value_counts( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, dropna: bool = True, ): from pandas.core.reshape.merge import get_join_indexers from pandas.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def apply_series_value_counts(): return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return apply_series_value_counts() elif is_categorical_dtype(val.dtype): # GH38672 return apply_series_value_counts() # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[call-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if
is_interval_dtype(lab.dtype)
pandas.core.dtypes.common.is_interval_dtype
""" This file contains code to load EBA, eGrid and AMPD datasets. The file provides one class for each data set. Data can either be raw (of the type that is output from the parse.py script) or cleaned (outputs from clean.py). The data handler classes provide methods to access the data in different ways and perform some checks. """ from os.path import join import pandas as pd import logging import json import re from gridemissions import config from gridemissions.eia_api import KEYS, BAs, EIA_ALLOWED_SERIES_ID class BaData(object): """Class to handle BA-level data. The EBA class provides generation, consumption, the trade matrix and total interchange either at the BA or at the regional (IEA-defined) level. User guide: https://www.eia.gov/realtime_grid/docs/userguide-knownissues.pdf The class is a light wrapped around the pd.DataFrame object which is the format in which the underlying data are stored. The main purpose of the class is to provide convenience functions that make handling the data easier. Timestamps are in UTC. EBA data columns ---------------- D: Demand NG: Net Generation TI: Total Interchange - (positive if exports) ID: Interchange with directly connected balancing authorities - (positive if exports) Consistency requirements ------------------------ - Interchange data is antisymmetric: ID[i,j] == -ID[j,i] - Total trade with interchange data: TI == sum(ID[i,:]) - Balance equation for total trade, demand, generation: TI + D == NG Methods ------- get_cols(self, r) : generate column names for regions r for a given field. Attributes ---------- regions : are in alphabetical order df : raw dataframe """ def __init__(self, fileNm=None, df=None, variable="E", dataset="EBA", step=None): """ Initialize the BaData object There are two preferred ways to initialize this object: by passing a `pd.DataFrame`, or by passing a file name from which to read the data using `pd.read_csv`. Parameters ---------- fileNm: str, default None fileNm from which to read the data df: pd.DataFrame, default None data dataset: str, default "EBA" base name for file in which data are stored. Parameter will be deprecated soon and should not be used. step: int, default None processing step at which to load the data. Parameter will be deprecated soon and should not be used. """ self.logger = logging.getLogger("load") if df is not None: self.df = df else: if step is not None: fileNm = join( config["DATA_PATH"], "analysis", "%s_%d.csv" % (dataset, step) ) if fileNm is None: fileNm = join(config["DATA_PATH"], "analysis", "EBA_0.csv") self.df = pd.read_csv(fileNm, index_col=0, parse_dates=True) self.variable = variable self.regions = self._parse_data_cols() self.fileNm = fileNm self.KEY = KEYS[variable] def get_cols(self, r=None, field="D"): """ Retrieve column name(s) corresponding to region(s) and a field Parameters ---------- r: str or list of str, default None regions. If None, data is returned for all regions field: str field for which to load columns. Used to index in self.KEY Returns ------- cols: list of str """ if field not in self.KEY: raise ValueError(f"{field} not in str(list(self.KEY.keys()))") if field != "ID": if r is None: r = self.regions if isinstance(r, str): r = [r] return [self.KEY[field] % ir for ir in r] else: if r is None: r = self.regions if isinstance(r, str): r = [r] return [ self.KEY[field] % (ir, ir2) for ir in r for ir2 in self.regions if self.KEY[field] % (ir, ir2) in self.df.columns ] def get_trade_partners(self, r): """ Return list of regions that trade with a given region Parameter --------- r: str region for which to search """ partners = [] for r2 in self.regions: if (self.KEY["ID"] % (r, r2) in self.df.columns) and ( self.KEY["ID"] % (r2, r) in self.df.columns ): partners += [r2] return partners def _parse_data_cols(self): """ Checks: - Consistent number of regions for demand / generation / total interchange / trade matrix Returns the list of regions """ regions = set([re.split(r"\.|-|_", el)[1] for el in self.df.columns]) D_cols = [ re.split(r"\.|-|_", el)[1] for el in self.df.columns if "D" in re.split(r"\.|-|_", el) ] # The check in [3, 5] was added to filter out the generation columns # by source in electricity NG_cols = [ re.split(r"\.|-|_", el)[1] for el in self.df.columns if ( ("NG" in re.split(r"\.|-|_", el)) and (len(re.split(r"\.|-|_", el)) in [3, 5]) ) ] TI_cols = [ re.split(r"\.|-|_", el)[1] for el in self.df.columns if "TI" in re.split(r"\.|-|_", el) ] ID_cols = [ re.split(r"\.|-|_", el)[1] for el in self.df.columns if "ID" in re.split(r"\.|-|_", el) ] ID_cols2 = [ re.split(r"\.|-|_", el)[2] for el in self.df.columns if "ID" in re.split(r"\.|-|_", el) ] self.D_cols = D_cols self.NG_cols = NG_cols self.TI_cols = TI_cols self.ID_cols = ID_cols self.ID_cols2 = ID_cols2 if len(NG_cols) != len(D_cols): self.logger.warn("Inconsistent columns: len(NG_cols) != len(D_cols)") if set(NG_cols) != regions: self.logger.warn("Inconsistent columns: set(NG_cols) != regions") if not ("i" in self.variable): if len(NG_cols) != len(TI_cols): self.logger.warn("Inconsistent columns: len(NG_cols) != len(TI_cols)") if set(NG_cols) != set(ID_cols): self.logger.warn("Inconsistent columns: set(NG_cols) != set(ID_cols)") if set(NG_cols) != set(ID_cols2): self.logger.warn("Inconsistent columns: set(NG_cols) != set(ID_cols2)") return sorted(list(regions)) def get_trade_out(self, r=None): if r is None: r = self.regions if isinstance(r, str): r = [r] cols = [] for ir2 in self.regions: cols += [self.KEY["ID"] % (ir, ir2) for ir in r] return [c for c in cols if c in self.df.columns] def checkBA(self, ba, tol=1e-2, log_level=logging.INFO): """ Sanity check function TODO: add check for different generation sources, if data is present """ logger = self.logger log_level_old = logger.level logger.setLevel(log_level) logger.debug("Checking %s" % ba) partners = self.get_trade_partners(ba) # NaNs for field in ["D", "NG", "TI"]: ind_na = self.df.loc[:, self.get_cols(r=ba, field=field)[0]].isna() cnt_na = ind_na.sum() if cnt_na != 0: logger.error( "There are still %d nans for %s field %s" % (cnt_na, ba, field) ) for ba2 in partners: cnt_na = self.df.loc[:, self.KEY["ID"] % (ba, ba2)].isna().sum() if cnt_na != 0: logger.error("There are still %d nans for %s-%s" % (cnt_na, ba, ba2)) # TI+D == NG res1 = self.df.loc[:, self.get_cols(r=ba, field="NG")[0]] - ( self.df.loc[:, self.get_cols(r=ba, field="D")[0]] + self.df.loc[:, self.get_cols(r=ba, field="TI")[0]] ) if (res1.abs() > tol).sum() != 0: logger.error("%s: TI+D == NG violated" % ba) # TI == ID.sum() res2 = self.df.loc[:, self.get_cols(r=ba, field="TI")[0]] - self.df.loc[ :, [self.KEY["ID"] % (ba, ba2) for ba2 in partners] ].sum(axis=1) if (res2.abs() > tol).sum() != 0: logger.error("%s: TI == ID.sum()violated" % ba) # ID[i,j] == -ID[j,i] for ba2 in partners: res3 = ( self.df.loc[:, self.KEY["ID"] % (ba, ba2)] + self.df.loc[:, self.KEY["ID"] % (ba2, ba)] ) if (res3.abs() > tol).sum() != 0: logger.error("%s-%s: ID[i,j] == -ID[j,i] violated" % (ba, ba2)) # D and NG negative for field in ["D", "NG"]: ind_neg = self.df.loc[:, self.get_cols(r=ba, field=field)[0]] < 0 cnt_neg = ind_neg.sum() if cnt_neg != 0: logger.error( "%s: there are %d <0 values for field %s" % (ba, cnt_neg, field) ) logger.setLevel(log_level_old) def convert_raw_eba(file_name, file_name_out=None): logger = logging.getLogger("root") logger.setLevel(logging.DEBUG) logger.debug("Loading raw JSON") with open(f"{file_name}.txt") as fr: lines = fr.readlines() # convert json - each line is a dictionary data = [] for l in lines: data += [json.loads(l)] # separate id data from ts data ts_data = [d for d in data if len(d.keys()) == 10] # id_list = [d for d in data if len(d.keys()) == 5] def choose(el, ba_list): series_id = el["series_id"] if ".HL" in series_id: return False if ".ID.H" in series_id: return (re.split(r"\.|-", series_id)[1] in ba_list) and ( re.split(r"\.|-", series_id)[2] in ba_list ) else: return re.split(r"\.|-", series_id)[1] in ba_list logger.debug("Converting to dataframe") df = pd.concat( [ pd.DataFrame(el["data"], columns=["datetime", el["series_id"]]).set_index( "datetime", drop=True ) for el in ts_data if el["series_id"] in EIA_ALLOWED_SERIES_ID ], axis=1, ) logger.debug("Converting to datetime and sorting") df.index =
pd.to_datetime(df.index)
pandas.to_datetime
import pandas as pd import numpy as np df = pd.DataFrame ({ 'nome' : ['André', 'Junior', 'Nascimento'], 'idade': [38, 37, 36], 'cidade': ['RJ','SP','MG'] }) print(df) print('\n') vetor = np.array([5, 6, 7, 8]) v =
pd.Series(vetor)
pandas.Series
"""Provides utilities for working with weather data, and for calculating the movement of the sun from the persepcitve of specific locations. Constants defined in this module ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ These can all be overwritten by setting environment variables with the same name. * ``SKYFIELD_DATA_DIR``. Path to directory to save skyfield ephemeris data. By default, ``~/skyfield-data`` will be used. * ``CAMFI_EPHEMERIS``. Name of ephemeris file to use for calculating sunset and twilight. By default, ``de440s.bsp`` will be used. See the `choosing an ephemeris`_ in the Skyfield documentation for possible other ephemeris files to use. Note that the ephemeris file will be loaded when this module is imported. The first time this happens, the ephemeris file will be downloaded (def4402.bsp is about 37 mb). **Note:** For testing purposes, a tiny abbreviated ephemeris file is included in the Camfi git repository. Without this, CI testing wouldn't work. The included ephemeris limits the date range to a few days in 2021, so it should not be used when running Camfi normally. To use the included ephemeris (for testing purposes only), set the following environment variables (assuming you are running the tests from the camfi repo root directory):: SKYFIELD_DATA_DIR="camfi/test/data" CAMFI_EPHEMERIS="test_ephem.bsp" .. _choosing an ephemeris: https://rhodesmill.org/skyfield/planets.html#choosing-an-ephemeris """ from datetime import date, datetime, time, timedelta, timezone import os from pathlib import Path from typing import Optional, Sequence import numpy as np import pandas as pd from pydantic import ( BaseModel, FilePath, NonNegativeFloat, validator, ) from skyfield.api import Loader, wgs84 from skyfield import almanac from camfi.util import Timezone, Field # Initialise skyfield SKYFIELD_DATA_DIR = os.getenv( "SKYFIELD_DATA_DIR", str(Path("~/skyfield-data").expanduser()) ) CAMFI_EPHEMERIS = os.getenv("CAMFI_EPHEMERIS", "de440s.bsp") _load = Loader(SKYFIELD_DATA_DIR) ephemeris = _load(CAMFI_EPHEMERIS) timescale = _load.timescale() TWILIGHT_TRANSITIONS = { 1: "astronomical_twilight_start", 2: "nautical_twilight_start", 3: "civil_twilight_start", 4: "sunrise", 5: "astronomical_twilight_end", 6: "nautical_twilight_end", 7: "civil_twilight_end", 8: "sunset", } class Location(BaseModel): """Provides methods for working with locations. Parameters ---------- name : str Name of location. lat : float Decimal latitude. lon : float Decimal longitude. elevation_m : NonNegativeFloat Elevation in metres. tz : timezone Timezone offset. Can be given as ISO8601 timezone offset str (e.g. 'Z' or '+10:00' or simply '+10'). Examples -------- >>> Location( ... name="canberra", ... lat=-35.293056, ... lon=149.126944, ... elevation_m=578, ... tz="+10:00", ... ) Location(name='canberra', lat=-35.293056, lon=149.126944, elevation_m=578.0, tz=Timezone(datetime.timezone(datetime.timedelta(seconds=36000)))) >>> Location( ... name="greenwich", ... lat=51.48, ... lon=0, ... elevation_m=47, ... tz="Z", ... ) Location(name='greenwich', lat=51.48, lon=0.0, elevation_m=47.0, tz=Timezone(datetime.timezone.utc)) >>> Location( ... name="nyc", ... lat=40.712778, ... lon=-74.006111, ... elevation_m=10, ... tz="-05", ... ) Location(name='nyc', lat=40.712778, lon=-74.006111, elevation_m=10.0, tz=Timezone(datetime.timezone(datetime.timedelta(days=-1, seconds=68400)))) """ name: str = Field( ..., description="Name of location. Used to link to camera placements." ) lat: float = Field(..., description="Decimal latitude.") lon: float = Field(..., description="Decimal longitude.") elevation_m: NonNegativeFloat = Field(..., description="Elevation in metres.") tz: Timezone = Field(..., description="ISO8601 timezone offset.") class Config: schema_extra = { "description": "Contains spatial data on locations, including timezone." } @property def _dark_twilight_day(self): return almanac.dark_twilight_day( ephemeris, wgs84.latlon(self.lat, self.lon, elevation_m=self.elevation_m) ) def _get_tz_aware_dt(self, dt: datetime) -> datetime: if dt.tzinfo is None: dt = dt.replace(tzinfo=self.tz._timezone) return dt def twilight_state(self, dt: datetime) -> int: """Gets the twilight state for the location at the specified time(s). The meanings of the returned integer values are 0. Dark of night. 1. Astronomical twilight. 2. Nautical twilight. 3. Civil twilight. 4. Daytime. Parameters ---------- dt : datetime datetime to evaluate. If timezone-naive, timezone will be taken from self.tz. Returns ------- ts : int Twilight value. Examples -------- >>> location = Location( ... name="canberra", ... lat=-35.293056, ... lon=149.126944, ... elevation_m=578, ... tz="+10:00", ... ) >>> location.twilight_state(datetime.fromisoformat("2021-07-28T12:00:00+10:00")) 4 >>> location.twilight_state(datetime.fromisoformat("2021-07-28T23:00:00+11:00")) 0 Timezone will be taken from self.tz if dt is timezone-naive. >>> location.twilight_state(datetime.fromisoformat("2021-07-28T12:00:00")) 4 Skyfield provides mapping from these numbers to strings. >>> almanac.TWILIGHTS[0] 'Night' >>> almanac.TWILIGHTS[1] 'Astronomical twilight' >>> almanac.TWILIGHTS[2] 'Nautical twilight' >>> almanac.TWILIGHTS[3] 'Civil twilight' >>> almanac.TWILIGHTS[4] 'Day' """ time = timescale.from_datetime(self._get_tz_aware_dt(dt)) return int(self._dark_twilight_day(time)) def twilight_states(self, datetimes: Sequence[datetime]) -> np.ndarray: """Like Location.twilight_state but operates on sequence of datetimes. Parameters ---------- datetimes : Sequence[datetime] datetimes to evaluate. If timezone-naive, timezone will be taken from self.tz. Returns ------- ts : np.ndarray Twilight values. Examples -------- >>> location = Location( ... name="canberra", ... lat=-35.293056, ... lon=149.126944, ... elevation_m=578, ... tz=timezone(timedelta(hours=10)), ... ) >>> datetimes = [ ... datetime.fromisoformat("2021-07-28T12:00:00+10:00"), ... datetime.fromisoformat("2021-07-28T23:00:00+11:00"), ... datetime.fromisoformat("2021-07-28T12:00:00"), ... ] >>> location.twilight_states(datetimes) array([4, 0, 4]) """ datetimes = [self._get_tz_aware_dt(dt) for dt in datetimes] times = timescale.from_datetimes(datetimes) return self._dark_twilight_day(times) def search_sun_times(self, day: date) -> dict[str, datetime]: """Gets sunrise, sunset, and twilight times for a given date. Parameters ---------- day : date Day to get times from. Returns ------- twilight_times : dict[str, datetime] dictionary with keys "astronomical_twilight_start", "nautical_twilight_start", "civil_twilight_start", "sunrise", "sunset", "nautical_twilight_end", "civil_twilight_end", "astronomical_twilight_end". Examples -------- >>> location = Location( ... name="canberra", ... lat=-35.293056, ... lon=149.126944, ... elevation_m=578, ... tz=timezone(timedelta(hours=10)), ... ) >>> day = date(2021, 7, 28) >>> tt = location.search_sun_times(day) The ordering of the transitions is as expected. >>> tt["astronomical_twilight_start"] < tt["nautical_twilight_start"] True >>> tt["nautical_twilight_start"] < tt["civil_twilight_start"] True >>> tt["civil_twilight_start"] < tt["sunrise"] True >>> tt["sunrise"] < tt["sunset"] True >>> tt["sunset"] < tt["civil_twilight_end"] True >>> tt["civil_twilight_end"] < tt["nautical_twilight_end"] True >>> tt["nautical_twilight_end"] < tt["astronomical_twilight_end"] True And all of the datetimes are on the correct day. >>> all(d.date() == day for d in tt.values()) True """ start_time = datetime.combine(date=day, time=time(0), tzinfo=self.tz._timezone) end_time = start_time + timedelta(days=1) t0 = timescale.from_datetime(start_time) t1 = timescale.from_datetime(end_time) times, twilight_types = almanac.find_discrete(t0, t1, self._dark_twilight_day) twilight_transitions = ( np.roll(twilight_types, 1) > twilight_types ) * 5 + twilight_types twilight_times: dict[str, datetime] = {} for t, tt in zip(times, twilight_transitions): twilight_times[TWILIGHT_TRANSITIONS[tt]] = t.utc_datetime().astimezone( self.tz._timezone ) return twilight_times def get_sun_time_dataframe(self, days: Sequence[date]) -> pd.DataFrame: """Calls self.search_sun_times on each day in days, and builds a DataFrame of sun times. Parameters ---------- days : Sequence[date] Dates which will become index for dataframe. Returns ------- sun_df : pd.DataFrame DataFrame indexed by location and date, with columns "astronomical_twilight_start", "nautical_twilight_start", "civil_twilight_start", "sunrise", "sunset", "nautical_twilight_end", "civil_twilight_end", "astronomical_twilight_end". Examples -------- >>> location = Location( ... name="canberra", ... lat=-35.293056, ... lon=149.126944, ... elevation_m=578, ... tz=timezone(timedelta(hours=10)), ... ) >>> days = [date(2021, 7, 23), date(2021, 7, 24), date(2021, 7, 25)] >>> sun_df = location.get_sun_time_dataframe(days) >>> np.all(sun_df["sunset"] > sun_df["sunrise"]) True >>> sun_df astronomical_twilight_start ... astronomical_twilight_end location date ... canberra 2021-07-23 2021-07-23 05:36:52.178788+10:00 ... 2021-07-23 18:43:25.223475+10:00 2021-07-24 2021-07-24 05:36:20.903963+10:00 ... 2021-07-24 18:43:59.629041+10:00 2021-07-25 2021-07-25 05:35:48.170485+10:00 ... 2021-07-25 18:44:34.315154+10:00 <BLANKLINE> [3 rows x 8 columns] """ sun_times: dict[str, list[pd.Timestamp]] = { "astronomical_twilight_start": [], "nautical_twilight_start": [], "civil_twilight_start": [], "sunrise": [], "sunset": [], "nautical_twilight_end": [], "civil_twilight_end": [], "astronomical_twilight_end": [], } for day in days: sun_time_dict = self.search_sun_times(day) for key in sun_times.keys(): sun_times[key].append(pd.Timestamp(sun_time_dict[key])) sun_times["date"] = [pd.Timestamp(day) for day in days] sun_times["location"] = [self.name for _ in range(len(days))] sun_df = pd.DataFrame(data=sun_times) sun_df.set_index(["location", "date"], inplace=True) return sun_df class WeatherStation(BaseModel): """Contains information on a weather station. Parameters ---------- location : Location Location of weather station. data_file : FilePath Path to csv file containing weather data from weather station. """ location: Location = Field(..., description="Location of weather station.") data_file: FilePath = Field( ..., description=( "Path to csv file containing weather data from weather station. " "The firt 6 lines of the file are skipped, " "and the 7th should contain column headers. " "Should have one line per date. " "Minimally, the first column should be date, in YYYY-mm-dd format. " ), ) class Config: schema_extra = {"description": "Contains information on a weather station."} def load_dataframe(self): """Loads weather data from self.data_file into a pd.DataFrame Returns ------- weather_df : pd.DataFrame DataFrame with daily weather data, indexed by "weather_station" and "date". """ weather_df = pd.read_csv( self.data_file, skiprows=5, header=0, parse_dates=["date"] ) weather_df["weather_station"] = self.location.name weather_df.set_index(["weather_station", "date"], inplace=True) return weather_df class LocationWeatherStationCollector(BaseModel): """Contains lists of Locations and Weather stations, and a mapping between them. Parameters ---------- locations : list[Location] list of locations where cameras have been placed. weather_stations : list[WeatherStation] list of weather stations. location_weather_station_mapping : dict[str, str] A mapping between location names and weather_station names. """ locations: list[Location] = Field( ..., description="list of locations where cameras have been placed." ) weather_stations: list[WeatherStation] = Field( ..., description="list of weather stations." ) location_weather_station_mapping: dict[str, str] = Field( ..., description="A mapping between location names and weather_station names." ) class Config: schema_extra = {"description": "Defines Locations and Weather stations."} @validator("location_weather_station_mapping") def mapping_contains_all_locations(cls, v, values): if "locations" not in values: return v for location in values["locations"]: assert ( location.name in v ), f"{location.name} missing from location_weather_station_mapping." return v @validator("location_weather_station_mapping") def all_weather_stations_included(cls, v, values): if "weather_stations" not in values: return v weather_station_location_names = set( ws.location.name for ws in values["weather_stations"] ) for val in v.values(): assert ( val in weather_station_location_names ), f"Undefined weather station {val}. Either remove from mapping or define." return v def get_sun_time_dataframe(self, days: dict[str, Sequence[date]]) -> pd.DataFrame: """Calls .get_sun_time_dataframe on each location in self.locations, and builds a DataFrame of sun times. Parameters ---------- days : dict[str, Sequence[date]] Mapping from location name to sequences of dates which will become index for the dataframe. Returns ------- sun_df : pd.DataFrame DataFrame indexed by location and date, with columns "astronomical_twilight_start", "nautical_twilight_start", "civil_twilight_start", "sunrise", "sunset", "nautical_twilight_end", "civil_twilight_end", "astronomical_twilight_end". """ sun_dfs = [] for location in self.locations: dates = days[location.name] sun_dfs.append(location.get_sun_time_dataframe(dates)) return pd.concat(sun_dfs) def get_weather_dataframe(self) -> pd.DataFrame: """Calls .load_dataframe() on each WeatherStation in self.weather_stations, and builds a DataFrame of weather data. Returns ------- weather_df : pd.DataFrame DataFrame with daily weather data, indexed by "weather_station" and "date". """ weather_dfs = [] for weather_station in self.weather_stations: weather_dfs.append(weather_station.load_dataframe()) return
pd.concat(weather_dfs)
pandas.concat
import os import pandas as pd import yaml import glob from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta from tqdm import tqdm def load_raw_data(cfg, save_raw_df=True, rate_class='all'): ''' Load all entries for water consumption and combine into a single dataframe :param cfg: project config :param save_raw_df: Flag indicating whether to save the accumulated raw dataset :param rate_class: Rate class to filter raw data by :return: a Pandas dataframe containing all water consumption records ''' cat_feats = cfg['DATA']['CATEGORICAL_FEATS'] num_feats = cfg['DATA']['NUMERICAL_FEATS'] bool_feats = cfg['DATA']['BOOLEAN_FEATS'] feat_names = ['CONTRACT_ACCOUNT', 'EFFECTIVE_DATE', 'END_DATE', 'CONSUMPTION'] + num_feats + bool_feats + cat_feats raw_data_filenames = glob.glob(cfg['PATHS']['RAW_DATA_DIR'] + "/*.csv") rate_class_str = 'W&S_' + rate_class.upper() print('Loading raw data from spreadsheets.') raw_df = pd.DataFrame() for filename in tqdm(raw_data_filenames): df = pd.read_csv(filename, encoding='ISO-8859-1', low_memory=False, index_col=False) # Load a water demand CSV if rate_class_str in df['RATE_CLASS'].unique().tolist(): df = df[df['RATE_CLASS'] == rate_class_str] # Filter by a rate class if desired for f in df.columns: if ' 'in f or '"' in f: df.rename(columns={f: f.replace(' ', '').replace('"', '')}, inplace=True) for f in feat_names: if f not in df.columns: if f in cat_feats: df[f] = 'Unknown' else: df[f] = 0.0 if f in num_feats and df[f].dtype == 'object': try: df[f] = pd.to_numeric(df[f], errors='coerce') df[f].fillna(0, inplace=True) except Exception as e: print("Exception ", e, " in file ", filename, " feature ", f) df = df[feat_names] df['EFFECTIVE_DATE'] = pd.to_datetime(df['EFFECTIVE_DATE'], errors='coerce') df['END_DATE'] = pd.to_datetime(df['END_DATE'], errors='coerce') raw_df = pd.concat([raw_df, df], axis=0, ignore_index=True) # Concatenate next batch of data shape1 = raw_df.shape raw_df.drop_duplicates(['CONTRACT_ACCOUNT', 'EFFECTIVE_DATE', 'END_DATE'], keep='last', inplace=True) # Drop duplicate entries appearing in different data slices print("Deduplication: ", shape1, "-->", raw_df.shape) print('Consumption total: ', raw_df['CONSUMPTION'].sum()) print(raw_df.shape) # Replace X's representing true for boolean feats with 1 print('Cleaning data.') raw_df[bool_feats] = raw_df[bool_feats].replace({'X': 1, 'On': 1, 'Discon': 0, ' ': 0}) raw_df['EST_READ'] = raw_df['EST_READ'].astype('object') # Fill in missing data if 'EST_READ' in cat_feats: raw_df['EST_READ'] = raw_df['EST_READ'].astype('str') + '_' # Force treatment as string raw_df[['CONSUMPTION'] + num_feats + bool_feats] = raw_df[['CONSUMPTION'] + num_feats + bool_feats].fillna(0) raw_df[cat_feats] = raw_df[cat_feats].fillna('MISSING') if save_raw_df: raw_df.to_csv(cfg['PATHS']['RAW_DATASET'], sep=',', header=True, index_label=False, index=False) return raw_df def calculate_ts_data(cfg, raw_df, start_date=None): ''' Calculates estimates for daily water consumption based on provided historical data. Assumes each client consumes water at a uniform rate over the billing period. Produces a time series dataset indexed by date. :param cfg: project config :param raw_df: A DataFrame containing raw water consumption data :param start_date: The minimum date at which at which to create daily estimates for :return: a Pandas dataframe containing estimated daily water consumption ''' print('Calculating estimates for daily consumption and contextual features.') raw_df.drop('CONTRACT_ACCOUNT', axis=1, inplace=True) if start_date is None: min_date = raw_df['EFFECTIVE_DATE'].min() else: min_date = start_date max_date = raw_df['END_DATE'].max() - timedelta(days=1) cat_feats = cfg['DATA']['CATEGORICAL_FEATS'] num_feats = cfg['DATA']['NUMERICAL_FEATS'] bool_feats = cfg['DATA']['BOOLEAN_FEATS'] # Determine feature names for preprocessed dataset date_range = pd.date_range(start=min_date, end=max_date) daily_df_feat_init = {'Date': date_range, 'Consumption': 0} for f in num_feats: daily_df_feat_init[f + '_avg'] = 0.0 daily_df_feat_init[f + '_std'] = 0.0 for f in bool_feats: daily_df_feat_init[f] = 0.0 for f in cat_feats: for val in raw_df[f].unique(): daily_df_feat_init[f + '_' + str(val)] = 0.0 daily_df = pd.DataFrame(daily_df_feat_init) daily_df.set_index('Date', inplace=True) def daily_consumption(cons, start_date, end_date): bill_period = (end_date - start_date + timedelta(days=1)).days # Get length of billing period if bill_period > 0: return cons / bill_period # Estimate consumption per day over billing period else: return 0 # Populating features for daily prediction for date in tqdm(date_range): daily_snapshot = raw_df.loc[(raw_df['EFFECTIVE_DATE'] <= date) & (raw_df['END_DATE'] >= date)] for f in num_feats: daily_df.loc[date, f + '_avg'] = daily_snapshot[f].mean() daily_df.loc[date, f + '_std'] = daily_snapshot[f].std() for f in bool_feats: daily_df.loc[date, f] = daily_snapshot[f].mean() for f in cat_feats: fractions = daily_snapshot[f].value_counts(normalize=True) for val, fraction in fractions.items(): daily_df.loc[date, f + '_' + str(val)] = fraction try: daily_df.loc[date, 'Consumption'] = (daily_snapshot.apply(lambda row : daily_consumption(row['CONSUMPTION'], row['EFFECTIVE_DATE'], row['END_DATE']), axis=1)).sum() except Exception as e: print(date, e) daily_df.loc[date, 'Consumption'] = 0.0 # TODO delete once we have no missing data for missing_range_endpts in cfg['DATA']['MISSING_RANGES']: missing_range = pd.date_range(pd.to_datetime(missing_range_endpts[0]), pd.to_datetime(missing_range_endpts[1])) daily_df = daily_df[~daily_df.index.isin(missing_range)] # Remove noise from missing date ranges return daily_df def preprocess_ts(cfg=None, save_raw_df=True, save_prepr_df=True, rate_class='all', out_path=None): ''' Transform raw water demand data into a time series dataset ready to be fed into a model. :param cfg: project config :param save_raw_df: Flag indicating whether to save intermediate raw data :param save_prepr_df: Flag indicating whether to save the preprocessed data :param rate_class: Rate class to filter by :param out_path: Path to save updated preprocessed data ''' run_start = datetime.today() tqdm.pandas() if cfg is None: cfg = yaml.full_load(open("./config.yml", 'r')) # Load project config data raw_df = load_raw_data(cfg, rate_class=rate_class, save_raw_df=save_raw_df) preprocessed_df = calculate_ts_data(cfg, raw_df) preprocessed_df = preprocessed_df[cfg['DATA']['START_TRIM']:-cfg['DATA']['END_TRIM']] if save_prepr_df: out_path = cfg['PATHS']['PREPROCESSED_DATA'] if out_path is None else out_path preprocessed_df.to_csv(out_path, sep=',', header=True) print("Done. Runtime = ", ((datetime.today() - run_start).seconds / 60), " min") return preprocessed_df def preprocess_new_data(cfg, save_raw_df=True, save_prepr_df=True, rate_class='all', out_path=None): ''' Preprocess a new raw data file and merge it with preexisting preprocessed data. :param cfg: Project config :param save_df: Flag indicating whether to save the combined preprocessed dataset :param rate_class: Rate class to filter raw data by :param out_path: Path to save updated preprocessed data ''' # Load new raw data and remove any rows that appear in old raw data old_raw_df = pd.read_csv(cfg['PATHS']['RAW_DATASET'], low_memory=False) old_raw_df['EFFECTIVE_DATE'] = pd.to_datetime(old_raw_df['EFFECTIVE_DATE'], errors='coerce') min_preprocess_date = old_raw_df['EFFECTIVE_DATE'].max() - timedelta(days=183) # Latest date in old raw dataset minus 1/2 year, to be safe new_raw_df = load_raw_data(cfg, rate_class=rate_class, save_raw_df=save_raw_df) if new_raw_df.shape[1] > old_raw_df.shape[1]: new_raw_df = new_raw_df[old_raw_df.columns] # If additional features added, remove them # Preprocess new raw data new_preprocessed_df = calculate_ts_data(cfg, new_raw_df, start_date=min_preprocess_date) # Load old preprocessed data old_preprocessed_df = pd.read_csv(cfg['PATHS']['PREPROCESSED_DATA']) old_preprocessed_df['Date'] = pd.to_datetime(old_preprocessed_df['Date'], errors='coerce') old_preprocessed_df = old_preprocessed_df[old_preprocessed_df['Date'] < min_preprocess_date] old_preprocessed_df.set_index('Date', inplace=True) # Combine old and new preprocessed data preprocessed_df = pd.concat([old_preprocessed_df, new_preprocessed_df], axis=0) preprocessed_df = preprocessed_df[:-cfg['DATA']['END_TRIM']] if save_prepr_df: out_path = cfg['PATHS']['PREPROCESSED_DATA'] if out_path is None else out_path preprocessed_df.to_csv(out_path, sep=',', header=True) return preprocessed_df def merge_raw_data(cfg=None): ''' Loads all raw water demand CSVs available and merges it into one dataset, keeping the latest consumption records for each client if readings are duplicated. :param cfg: Project config ''' if cfg is None: cfg = yaml.full_load(open("./config.yml", 'r')) # Load project config data # Load old merged raw data file merged_raw_df = pd.DataFrame() # Loop through all raw data files and concatenate them with the old merged one, de-duplicating rows as needed quarterly_raw_data_filenames = glob.glob(cfg['PATHS']['RAW_DATA_DIR'] + "/*.csv") for filename in tqdm(quarterly_raw_data_filenames): quarterly_raw_df = pd.read_csv(filename, encoding='ISO-8859-1', low_memory=False) # Load a water demand CSV quarterly_raw_df['EFFECTIVE_DATE'] = pd.to_datetime(quarterly_raw_df['EFFECTIVE_DATE'], errors='coerce') quarterly_raw_df['END_DATE'] = pd.to_datetime(quarterly_raw_df['END_DATE'], errors='coerce') merged_raw_df =
pd.concat([merged_raw_df, quarterly_raw_df], axis=0, ignore_index=True)
pandas.concat
import json import plotly import pandas as pd import numpy as np from ast import literal_eval from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar from sklearn.externals import joblib from sqlalchemy import create_engine app = Flask(__name__) def tokenize(text): tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def _count_words(X): """Transforms messages Series the number of words it contains""" X =
pd.Series(X)
pandas.Series
from typing import Dict, Optional, Any import numpy as np import scipy import pandas as pd import threading def black_scholes(S, K, T, rf: float, iv, option_type) -> pd.DataFrame: """ Black Scholes modeling function. * https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr677.pdf * https://github.com/hashABCD/opstrat/blob/main/opstrat/blackscholes.py * https://www.smileofthales.com/computation/options-greeks-python/ * https://github.com/vpatel576/option_probabilites * https://github.com/skp1999/McMillan-s-Profit-Probability-Calculator/blob/main/POP_Calculation.py * https://option-price.com/index.php Option Value: Theoretical premium value. Delta : Measures Impact of a Change in the Price of Underlying Gamma: Measures the Rate of Change of Delta Theta: Measures Impact of a Change in Time Remaining Vega: Measures Impact of a Change in Volatility Rho: Measures the impact of changes in Interest rates :param S: Underlying Asset or Stock Price ($). :param K: Strike or Excercise Price ($). :param T: Expiry time of the option (days). :param rf: Risk-free rate (decimal number range 0-1). :param iv: Volatility (decimal). :param option_type: Calls or Puts option type. :return: Dataframe 'option_value', 'intrinsic_value', and 'time_value'. Greeks has delta, gamma, theta, rho. """ # Check inputs. is_type = np.isin(option_type, ['calls', 'puts', 'call', 'put', 'c', 'p']) assert np.all(is_type) == 1, "Enter Calls or Puts options only." t = np.maximum(T / 365, 0.00001) # Avoid infinite when T = 0. iv = np.maximum(iv, 0.00001) # Avoid infinite when iv = 0. n1 = np.log(S / K) n2 = (rf + iv ** 2 / 2) * t d = iv * np.sqrt(t) d1 = (n1 + n2) / d d2 = d1 - d f = np.where(np.isin(option_type, ['calls', 'call', 'c']), 1, -1) N_d1 = scipy.stats.norm.cdf(f * d1) N_d2 = scipy.stats.norm.cdf(f * d2) A = S * N_d1 B = K * N_d2 * np.exp(-rf * t) # Option pricing. val = f * (A - B) val_int = np.maximum(0.0, f * (S - K)) val_time = val - val_int # Greeks. delta = f * N_d1 gamma = np.exp((-d1 ** 2) / 2) / (S * iv * np.sqrt(2 * np.pi * t)) theta = (-S * iv * np.exp(-d1 ** 2 / 2) / np.sqrt(8 * np.pi * t) - f * (N_d2 * rf * K * np.exp(-rf * t))) / 365 vega = ((S * np.sqrt(t) * np.exp((-d1 ** 2) / 2)) / (np.sqrt(2 * np.pi) * 100)) rho = f * t * K * N_d2 * np.exp(-rf * t) / 100 # Returns Dataframe. return pd.DataFrame({ 'option_value_bs': val, 'intrinsic_value': val_int, 'time_value': val_time, 'delta': delta, 'gamma': gamma, 'theta': theta, 'vega': vega, 'rho': rho }) def monte_carlo( key: str, S: float, K: float, T: int, rf: float, iv: float, option_type: str, n: int = 200, rng: Any = None) -> Dict[str, Optional[float]]: """ Monte Carlo modeling function. Monte Carlo allows us to simulate seemingly random events, and assess risks (among other results, of course). It has been used to assess the risk of a given trading strategy. * https://python.plainenglish.io/monte-carlo-options-pricing-in-two-lines-of-python-cf3a39407010 * https://www.youtube.com/watch?v=sS7GtIFFr_Y * https://pythonforfinance.net/2016/11/28/monte-carlo-simulation-in-python/ * https://aaaquants.com/2017/09/01/monte-carlo-options-pricing-in-two-lines-of-python/#page-content This function is not fully vectorized. It needs to be in a loop, with each row passed for processing. All results are summarized by a Numpy func. Usage: :: vector_profit_probability = np.vectorize(monte_carlo) pop = vector_profit_probability( S=curr_price, K=opt['strike'].to_numpy(), T=opt['dte'].to_numpy(), rf=ten_yr, iv=opt['volatility'].to_numpy(), option_type=opt['option_type'].to_numpy(), rng=rng, n=1000 ) :param key: Key per result. Useful for future concatenation. :param S: Underlying Asset or Stock Price ($). :param K: Strike or Excercise Price ($). :param T: Expiry time of the option (days). :param rf: Risk-free rate (decimal number range 0-1). :param iv: Volatility (decimal). :param option_type: Calls or Puts option type. :param n: Number of Monte Carlo iterantions. min 100,000 recommended. :param rng: Random range generator, used when in loops. :return: Dictionary with keys: value, greeks. Value has 'option_value', 'intrinsic_value', and 'time_value'. Greeks jas delta, gamma, theta, rho. """ # Check inputs. assert option_type in ['calls', 'puts', 'call', 'put', 'c', 'p'], \ "Enter Calls or Puts options only." # np.random.seed(25) # Use for consistent testing. T = T if T != 0 else 1 D = np.exp(-rf * (T / 252)) # Randomized array of number of days x simulations, based of current price. # P = np.cumprod(1 + np.random.randn(n, T) * iv / np.sqrt(252), axis=1) * S # Generating random range is expensive, so doing it once. rng = np.random.Generator(np.random.PCG64()) if rng is None else rng rnd = rng.standard_normal((n, T), dtype=np.float32) P = np.cumprod(1 + rnd * iv / np.sqrt(252), axis=1) * S # Series on last day of simulation with premium difference. p_last = P[:, -1] - K * D # If calls, take only positive results. If puts, take negatives. if option_type in ['calls', 'call', 'c']: arr = np.where(p_last > 0, p_last, 0) else: arr = -np.where(p_last < 0, p_last, 0) # Take the average values of all the iterations on the last day. val = np.mean(arr) # Probability of Profit. pop_ITM = round(np.count_nonzero(arr) / p_last.size, 2) # Probability of Making 50% Profit. profit_req = 0.50 if option_type in ['calls', 'call', 'c']: arr = np.where(p_last > profit_req * val, p_last, 0) else: arr = -np.where(p_last < profit_req * val, p_last, 0) p50 = round(np.count_nonzero(arr) / p_last.size, 2) # Returns Dictionary. # Calculating quantiles is expensive, so only uncomment if necessary. return { 'symbol': key, 'option_value_mc': val, # Average value. Near Black Scholes Value. # 'value_quantile_5': np.percentile(p_last, 5), # 5% chance below X # 'value_quantile_50': np.percentile(p_last, 50), # 50% chance lands here. # 'value_quantile_95': np.percentile(p_last, 95), # 5% chance above X. 'probability_ITM': pop_ITM, # Probability of ending ITM. 'probability_of_50': p50, # Probability of makeing half profit. } def mc_numpy_vector(*args): """ Monte Carlo simulations vectorized so that arrays work in calculations DEPRECATED: It's faster to multithread this operation. """ curr_price, opt, ten_yr, rng, montecarlo_iterations = args vector_monte_carlo = np.vectorize(monte_carlo) _pop = vector_monte_carlo( key=opt['contractSymbol'], S=curr_price, K=opt['strikePrice'].to_numpy(), T=opt['daysToExpiration'].to_numpy(), rf=ten_yr, iv=opt['volatility'].to_numpy(), option_type=opt['option_type'].to_numpy(), rng=rng, n=montecarlo_iterations ) return pd.DataFrame.from_records(_pop) # pd.json_normalize(_pop.T) def mc_multi_threading(*args): """ Monte Carlo simulations vectorized so that arrays work in calculations. Multithreaded, means one CPU works multiple I/O. :param args: Passing all parameters from call. :return: Dataframe with results. Including a key to join later. """ def threader(opt, ten_yr, rng, montecarlo_iterations): _pop = vector_monte_carlo( key=opt.index.get_level_values('symbol').to_numpy(), S=opt['lastPrice'].to_numpy(), K=opt['strikePrice'].to_numpy(), T=opt['daysToExpiration'].to_numpy(), rf=ten_yr, iv=opt['volatility'].to_numpy(), option_type=opt.index.get_level_values('option_type').to_numpy(), rng=rng, n=montecarlo_iterations ) rez.append(_pop) rez = [] # List of dictionaries _opt, _ten_yr, _rng, _montecarlo_iterations, _chunks = args vector_monte_carlo = np.vectorize(monte_carlo) # Chunking tables in groups of 'chunks' values. Each a separate thread. dtes = _opt['daysToExpiration'].unique() # List of DTE's d_chunk = [dtes[i:i + _chunks] for i in range(0, len(dtes), _chunks)] df_chunks = [_opt[(_opt['daysToExpiration'].isin(dte))] for dte in d_chunk] # Multi-threading. threads = [] for df in df_chunks: arg = (df, _ten_yr, _rng, _montecarlo_iterations) t = threading.Thread(target=threader, args=arg) threads.append(t) [thread.start() for thread in threads] # Kickoff threading. [thread.join() for thread in threads] # Stop all threads. # Flatten list _result = [] for i in range(len(rez)): for j in rez[i]: _result.append(j) return pd.DataFrame.from_records(_result) class Modeling: def __init__(self, con, option_df): self.options = option_df.options # Options coming in. self.quote = None # All quote data. self.rf = 0 # Risk-free rate, i.e. 10-yr t-bill for modeling. self.prepare_tables(con) def get_quotes(self, con): """ Get current price data from TDA Source: https://developer.tdameritrade.com/quotes/apis/get/marketdata/quotes :return: Current underlying stock price merged into the options table. """ import httpx tickers = self.options.index.get_level_values('stock').unique().to_list() q = con.client.get_quotes(tickers) assert q.status_code == httpx.codes.OK, q.raise_for_status() prep = [v for k, v in q.json().items()] self.quote = pd.DataFrame.from_dict(prep) self.quote.rename(columns={'symbol': 'stock'}, inplace=True) def get_last_price(self, con): self.get_quotes(con) last_price = self.quote[[ "stock", # "description", # "bidPrice", # "bidSize", # "bidId", # "askPrice", # "askSize", # "askId", "lastPrice", # "lastSize", # "lastId", # "openPrice", # "highPrice", # "lowPrice", # "closePrice", # "netChange", # "totalVolume", # "quoteTimeInLong", # "tradeTimeInLong", # "mark", # "exchange", # "exchangeName", # "marginable", # "shortable", # "volatility", # "digits", # "52WkHigh", # "52WkLow", # "peRatio", # "divAmount", # "divYield", # "divDate", # "securityStatus", # "regularMarketLastPrice", # "regularMarketLastSize", # "regularMarketNetChange", # "regularMarketTradeTimeInLong", ]] last_price.set_index('stock', inplace=True) # pd.merge(self.options, last_price, on='stock') self.options = self.options.join(last_price, on='stock') def get_risk_free_rate(self): # Get 10-yr risk-free rate from FRED. _url = "https://fred.stlouisfed.org/graph/fredgraph.csv?id=DGS10" _csv = pd.read_csv(_url) _value = _csv['DGS10'].values[-1] self.rf = float(_value) / 100 def prepare_tables(self, con): self.get_last_price(con) self.get_risk_free_rate() def black_scholes(self): df = self.options.copy() if all(i in df.columns for i in ['putCall', 'symbol']): df = df.drop(columns=['putCall', 'symbol']).reset_index() # Black Scholes data here. Option value, greeks. bsch = black_scholes( S=df['lastPrice'].to_numpy(), K=df['strikePrice'].to_numpy(), T=df['daysToExpiration'].to_numpy(), rf=self.rf, iv=df['volatility'].to_numpy(), option_type=df['option_type'].to_numpy() ) df =
pd.concat([df, bsch], axis='columns')
pandas.concat
import pandas as pd def gcp_image_classification_transformation(json_data: dict): all_annotations = [] for obj in json_data: cloud_uri = obj.get("data").get("image") annotations = obj.get("annotations")[0] results = annotations.get("result") class_name = results[0].get("value").get("choices")[0] all_annotations.append([cloud_uri, class_name]) annotations_df =
pd.DataFrame(all_annotations)
pandas.DataFrame
import math import cv2 import numpy as np import pandas as pd ################################################################## ## ## ## create a 3d skeleton video in a blank background ## ## ## ################################################################## # {0, "Nose"} # {1, "Neck"}, # {2, "RShoulder"}, # {3, "RElbow"}, # {4, "RWrist"}, # {5, "LShoulder"}, # {6, "LElbow"}, # {7, "LWrist"}, # {8, "REye"}, # {9, "LEye"}, # {10, "MidHip"}, PARTS = [ "Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "REye", "LEye", "MidHip", ] SKELETON_EDGES = np.array( [ [0, 1], [1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 10], [8, 0], [9, 0], ] ) # theta, phi = 3.1415/4, -3.1415/6 theta, phi = -0.3, 0.24 should_rotate = False scale_dx = 800 scale_dy = 800 # plot 3d skeleton class Plotter3d: def __init__( self, canvas_size, origin=(0.5, 0.5), scale=1, parts=PARTS, skeleton_edges=SKELETON_EDGES, ): self.origin = np.array( [origin[1] * canvas_size[1], origin[0] * canvas_size[0]], dtype=np.float32, ) # x, y self.scale = np.float32(scale) self.theta = 0 self.phi = 0 self.parts = parts self.skeleton_edges = skeleton_edges axis_length = 200 axes = [ np.array( [ [-axis_length / 2, -axis_length / 2, 0], [axis_length / 2, -axis_length / 2, 0], ], dtype=np.float32, ), np.array( [ [-axis_length / 2, -axis_length / 2, 0], [-axis_length / 2, axis_length / 2, 0], ], dtype=np.float32, ), np.array( [ [-axis_length / 2, -axis_length / 2, 0], [-axis_length / 2, -axis_length / 2, axis_length], ], dtype=np.float32, ), ] step = 20 for step_id in range(axis_length // step + 1): # add grid axes.append( np.array( [ [ -axis_length / 2, -axis_length / 2 + step_id * step, 0, ], [ axis_length / 2, -axis_length / 2 + step_id * step, 0, ], ], dtype=np.float32, ) ) axes.append( np.array( [ [ -axis_length / 2 + step_id * step, -axis_length / 2, 0, ], [ -axis_length / 2 + step_id * step, axis_length / 2, 0, ], ], dtype=np.float32, ) ) self.axes = np.array(axes) def plot(self, img, vertices, edges): global theta, phi img.fill(0) R = self._get_rotation(theta, phi) self._draw_axes(img, R) if len(edges) != 0: self._plot_edges(img, vertices, edges, R) def _draw_axes(self, img, R): axes_2d = np.dot(self.axes, R) axes_2d = axes_2d * self.scale + self.origin for axe in axes_2d: axe = axe.astype(int) cv2.line( img, tuple(axe[0]), tuple(axe[1]), (128, 128, 128), 1, cv2.LINE_AA, ) def _plot_edges(self, img, vertices, edges, R): vertices_2d = np.dot(vertices, R) edges_vertices = ( vertices_2d.reshape((-1, 2))[edges] * self.scale + self.origin ) for edge_vertices in edges_vertices: edge_vertices = edge_vertices.astype(int) cv2.line( img, tuple(edge_vertices[0]), tuple(edge_vertices[1]), (255, 255, 255), 1, cv2.LINE_AA, ) def _get_rotation(self, theta, phi): sin, cos = math.sin, math.cos return np.array( [ [cos(theta), sin(theta) * sin(phi)], [-sin(theta), cos(theta) * sin(phi)], [0, -cos(phi)], ], dtype=np.float32, ) # transposed @staticmethod def mouse_callback(event, x, y, flags, params): global previous_position, theta, phi, should_rotate, scale_dx, scale_dy if event == cv2.EVENT_LBUTTONDOWN: previous_position = [x, y] should_rotate = True if event == cv2.EVENT_MOUSEMOVE and should_rotate: theta += (x - previous_position[0]) / scale_dx * 6.2831 # 360 deg phi -= ( (y - previous_position[1]) / scale_dy * 6.2831 * 2 ) # 360 deg phi = max(min(3.1415 / 2, phi), -3.1415 / 2) previous_position = [x, y] if event == cv2.EVENT_LBUTTONUP: should_rotate = False # read skeleton data from the csv def read_csv(filename): """ Parameters ---------- filename : str Path to the CSV file. Returns ------- df_new : dataframe Normalised coordinates of 3D pose. """ dataframe =
pd.read_csv(filename, index_col="Body Part")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Apr 7 14:28:48 2021 @author: hqin Description: This script main used to extract the intersect sites with one liminted depth(eg: totalRN>=10) in all reps, in order to used varify the accuracy of our LSTM models among reps with the same sites with same depth. This can avoid the effect of different depth on predicted m6A sites among reps. """ import pandas as pd import argparse, sys, os import dataFrame_merge as dFm import Python_matlibPlot_V2 as pmp import matplotlib.pyplot as plt import matplotlib_venn as mv import venn # import seaborn as sns def get_path(flist): """ path/file1 name1 Chr,genoLoci,strand,geneid,... path/file2 name2 Chr,genoLoci,strand,geneid,... """ files = list() for i, line in enumerate(open(flist,'r',encoding="utf-8")): file = line.strip().split("\t")[0] files.append(file) path = os.path.dirname(files[0]) return path def get_label(df, labels): """ labels->label: Chr,genoLoci,strand -> Chr_genoLoci_strand """ labs =list() for item in df.iterrows():# 按行遍历df item = item[1] #返回该行所有值,item[0]为返回改行index ele = "_".join([str(item[i]) for i in labels]) labs.append(ele) return labs def Extract_DepthSites(dfsList, labelList, sampleNameList, depth, ratio): dfs = list() label = labelList[0] for i, df in enumerate(dfsList): df["label"] = get_label(df, label) #df["totalRN"] = df["totalRN"].astype("int64") #用于totalRN列数值直接就是整数的情况 df["totalRN"] = df["totalRN"].astype("float64").astype("int64") #用于totalRN列数值带小数的时候 df["ratio"] = df["ratio"].astype("float64") # df = df.loc[df["totalRN"] >= df["totalRN"].mean() & df["ratio" >= 0.1]] #提取覆盖深度大于平均深度同时ratio大于等于0.1的行 df = df[(df["totalRN"] >= float(depth)) & (df["ratio"] >= float(ratio))] sampleName = sampleNameList[i] tmp = "LSTM_genoLoci_T%sR%s.txt"%(str(depth), str(ratio)) ouf = "_".join([sampleName, tmp]) oufPath = "/".join([path, ouf]) print(oufPath) df.to_csv(oufPath, sep = "\t", index = False) dfs.append(df) return dfs def extract_label(dfsList): labelValList = list() for i, df in enumerate(dfsList): labelVal = df["label"].drop_duplicates().values.tolist() labelValList.append(labelVal) return labelValList def Veen(dfsList, sampleNames): ValueSet = list() labelValList = extract_label(dfsList) sampleNametup = tuple(sampleNames) for i in range(len(labelValList)): ValueSet.append(set(labelValList[i])) #covert each element of valuelist from list() to set() my_dpi=150 #控制图尺寸的同时,使图高分辨率(高清)显示 plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi) if len(labelValList) > 4: sys.exit("Do not plot over 3 datasets") elif len(labelValList) == 2: g = mv.venn2(subsets= ValueSet, set_labels = sampleNametup, #try ste_labels whether need a tuple() but ont list() set_colors = ('#3d9a9b', '#c59a38'), alpha = 0.8, normalize_to = 1.0 ) elif len(labelValList) == 3: g = mv.venn3(subsets= ValueSet, set_labels = sampleNametup, set_colors = ('#3d9a9b', '#8d4c4e', '#c59a38'), alpha = 0.8, normalize_to = 1.0 ) elif len(labelValList) == 4: labels = venn.get_labels(list(ValueSet), fill=['number','percent']) g, ax = venn.venn4(labels, names=list(sampleNametup),fontsize=8) else: """ pyvenn plot over four-dimensional venn figures https://zhuanlan.zhihu.com/p/195541937 """ pass # for text in g.set_labels: # text.set_fontsize(8) # for text in g.subset_labels: # text.set_fontsize(6) def Df_merge(dfs, labelList, sampleNames, depth, ratio): label = labelList[0] if len(dfs) <= 1: sys.exit("Please check filelist contains two files at least.\n") if len(dfs) == 2: ins = pd.merge(dfs[0],dfs[1],on=label) elif len(dfs) == 3: ins1 = pd.merge(dfs[0],dfs[1],on=label) ins = pd.merge(ins1,dfs[2],on=label) elif len(dfs) == 4: ins1 = pd.merge(dfs[0],dfs[1],on=label) ins2 =
pd.merge(dfs[2],dfs[3],on=label)
pandas.merge
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = ( "The default of the 'keep_tz' keyword in " "DatetimeIndex.to_series will change to True in a future " "release." ) assert msg in str(m[0].message) with tm.assert_produces_warning(FutureWarning): result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx") df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx) expected = DataFrame( { "idx": [ datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5), ], "a": range(5), "b": ["A", "B", "C", "D", "E"], }, columns=["idx", "a", "b"], ) expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_set_index_timezone(self): # GH 12358 # tz-aware Series should retain the tz idx = to_datetime(["2014-01-01 10:10:10"], utc=True).tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index") ) tm.assert_frame_equal(res, exp) # GH 12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_reset_index_with_intervals(self): idx = IntervalIndex.from_breaks(np.arange(11), name="x") original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]] result = original.set_index("x") expected = DataFrame({"y": np.arange(10)}, index=idx) tm.assert_frame_equal(result, expected) result2 = result.reset_index() tm.assert_frame_equal(result2, original) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) result = df.set_index(df.columns[0]) expected = df.iloc[:, 1:] expected.index = df.iloc[:, 0].values expected.index.names = [df.columns[0]] tm.assert_frame_equal(result, expected) def test_set_index_empty_column(self): # GH 1971 df = DataFrame( [ {"a": 1, "p": 0}, {"a": 2, "m": 10}, {"a": 3, "m": 11, "p": 20}, {"a": 4, "m": 12, "p": 21}, ], columns=("a", "m", "p", "x"), ) result = df.set_index(["a", "x"]) expected = df[["m", "p"]] expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"]) tm.assert_frame_equal(result, expected) def test_set_columns(self, float_string_frame): cols = Index(np.arange(len(float_string_frame.columns))) float_string_frame.columns = cols with pytest.raises(ValueError, match="Length mismatch"): float_string_frame.columns = cols[::2] def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo") df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.reindex(idx2) tm.assert_index_equal(df.index, idx2) # GH 11314 # with tz index = date_range( datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern" ) df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index) new_index = date_range( datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern" ) result = df.set_index(new_index) assert result.index.freq == index.freq # Renaming def test_rename(self, float_frame): mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} renamed = float_frame.rename(columns=mapping) renamed2 = float_frame.rename(columns=str.lower) tm.assert_frame_equal(renamed, renamed2) tm.assert_frame_equal( renamed2.rename(columns=str.upper), float_frame, check_names=False ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = DataFrame(data) renamed = df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["foo", "bar"])) renamed = df.rename(index=str.upper) tm.assert_index_equal(renamed.index, Index(["BAR", "FOO"])) # have to pass something with pytest.raises(TypeError, match="must pass an index to rename"): float_frame.rename() # partial columns renamed = float_frame.rename(columns={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.columns, Index(["A", "B", "foo", "bar"])) # other axis renamed = float_frame.T.rename(index={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.index, Index(["A", "B", "foo", "bar"])) # index with name index = Index(["foo", "bar"], name="name") renamer = DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["bar", "foo"], name="name")) assert renamed.index.name == renamer.index.name def test_rename_axis_inplace(self, float_frame): # GH 15704 expected = float_frame.rename_axis("foo") result = float_frame.copy() no_return = result.rename_axis("foo", inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) expected = float_frame.rename_axis("bar", axis=1) result = float_frame.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) def test_rename_axis_raises(self): # https://github.com/pandas-dev/pandas/issues/17833 df = DataFrame({"A": [1, 2], "B": [1, 2]}) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis({0: 10, 1: 20}, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=1) with pytest.raises(ValueError, match="Use `.rename`"): df["A"].rename_axis(id) def test_rename_axis_mapper(self): # GH 19978 mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) df = DataFrame( {"x": [i for i in range(len(mi))], "y": [i * 10 for i in range(len(mi))]}, index=mi, ) # Test for rename of the Index object of columns result = df.rename_axis("cols", axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="cols")) # Test for rename of the Index object of columns using dict result = result.rename_axis(columns={"cols": "new"}, axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="new")) # Test for renaming index using dict result = df.rename_axis(index={"ll": "foo"}) assert result.index.names == ["foo", "nn"] # Test for renaming index using a function result = df.rename_axis(index=str.upper, axis=0) assert result.index.names == ["LL", "NN"] # Test for renaming index providing complete list result = df.rename_axis(index=["foo", "goo"]) assert result.index.names == ["foo", "goo"] # Test for changing index and columns at same time sdf = df.reset_index().set_index("nn").drop(columns=["ll", "y"]) result = sdf.rename_axis(index="foo", columns="meh") assert result.index.name == "foo" assert result.columns.name == "meh" # Test different error cases with pytest.raises(TypeError, match="Must pass"): df.rename_axis(index="wrong") with pytest.raises(ValueError, match="Length of names"): df.rename_axis(index=["wrong"]) with pytest.raises(TypeError, match="bogus"): df.rename_axis(bogus=None) @pytest.mark.parametrize( "kwargs, rename_index, rename_columns", [ ({"mapper": None, "axis": 0}, True, False), ({"mapper": None, "axis": 1}, False, True), ({"index": None}, True, False), ({"columns": None}, False, True), ({"index": None, "columns": None}, True, True), ({}, False, False), ], ) def test_rename_axis_none(self, kwargs, rename_index, rename_columns): # GH 25034 index = Index(list("abc"), name="foo") columns = Index(["col1", "col2"], name="bar") data = np.arange(6).reshape(3, 2) df =
DataFrame(data, index, columns)
pandas.DataFrame
import os import itertools import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt from datetime import datetime def basic_prediction(): return def forecasting(df_blocks_): df_blocks_['date'] =
pd.to_datetime(df_blocks_['date'])
pandas.to_datetime
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(line) for line in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df = DataFrame([[1, 2], [3, 4]]) fmt.set_option("display.show_dimensions", True) assert "2 rows" in df._repr_html_() fmt.set_option("display.show_dimensions", False) assert "2 rows" not in df._repr_html_() tm.reset_display_options() def test_repr_html_mathjax(self): df = DataFrame([[1, 2], [3, 4]]) assert "tex2jax_ignore" not in df._repr_html_() with option_context("display.html.use_mathjax", False): assert "tex2jax_ignore" in df._repr_html_() def test_repr_html_wide(self): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() wide_df = DataFrame(tm.rands_array(25, size=(10, max_cols + 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in wide_df._repr_html_() def test_repr_html_wide_multiindex_cols(self): max_cols = 20 mcols = MultiIndex.from_product( [np.arange(max_cols // 2), ["foo", "bar"]], names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) reg_repr = df._repr_html_() assert "..." not in reg_repr mcols = MultiIndex.from_product( (np.arange(1 + (max_cols // 2)), ["foo", "bar"]), names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_repr_html_long(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) reg_repr = df._repr_html_() assert ".." not in reg_repr assert str(41 + max_rows // 2) in reg_repr h = max_rows + 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) long_repr = df._repr_html_() assert ".." in long_repr assert str(41 + max_rows // 2) not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_float(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") reg_repr = df._repr_html_() assert ".." not in reg_repr assert f"<td>{40 + h}</td>" in reg_repr h = max_rows + 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") long_repr = df._repr_html_() assert ".." in long_repr assert "<td>31</td>" not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_long_multiindex(self): max_rows = 60 max_L1 = max_rows // 2 tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx, columns=["A", "B"]) with option_context("display.max_rows", 60, "display.max_columns", 20): reg_repr = df._repr_html_() assert "..." not in reg_repr tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame( np.random.randn((max_L1 + 1) * 2, 2), index=idx, columns=["A", "B"] ) long_repr = df._repr_html_() assert "..." in long_repr def test_repr_html_long_and_wide(self): max_cols = 20 max_rows = 60 h, w = max_rows - 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() h, w = max_rows + 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_info_repr(self): # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect # the terminal size to ensure that we try to print something "too big" term_width, term_height = get_terminal_size() max_rows = 60 max_cols = 20 + (max(term_width, 80) - 80) // 4 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_vertically_truncated_repr(df) with option_context("display.large_repr", "info"): assert has_info_repr(df) # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_horizontally_truncated_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert has_info_repr(df) def test_info_repr_max_cols(self): # GH #6939 df = DataFrame(np.random.randn(10, 5)) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 4, ): assert has_non_verbose_info_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 5, ): assert not has_non_verbose_info_repr(df) # test verbose overrides # fmt.set_option('display.max_info_columns', 4) # exceeded def test_info_repr_html(self): max_rows = 60 max_cols = 20 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert r"&lt;class" not in df._repr_html_() with option_context("display.large_repr", "info"): assert r"&lt;class" in df._repr_html_() # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert "<class" not in df._repr_html_() with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert "&lt;class" in df._repr_html_() def test_fake_qtconsole_repr_html(self, float_frame): df = float_frame def get_ipython(): return {"config": {"KernelApp": {"parent_appname": "ipython-qtconsole"}}} repstr = df._repr_html_() assert repstr is not None fmt.set_option("display.max_rows", 5, "display.max_columns", 2) repstr = df._repr_html_() assert "class" in repstr # info fallback tm.reset_display_options() def test_pprint_pathological_object(self): """ If the test fails, it at least won't hang. """ class A: def __getitem__(self, key): return 3 # obviously simplified df = DataFrame([A()]) repr(df) # just don't die def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] skip = True for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: if line.startswith("dtype:"): continue if _three_digit_exp(): assert ("+010" in line) or skip else: assert ("+10" in line) or skip skip = False @pytest.mark.parametrize( "data, expected", [ (["3.50"], "0 3.50\ndtype: object"), ([1.20, "1.00"], "0 1.2\n1 1.00\ndtype: object"), ([np.nan], "0 NaN\ndtype: float64"), ([None], "0 None\ndtype: object"), (["3.50", np.nan], "0 3.50\n1 NaN\ndtype: object"), ([3.50, np.nan], "0 3.5\n1 NaN\ndtype: float64"), ([3.50, np.nan, "3.50"], "0 3.5\n1 NaN\n2 3.50\ndtype: object"), ([3.50, None, "3.50"], "0 3.5\n1 None\n2 3.50\ndtype: object"), ], ) def test_repr_str_float_truncation(self, data, expected): # GH#38708 series = Series(data) result = repr(series) assert result == expected @pytest.mark.parametrize( "float_format,expected", [ ("{:,.0f}".format, "0 1,000\n1 test\ndtype: object"), ("{:.4f}".format, "0 1000.0000\n1 test\ndtype: object"), ], ) def test_repr_float_format_in_object_col(self, float_format, expected): # GH#40024 df = Series([1000.0, "test"]) with option_context("display.float_format", float_format): result = repr(df) assert result == expected def test_dict_entries(self): df = DataFrame({"A": [{"a": 1, "b": 2}]}) val = df.to_string() assert "'a': 1" in val assert "'b': 2" in val def test_categorical_columns(self): # GH35439 data = [[4, 2], [3, 2], [4, 3]] cols = ["aaaaaaaaa", "b"] df = DataFrame(data, columns=cols) df_cat_cols = DataFrame(data, columns=pd.CategoricalIndex(cols)) assert df.to_string() == df_cat_cols.to_string() def test_period(self): # GH 12615 df = DataFrame( { "A": pd.period_range("2013-01", periods=4, freq="M"), "B": [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), pd.Period("2011-04", freq="M"), ], "C": list("abcd"), } ) exp = ( " A B C\n" "0 2013-01 2011-01 a\n" "1 2013-02 2011-02-01 b\n" "2 2013-03 2011-03-01 09:00 c\n" "3 2013-04 2011-04 d" ) assert str(df) == exp @pytest.mark.parametrize( "length, max_rows, min_rows, expected", [ (10, 10, 10, 10), (10, 10, None, 10), (10, 8, None, 8), (20, 30, 10, 30), # max_rows > len(frame), hence max_rows (50, 30, 10, 10), # max_rows < len(frame), hence min_rows (100, 60, 10, 10), # same (60, 60, 10, 60), # edge case (61, 60, 10, 10), # edge case ], ) def test_max_rows_fitted(self, length, min_rows, max_rows, expected): """Check that display logic is correct. GH #37359 See description here: https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options """ formatter = fmt.DataFrameFormatter( DataFrame(np.random.rand(length, 3)), max_rows=max_rows, min_rows=min_rows, ) result = formatter.max_rows_fitted assert result == expected def gen_series_formatting(): s1 = Series(["a"] * 100) s2 = Series(["ab"] * 100) s3 = Series(["a", "ab", "abc", "abcd", "abcde", "abcdef"]) s4 = s3[::-1] test_sers = {"onel": s1, "twol": s2, "asc": s3, "desc": s4} return test_sers class TestSeriesFormatting: def setup_method(self, method): self.ts = tm.makeTimeSeries() def test_repr_unicode(self): s = Series(["\u03c3"] * 10) repr(s) a = Series(["\u05d0"] * 1000) a.name = "title1" repr(a) def test_to_string(self): buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) assert retval is None assert buf.getvalue().strip() == s # pass float_format format = "%.4f".__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split("\n")[:-1]] expected = [format(x) for x in self.ts] assert result == expected # empty string result = self.ts[:0].to_string() assert result == "Series([], Freq: B)" result = self.ts[:0].to_string(length=0) assert result == "Series([], Freq: B)" # name and length cp = self.ts.copy() cp.name = "foo" result = cp.to_string(length=True, name=True, dtype=True) last_line = result.split("\n")[-1].strip() assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64") def test_freq_name_separation(self): s = Series( np.random.randn(10), index=date_range("1/1/2000", periods=10), name=0 ) result = repr(s) assert "Freq: D, Name: 0" in result def test_to_string_mixed(self): s = Series(["foo", np.nan, -1.23, 4.56]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 -1.23\n" + "3 4.56" assert result == expected # but don't count NAs as floats s = Series(["foo", np.nan, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 bar\n" + "3 baz" assert result == expected s = Series(["foo", 5, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 5\n" + "2 bar\n" + "3 baz" assert result == expected def test_to_string_float_na_spacing(self): s = Series([0.0, 1.5678, 2.0, -3.0, 4.0]) s[::2] = np.nan result = s.to_string() expected = ( "0 NaN\n" + "1 1.5678\n" + "2 NaN\n" + "3 -3.0000\n" + "4 NaN" ) assert result == expected def test_to_string_without_index(self): # GH 11729 Test index=False option s = Series([1, 2, 3, 4]) result = s.to_string(index=False) expected = "1\n" + "2\n" + "3\n" + "4" assert result == expected def test_unicode_name_in_footer(self): s = Series([1, 2], name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf = fmt.SeriesFormatter(s, name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf._get_footer() # should not raise exception def test_east_asian_unicode_series(self): # not aligned properly because of east asian width # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = "あ a\nいい bb\nううう CCC\nええええ D\ndtype: object" assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = "a あ\nbb いい\nc ううう\nddd ええええ\ndtype: object" assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\nいいいい いい\nう ううう\nえええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお" ) expected = ( "ああ あ\nいいいい いい\nう ううう\n" "えええ ええええ\nName: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\nあああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"] ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = ( "あ a\nいい bb\nううう CCC\n" "ええええ D\ndtype: object" ) assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = ( "a あ\nbb いい\nc ううう\n" "ddd ええええ\ndtype: object" ) assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお", ) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\n" "Name: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\n" "dtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"], ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n" " ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # ambiguous unicode s = Series( ["¡¡", "い¡¡", "ううう", "ええええ"], index=["ああ", "¡¡¡¡いい", "¡¡", "えええ"] ) expected = ( "ああ ¡¡\n" "¡¡¡¡いい い¡¡\n" "¡¡ ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] for line in repr(Series(vals)).split("\n"): if line.startswith("dtype:"): continue if _three_digit_exp(): assert "+010" in line else: assert "+10" in line def test_datetimeindex(self): index = date_range("20130102", periods=6) s = Series(1, index=index) result = s.to_string() assert "2013-01-02" in result # nat in index s2 = Series(2, index=[Timestamp("20130111"), NaT]) s = s2.append(s) result = s.to_string() assert "NaT" in result # nat in summary result = str(s2.index) assert "NaT" in result @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex s1 = Series(date_range(start=start_date, freq="D", periods=5)) result = str(s1) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) s2 = Series(3, index=dti) result = str(s2.index) assert start_date in result def test_timedelta64(self): from datetime import ( datetime, timedelta, ) Series(np.array([1100, 20], dtype="timedelta64[ns]")).to_string() s = Series(date_range("2012-1-1", periods=3, freq="D")) # GH2146 # adding NaTs y = s - s.shift(1) result = y.to_string() assert "1 days" in result assert "00:00:00" not in result assert "NaT" in result # with frac seconds o = Series([datetime(2012, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +23:59:59.999850" in result # rounding? o = Series([datetime(2012, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +23:00:00" in result assert "1 days 23:00:00" in result o = Series([datetime(2012, 1, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +22:59:00" in result assert "1 days 22:59:00" in result o = Series([datetime(2012, 1, 1, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +22:58:59.999850" in result assert "0 days 22:58:59.999850" in result # neg time td = timedelta(minutes=5, seconds=3) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - s2 result = y.to_string() assert "-1 days +23:54:57" in result td = timedelta(microseconds=550) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - td result = y.to_string() assert "2012-01-01 23:59:59.999450" in result # no boxing of the actual elements td = Series(pd.timedelta_range("1 days", periods=3)) result = td.to_string() assert result == "0 1 days\n1 2 days\n2 3 days" def test_mixed_datetime64(self): df = DataFrame({"A": [1, 2], "B": ["2012-01-01", "2012-01-02"]}) df["B"] = pd.to_datetime(df.B) result = repr(df.loc[0]) assert "2012-01-01" in result def test_period(self): # GH 12615 index = pd.period_range("2013-01", periods=6, freq="M") s = Series(np.arange(6, dtype="int64"), index=index) exp = ( "2013-01 0\n" "2013-02 1\n" "2013-03 2\n" "2013-04 3\n" "2013-05 4\n" "2013-06 5\n" "Freq: M, dtype: int64" ) assert str(s) == exp s = Series(index) exp = ( "0 2013-01\n" "1 2013-02\n" "2 2013-03\n" "3 2013-04\n" "4 2013-05\n" "5 2013-06\n" "dtype: period[M]" ) assert str(s) == exp # periods with mixed freq s = Series( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), ] ) exp = ( "0 2011-01\n1 2011-02-01\n" "2 2011-03-01 09:00\ndtype: object" ) assert str(s) == exp def test_max_multi_index_display(self): # GH 7101 # doc example (indexing.rst) # multi-index arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = list(zip(*arrays)) index = MultiIndex.from_tuples(tuples, names=["first", "second"]) s = Series(np.random.randn(8), index=index) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 10 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 10 # index s = Series(np.random.randn(8), None) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 9 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 3 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 9 # Make sure #8532 is fixed def test_consistent_format(self): s = Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9999, 1, 1] * 10) with option_context("display.max_rows", 10, "display.show_dimensions", False): res = repr(s) exp = ( "0 1.0000\n1 1.0000\n2 1.0000\n3 " "1.0000\n4 1.0000\n ... \n125 " "1.0000\n126 1.0000\n127 0.9999\n128 " "1.0000\n129 1.0000\ndtype: float64" ) assert res == exp def chck_ncols(self, s): with option_context("display.max_rows", 10): res = repr(s) lines = res.split("\n") lines = [ line for line in repr(s).split("\n") if not re.match(r"[^\.]*\.+", line) ][:-1] ncolsizes = len({len(line.strip()) for line in lines}) assert ncolsizes == 1 def test_format_explicit(self): test_sers = gen_series_formatting() with option_context("display.max_rows", 4, "display.show_dimensions", False): res = repr(test_sers["onel"]) exp = "0 a\n1 a\n ..\n98 a\n99 a\ndtype: object" assert exp == res res = repr(test_sers["twol"]) exp = "0 ab\n1 ab\n ..\n98 ab\n99 ab\ndtype: object" assert exp == res res = repr(test_sers["asc"]) exp = ( "0 a\n1 ab\n ... \n4 abcde\n5 " "abcdef\ndtype: object" ) assert exp == res res = repr(test_sers["desc"]) exp = ( "5 abcdef\n4 abcde\n ... \n1 ab\n0 " "a\ndtype: object" ) assert exp == res def test_ncols(self): test_sers = gen_series_formatting() for s in test_sers.values(): self.chck_ncols(s) def test_max_rows_eq_one(self): s = Series(range(10), dtype="int64") with option_context("display.max_rows", 1): strrepr = repr(s).split("\n") exp1 = ["0", "0"] res1 = strrepr[0].split() assert exp1 == res1 exp2 = [".."] res2 = strrepr[1].split() assert exp2 == res2 def test_truncate_ndots(self): def getndots(s): return len(re.match(r"[^\.]*(\.*)", s).groups()[0]) s = Series([0, 2, 3, 6]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 2 s = Series([0, 100, 200, 400]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 3 def test_show_dimensions(self): # gh-7117 s = Series(range(5)) assert "Length" not in repr(s) with option_context("display.max_rows", 4): assert "Length" in repr(s) with option_context("display.show_dimensions", True): assert "Length" in repr(s) with option_context("display.max_rows", 4, "display.show_dimensions", False): assert "Length" not in repr(s) def test_repr_min_rows(self): s = Series(range(20)) # default setting no truncation even if above min_rows assert ".." not in repr(s) s = Series(range(61)) # default of max_rows 60 triggers truncation if above assert ".." in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(s) assert "2 " not in repr(s) with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(s) with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(s) def test_to_string_name(self): s = Series(range(100), dtype="int64") s.name = "myser" res = s.to_string(max_rows=2, name=True) exp = "0 0\n ..\n99 99\nName: myser" assert res == exp res = s.to_string(max_rows=2, name=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_dtype(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, dtype=True) exp = "0 0\n ..\n99 99\ndtype: int64" assert res == exp res = s.to_string(max_rows=2, dtype=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_length(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, length=True) exp = "0 0\n ..\n99 99\nLength: 100" assert res == exp def test_to_string_na_rep(self): s = Series(index=range(100), dtype=np.float64) res = s.to_string(na_rep="foo", max_rows=2) exp = "0 foo\n ..\n99 foo" assert res == exp def test_to_string_float_format(self): s = Series(range(10), dtype="float64") res = s.to_string(float_format=lambda x: f"{x:2.1f}", max_rows=2) exp = "0 0.0\n ..\n9 9.0" assert res == exp def test_to_string_header(self): s = Series(range(10), dtype="int64") s.index.name = "foo" res = s.to_string(header=True, max_rows=2) exp = "foo\n0 0\n ..\n9 9" assert res == exp res = s.to_string(header=False, max_rows=2) exp = "0 0\n ..\n9 9" assert res == exp def test_to_string_multindex_header(self): # GH 16718 df = DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}).set_index(["a", "b"]) res = df.to_string(header=["r1", "r2"]) exp = " r1 r2\na b \n0 1 2 3" assert res == exp def test_to_string_empty_col(self): # GH 13653 s = Series(["", "Hello", "World", "", "", "Mooooo", "", ""]) res = s.to_string(index=False) exp = " \n Hello\n World\n \n \nMooooo\n \n " assert re.match(exp, res) class TestGenericArrayFormatter: def test_1d_array(self): # GenericArrayFormatter is used on types for which there isn't a dedicated # formatter. np.bool_ is one of those types. obj = fmt.GenericArrayFormatter(np.array([True, False])) res = obj.get_result() assert len(res) == 2 # Results should be right-justified. assert res[0] == " True" assert res[1] == " False" def test_2d_array(self): obj = fmt.GenericArrayFormatter(np.array([[True, False], [False, True]])) res = obj.get_result() assert len(res) == 2 assert res[0] == " [True, False]" assert res[1] == " [False, True]" def test_3d_array(self): obj = fmt.GenericArrayFormatter( np.array([[[True, True], [False, False]], [[False, True], [True, False]]]) ) res = obj.get_result() assert len(res) == 2 assert res[0] == " [[True, True], [False, False]]" assert res[1] == " [[False, True], [True, False]]" def test_2d_extension_type(self): # GH 33770 # Define a stub extension type with just enough code to run Series.__repr__() class DtypeStub(pd.api.extensions.ExtensionDtype): @property def type(self): return np.ndarray @property def name(self): return "DtypeStub" class ExtTypeStub(pd.api.extensions.ExtensionArray): def __len__(self): return 2 def __getitem__(self, ix): return [ix == 1, ix == 0] @property def dtype(self): return DtypeStub() series = Series(ExtTypeStub()) res = repr(series) # This line crashed before #33770 was fixed. expected = "0 [False True]\n" + "1 [ True False]\n" + "dtype: DtypeStub" assert res == expected def _three_digit_exp(): return f"{1.7e8:.4g}" == "1.7e+008" class TestFloatArrayFormatter: def test_misc(self): obj = fmt.FloatArrayFormatter(np.array([], dtype=np.float64)) result = obj.get_result() assert len(result) == 0 def test_format(self): obj = fmt.FloatArrayFormatter(np.array([12, 0], dtype=np.float64)) result = obj.get_result() assert result[0] == " 12.0" assert result[1] == " 0.0" def test_output_display_precision_trailing_zeroes(self): # Issue #20359: trimming zeros while there is no decimal point # Happens when display precision is set to zero with option_context("display.precision", 0): s =
Series([840.0, 4200.0])
pandas.Series
#!/usr/bin/env python # coding: utf-8 from collections import OrderedDict import os import sys import math import functools import cv2 import nltk import pandas import numpy as np from PIL import Image, ImageEnhance import torch import matplotlib import seaborn as sns import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.colors import Normalize, LinearSegmentedColormap # + # plotting imageDims = (14, 14) figureImageDims = (2, 3) figureTableDims = (5, 4) fontScale = 1 # set transparent mask for low attention areas # cdict = plt.get_cmap("gnuplot2")._segmentdata cdict = { "red": ((0.0, 0.0, 0.0), (0.6, 0.8, 0.8), (1.0, 1, 1)), "green": ((0.0, 0.0, 0.0), (0.6, 0.8, 0.8), (1.0, 1, 1)), "blue": ((0.0, 0.0, 0.0), (0.6, 0.8, 0.8), (1.0, 1, 1)) } cdict["alpha"] = ((0.0, 0.35, 0.35), (1.0, 0.65, 0.65)) plt.register_cmap(name="custom", data=cdict) def showTableAtt(table, words, tax=None): ''' Question attention as sns heatmap ''' if tax is None: fig2, bx = plt.subplots(1, 1) bx.cla() else: bx = tax sns.set(font_scale=fontScale) steps = len(table) # traspose table table = np.transpose(table) tableMap = pandas.DataFrame(data=table, columns=[i for i in range(1, steps + 1)], index=words) bx = sns.heatmap(tableMap, cmap="Purples", cbar=False, linewidths=.5, linecolor="gray", square=True, # ax=bx, ) # # x ticks bx.xaxis.tick_top() locs, labels = plt.xticks() plt.setp(labels, rotation=0) # y ticks locs, labels = plt.yticks() plt.setp(labels, rotation=0) # ### Visualizing Image Atts def sigmoid(x): return 1 / (1 + np.exp(-x)) dx, dy = 0.05, 0.05 x = np.arange(-1.5, 1.5, dx) y = np.arange(-1.0, 1.0, dy) X, Y = np.meshgrid(x, y) extent = np.min(x), np.max(x), np.min(y), np.max(y) def show_img_att(img, att, ax, dim=None): ax.cla() if dim is None: dim = int(math.sqrt(len(att))) ax.imshow(img, interpolation="nearest", extent=extent) ax.imshow(att.reshape((dim, dim)), cmap=plt.get_cmap('custom'), interpolation="bicubic", extent=extent, ) ax.set_axis_off() plt.axis("off") ax.set_aspect("auto") def showImgAtt(img, atts, step, ax): ax.cla() dim = int(math.sqrt(len(atts[0][0]))) img1 = ax.imshow(img, interpolation="nearest", extent=extent) att = atts[step][0] low = att.min().item() high = att.max().item() att = sigmoid(((att - low) / (high - low)) * 20 - 10) ax.imshow(att.reshape((dim, dim)), cmap=plt.get_cmap('custom'), interpolation="bicubic", extent=extent, ) ax.set_axis_off() plt.axis("off") ax.set_aspect("auto") def showImgAtts(atts, impath): img = imread(impath) length = len(atts) # show images for j in range(length): fig, ax = plt.subplots() fig.set_figheight(figureImageDims[0]) fig.set_figwidth(figureImageDims[1]) showImgAtt(img, atts, j, ax) plt.subplots_adjust(bottom=0, top=1, left=0, right=1) def setlabel(ax, label, loc=2, borderpad=0.6, **kwargs): legend = ax.get_legend() if legend: ax.add_artist(legend) line, = ax.plot(np.NaN, np.NaN, color='none', label=label) label_legend = ax.legend( handles=[line], loc=loc, handlelength=0, handleheight=0, handletextpad=0, borderaxespad=0, borderpad=borderpad, frameon=False, prop={ 'size': 22, 'weight': 'bold', }, **kwargs, ) for text in label_legend.get_texts(): plt.setp(text, color=(1, 0, 1)) label_legend.remove() ax.add_artist(label_legend) line.remove() def get_image(image_path, enhance=True): image = Image.open(image_path).convert('RGB') if enhance: enhancer = ImageEnhance.Brightness(image) image = enhancer.enhance(0.5) enhancer = ImageEnhance.Contrast(image) image = enhancer.enhance(1.6) return image def plot_table_attn( ax, data, columns, index, vmin=0, vmax=None, tick_position='top', ): df =
pandas.DataFrame(data=data, columns=columns, index=index)
pandas.DataFrame
""" Tests for the utils module from pandas tools """ import pytest import numpy as np import pandas as pd from itertools import product from ..utils import * def test_pd_to_tensor(): content = dict( country=['UK', 'RUS'], year=[2005, 2015, 2010], month=['Jan', 'Feb', 'Mar', 'Apr'], day=['Mon', 'Wed', 'Fri'] ) data = list(product(*content.values())) columns = list(content.keys()) df = pd.DataFrame(data=data, columns=columns) df['population'] = np.arange(df.shape[0]) df_mi = df.set_index(columns) shape_labels = df_mi.index.names true_shape = tuple([len(content[label]) for label in shape_labels]) true_mode_names = columns tensor = pd_to_tensor(df=df_mi, keep_index=True) assert tensor.shape == true_shape assert tensor.mode_names == true_mode_names for mode in tensor.modes: name = mode.name assert mode.index == content[name] tensor = pd_to_tensor(df_mi, keep_index=False) assert all([mode.index is None for mode in tensor.modes]) def test_tensor_to_pd(): content = dict( country=['UK', 'RUS'], year=[2005, 2015, 2010], month=['Jan', 'Feb', 'Mar', 'Apr'], day=['Mon', 'Wed', 'Fri'] ) data = list(product(*content.values())) columns = list(content.keys()) multi_index = columns df_base = pd.DataFrame(data=data, columns=columns) values = np.arange(df_base.shape[0]) #----- test for default column name value_column_name = "Values" df_data =
pd.DataFrame(data=values, columns=[value_column_name])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat Mar 4 18:50:16 2017 @author: <NAME> @version: 1.2 @license: MIT License """ import urllib.request import time from datetime import datetime from bs4 import BeautifulSoup import pandas as pd import numpy as np visaURL = 'https://www.checkee.info/main.php?dispdate={0:04d}-{1:02d}' # Get current time timestamp = time.time() yearNow = datetime.fromtimestamp(timestamp).year monthNow = datetime.fromtimestamp(timestamp).month currentTime = datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S') # File handle time_string = datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d') filename = f'VISA-Data-{time_string}.csv' # Initialize dataframe df = pd.DataFrame( columns=[ 'UserName', 'VisaType', 'VisaEntry', 'City', 'Major', 'VisaStatus', 'CheckDate', 'CompleteDate', 'WaitDays' ] ) # set column datatypes df['UserName'] = pd.Series([], dtype=np.str) df['VisaType'] =
pd.Categorical([])
pandas.Categorical
import pytest import pandas as pd import pandas.testing as pdt from aneris import utils def test_remove_emissions_prefix(): assert 'foo' == utils.remove_emissions_prefix('foo') assert 'foo' == utils.remove_emissions_prefix('Emissions|XXX|foo') assert 'Emissions|bar|foo' == \ utils.remove_emissions_prefix('Emissions|bar|foo') assert 'foo' == \ utils.remove_emissions_prefix('Emissions|bar|foo', gas='bar') def test_region_agg_funky_name(): df = pd.DataFrame({ 'sector': ['foo', 'foo'], 'region': ['a', 'b'], '2010': [1.0, 4.0], 'units': ['Mt'] * 2, 'gas': ['BC'] * 2, }).set_index(utils.df_idx).sort_index() mapping = pd.DataFrame( [['fOO_Bar', 'a'], ['fOO_Bar', 'b']], columns=['x', 'y']) exp = pd.DataFrame({ 'sector': ['foo'], 'region': ['fOO_Bar'], '2010': [5.0], 'units': ['Mt'], 'gas': ['BC'], }).set_index(utils.df_idx).sort_index() obs = utils.agg_regions(df, rfrom='y', rto='x', mapping=mapping) pdt.assert_frame_equal(obs, exp) def test_no_repeat_gases(): gases = utils.all_gases assert len(gases) == len(set(gases)) def test_gases(): var_col = pd.Series(['foo|Emissions|CH4|bar', 'Emissions|N2O|baz|zing']) exp = pd.Series(['CH4', 'N2O']) obs = utils.gases(var_col) pdt.assert_series_equal(obs, exp) def test_units(): var_col = pd.Series(['foo|Emissions|CH4|bar', 'Emissions|N2O|baz|zing']) exp = pd.Series(['Mt CH4/yr', 'kt N2O/yr']) obs = utils.units(var_col) pdt.assert_series_equal(obs, exp) def test_formatter_to_std(): df = pd.DataFrame({ 'Variable': [ 'CEDS+|9+ Sectors|Emissions|BC|foo|Unharmonized', 'Emissions|BC|bar|baz', ], 'Region': ['a', 'b'], '2010': [5.0, 2.0], '2020': [-1.0, 3.0], 'Unit': ['Mt foo/yr'] * 2, 'Model': ['foo'] * 2, 'Scenario': ['foo'] * 2, }) fmt = utils.FormatTranslator(df.copy()) obs = fmt.to_std() exp = pd.DataFrame({ 'sector': [ 'CEDS+|9+ Sectors|foo|Unharmonized', 'bar|baz', ], 'region': ['a', 'b'], '2010': [5000.0, 2000.0], '2020': [-1000.0, 3000.0], 'units': ['kt'] * 2, 'gas': ['BC'] * 2, }) pdt.assert_frame_equal(obs.set_index(utils.df_idx), exp.set_index(utils.df_idx)) def test_formatter_to_template(): df = pd.DataFrame({ 'Variable': [ 'CEDS+|9+ Sectors|Emissions|BC|foo|Unharmonized', 'CEDS+|9+ Sectors|Emissions|BC|bar|Unharmonized', ], 'Region': ['a', 'b'], '2010': [5.0, 2.0], '2020': [-1.0, 3.0], 'Unit': ['Mt BC/yr'] * 2, 'Model': ['foo'] * 2, 'Scenario': ['foo'] * 2, }).set_index(utils.iamc_idx) fmt = utils.FormatTranslator(df, prefix='CEDS+|9+ Sectors', suffix='Unharmonized') fmt.to_std() obs = fmt.to_template() exp = df.reindex(columns=obs.columns) pdt.assert_frame_equal(obs, exp) def combine_rows_df(): df = pd.DataFrame({ 'sector': [ 'sector1', 'sector2', 'sector1', 'extra_b', 'sector1', ], 'region': ['a', 'a', 'b', 'b', 'c'], '2010': [1.0, 4.0, 2.0, 21, 42], 'foo': [-1.0, -4.0, 2.0, 21, 42], 'units': ['Mt'] * 5, 'gas': ['BC'] * 5, }).set_index(utils.df_idx) return df def test_combine_rows_default(): df = combine_rows_df() exp = pd.DataFrame({ 'sector': [ 'sector1', 'sector2', 'extra_b', 'sector1', ], 'region': ['a', 'a', 'a', 'c'], '2010': [3.0, 4.0, 21, 42], 'foo': [1.0, -4.0, 21, 42], 'units': ['Mt'] * 4, 'gas': ['BC'] * 4, }).set_index(utils.df_idx) obs = utils.combine_rows(df, 'region', 'a', ['b']) exp = exp.reindex(columns=obs.columns) clean = lambda df: df.sort_index().reset_index() pdt.assert_frame_equal(clean(obs), clean(exp)) def test_combine_rows_dropothers(): df = combine_rows_df() exp = pd.DataFrame({ 'sector': [ 'sector1', 'sector2', 'extra_b', 'sector1', 'extra_b', 'sector1', ], 'region': ['a', 'a', 'a', 'b', 'b', 'c'], '2010': [3.0, 4.0, 21, 2.0, 21, 42], 'foo': [1.0, -4.0, 21, 2.0, 21, 42], 'units': ['Mt'] * 6, 'gas': ['BC'] * 6, }).set_index(utils.df_idx) obs = utils.combine_rows(df, 'region', 'a', ['b'], dropothers=False) exp = exp.reindex(columns=obs.columns) clean = lambda df: df.sort_index().reset_index() pdt.assert_frame_equal(clean(obs), clean(exp)) def test_combine_rows_sumall(): df = combine_rows_df() exp = pd.DataFrame({ 'sector': [ 'sector1', 'extra_b', 'sector1', ], 'region': ['a', 'a', 'c'], '2010': [2.0, 21, 42], 'foo': [2.0, 21, 42], 'units': ['Mt'] * 3, 'gas': ['BC'] * 3, }).set_index(utils.df_idx) obs = utils.combine_rows(df, 'region', 'a', ['b'], sumall=False) exp = exp.reindex(columns=obs.columns) clean = lambda df: df.sort_index().reset_index() pdt.assert_frame_equal(clean(obs), clean(exp)) def test_isin(): df = combine_rows_df() exp = pd.DataFrame({ 'sector': [ 'sector1', 'sector2', 'sector1', ], 'region': ['a', 'a', 'b'], '2010': [1.0, 4.0, 2.0], 'foo': [-1.0, -4.0, 2.0], 'units': ['Mt'] * 3, 'gas': ['BC'] * 3, }).set_index(utils.df_idx) obs = exp.loc[ utils.isin(sector=["sector1", "sector2"], region=["a", "b", "non-existent"]) ]
pdt.assert_frame_equal(obs, exp)
pandas.testing.assert_frame_equal
import collections from collections import OrderedDict import numpy as np import pandas as pd from pandas import Panel4D from pandas import Panel, MultiIndex, Series from pandas.core.groupby import DataFrameGroupBy, PanelGroupBy, BinGrouper, SeriesGroupBy from trtools.monkey import patch, patch_prop from trtools.core.column_panel import PanelDict, ColumnPanel from trtools.tools.boxer import box_data class PanelGroupByMap(object): """ All DataFrame in a Panel share the same index. If you have a groupby that applies to all dataframes in a panel i.e. date groupings, then this method will reuse the grouper indices, saving you from re-running the groupby for each dataframe. """ def __init__(self, groupby): self.groupby = groupby self.grouper = groupby.grouper self.obj = groupby.obj # create the first df groupby so we can delegate from __getattr__ f_ind = groupby.obj.items[0] self.first = DataFrameGroupBy(groupby.obj.ix[f_ind], grouper=self.grouper) def __getattr__(self, attr): if hasattr(self.first, attr): return self._map_wrapper(attr) def _map_wrapper(self, attr): def mapper(*args, **kwargs): return self.apply(attr, *args, **kwargs) return mapper def apply(self, func, *args, **kwargs): result = OrderedDict() for key, df in self.obj.items(): grp = DataFrameGroupBy(df, grouper=self.grouper) f = func if not isinstance(func, collections.Callable): f = getattr(grp, func) res = f(*args, **kwargs) else: # call the grouper.apply cuz we will box our own data keys, data, mutated = grp.grouper.apply(f, df, grp.axis) res = box_data(keys, data) result[key] = res return box_data(result) def __call__(self, func, *args, **kwargs): """ shortcut for agg. kept on forgetting that df_map.agg(lambda x: x) would work """ args = list(args) args.insert(0, func) return self.apply('apply', *args, **kwargs) @patch_prop([PanelGroupBy], 'df_map') def df_map(self): return PanelGroupByMap(self) @patch([PanelGroupBy, DataFrameGroupBy], 'foreach') def foreach_panelgroupby(self, func, *args, **kwargs): """ Will func the func for each group df for each item in panel. """ keys = [] values = [] indices = self.grouper.indices if isinstance(self.obj, Panel): items = iter(self.obj.items()) else: items = [(None, self.obj)] results = PanelDict() for key, df in items: sub_results = PanelDict() results[key] = sub_results for date, idx in indices.items(): sub_df = df.take(idx) res = func(df, sub_df) keys.append((key, date)) values.append(res) if len(results) == 1: return list(results.values())[0] return results def filter_by_grouped(grouped, by, obj=None): if obj is None: obj = grouped.obj index = by if isinstance(by, np.ndarray) and by.dtype == bool: index = by[by].index if isinstance(grouped.grouper, BinGrouper): return filter_bingroup_index(grouped, index, obj) return filter_grouper_index(grouped, index, obj) def _reverse_flatten(mapping): rev_map = dict() for k, vals in mapping.items(): for v in vals: rev_map[v] = k return rev_map # TODO These are mixed. bingroup returns the original obj sans the bad groups # regular groupby returns a filtered groupby object def filter_grouper_index(grouped, index, obj): old_groups = grouped.groups groups = {k:v for k, v in old_groups.items() if k in index} rmap = _reverse_flatten(groups) return obj.groupby(rmap) def filter_bingroup_index(grouped, index, obj): # http://stackoverflow.com/questions/13446480/python-pandas-remove-entries-based-on-the-number-of-occurrences # I think that overrides what i was doing... groups = list(_bingroup_groups(grouped)) groups = collections.OrderedDict(groups) filtered_groups = [(i, groups[i]) for i in index] parts = [] for i, slc in filtered_groups: # TODO: concat blocks instead of DataFrames, faster #bit = obj._data.get_slice(slice(slc[0], slc[1]), 1) bit = obj[slc[0]:slc[1]] parts.append(bit) res = pd.concat(parts) return res def _bingroup_groups(grouped): grouper = grouped.grouper data = grouped.obj start = 0 for edge, label in zip(grouper.bins, grouper.binlabels): yield label, (start, edge) start = edge if edge < len(data): yield grouper.binlabels[-1], (edge, len(data)) @patch([PanelGroupBy, DataFrameGroupBy], 'filter_grouped') def filter_grouped_monkey(self, by): return filter_by_grouped(self, by) @patch([PanelGroupBy, DataFrameGroupBy], 'process') def panel_process(self, func, *args, **kwargs): """ Essentially just subsets the dataframe, runs func, and aggregates them back """ import collections parts = collections.OrderedDict() grouped = self bins = grouped.grouper.bins binlabels = grouped.grouper.binlabels axis = self.axis start = 0 for i, x in enumerate(bins): label = binlabels[i] sub = self.obj.ix._getitem_axis(slice(start, x), axis=axis) res = func(sub) parts[label] = res start = x return _wrap_parts(parts) def _wrap_parts(parts): """ parts should be a dict where the keys are the index """ test = next(iter(parts.values())) if np.isscalar(test): return pd.Series(parts) if isinstance(test, pd.Series): return pd.DataFrame(list(parts.values()), index=list(parts.keys())) if isinstance(test, dict): # assumption is that dict is like a series res = pd.DataFrame(list(parts.values()), index=list(parts.keys())) if isinstance(test, collections.OrderedDict): res = res.reindex(columns=list(test.keys())) return res if isinstance(test, pd.DataFrame): return
pd.Panel(parts)
pandas.Panel
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy from bt.core import FixedIncomeStrategy, HedgeSecurity, FixedIncomeSecurity from bt.core import CouponPayingSecurity, CouponPayingHedgeSecurity from bt.core import is_zero import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree1(): # Create a regular strategy c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c1 assert p['c1'] != c2 c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root # Create a new parent strategy with a child sub-strategy m = Node('m', children=[p, c1]) p = m['p'] mc1 = m['c1'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 2 assert 'p' in m.children assert 'c1' in m.children assert mc1 != c1 assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent assert m == p.root assert m == c1.root assert m == c2.root # Add a new node into the strategy c0 = Node('c0', parent=p) c0 = p['c0'] assert 'c0' in p.children assert p == c0.parent assert m == c0.root assert len(p.children) == 3 # Add a new sub-strategy into the parent strategy p2 = Node( 'p2', children = [c0, c1], parent=m ) p2 = m['p2'] c0 = p2['c0'] c1 = p2['c1'] assert 'p2' in m.children assert p2.parent == m assert len(p2.children) == 2 assert 'c0' in p2.children assert 'c1' in p2.children assert c0 != p['c0'] assert c1 != p['c1'] assert p2 == c0.parent assert p2 == c1.parent assert m == p2.root assert m == c0.root assert m == c1.root def test_node_tree2(): # Just like test_node_tree1, but using the dictionary constructor c = Node('template') p = Node('p', children={'c1':c, 'c2':c, 'c3':'', 'c4':''}) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c assert p['c1'] != c c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert c1.name == 'c1' assert c2.name == 'c2' assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root def test_node_tree3(): c1 = Node('c1') c2 = Node('c1') # Same name! raised = False try: p = Node('p', children=[c1, c2, 'c3', 'c4']) except ValueError: raised = True assert raised raised = False try: p = Node('p', children=['c1', 'c1']) except ValueError: raised = True assert raised c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) raised = False try: Node('c1', parent = p ) except ValueError: raised = True assert raised # This does not raise, as it's just providing an implementation of 'c3', # which had been declared earlier c3 = Node('c3', parent = p ) assert 'c3' in p.children def test_integer_positions(): c1 = Node('c1') c2 = Node('c2') c1.integer_positions = False p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert p.integer_positions assert c1.integer_positions assert c2.integer_positions p.use_integer_positions(False) assert not p.integer_positions assert not c1.integer_positions assert not c2.integer_positions c3 = Node('c3', parent=p) c3 = p['c3'] assert not c3.integer_positions p2 = Node( 'p2', children = [p] ) p = p2['p'] c1 = p['c1'] c2 = p['c2'] assert p2.integer_positions assert p.integer_positions assert c1.integer_positions assert c2.integer_positions def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 s.update(dts[0]) assert s.flows[ dts[0] ] == 1000 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert c2.price == 95 i = 2 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.loc[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.loc[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.loc[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_lazy(): # A mix of test_strategybase_universe and test_strategybase_allocate # to make sure that assets with lazy_add work correctly. c1 = SecurityBase('c1', multiplier=2, lazy_add=True, ) c2 = FixedIncomeSecurity('c2', lazy_add=True) s = StrategyBase('s', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 s.adjust(1000) s.allocate(100, 'c1') s.allocate(100, 'c2') c1 = s['c1'] c2 = s['c2'] assert c1.multiplier == 2 assert isinstance( c2, FixedIncomeSecurity) def test_strategybase_close(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 s.close('c1') assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_flatten(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] s.allocate(100, 'c2') c2 = s['c2'] assert c1.position == 1 assert c1.value == 100 assert c2.position == 1 assert c2.value == 100 assert s.value == 1000 s.flatten() assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_multiple_calls(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) c2 = s['c2'] assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1050.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1 == s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_preset_secs(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('s', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 2 assert c2.value == 1000 assert c2.weight == 1000.0 / 1050. assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_no_post_update(): s = StrategyBase('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 999 assert s.capital == 49 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 999 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1049 assert s.capital == 49 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1049.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1047 assert s.capital == 2 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1047 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1102 assert s.capital == 2 assert c1.value == 1100 assert c1.weight == 1100.0 / 1102 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1096 assert s.capital == 51 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1096 assert c2.price == 95 def test_strategybase_prices(): dts = pd.date_range('2010-01-01', periods=21) rawd = [13.555, 13.75, 14.16, 13.915, 13.655, 13.765, 14.02, 13.465, 13.32, 14.65, 14.59, 14.175, 13.865, 13.865, 13.89, 13.85, 13.565, 13.47, 13.225, 13.385, 12.89] data = pd.DataFrame(index=dts, data=rawd, columns=['a']) s = StrategyBase('s') s.set_commissions(lambda q, p: 1) s.setup(data) # buy 100 shares on day 1 - hold until end # just enough to buy 100 shares + 1$ commission s.adjust(1356.50) s.update(dts[0]) # allocate all capital to child a # a should be dynamically created and should have # 100 shares allocated. s.capital should be 0 s.allocate(s.value, 'a') assert s.capital == 0 assert s.value == 1355.50 assert len(s.children) == 1 aae(s.price, 99.92628, 5) a = s['a'] assert a.position == 100 assert a.value == 1355.50 assert a.weight == 1 assert a.price == 13.555 assert len(a.prices) == 1 # update through all dates and make sure price is ok s.update(dts[1]) aae(s.price, 101.3638, 4) s.update(dts[2]) aae(s.price, 104.3863, 4) s.update(dts[3]) aae(s.price, 102.5802, 4) # finish updates and make sure ok at end for i in range(4, 21): s.update(dts[i]) assert len(s.prices) == 21 aae(s.prices[-1], 95.02396, 5) aae(s.prices[-2], 98.67306, 5) def test_fail_if_root_value_negative(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) s.adjust(-100) # trigger update s.update(dts[0]) assert s.bankrupt # make sure only triggered if root negative c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(-100) s.update(dts[0]) # now make it trigger c1.adjust(-1000) # trigger update s.update(dts[0]) assert s.bankrupt def test_fail_if_0_base_in_return_calc(): dts = pd.date_range('2010-01-01', periods=3) data =
pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100)
pandas.DataFrame
#!/usr/bin/env python # -- coding: utf-8 -- # PAQUETES PARA CORRER OP. import netCDF4 import pandas as pd import numpy as np import datetime as dt import json import wmf.wmf as wmf import hydroeval import glob import MySQLdb #modulo pa correr modelo import hidrologia from sklearn.linear_model import LinearRegression import math import os #spatial import cartopy.crs as crs import geopandas as gpd import pyproj from pyproj import transform from cartopy.feature import ShapelyFeature import cartopy.crs as ccrs from cartopy.io.shapereader import Reader from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import seaborn as sns sns.set(style="whitegrid") sns.set_context('notebook', font_scale=1.13) #FORMATO # fuente import matplotlib matplotlib.use('Agg') import pylab as pl #avoid warnings import warnings warnings.filterwarnings('ignore') #--------------- #Funciones base. #--------------- def get_rutesList(rutas): ''' Abre el archivo de texto en la ruta: rutas, devuelve una lista de las lineas de ese archivo. Funcion base. #Argumentos rutas: string, path indicado. ''' f = open(rutas,'r') L = f.readlines() f.close() return L def set_modelsettings(ConfigList): ruta_modelset = get_ruta(ConfigList,'ruta_proj')+get_ruta(ConfigList,'ruta_modelset') # model settings Json with open(ruta_modelset, 'r') as f: model_set = json.load(f) # Model set wmf.models.max_aquifer = wmf.models.max_gravita * 10 wmf.models.retorno = model_set['retorno'] wmf.models.show_storage = model_set['show_storage'] wmf.models.separate_fluxes = model_set['separate_fluxes'] wmf.models.dt = model_set['dt'] def round_time(date = dt.datetime.now(),round_mins=5): ''' Rounds datetime object to nearest 'round_time' minutes. If 'dif' is < 'round_time'/2 takes minute behind, else takesminute ahead. Parameters ---------- date : date to round round_mins : round to this nearest minutes interval Returns ---------- datetime object rounded, datetime object ''' dif = date.minute % round_mins if dif <= round_mins/2: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) else: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) + dt.timedelta(minutes=round_mins) def get_credentials(ruta_credenciales): credentials = json.load(open(ruta_credenciales)) #creds para consultas mysqlServer = credentials['MySql_Siata'] for key in np.sort(list(credentials['MySql_Siata'].keys()))[::-1]: #1:hal, 2:sal try: connection = MySQLdb.connect(host=mysqlServer[key]['host'], user=mysqlServer[key]['user'], password=mysqlServer[key]['password'], db=mysqlServer[key]['db']) print('SERVER_CON: Succesful connection to %s'%(key)) host=mysqlServer[key]['host'] user=mysqlServer[key]['user'] password=mysqlServer[key]['password'] db=mysqlServer[key]['db'] break #si conecta bien a SAL para. except: print('SERVER_CON: No connection to %s'%(key)) pass #creds para copiar a var user2copy2var = credentials['cred_2copy2var']['user']; host2copy2var = credentials['cred_2copy2var']['host'] return host,user,password,db,user2copy2var,host2copy2var def coord2hillID(ruta_nc, df_coordxy): #lee simubasin pa asociar tramos, saca topologia basica cu = wmf.SimuBasin(rute= ruta_nc) cu.GetGeo_Cell_Basics() cu.GetGeo_Parameters() #saca coordenadas de todo el simubasin y las distancias entre ellas coordsX = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[0] coordsY = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[1] disty = np.unique(np.diff(np.unique(np.sort(coordsY)))) distx = np.unique(np.diff(np.unique(np.sort(coordsX)))) df_ids = pd.DataFrame(index = df_coordxy.index,columns=['id']) #identifica el id de la ladera donde caen los ptos for index in df_coordxy.index: df_ids.loc[index]=cu.hills_own[np.where((coordsY+disty[0]/2>df_coordxy.loc[index].values[1]) & (coordsY-disty[0]/2<df_coordxy.loc[index].values[1]) & (coordsX+distx[0]/2>df_coordxy.loc[index].values[0]) & (coordsX-distx[0]/2<df_coordxy.loc[index].values[0]))[0]].data return df_ids #----------------------------------- #----------------------------------- #Funciones de lectura del configfile #----------------------------------- #----------------------------------- def get_ruta(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega rutas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i.split(' ')[-1][:-1] else: return 'Aviso: no existe linea con el key especificado' def get_line(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega lineas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i[:-1].split(' ')[2:] else: return 'Aviso: no existe linea con el key especificado' def get_modelPlot(RutesList, PlotType = 'Qsim_map'): ''' #Devuelve un diccionario con la informacion de la tabla Plot en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - PlotType= boolean, tipo del plot? . Default= 'Qsim_map'. ''' for l in RutesList: key = l.split('|')[1].rstrip().lstrip() if key[3:] == PlotType: EjecsList = [i.rstrip().lstrip() for i in l.split('|')[2].split(',')] return EjecsList return key def get_modelPars(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in RutesList: c = [float(i) for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c}) return DCalib def get_modelPaths(List): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in List: c = [i for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c[0]}) return DCalib def get_modelStore(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Store en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStore = {} for l in RutesList: l = l.split('|') DStore.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'Actualizar': l[3].rstrip().lstrip(), 'Tiempo': float(l[4].rstrip().lstrip()), 'Condition': l[5].rstrip().lstrip(), 'Calib': l[6].rstrip().lstrip(), 'BackSto': l[7].rstrip().lstrip(), 'Slides': l[8].rstrip().lstrip()}}) return DStore def get_modelStoreLastUpdate(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Update en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStoreUpdate = {} for l in RutesList: l = l.split('|') DStoreUpdate.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'LastUpdate': l[3].rstrip().lstrip()}}) return DStoreUpdate def get_ConfigLines(RutesList, key, keyTable = None, PlotType = None): ''' #Devuelve un diccionario con la informacion de las tablas en el configfile: Calib, Store, Update, Plot. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - key= string, palabra clave de la tabla que se quiere leer. Puede ser: -s,-t. - Calib_Storage= string, palabra clave de la tabla que se quiere leer. Puede ser: Calib, Store, Update, Plot. - PlotType= boolean, tipo del plot? . Default= None. ''' List = [] for i in RutesList: if i.startswith('|'+key) or i.startswith('| '+key): List.append(i) if len(List)>0: if keyTable == 'Pars': return get_modelPars(List) if keyTable == 'Paths': return get_modelPaths(List) if keyTable == 'Store': return get_modelStore(List) if keyTable == 'Update': return get_modelStoreLastUpdate(List) if keyTable == 'Plot': return get_modelPlot(List, PlotType=PlotType) return List else: return 'Aviso: no se encuentran lineas con el key de inicio especificado.' #----------------------------------- #----------------------------------- #Funciones generacion de radar #----------------------------------- #----------------------------------- def file_format(start,end): ''' Returns the file format customized for siata for elements containing starting and ending point Parameters ---------- start : initial date end : final date Returns ---------- file format with datetimes like %Y%m%d%H%M Example ---------- ''' start,end = pd.to_datetime(start),pd.to_datetime(end) format = '%Y%m%d%H%M' return '%s-%s'%(start.strftime(format),end.strftime(format)) def hdr_to_series(path): ''' Reads hdr rain files and converts it into pandas Series Parameters ---------- path : path to .hdr file Returns ---------- pandas time Series with mean radar rain ''' s = pd.read_csv(path,skiprows=5,usecols=[2,3]).set_index(' Fecha ')[' Lluvia'] s.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],s.index))) return s def hdr_to_df(path): ''' Reads hdr rain files and converts it into pandas DataFrame Parameters ---------- path : path to .hdr file Returns ---------- pandas DataFrame with mean radar rain ''' if path.endswith('.hdr') != True: path = path+'.hdr' df = pd.read_csv(path,skiprows=5).set_index(' Fecha ') df.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],df.index))) df = df.drop('IDfecha',axis=1) df.columns = ['record','mean_rain'] return df def bin_to_df(path,ncells,start=None,end=None,**kwargs): ''' Reads rain fields (.bin) and converts it into pandas DataFrame Parameters ---------- path : path to .hdr and .bin file start : initial date end : final date Returns ---------- pandas DataFrame with mean radar rain Note ---------- path without extension, ejm folder_path/file not folder_path/file.bin, if start and end is None, the program process all the data ''' start,end = pd.to_datetime(start),pd.to_datetime(end) records = df['record'].values rain_field = [] for count,record in enumerate(records): if record != 1: rain_field.append(wmf.models.read_int_basin('%s.bin'%path,record,ncells)[0]/1000.0) count = count+1 # format = (count*100.0/len(records),count,len(records)) else: rain_field.append(np.zeros(ncells)) return pd.DataFrame(np.matrix(rain_field),index=df.index) def get_radar_rain(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, mask=None,meanrain_ALL=True,path_masks_csv=None,complete_naninaccum=False,save_bin=False, save_class = False,path_res=None,umbral=0.005, verbose=True, zero_fill = None): start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de rutas y la de las fechas a las que corresponde cada ruta. ListRutas.sort() ListDatesinNC.sort()#con estas fechas se asignaran los barridos a cada timestep. #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. #Saca una lista con las pos de los barridos por cada timestep, y las pega en PosDates #Si el limite de completar faltantes con barrido anterior es de 10 min, solo se completa si dt=300s #limite de autocompletar : 10m es decir, solo repito un barrido. PosDates = [] pos1 = [] pos_completed = [] lim_completed = 3 #ultimos 3 barridos - 15min for ind,d1,d2 in zip(np.arange(datesDt[:-1].size),datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() # si no hay barridos en el dt de inicio sellena con zero - lista vacia #y no esta en los primero 3 pasos : 15min. # si se puede completar # y si en el los lim_completed pasos atras no hubo más de lim_completed-1 pos con pos_completed=2, lim_completed-1 para que deje correr sólo hasta el lim_completed. #asi solo se pueded completar y pos_completed=2 una sola vez. if len(pos2) == 0 and ind not in np.arange(lim_completed) and complete_naninaccum == True and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : #+1 porque coge los ultimos n-1 posiciones. pos2 = pos1 pos_completed.append(2) elif len(pos2) == 0: pos2=[] pos_completed.append(0) else: pos_completed.append(1) #si se quiere completar y hay barridos en este dt, guarda esta pos para si es necesario completar las pos de dt en el sgte paso if complete_naninaccum == True and len(pos2) != 0 and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : pos1 = pos2 else: pos1 = [] PosDates.append(pos2) # si se asigna, se agregas dates y PosDates para barridos en cero al final. if zero_fill is not None: #se redefinen datesDt luego que los PosDates fueron asignados final = (pd.to_datetime(final) + pd.Timedelta('%ss'%Dt*zero_fill)).strftime('%Y-%m-%d %H:%M') datesDt = pd.date_range(inicio,final,freq = textdt+'s') # se agrega a PosDates pasos del futuro con barridos en cero, y se cambia end. end = end + pd.Timedelta('%ss'%Dt*zero_fill) #pasos de tiempo:steps, independiente del Dt for steps in np.arange(zero_fill): PosDates.append([]) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #mascara con shp a parte de wmf if mask is not None: #se abre un barrido para sacar la mascara g = netCDF4.Dataset(ListRutas[PosDates[0][0]]) field = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0)#g['Rain'][:]# RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] g.close() longs=np.array([RadProp[2]+0.5*RadProp[4]+i*RadProp[4] for i in range(RadProp[0])]) lats=np.array([RadProp[3]+0.5*RadProp[5]+i*RadProp[5] for i in range(RadProp[1])]) x,y = np.meshgrid(longs,lats) #mask as a shp if type(mask) == str: #boundaries shp = gpd.read_file(mask) poly = shp.geometry.unary_union shp_mask = np.zeros([len(lats),len(longs)]) for i in range(len(lats)): for j in range(len(longs)): if (poly.contains(Point(longs[j],lats[i])))==True: shp_mask[i,j] = 1# Rain_mask es la mascara l = x[shp_mask==1].min() r = x[shp_mask==1].max() d = y[shp_mask==1].min() a = y[shp_mask==1].max() #mask as a list with coordinates whithin the radar extent elif type(mask) == list: l = mask[0] ; r = mask[1] ; d = mask[2] ; a = mask[3] x,y = x.T,y.T #aun tengo dudas con el recorte, si en nc queda en la misma pos que los lats,longs. #boundaries position x_wh,y_wh = np.where((x>l)&(x<r)&(y>d)&(y<a)) #se redefine sfield con size que corresponde field = field[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] if save_bin and len(codigos)==1 and path_res is not None: #open nc file f = netCDF4.Dataset(path_res,'w', format='NETCDF4') #'w' stands for write tempgrp = f.createGroup('rad_data') # as folder for saving files lon = longs[np.unique(x_wh)[0]:np.unique(x_wh)[-1]] lat = lats[np.unique(y_wh)[0]:np.unique(y_wh)[-1]] #set name and leght of dimensions tempgrp.createDimension('lon', len(lon)) tempgrp.createDimension('lat', len(lat)) tempgrp.createDimension('time', None) #building variables longitude = tempgrp.createVariable('longitude', 'f4', 'lon') latitude = tempgrp.createVariable('latitude', 'f4', 'lat') rain = tempgrp.createVariable('rain', 'f4', (('time', 'lat', 'lon'))) time = tempgrp.createVariable('time', 'i4', 'time') #adding globalattributes f.description = "Radar rainfall dataset containing one group" f.history = "Created " + dt.datetime.now().strftime("%d/%m/%y") #Add local attributes to variable instances longitude.units = 'degrees east - wgs4' latitude.units = 'degrees north - wgs4' time.units = 'minutes since 2020-01-01 00:00' rain.units = 'mm/h' #passing data into variables # use proper indexing when passing values into the variables - just like you would a numpy array. longitude[:] = lon #The "[:]" at the end of the variable instance is necessary latitude[:] = lat else: # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) #accumulated in basin if accum: if mask is not None: rvec_accum = np.zeros(field.shape) dfaccum = pd.DataFrame(index = rng) #este producto no da con mask. else: rvec_accum = np.zeros(cu.ncells) # rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #ITERA SOBRE LOS BARRIDOS DEL PERIODO Y SE SACAN PRODUCTOS # print ListRutas for ind,dates,pos in zip(np.arange(len(datesDt[1:])),datesDt[1:],PosDates): #escoge como definir el size de rvec if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells, dtype = int) rStra = np.zeros(cu.ncells, dtype = int) try: #se lee y agrega lluvia de los nc en el intervalo. for c,p in enumerate(pos): #lista archivo leido if verbose: print (ListRutas[p]) #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(ListRutas[p]) rainfield = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0) RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #if all extent if all_radextent: radmatrix += rainfield #if mask if mask is not None and type(mask) == str: rvec += (rainfield*shp_mask)[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] elif mask is not None and type(mask) == list: rvec += rainfield[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] # on WMF. else: #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(rainfield,RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 Conv[rvec == 0] = 0 Stra[rvec == 0] = 0 #Cierra el netCDF g.close() #muletilla path = 'bla' except: print ('error - no field found ') path = '' if accum: if mask is not None: rvec += np.zeros(shape = field.shape) rvec = np.zeros(shape = field.shape) else: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec if mask is None: #esto para mask no sirve dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' #subbasins defined for WMF if meanrain_ALL and mask is None: mean = [] df_posmasks = pd.read_csv(path_masks_csv,index_col=0) for codigo in codigos: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec*df_posmasks['%s'%codigo])/float(df_posmasks['%s'%codigo][df_posmasks['%s'%codigo]==1].size)) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: mean = [] #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #si guarda nc de ese timestep guarda clasificados if dentro == 0: hagalo = True else: hagalo = False #mira si guarda o no los clasificados if save_class: #Escribe el binario convectivo aa = cuConv.rain_radar2basin_from_array(vec = rConv, ruta_out = path_res+'_conv', fecha = dates, dt = Dt, doit = hagalo) #Escribe el binario estratiforme aa = cuStra.rain_radar2basin_from_array(vec = rStra, ruta_out = path_res+'_stra', fecha = dates, dt = Dt, doit = hagalo) #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean elif mask is None and save_bin == True and len(codigos)==1 and path_res is None: #si es una cuenca pero no se quiere guardar binarios. mean = [] #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean #guardar .nc con info de recorte de radar: mask. if mask is not None and save_bin and len(codigos)==1 and path_res is not None: mean = [] #https://pyhogs.github.io/intro_netcdf4.html rain[ind,:,:] = rvec.T time[ind] = int((dates - pd.to_datetime('2010-01-01 00:00')).total_seconds()/60) #min desde 2010 if ind == np.arange(len(datesDt[1:]))[-1]: f.close() print ('.nc saved') #guarda en df meanrainfall. if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec)/float(shp_mask[shp_mask==1].size)) #save df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') pass #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True and mask is not None: return df,rvec_accum elif accum == True and mask is None: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_radar_rain_OP(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, meanrain_ALL=True,complete_naninaccum=False, evs_hist=False,save_bin=False,save_class = False, path_res=None,umbral=0.005,include_escenarios = None, verbose=True): ''' Read .nc's file forn rutaNC:101Radar_Class within assigned period and frequency. Por ahora solo sirve con un barrido por timestep, operacional a 5 min, melo. 0. It divides by 1000.0 and converts from mm/5min to mm/h. 1. Get mean radar rainfall in basins assigned in 'codigos' for finding masks, if the mask exist. 2. Write binary files if is setted. - Cannot do both 1 and 2. - To saving binary files (2) set: meanrain_ALL=False, save_bin=True, path_res= path where to write results, len('codigos')=1, nc_path aims to the one with dxp and simubasin props setted. Parameters ---------- start: string, date&time format %Y-%m%-d %H:%M, local time. end: string, date&time format %Y-%m%-d %H:%M, local time. Dt: float, timedelta in seconds. For this function it should be lower than 3600s (1h). cuenca: string, simubasin .nc path with dxp and format from WMF. It should be 260 path if whole catchment analysis is needed, or any other .nc path for saving the binary file. codigos: list, with codes of stage stations. Needed for finding the mask associated to a basin. rutaNC: string, path with .nc files from radar meteorology group. Default in amazonas: 101Radar_Class Optional Parameters ---------- accum: boolean, default False. True for getting the accumulated matrix between start and end. Change returns: df,rvec (accumulated) path_tif: string, path of tif to write accumlated basin map. Default None. all_radextent:boolean, default False. True for getting the accumulated matrix between start and end in the whole radar extent. Change returns: df,radmatrix. meanrain_ALL: boolean, defaul True. True for getting the mean radar rainfall within several basins which mask are defined in 'codigos'. save_bin: boolean, default False. True for saving .bin and .hdr files with rainfall and if len('codigos')=1. save_class: boolean,default False. True for saving .bin and .hdr for convective and stratiform classification. Applies if len('codigos')=1 and save_bin = True. path_res: string with path where to write results if save_bin=True, default None. umbral: float. Minimum umbral for writing rainfall, default = 0.005. Returns ---------- - df whith meanrainfall of assiged codes in 'codigos'. - df,rvec if accum = True. - df,radmatrix if all_radextent = True. - save .bin and .hdr if save_bin = True, len('codigos')=1 and path_res=path. ''' #### FECHAS Y ASIGNACIONES DE NC#### start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start +
pd.Timedelta('5 hours')
pandas.Timedelta
""" use cross validation to plot mean ROC curve, show std ref: https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py Note that you have to tune the parameters yourself """ from scipy import interp import argparse import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt # import xgboost as xgb import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.colors as clr import numpy as np from matplotlib.colors import ListedColormap import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import pandas as pd import matplotlib.pylab as plt import numpy as np import scipy import seaborn as sns import glob from sklearn.model_selection import KFold,StratifiedKFold from sklearn import model_selection from sklearn.linear_model import LogisticRegression,RidgeClassifier,SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier # from mlxtend.classifier import StackingCVClassifier # import umap import warnings from sklearn.metrics import roc_curve,roc_auc_score,average_precision_score,precision_recall_curve from sklearn.datasets import load_iris # from mlxtend.classifier import StackingCVClassifier # from mlxtend.feature_selection import ColumnSelector from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression import warnings warnings.filterwarnings('ignore') from sklearn.exceptions import ConvergenceWarning warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=ConvergenceWarning) from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor,RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics.scorer import make_scorer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.base import TransformerMixin from sklearn.datasets import make_regression from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor,GradientBoostingClassifier from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LinearRegression, Ridge import scipy import numpy as np from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import LeaveOneOut from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error from sklearn import linear_model from sklearn.kernel_ridge import KernelRidge from sklearn.svm import SVR,LinearSVC from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge,Lars,BayesianRidge from copy import deepcopy as dp from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier,RadiusNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.gaussian_process import GaussianProcessClassifier # from xgboost import XGBClassifier def sklearn_RF(par=False): est = RandomForestClassifier(n_estimators=1000,random_state=0,warm_start=False,n_jobs=-1,class_weight={1:4,0:1}) if par: est = RandomForestClassifier(**par) myDict = {} return est, myDict def plot_top_features(reg,X,y,output): current_feature_df = pd.DataFrame() current_feature_df['features'] = X.columns.tolist() reg.fit(X,y) try: current_feature_df['score'] = list(reg.feature_importances_) except: try: current_feature_df['score'] = list(reg.coef_) except: current_feature_df['score'] = list(reg.coef_[0]) current_feature_df = current_feature_df.sort_values('score',ascending=False) plt.figure(figsize=(len(current_feature_df['features']*2),8)) sns.barplot(x=current_feature_df['features'],y=current_feature_df['score'] ) plt.xticks(rotation=90) plt.xlabel("") plt.ylabel("Feature importance") plt.savefig("%s_feature_importance.pdf"%(output), bbox_inches='tight') def simple_CV_evaluation(model,params,X,y): outer = StratifiedKFold(n_splits=3,shuffle=False) my_pred=[] my_true=[] best_features = X.columns.tolist() auPRC_list = [] auROC_list = [] for train_index, test_index in outer.split(X,y): X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] # print (list(set(X_train.index.tolist()).intersection(X_test.index.tolist()))) current_model = dp(model) current_model.fit(X_train[best_features].values,y_train) pred_y = current_model.predict_proba(X_test[best_features].values) pred_y = [x[1] for x in pred_y] y_test = y_test.tolist() auROC = roc_auc_score(y_test,pred_y) auPRC = average_precision_score(y_test,pred_y) my_pred += pred_y my_true += y_test print ("auPRC: %s. auROC: %s"%(auPRC,auROC)) auPRC_list.append(auPRC) auROC_list.append(auROC) df = pd.DataFrame() df['true']=my_true df['pred']=my_pred return df,auROC_list,auPRC_list def plot_auROC_multi(df,color_dict): sns.set_style("white") plt.figure() for s,d in df.groupby('label'): plot_df = pd.DataFrame() x_predict,y_predict,_ = roc_curve(d['true'],d['pred']) auc = roc_auc_score(d['true'],d['pred']) print (auc) plot_df['x'] = x_predict plot_df['y'] = y_predict sns.lineplot(data=plot_df,x="x",y="y",ci=0,label="%s AUC:%.2f"%(s,auc),color=color_dict[s]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best',title="") # plt.savefig("auROC.png") plt.savefig("auROC.pdf", bbox_inches='tight') plt.close() def plot_auPRC_multi(df,color_dict): sns.set_style("white") plt.figure() for s,d in df.groupby('label'): plot_df = pd.DataFrame() y_predict,x_predict,_ = precision_recall_curve(d['true'],d['pred']) auc = average_precision_score(d['true'],d['pred']) print (auc) plot_df['x'] = x_predict plot_df['y'] = y_predict sns.lineplot(data=plot_df,x="x",y="y",ci=0,label="%s AUC:%.2f"%(s,auc),color=color_dict[s]) # plt.plot([0, 1], [0, 1], 'k--') plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision-Recall curve') plt.legend(loc='best',title="") # plt.savefig("auPRC.png") plt.savefig("auPRC.pdf", bbox_inches='tight') plt.close() def define_high_low(x,mu,sigma): t = 1 low = mu-t*sigma high = mu+t*sigma high2= mu+t*sigma # print (low,high) if low <= x <= high: return 0 if x > high2: return 1 return -1 def boxplot_paired_t_test(a,b,color_dict,ylabel,output): sns.set_style("whitegrid") df = pd.DataFrame() df['All_variants'] = a df['GWAS_only'] = b myMin = df.min().min() myMax = df.max().max() plot_df = pd.melt(df) plt.figure() ax=sns.boxplot(x="variable",y='value',data=plot_df,palette =color_dict,linewidth=3) for patch in ax.artists: r, g, bb, _ = patch.get_facecolor() patch.set_facecolor((r, g, bb, .3)) sns.swarmplot(x="variable", y="value", data=plot_df,palette =color_dict) unit=0.01 y=myMax+unit*1 h=unit*2 plt.plot([0, 0, 1, 1], [y, y+h, y+h, y], lw=1.5, c="black") plt.text(0.5, y+h+unit, "Paired T-test: %.2E" % scipy.stats.ttest_rel(a,b).pvalue, ha='center', va='bottom', color="black") plt.ylim(myMin-unit*5,myMax+0.1) plt.ylabel(ylabel) plt.savefig("%s.pdf"%(output), bbox_inches='tight') def main(): color_dict = {} color_dict['All_variants']="#fa6525" color_dict['GWAS_only']="#00b8a5" df =
pd.read_csv("snp_data.tsv",sep="\t")
pandas.read_csv
# IMPORT data processing and data visualisationn libraries import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import json from operator import itemgetter global s,brnch,year global brnch2,year2 global gpmembers global gpname gpmembers=[] gpname=[] # Create the main function to draw bar graph def mainfunc(x,y,plot_type): # Load the database as a dictionary from database1.txt file (created database) with open('dataBase1.txt', 'r') as f: s = f.read() database = json.loads(s) rollno = [] rollno.append(x[0].upper()) rollno2 = [] if(len(y)==1): rollno2.append(y[0].upper()) branch={ # branches as specified in the dataextractor file '1':"CIVIL", '2':"ELECTRICAL", '3':"MECHANICAL", '4':"ECE", '5':"CSE", '6':"ARCHI", '7':"Chemical", '8':"MATERIAL", "MI4":"ECE DUAl", "MI5":"CSE DUAL" } try: try: # Selecting year and branch on basis of rollno. year = 8-int(rollno[0][1]) az = rollno[0][2:-2] for i in branch.keys(): if az == i: brnch = branch[i] except: print("Please enter a valid rollno.") if(len(rollno2)==1): try: year2 = 8-int(rollno2[0][1]) az2 = rollno2[0][2:-2] for i in branch.keys(): if az2 == i: brnch2 = branch[i] except: print("Please enter a valid rollno.") # For SGPI data representation if("SGPI" in plot_type): semester = ['1st', '2nd', '3rd', '4th','5th', '6th', '7th', '8th'] # semesters list x = database[str(year)][brnch][rollno[0]]["sgpi"] y=[] for i in x: m = ((i.split("=")[1])) y.append(float(m)) #Creating dataframe of student having sgpi db = pd.DataFrame(y,columns=['SGPI']) db['Semester']=semester[:year*2] db["Name"] = list((database[str(year)][brnch][rollno[0]]["name"]) for i in range(year*2)) if(len(rollno2)==1): q = database[str(year2)][brnch2][rollno2[0]]["sgpi"] y2=[] for i in q: m2 = ((i.split("=")[1])) y2.append(float(m2)) db2 = pd.DataFrame(y2,columns=['SGPI']) db2['Semester']=semester[:year2*2] db2["Name"] = list((database[str(year2)][brnch2][rollno2[0]]["name"]) for i in range(year*2)) db = pd.concat([db,db2]) # Plotting the bar graph sns.set(style="whitegrid") pl = sns.barplot(x="Semester", y="SGPI", data=db, hue='Name')#plotting barplot & setting parameters plt.ylim(1,12.5) plt.title("SGPI VS Semester") ax = plt.gca() totals=[] for i in ax.patches: totals.append(i.get_height()) # set individual bar lables using above list total = sum(totals) # Setting the place of bar labels for i in ax.patches: # get_x pulls left or right; get_height pushes up or down z1=i.get_height() z1 = "%0.2f" % float(z1) ax.text(i.get_x()+(i.get_width()/2), i.get_height()/2, \ z1, fontsize=(20-(year*2)), color='black', ha= 'center') plt.show() #Shows the plot # For CGPI data representation if("CGPI" in plot_type): semester = ['1st', '2nd', '3rd', '4th','5th', '6th', '7th', '8th'] x = database[str(year)][brnch][rollno[0]]["cgpi"] #getting cgpi data of student y=[] for i in x: m = ((i.split("=")[1])) y.append(float(m)) #Creating the dataframe of the student having CGPI db = pd.DataFrame(y,columns=['CGPI']) db['Semester']=semester[:year*2] db["Name"] = list((database[str(year)][brnch][rollno[0]]["name"]) for i in range(year*2)) if(len(rollno2)==1): q = database[str(year2)][brnch2][rollno2[0]]["cgpi"] y2=[] for i in q: m2 = ((i.split("=")[1])) y2.append(float(m2)) db2 =
pd.DataFrame(y2,columns=['CGPI'])
pandas.DataFrame
""" Library Features: Name: lib_data_io_shapefile Author(s): <NAME> (<EMAIL>) Date: '20190109' Version: '1.0.0' """ ####################################################################################### # Library import geopandas as gpd import pandas as pd import logging from src.common.default.lib_default_args import sLoggerName from src.common.driver.configuration.drv_configuration_debug import Exc # Logging oLogStream = logging.getLogger(sLoggerName) ####################################################################################### # ------------------------------------------------------------------------------------- # Method to open ASCII file (in read or write mode) def openFile(sFileName): try: oFileData = gpd.read_file(sFileName) return oFileData except IOError as oError: Exc.getExc(' =====> ERROR: in open file (lib_data_io_shapefile' + ' [' + str(oError) + ']', 1, 1) # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to get selected or all data from shapefile handle def getData(oFileData, oFileFields_SEL=None): oFileGeoms = ((feature['geometry'], 1) for feature in oFileData.iterfeatures()) oFileFields_ALL = oFileData.columns.values.tolist() if oFileFields_SEL is None: oFileFields_SEL = oFileFields_ALL oPoints =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # # Copyright 2017-2020 Data61, CSIRO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from collections import defaultdict import numpy as np import pandas as pd import scipy.sparse as sps from ..globalvar import SOURCE, TARGET, WEIGHT from .validation import require_dataframe_has_columns, comma_sep class ExternalIdIndex: """ An ExternalIdIndex maps between "external IDs" and "integer locations" or "internal locations" (ilocs). It is designed to allow handling only efficient integers internally, but easily convert between them and the user-facing IDs. """ def __init__(self, ids): self._index =
pd.Index(ids)
pandas.Index
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 9 12:46:52 2020 Updated on June 3, 2021 @author: jacob """ import pandas as pd import matplotlib.pyplot as plt import scipy.optimize as optim import numpy as np from scipy import stats #from heatmap import heatmap_gr, heatmap_ymax #from graph_repl import graph_repls # How many time points are graphed XSCALE = 97 def graph_avg(df_dict, con_data, exp_data, con_name, exp_name, data_path, plate_list, hm_flag=False, log_flag=False): """ Plot Formatting """ # You typically want your plot to be ~1.33x wider than tall. # Common sizes: (10, 7.5) and (12, 9) plt.figure(figsize=(10, 7.5)) con_color = "#0466c8" exp_color = "#d62828" # Remove the plot frame lines. They are unnecessary ax = plt.subplot(111) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # Set background to white ax.set_facecolor('white') # Ensure that the axis ticks only show up on the bottom and left of the plot. ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Limit the range of the plot to only where the data is. plt.ylim(0, 2) plt.xlim(0, XSCALE) # Make sure your axis ticks are large enough to be easily read. plt.yticks(np.arange(0, 1.7, 0.2), [str(round(x, 1)) for x in np.arange(0, 1.7, 0.2)], fontsize=14) plt.xticks(np.arange(0, XSCALE, 24), [str(round(x,1)) for x in np.arange(0, XSCALE, 24)], fontsize=14) # Provide tick lines across the plot to help your viewers trace along the axis ticks. for y in np.arange(0, 1.7, 0.2): plt.plot(range(0, XSCALE), [y] * len(range(0, XSCALE)), "--", lw=0.5, color="black", alpha=0.3) """ Calculations """ # Parameter fits for individual control wells control_grs = [] control_ymaxs = [] # Storing wells to compute average of replicate control_wells = [] con_avg = con_name + "_avg" # Lists of parameter values for the experimental replicate exp_grs = [] exp_ymaxs = [] # Storing wells to compute average of replicate exp_wells = [] exp_avg = exp_name + "_avg" avg_df = pd.DataFrame() # Calculate parameter values for individual wells for plate_name in con_data.keys(): # Plate df = df_dict[plate_name] plat = plate_list[plate_name] # Wells in that specific plate that belong to given control replicate wells = con_data[plate_name] for well in wells: if well == "": break control_wells.append(df[well]) gr, ymax, line = fit_model(df, well) plat.add_params(gr, ymax, well) if gr < 2: control_grs.append(gr) if ymax < 2: control_ymaxs.append(ymax) for plate_name in exp_data.keys(): # Plate df = df_dict[plate_name] plat = plate_list[plate_name] # Wells in that specific plate that belong to given control replicate wells = exp_data[plate_name] for well in wells: if well == "": break exp_wells.append(df[well]) gr, ymax, line = fit_model(df, well) plat.add_params(gr, ymax, well) if gr < 2: exp_grs.append(gr) if ymax < 2: exp_ymaxs.append(ymax) avg_df["Time"] = df["Time"] # Calculate averages for replicates con_mean, con_std, con_ci = avg_well(control_wells) avg_df[con_avg] = con_mean avg_df[con_name + "_std"] = con_std avg_df[con_name + "_ci"] = con_ci exp_mean, exp_std, exp_ci = avg_well(exp_wells) avg_df[exp_avg] = exp_mean avg_df[exp_name + "_std"] = exp_std avg_df[exp_name + "_ci"] = exp_ci # Parameter fits for average control model con_gr, con_ymax, con_line = fit_model(avg_df, con_avg) # Parameter fits for average exp model exp_gr, exp_ymax, exp_line = fit_model(avg_df, exp_avg) # T-test for growth rate and ymax parameter values gr_stats = t_test(exp_grs, control_grs) ymax_stats = t_test(exp_ymaxs, control_ymaxs) # P-values gr_pval = gr_stats[1] ymax_pval = ymax_stats[1] if con_ymax > 0.01 and exp_ymax > 0.01: # Normalize experimental parameters with control parameters gr_ratio = (exp_gr / con_gr) ymax_ratio = (exp_ymax / con_ymax) else: gr_ratio = 0 ymax_ratio = 0 # Symbols on graph to indicate better growth by experimental strain better_gr = "" if gr_ratio > 1: better_gr += "^ " better_ymax = "" if ymax_ratio > 1: better_ymax += "^ " """ Graphing """ # Graph average experimental line plt.plot(avg_df["Time"], avg_df[exp_avg], color=exp_color, label=(exp_name), linewidth=3.0) # plt.plot(*exp_line, 'r', linestyle = "--", color=exp_color, linewidth=1) # Confidence intervals exp_ci_hi = avg_df[exp_avg] + avg_df[exp_name + "_ci"] exp_ci_low = avg_df[exp_avg] - avg_df[exp_name + "_ci"] plt.plot(avg_df["Time"], exp_ci_hi, color=exp_color, linestyle=":", linewidth=1.5) plt.plot(avg_df["Time"], exp_ci_low, color=exp_color, linestyle=":", linewidth=1.5) # Graph average control line plt.plot(avg_df["Time"], avg_df[con_avg], color=con_color, label=(con_name), linewidth=3.0) # plt.plot(*con_line, 'r', linestyle = "--", color=con_color, linewidth=1) # Confidence intervals con_ci_hi = avg_df[con_avg] + avg_df[con_name + "_ci"] con_ci_low = avg_df[con_avg] - avg_df[con_name + "_ci"] plt.plot(avg_df["Time"], con_ci_hi, color=con_color, linestyle=":", linewidth=1.5) plt.plot(avg_df["Time"], con_ci_low, color=con_color, linestyle=":", linewidth=1.5) # Plot histograms # graph_repls(con_grs, con_ymaxs, exp_grs, exp_ymax,con_name, exp_name, data_path) # Place a legend to the right lgd = ax.legend( loc = 'upper right', borderaxespad = 0., facecolor = 'white', fontsize = 16) # Format P-values if gr_pval < 0.001: gr_pval = "<0.001" else: gr_pval = round(gr_pval, 3) if ymax_pval < 0.001: ymax_pval = "<0.001" else: ymax_pval = round(ymax_pval, 3) plt.title(f"{exp_name} vs. {con_name}- GR ratio:{round(gr_ratio, 3)} ({gr_pval}) Ymax ratio: {round(ymax_ratio, 3)} ({ymax_pval})", fontsize=20) path = data_path + "Graphs/Averages/" + exp_name + "_vs_" + con_name plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() # Graph each well of a replicate def graph_indiv(df_dict, repl_data, repl_name, data_path, plate_list, log_flag=False): """ Graph Formatting """ # You typically want your plot to be ~1.33x wider than tall. # Common sizes: (10, 7.5) and (12, 9) plt.figure(figsize=(10, 7.5)) # Remove the plot frame lines. They are unnecessary ax = plt.subplot(111) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # Set background to white ax.set_facecolor('white') # Ensure that the axis ticks only show up on the bottom and left of the plot. ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Limit the range of the plot to only where the data is. plt.ylim(0, 2) plt.xlim(0, XSCALE) # Make sure your axis ticks are large enough to be easily read. plt.yticks(np.arange(0, 1.7, 0.2), [str(round(x, 1)) for x in np.arange(0, 1.7, 0.2)], fontsize=14) plt.xticks(np.arange(0, XSCALE, 24), [str(round(x,1)) for x in np.arange(0, XSCALE, 24)], fontsize=14) # Provide tick lines across the plot to help your viewers trace along the axis ticks. for y in np.arange(0, 1.7, 0.2): plt.plot(range(0, XSCALE), [y] * len(range(0, XSCALE)), "--", lw=0.5, color="black", alpha=0.3) # Graph each replicate well n = 0 for plate_name in repl_data.keys(): # Plate df = df_dict[plate_name] plat = plate_list[plate_name] # Wells in that specific plate that belong to given control replicate wells = repl_data[plate_name] # Counter for number of viable wells n = 0 for well in wells: if well == "": break try: gr, ymax = plat.get_params(well) except KeyError: gr, ymax, line = fit_model(df, well) plat.add_params(gr, ymax, well) if ymax > 0.2: n += 1 plt.plot(df["Time"], df[well], label=well, linewidth=2.5) # Place a legend to the right lgd = ax.legend( loc = 'upper right', borderaxespad = 0., facecolor = 'white', ncol = 2, fontsize = 16) plt.title(f"{repl_name} Isolates: ({n} isolates with growth)", fontsize=24) path = data_path + "Graphs/" + repl_name plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() """ Auxillary Functions """ # P-test on individual wells def t_test(data1, data2) -> int: ind_ttest = stats.ttest_ind(data1, data2) return ind_ttest def fit_model(df, well): # Calculate exponential portion of data for line fit exp = exponential_section(df, well) # Fitting lines to exponential portions to graph slope = 0 if not exp.empty: slope, line = fit_line(exp, well) else: line = [(0,0), (0,0)] # Fit a logistical model to calculate growth rate p0 = np.random.exponential(size=3) # Initialize random values bounds = (0, [10000000., 100., 10000000.]) # Set bounds # Prepare model xt = np.array(df["Time"]) yt = np.array(df[well]) # If no logistic curve can be fit, default to less sophisticated method of fitting line to exponentional section of the graph try: # Fit model 1 (a, gr, ymax), cov = optim.curve_fit(logistic, xt, yt, bounds=bounds, p0=p0) except (RuntimeError, ValueError): gr = slope ymax = max(df[well]) return gr, ymax, line # Estimates expinential growth section of growth curve to compute growth rate def exponential_section(df, well): ymax = max(df[well]) ymin = min(df[well]) ymid = (ymax + ymin) / 2.0 span = ymax - ymin low = ymid - (span * 0.40) high = ymid + (span * 0.40) exp = df.loc[(df[well] >= low) & (df[well] <= high)] return exp[["Time", well]] # Fits a line to a given section of a graph. Returns the slope and endpoints of the line def fit_line(exp, well): exp["Time"] = pd.to_numeric(exp["Time"]) exp[well] =
pd.to_numeric(exp[well])
pandas.to_numeric
from typing import List, Optional, Dict from matplotlib.axes import Axes from numpy import sum from pandas import Series, DataFrame, isnull from survey.mixins.data_mixins import ObjectDataMixin from survey.mixins.data_types.categorical_mixin import CategoricalMixin from survey.mixins.named import NamedMixin from survey.questions import Question class CategoricalPercentageQuestion( NamedMixin, ObjectDataMixin, CategoricalMixin, Question ): """ Class to represent a Survey Question where the Respondent is asked to assign a percentage to a number of Categorical items, totalling a maximum of 100%. """ def __init__(self, name: str, text: str, categories: List[str], data: Optional[Series] = None): """ Create a new categorical percentage question. :param name: A pythonic name for the question. :param text: The text asked in the question. :param categories: The list of possible choices. :param data: Optional pandas Series of responses. Each non-null response should be a Dict[str, float] mapping categories to percentages. """ self._set_name_and_text(name, text) self._set_categories(categories) self.data = data def _validate_data(self, data: Series): data = data.dropna() values = Series([ value for answer in data.values for value in answer.values() ]) if (values < 0).sum() != 0: raise ValueError( 'Data for CategoricalPercentageQuestion must be non-negative.' ) sums = data.map(lambda d: sum(list(d.values()))) if (sums > 100).sum() != 0: raise ValueError( 'Answers to CategoricalPercentageQuestion cannot sum to more ' 'than 100%' ) def make_features(self, answers: Series = None, drop_na: bool = True, naming: str = '{{name}}: {{choice}}') -> DataFrame: """ Create DataFrame of features for use in ML. :param answers: Answers to the Question from a Survey. If left as None then use the Question's attached data. :param drop_na: Whether to drop null rows (rows where respondent was not asked a question). :param naming: Pattern to use to name the columns. '{{name}}' will be substituted with the name of the question. '{{choice}}' will be substituted with the name of the choice. """ if answers is None: answers = self._data if drop_na: # drop respondents that weren't asked the question answers = answers.dropna() feature_list = [] categories = self.category_names if len(answers) > 0: # create features for _, answer in answers.iteritems(): if isnull(answer): feature_list.append({}) else: feature_list.append(answer) features = DataFrame(feature_list) for category in categories: if category not in features.columns: features[category] = 0 some_values = isnull(features).sum(axis=1) < len(categories) features.loc[some_values] = features.loc[some_values].fillna(0) features = features[categories] else: # create empty dataframe with the right columns features =
DataFrame(columns=categories, index=answers.index)
pandas.DataFrame
import pandas as pd import numpy as np ht_fail = pd.read_csv('/content/sample_data/heart failur classification dataset.csv') ht_fail.head(5) ht_fail.shape ht_fail.isnull() ht_fail.isnull().sum() #Imputing missing values from sklearn.impute import SimpleImputer impute = SimpleImputer(missing_values=np.nan, strategy='mean') impute.fit(ht_fail[['time']]) ht_fail['time'] = impute.transform(ht_fail[['time']]) ht_fail[['time']] #Imputing missing values from sklearn.impute import SimpleImputer impute = SimpleImputer(missing_values=np.nan, strategy='mean') impute.fit(ht_fail[['serum_sodium']]) ht_fail['serum_sodium'] = impute.transform(ht_fail[['serum_sodium']]) ht_fail[['serum_sodium']] ht_fail.isnull().sum() #Handling categorical features #ht_fail.info ht_fail ht_fail['smoking'].unique() ht_fail['smoking'] = ht_fail['smoking'].map({'No':0,'Yes':1}) ht_fail ht_fail['sex'].unique() ht_fail['sex'] = ht_fail['sex'].map({'Male':0,'Female':1}) ht_fail #Train_Test Split from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ht_fail.iloc[:, :-1], ht_fail.iloc[:,-1],random_state=1) #SVM from sklearn.svm import SVC svc = SVC(kernel="linear") svc.fit(x_train, y_train) pre_score_svm = svc.score(x_test, y_test) print("Training accuracy of the model is {:.2f}".format(svc.score(x_train, y_train))) print("Testing accuracy of the model is {:.2f}".format(svc.score(x_test, y_test))) predictions = svc.predict(x_test) print(predictions) #MLP from sklearn.neural_network import MLPClassifier nnc=MLPClassifier(hidden_layer_sizes=(7), activation="relu", max_iter=1000000) nnc.fit(x_train, y_train) pre_score_mlp = nnc.score(x_test, y_test) print("The Training accuracy of the model is {:.2f}".format(nnc.score(x_train, y_train))) print("The Testing accuracy of the model is {:.2f}".format(nnc.score(x_test, y_test))) predictions = nnc.predict(x_test) print(predictions) #Random Forest from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=50) rfc.fit(x_train, y_train) pre_score_rndmForest = rfc.score(x_test, y_test) print("The Training accuracy of the model is {:.2f}".format(rfc.score(x_train, y_train))) print("The Testing accuracy of the model is {:.2f}".format(rfc.score(x_test, y_test))) predictions = rfc.predict(x_test) print(predictions) #performance without dimensionality reduction from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier(n_neighbors=4) knn.fit(x_train, y_train) print("Training accuracy is {:.2f}".format(knn.score(x_train, y_train)) ) print("Testing accuracy is {:.2f} ".format(knn.score(x_test, y_test)) ) htfail_origin = np.array(ht_fail.iloc[:, :-1]) htfail_origin_target = np.array(ht_fail.iloc[:,-1]) #dimensionality reduction from sklearn.preprocessing import StandardScaler scaler= StandardScaler() htfail_df= pd.DataFrame(scaler.fit_transform(htfail_origin.data)) htfail_df=htfail_df.assign(target=htfail_origin_target) #PCA from sklearn.decomposition import PCA pca = PCA(n_components=7) principal_components= pca.fit_transform(htfail_origin.data) print(principal_components) pca.explained_variance_ratio_ sum(pca.explained_variance_ratio_) principal_df =
pd.DataFrame(data=principal_components)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This is a module for bifurcation analysis. """ __author__ = '<NAME>' __status__ = 'Editing' __version__ = '1.1.0' __date__ = '26 August 2020' import os import sys sys.path.append('../') sys.path.append('../anmodel') """ LIMIT THE NUMBER OF THREADS! change local env variables BEFORE importing numpy """ os.environ["OMP_NUM_THREADS"] = "1" # 2nd likely os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" # most likely from copy import copy from datetime import datetime import matplotlib.patches as mpatches import matplotlib.pyplot as plt from multiprocessing import Pool import numpy as np import pandas as pd from pathlib import Path import pickle from scipy.integrate import odeint import scipy.optimize from scipy.stats import gaussian_kde import sympy as sym from tqdm import tqdm from typing import Dict, List, Tuple, Iterator, Optional import anmodel import analysistools class Analysis: def __init__(self, param: pd.Series, model: str='AN', wavepattern: str='SWS', channel_bool: Optional[Dict]=None, model_name: Optional[str]=None, ion: bool=False, concentration: Dict=None) -> None: self.param = param self.model = model self.wavepattern = wavepattern if self.model == 'SAN': self.model_name = 'SAN' self.model = anmodel.models.SANmodel(ion, concentration) if self.model == "X": if channel_bool is None: raise TypeError('Designate channel in argument of X model.') self.model_name = model_name self.model = anmodel.models.Xmodel(channel_bool, ion, concentration) self.model.set_params(self.param) self.samp_freq = 100000 self.l_pad = 0.1 self.v_pad = 10 def change_params(self, channel:str, magnif: float) -> None: if channel != 'g_nal' and channel != 'g_kl': p = copy(self.param) p[channel] = p[channel] * magnif self.model.set_params(p) else: self.model.set_params(self.param) self.model.leak.set_div() gnal = self.model.leak.gnal gkl = self.model.leak.gkl if channel == 'g_nal': gxl = copy(gnal) gxl = gxl * magnif self.model.leak.set_gna(gxl) elif channel == 'g_kl': gxl = copy(gkl) gxl = gxl * magnif self.model.leak.set_gk(gxl) def ode_bifur(self, channel: Optional[str]=None, magnif: Optional[float]=None) -> np.ndarray: if channel is not None: self.change_params(channel, magnif) s, _ = self.model.run_odeint(samp_freq=self.samp_freq) return s def set_s(self, st: int, en: int, channel: Optional[str]=None, magnif: Optional[float]=None) -> None: self.s = self.ode_bifur(channel, magnif) self.st = st self.en = en def nullcline(self, t: int, ax: plt.axes, mode='t', flow=False, density=1, channel: Optional[str]=None, magnif: Optional[float]=None) -> plt.axes: lmin = self.s[self.st:self.en, 1].min() - self.l_pad lmax = self.s[self.st:self.en, 1].max() + self.l_pad vmin = self.s[self.st:self.en, 0].min() - self.v_pad vmax = self.s[self.st:self.en, 0].max() + self.v_pad l_grid, v_grid = np.meshgrid(np.arange(lmin, lmax, 0.001), np.arange(vmin, vmax, 0.1)) if mode == 't': ca = self.s[t, 2] elif mode == 'ca': ca = t if self.model_name == 'SAN': dldt = np.array([self.model.kvhh.dndt(v, n) for (v, n) in zip(v_grid.ravel(), l_grid.ravel())]).reshape(l_grid.shape) dvdt = self.model.dvdt([v_grid, l_grid, ca]) elif self.model_name == 'RAN': dldt = self.model.kvsi.dmdt(v_grid, l_grid) dvdt = self.model.dvdt({ 'v': v_grid, 'm_kvsi': l_grid, 'ca': ca, }) ct1 = ax.contour(v_grid, l_grid, dldt, levels=[0], colors='steelblue', # 4682b4 linestyles='-', linewidths=3) ct2 = ax.contour(v_grid, l_grid, dvdt, levels=[0], colors='forestgreen', # 228b22 linestyles='-', linewidths=3) # ct1.collections[0].set_label('$dm/dt=0$') # ct2.collections[0].set_label('$dv/dt=0$') if flow: ax.streamplot(np.arange(vmin, vmax, 0.1), np.arange(lmin, lmax, 0.001), dvdt.T, dldt.T, color='gray', density=density) return ax def diagram(self, ca_range: List, start_points: List[float], ax: plt.axes, plot: bool=True, stability: bool=True, legend: bool=False, color=True) -> plt.axes : eq_color = { 'Stable node' : 'C0', 'Unstable node' : 'limegreen', # ff8c00 'Saddle' : 'darkorange', # 556b2f 'Stable focus' : 'turquoise', # 4169e1 'Unstable focus' : 'slateblue', # c71585 'Center (Hopf)' : 'C5', 'Transcritical (Saddle-Node)' : 'C6' } eq_linestyle = { 'Stable node' : 'solid', 'Unstable node' : 'solid', 'Saddle' : 'solid', 'Stable focus' : 'solid', 'Unstable focus' : 'solid', 'Center (Hopf)' : 'solid', 'Transcritical (Saddle-Node)' : 'solid' } ca_space = np.linspace(ca_range[0], ca_range[1], 1000)[::-1] def _findroot(func, init): sol, _, convergence, _ = scipy.optimize.fsolve(func, init, full_output=1) if convergence == 1: return sol return np.array([np.nan]*1) def _numerical_continuation(func, v_ini: float, ca_space: np.ndarray): eq = [] for ca in ca_space: eq.append(_findroot(lambda x: func(x, ca), eq[-1] if eq else v_ini)) return eq def _func(v: float, ca: float) -> float: if self.model_name == 'SAN': l_inf = self.model.kvhh.n_inf(v=v) dvdt = self.model.dvdt([v, l_inf, ca]) elif self.model_name == 'RAN': l_inf = self.model.kvsi.m_inf(v=v) dvdt = self.model.dvdt({ 'v': v, 'm_kvsi': l_inf, 'ca': ca }) return dvdt def _jacobian(v, ca): x, y = sym.symbols('x, y') if self.model_name == 'SAN': l = self.model.kvhh.n_inf(v) dfdx = sym.diff(self.model.dvdt([x, y, ca]), x) dfdy = sym.diff(self.model.dvdt([x, y, ca]), y) dgdx = sym.diff(self.model.kvhh.dndt(v=x, n=y), x) dgdy = sym.diff(self.model.kvhh.dndt(v=x, n=y), y) elif self.model_name == 'RAN': l = self.model.kvsi.m_inf(v=v) dfdx = sym.diff(self.model.dvdt({'v': x, 'm_kvsi': y, 'ca': ca}), x) dfdy = sym.diff(self.model.dvdt({'v': x, 'm_kvsi': y, 'ca': ca}), y) dgdx = sym.diff(self.model.kvsi.dmdt(v=x, m=y), x) dgdy = sym.diff(self.model.kvsi.dmdt(v=x, m=y), y) j = np.array([[np.float(dfdx.subs([(x, v), (y, l)])), np.float(dfdy.subs([(x, v), (y, l)]))], [np.float(dgdx.subs([(x, v), (y, l)])), np.float(dgdy.subs([(x, v), (y, l)]))]]) return j def _stability(j) -> str: det = np.linalg.det(j) trace = np.matrix.trace(j) if np.isclose(trace, 0) and np.isclose(det, 0): nat = 'Center (Hopf)' elif np.isclose(det, 0): nat = 'Transcritical (Saddle-Node)' elif det < 0: nat = 'Saddle' else: nat = 'Stable' if trace < 0 else 'Unstable' nat += ' focus' if (trace**2 - 4 * det) < 0 else ' node' return nat def _get_branches(start_points): branches = [] for init in start_points: eq = _numerical_continuation(_func, init, ca_space) nat = [_stability(_jacobian(v, ca)) for (v, ca) in zip(eq, ca_space)] branches.append((np.array([x for x in eq]), nat)) return branches def _get_segments(nats: List['str']) -> Dict: st = 0 seg = {} for i, val in enumerate(nats[1:], 1): if val != nats[st] or i == len(nats)-1: seg[(st, i)] = nats[st] st = i return seg if not plot: eq_lst = [] for init in start_points: eq = _numerical_continuation(_func, init, ca_space) eq_lst.append(eq) return eq_lst if not stability: for init in start_points: eq = _numerical_continuation(_func, init, ca_space) ax.plot(ca_space, [x for x in eq], color='k') return ax branches = _get_branches(start_points) labels = frozenset() for eq, nat in branches: labels = labels.union(frozenset(nat)) seg = _get_segments(nat) for idx, n in seg.items(): # ax.plot(ca_space[idx[0]:idx[1]], eq[idx[0]:idx[1]], # color=eq_color[n] if n in eq_color else 'k', # linestyle=eq_linestyle[n] if n in eq_linestyle else '-') if color: ax.plot(eq[idx[0]:idx[1]], ca_space[idx[0]:idx[1]], color=eq_color[n] if n in eq_color else 'k', linestyle=eq_linestyle[n] if n in eq_linestyle else '-', linewidth=4) else: ax.plot(eq[idx[0]:idx[1]], ca_space[idx[0]:idx[1]], color='gray', linestyle=eq_linestyle[n] if n in eq_linestyle else '-', linewidth=4) if legend: ax.legend([mpatches.Patch(color=eq_color[n]) for n in labels], labels, bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0, fontsize=16) return ax class AttractorAnalysis: def __init__(self, model: str='AN', wavepattern: str='SWS', channel_bool: Optional[Dict]=None, model_name: Optional[str]=None, ion: bool=False, concentration: Dict=None) -> None: self.model = model self.wavepattern = wavepattern if self.model == 'SAN': self.model_name = 'SAN' self.model = anmodel.models.SANmodel(ion, concentration) if self.model == 'X': if channel_bool is None: raise TypeError('Designate channel in argument of X model.') self.model_name = model_name self.model = anmodel.models.Xmodel(channel_bool, ion, concentration) self.samp_freq = 10000 def dvdt(self, args: List) -> float: if self.model_name == 'SAN': v, n = args return ((-10.0*self.model.params.area * (self.model.kvhh.i(v, n=n) + self.model.cav.i(v) + self.model.kca.i(v, ca=self.ca) + self.model.nap.i(v) + self.model.leak.i(v))) / (10.0*self.model.params.cm*self.model.params.area)) elif self.model_name == 'RAN': v, m = args return ((-10.0*self.model.params.area * (self.model.kvsi.i(v, m=m) + self.model.cav.i(v) + self.model.kca.i(v, ca=self.ca) + self.model.nap.i(v) + self.model.leak.i(v))) / (10.0*self.model.params.cm*self.model.params.area)) def diff_op(self, args: List, time: np.ndarray) -> List: if self.model_name == 'SAN': v, n = args dvdt = self.dvdt(args) dndt = self.model.kvhh.dndt(v=v, n=n) return [dvdt, dndt] elif self.model_name == 'RAN': v, m = args dvdt = self.dvdt(args) dmdt = self.model.kvsi.dmdt(v=v, m=m) return [dvdt, dmdt] def run_odeint(self, ini: List, samp_len: int=10): solvetime = np.linspace(1, 1000*samp_len, self.samp_freq*samp_len) s, _ = odeint(self.diff_op, ini, solvetime, atol=1.0e-5, rtol=1.0e-5, full_output=True) return s def change_param(self, channel: str, magnif: float) -> None: if channel != 'g_nal' and channel != 'g_kl': p = copy(self.param) p[channel] = p[channel] * magnif self.model.set_params(p) else: self.model.set_params(self.param) self.model.leak.set_div() gnal = self.model.leak.gnal gkl = self.model.leak.gkl if channel == 'g_nal': gxl = copy(gnal) gxl = gxl * magnif self.model.leak.set_gna(gxl) elif channel == 'g_kl': gxl = copy(gkl) gxl = gxl * magnif self.model.leak.set_gk(gxl) def find_attractor(self, start_points: Tuple) -> float: def _findroot(func, init: float) -> np.ndarray: sol, _, convergence, _ = scipy.optimize.fsolve(func, init, full_output=1) if convergence == 1: return sol return np.array([np.nan]*1) def _func(v: float, ca: float) -> float: if self.model_name == 'SAN': l_inf = self.model.kvhh.n_inf(v=v) dvdt = self.model.dvdt([v, l_inf, ca]) elif self.model_name == 'RAN': l_inf = self.model.kvsi.m_inf(v=v) dvdt = self.model.dvdt({ 'v': v, 'm_kvsi': l_inf, 'ca': ca }) return dvdt def _jacobian(v: float, ca: float) -> np.ndarray: x, y = sym.symbols('x, y') if self.model_name == 'SAN': l = self.model.kvhh.n_inf(v) dfdx = sym.diff(self.model.dvdt([x, y, ca]), x) dfdy = sym.diff(self.model.dvdt([x, y, ca]), y) dgdx = sym.diff(self.model.kvhh.dndt(v=x, n=y), x) dgdy = sym.diff(self.model.kvhh.dndt(v=x, n=y), y) elif self.model_name == 'RAN': l = self.model.kvsi.m_inf(v=v) dfdx = sym.diff(self.model.dvdt({'v': x, 'm_kvsi': y, 'ca': ca}), x) dfdy = sym.diff(self.model.dvdt({'v': x, 'm_kvsi': y, 'ca': ca}), y) dgdx = sym.diff(self.model.kvsi.dmdt(v=x, m=y), x) dgdy = sym.diff(self.model.kvsi.dmdt(v=x, m=y), y) j = np.array([[np.float(dfdx.subs([(x, v), (y, l)])), np.float(dfdy.subs([(x, v), (y, l)]))], [np.float(dgdx.subs([(x, v), (y, l)])), np.float(dgdy.subs([(x, v), (y, l)]))]]) return j def _stability(j: np.ndarray) -> str: det = np.linalg.det(j) trace = np.matrix.trace(j) if np.isclose(trace, 0) and np.isclose(det, 0): nat = 'Center (Hopf)' elif np.isclose(det, 0): nat = 'Transcritical (Saddle-Node)' elif det < 0: nat = 'Saddle' else: nat = 'Stable' if trace < 0 else 'Unstable' nat += ' focus' if (trace**2 - 4 * det) < 0 else ' node' return nat for init in start_points: eq = _findroot(lambda x: _func(x, self.ca), init)[0] nat = _stability(_jacobian(eq, self.ca)) if nat == 'Stable focus': return eq # v value at stable focus attractor raise Exception('Stabel focus attractor was not found.') def singleprocess(self, args: Tuple) -> None: core, res_df, self.ca, v_start, res_p, resname, channel, magnif = args samp_len = 10 vini_lst = res_df.columns lini_lst = res_df.index if channel is not None: self.change_param(channel, magnif) vatt = self.find_attractor(v_start) if self.model_name == 'SAN': latt = self.model.kvhh.n_inf(v=vatt) elif self.model_name == 'RAN': latt = self.model.kvsi.m_inf(v=vatt) def _recur(ini: List, samp_len: str) -> float: s = self.run_odeint(ini, samp_len) try: t_v = np.where(np.abs(s[:, 0]-vatt) < 1.0e-3)[0] t_l = np.where(np.abs(s[:, 1]-latt) < 1.0e-5)[0] t = np.intersect1d(t_v, t_l)[0] return t except IndexError: if samp_len > 100: raise Exception samp_len = samp_len * 2 _recur(ini, samp_len) for lini in lini_lst: for vini in tqdm(vini_lst): ini = [vini, lini] t = _recur(ini, samp_len) # t = np.max([t_v, t_l]) res_df.loc[lini, vini] = t with open(res_p/resname, 'wb') as f: pickle.dump(res_df, f) def multi_singleprocess(self, ncore: int, filename: str, vargs: List, largs: List , ca: float, v_start: Tuple, channel: Optional[str]=None, magnif: Optional[float]=None) -> None: """ Parameters ---------- vargs : Tuple vmin, vmax, vint largs : Tuple l: n_kvhh in SAN model and m_kvsi in RAN model. lmin, lmax, lint """ now = datetime.now() date: str = f'{now.year}_{now.month}_{now.day}' p: Path = Path.cwd().parents[0] data_p: Path = p / 'results' / f'{self.wavepattern}_params' / self.model_name if channel is None: dicname = f'{ca}_{vargs[0]}_{vargs[1]}_{largs[0]}_{largs[1]}' else: dicname = f'{ca}_{vargs[0]}_{vargs[1]}_{largs[0]}_{largs[1]}_{channel}_{magnif}' res_p: Path = p / 'results' / 'bifurcation' / 'attractor_time' / f'{self.model_name}' / dicname res_p.mkdir(parents=True, exist_ok=True) with open(data_p/filename, 'rb') as f: self.param = pickle.load(f) self.model.set_params(self.param) v_lst = np.linspace(vargs[0], vargs[1], vargs[2]) l_lst = np.linspace(largs[0], largs[1], vargs[2]) args: List = [] for core, ll_lst in enumerate(np.array_split(l_lst, ncore)): res_df = pd.DataFrame(index=ll_lst, columns=v_lst) resname = f'{date}_{filename}_{core}.pickle' args.append((core, res_df, ca, v_start, res_p, resname, channel, magnif)) with Pool(processes=ncore) as pool: pool.map(self.singleprocess, args) def load_data(self, date: str, filename: str, ncore: int, ca: float, vrange: List, lrange: List, channel: Optional[str]=None, magnif: Optional[float]=None) -> None: p: Path = Path.cwd().parents[0] if channel is None: dicname = f'{ca}_{vrange[0]}_{vrange[1]}_{lrange[0]}_{lrange[1]}' else: dicname = f'{ca}_{vrange[0]}_{vrange[1]}_{lrange[0]}_{lrange[1]}_{channel}_{magnif}' res_p: Path = p / 'results' / 'bifurcation' / 'attractor_time' / f'{self.model_name}' / dicname with open(res_p/f'{date}_{filename}.pickle_0.pickle', 'rb') as f: self.res_df = pickle.load(f) for core in range(1, ncore): resname = f'{date}_{filename}.pickle_{core}.pickle' with open(res_p/resname, 'rb') as f: r_df = pickle.load(f) self.res_df = pd.concat([self.res_df, r_df]).sort_index(ascending=False) class WavePattern: def __init__(self, model: str='AN', wavepattern: str='SWS', channel_bool: Optional[Dict]=None, model_name: Optional[str]=None, ion: bool=False, concentration: Dict=None) -> None: self.model = model self.wavepattern = wavepattern if self.model == 'AN': self.model_name = 'AN' self.model = anmodel.models.ANmodel(ion, concentration) if self.model == 'SAN': self.model_name = 'SAN' self.model = anmodel.models.SANmodel(ion, concentration) if self.model == "X": if channel_bool is None: raise TypeError('Designate channel in argument of X model.') self.model_name = model_name self.model = anmodel.models.Xmodel(channel_bool, ion, concentration) self.samp_freq=1000 self.wc = anmodel.analysis.WaveCheck() def singleprocess(self, args: List) -> None: now, param, channel = args date: str = f'{now.year}_{now.month}_{now.day}' p: Path = Path.cwd().parents[0] res_p: Path = p / 'results' / 'bifurcation' / 'wavepattern' / f'{self.model_name}_{self.wavepattern}' res_p.mkdir(parents=True, exist_ok=True) save_p: Path = res_p / f'{date}_{channel}.pickle' magnif_arr = np.arange(0, 2.001, 0.001) df = pd.DataFrame(index=magnif_arr, columns=['WavePattern']) for magnif in tqdm(magnif_arr): if channel != 'g_kleak' and channel != 'g_naleak': p = copy(param) p[channel] = p[channel] * magnif self.model.set_params(p) elif channel == 'g_kleak': self.model.leak.set_div() self.model.set_params(param) g_kl = self.model.leak.gkl g = copy(g_kl) g = g * magnif self.model.leak.set_gk(g) elif channel == 'g_naleak': self.model.leak.set_div() self.model.set_params(param) g_nal = self.model.leak.gnal g = copy(g_nal) g = g * magnif self.model.leak.set_gna(g) s, _ = self.model.run_odeint(samp_freq=self.samp_freq) # if you want to detect the SWS firing pattern in the method that # Tatsuki et al. or Yoshida et al. applied, you should use the code below. # if self.wavepattern == 'SWS': # wp: anmodel.analysis.WavePattern = self.wc.pattern(s[5000:, 0]) # elif self.wavepattern == 'SPN': # wp: anmodel.analysis.WavePattern = self.wc.pattern_spn(s[5000:, 0]) if self.wavepattern == 'SWS': spike = 'peak' elif self.wavepattern == 'SPN': spike = 'bottom' wp: anmodel.analysis.WavePattern = self.wc.pattern_spn(s[5000:, 0], spike) df.loc[magnif] = wp with open(save_p, 'wb') as f: pickle.dump(df, f) def multi_singleprocess(self, filename) -> None: args = [] now = datetime.now() p: Path = Path.cwd().parents[0] data_p: Path = p / 'results' / f'{self.wavepattern}_params' / self.model_name with open(data_p/filename, 'rb') as f: param = pickle.load(f) ch_lst = list(param.index) if 'g_leak' in ch_lst: ch_lst.remove('g_leak') ch_lst.extend(['g_kleak', 'g_naleak']) for channel in ch_lst: args.append((now, param, channel)) with Pool(processes=len(ch_lst)) as pool: pool.map(self.singleprocess, args) class Simple(WavePattern): def __init__(self, model: str='AN', wavepattern: str='SWS', channel_bool: Optional[Dict]=None, model_name: Optional[str]=None, ion: bool=False, concentration: Dict=None) -> None: super().__init__(model, wavepattern, channel_bool, model_name, ion, concentration) def singleprocess(self, args: List) -> None: now, df, channel = args date: str = f'{now.year}_{now.month}_{now.day}' p: Path = Path.cwd().parents[0] res_p: Path = p / 'results' / 'bifurcation' / 'simple' / f'{self.model_name}_{self.wavepattern}' res_p.mkdir(parents=True, exist_ok=True) save_p: Path = res_p / f'{date}_{channel}.pickle' res_df = pd.DataFrame(index=range(len(df)), columns=[channel]) def _judge() -> anmodel.analysis.WavePattern: s, _ = self.model.run_odeint(samp_freq=self.samp_freq) # if you want to detect the SWS firing pattern in the method that # Tatsuki et al. or Yoshida et al. applied, you should use the code below. # if self.wavepattern == 'SWS': # wp: anmodel.analysis.WavePattern = self.wc.pattern(s[5000:, 0]) # elif self.wavepattern == 'SPN': # wp: anmodel.analysis.WavePattern = self.wc.pattern_spn(s[5000:, 0]) if self.wavepattern == 'SWS': spike = 'peak' elif self.wavepattern == 'SPN': spike = 'bottom' wp: anmodel.analysis.WavePattern = self.wc.pattern_spn(s[5000:, 0], spike) return wp if channel != 'g_kleak' and channel != 'g_naleak': for i in tqdm(range(len(df))): param = df.iloc[i, :] if channel != 't_ca': param[channel] = param[channel] / 1000 else: param[channel] = param[channel] * 1000 self.model.set_params(param) wp = _judge() res_df.iloc[i, 0] = wp elif channel == 'g_kleak': self.model.leak.set_div() for i in tqdm(range(len(df))): param = df.iloc[i, :] self.model.set_params(param) g_kl = self.model.leak.gkl self.model.leak.set_gk(g_kl/1000) wp = _judge() res_df.iloc[i, 0] = wp elif channel == 'g_naleak': self.model.leak.set_div() for i in tqdm(range(len(df))): param = df.iloc[i, :] self.model.set_params(param) g_nal = self.model.leak.gnal self.model.leak.set_gna(g_nal/1000) wp = _judge() res_df.iloc[i, 0] = wp with open(save_p, 'wb') as f: pickle.dump(res_df, f) def multi_singleprocess(self, filename, divleak=False) -> None: args = [] now = datetime.now() p: Path = Path.cwd().parents[0] data_p: Path = p / 'results' / f'{self.wavepattern}_params' / self.model_name with open(data_p/filename, 'rb') as f: df = pickle.load(f) ch_lst = list(df.columns) if 'g_leak' in ch_lst: if divleak: ch_lst.remove('g_leak') ch_lst.extend(['g_kleak', 'g_naleak']) else: pass for channel in ch_lst: args.append((now, df, channel)) with Pool(processes=len(ch_lst)) as pool: pool.map(self.singleprocess, args) class Property: def __init__(self, channel: str, magnif: float, model: str='AN', wavepattern: str='SWS', channel_bool: Optional[Dict]=None, model_name: Optional[str]=None, ion: bool=False, concentration: Dict=None) -> None: self.model = model self.wavepattern = wavepattern if self.model == 'AN': self.model_name = 'AN' self.model = anmodel.models.ANmodel(ion, concentration) if self.model == 'SAN': self.model_name = 'SAN' self.model = anmodel.models.SANmodel(ion, concentration) if self.model == "X": if channel_bool is None: raise TypeError('Designate channel in argument of X model.') self.model_name = model_name self.model = anmodel.models.Xmodel(channel_bool, ion, concentration) self.samp_freq = 1000 self.channel = channel self.magnif = magnif self.wc = anmodel.analysis.WaveCheck() self.fs = anmodel.analysis.FreqSpike(samp_freq=self.samp_freq) def getinfo(self, v: np.ndarray) -> List[float]: if self.wavepattern == 'SWS': nspike, _ = self.fs.get_spikeinfo(v) sq: np.ndarray = self.fs.square_wave(v, spike='peak') elif self.wavepattern == 'SPN': nspike, _ = self.fs.get_ahpinfo(v) sq: np.ndarray = self.fs.square_wave(v, spike='bottom') lenburst: int = len(np.where(sq==1)[0]) lensilent: int = len(np.where(sq==0)[0]) reslst: List[float] = [nspike, nspike / 6, lenburst, lenburst / 6, lensilent, lensilent / 6 ] return reslst def main(self, filename: str, t_filename='normal'): now: datetime = datetime.now() date: str = f'{now.year}_{now.month}_{now.day}' p: Path = Path.cwd().parents[0] res_p: Path = p / 'results' / 'bifurcation' / 'property' / f'{self.model_name}_{self.wavepattern}' res_p.mkdir(parents=True, exist_ok=True) save_p: Path = res_p /f'{filename}' save_p.mkdir(parents=True, exist_ok=True) data_p: Path = p / 'results' / f'{self.wavepattern}_params' / self.model_name time_p: Path = p / 'results' / 'normalization_mp_ca' if t_filename == 'normal': t_file = time_p / f'{self.wavepattern}_{self.model_name}_time.pickle' elif t_filename == 'bifur': t_file = time_p /'bifurcation_all'/f'{self.model_name}' / f'{filename}_{self.channel}_{self.magnif}_time.pickle' else: t_file = time_p / f'{t_filename}' with open(data_p/filename, 'rb') as f: param_df = pickle.load(f) param_df.index = range(len(param_df)) with open(t_file, 'rb') as f: time_df = pickle.load(f).dropna(how='all') time_df.index = range(len(time_df)) print(len(param_df)) print(len(time_df)) if len(param_df) != len(time_df): raise IndexError('Parameter dataframe and time dataframe do not match!!') data: List = ['nspike', 'average_spike_per_burst', 'lenburst', 'average_length_of_burst', 'lensilent', 'average_length_of_silent' ] df: pd.DataFrame =
pd.DataFrame(columns=data)
pandas.DataFrame
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso =
pd.read_json(v12_iso_json)
pandas.read_json
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Output, Input import plotly.express as px import plotly.graph_objects as go import dash_bootstrap_components as dbc import pandas as pd import numpy as np import datetime as dt from datetime import datetime #----------------------- Sales Data Preparation -----------------------------# global df df =
pd.read_csv("Financial_Sample.csv")
pandas.read_csv
import numpy as np import pandas as pd from woodwork.logical_types import ( URL, Age, AgeNullable, Boolean, BooleanNullable, Categorical, CountryCode, Datetime, Double, EmailAddress, Filepath, Integer, IntegerNullable, IPAddress, LatLong, NaturalLanguage, Ordinal, PersonFullName, PhoneNumber, PostalCode, SubRegionCode, Timedelta ) from woodwork.statistics_utils import ( _get_describe_dict, _get_mode, _make_categorical_for_mutual_info, _replace_nans_for_mutual_info ) from woodwork.tests.testing_utils import mi_between_cols, to_pandas from woodwork.utils import import_or_none dd = import_or_none('dask.dataframe') ks = import_or_none('databricks.koalas') def test_get_mode(): series_list = [ pd.Series([1, 2, 3, 4, 2, 2, 3]), pd.Series(['a', 'b', 'b', 'c', 'b']), pd.Series([3, 2, 3, 2]),
pd.Series([np.nan, np.nan, np.nan])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 23 21:52:43 2021 @author: q Goal : Create a Perceptron algorithm """ # ============================================================================= # imports # ============================================================================= # dataset generator from sklearn.datasets import make_blobs # train test split from sklearn.model_selection import train_test_split # data hadling import pandas as pd import numpy as np # data visualization import matplotlib.pyplot as plt import seaborn as sns # ============================================================================= # program test # ============================================================================= if __name__ == '__main__': X, y = make_blobs(n_samples = 500, centers = 2, random_state = 0, cluster_std = 0.8) y =
pd.Series(y)
pandas.Series
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict(OrderedDict([('A', [1, 2]), ('B', [4, 5])]), orient='index', columns=['one', 'two']) expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'], columns=['one', 'two']) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), orient='columns', columns=['one', 'two']) with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), columns=['one', 'two']) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) assert df.columns[0] == 'x' tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) pytest.raises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) assert df.columns[0] == 'x' # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index = Index(['a', 'b']) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) assert df1.columns[0] == 'x' tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) assert df2.columns[0] == 0 tm.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self): index = list(self.frame.index[:5]) columns = list(self.frame.columns[:3]) result = DataFrame(self.frame._data, index=index, columns=columns) tm.assert_index_equal(result.index, Index(index)) tm.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self): items = [(c, self.frame[c]) for c in self.frame.columns] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, self.frame) # pass some columns with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items, columns=['C', 'B', 'A']) tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']]) # orient='index' row_items = [(idx, self.mixed_frame.xs(idx)) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert recons['A'].dtype == np.float64 msg = "Must pass columns with orient='index'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items(row_items, orient='index') # orient='index', but thar be tuples arr = construct_1d_object_array_from_listlike( [('bar', 'baz')] * len(self.mixed_frame)) self.mixed_frame['foo'] = arr row_items = [(idx, list(self.mixed_frame.xs(idx))) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert isinstance(recons['foo'][0], tuple) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three']) xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'], columns=['one', 'two', 'three']) tm.assert_frame_equal(rs, xp) def test_constructor_from_items_scalars(self): # GH 17312 msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 4)]) msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'], orient='index') def test_from_items_deprecation(self): # GH 17320 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], columns=['col1', 'col2', 'col3'], orient='index') def test_constructor_mix_series_nonseries(self): df = DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])}, columns=['A', 'B']) tm.assert_frame_equal(df, self.frame.loc[:, ['A', 'B']]) msg = 'does not match index length' with pytest.raises(ValueError, match=msg): DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=['a', 'a']) edf = DataFrame([[8, 5]]) edf.columns = ['a', 'a'] tm.assert_frame_equal(df, edf) idf = DataFrame.from_records([(8, 5)], columns=['a', 'a']) tm.assert_frame_equal(idf, edf) pytest.raises(ValueError, DataFrame.from_dict, OrderedDict([('b', 8), ('a', 5), ('a', 6)])) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5') tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('float64'), df.index, df.columns)) df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'), df.index, df.columns)) df = DataFrame('a', index=[1, 2], columns=['a', 'c']) tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']], dtype=object), index=[1, 2], columns=['a', 'c'])) pytest.raises(ValueError, DataFrame, 'a', [1, 2]) pytest.raises(ValueError, DataFrame, 'a', columns=['a', 'c']) msg = 'incompatible data and dtype' with pytest.raises(TypeError, match=msg): DataFrame('a', [1, 2], ['a', 'c'], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # single item df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime(2001, 1, 2, 0, 0)}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, datetime64name: 2, objectname: 2}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array(1., dtype=floatname), intname: np.array(1, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() expected = {objectname: 1} if intname == 'int64': expected['int64'] = 2 else: expected['int64'] = 1 expected[intname] = 1 if floatname == 'float64': expected['float64'] = 2 else: expected['float64'] = 1 expected[floatname] = 1 result = result.sort_index() expected = Series(expected).sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array([1.] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() result = result.sort_index() tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) assert datetime_s.dtype == 'M8[ns]' df = DataFrame({'datetime_s': datetime_s}) result = df.get_dtype_counts() expected = Series({datetime64name: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame({'datetimes': datetimes, 'dates': dates}) result = df.get_dtype_counts() expected = Series({datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone('US/Eastern') dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({'End Date': dt}, index=[0]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) df = DataFrame([{'End Date': dt}]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) df = DataFrame({'value': dr}) assert df.iat[0, 0].tz is None dr = date_range('20130101', periods=3, tz='UTC') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'UTC' dr = date_range('20130101', periods=3, tz='US/Eastern') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'US/Eastern' # GH 7822 # preserver an index with a tz on dict construction i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern') expected = DataFrame( {'a': i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df['a'] = i tm.assert_frame_equal(df, expected) df = DataFrame({'a': i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range('1/1/2011', periods=5, freq='10s') df = DataFrame({'a': i, 'b': i_no_tz}) expected = DataFrame({'a': i.to_series(keep_tz=True) .reset_index(drop=True), 'b': i_no_tz}) tm.assert_frame_equal(df, expected) def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None])]: result = DataFrame(arr).get_dtype_counts() expected = Series({'datetime64[ns]': 1}) tm.assert_series_equal(result, expected) def test_constructor_for_list_with_dtypes(self): # TODO(wesm): unused intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int64': 5}) df = DataFrame([np.array(np.arange(5), dtype='int32') for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int32': 5}) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame([1., 2.]) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1, 2]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1., 2.]}) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1.}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) # with object list df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3], 'c': list('abcd'), 'd': [datetime(2000, 1, 1) for i in range(4)], 'e': [1., 2, 4., 7]}) result = df.get_dtype_counts() expected = Series( {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self): cop = DataFrame(self.frame, copy=True) cop['A'] = 5 assert (cop['A'] == 5).all() assert not (self.frame['A'] == 5).all() def test_constructor_ndarray_copy(self): df = DataFrame(self.frame.values) self.frame.values[5] = 5 assert (df.values[5] == 5).all() df = DataFrame(self.frame.values, copy=True) self.frame.values[6] = 6 assert not (df.values[6] == 6).all() def test_constructor_series_copy(self): series = self.frame._series df = DataFrame({'A': series['A']}) df['A'][:] = 5 assert not (series['A'] == 5).all() def test_constructor_with_nas(self): # GH 5016 # na's in indices def check(df): for i in range(len(df.columns)): df.iloc[:, i] indexer = np.arange(len(df.columns))[isna(df.columns)] # No NaN found -> error if len(indexer) == 0: def f(): df.loc[:, np.nan] pytest.raises(TypeError, f) # single nan should result in Series elif len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should result in DataFrame else: tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) # GH 21428 (non-unique columns) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) assert d['a'].dtype == np.object_ assert not d['a'][1] def test_constructor_categorical(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([Categorical(list('abc')), Categorical(list('abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) pytest.raises(ValueError, lambda: DataFrame([Categorical(list('abc')), Categorical(list('abdefg'))])) # ndim > 1 pytest.raises(NotImplementedError, lambda: Categorical(np.array([list('abcd')]))) def test_constructor_categorical_series(self): items = [1, 2, 3, 1] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) items = ["a", "b", "c", "a"] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=('i4,f4,a10')) arr[:] = [(1, 2., 'Hello'), (2, 3., "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index='f1') # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert 'index' not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=['a', 'b', 'c', 'd']) assert np.isnan(df['c'][0]) def test_from_records_iterator(self): arr = np.array([(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5., 5., 6, 6), (7., 7., 8, 8)], dtype=[('x', np.float64), ('u', np.float32), ('y', np.int64), ('z', np.int32)]) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame({'x': np.array([1.0, 3.0], dtype=np.float64), 'u': np.array([1.0, 3.0], dtype=np.float32), 'y': np.array([2, 4], dtype=np.int64), 'z': np.array([2, 4], dtype=np.int32)}) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5., 6), (7., 8)] df = DataFrame.from_records(iter(arr), columns=['x', 'y'], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=['x', 'y']), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield (i, letters[i % len(letters)], i / length) columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in tuple_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield [i, letters[i % len(letters)], i / length] columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in list_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ['a', 'b', 'c'] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index='a') # noqa assert columns == original_columns def test_from_records_decimal(self): from decimal import Decimal tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)] df = DataFrame.from_records(tuples, columns=['a']) assert df['a'].dtype == object df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True) assert df['a'].dtype == np.float64 assert np.isnan(df['a'].values[-1]) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return {'order_id': order_id, 'quantity': np.random.randint(1, 10), 'price': np.random.randint(1, 10)} documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({'order_id': 10, 'quantity': 5}) result = DataFrame.from_records(documents, index='order_id') assert result.index.name == 'order_id' # MultiIndex result = DataFrame.from_records(documents, index=['order_id', 'quantity']) assert result.index.names == ('order_id', 'quantity') def test_from_records_misc_brokenness(self): # #2179 data = {1: ['foo'], 2: ['bar']} result = DataFrame.from_records(data, columns=['a', 'b']) exp = DataFrame(data, columns=['a', 'b']) tm.assert_frame_equal(result, exp) # overlap in index/index_names data = {'a': [1, 2, 3], 'b': [4, 5, 6]} result = DataFrame.from_records(data, index=['a', 'b', 'c']) exp = DataFrame(data, index=['a', 'b', 'c']) tm.assert_frame_equal(result, exp) # GH 2623 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) # test col upconverts to obj df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts() expected = Series({'datetime64[ns]': 1, 'object': 1}) rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 1]) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts().sort_index() expected = Series({'datetime64[ns]': 1, 'int64': 1}) tm.assert_series_equal(results, expected) def test_from_records_empty(self): # 3562 result = DataFrame.from_records([], columns=['a', 'b', 'c']) expected = DataFrame(columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) result = DataFrame.from_records([], columns=['a', 'b', 'b']) expected = DataFrame(columns=['a', 'b', 'b']) tm.assert_frame_equal(result, expected) def test_from_records_empty_with_nonempty_fields_gh3682(self): a = np.array([(1, 2)], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(a, index='id') tm.assert_index_equal(df.index, Index([1], name='id')) assert df.index.name == 'id' tm.assert_index_equal(df.columns, Index(['value'])) b = np.array([], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(b, index='id') tm.assert_index_equal(df.index, Index([], name='id')) assert df.index.name == 'id' def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH 6140 expected = DataFrame({'EXPIRY': [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[ns]')] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[m]')] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in compat.iteritems(blocks): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = (DataFrame.from_records(tuples, columns=columns) .reindex(columns=df.columns)) # created recarray and with to_records recarray (have dtype info) result2 = (DataFrame.from_records(recarray, columns=columns) .reindex(columns=df.columns)) result3 = (DataFrame.from_records(recarray2, columns=columns) .reindex(columns=df.columns)) # list of tupels (no dtype info) result4 = (DataFrame.from_records(lists, columns=columns) .reindex(columns=df.columns)) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, pd.Index(lrange(8))) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index('C'), columns.index('E1')] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result['C'], df['C']) tm.assert_series_equal(result['E1'], df['E1'].astype('float64')) # empty case result = DataFrame.from_records([], columns=['foo', 'bar', 'baz']) assert len(result) == 0 tm.assert_index_equal(result.columns, pd.Index(['foo', 'bar', 'baz'])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) asdict = {x: y for x, y in compat.iteritems(df)} asdict2 = {x: y.values for x, y in compat.iteritems(df)} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records( asdict).reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict, columns=columns) .reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict2, columns=columns) .reindex(columns=df.columns)) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) # should pass df1 = DataFrame.from_records(df, index=['C']) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index='C') tm.assert_index_equal(df1.index, Index(df.C)) # should fail pytest.raises(ValueError, DataFrame.from_records, df, index=[2]) pytest.raises(KeyError, DataFrame.from_records, df, index=2) def test_from_records_non_tuple(self): class Record(object): def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = lmap(tuple, recs) result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # #2633 result = DataFrame.from_records([], index='foo', columns=['foo', 'bar']) expected = Index(['bar']) assert len(result) == 0 assert result.index.name == 'foo' tm.assert_index_equal(result.columns, expected) def test_to_frame_with_falsey_names(self): # GH 16114 result = Series(name=0).to_frame().dtypes expected =
Series({0: np.float64})
pandas.Series
import pandas as pd import numpy as np import librosa import os import glob from sphfile import SPHFile import re import featuresHelper as featHelper # Custom headers to use when parsing the annotations annotationsHeaders=["filename", "_", "speakerName", "start", "end"] # These annotations pickle was created before hand by merging all the annotations files. # We pre-compute this to save time. (See featuresHelper.mergeAnnotationsToPickle) annotations = pd.read_pickle("TEDLIUM-full_annotations.pkl") pathToData = os.path.join(featHelper.BASE_DIR, 'tedlium', 'data') features = [] # Iterate through each sound file and extract the features for index, row in annotations.iterrows(): file_name = os.path.join(pathToData,str(row["filename"])) + '.sph' if re.search(r"^S\d+$", row["speakerName"]): continue # Fragments that are not speech are labeled as follow # WadeDavis_2003 1 S140 1313.09 1321.34 # Thus, we can recognize them by the third column # class_label = 'noise' if re.search("^S\d+$", row["speakerName"]) else "speech" class_label = 'speech' start = row["start"] end = row["end"] data = featHelper.extractMFCC(file_name, float(start), float(end)) features.append([data, class_label]) if index == 1158: break # Convert into a Panda dataframe featuresDF =
pd.DataFrame(features, columns=['feature','class_label'])
pandas.DataFrame
# coding: utf-8 # In[30]: #----------------------------------------------------------------------------------------------------------------- # Simulation experiment # # Network: # A --> gene set C # # Algorithm # Let gene A and B be TF's: # if gene A expression > threshold_A: # genes in set C are set to some proportion of the expression of gene A # # Apply this algorithm for each sample in the compendium (essentially adding a signal to the existing gene expression data in the compendium) # # Hyperparmeters should include: # 1. Gene A # 2. Size of gene sets C # 3. Proportion of gene A expression # 4. Thresholds # 5. Percentage to 1.0 (effect size) # 6. Log file with hyperparameter selections #----------------------------------------------------------------------------------------------------------------- get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') import os import pandas as pd import numpy as np import random import seaborn as sns from functions import generate_input, vae, def_offset, interpolate, pca, plot from numpy.random import seed randomState = 5 seed(randomState) # In[2]: # Hyperparameters # Transcription factors # If empty, genes will be randomly assigned geneA = '' # Size of the gene set that will be regulated by gene A geneSetC_size = 1000 # Percentage of gene A expression to use to set new value for each gene in set C proportion = 1.0 # Threshold for activation of gene A thresholdA = 0.5 # Amount that genes in gene sets C effect_sizeA = 0.5 # Name of analysis analysis_name = 'sim_lin_test' # In[3]: # Load arguments data_file = os.path.join(os.path.dirname(os.getcwd()), "data", "all-pseudomonas-gene-normalized.zip") # In[4]: # Read in data data = pd.read_table(data_file, header=0, sep='\t', index_col=0, compression='zip').T data.head(5) # In[5]: # Randomly select gene A if not specified # Note: 'replace=False' indicates sampling WITHOUT replacement if not geneA: gene_ids = list(data.columns) [geneA] = np.random.choice(gene_ids, size=1, replace=False) print(geneA) # In[6]: # checkpoint assert(len(gene_ids)==5549) # In[7]: # Randomly select genes for gene set C # remove() doesn't return a value it will remove the element from the list object gene_ids.remove(geneA) print(len(gene_ids)) # Random sample of genes for set C geneSetC = random.sample(gene_ids, geneSetC_size) print(len(geneSetC)) # In[8]: # checkpoint assert(geneA not in geneSetC) # In[9]: # checkpoint # print(data[geneA]) # In[10]: # checkpoint # data.loc[data[geneA]>thresholdA,geneA] # In[11]: # checkpoint: before transformation # data.loc[data[geneA]<=thresholdA,geneSetC[0]] # In[12]: # checkpoint # plot expression of select gene C across all samples BEFORE transformation # Randomly from gene set C geneC = random.sample(geneSetC, 1)[0] # Dataframe with only gene C and only gene A geneC_only = pd.DataFrame(data[geneC], index=data.index, columns=[geneC]) geneA_only = pd.DataFrame(data[geneA], index=data.index, columns=[geneA]) # Join X = pd.merge(geneA_only, geneC_only, left_index=True, right_index=True) # Plot sns.regplot(x=geneA, y=geneC, data=X, scatter=True) # In[13]: # Loop through all samples num_samples = data.shape[1] for sample_id in data.index: row = data.loc[sample_id] if data.loc[sample_id,geneA] > thresholdA: # Scale genes by some fixed percentage for gene in geneSetC: data.loc[sample_id,gene] = proportion*data.loc[sample_id,geneA] # if any exceed 1 then set to 1 since gene expression is normalized data[data>=1.0] = 1.0 # In[14]: # checkpoint # plot expression of select gene C across all samples AFTER transformation # Dataframe with only gene C and only gene A geneC_only =
pd.DataFrame(data[geneC], index=data.index, columns=[geneC])
pandas.DataFrame
import networkx as nx import numpy as np import pandas as pd from flaky import flaky from pytest import approx from dowhy.gcm import AdditiveNoiseModel, distribution_change, distribution_change_of_graphs, fit, \ ProbabilisticCausalModel, EmpiricalDistribution from dowhy.gcm.ml import create_linear_regressor from dowhy.gcm.shapley import ShapleyConfig @flaky(max_runs=5) def test_distribution_change(): X0 = np.random.uniform(-1, 1, 1000) X1 = 2 * X0 + np.random.normal(0, 0.1, 1000) X2 = 0.5 * X0 + np.random.normal(0, 0.1, 1000) X3 = 0.5 * X2 + np.random.normal(0, 0.1, 1000) original_observations = pd.DataFrame({'X0': X0, 'X1': X1, 'X2': X2, 'X3': X3}) X0 = np.random.uniform(-1, 1, 1000) X1 = 2 * X0 + np.random.normal(0, 0.1, 1000) X2 = 2 * X0 + np.random.normal(0, 0.1, 1000) X3 = 3 * X2 + np.random.normal(0, 0.1, 1000) outlier_observations = pd.DataFrame({'X0': X0, 'X1': X1, 'X2': X2, 'X3': X3}) causal_model = ProbabilisticCausalModel(nx.DiGraph([('X0', 'X1'), ('X0', 'X2'), ('X2', 'X3')])) _assign_causal_mechanisms(causal_model) results = distribution_change(causal_model, original_observations, outlier_observations, 'X3', shapley_config=ShapleyConfig(n_jobs=1)) assert results['X3'] > results['X2'] assert results['X2'] > results['X0'] assert 'X1' not in results assert results['X0'] == approx(0, abs=0.15) @flaky(max_runs=5) def test_distribution_change_of_graphs(): X0 = np.random.uniform(-1, 1, 1000) X1 = 2 * X0 + np.random.normal(0, 0.1, 1000) X2 = 0.5 * X0 + np.random.normal(0, 0.1, 1000) X3 = 0.5 * X2 + np.random.normal(0, 0.1, 1000) original_observations = pd.DataFrame({'X0': X0, 'X1': X1, 'X2': X2, 'X3': X3}) X0 = np.random.uniform(-1, 1, 1000) X1 = 2 * X0 + np.random.normal(0, 0.1, 1000) X2 = 2 * X0 + np.random.normal(0, 0.1, 1000) X3 = 3 * X2 + np.random.normal(0, 0.1, 1000) outlier_observations =
pd.DataFrame({'X0': X0, 'X1': X1, 'X2': X2, 'X3': X3})
pandas.DataFrame
import hashlib import inspect import os.path import re import warnings import h5py import json import pprint import yaml import uuid import pandas as pd import copy import logging from pathlib import Path # import dpath.util # from . import dpath from mkpy import dpath import numpy as np import matplotlib.pyplot as plt from mkpy import mkio, pygarv, h5tools from mkpy.codetagger import CodeTagger from . import current_function, indent, log_exceptions from mkpy import get_ver __version__ = get_ver() logging.info("Entering " + __name__) # FIX ME: do something w/ custom exceptions class BadChannelsError(Exception): # from NJS, deprecated pass class BadCalibrateCallError(Exception): pass class DuplicateLocationLabelError(Exception): pass class MightyWeenieCals(UserWarning): pass class EpochSpansBoundary(UserWarning): pass class LogRawEventCodeMismatch(UserWarning): pass class DigRecordsNotSequential(UserWarning): pass class mkh5: """Import and prepare ERPSS single-trial data for cross-platform analysis. This class provides the user API for converting compressed binary EEG data files into readily accessible HDF5 files. Parameters ---------- h5_fname : str Path to a new or existing HDF5 file used as the database. """ # BEGIN DEPRECATED dtypes # _utc = 'u4' # stub for time stamp in microseconds # _bin_num = 'u4' # 0-base numeric bin index from blf # END DEPRECATED dtypes # _chan_num = 'u4' # 0-base numeric channel index from dig header # _mkAD = 'i2' # kutaslab AD samples are int16 # _art_flag = 'u2' # bit mask for bad channels 0 = good, 1 = bad # numpy dtypes for the data coming from dig .crw/.raw _evtick = "u4" # dig crw sample counter, mis-named clk_tick in log2asci _evcode = "i2" # numeric event codes from dig marktrack *AND* log _log_ccode = "u2" # numeric condition code from log _log_flag = "u2" # numeric condition code from log _mk_EEG = "f2" # kutaslab 12-bit AD or 16 bits after calibrating _epoch_t = "i8" # positive and negative samples for interval data _pygarv = "uint64" # 64-bit column to track up to 64 pygarv data tests # white list of dig raw (*NOT LOG*) event codes for # splitting the .raw/.crw into mkh5 dblocks _dig_pause_marks = (-16384,) # HDF5 slashpath to where epochs tables are stashed in the mkh5 file EPOCH_TABLES_PATH = "_epoch_tables" class Mkh5Error(Exception): """general purposes mkh5 error""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class Mkh5CalError(Exception): """mkh5 calibration error""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class Mkh5FormatError(Exception): """raised on mkh5 format violations""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class YamlHeaderFormatError(Exception): """informative errors for bad yhdr YAML files""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class EpochsTableDataError(Exception): """raised for pd.Series data we can't or won't directly convert for HDF5 These include mixed num-like and str-like * booleans with missing data """ def __init__(self, pd_data_type, series): if series.name is None: series.name = "un_named_series" if series.hasnans: self.msg = ( "\npandas.Series " + series.name + " {0} data type" " with missing data/NaN not supported for " " epochs tables" ).format(pd_data_type) else: self.msg = ( "\npandas.Series " + series.name + " {0} data type not supported for" " epochs tables" ).format(pd_data_type) print(self.msg) class HeaderIO: """private-ish helper class for managing mkh5 datablock header information mkh5 header structures are python dictionaries, serialized for hdf5 storage as JSON strings, and tucked into the hdf5 attribute so they travel with the datablock. The dblock header holds information collected/generated from various sources. Some is read from dig .crw/.log file headers, some is generated at runtime as the dig data is converted to mkh5 format. Some is generated/merged in at runtime when the YAML YAML header info file is processed * native .crw header from the info dict returned by mkio._read_header() * mkh5/hdf5 info added by mkh5_read_raw_log() - miscellanous - data stream specs, 1-1 with the dblock data columns * supplementary information specified in a YAML format text file and loaded along with the ``.crw`` and ``.log`` files when they are converted to the dblock, HDF5 format. The .crw/.dig header can be extended by loading it from a YAML file. See _load_yhdr() docstring for specs. """ class HeaderIOError(Exception): def __init__(self, value): self.value = value def __str__(self): return str(self.value) class YAMLClobberError(Exception): """raised when a YAML header file tries to overwrite an mkh5 header reserved word """ def __init__(self, hio, keyword, yhdr_f=None): msg = "These are mkh5 header reserved words: " msg += " ".join([k for k in hio._mkh5_header_types.keys()]) msg += "{0} YAML header files are not allowed to change {1}".format( yhdr_f, keyword ) # template for minimal mkh5 datablock header # These are top-level keys. The header checkers enforce these # keys and data types and the streams keys and data types. # Everything else in the header is ad lib. _mkh5_header_types = { # as returned by mkio._load_header() from the .crw/.raw "name": str, # hardcoded in mkio as "dig" "magic": int, # magic number from dig header "subdesc": str, # header["subdes"] "expdesc": str, # header["expdes"] "odelay": int, # header["odelay"], # ms from trigger to stim about 8 @60Hz "samplerate": float, # hz, "recordduration": float, # length of each record in seconds "recordsize": int, # e.g., 256 # ns * nr of samples in each data record "nrawrecs": int, # number of raw records "nchans": int, # : header["nchans"], # number of channels # set during when mkh5._read_raw_log() reads .crw, .log "eeg_file": str, # .crw file name as passed to _read_raw_log "eeg_file_md5": str, "log_file": str, # .log file name as passed to _read_raw_log "log_file_md5": str, # ('uuid_file', str), # not implemented "streams": dict, # items are 1-1 (unordered) for dblock columns "h5_dataset": str, # set upon construction to the dblock h5py.Dataset.name } # minimal stream item upon loading into .crw/.log info into a mkh5.dblock_N _mkh5_header_stream_types = { "name": str, # dig channel name, e.g., 'lle', 'MiPf' "jdx": int, # column index in dblock_N dataset, 0, 1, ... "source": str, # source pfx[NNNN] where pfx = eeg|log|other, NNNN enumerates "dt": str, # string np.dtype, e.g., '<f2', '<i4' # from mkh5._h5_update_eeg() where h5_path + dblock_id is the } def __init__(self): """wake up""" self._json_key = ( "json_header" # key used to access h5py.Dataset.attrs[] ) self._header = None self._slicer = None # ------------------------------------------------------------ # PUBLIC CRUD # # CRU *D*: Delete not implemented # ------------------------------------------------------------ @property def header(self): """expose header data like a read-only attribute""" return self._header # Create/Update def new(self, hdr_dict, yhdr_f): """merge a dictionary and dict from the YAML file into a well-formed mkh5 datablock header or die """ self._create(hdr_dict, yhdr_f) self._check_header() # read def get(self, dblock): """load header info from dblock into self._header Parameters ---------- dblock : h5py.Dataset The HDF5 dataset whose attribute 'json_header' holds the header JSON string. """ if not isinstance(dblock, h5py.Dataset): raise TypeError( "dblock must be an h5py.Dataset not " + dblock.__class__ ) assert self._json_key in dblock.attrs.keys() json_str = dblock.attrs[self._json_key] self._header = json.loads( json_str ) # decode json into the header dict self._check_streams( dblock ) # are header streams 1-1 with datablock columns? self._check_header() # general header check # update def set(self, dblock): """jsonify the current self._header as value of dblock.attrs[self._json_key] Parameters ---------- dblock : h5py.Dataset writeable mkh5 datablock reference """ if not isinstance(dblock, h5py.Dataset): raise TypeError( "dblock must be an h5py.Dataset not " + dblock.__class__ ) self._header["h5_dataset"] = dblock.name self._check_streams(dblock) self._check_header() # good to go ...jsonify stuff the string into the hdf5 attribute json_header = json.dumps(self._header) if len(json_header) > 2 ** 16: msg = "jsonified header info exceeds 64KB ... too big for hdf5 attribute" raise ValueError(msg) dblock.attrs[self._json_key] = json_header # C *R *UD: header content retrieval def set_slicer(self, slicer_f): """load YAML header slicer for selecting subsets of mkh5 header values Parameters ---------- slicer_f : str YAML file in mkh5 header slicer format Returns ------- None side effect: sets self._slicer * The mkh5 header is a tree structure (dict) with branches that terminate in data. * The mkh5 header slicer is an mkh5 header subtree "template" that contains - terminating branches only - string labels as terminals, e.g., col_0, col_1 Ex. , ['key_0', 'key_1', ... 'key_i', col_0] * Walking through header slicer with dpath.util.get(path) fetches the data value at the end of the path and we label it with the slicer column name like so [ (col_0, val_0), ... (col_n, val_n)] This converts neatly to wide tabular format +---------+------+----------+ |col_0 | ... | col_j | +=========+======+==========+ | value_1 | ... | value_n | +---------+------+----------+ Examples .. code-block:: yaml # here is some YAML header info --- runsheet: age: 22 SAT_math: 720 SAT_verbal: 680 handedness: L/L mood_VAS: 4.5 The YAML header slicer follows matching paths into that header to pluck out the terminal data values (leafs) and (re-)label them .. code-block:: yaml # here is an extractor for the header --- runsheet: mood_VAS: mood handedness: fam_hand age: age .. note:: ``key:value`` order does not matter This next slicer specifies the same **paths** into the header tree and extracts exactly the same **values** .. code-block:: yaml --- runsheet: age: age handedness: fam_hand mood_VAS: mood The slicer paths are the same for both: runsheet/mood_VAS/mood runsheet/handedness/fam_hand runsheet/age/age Algorithm * HeaderIO.get_slices() extracts the header values at the end of the path, i.e., 22, L/L, 4.5 and pairs each datum with its path-matching slicer label like so [ (sub_age, 22), (fam_hand, 'L/L') ] * mkh5.get_event_table() converts these to wide-format and merges them with the rest of the single trial event code column information it gets from the code tag mapper. sub_age fam_hand 22 'L/L' """ self._slicer_f = slicer_f self._slicer = self._load_yaml_slicer(slicer_f) return None def _load_xlsx_slicer(self, slicer_f): """load code slicer from Excel .xlsx file and return pandas DataFrame. Default is first sheet, use slicer_f!sheet_name to select sheet_name """ slicer = None # if a sheet is specified w/ slicer!sheet use it, otherwise # set to 0 for default first sheet slicer_f_reob = re.match( r"(?P<xl_f>.+\.xls[xm])[\!]*(?P<sheet_name>.*)$", slicer_f ) xl_f = slicer_f_reob["xl_f"] sheet_name = slicer_f_reob["sheet_name"] if len(sheet_name) == 0: sheet_name = 0 slicer = pd.read_excel( xl_f, sheet_name=sheet_name, header=0 # , index_col="Index" ) if slicer is not None: return slicer def _load_txt_slicer(self, slicer_f): """load tab-separated UTF-8 text file and return pandas DataFrame""" raise NotImplemented with open(slicer_f, "r") as d: mapper = pd.read_table( slicer_f, delimiter="\t", header=0 # , index_col="Index" ) return mapper def _load_yaml_slicer(self, slicer_f): """load yaml mapper file and return pandas DataFrame""" # slurp the slicer slicer_dict, hdocs, md5 = self._load_yaml_docs(slicer_f) slicers = [] slicer_paths = [ dpath.path.paths_only(x) for x in dpath.path.paths(slicer_dict, dirs=False, leaves=True) ] for path in slicer_paths: slicers.append((path[-1], path[:-1])) slicers = dict(slicers) return slicers def get_slices(self): """slice out data values from dblock header for use in event table columns Parameters ---------- slicer : dict dictionary of col_name: slash_pattern where, * col_name (string) is the dict key that will appear as a table column heading * search_path (list of strings) as [ 'key1', 'key2', ... key_n] to probe header Returns ------- slicer : list of 2-ples, possibly empty) each tuple is (col_name, datum) where datum : object leaf returned by dpath.util.get(self._header, search_path) Raises ------ RuntimeError if HeaderIO instance doesn't have self._header or self._slicer dicts RuntimeError if dpath.util.get finds multiple values """ if self._header is None or not isinstance(self._header, dict): msg = ( "load header from a datablock with HeaderIO.get(dblock) " "before slicing" ) raise RuntimeError(msg) if self._slicer is None or not isinstance(self._slicer, dict): msg = ( "set self._slicer = HeaderIO._load_yaml_docs(yaml_f) " "before slicing" ) raise RuntimeError(msg) slices = list() hdr_paths = [ p for p in dpath.path.paths( self._header, dirs=False, leaves=False ) ] for k, v in self._slicer.items(): this_slice = None try: datum = dpath.util.get(self._header, v) this_slice = (k, datum) except Exception as fail: if isinstance(fail, KeyError): this_slice = (k, float("NaN")) # key not found elif isinstance( fail, ValueError ): # multiple values ... shouldn't happen msg = "mutiple leaves match dpath glob ... but how?" raise ValueError(msg) else: print("some horrible error in HeaderIO.get_slices()") raise fail slices.append(this_slice) return slices # possibly empty # ------------------------------------------------------------ # PRIVATE-ish CRUD # ------------------------------------------------------------ # this is the only way to form an mkh5 header dict ... seed_dict + YAML def _create(self, seed_dict, yhdr_f): """merges seed_dict ON TOP of the YAML and set self._header""" # yhdr_f Path should be stringified by mkh5.create_mkdata if not isinstance(yhdr_f, str): raise HeaderIOError( f"please report mkpy bug: {yhdr_f} must be a str not {type(yhdr_f)}" ) if not isinstance(seed_dict, dict): msg = "seed_dict is not a dict" raise TypeError(msg) self._header = seed_dict # mkh5 headers know about the h5_path/block_id but # dicts pulled from .crw headers don't, so add a stub for k in ["name", "h5_dataset"]: if k not in seed_dict: self._header[k] = "" # load YAML info and merge it in yhdr = self._load_yhdr(yhdr_f) assert isinstance(yhdr, dict) self._update_from_dict(yhdr, keep_existing=True) self._check_header() def _update_from_dict(self, new_dict, keep_existing=True): """Update current header dictionary from other dictionary. Parameters ---------- keep_existing : bool, default is True ``True`` protects self._header[k] from being overwritten by new_dict[k]. ``False`` allows ``new_dict[k]`` to overwrite ``self._header[k]`` Notes ----- dpath.util.merge(A,B) merges B **ON TOP** of A, so B[key]:value sets (overwrites) A[key]:value. """ self._check_header() if keep_existing: # merge existing on top of the new to preserve existing dpath.util.merge(new_dict, self._header) self._header = copy.deepcopy(new_dict) else: # merge new on top of existing to clobber the new dpath.util.merge(self._header, new_dict) self._header = copy.deepcopy(self._header) self._check_header() def _update_from_slashpaths(self, slash_vals): """ header date via dpath (slash_path:value) syntax Parameters: slash_vals (slashpath, value) 2ple or iteratble of them """ self._check_header() for sv in slash_vals: # gate keeper if not ( isinstance(sv, tuple) and len(sv) == 2 and isinstance(sv[0], str) ): msg = ( "to set header with slashpath use a ('slash/path', value) 2-ple" + " or a list of them" ) raise TypeError(msg) # FIX ME: protect reserved keys?? old_val = dpath.util.search(self._header, sv[0]) if len(old_val) == 0 and isinstance(old_val, dict): # print('new key:value ', sv[0], sv[1]) dpath.util.new(self._header, sv[0], sv[1]) else: # print('setting existing key ', sv[0], 'old: ', old_val, 'new: ', sv[1]) nset = dpath.util.set(self._header, sv[0], sv[1]) if nset is None: raise RuntimeError( "failed to set " + sv[0] + " = " + sv[1] ) self._check_header() def _load_yaml_docs(self, yml_f): """generic multi-doc YAML loader for header data and extractor files""" # FIX ME: add YAML linter # check for legal yaml with open(yml_f, "r") as f: yml_str = f.read() hdocs = yaml.load_all(yml_str, Loader=yaml.SafeLoader) yml_f_md5 = hashlib.md5(yml_str.encode("utf8")).hexdigest() # load up the docs w/ modicum of error checking yml = dict() doc_names = [] # for i, hdoc in enumerate(hdocs): if hdoc is None: msg = "uh oh ... empty YAML document in " msg += "{0} perhaps a stray ---".format(yml_f) raise mkh5.YamlHeaderFormatError(msg) if "name" not in hdoc.keys(): msg = "\n{0}\n".format(self._load_yaml_docs.__doc__) msg += "{0} document {1} does not have a name".format( yml_f, i ) raise mkh5.YamlHeaderFormatError(msg) if len(hdoc["name"]) == 0: msg = "{0} document {1}: length of name appears to be 0".format( yml_f, i ) raise mkh5.YamlHeaderFormatError(msg) if hdoc["name"] in doc_names: msg = "{0} duplicate document name {1}".format( yml_f, hdoc["name"] ) raise mkh5.YamlHeaderFormatError(msg) else: # the "dig" keys are not nested under the document name if hdoc["name"] == "dig": dpath.util.merge(yml, hdoc) else: doc_names.append(hdoc["name"]) yml[hdoc["name"]] = hdoc return (yml, doc_names, yml_f_md5) def _load_yhdr(self, yhdr_f): """load a YAML format header extension Syntax: * Must conform to YAML spec (?2.0) * There MUST be at least one YAML document * EACH YAML docs must contain a ``name`` key and string value OPTIONAL * Additional YAML documents may be added to the file ad lib provided each document is named with a key-value pair like so --- name: doc_name where doc_name is a string and not used for any other document in the file. * Additional YAML data may be specified ad lib. to extend any document or data. * Apparatus doc is a fixed-format map with these keys and values name: "apparatus" space: fiducial: sensor: stream: The ``fiducial``, ``sensor``, and ``stream`` data are each given as 2-level maps where the top level key gives the "name", e.g., lle, MiPf, HEOG, nasion and the nested key:value pairs give the value of the key, e.g., gain: 10000 for an amplifier channel or x: 18.9 for 3D coordinate x. This affords easy conversion to tabular format where top level keys index rows and, nested keys are column labels, and nested values are column data. * fiducial must contain top-level keys "nasion", "lpa", "rpa" and nested keys x, y, z * sensor must contain top-level keys naming electrodes, e.g. lle, MiPf and nested keys x, y, z * stream must contain top-level keys naming digital data channels, e.g., lle, MiPf, HEOG (note these are recordings/data streams *NOT* electrodes). Nested keys must contain pos, neg indicating, respectively, the positive polarity sensor and its reference (a string name) which may be another electrode (A1, lhz) or not (avg). """ yhdr, doc_names, yhdr_md5 = self._load_yaml_docs(yhdr_f) # make sure the YAML dict doesn't step on basic top-level header info new_keys = yhdr.keys() for (h_key, h_type) in self._mkh5_header_types.items(): if h_key in new_keys: raise self.YAMLClobberError(self, h_key, yhdr_f) # enforce special case requirements here if "apparatus" in doc_names: for m in ["space", "fiducials", "sensors", "streams"]: if m not in yhdr["apparatus"].keys(): msg = "{0} apparatus document {1} map not found".format( yhdr_f, m ) raise mkh5.YamlHeaderFormatError(msg) # self-identify yhdr["yhdr_file"] = yhdr_f yhdr["yhdr_file_md5"] = yhdr_md5 return yhdr def _check_header(self): """enforce mandatory minimum mkh5 header data structure""" # check for mandatory keys and values of the right type header_keys = self._header.keys() for h_key, dtype in self._mkh5_header_types.items(): if h_key not in header_keys: msg = ( f'uh oh ... mandatory key "{h_key}" is missing from ' "mkh5 dblock header:\n" ) msg += pprint.pformat(self._header.keys()) raise RuntimeError(msg) if not isinstance(self._header[h_key], dtype): msg = "uh oh ... bad header value datatype: " msg += "{0} should be {1} not {2}".format( h_key, dtype, self._header[h_key].__class__ ) raise RuntimeError(msg) # check the stream items mand_stream_keys = self._mkh5_header_stream_types.keys() mand_stream_types = self._mkh5_header_stream_types.values() for (k, v) in self._header["streams"].items(): for sk, sv in v.items(): if sk in mand_stream_keys and not isinstance( sv, self._mkh5_header_stream_types[sk] ): msg = 'uh oh ... stream {0}["{1}"] bad value datatype: '.format( sk, sv ) msg += "should be {1} not {2}".format( self._mkh5_header_stream_types[sk], sv.__class__ ) raise RuntimeError(msg) def _check_streams(self, dblock): """enforce agreement between self._header streams and the data block Parameters ---------- dblock (h5py.Dataset) readble mkh5 data block (reference) * checks the fields in _mkh5_header_stream_types _mkh5_header_stream_types = { 'name': str, # dig channel name, e.g., 'lle', 'MiPf' 'jdx': int, # column index in dblock_N dataset, 0, 1, ... 'source': str, # source pfx[NNNN] where pfx = eeg|log|other, NNNN enumerates 'dt': str, # string np.dtype, e.g., '<f2', '<i4' # from mkh5._h5_update_eeg() where h5_path + dblock_id is the Raises: RuntimeError on mismatch columns: labels, column order=jdx, and data type """ self._check_header() # first things first for jdx, col in enumerate(dblock.dtype.names): try: assert col in self.header["streams"].keys() assert jdx == self.header["streams"][col]["jdx"] assert ( dblock.dtype[col] == self.header["streams"][col]["dt"] ) except: msg = "uh oh ... header['streams'] is missing a data block column" raise TypeError(msg) for k, v in self.header["streams"].items(): try: assert k in dblock.dtype.names this_jdx = v["jdx"] assert dblock.dtype.names[this_jdx] == k assert dblock.dtype[this_jdx] == v["dt"] except: msg = "uh oh ... header['streams'] has an extra stream" raise TypeError(msg) # log data types ... ticks are uint64, everything else can be int16 # _log_dtype = np.dtype([ # ("log_evticks", _evtick), # ("log_evcodes", _evcode), # ("log_ccodes", _log_ccode), # ("log_flags", _log_flag), # ]) # structure to merge dig marktrack and log info # FIX ME FOR EPOCHS _event_dtype = np.dtype( [ ("evticks", _evtick), ("raw_evcodes", _evcode), ("log_evcodes", _evcode), ("log_ccodes", _log_ccode), ("log_flags", _log_flag), ] ) _dblock_slicer_dtype = np.dtype( [ ("start_samps", _epoch_t), ("anchor_samps", _epoch_t), ("stop_samps", _epoch_t), ] ) # define a datatype for the bin-event table ... essentially a decorated log _bin_event_dtype = np.dtype( [ ("evticks", _evtick), ("raw_evcodes", "i2"), ("log_evcodes", "i2"), ("log_ccodes", "u2"), ("log_flags", "u2"), ("bin_nums", "u2"), ("bin_descs", "S64"), # icky ... hardcoded string lengths ] ) # FIX ME ... non-event type epoch? _epoch_dtype = np.dtype( [ ("anchor_ticks", _evtick), ("raw_evcodes", _evcode), ("epoch_starts", _evtick), ("epoch_stops", _evtick), ] ) # for dumping instance info ... # pp = pprint.PrettyPrinter(indent=4) def __init__(self, h5name): """initialize and set mkh5 file name for this instance. If the file doesn't exist, create it. If it exists, test read/writeability Parameters: h5name (string) file path to the mkh5 format hdf5 file. """ if isinstance(h5name, Path): h5name = str(h5name) # each mkh5 instance is tied to one and only one hdf5 format file logging.info(indent(2, "h5name is " + h5name)) self.h5_fname = h5name # if file doesn't exist open, an empty hdf5 file if not os.path.isfile(self.h5_fname): self.reset_all() else: # file exists, warn if not readable or read-writable with h5py.File(self.h5_fname, "r") as h5: source_ver = __version__.split(r".")[0] # major version if "version" in h5.attrs.keys(): file_ver = h5.attrs["version"].split(r".")[0] else: file_ver = None if file_ver is not None and source_ver != file_ver: msg = "version mismatch: source=={0} file {1}=={2}".format( source_ver, self.h5_fname, file_ver ) warnings.warn(msg) # try to open for read-write and let h5py deal with problems try: with h5py.File(self.h5_fname, "r+") as h5: pass except: msg = "{0} is read only".format(self.h5_fname) warnings.warn(msg) # h5 introspection def _headers_equal(self, header1, header2): """returns boolean if all header dict keys and values are ==""" raise NotImplemented("FIX ME WITH dpath.utils NOW") k1 = sorted(header1.keys()) k2 = sorted(header2.keys()) # if k1==k2 can iterate on either set of keys if k1 != k2 or any([header1[k] != header2[k] for k in k1]): return False else: return True # ------------------------------------------------------------ # Public artifact tagging # ------------------------------------------------------------ def garv_data_group(self, h5_data_group_path, skip_ccodes=[0]): """Run `pygarv` on all the dblocks under the `h5_data_group_path`. Parameters ---------- h5_data_group_path : str name of the h5 datagroup containing the dblocks to screen skip_ccodes : list of uint, None ([0]) dblocks with log_ccodes in the list are not scanned. Default is [0] to skip calibration blocks. Setting to None disables the skipper and scans all dblocks in the data group """ dblock_paths = h5tools.get_dblock_paths( self.h5_fname, h5_data_group_path ) for dbp in dblock_paths: hdr, dblock = self.get_dblock(dbp) # ccodes can only change on dig start or pause so # homogenous on unless there is some goofy log # poking going on ... log_event_idxs = np.where(dblock["log_evcodes"] != 0)[0] assert ( dblock["log_ccodes"][log_event_idxs].max() == dblock["log_ccodes"][log_event_idxs].min() ) log_ccode = dblock["log_ccodes"][log_event_idxs[0]] if skip_ccodes is not None: if log_ccode in skip_ccodes: msg = "pygarv skipping {0} with " "log_ccode {1}".format( dbp, log_ccode ) print(msg) continue print("pygarving {0} log_ccode {1}".format(dbp, log_ccode)) with h5py.File(self.h5_fname, "r+") as h5: h5[dbp]["pygarv"] = pygarv._garv_dblock(hdr, dblock) # ------------------------------------------------------------ # Public event code tag mapping and epoching utilities # ------------------------------------------------------------ def get_event_table(self, code_map_f, header_map_f=None): """Reads the code tag and header extractor and returns an event lookup table Parameters ---------- code_map_f : str Excel, YAML, or tab-separated text, see mkh5 docs for format details. header_map_f : str YAML header extractor file, keys match header keys, values specify name of the event table column to put the header data Returns ------- event_table : pandas.DataFrame See Note. Note ---- 1. This sweeps the code tag map across the data to generate a lookup table for specific event (sequence patterns) where the rows specify: * slashpath to the mkh5 dblock data set and sample index for pattern-matching events. * all the additional information for that pattern given in the code tag map The event table generated from mkh5 data and the code_map specification is in lieu of .blf (for EEG epoching and time-locking), .rts (for event-to-event timing), and .hdr (for experimental design specification). 2. ``ccode`` Special column. If the code tag map has a column named ``ccode`` the code finder finds events that match the code sequence given by the regex pattern **AND** the log_ccode == ccode. This emulates Kutas Lab `cdbl` event lookup and to support, e.g., the condition code == 0 for cals convention and blocked designs where the `ccode` varies block to block. If the code map does not specify a ``ccode``, column the `log_ccode` column is ignored for pattern matching. """ # instantiate the codemapper w/ its map and code finder ctagger = CodeTagger(code_map_f) if "ccode" in ctagger.code_map.columns: msg = ( f"\nAs of mkpy 0.2.0 to match events with a codemap regexp pattern, the\n" f"ccode column in {Path(code_map_f).name} must also match the log_ccode\n" f"in the datablock. If this behavior is not desired, delete or rename\n" f"the ccode column in the codemap." ) warnings.warn(msg) # set up to extract info from the header hio = self.HeaderIO() if header_map_f is not None: hio.set_slicer(header_map_f) # fetch all data that have at least one mkh5 datablock (dblock_0) match_list = [] dgroup_paths = h5tools.get_data_group_paths(self.h5_fname) with h5py.File(self.h5_fname, "r") as h5: for dgp in dgroup_paths: dblock_paths = h5tools.get_dblock_paths(self.h5_fname, dgp) for dbp in dblock_paths: assert dgp in dbp # group and data block must agree hio.get(h5[dbp]) # need this for srate at least # slice the header if there is an extractor if hio._slicer is not None: hdr_data = hio.get_slices() else: hdr_data = [] print("searching codes in: " + dbp) event_idxs = ( h5[dbp]["log_evcodes"] != 0 ) # samples w/ non-zero events dblock_ticks = h5[dbp]["dblock_ticks"][event_idxs] crw_ticks = h5[dbp]["crw_ticks"][event_idxs] raw_evcodes = h5[dbp]["raw_evcodes"][event_idxs] log_evcodes = h5[dbp]["log_evcodes"][event_idxs] log_ccodes = h5[dbp]["log_ccodes"][event_idxs] log_flags = h5[dbp]["log_flags"][event_idxs] # iterate on keys which are the code patterns for idx, cm in ctagger.code_map.iterrows(): # matches is a list of lists of dict, one dict for each group code_pattern_matches = ctagger._find_evcodes( cm["regexp"], dblock_ticks, log_evcodes ) if code_pattern_matches is not None: for m in code_pattern_matches: for mm in m: match_tick, anchor_tick, is_anchor = ( None, None, None, ) for k, v in mm: if k == "match_tick": match_tick = v if k == "anchor_tick": anchor_tick = v if k == "is_anchor": is_anchor = v assert all( [ v is not None for v in [ match_tick, anchor_tick, is_anchor, ] ] ) if is_anchor: assert anchor_tick == match_tick else: assert anchor_tick != match_tick # ok, this is the tick of the pattern match # and it must be unique tick_idx = np.where( dblock_ticks == match_tick )[0] assert len(tick_idx) == 1 sample_data = [ # ("Index", idx), ("data_group", dgp), ("dblock_path", dbp), ("dblock_tick_idx", tick_idx[0]), ( "dblock_ticks", dblock_ticks[tick_idx][0], ), ("crw_ticks", crw_ticks[tick_idx][0]), ( "raw_evcodes", raw_evcodes[tick_idx][0], ), ( "log_evcodes", log_evcodes[tick_idx][0], ), ( "log_ccodes", log_ccodes[tick_idx][0], ), ("log_flags", log_flags[tick_idx][0]), ( "epoch_match_tick_delta", 0, ), # an event is a one sample epoch ("epoch_ticks", 1), ( "dblock_srate", hio.header["samplerate"], ), # for conversion to times ] # extend sample data w/ the header information # which may be None sample_data = sample_data + hdr_data # extend sample_data w/ the match info and code map row sample_data = ( sample_data + mm + list(zip(cm.index, cm)) ) match_list.append( (sample_data) ) # list of tuples # pprint.pprint(match_list) # handle no matches ... if len(match_list) > 0: event_table = pd.DataFrame([dict(m) for m in match_list]) # codemap ccode triggers backwards compatibility # with Kutas Lab ERPSS cdbl if "ccode" in ctagger.code_map.columns: event_table = event_table.query("ccode == log_ccodes") # event_table.set_index("Index", inplace=True) self._h5_check_events(self.h5_fname, event_table) return event_table else: raise RuntimeError( "uh oh ... no events found for {0}".format(code_map_f) ) def _h5_check_events(self, h5_f, e_table): """check the match event in event or epoch table agrees with the dblock data Parameters ---------- h5_f : str path to mkh5 format hdf5 file e_table: (pandas.DataFrame, np.ndarray) as returned by mkh5.get_event_table() Returns ------- None for success Raises ------ RuntimeError on event_table[e] vs. dblock[e] mismatch or missing columns The minimum mandatory column names for an event table are * data_group: full slashpath to the h5py.Group covering a sequence of dblocks, e.g., S001 Expt1/Session1/S047 * dblock_path: full slashpath from the hdf5 root to one of the daughter dblock_N h5py.Datasets (without leading /), e.g., S001/dblock_0 Expt1/Session1/S047/dblock_12 * dblock_ticks: the A/D sample counter which is also the row index of the dblock where the *matched* event appearing in the event table occurred. * match_code: the event code of the regexp pattern-matched group for this event table row. There is one match code for each capture group in the regular expression pattern, so the match code need not be the anchor code * All anchors are matches. Some matches may not be anchors * log_evcodes: the sequence of integer event codes occuring at each dblock tick in the original crw/log file """ if isinstance(e_table, np.ndarray): e_table = pd.DataFrame(e_table) min_cols = subset = [ "data_group", "dblock_path", "dblock_ticks", "log_evcodes", "match_code", ] for c in min_cols: if not c in e_table.columns: msg = 'mkh5 event table column "{0}"'.format(c) msg += " is missing, all these are mandatory:" + " ".join( min_cols ) raise RuntimeError(msg) with h5py.File(h5_f, "r") as h5: for index, e in e_table.iterrows(): # These should only fail if the datablocks or event table have # been monkeyed with. Anyone who can do that can chase down # the assertion exception. data = h5[e["dblock_path"]][e["dblock_ticks"]] assert e["data_group"] in e["dblock_path"] # the log event code must be an anchor or a match if e["match_code"] != e["anchor_code"]: assert e["match_code"] == data["log_evcodes"] else: assert e["anchor_code"] == data["log_evcodes"] check_cols = [ col for col in e.index if col in data.dtype.names ] for col in check_cols: assert data[col] == e[col] def _check_epochs_table(self, epochs_table): """check a set epochs table for event codes, epoch length, and offset Parameters ---------- epochs_table : pd.DataFrame event table format with extra columns: epoch_ticks = fixed epoch duration in units of samples epoch_match_tick_delta = number of samples from epoch start to matched event code Returns ------- None Raises ------ ValueError if epoch event codes and data blocks column values do not match the datablocks or epoch length and start offset values are not uniform across the epochs. """ epoch_required_columns = ["epoch_ticks", "epoch_match_tick_delta"] # epochs tables are an extension of event tables, check the events first self._h5_check_events(self.h5_fname, epochs_table) # then epoch length and matched code offset (in samples) for c in epoch_required_columns: if c not in epochs_table.dtype.names: msg = "epochs table missing required column {0}".format(c) raise ValueError(msg) vals = np.unique(epochs_table[c]) if len(vals) > 1: msg = "epochs table column {0} values must be the same: {1}".format( c, vals ) raise ValueError(msg) def _h5_check_epochs_table_name(self, h5_f, epochs_table_name): """look up and check a previously set epochs table Parameters ---------- h5_f : str name of an mkh5 format HDF5 file, e.g., self.h5_fname or other epochs_table_name : str name of an epochs table, must exist in h5_f Returns ------- None Raises ------ ValueError if something is wrong with the lookup or table itself """ eptbl = self.get_epochs_table(epochs_table_name, format="numpy") self._check_epochs_table(eptbl) def set_epochs(self, epochs_table_name, event_table, tmin_ms, tmax_ms): """construct and store a named EEG epochs lookup-table in self['epcochs'] For storing in hdf5 the columns must be one of these: string-like (unicode, bytes) int-like (int, np.int, np.uint32, np.uint64) float-like (float, np.float32, np.float64) Parameters ---------- epochs_table_name : string name of the epochs table to store event_table : pandas.DataFrame as returned by mkh5.get_event_table() tmin_ms : float epoch start in millseconds relative to the event, e.g, -500 tmax_ms : float epoch end in millseconds relative to the event, e..g, 1500, strictly greater than tmin_ms Returns ------- None updates h5_f/EPOCH_TABLES_PATH/ with the named epoch table h5py.Dataset The epochs table is a lightweight lookup table specific to this mkh5 instance's hdf5 file, h5['epochs'][epochs_table_name] = epochs_table Event tables by default are "epochs" 1 sample long with 0 prestimulus. This simply updates the prestimulus interval and length accordingly, adds the peri-event time interval information for slicing mkh5 datablocks and massages the event table (pandas.DataFrame) into a numpy ndarray for hdf5 storage. For reproducibility, by design epochs tables can be added to an mkh5 file but not overwritten or deleted. If you need to the revise the epochs, rebuild the mkh5 file from crws/logs with the ones you want. """ with h5py.File(self.h5_fname, mode="r") as h5: if ( mkh5.EPOCH_TABLES_PATH in h5.keys() and epochs_table_name in h5[mkh5.EPOCH_TABLES_PATH].keys() ): msg = ( f"epochs name {epochs_table_name} is in use, " f"pick another name or use reset_all() to " f"completely wipe the mkh5 file: {self.h5_fname}" ) raise RuntimeError(msg) # event_table = self.get_event_table(code_map_f) if event_table is None: raise ValueError("uh oh, event_table is empty") self._h5_check_events(self.h5_fname, event_table) # ------------------------------------------------------------ # 1. sanitize the pandas.Dataframe columns # ------------------------------------------------------------ print("Sanitizing event table data types for mkh5 epochs table ...") # enforce Index data type is str or int # try: # msg = None # if event_table.index.values.dtype == np.dtype("O"): # maxbytes = max( # [len(x) for x in event_table.index.values.astype(bytes)] # ) # index_dt_type = "S" + str(maxbytes) # elif event_table.index.values.dtype == np.dtype(int): # index_dt_type = "int" # else: # msg = "uh oh, cannot convert event table index column to bytes or integer" # except Exception as err: # print(msg) # raise err # # move Index into columns for santizing # event_table = event_table.reset_index("Index") # remap pandas 'O' dtype columns to hdf5 friendly np.arrays if possible tidy_table = pd.DataFrame() for c in event_table.columns: # do by column so failures are diagnostic. Pass in a copy # so nan handling can mod the series in place without # pd warning "setting value on copy" tidy_table[c] = self._pd_series_to_hdf5(event_table[c].copy()) event_table = tidy_table # 2. define a numpy compound data type to hold the event_table # info and region refs # start with epoch_id epoch_dt_names = ["epoch_id"] epoch_dt_types = ["uint64"] # continue new dtype for event info columns, mapped to hdf5 compatible np.dtype event_table_types = [event_table[c].dtype for c in event_table.columns] for i, c in enumerate(event_table.columns): epoch_dt_names.append(c) epoch_dt_types.append(event_table[c].dtype.__str__()) # construct the new dtype and initialize the epoch np.array epoch_dt = np.dtype(list(zip(epoch_dt_names, epoch_dt_types))) epochs = np.ndarray(shape=(len(event_table),), dtype=epoch_dt) # set the epoch_id counting index and copy the tidied event table epochs["epoch_id"] = [idx for idx in range(len(event_table))] for c in event_table.columns: epochs[c] = event_table[c] # 3. time lock each epoch to the match tick, and set the # interval from the function arguments hio = self.HeaderIO() # init with nan and set to ms if epoch is in bounds is_in_bounds = np.zeros(len(epochs)).astype(bool) with h5py.File(self.h5_fname, "r+") as h5: # for i,e in event_table.iterrows(): for i, e in enumerate(epochs): srate = e["dblock_srate"] # check event table sampling rate agrees w/ dblock dbp = e["dblock_path"] hio.get(h5[dbp]) if srate != hio.header["samplerate"]: msg = ( "{0}['samplerate']: {1} does not match " "event table[{2}]['dblock_samplerate': " "{3}" ).format(dbp, hio.header["samplerate"], i, srate) raise ValueError(msg) epoch_match_tick_delta = mkh5._ms2samp(tmin_ms, srate) start_samp = e["match_tick"] + epoch_match_tick_delta duration_samp = mkh5._ms2samp( tmax_ms - tmin_ms, srate ) # must be non-negative if duration_samp <= 0: msg = ( "epoch interval {0} {1} is less than one sample at " "{3} ... increase the interval" ).format(tmin_ms, tmax_ms, srate) raise ValueError(msg) # move on after bounds check if start_samp < 0: warnings.warn( "data error: pre-stimulus interval is out of bounds left ... " + "skipping epoch {0}".format(e) ) continue elif start_samp + duration_samp > len(h5[dbp]): warnings.warn( "data error: post-stimulus interval is out of bounds right ... " + "skipping epoch {0}".format(e) ) continue else: # if in bounds, overwrite np.nan with the epoch start and duration is_in_bounds[i] = True e["epoch_match_tick_delta"] = epoch_match_tick_delta e["epoch_ticks"] = duration_samp # drop out of bounds epochs and check epochs are consistent epochs = epochs[is_in_bounds] # check the epochs for consistency self._check_epochs_table(epochs) # 4. add epoch table in the mkh5 file under /EPOCH_TABLES_PATH/epochs_table_name with h5py.File(self.h5_fname, "r+") as h5: epochs_path = f"{mkh5.EPOCH_TABLES_PATH}/{epochs_table_name}" ep = h5.create_dataset(epochs_path, data=epochs) attrs = {"tmin_ms": tmin_ms, "tmax_ms": tmax_ms} for k, v in attrs.items(): ep.attrs[k] = v return None # ok def export_event_table(self, event_table, event_table_f, format="feather"): """fetch the specified event table and save it in the specified format""" known_formats = ["feather", "txt"] # txt is tab-separated if format not in known_formats: msg = "event_table export format must be 'feather' or 'txt'" raise ValueError(msg) # event_table = self.get_event_table(code_map_f) if event_table is None: msg = ( "uh oh ... event_table is None for {0} ..." "nothing to export" ).format(code_map_f) raise ValueError(msg) if format == "feather": event_table.reset_index(inplace=True) event_table.to_feather(event_table_f) elif format == "txt": event_table.to_csv(event_table_f, sep="\t") else: raise RuntimeError() def get_epochs_table_names(self): """returns a list, possibly empty of previously named epochs tables """ epochs_names = [] try: with h5py.File(self.h5_fname, "r") as h5: epochs_names = [t for t in h5[mkh5.EPOCH_TABLES_PATH].keys()] except: pass return epochs_names def _pd_series_to_hdf5(self, series): """normalize pandas.Series +/- missing or nans to array for hdf5 serialization Parameter --------- series : pandas.Series Returns ------- arry_hdf5 : np.array, shape (1,), dtype=column scalar dtype Raises ------ TypeError if series is not pandas.Series ValueError if series is empty EpochsTableDataError if series data doesn't convert to hdf5 Supported data types * a single, homogenous scalar data type drawn from these float-like: float, np.float32, np.float64, etc. int-like: int, np.int32, np.int64, etc. uint-like: np.uint32, np.uint64, etc. boolean-like: bool, np.bool string-like: str, bytes, unicode * missing data/NaNs are supported **except for boolean-like** NaN, None conversions as follows: Series type | from | to hdf5 ------------ | -------------- | ------------ float-like | np.NaN, None | np.nan int-like | pd.NaN, None | np.nan, int coerced to float_ uint-like | pd.NaN, None | np.nan, int coerced to float_ string-like | pd.NaN, None | b'NaN' boolean-like | pd.NaN, None | not allowed Known dtypes according to pandas 0.21.0 return by infer_dtype empty (returned when all are None, undocumented in pandas) string, unicode, bytes, floating, integer, mixed-integer, mixed-integer-float, decimal, complex, categorical, boolean, datetime64, datetime, date, timedelta64, timedelta, time, period, mixed Approach: for mkh5 supported dtypes the pd.Series dtype 'O' has 2 cases: - not hasnans - values are str_like -> to bytes -> np.array - values are mixed types -> illegal, die - hasnans: two cases - the non-missing values are mixed types: illegal, die - the non-missing values are homogenous: handle by NaNs by type as above - float_like -> missing/None are already np.nan -> np.array float - int_like -> replace nans w/ max int of dtype -> np.array float - uint_like -> replace nans w/ max uint of dtype -> np.array float - str_like -> replace nans w/ 'NaN' -> to bytes -> np.array bytes - bool_like -> NaN/missing illegal, die """ if not isinstance(series, pd.Series): msg = "wrong type {0}: must be pandas.Series".format(type(series)) raise TypeError(msg) if not len(series) > 0: msg = "empty series" raise ValueError(msg) pd_num_like = ["floating", "integer", "decimal", "complex"] pd_bytes_like = [ "string", "unicode", "bytes", # 'categorical', # ?? ] pd_bool_like = ["boolean"] pd_type = pd.api.types.infer_dtype( series, skipna=False ) # mixed if missing values present # pd_data_type = pd.api.types.infer_dtype(series.dropna()) # mixed if mixed data pd_data_type = pd.api.types.infer_dtype( series, skipna=True ) # mixed if mixed data series_types = pd.unique([type(i) for i in series.values]) data_types = pd.unique([type(i) for i in series.dropna().values]) # homogonenous data w/ no missing values if series.dtype != "O": # try: arry = np.array(series) except Exception as fail: print("column ", series.name) raise fail assert arry.dtype != "O" return arry else: # white-list the allowed conversions, all else fails # any combination of str-like values +/- missing data -> bytes +/- 'NaN if all([pd.api.types.is_string_dtype(dt) for dt in data_types]): if series.hasnans: series.fillna(".NAN", inplace=True) # try each value to diagnosis if problem for v in series.values: try: np.array([v]).astype(np.string_) except Exception as fail: msg = ("\nvalue: {0}\n" "column: {1}").format( v, series.name ) print(msg) raise fail # now try whole series try: arry = np.array(series.values.astype(np.string_)) except Exception as fail: print("column ", series.name) raise fail assert arry.dtype != "O" return arry # handle num-like +/- missing data elif pd_data_type in pd_num_like: try: arry = np.array(series) except Exception as fail: print("column ", series.name) raise fail assert arry.dtype != "O" return arry else: # fail this blocks mixed numerics, boolean+NaN raise mkh5.EpochsTableDataError(pd_data_type, series) def get_epochs_table(self, epochs_name, format="pandas"): """look up a previously set epochs table by name Parameters ---------- epochs_name : str name of a previously defined epochs table as set with an mkh5.set_epochs(event_table) format : str {'pandas', 'numpy'} pandas.Dataframe or numpy.ndarray Returns ------- epochs_table : pandas.Dataframe or numpy.ndarray Bytestrings from the hdf5 are converted to unicode epochs_table table returned """ if format not in ["pandas", "numpy"]: msg = "format must be 'pandas' or 'numpy'" raise ValueError(msg) epochs_table = None with h5py.File(self.h5_fname, "r") as h5: epochs_path = f"{mkh5.EPOCH_TABLES_PATH}/{epochs_name}" epochs_table = h5[epochs_path][...] if epochs_table is None: msg = "epochs table not found: {0}".format(epochs_name) raise RuntimeError(msg) # clean up hdf5 bytestrings # FIX ME for NANs? dts = [] for n in epochs_table.dtype.names: if epochs_table.dtype[n].kind == "S": dts.append((n, "U" + str(epochs_table.dtype[n].itemsize))) else: dts.append((n, epochs_table.dtype[n])) dts = np.dtype(dts) eptbl = np.empty(shape=epochs_table.shape, dtype=dts) for idx in range(epochs_table.shape[0]): for c in dts.names: value = copy.deepcopy(epochs_table[c][idx]) if hasattr(value, "decode"): eptbl[c][idx] = value.decode("utf8") else: eptbl[c][idx] = value # run consistency check self._check_epochs_table(eptbl) if format == "pandas": eptbl =
pd.DataFrame(eptbl)
pandas.DataFrame
import os from collections import OrderedDict from functools import partial from time import time, strftime, gmtime from adjustText import adjust_text from multipledispatch import dispatch from matplotlib import rc import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pandas as pd import seaborn as sns import numpy as np from matplotlib.ticker import NullFormatter from sklearn.decomposition import PCA import umap from sklearn import manifold from sklearn.decomposition import FastICA from sklearn.manifold import Isomap def pca_visualization(df, feature_ids, savedir): inliers = np.array(df.loc[df['is_anomaly'] == 0, 'is_anomaly'].index).tolist() outliers = np.array(df.loc[df['is_anomaly'] == 1, 'is_anomaly'].index).tolist() zindex_points = [*inliers, *outliers] X = df.drop(columns=['is_anomaly']) # Fixing z-index to be higher for outliers (they will be rendered last) X = pd.concat([X.iloc[inliers], X.iloc[outliers]], axis=0) n_components = 2 plt.suptitle('Features = ' + str(feature_ids), fontsize=12, wrap=True) colors = get_colors(len(inliers), len(outliers)) pca = PCA(n_components=n_components, random_state=0) t0 = time() X_tr = pca.fit_transform(X) t1 = time() plt.scatter(X_tr[:, 0], X_tr[:, 1], c=colors, cmap='Spectral') plt.title("%s (%.2g sec)" % ('PCA', t1 - t0)) plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') texts = [] for j, p in enumerate(zindex_points): if p in outliers: texts.append(plt.text(X_tr[j, 0], X_tr[j, 1], p, color='brown', fontweight='bold', size=9)) adjust_text(texts, autoalign='') dt_string = strftime("%d%m%Y%H%M%S", gmtime()) if not os.path.exists(savedir): os.makedirs(savedir) final_output = os.path.join(savedir, 'pca_' + dt_string + '.png') plt.savefig(final_output, dpi=300, bbox_inches='tight', pad_inches=0.1) # plt.show() plt.clf() def ica_visualization(df, savedir): ica = FastICA(n_components=2, random_state=0) ica_trans = ica.fit_transform(df.drop(columns=['is_anomaly'])) principalDf = pd.DataFrame(data=ica_trans , columns=['ica1', 'ica2']) finalDf = pd.concat([principalDf, df[['is_anomaly']]], axis=1) fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(1, 1, 1) ax.set_xlabel('ICA 1', fontsize=15) ax.set_ylabel('ICA 2', fontsize=15) # ax.set_title('2 component PCA', fontsize=20) targets = [0, 1] colors = ['b', 'r'] for target, color in zip(targets, colors): indicesToKeep = finalDf['is_anomaly'] == target ax.scatter(finalDf.loc[indicesToKeep, 'ica1'] , finalDf.loc[indicesToKeep, 'ica2'] , c=color ) ax.legend(targets) ax.grid() plt.show() plt.clf() def umap_visualization(df, savedir): um = umap.UMAP(n_neighbors=25, random_state=0, n_components=2) X_train = df.drop(columns=['is_anomaly']) Y_train = df['is_anomaly'] trans = um.fit(X_train) plt.scatter(trans.embedding_[:, 0], trans.embedding_[:, 1], s=25, c=Y_train, cmap='Spectral') plt.show() def tsne_visualization(df, feature_ids, savedir): inliers = np.array(df.loc[df['is_anomaly'] == 0, 'is_anomaly'].index).tolist() outliers = np.array(df.loc[df['is_anomaly'] == 1, 'is_anomaly'].index).tolist() zindex_points = [*inliers, *outliers] X = df.drop(columns=['is_anomaly']) # Fixing z-index to be higher for outliers (they will be rendered last) X = pd.concat([X.iloc[inliers], X.iloc[outliers]], axis=0) n_components = 2 plt.suptitle('Features = ' + str(feature_ids), fontsize=12, wrap=True) colors = get_colors(len(inliers), len(outliers)) tsne = manifold.TSNE(n_components=n_components, init='pca', perplexity=40, random_state=0) t0 = time() X_tr = tsne.fit_transform(X) t1 = time() plt.scatter(X_tr[:, 0], X_tr[:, 1], c=colors, cmap='Spectral') plt.title("%s (%.2g sec)" % ('t-SNE', t1 - t0)) plt.xlabel('t-SNE Embedding 1') plt.ylabel('t-SNE Embedding 2') texts = [] for j, p in enumerate(zindex_points): if p in outliers: texts.append(plt.text(X_tr[j, 0], X_tr[j, 1], p, color='brown', fontweight='bold', size=9)) adjust_text(texts, autoalign='') dt_string = strftime("%d%m%Y%H%M%S", gmtime()) if not os.path.exists(savedir): os.makedirs(savedir) final_output = os.path.join(savedir, 'tsne_' + dt_string + '.png') plt.savefig(final_output, dpi=300, bbox_inches='tight', pad_inches=0.1) plt.clf() def visualize_selected_features(df, feature_ids, savedir): if len(feature_ids) > 3: dim_reduction_vizualizations(df, feature_ids, savedir) elif len(feature_ids) == 3: dim_reduction_vizualizations(df, feature_ids, savedir) actual_features_vizualizations(df, feature_ids, savedir) elif len(feature_ids) == 2: actual_features_vizualizations(df, feature_ids, savedir) else: print('Only one feature to visualize...') def actual_features_vizualizations(df, feature_ids, savedir): inliers = np.array(df.loc[df['is_anomaly'] == 0, 'is_anomaly'].index).tolist() outliers = np.array(df.loc[df['is_anomaly'] == 1, 'is_anomaly'].index).tolist() zindex_points = [*inliers, *outliers] X = df.drop(columns=['is_anomaly']) # Fixing z-index to be higher for outliers (they will be rendered last) X = pd.concat([X.iloc[inliers], X.iloc[outliers]], axis=0) fig = plt.figure() colors = get_colors(len(inliers), len(outliers)) if len(feature_ids) == 2: ax = fig.add_subplot(1, 1, 1) ax.scatter(X.iloc[:, 0], X.iloc[:, 1], c=colors, cmap='Spectral') ax.set_title('Visualization 2D') ax.set_xlabel('F' + str(feature_ids[0])) ax.set_ylabel('F' + str(feature_ids[1])) texts = [] for j, p in enumerate(zindex_points): if p in outliers: texts.append(ax.text(X.iloc[j, 0], X.iloc[j, 1], p, color='brown', fontweight='bold', # bbox={'facecolor': 'red', 'alpha': 0.8, 'pad': 1}, size=9)) adjust_text(texts, autoalign='') # , arrowprops=dict(arrowstyle="->", color='black', lw=0.5, shrinkA=5)) if len(feature_ids) == 3: ax = fig.gca(projection='3d') ax.scatter(X.iloc[:, 0], X.iloc[:, 1], X.iloc[:, 2], c=colors, cmap='Spectral') ax.set_title('Visualization 3D') ax.set_xlabel('F' + str(feature_ids[0])) ax.set_ylabel('F' + str(feature_ids[1])) ax.set_zlabel('F' + str(feature_ids[2])) for j, p in enumerate(zindex_points): if p in outliers: ax.text(X.iloc[j, 0], X.iloc[j, 1], X.iloc[j, 2], p, color='brown', fontweight='bold', # bbox={'facecolor': 'red', 'alpha': 0.8, 'pad': 1}, size=9) # plt.tight_layout() # plt.show() dt_string = strftime("%d%m%Y%H%M%S", gmtime()) final_output = os.path.join(savedir, 'actual_viz_' + dt_string + '.png') plt.savefig(final_output, dpi=300, bbox_inches='tight', pad_inches=0.1) plt.clf() def dim_reduction_vizualizations(df, feature_ids, savedir): inliers = np.array(df.loc[df['is_anomaly'] == 0, 'is_anomaly'].index).tolist() outliers = np.array(df.loc[df['is_anomaly'] == 1, 'is_anomaly'].index).tolist() zindex_points = [*inliers, *outliers] X = df.drop(columns=['is_anomaly']) # Fixing z-index to be higher for outliers (they will be rendered last) X =
pd.concat([X.iloc[inliers], X.iloc[outliers]], axis=0)
pandas.concat
from PIL import Image, ImageDraw, ImageFont import numpy as np import pandas as pd import arrow from pathlib import Path from loguru import logger class DrawImage: def __init__(self): self.root = Path(__file__).parent.parent.absolute() self.all_data_path = self.root / "rt" / Path("all_data.csv") self.datetime_tag_path = self.root / "rt" / Path("datetime.tag") self.image_path = self.root / "rt" / f"{self.datetime_tag_path.read_text()}.png" self.wuxi_data_path = self.root / "rt" / Path("wuxi_data.csv") self.suzhou_data_path = self.root / "rt" / Path("suzhou_data.csv") self.columns_width = np.array([8, 12, 10, 10, 10, 10, 10, 10, 10, 10]) * 60 self.row_height = [180, 360, 180, *[180] * 16] self.fonesize = 140 self.font = ImageFont.truetype(font=str(self.root / 'static/kjgong.ttf'), size=self.fonesize) self.linewidth = 6 self.spacing = self.fonesize * 0.1 self.start = (10, 10) def create_figure(self): logger.info("创建画布") width = sum(self.columns_width) height = sum(self.row_height) self.image = Image.new(mode="RGB", size=(width + 20, height + 20), color="white") self.draw = ImageDraw.Draw(self.image) x, y, w, h = *self.start, width, height logger.info("画大矩形") self.draw.rectangle(xy=((x, y), (x + w, y + h)), fill=None, outline="black", width=12) def draw_rec_text(self, loc, text, fill="black"): x, y, w, h = self.get_location(*loc) self.draw.rectangle(xy=((x, y), (x + w, y + h)), fill=None, outline="black", width=self.linewidth) if isinstance(text, str): text = [text] for i, t in enumerate(text): fsize = self.font.getsize(t) height_offset = (i - len(text) / 2 + 0.5) * (self.spacing + self.fonesize) self.draw.text(xy=( x + w / 2 - fsize[0] / 2, y + h / 2 - fsize[1] / 2 + height_offset), text=t, fill=fill, font=self.font) def get_location(self, row_start, col_start, row_end=None, col_end=None, ): if not (row_end or col_end): row_end = row_start col_end = col_start x = sum(self.columns_width[:col_start]) + self.start[0] y = sum(self.row_height[:row_start]) + self.start[1] w = sum(self.columns_width[col_start:col_end + 1]) h = sum(self.row_height[row_start:row_end + 1]) return x, y, w, h def draw_data(self): self.create_figure() logger.info("正在绘制表头") self.draw_rec_text((0, 0, 2, 0), "序号") self.draw_rec_text((0, 1, 2, 1), "点位") datetime = arrow.get(self.datetime_tag_path.read_text(), "YYYY-MM-DDTHH") self.draw_rec_text((0, 2, 0, 9), datetime.format("YYYY-MM-DD HH:mm")) self.draw_rec_text((1, 2, 1, 3), ["PM2.5", "(微克/立方米)"]) self.draw_rec_text((2, 2), "实时") self.draw_rec_text((2, 3), "当日累计") self.draw_rec_text((1, 4, 1, 5), ["PM10", "(微克/立方米)"]) self.draw_rec_text((2, 4), "实时") self.draw_rec_text((2, 5), "当日累计") self.draw_rec_text((1, 6, 1, 7), ["NO2", "(微克/立方米)"]) self.draw_rec_text((2, 6), "实时") self.draw_rec_text((2, 7), "当日累计") self.draw_rec_text((1, 8, 1, 9), ["O3", "(微克/立方米)"]) self.draw_rec_text((2, 8), "实时") self.draw_rec_text((2, 9), "MDA8") df = pd.read_csv(self.all_data_path) for i, d in df.iterrows(): self.draw_rec_text((i + 3, 0), str(i + 1)) self.draw_rec_text((i + 3, 1), d["STATION_NAME"]) self.draw_rec_text((16, 0, 16, 1), "全市") self.draw_rec_text((17, 0, 17, 1), "无锡") self.draw_rec_text((18, 0, 18, 1), "苏州") # 读取无锡数据 wuxi_data = pd.read_csv(self.wuxi_data_path, index_col=0, parse_dates=True, na_values=["-", "—", ""]) wuxi_data = wuxi_data.loc[:, ["PM2_5", "PM10", "NO2","O3"]] wuxi_p_series = pd.concat([wuxi_data.iloc[-1], wuxi_data.mean().astype(int)]) wuxi_p_series.index = ["PM25", "PM10", "NO2", "O3", "PM25_CUM", "PM10_CUM", "NO2_CUM", "O3_CUM"] wuxi_p_series["O3_CUM"] = wuxi_data["O3"].rolling(8,8).mean().max() # 读取苏州数据 suzhou_data =
pd.read_csv(self.suzhou_data_path, index_col=0, parse_dates=True, na_values=["-", "—", ""])
pandas.read_csv
import math import functools import collections import numpy as np def _return_or_close_fig(fig, return_fig): from matplotlib import pyplot as plt if return_fig: return fig else: plt.show() plt.close(fig) def plot_trials( self, y='score', color_scheme='Set2', figsize=(8, 3), return_fig=False, ): from matplotlib import pyplot as plt import seaborn as sns df = self.to_df() if y is None: y = self.minimize if y == 'score': best_y = min(self.scores) ylabel = 'Score' if y == 'size': best_y = math.log2(self.best[y]) ylabel = 'log2[SIZE]' if y == 'flops': best_y = math.log10(self.best[y]) ylabel = 'log10[FLOPS]' if y == 'write': best_y = math.log10(self.best[y]) ylabel = 'log10[WRITE]' if y == 'combo': best_y = math.log2(self.best['flops']) + math.log2(self.best['size']) ylabel = 'log10[FLOPS + 256 * WRITE]' df['combo'] = [math.log10(f + 256 * m) for f, m in zip(self.costs_flops, self.costs_write)] fig, ax = plt.subplots(1, 1, figsize=figsize) ax.axhline(best_y, color=(0, 0, 1, 0.1), linestyle=':') sns.scatterplot( y=y, x='run', data=df, ax=ax, style='method', hue='method', palette=color_scheme, ) ax.set(ylabel=ylabel) ax.grid(True, c=(0.98, 0.98, 0.98)) ax.set_axisbelow(True) handles, labels = ax.get_legend_handles_labels() ax.legend( handles=handles, labels=labels, bbox_to_anchor=(0.5, 1.0), ncol=(len(labels) * 6) // len(labels), loc='lower center', columnspacing=1, handletextpad=0, frameon=False, ) return _return_or_close_fig(fig, return_fig) def plot_trials_alt(self, y=None, width=800, height=300): """Plot the trials interactively using altair. """ import altair as alt import pandas as pd df = self.to_df() if y is None: y = self.minimize if y == 'size': best_y = math.log2(self.best[y]) ylabel = 'log2[SIZE]' if y == 'flops': best_y = math.log10(self.best[y]) ylabel = 'log10[FLOPS]' hline = alt.Chart(
pd.DataFrame({'best': [best_y]})
pandas.DataFrame
import ipyvuetify as v import pandas as pd from ipywidgets import Output from matplotlib import pyplot as plt from component import parameter as cp class LayerFull(v.Layout): COLORS = cp.gradient(5) + ['grey'] def __init__(self, layer_name, values, aoi_names, colors): # read the layer list and find the layer information based on the layer name layer_list =
pd.read_csv(cp.layer_list)
pandas.read_csv
import pandas as pd import glob import os from pandasgui import show #pip install pypiwin32 import numpy as np import matplotlib.pyplot as plt import sqlite3 #link do poleceń https://jug.dpieczynski.pl/lab-ead/Lab%2004%20-%20Projekt%20blok1_2021.html def load_data(): path = os.getcwd() #path = os.getcwd()+'\Data_test' #_test all_files = glob.glob(path + "/*.txt") #print(all_files) #sprawdzenie co wczytuje df0 = pd.DataFrame() years=[] for filename in all_files: df = pd.read_csv(filename, header=None) year = filename.replace(path+"\yob", '') year = year.replace(".txt", '') years.append(year) df['Year'] = year df0 = df0.append(df) df0 = df0.rename(columns={0: 'Name', 1: 'Sex', 2: 'Number'}) return df0, years def task2_3(df0): print("Zad2: ") print(f'Ilosc nadanych unikalnych imion bez rozrozniania na meskie i zenskie: {df0.nunique()[0]} ') print("===================") df_m = df0[df0['Sex'] == 'M'] df_f = df0[df0['Sex'] == 'F'] print("Zad3: ") print(f'Ilosc nadanych unikalnych imion meskich: {df_m.nunique()[0]} ') print(f'Ilosc nadanych unikalnych imion zenskich: {df_f.nunique()[0]} ') print("===================") def task4_f(df): df.groupby(['Year', 'Sex']).sum().unstack('Sex') fem_births = df[df['Sex'] == 'F'].Number df['freq fem']=fem_births/fem_births.sum() mal_births=df[df['Sex'] == 'M'].Number df['freq m'] = mal_births/mal_births.sum() return df def task4(df0, ifprint): #TODO Rozwiazanie bazuje na: https://pandasguide.readthedocs.io/en/latest/Pandas/babyname.html results = df0.groupby(['Year', 'Sex']).apply(task4_f) if ifprint==True: print("Zad 4:") print(results) print("===================") return results def task5(df0, years): df_p = pd.pivot_table(df0, index=['Name'], columns=['Year', 'Sex']) df_p = df_p['Number'] n_births = [] for i in years: n_births.append(df_p[i].sum()) total_n_births = [] births_ratio_f_to_m = [] for i in range(0, len(n_births)): #[x][y] x - nr probki(rok), y - plec(0=f 1=m) births_ratio_f_to_m.append((n_births[i][0]/n_births[i][1]-1)*100) total_n_births.append((n_births[i][0]+n_births[i][1])) fixed_years = list(map(int, years)) f, axes = plt.subplots(2) axes[0].bar(fixed_years,total_n_births) axes[0].set_title("Zad 5_1 urodzenia(lata)") axes[1].bar(fixed_years,births_ratio_f_to_m) axes[1].set_ylabel("% (wiecej/mniej) zenskich imion wzgledem meskich") #0% = tyle samo zenskich imion i meskich, 100% = 100% wiecej zenskich, -30% = o 30% mniej zenskich imion niz meskich axes[1].set_title("Zad 5_2 f/m ratio") plt.xticks(np.arange(min(fixed_years), max(fixed_years) + 1, 20.0)) plt.show() def task6(df, years, ifprint): many_F_dfs = [] many_M_dfs = [] fem_df = pd.DataFrame() mal_df =
pd.DataFrame()
pandas.DataFrame
import boto3 import json import os import requests import pandas as pd import warnings from pandas import json_normalize from github import Github warnings.filterwarnings('ignore') class Get_GW_Releases: def __init__(self): git_token = os.getenv('GIT_TOKEN') self.git_headers = {'Authorization': f'token {git_token}'} g = Github(os.getenv('GIT_TOKEN')) org = g.get_organization("k8-proxy") self.all_repos = org.get_repos() self.onerepo = ['GW-Releases'] def get_all(self): allrepos = [] for repo in self.all_repos: myrepo = repo.id, repo.name, repo.html_url allrepos.append(myrepo) k8repos = pd.DataFrame(allrepos) k8repos.columns = ['id', 'name', 'repo_url'] return k8repos # Get content function def get_content(self,repos): data = [] for repo in repos: url = f'https://api.github.com/repos/k8-proxy/{repo}/contents' req = requests.get(url, headers=self.git_headers).json() temp_data = json_normalize(req, max_level=1) temp_df = pd.DataFrame(temp_data) data.append(temp_df ) content =
pd.concat(data, ignore_index=True)
pandas.concat
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(
Categorical(b)
pandas.Categorical
#!/usr/bin/env python3 # coding: utf-8 """Global sequencing data for the home page Author: <NAME> - Vector Engineering Team (<EMAIL>) """ import argparse import pandas as pd import numpy as np import json from pathlib import Path def main(): parser = argparse.ArgumentParser() parser.add_argument( "--case-data", type=str, required=True, help="Path to case data CSV file", ) parser.add_argument( "--location-map", type=str, required=True, help="Path to location map JSON file", ) parser.add_argument( "-o", "--output", type=str, required=True, help="Path to output directory", ) args = parser.parse_args() out_path = Path(args.output) # Load case counts by country case_count_df = pd.read_csv( "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" ) case_count_df.rename(columns={"Country/Region": "country"}, inplace=True) # Upgrade some province/states to country/regions upgrade_provinces = [ "Hong Kong", "Macau", "Faroe Islands", "Greenland", "French Guiana", "French Polynesia", "Guadeloupe", "Martinique", "Mayotte", "New Caledonia", "Reunion", "Saint Barthelemy", "Saint Pierre and Miquelon", "St Martin", "Aruba", "Bonaire, Sint Eustatius and Saba", "Curacao", "Sint Maarten", "Anguilla", "Bermuda", "British Virgin Islands", "Cayman Islands", "Falkland Islands (Malvinas)", "Gibraltar", "Isle of Man", "Channel Islands", "Montserrat", "Turks and Caicos Islands", "American Samoa", "Guam", "Northern Mariana Islands", "Virgin Islands", "Puerto Rico", ] upgrade_province_inds = case_count_df["Province/State"].isin(upgrade_provinces) case_count_df.loc[upgrade_province_inds, "country"] = case_count_df.loc[ upgrade_province_inds, "Province/State" ] # Group by country/region case_count_df = ( case_count_df.drop(columns=["Lat", "Long"]) .groupby("country") .agg(np.sum) .reset_index() ) # Unpivot table case_count_df = pd.melt( case_count_df, id_vars=["country"], var_name="date", value_name="cumulative_cases", ) # Convert date strings to datetime objects case_count_df["date"] =
pd.to_datetime(case_count_df["date"])
pandas.to_datetime
import pandas as pd import numpy as np def merge_edge_lists(edge_list_dfs): """Merge edge lists. Weights of overlapping edges are summed. Parameters ---------- edge_list_dfs: a sequence of DataFrame The DataFrame containing the edge lists. """ # Concatenate DataFrame concat_edge_list_df =
pd.concat(edge_list_dfs, ignore_index=True)
pandas.concat
import pandas as pd import numpy as np # Read the csv file df = pd.read_csv('../../data/original_dataset/preprocessed_data.csv', header=0, index_col=0) df.reset_index(drop=True,inplace=True) # Set tables reading options pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)
pandas.set_option
import pandas import sklearn import numpy from sklearn import preprocessing from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.feature_selection import chi2 import json import ast import os import glob import operator import argparse import sys def createModelList(modelNameFilePath, dataFile): ''' Appends model name to existing list of model name dataFile = name of data input file modelNameFilePath = path where models.txt is stored ''' try: treeList = [] write = True if (os.path.exists(modelNameFilePath)): fh = open(modelNameFilePath, "r") treeList = ast.literal_eval(fh.read()) fh.close() if (str(dataFile)) not in treeList: treeList.append(dataFile) else: write = False else: treeList.append(dataFile) if (write): fh = open(modelNameFilePath, "w") fh.write(json.dumps(treeList, ensure_ascii='False')) fh.close() except Exception as e: print(e) return False return True def writeCluster(fileName, clusterList, globalCount): ''' Writes cluster structure to json file fileName = name of data input file clusterList = hierarchical cluster created globalCount = dictionary with key as level and value as number of nodes at that level ''' try: maximumKey = 0 maximumValue = 0 for key, value in globalCount.items(): if (key > maximumKey): maximumKey = key if (value > maximumValue): maximumValue = value clusterList["height"] = maximumKey clusterList["width"] = maximumValue clusterListJson = json.dumps(clusterList, ensure_ascii='False', indent=4) fh = open(fileName + ".json", "w") fh.write("[" + clusterListJson + "]") fh.close() except Exception as e: print(e) return False return True #recursive hierarchical clustering function def hierarchicalClustering(parentCluster, level, positions, parent, clusterList, silhouetteThreshold, statsPath, user, attributes, globalCount): ''' Recursive Binary Hierarchical Clustering Function parentCluster = cluster to be subclustered level = next level to be clustered positions = list of entities in parentCluster by index parent = name of parent cluster clusterList = hierarchical cluster structure to which subsequent clusters are appended to silhouetteThreshold = silhouette score threshold range in [-1 to 1] statsPath = path to statistics directory user = list of all user ids attributes = feature names globalCount = dictionary with key as level and value as number of nodes at that level ''' print("At node " + parent) silhouetteScore = -1 #tree node count dictionary at each level for labelling if (len(parentCluster) < 2): return False clusterCount = 2 #clustering clusterer = KMeans(n_clusters=clusterCount, random_state=0) kmeans = clusterer.fit(parentCluster) clusterLabels = clusterer.fit_predict(parentCluster) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters if (1 < len(set(clusterLabels)) < len(parentCluster)): silhouetteScore = silhouette_score(parentCluster, clusterLabels) #silhouette score threshold check if (silhouetteScore < silhouetteThreshold): return False indeX = chi2(parentCluster, clusterLabels)[0].tolist() #finding max chi score and its feature index chi_max = 0 iterator = 0 index_ = -1 featureSignificance = {} while (iterator < len(indeX)): featureSignificance[attributes[iterator]] = indeX[iterator] if (indeX[iterator] > chi_max): chi_max = indeX[iterator] index_ = iterator iterator = iterator + 1 featureSignificanceSorted = sorted(featureSignificance.items(), key=lambda x: x[1], reverse=True) try: globalCount[level] except: globalCount[level] = 0 final_ = [] childCluster = [] { iterator: final_.append(numpy.where(kmeans.labels_ == iterator)[0]) for iterator in range(kmeans.n_clusters) } clusterIterator = 0 #for each cluster formed while clusterIterator < kmeans.n_clusters: iterator = 0 childCluster = [] new_positions = [] ids = [] while iterator < len(final_[clusterIterator]): childCluster.append(parentCluster[final_[clusterIterator][iterator]]) new_positions.append(positions[final_[clusterIterator][iterator]]) ids.append(user[positions[final_[clusterIterator][iterator]]]) iterator = iterator + 1 #cluster data interpretation clusterSummary = {} clusterName = 'L' + str(level) + 'G' + str(globalCount[level]) dataIds = pandas.DataFrame(ids, columns=["IDS"]) dataStats = pandas.DataFrame(childCluster, columns=attributes) stats = dataStats[attributes].head(n=len(childCluster)).describe() clusterSummary['ClusterId'] = clusterName clusterSummary['Size'] = len(childCluster) clusterSummary['Primary feature cluster created by'] = attributes[index_] clusterSummary['Features chi score'] = featureSignificanceSorted clusterSummary['Stats on cluster by each feature'] = stats.to_dict() clusterSummary['Ids'] = ids clusterSummaryJson = json.dumps(clusterSummary, ensure_ascii='False', indent=4) fh = open(statsPath + clusterName + 'clusterDescription' + ".json", "w") fh.write("[" + clusterSummaryJson + "]") fh.close() clusterIterator = clusterIterator + 1 processingList = {} processingList["name"] = clusterName processingList["desc"] = clusterName + ",Cluster Size :" + str( len(childCluster)) + ',Split by :' + str(attributes[index_]) + ",Mean : " + str( round(dataStats[attributes[index_]].mean(), 4)) processingList["parent"] = parent processingList['size'] = len(childCluster) if (float(len(childCluster) / len(parentCluster)) < 0.1): processingList['line_color'] = 'red' processingList['alert_color'] = 'red' else: processingList['line_color'] = '#000' processingList['alert_color'] = '#000' processingList["children"] = [] globalCount[level] = globalCount[level] + 1 hierarchicalClustering(childCluster, level + 1, new_positions, clusterName, processingList["children"], silhouetteThreshold, statsPath, user, attributes, globalCount) clusterList.append(processingList) return True def initializeClusterList(transformedValues, clusterList): '''Initialises clusterList transformedValues = Input feature vector clusterList = hierarchical cluster structure to which subsequent clusters are appended to ''' try: clusterList["name"] = 'L0G0' clusterList["parent"] = "null" clusterList["desc"] = "Cluster Size :" + str(len(transformedValues)) clusterList["size"] = len(transformedValues) clusterList["line_color"] = '#000' clusterList["alert_color"] = '#000' clusterList["children"] = [] clusterList["clusterCreated"] = False except Exception as e: print(e) return False return True def clustering(dataFilePath, silhouetteThreshold=0.65): ''' Clusering function dataFilePath = Path of input csv file silhouetteThreshold = silhouette score threshold ''' user = [] transformedValues = [] attributes = [] clusterList = {} positions = [] globalCount = {} if (not os.path.exists(dataFilePath)): print(dataFilePath + " Not found") sys.exit(-1) dataFile = os.path.splitext(os.path.basename(dataFilePath))[0] statsPath = "Statistics/Hierarchical/" + str(dataFile) + "/" visualisationDirectory = "Visualisation/" modelNameFilePath = visualisationDirectory + 'models.txt' vector =
pandas.read_csv(dataFilePath)
pandas.read_csv
#!/home/knielbo/virtenvs/ndhl/bin/python """ Extract content and metadata for NYT collection @author: <EMAIL> """ import os import sys import glob import re from xml.dom.minidom import parse, Node from pandas import DataFrame # parser def tag2list(fname, tag = "p"): """ Get text node content based on tags in xml file - store every element in list """ xmltree=parse(fname) tag_list = [] for node1 in xmltree.getElementsByTagName(tag): for node2 in node1.childNodes: if node2.nodeType == Node.TEXT_NODE: tag_list.append(node2.data) return tag_list # metadata to dat file with fname as key def gen_metadata(text, meta_tags = ["publication_day_of_month", "publication_month", "publication_year","publication_day_of_week","dsk","print_page_number","print_section","print_column"]): """ Create metadata file with objects in rows and features in columns - text: vanilla nitf xml file - meta_tags: tags from text to be treated as metadata """ match = re.findall(r'<meta content=(.*)/>',text) colname = [] metadata = [] colname = [] metadata = [] for i in range(len(match)): tmp = match[i] tmp = re.sub(r'"','',tmp) tmp = tmp.split(" name=") metadata.append(tmp[0]) colname.append(tmp[1]) result = [] for tag in meta_tags:# try: result.append(metadata[colname.index(tag)]); except: result.append(NA) result.append(metadata[colname.index(tag)]) return result # title, and content to dat file with fname as key ## TODO: remove repetitions of content def get_content(fname): """ Extract content from paragraphs in xml file - fname: filename for xml - remove LEAD paragraphs - keep paragraph structure with line char """ content = tag2list(fname) title = tag2list(fname, tag = "title")[0] pat = re.compile(r"LEAD:") idx = [] for i, p in enumerate(content): if pat.match(p): idx.append(i) if idx: for i in sorted(idx, reverse = True): del content[i] return " \n".join(content), title def main(): #fpath = sys.argv[1] #fpath = os.path.join("..","dat","sample")# sample fpath = os.path.join("..","..","..","data","nyt","xml")# full data set fnames = sorted(glob.glob(os.path.join(fpath,"*.xml"))) META, DATA = list(), list() for fname in fnames: try: fileid = fname.split("/")[-1].split(".")[0] print(fileid) with open(fname, "r") as f: text = f.read() #text = open(fname).read() META.append([fileid] + gen_metadata(text)) DATA.append([fileid, tag2list(fname, tag = "title")[0], get_content(fname)]) except: pass DF_meta = DataFrame(META) DF_content =
DataFrame(DATA)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 21 14:08:43 2019 to produce X and y use combine_pos_neg_from_nc_file or prepare_X_y_for_holdout_test @author: ziskin """ from PW_paths import savefig_path from PW_paths import work_yuval from pathlib import Path cwd = Path().cwd() hydro_path = work_yuval / 'hydro' axis_path = work_yuval/'axis' gis_path = work_yuval / 'gis' ims_path = work_yuval / 'IMS_T' hydro_ml_path = hydro_path / 'hydro_ML' gnss_path = work_yuval / 'GNSS_stations' # 'tela': 17135 hydro_pw_dict = {'nizn': 25191, 'klhv': 21105, 'yrcm': 55165, 'ramo': 56140, 'drag': 48125, 'dsea': 48192, 'spir': 56150, 'nrif': 60105, 'elat': 60190 } hydro_st_name_dict = {25191: 'Lavan - new nizana road', 21105: 'Shikma - Tel milcha', 55165: 'Mamsheet', 56140: 'Ramon', 48125: 'Draga', 48192: 'Chiemar - down the cliff', 46150: 'Nekrot - Top', 60105: 'Yaelon - Kibutz Yahel', 60190: 'Solomon - Eilat'} best_hp_models_dict = {'SVC': {'kernel': 'rbf', 'C': 1.0, 'gamma': 0.02, 'coef0': 0.0, 'degree': 1}, 'RF': {'max_depth': 5, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 400}, 'MLP': {'alpha': 0.1, 'activation': 'relu', 'hidden_layer_sizes': (10,10,10), 'learning_rate': 'constant', 'solver': 'lbfgs'}} scorer_order = ['precision', 'recall', 'f1', 'accuracy', 'tss', 'hss'] tsafit_dict = {'lat': 30.985556, 'lon': 35.263056, 'alt': -35.75, 'dt_utc': '2018-04-26T10:15:00'} axis_southern_stations = ['Dimo', 'Ohad', 'Ddse', 'Yotv', 'Elat', 'Raha', 'Yaha'] soi_axis_dict = {'yrcm': 'Dimo', 'slom': 'Ohad', 'dsea': 'Ddse', 'nrif': 'Yotv', 'elat': 'Elat', 'klhv': 'Raha', 'spir': 'Yaha'} def plot_mean_abs_shap_values_features(SV, fix_xticklabels=True): import matplotlib.pyplot as plt import numpy as np import seaborn as sns from natsort import natsorted features = ['pwv', 'pressure', 'DOY'] # sns.set_palette('Dark2', 6) sns.set_theme(style='ticks', font_scale=1.5) # sns.set_style('whitegrid') # sns.set_style('ticks') sv = np.abs(SV).mean('sample').sel(clas=0).reset_coords(drop=True) gr_spec = [20, 20, 1] fig, axes = plt.subplots(1, 3, sharey=True, figsize=(17, 5), gridspec_kw={'width_ratios': gr_spec}) try: axes.flatten() except AttributeError: axes = [axes] for i, f in enumerate(features): fe = [x for x in sv['feature'].values if f in x] dsf = sv.sel(feature=fe).reset_coords(drop=True).to_dataframe() title = '{}'.format(f.upper()) dsf.plot.bar(ax=axes[i], title=title, rot=0, legend=False, zorder=20, width=.8, color='k', alpha=0.8) axes[i].set_title(title) dsf_sum = dsf.sum().tolist() handles, labels = axes[i].get_legend_handles_labels() labels = [ '{} ({:.1f} %)'.format( x, y) for x, y in zip( labels, dsf_sum)] # axes[i].legend(handles=handles, labels=labels, prop={'size': fontsize-3}, loc='upper center') axes[i].set_ylabel('mean(|SHAP value|)\n(average impact\non model output magnitude)') axes[i].grid(axis='y', zorder=1) if fix_xticklabels: # n = sum(['pwv' in x for x in sv.feature.values]) axes[2].xaxis.set_ticklabels('') axes[2].set_xlabel('') hrs = np.arange(-1, -25, -1) axes[0].set_xticklabels(hrs, rotation=30, ha="center", fontsize=12) axes[1].set_xticklabels(hrs, rotation=30, ha="center", fontsize=12) axes[2].tick_params() axes[0].set_xlabel('Hours prior to flood') axes[1].set_xlabel('Hours prior to flood') fig.tight_layout() filename = 'RF_shap_values_{}.png'.format('+'.join(features)) plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def read_binary_classification_shap_values_to_pandas(shap_values, X): import xarray as xr SV0 = X.copy(data=shap_values[0]) SV1 = X.copy(data=shap_values[1]) SV = xr.concat([SV0, SV1], dim='clas') SV['clas'] = [0, 1] return SV def get_shap_values_RF_classifier(plot=True): import shap X, y = combine_pos_neg_from_nc_file() ml = ML_Classifier_Switcher() rf = ml.pick_model('RF') rf.set_params(**best_hp_models_dict['RF']) X = select_doy_from_feature_list(X, features=['pwv', 'pressure', 'doy']) rf.fit(X, y) explainer = shap.TreeExplainer(rf) shap_values = explainer.shap_values(X.values) if plot: shap.summary_plot(shap_values, X, feature_names=[ x for x in X.feature.values], max_display=49, sort=False) return shap_values def interpolate_pwv_to_tsafit_event(path=work_yuval, savepath=work_yuval): import pandas as pd import xarray as xr from PW_stations import produce_geo_gnss_solved_stations from interpolation_routines import interpolate_var_ds_at_multiple_dts from aux_gps import save_ncfile # get gnss soi-apn pwv data and geo-meta data: geo_df = produce_geo_gnss_solved_stations(plot=False) pw = xr.load_dataset(work_yuval/'GNSS_PW_thresh_50.nc') pw = pw[[x for x in pw if '_error' not in x]] pw = pw.sel(time=slice('2018-04-25', '2018-04-26')) pw = pw.drop_vars(['elat', 'elro', 'csar', 'slom']) # get tsafit data: predict_df = pd.DataFrame(tsafit_dict, index=['tsafit']) df_inter = interpolate_var_ds_at_multiple_dts(pw, geo_df, predict_df) da=df_inter['interpolated_lr_fixed'].to_xarray() da.name = 'pwv' da.attrs['operation'] = 'interploated from SOI-APN PWV data' da.attrs['WV scale height'] = 'variable from SOI-APN data' da.attrs.update(**tsafit_dict) if savepath is not None: filename = 'Tsafit_PWV_event.nc' save_ncfile(da, savepath, filename) return da def plot_tsafit_event(path=work_yuval): import xarray as xr import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) da = xr.load_dataarray(path / 'Tsafit_PWV_event.nc') fig, ax = plt.subplots(figsize=(11, 8)) da_sliced = da.sel(time=slice('2018-04-26T00:00:00', '2018-04-26T12:00:00')) # da_sliced.name = 'PWV [mm]' da_sliced = da_sliced.rename({'time': 'Time [UTC]'}) da_sliced.to_dataframe().plot(ax=ax, ylabel='PWV [mm]', linewidth=2, marker='o', legend=False) dt = pd.to_datetime(da.attrs['dt_utc']) ax.axvline(dt, color='r', linestyle='--', linewidth=2, label='T') handles, labels = ax.get_legend_handles_labels() plt.legend(handles=handles, labels=['PWV', 'Tsafit Flood Event']) ax.grid(True) # ax.set_xlabel('Time [UTC]') fig.tight_layout() fig.suptitle('PWV from SOI-APN over Tsafit area on 2018-04-26') fig.subplots_adjust(top=0.941) return fig # TODO: treat all pwv from events as follows: # For each station: # 0) rolling mean to all pwv 1 hour # 1) take 288 points before events, if < 144 gone then drop # 2) interpolate them 12H using spline/other # 3) then, check if dts coinside 1 day before, if not concat all dts+pwv for each station # 4) prepare features, such as pressure, doy, try to get pressure near the stations and remove the longterm hour dayofyear # pressure in BD anoms is highly correlated with SEDOM (0.9) and ELAT (0.88) so no need for local pressure features # fixed filling with jerusalem centre since 2 drag events dropped due to lack of data 2018-11 2019-02 in pressure # 5) feature addition: should be like pwv steps 1-3, # 6) negative events should be sampled separtely, for # 7) now prepare pwv and pressure to single ds with 1 hourly sample rate # 8) produce positives and save them to file! # 9) produce a way to get negatives considering the positives # maybe implement permutaion importance to pwv ? see what is more important to # the model in 24 hours ? only on SVC and MLP ? # implemetn TSS and HSS scores and test them (make_scorer from confusion matrix) # redo results but with inner and outer splits of 4, 4 # plot and see best_score per refit-scorrer - this is the best score of GridSearchCV on the entire # train/validation subset per each outerfold - basically see if the test_metric increased after the gridsearchcv as it should # use holdout set # implement repeatedstratifiedkfold and run it... # check for stability of the gridsearch CV...also run with 4-folds ? # finalize the permutation_importances and permutation_test_scores def prepare_tide_events_GNSS_dataset(hydro_path=hydro_path): import xarray as xr import pandas as pd import numpy as np from aux_gps import xr_reindex_with_date_range feats = xr.load_dataset( hydro_path/'hydro_tides_hourly_features_with_positives.nc') ds = feats['Tides'].to_dataset('GNSS').rename({'tide_event': 'time'}) da_list = [] for da in ds: time = ds[da].dropna('time') daa = time.copy(data=np.ones(time.shape)) daa['time'] = pd.to_datetime(time.values) daa.name = time.name + '_tide' da_list.append(daa) ds = xr.merge(da_list) li = [xr_reindex_with_date_range(ds[x], freq='H') for x in ds] ds = xr.merge(li) return ds def select_features_from_X(X, features='pwv'): if isinstance(features, str): f = [x for x in X.feature.values if features in x] X = X.sel(feature=f) elif isinstance(features, list): fs = [] for f in features: fs += [x for x in X.feature.values if f in x] X = X.sel(feature=fs) return X def combine_pos_neg_from_nc_file(hydro_path=hydro_path, negative_sample_num=1, seed=1, std=True): from aux_gps import path_glob from sklearn.utils import resample import xarray as xr import numpy as np # import pandas as pd if std: file = path_glob( hydro_path, 'hydro_tides_hourly_features_with_positives_negatives_std*.nc')[-1] else: file = path_glob( hydro_path, 'hydro_tides_hourly_features_with_positives_negatives_*.nc')[-1] ds = xr.open_dataset(file) # get the positive features and produce target: X_pos = ds['X_pos'].rename({'positive_sample': 'sample'}) y_pos = xr.DataArray(np.ones(X_pos['sample'].shape), dims=['sample']) y_pos['sample'] = X_pos['sample'] # choose at random y_pos size of negative class: X_neg = ds['X_neg'].rename({'negative_sample': 'sample'}) pos_size = y_pos['sample'].size np.random.seed(seed) # negatives = [] for n_samples in [x for x in range(negative_sample_num)]: # dts = np.random.choice(X_neg['sample'], size=y_pos['sample'].size, # replace=False) # print(np.unique(dts).shape) # negatives.append(X_neg.sel(sample=dts)) negative = resample(X_neg, replace=False, n_samples=pos_size * negative_sample_num, random_state=seed) negatives = np.split(negative, negative_sample_num, axis=0) Xs = [] ys = [] for X_negative in negatives: y_neg = xr.DataArray(np.zeros(X_negative['sample'].shape), dims=['sample']) y_neg['sample'] = X_negative['sample'] # now concat all X's and y's: X = xr.concat([X_pos, X_negative], 'sample') y = xr.concat([y_pos, y_neg], 'sample') X.name = 'X' Xs.append(X) ys.append(y) if len(negatives) == 1: return Xs[0], ys[0] else: return Xs, ys def drop_hours_in_pwv_pressure_features(X, last_hours=7, verbose=True): import numpy as np Xcopy = X.copy() pwvs_to_drop = ['pwv_{}'.format(x) for x in np.arange(24-last_hours + 1, 25)] if set(pwvs_to_drop).issubset(set(X.feature.values)): if verbose: print('dropping {} from X.'.format(', '.join(pwvs_to_drop))) Xcopy = Xcopy.drop_sel(feature=pwvs_to_drop) pressures_to_drop = ['pressure_{}'.format(x) for x in np.arange(24-last_hours + 1, 25)] if set(pressures_to_drop).issubset(set(X.feature.values)): if verbose: print('dropping {} from X.'.format(', '.join(pressures_to_drop))) Xcopy = Xcopy.drop_sel(feature=pressures_to_drop) return Xcopy def check_if_negatives_are_within_positives(neg_da, hydro_path=hydro_path): import xarray as xr import pandas as pd pos_da = xr.open_dataset( hydro_path / 'hydro_tides_hourly_features_with_positives.nc')['X'] dt_pos = pos_da.sample.to_dataframe() dt_neg = neg_da.sample.to_dataframe() dt_all = dt_pos.index.union(dt_neg.index) dff = pd.DataFrame(dt_all, index=dt_all) dff = dff.sort_index() samples_within = dff[(dff.diff()['sample'] <= pd.Timedelta(1, unit='D'))] num = samples_within.size print('samples that are within a day of each other: {}'.format(num)) print('samples are: {}'.format(samples_within)) return dff def produce_negatives_events_from_feature_file(hydro_path=hydro_path, seed=42, batches=1, verbose=1, std=True): # do the same thing for pressure (as for pwv), but not for import xarray as xr import numpy as np import pandas as pd from aux_gps import save_ncfile feats = xr.load_dataset(hydro_path / 'hydro_tides_hourly_features.nc') feats = feats.rename({'doy': 'DOY'}) if std: pos_filename = 'hydro_tides_hourly_features_with_positives_std.nc' else: pos_filename = 'hydro_tides_hourly_features_with_positives.nc' all_tides = xr.open_dataset( hydro_path / pos_filename)['X_pos'] # pos_tides = xr.open_dataset(hydro_path / 'hydro_tides_hourly_features_with_positives.nc')['tide_datetimes'] tides = xr.open_dataset( hydro_path / pos_filename)['Tides'] # get the positives (tide events) for each station: df_stns = tides.to_dataset('GNSS').to_dataframe() # get all positives (tide events) for all stations: df = all_tides.positive_sample.to_dataframe()['positive_sample'] df.columns = ['sample'] stns = [x for x in hydro_pw_dict.keys()] other_feats = ['DOY', 'doy_sin', 'doy_cos'] # main stns df features (pwv) pwv_df = feats[stns].to_dataframe() pressure = feats['bet-dagan'].to_dataframe()['bet-dagan'] # define the initial no_choice_dt_range from the positive dt_range: no_choice_dt_range = [pd.date_range( start=dt, periods=48, freq='H') for dt in df] no_choice_dt_range = pd.DatetimeIndex( np.unique(np.hstack(no_choice_dt_range))) dts_to_choose_from = pwv_df.index.difference(no_choice_dt_range) # dts_to_choose_from_pressure = pwv_df.index.difference(no_choice_dt_range) # loop over all stns and produce negative events: np.random.seed(seed) neg_batches = [] for i in np.arange(1, batches + 1): if verbose >= 0: print('preparing batch {}:'.format(i)) neg_stns = [] for stn in stns: dts_df = df_stns[stn].dropna() pwv = pwv_df[stn].dropna() # loop over all events in on stn: negatives = [] negatives_pressure = [] # neg_samples = [] if verbose >= 1: print('finding negatives for station {}, events={}'.format( stn, len(dts_df))) # print('finding negatives for station {}, dt={}'.format(stn, dt.strftime('%Y-%m-%d %H:%M'))) cnt = 0 while cnt < len(dts_df): # get random number from each stn pwv: # r = np.random.randint(low=0, high=len(pwv.index)) # random_dt = pwv.index[r] random_dt = np.random.choice(dts_to_choose_from) negative_dt_range = pd.date_range( start=random_dt, periods=24, freq='H') if not (no_choice_dt_range.intersection(negative_dt_range)).empty: # print('#') if verbose >= 2: print('Overlap!') continue # get the actual pwv and check it is full (24hours): negative = pwv.loc[pwv.index.intersection(negative_dt_range)] neg_pressure = pressure.loc[pwv.index.intersection( negative_dt_range)] if len(negative.dropna()) != 24 or len(neg_pressure.dropna()) != 24: # print('!') if verbose >= 2: print('NaNs!') continue if verbose >= 2: print('number of dts that are already chosen: {}'.format( len(no_choice_dt_range))) negatives.append(negative) negatives_pressure.append(neg_pressure) # now add to the no_choice_dt_range the negative dt_range we just aquired: negative_dt_range_with_padding = pd.date_range( start=random_dt-pd.Timedelta(24, unit='H'), end=random_dt+pd.Timedelta(23, unit='H'), freq='H') no_choice_dt_range = pd.DatetimeIndex( np.unique(np.hstack([no_choice_dt_range, negative_dt_range_with_padding]))) dts_to_choose_from = dts_to_choose_from.difference( no_choice_dt_range) if verbose >= 2: print('number of dts to choose from: {}'.format( len(dts_to_choose_from))) cnt += 1 neg_da = xr.DataArray(negatives, dims=['sample', 'feature']) neg_da['feature'] = ['{}_{}'.format( 'pwv', x) for x in np.arange(1, 25)] neg_samples = [x.index[0] for x in negatives] neg_da['sample'] = neg_samples neg_pre_da = xr.DataArray( negatives_pressure, dims=['sample', 'feature']) neg_pre_da['feature'] = ['{}_{}'.format( 'pressure', x) for x in np.arange(1, 25)] neg_pre_samples = [x.index[0] for x in negatives_pressure] neg_pre_da['sample'] = neg_pre_samples neg_da = xr.concat([neg_da, neg_pre_da], 'feature') neg_da = neg_da.sortby('sample') neg_stns.append(neg_da) da_stns = xr.concat(neg_stns, 'sample') da_stns = da_stns.sortby('sample') # now loop over the remaining features (which are stns agnostic) # and add them with the same negative datetimes of the pwv already aquired: dts = [pd.date_range(x.item(), periods=24, freq='H') for x in da_stns['sample']] dts_samples = [x[0] for x in dts] other_feat_list = [] for feat in feats[other_feats]: # other_feat_sample_list = [] da_other = xr.DataArray(feats[feat].sel(time=dts_samples).values, dims=['sample']) # for dt in dts_samples: # da_other = xr.DataArray(feats[feat].sel( # time=dt).values, dims=['feature']) da_other['sample'] = dts_samples other_feat_list.append(da_other) # other_feat_da = xr.concat(other_feat_sample_list, 'feature') da_other_feats = xr.concat(other_feat_list, 'feature') da_other_feats['feature'] = other_feats da_stns = xr.concat([da_stns, da_other_feats], 'feature') neg_batches.append(da_stns) neg_batch_da = xr.concat(neg_batches, 'sample') # neg_batch_da['batch'] = np.arange(1, batches + 1) neg_batch_da.name = 'X_neg' feats['X_neg'] = neg_batch_da feats['X_pos'] = all_tides feats['X_pwv_stns'] = tides # feats['tide_datetimes'] = pos_tides feats = feats.rename({'sample': 'negative_sample'}) if std: filename = 'hydro_tides_hourly_features_with_positives_negatives_std_{}.nc'.format( batches) else: filename = 'hydro_tides_hourly_features_with_positives_negatives_{}.nc'.format( batches) save_ncfile(feats, hydro_path, filename) return neg_batch_da def produce_positives_from_feature_file(hydro_path=hydro_path, std=True): import xarray as xr import pandas as pd import numpy as np from aux_gps import save_ncfile # load features: if std: file = hydro_path / 'hydro_tides_hourly_features_std.nc' else: file = hydro_path / 'hydro_tides_hourly_features.nc' feats = xr.load_dataset(file) feats = feats.rename({'doy': 'DOY'}) # load positive event for each station: dfs = [read_station_from_tide_database(hydro_pw_dict.get( x), rounding='1H') for x in hydro_pw_dict.keys()] dfs = check_if_tide_events_from_stations_are_within_time_window( dfs, days=1, rounding=None, return_hs_list=True) da_list = [] positives_per_station = [] for i, feat in enumerate(feats): try: _, _, pr = produce_pwv_days_before_tide_events(feats[feat], dfs[i], plot=False, rolling=None, days_prior=1, drop_thresh=0.75, max_gap='6H', verbose=0) print('getting positives from station {}'.format(feat)) positives = [pd.to_datetime( (x[-1].time + pd.Timedelta(1, unit='H')).item()) for x in pr] da = xr.DataArray(pr, dims=['sample', 'feature']) da['sample'] = positives positives_per_station.append(positives) da['feature'] = ['pwv_{}'.format(x) for x in np.arange(1, 25)] da_list.append(da) except IndexError: continue da_pwv = xr.concat(da_list, 'sample') da_pwv = da_pwv.sortby('sample') # now add more features: da_list = [] for feat in ['bet-dagan']: print('getting positives from feature {}'.format(feat)) positives = [] for dt_end in da_pwv.sample: dt_st = pd.to_datetime(dt_end.item()) - pd.Timedelta(24, unit='H') dt_end_end = pd.to_datetime( dt_end.item()) - pd.Timedelta(1, unit='H') positive = feats[feat].sel(time=slice(dt_st, dt_end_end)) positives.append(positive) da = xr.DataArray(positives, dims=['sample', 'feature']) da['sample'] = da_pwv.sample if feat == 'bet-dagan': feat_name = 'pressure' else: feat_name = feat da['feature'] = ['{}_{}'.format(feat_name, x) for x in np.arange(1, 25)] da_list.append(da) da_f = xr.concat(da_list, 'feature') da_list = [] for feat in ['DOY', 'doy_sin', 'doy_cos']: print('getting positives from feature {}'.format(feat)) positives = [] for dt in da_pwv.sample: positive = feats[feat].sel(time=dt) positives.append(positive) da = xr.DataArray(positives, dims=['sample']) da['sample'] = da_pwv.sample # da['feature'] = feat da_list.append(da) da_ff = xr.concat(da_list, 'feature') da_ff['feature'] = ['DOY', 'doy_sin', 'doy_cos'] da = xr.concat([da_pwv, da_f, da_ff], 'feature') if std: filename = 'hydro_tides_hourly_features_with_positives_std.nc' else: filename = 'hydro_tides_hourly_features_with_positives.nc' feats['X_pos'] = da # now add positives per stations: pdf = pd.DataFrame(positives_per_station).T pdf.index.name = 'tide_event' pos_da = pdf.to_xarray().to_array('GNSS') pos_da['GNSS'] = [x for x in hydro_pw_dict.keys()] pos_da.attrs['info'] = 'contains the datetimes of the tide events per GNSS station.' feats['Tides'] = pos_da # rename sample to positive sample: feats = feats.rename({'sample': 'positive_sample'}) save_ncfile(feats, hydro_path, filename) return feats def prepare_features_and_save_hourly(work_path=work_yuval, ims_path=ims_path, savepath=hydro_path, std=True): import xarray as xr from aux_gps import save_ncfile import numpy as np # pwv = xr.load_dataset( if std: pwv_filename = 'GNSS_PW_thresh_0_hour_dayofyear_anoms_sd.nc' pre_filename = 'IMS_BD_hourly_anoms_std_ps_1964-2020.nc' else: pwv_filename = 'GNSS_PW_thresh_0_hour_dayofyear_anoms.nc' pre_filename = 'IMS_BD_hourly_anoms_ps_1964-2020.nc' # work_path / 'GNSS_PW_thresh_0_hour_dayofyear_anoms.nc') pwv = xr.load_dataset(work_path / pwv_filename) pwv_stations = [x for x in hydro_pw_dict.keys()] pwv = pwv[pwv_stations] # pwv = pwv.rolling(time=12, keep_attrs=True).mean(keep_attrs=True) pwv = pwv.resample(time='1H', keep_attrs=True).mean(keep_attrs=True) # bd = xr.load_dataset(ims_path / 'IMS_BD_anoms_5min_ps_1964-2020.nc') bd = xr.load_dataset(ims_path / pre_filename) # min_time = pwv.dropna('time')['time'].min() # bd = bd.sel(time=slice('1996', None)).resample(time='1H').mean() bd = bd.sel(time=slice('1996', None)) pressure = bd['bet-dagan'] doy = pwv['time'].copy(data=pwv['time'].dt.dayofyear) doy.name = 'doy' doy_sin = np.sin(doy * np.pi / 183) doy_sin.name = 'doy_sin' doy_cos = np.cos(doy * np.pi / 183) doy_cos.name = 'doy_cos' ds = xr.merge([pwv, pressure, doy, doy_sin, doy_cos]) if std: filename = 'hydro_tides_hourly_features_std.nc' else: filename = 'hydro_tides_hourly_features.nc' save_ncfile(ds, savepath, filename) return ds def plot_all_decompositions(X, y, n=2): import xarray as xr models = [ 'PCA', 'LDA', 'ISO_MAP', 'LLE', 'LLE-modified', 'LLE-hessian', 'LLE-ltsa', 'MDA', 'RTE', 'SE', 'TSNE', 'NCA'] names = [ 'Principal Components', 'Linear Discriminant', 'Isomap', 'Locally Linear Embedding', 'Modified LLE', 'Hessian LLE', 'Local Tangent Space Alignment', 'MDS embedding', 'Random forest', 'Spectral embedding', 't-SNE', 'NCA embedding'] name_dict = dict(zip(models, names)) da = xr.DataArray(models, dims=['model']) da['model'] = models fg = xr.plot.FacetGrid(da, col='model', col_wrap=4, sharex=False, sharey=False) for model_str, ax in zip(da['model'].values, fg.axes.flatten()): model = model_str.split('-')[0] method = model_str.split('-')[-1] if model == method: method = None try: ax = scikit_decompose(X, y, model=model, n=n, method=method, ax=ax) except ValueError: pass ax.set_title(name_dict[model_str]) ax.set_xlabel('') ax.set_ylabel('') fg.fig.suptitle('various decomposition projections (n={})'.format(n)) return def scikit_decompose(X, y, model='PCA', n=2, method=None, ax=None): from sklearn import (manifold, decomposition, ensemble, discriminant_analysis, neighbors) import matplotlib.pyplot as plt import pandas as pd # from mpl_toolkits.mplot3d import Axes3D n_neighbors = 30 if model == 'PCA': X_decomp = decomposition.TruncatedSVD(n_components=n).fit_transform(X) elif model == 'LDA': X2 = X.copy() X2.values.flat[::X.shape[1] + 1] += 0.01 X_decomp = discriminant_analysis.LinearDiscriminantAnalysis(n_components=n ).fit_transform(X2, y) elif model == 'ISO_MAP': X_decomp = manifold.Isomap( n_neighbors, n_components=n).fit_transform(X) elif model == 'LLE': # method = 'standard', 'modified', 'hessian' 'ltsa' if method is None: method = 'standard' clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method=method) X_decomp = clf.fit_transform(X) elif model == 'MDA': clf = manifold.MDS(n_components=n, n_init=1, max_iter=100) X_decomp = clf.fit_transform(X) elif model == 'RTE': hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=n) X_decomp = pca.fit_transform(X_transformed) elif model == 'SE': embedder = manifold.SpectralEmbedding(n_components=n, random_state=0, eigen_solver="arpack") X_decomp = embedder.fit_transform(X) elif model == 'TSNE': tsne = manifold.TSNE(n_components=n, init='pca', random_state=0) X_decomp = tsne.fit_transform(X) elif model == 'NCA': nca = neighbors.NeighborhoodComponentsAnalysis(init='random', n_components=n, random_state=0) X_decomp = nca.fit_transform(X, y) df = pd.DataFrame(X_decomp) df.columns = [ '{}_{}'.format( model, x + 1) for x in range( X_decomp.shape[1])] df['flood'] = y df['flood'] = df['flood'].astype(int) df_1 = df[df['flood'] == 1] df_0 = df[df['flood'] == 0] if X_decomp.shape[1] == 1: if ax is not None: df_1.plot.scatter(ax=ax, x='{}_1'.format(model), y='{}_1'.format(model), color='b', marker='s', alpha=0.3, label='1', s=50) else: ax = df_1.plot.scatter( x='{}_1'.format(model), y='{}_1'.format(model), color='b', label='1', s=50) df_0.plot.scatter( ax=ax, x='{}_1'.format(model), y='{}_1'.format(model), color='r', marker='x', label='0', s=50) elif X_decomp.shape[1] == 2: if ax is not None: df_1.plot.scatter(ax=ax, x='{}_1'.format(model), y='{}_2'.format(model), color='b', marker='s', alpha=0.3, label='1', s=50) else: ax = df_1.plot.scatter( x='{}_1'.format(model), y='{}_2'.format(model), color='b', label='1', s=50) df_0.plot.scatter( ax=ax, x='{}_1'.format(model), y='{}_2'.format(model), color='r', label='0', s=50) elif X_decomp.shape[1] == 3: ax = plt.figure().gca(projection='3d') # df_1.plot.scatter(x='{}_1'.format(model), y='{}_2'.format(model), z='{}_3'.format(model), color='b', label='1', s=50, ax=threedee) ax.scatter(df_1['{}_1'.format(model)], df_1['{}_2'.format(model)], df_1['{}_3'.format(model)], color='b', label='1', s=50) ax.scatter(df_0['{}_1'.format(model)], df_0['{}_2'.format(model)], df_0['{}_3'.format(model)], color='r', label='0', s=50) ax.set_xlabel('{}_1'.format(model)) ax.set_ylabel('{}_2'.format(model)) ax.set_zlabel('{}_3'.format(model)) return ax def permutation_scikit(X, y, cv=False, plot=True): import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import permutation_test_score from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix import numpy as np if not cv: clf = SVC(C=0.01, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=0.032374575428176434, kernel='poly', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) clf = SVC(kernel='linear') # clf = LinearDiscriminantAnalysis() cv = StratifiedKFold(4, shuffle=True) # cv = KFold(4, shuffle=True) n_classes = 2 score, permutation_scores, pvalue = permutation_test_score( clf, X, y, scoring="f1", cv=cv, n_permutations=1000, n_jobs=-1, verbose=2) print("Classification score %s (pvalue : %s)" % (score, pvalue)) plt.hist(permutation_scores, 20, label='Permutation scores', edgecolor='black') ylim = plt.ylim() plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show() else: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, shuffle=True, random_state=42) param_grid = { 'C': np.logspace(-2, 3, 50), 'gamma': np.logspace(-2, 3, 50), 'kernel': ['rbf', 'poly', 'sigmoid']} grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2) grid.fit(X_train, y_train) print(grid.best_estimator_) grid_predictions = grid.predict(X_test) print(confusion_matrix(y_test, grid_predictions)) print(classification_report(y_test, grid_predictions)) return def grab_y_true_and_predict_from_sklearn_model(model, X, y, cv, kfold_name='inner_kfold'): from sklearn.model_selection import GridSearchCV import xarray as xr import numpy as np if isinstance(model, GridSearchCV): model = model.best_estimator_ ds_list = [] for i, (train, val) in enumerate(cv.split(X, y)): model.fit(X[train], y[train]) y_true = y[val] y_pred = model.predict(X[val]) try: lr_probs = model.predict_proba(X[val]) # keep probabilities for the positive outcome only lr_probs = lr_probs[:, 1] except AttributeError: lr_probs = model.decision_function(X[val]) y_true_da = xr.DataArray(y_true, dims=['sample']) y_pred_da = xr.DataArray(y_pred, dims=['sample']) y_prob_da = xr.DataArray(lr_probs, dims=['sample']) ds = xr.Dataset() ds['y_true'] = y_true_da ds['y_pred'] = y_pred_da ds['y_prob'] = y_prob_da ds['sample'] = np.arange(0, len(X[val])) ds_list.append(ds) ds = xr.concat(ds_list, kfold_name) ds[kfold_name] = np.arange(1, cv.n_splits + 1) return ds def produce_ROC_curves_from_model(model, X, y, cv, kfold_name='inner_kfold'): import numpy as np import xarray as xr from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score # TODO: collect all predictions and y_tests from this, also predict_proba # and save, then calculte everything elsewhere. if isinstance(model, GridSearchCV): model = model.best_estimator_ tprs = [] aucs = [] pr = [] pr_aucs = [] mean_fpr = np.linspace(0, 1, 100) for i, (train, val) in enumerate(cv.split(X, y)): model.fit(X[train], y[train]) y_pred = model.predict(X[val]) try: lr_probs = model.predict_proba(X[val]) # keep probabilities for the positive outcome only lr_probs = lr_probs[:, 1] except AttributeError: lr_probs = model.decision_function(X[val]) fpr, tpr, _ = roc_curve(y[val], y_pred) interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(roc_auc_score(y[val], y_pred)) precision, recall, _ = precision_recall_curve(y[val], lr_probs) pr.append(recall) average_precision = average_precision_score(y[val], y_pred) pr_aucs.append(average_precision) # mean_tpr = np.mean(tprs, axis=0) # mean_tpr[-1] = 1.0 # mean_auc = auc(mean_fpr, mean_tpr) # std_auc = np.std(aucs) # std_tpr = np.std(tprs, axis=0) tpr_da = xr.DataArray(tprs, dims=[kfold_name, 'fpr']) auc_da = xr.DataArray(aucs, dims=[kfold_name]) ds = xr.Dataset() ds['TPR'] = tpr_da ds['AUC'] = auc_da ds['fpr'] = mean_fpr ds[kfold_name] = np.arange(1, cv.n_splits + 1) # variability for each tpr is ds['TPR'].std('kfold') return ds def cross_validation_with_holdout(X, y, model_name='SVC', features='pwv', n_splits=3, test_ratio=0.25, scorers=['f1', 'recall', 'tss', 'hss', 'precision', 'accuracy'], seed=42, savepath=None, verbose=0, param_grid='normal', n_jobs=-1, n_repeats=None): # from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.metrics import make_scorer # from string import digits import numpy as np # import xarray as xr scores_dict = {s: s for s in scorers} if 'tss' in scorers: scores_dict['tss'] = make_scorer(tss_score) if 'hss' in scorers: scores_dict['hss'] = make_scorer(hss_score) X = select_doy_from_feature_list(X, model_name, features) if param_grid == 'light': print(np.unique(X.feature.values)) # first take out the hold-out set: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_ratio, random_state=seed, stratify=y) if n_repeats is None: # configure the cross-validation procedure cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) print('CV StratifiedKfolds of {}.'.format(n_splits)) # define the model and search space: else: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) print('CV RepeatedStratifiedKFold of {} with {} repeats.'.format(n_splits, n_repeats)) ml = ML_Classifier_Switcher() print('param grid group is set to {}.'.format(param_grid)) sk_model = ml.pick_model(model_name, pgrid=param_grid) search_space = ml.param_grid # define search gr_search = GridSearchCV(estimator=sk_model, param_grid=search_space, cv=cv, n_jobs=n_jobs, scoring=scores_dict, verbose=verbose, refit=False, return_train_score=True) gr_search.fit(X, y) if isinstance(features, str): features = [features] if savepath is not None: filename = 'GRSRCHCV_holdout_{}_{}_{}_{}_{}_{}_{}.pkl'.format( model_name, '+'.join(features), '+'.join(scorers), n_splits, int(test_ratio*100), param_grid, seed) save_gridsearchcv_object(gr_search, savepath, filename) # gr, _ = process_gridsearch_results( # gr_search, model_name, split_dim='kfold', features=X.feature.values) # remove_digits = str.maketrans('', '', digits) # features = list(set([x.translate(remove_digits).split('_')[0] # for x in X.feature.values])) # # add more attrs, features etc: # gr.attrs['features'] = features return gr_search def select_doy_from_feature_list(X, model_name='RF', features='pwv'): # first if RF chosen, replace the cyclic coords of DOY (sin and cos) with # the DOY itself. if isinstance(features, list): feats = features.copy() else: feats = features if model_name == 'RF' and 'doy' in features: if isinstance(features, list): feats.remove('doy') feats.append('DOY') elif isinstance(features, str): feats = 'DOY' elif model_name != 'RF' and 'doy' in features: if isinstance(features, list): feats.remove('doy') feats.append('doy_sin') feats.append('doy_cos') elif isinstance(features, str): feats = ['doy_sin'] feats.append('doy_cos') X = select_features_from_X(X, feats) return X def single_cross_validation(X_val, y_val, model_name='SVC', features='pwv', n_splits=4, scorers=['f1', 'recall', 'tss', 'hss', 'precision', 'accuracy'], seed=42, savepath=None, verbose=0, param_grid='normal', n_jobs=-1, n_repeats=None, outer_split='1-1'): # from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV # from sklearn.model_selection import train_test_split from sklearn.metrics import make_scorer # from string import digits import numpy as np # import xarray as xr scores_dict = {s: s for s in scorers} if 'tss' in scorers: scores_dict['tss'] = make_scorer(tss_score) if 'hss' in scorers: scores_dict['hss'] = make_scorer(hss_score) X = select_doy_from_feature_list(X_val, model_name, features) y = y_val if param_grid == 'light': print(np.unique(X.feature.values)) if n_repeats is None: # configure the cross-validation procedure cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) print('CV StratifiedKfolds of {}.'.format(n_splits)) # define the model and search space: else: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) print('CV RepeatedStratifiedKFold of {} with {} repeats.'.format( n_splits, n_repeats)) ml = ML_Classifier_Switcher() print('param grid group is set to {}.'.format(param_grid)) if outer_split == '1-1': cv_type = 'holdout' print('holdout cv is selected.') else: cv_type = 'nested' print('nested cv {} out of {}.'.format( outer_split.split('-')[0], outer_split.split('-')[1])) sk_model = ml.pick_model(model_name, pgrid=param_grid) search_space = ml.param_grid # define search gr_search = GridSearchCV(estimator=sk_model, param_grid=search_space, cv=cv, n_jobs=n_jobs, scoring=scores_dict, verbose=verbose, refit=False, return_train_score=True) gr_search.fit(X, y) if isinstance(features, str): features = [features] if savepath is not None: filename = 'GRSRCHCV_{}_{}_{}_{}_{}_{}_{}_{}.pkl'.format(cv_type, model_name, '+'.join(features), '+'.join( scorers), n_splits, outer_split, param_grid, seed) save_gridsearchcv_object(gr_search, savepath, filename) return gr_search def save_cv_params_to_file(cv_obj, path, name): import pandas as pd di = vars(cv_obj) splitter_type = cv_obj.__repr__().split('(')[0] di['splitter_type'] = splitter_type (pd.DataFrame.from_dict(data=di, orient='index') .to_csv(path / '{}.csv'.format(name), header=False)) print('{}.csv saved to {}.'.format(name, path)) return def read_cv_params_and_instantiate(filepath): import pandas as pd from sklearn.model_selection import StratifiedKFold df = pd.read_csv(filepath, header=None, index_col=0) d = {} for row in df.iterrows(): dd = pd.to_numeric(row[1], errors='ignore') if dd.item() == 'True' or dd.item() == 'False': dd = dd.astype(bool) d[dd.to_frame().columns.item()] = dd.item() s_type = d.pop('splitter_type') if s_type == 'StratifiedKFold': cv = StratifiedKFold(**d) return cv def nested_cross_validation_procedure(X, y, model_name='SVC', features='pwv', outer_splits=4, inner_splits=2, refit_scorer='roc_auc', scorers=['f1', 'recall', 'tss', 'hss', 'roc_auc', 'precision', 'accuracy'], seed=42, savepath=None, verbose=0, param_grid='normal', n_jobs=-1): from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer from sklearn.inspection import permutation_importance from string import digits import numpy as np import xarray as xr assert refit_scorer in scorers scores_dict = {s: s for s in scorers} if 'tss' in scorers: scores_dict['tss'] = make_scorer(tss_score) if 'hss' in scorers: scores_dict['hss'] = make_scorer(hss_score) X = select_doy_from_feature_list(X, model_name, features) # if model_name == 'RF': # doy = X['sample'].dt.dayofyear # sel_doy = [x for x in X.feature.values if 'doy_sin' in x] # doy_X = doy.broadcast_like(X.sel(feature=sel_doy)) # doy_X['feature'] = [ # 'doy_{}'.format(x) for x in range( # doy_X.feature.size)] # no_doy = [x for x in X.feature.values if 'doy' not in x] # X = X.sel(feature=no_doy) # X = xr.concat([X, doy_X], 'feature') # else: # # first slice X for features: # if isinstance(features, str): # f = [x for x in X.feature.values if features in x] # X = X.sel(feature=f) # elif isinstance(features, list): # fs = [] # for f in features: # fs += [x for x in X.feature.values if f in x] # X = X.sel(feature=fs) if param_grid == 'light': print(np.unique(X.feature.values)) # configure the cross-validation procedure cv_inner = StratifiedKFold(n_splits=inner_splits, shuffle=True, random_state=seed) print('Inner CV StratifiedKfolds of {}.'.format(inner_splits)) # define the model and search space: ml = ML_Classifier_Switcher() if param_grid == 'light': print('disgnostic mode light.') sk_model = ml.pick_model(model_name, pgrid=param_grid) search_space = ml.param_grid # define search gr_search = GridSearchCV(estimator=sk_model, param_grid=search_space, cv=cv_inner, n_jobs=n_jobs, scoring=scores_dict, verbose=verbose, refit=refit_scorer, return_train_score=True) # gr.fit(X, y) # configure the cross-validation procedure cv_outer = StratifiedKFold( n_splits=outer_splits, shuffle=True, random_state=seed) # execute the nested cross-validation scores_est_dict = cross_validate(gr_search, X, y, scoring=scores_dict, cv=cv_outer, n_jobs=n_jobs, return_estimator=True, verbose=verbose) # perm = [] # for i, (train, val) in enumerate(cv_outer.split(X, y)): # gr_model = scores_est_dict['estimator'][i] # gr_model.fit(X[train], y[train]) # r = permutation_importance(gr_model, X[val], y[val],scoring='f1', # n_repeats=30, n_jobs=-1, # random_state=0) # perm.append(r) # get the test scores: test_keys = [x for x in scores_est_dict.keys() if 'test' in x] ds = xr.Dataset() for key in test_keys: ds[key] = xr.DataArray(scores_est_dict[key], dims=['outer_kfold']) preds_ds = [] gr_ds = [] for est in scores_est_dict['estimator']: gr, _ = process_gridsearch_results( est, model_name, split_dim='inner_kfold', features=X.feature.values) # somehow save gr: gr_ds.append(gr) preds_ds.append( grab_y_true_and_predict_from_sklearn_model(est, X, y, cv_inner)) # tpr_ds.append(produce_ROC_curves_from_model(est, X, y, cv_inner)) dss = xr.concat(preds_ds, 'outer_kfold') gr_dss = xr.concat(gr_ds, 'outer_kfold') dss['outer_kfold'] = np.arange(1, cv_outer.n_splits + 1) gr_dss['outer_kfold'] = np.arange(1, cv_outer.n_splits + 1) # aggragate results: dss = xr.merge([ds, dss]) dss = xr.merge([dss, gr_dss]) dss.attrs = gr_dss.attrs dss.attrs['outer_kfold_splits'] = outer_splits remove_digits = str.maketrans('', '', digits) features = list(set([x.translate(remove_digits).split('_')[0] for x in X.feature.values])) # add more attrs, features etc: dss.attrs['features'] = features # rename major data_vars with model name: # ys = [x for x in dss.data_vars if 'y_' in x] # new_ys = [y + '_{}'.format(model_name) for y in ys] # dss = dss.rename(dict(zip(ys, new_ys))) # new_test_keys = [y + '_{}'.format(model_name) for y in test_keys] # dss = dss.rename(dict(zip(test_keys, new_test_keys))) # if isinstance(X.attrs['pwv_id'], list): # dss.attrs['pwv_id'] = '-'.join(X.attrs['pwv_id']) # else: # dss.attrs['pwv_id'] = X.attrs['pwv_id'] # if isinstance(y.attrs['hydro_station_id'], list): # dss.attrs['hs_id'] = '-'.join([str(x) for x in y.attrs['hydro_station_id']]) # else: # dss.attrs['hs_id'] = y.attrs['hydro_station_id'] # dss.attrs['hydro_max_flow'] = y.attrs['max_flow'] # dss.attrs['neg_pos_ratio'] = y.attrs['neg_pos_ratio'] # save results to file: if savepath is not None: save_cv_results(dss, savepath=savepath) return dss # def ML_main_procedure(X, y, estimator=None, model_name='SVC', features='pwv', # val_size=0.18, n_splits=None, test_size=0.2, seed=42, best_score='f1', # savepath=None, plot=True): # """split the X,y for train and test, either do HP tuning using HP_tuning # with val_size or use already tuned (or not) estimator. # models to play with = MLP, RF and SVC. # n_splits = 2, 3, 4. # features = pwv, pressure. # best_score = f1, roc_auc, accuracy. # can do loop on them. RF takes the most time to tune.""" # X = select_features_from_X(X, features) # X_train, X_test, y_train, y_test = train_test_split(X, y, # test_size=test_size, # shuffle=True, # random_state=seed) # # do HP_tuning: # if estimator is None: # cvr, model = HP_tuning(X_train, y_train, model_name=model_name, val_size=val_size, test_size=test_size, # best_score=best_score, seed=seed, savepath=savepath, n_splits=n_splits) # else: # model = estimator # if plot: # ax = plot_many_ROC_curves(model, X_test, y_test, name=model_name, # ax=None) # return ax # else: # return model def plot_hyper_parameters_heatmaps_from_nested_CV_model(dss, path=hydro_path, model_name='MLP', features='pwv+pressure+doy', save=True): import matplotlib.pyplot as plt ds = dss.sel(features=features).reset_coords(drop=True) non_hp_vars = ['mean_score', 'std_score', 'test_score', 'roc_auc_score', 'TPR'] if model_name == 'RF': non_hp_vars.append('feature_importances') ds = ds[[x for x in ds if x not in non_hp_vars]] seq = 'Blues' cat = 'Dark2' cmap_hp_dict = { 'alpha': seq, 'activation': cat, 'hidden_layer_sizes': cat, 'learning_rate': cat, 'solver': cat, 'kernel': cat, 'C': seq, 'gamma': seq, 'degree': seq, 'coef0': seq, 'max_depth': seq, 'max_features': cat, 'min_samples_leaf': seq, 'min_samples_split': seq, 'n_estimators': seq } # fix stuff for SVC: if model_name == 'SVC': ds['degree'] = ds['degree'].where(ds['kernel']=='poly') ds['coef0'] = ds['coef0'].where(ds['kernel']=='poly') # da = ds.to_arrray('hyper_parameters') # fg = xr.plot.FacetGrid( # da, # col='hyper_parameters', # sharex=False, # sharey=False, figsize=(16, 10)) fig, axes = plt.subplots(5, 1, sharex=True, figsize=(4, 10)) for i, da in enumerate(ds): df = ds[da].reset_coords(drop=True).to_dataset('scorer').to_dataframe() df.index.name = 'Outer Split' try: df = df.astype(float).round(2) except ValueError: pass cmap = cmap_hp_dict.get(da, 'Set1') plot_heatmap_for_hyper_parameters_df(df, ax=axes[i], title=da, cmap=cmap) fig.tight_layout() if save: filename = 'Hyper-parameters_nested_{}.png'.format( model_name) plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_heatmaps_for_hyper_parameters_data_splits(df1, df2, axes=None, cmap='colorblind', title=None, fig=None, cbar_params=[.92, .12, .03, .75], fontsize=12, val_type='float'): import pandas as pd import seaborn as sns import numpy as np # from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import Normalize import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm sns.set_style('ticks') sns.set_style('whitegrid') sns.set(font_scale=1.2) df1 = df1.astype(eval(val_type)) df2 = df2.astype(eval(val_type)) arr = pd.concat([df1, df2], axis=0).values.ravel() value_to_int = {j: i for i, j in enumerate( np.unique(arr))} # like you did # try: # sorted_v_to_i = dict(sorted(value_to_int.items())) # except TypeError: # sorted_v_to_i = value_to_int # print(value_to_int) n = len(value_to_int) # discrete colormap (n samples from a given cmap) cmap_list = sns.color_palette(cmap, n) if val_type == 'float': # print([value_to_int.keys()]) cbar_ticklabels = ['{:.2g}'.format(x) for x in value_to_int.keys()] elif val_type == 'int': cbar_ticklabels = [int(x) for x in value_to_int.keys()] elif val_type == 'str': cbar_ticklabels = [x for x in value_to_int.keys()] if 'nan' in value_to_int.keys(): cmap_list[-1] = (0.5, 0.5, 0.5) new_value_to_int = {} for key, val in value_to_int.items(): try: new_value_to_int[str(int(float(key)))] = val except ValueError: new_value_to_int['NR'] = val cbar_ticklabels = [x for x in new_value_to_int.keys()] # u1 = np.unique(df1.replace(value_to_int)).astype(int) # cmap1 = [cmap_list[x] for x in u1] # u2 = np.unique(df2.replace(value_to_int)).astype(int) # cmap2 = [cmap_list[x] for x in u2] # prepare normalizer ## Prepare bins for the normalizer norm_bins = np.sort([*value_to_int.values()]) + 0.5 norm_bins = np.insert(norm_bins, 0, np.min(norm_bins) - 1.0) # print(norm_bins) ## Make normalizer and formatter norm = matplotlib.colors.BoundaryNorm(norm_bins, n, clip=True) # normalizer = Normalize(np.array([x for x in value_to_int.values()])[0],np.array([x for x in value_to_int.values()])[-1]) # im=cm.ScalarMappable(norm=normalizer) if axes is None: fig, axes = plt.subplots(2, 1, sharex=True, sharey=False) # divider = make_axes_locatable([axes[0], axes[1]]) # cbar_ax = divider.append_axes('right', size='5%', pad=0.05) cbar_ax = fig.add_axes(cbar_params) sns.heatmap(df1.replace(value_to_int), cmap=cmap_list, cbar=False, ax=axes[0], linewidth=0.7, linecolor='k', square=True, cbar_kws={"shrink": .9}, cbar_ax=cbar_ax, norm=norm) sns.heatmap(df2.replace(value_to_int), cmap=cmap_list, cbar=False, ax=axes[1], linewidth=0.7, linecolor='k', square=True, cbar_kws={"shrink": .9}, cbar_ax=cbar_ax, norm=norm) # else: # ax = sns.heatmap(df.replace(sorted_v_to_i), cmap=cmap, # ax=ax, linewidth=1, linecolor='k', # square=False, cbar_kws={"shrink": .9}) if title is not None: axes[0].set_title(title, fontsize=fontsize) for ax in axes: ax.set_xticklabels(ax.get_xticklabels(), ha='right', va='top', rotation=45) ax.set_yticklabels(ax.get_yticklabels(), rotation=0) ax.tick_params(labelsize=fontsize, direction='out', bottom=True, left=True, length=2) ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) # colorbar = axes[0].collections[0].colorbar # diff = norm_bins[1:] - norm_bins[:-1] # tickz = norm_bins[:-1] + diff / 2 colorbar = fig.colorbar(cm.ScalarMappable(norm=norm, cmap=matplotlib.colors.ListedColormap(cmap_list)), ax=[axes[0], axes[1]], shrink=1, pad=0.05, cax=cbar_ax) # colorbar = plt.gca().images[-1].colorbar r = colorbar.vmax - colorbar.vmin colorbar.set_ticks([colorbar.vmin + r / n * (0.5 + i) for i in range(n)]) colorbar.ax.set_yticklabels(cbar_ticklabels, fontsize=fontsize-2) return axes def plot_hyper_parameters_heatmap_data_splits_per_model(dss4, dss5, fontsize=14, save=True, model_name='SVC', features='pwv+pressure+doy'): import matplotlib.pyplot as plt # import seaborn as sns fig, axes = plt.subplots(2, 5, sharex=True, sharey=False ,figsize=(16, 5)) ds4 = dss4.sel(features=features).reset_coords(drop=True) ds5 = dss5.sel(features=features).reset_coords(drop=True) ds4 = ds4.reindex(scorer=scorer_order) ds5 = ds5.reindex(scorer=scorer_order) non_hp_vars = ['mean_score', 'std_score', 'test_score', 'roc_auc_score', 'TPR'] if model_name == 'RF': non_hp_vars.append('feature_importances') if model_name == 'MLP': adj_dict=dict( top=0.946, bottom=0.145, left=0.046, right=0.937, hspace=0.121, wspace=0.652) cb_st = 0.167 cb_mul = 0.193 else: adj_dict=dict( wspace = 0.477, top=0.921, bottom=0.17, left=0.046, right=0.937, hspace=0.121) cb_st = 0.18 cb_mul = 0.19 ds4 = ds4[[x for x in ds4 if x not in non_hp_vars]] ds5 = ds5[[x for x in ds5 if x not in non_hp_vars]] seq = 'Blues' cat = 'Dark2' hp_dict = { 'alpha': ['Reds', 'float'], 'activation': ['Set1_r', 'str'], 'hidden_layer_sizes': ['Paired', 'str'], 'learning_rate': ['Spectral_r', 'str'], 'solver': ['Dark2', 'str'], 'kernel': ['Dark2', 'str'], 'C': ['Blues', 'float'], 'gamma': ['Oranges', 'float'], 'degree': ['Greens', 'str'], 'coef0': ['Spectral', 'str'], 'max_depth': ['Blues', 'int'], 'max_features': ['Dark2', 'str'], 'min_samples_leaf': ['Greens', 'int'], 'min_samples_split': ['Reds', 'int'], 'n_estimators': ['Oranges', 'int'] } # fix stuff for SVC: if model_name == 'SVC': ds4['degree'] = ds4['degree'].where(ds4['kernel']=='poly') ds4['coef0'] = ds4['coef0'].where(ds4['kernel']=='poly') ds5['degree'] = ds5['degree'].where(ds5['kernel']=='poly') ds5['coef0'] = ds5['coef0'].where(ds5['kernel']=='poly') for i, (da4, da5) in enumerate(zip(ds4, ds5)): df4 = ds4[da4].reset_coords(drop=True).to_dataset('scorer').to_dataframe() df5 = ds5[da5].reset_coords(drop=True).to_dataset('scorer').to_dataframe() df4.index.name = 'Outer Split' df5.index.name = 'Outer Split' # try: # df4 = df4.astype(float).round(2) # df5 = df5.astype(float).round(2) # except ValueError: # pass cmap = hp_dict.get(da4, 'Set1')[0] val_type = hp_dict.get(da4, 'int')[1] cbar_params = [cb_st + cb_mul*float(i), .175, .01, .71] plot_heatmaps_for_hyper_parameters_data_splits(df4, df5, axes=[axes[0, i], axes[1, i]], fig=fig, title=da4, cmap=cmap, cbar_params=cbar_params, fontsize=fontsize, val_type=val_type) if i > 0 : axes[0, i].set_ylabel('') axes[0, i].yaxis.set_tick_params(labelleft=False) axes[1, i].set_ylabel('') axes[1, i].yaxis.set_tick_params(labelleft=False) fig.tight_layout() fig.subplots_adjust(**adj_dict) if save: filename = 'Hyper-parameters_nested_{}.png'.format( model_name) plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def plot_heatmap_for_hyper_parameters_df(df, ax=None, cmap='colorblind', title=None, fontsize=12): import pandas as pd import seaborn as sns import numpy as np sns.set_style('ticks') sns.set_style('whitegrid') sns.set(font_scale=1.2) value_to_int = {j: i for i, j in enumerate( sorted(pd.unique(df.values.ravel())))} # like you did # for key in value_to_int.copy().keys(): # try: # if np.isnan(key): # value_to_int['NA'] = value_to_int.pop(key) # df = df.fillna('NA') # except TypeError: # pass try: sorted_v_to_i = dict(sorted(value_to_int.items())) except TypeError: sorted_v_to_i = value_to_int n = len(value_to_int) # discrete colormap (n samples from a given cmap) cmap = sns.color_palette(cmap, n) if ax is None: ax = sns.heatmap(df.replace(sorted_v_to_i), cmap=cmap, linewidth=1, linecolor='k', square=False, cbar_kws={"shrink": .9}) else: ax = sns.heatmap(df.replace(sorted_v_to_i), cmap=cmap, ax=ax, linewidth=1, linecolor='k', square=False, cbar_kws={"shrink": .9}) if title is not None: ax.set_title(title, fontsize=fontsize) ax.set_xticklabels(ax.get_xticklabels(), rotation=30) ax.set_yticklabels(ax.get_yticklabels(), rotation=0) ax.tick_params(labelsize=fontsize) ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) colorbar = ax.collections[0].colorbar r = colorbar.vmax - colorbar.vmin colorbar.set_ticks([colorbar.vmin + r / n * (0.5 + i) for i in range(n)]) colorbar.set_ticklabels(list(value_to_int.keys())) return ax # def plot_ROC_curves_for_all_models_and_scorers(dss, save=False, # fontsize=24, fig_split=1, # feat=['pwv', 'pwv+pressure', 'pwv+pressure+doy']): # import xarray as xr # import seaborn as sns # import matplotlib.pyplot as plt # import pandas as pd # cmap = sns.color_palette('tab10', len(feat)) # sns.set_style('whitegrid') # sns.set_style('ticks') # if fig_split == 1: # dss = dss.sel(scorer=['precision', 'recall', 'f1']) # elif fig_split == 2: # dss = dss.sel(scorer=['accuracy', 'tss', 'hss']) # fg = xr.plot.FacetGrid( # dss, # col='model', # row='scorer', # sharex=True, # sharey=True, figsize=(20, 20)) # for i in range(fg.axes.shape[0]): # i is rows # for j in range(fg.axes.shape[1]): # j is cols # ax = fg.axes[i, j] # modelname = dss['model'].isel(model=j).item() # scorer = dss['scorer'].isel(scorer=i).item() # chance_plot = [False for x in feat] # chance_plot[-1] = True # for k, f in enumerate(feat): # # name = '{}-{}-{}'.format(modelname, scoring, feat) # # model = dss.isel({'model': j, 'scoring': i}).sel( # # {'features': feat}) # model = dss.isel({'model': j, 'scorer': i} # ).sel({'features': f}) # # return model # title = 'ROC of {} model ({})'.format(modelname.replace('SVC', 'SVM'), scorer) # try: # ax = plot_ROC_curve_from_dss_nested_CV(model, outer_dim='outer_split', # plot_chance=[k], # main_label=f, # ax=ax, # color=cmap[k], title=title, # fontsize=fontsize) # except ValueError: # ax.grid('on') # continue # handles, labels = ax.get_legend_handles_labels() # lh_ser = pd.Series(labels, index=handles).drop_duplicates() # lh_ser = lh_ser.sort_values(ascending=False) # hand = lh_ser.index.values # labe = lh_ser.values # ax.legend(handles=hand.tolist(), labels=labe.tolist(), loc="lower right", # fontsize=fontsize-7) # ax.grid('on') # if j >= 1: # ax.set_ylabel('') # if fig_split == 1: # ax.set_xlabel('') # ax.tick_params(labelbottom=False) # else: # if i <= 1: # ax.set_xlabel('') # # title = '{} station: {} total events'.format( # # station.upper(), events) # # if max_flow > 0: # # title = '{} station: {} total events (max flow = {} m^3/sec)'.format( # # station.upper(), events, max_flow) # # fg.fig.suptitle(title, fontsize=fontsize) # fg.fig.tight_layout() # fg.fig.subplots_adjust(top=0.937, # bottom=0.054, # left=0.039, # right=0.993, # hspace=0.173, # wspace=0.051) # if save: # filename = 'ROC_curves_nested_{}_figsplit_{}.png'.format( # dss['outer_split'].size, fig_split) # plt.savefig(savefig_path / filename, bbox_inches='tight') # return fg def plot_hydro_ML_models_results_from_dss(dss, std_on='outer', save=False, fontsize=16, plot_type='ROC', split=1, feat=['pwv', 'pressure+pwv', 'doy+pressure+pwv']): import xarray as xr import seaborn as sns import matplotlib.pyplot as plt import pandas as pd cmap = sns.color_palette("colorblind", len(feat)) if split == 1: dss = dss.sel(scoring=['f1', 'precision', 'recall']) elif split == 2: dss = dss.sel(scoring=['tss', 'hss', 'roc-auc', 'accuracy']) fg = xr.plot.FacetGrid( dss, col='model', row='scoring', sharex=True, sharey=True, figsize=(20, 20)) for i in range(fg.axes.shape[0]): # i is rows for j in range(fg.axes.shape[1]): # j is cols ax = fg.axes[i, j] modelname = dss['model'].isel(model=j).item() scoring = dss['scoring'].isel(scoring=i).item() chance_plot = [False for x in feat] chance_plot[-1] = True for k, f in enumerate(feat): # name = '{}-{}-{}'.format(modelname, scoring, feat) # model = dss.isel({'model': j, 'scoring': i}).sel( # {'features': feat}) model = dss.isel({'model': j, 'scoring': i} ).sel({'features': f}) title = '{} of {} model ({})'.format( plot_type, modelname, scoring) try: plot_ROC_PR_curve_from_dss(model, outer_dim='outer_kfold', inner_dim='inner_kfold', plot_chance=[k], main_label=f, plot_type=plot_type, plot_std_legend=False, ax=ax, color=cmap[k], title=title, std_on=std_on, fontsize=fontsize) except ValueError: ax.grid('on') continue handles, labels = ax.get_legend_handles_labels() hand = pd.Series( labels, index=handles).drop_duplicates().index.values labe = pd.Series(labels, index=handles).drop_duplicates().values ax.legend(handles=hand.tolist(), labels=labe.tolist(), loc="lower right", fontsize=14) ax.grid('on') # title = '{} station: {} total events'.format( # station.upper(), events) # if max_flow > 0: # title = '{} station: {} total events (max flow = {} m^3/sec)'.format( # station.upper(), events, max_flow) # fg.fig.suptitle(title, fontsize=fontsize) fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.937, bottom=0.054, left=0.039, right=0.993, hspace=0.173, wspace=0.051) if save: filename = 'hydro_models_on_{}_{}_std_on_{}_{}.png'.format( dss['inner_kfold'].size, dss['outer_kfold'].size, std_on, plot_type) plt.savefig(savefig_path / filename, bbox_inches='tight') return fg # def plot_hydro_ML_models_result(model_da, nsplits=2, station='drag', # test_size=20, n_splits_plot=None, save=False): # import xarray as xr # import seaborn as sns # import matplotlib.pyplot as plt # from sklearn.model_selection import train_test_split # # TODO: add plot_roc_curve(model, X_other_station, y_other_station) # # TODO: add pw_station, hs_id # cmap = sns.color_palette("colorblind", 3) # X, y = produce_X_y(station, hydro_pw_dict[station], neg_pos_ratio=1) # events = int(y[y == 1].sum().item()) # model_da = model_da.sel( # splits=nsplits, # test_size=test_size).reset_coords( # drop=True) ## just_pw = [x for x in X.feature.values if 'pressure' not in x] ## X_pw = X.sel(feature=just_pw) # fg = xr.plot.FacetGrid( # model_da, # col='model', # row='scoring', # sharex=True, # sharey=True, figsize=(20, 20)) # for i in range(fg.axes.shape[0]): # i is rows # for j in range(fg.axes.shape[1]): # j is cols # ax = fg.axes[i, j] # modelname = model_da['model'].isel(model=j).item() # scoring = model_da['scoring'].isel(scoring=i).item() # chance_plot = [False, False, True] # for k, feat in enumerate(model_da['feature'].values): # name = '{}-{}-{}'.format(modelname, scoring, feat) # model = model_da.isel({'model': j, 'scoring': i}).sel({'feature': feat}).item() # title = 'ROC of {} model ({})'.format(modelname, scoring) # if not '+' in feat: # f = [x for x in X.feature.values if feat in x] # X_f = X.sel(feature=f) # else: # X_f = X # X_train, X_test, y_train, y_test = train_test_split( # X_f, y, test_size=test_size/100, shuffle=True, random_state=42) # # plot_many_ROC_curves(model, X_f, y, name=name, # color=cmap[k], ax=ax, # plot_chance=chance_plot[k], # title=title, n_splits=n_splits_plot) # fg.fig.suptitle('{} station: {} total_events, test_events = {}, n_splits = {}'.format(station.upper(), events, int(events* test_size/100), nsplits)) # fg.fig.tight_layout() # fg.fig.subplots_adjust(top=0.937, # bottom=0.054, # left=0.039, # right=0.993, # hspace=0.173, # wspace=0.051) # if save: # plt.savefig(savefig_path / 'try.png', bbox_inches='tight') # return fg def order_features_list(flist): """ order the feature list in load_ML_run_results so i don't get duplicates""" import pandas as pd import numpy as np # first get all features: li = [x.split('+') for x in flist] flat_list = [item for sublist in li for item in sublist] f = list(set(flat_list)) nums = np.arange(1, len(f)+1) # now assagin a number for each entry: inds = [] for x in flist: for fe, num in zip(f, nums): x = x.replace(fe, str(10**num)) inds.append(eval(x)) ser = pd.Series(inds) ser.index = flist ser1 = ser.drop_duplicates() di = dict(zip(ser1.values, ser1.index)) new_flist = [] for ind, feat in zip(inds, flist): new_flist.append(di.get(ind)) return new_flist def smart_add_dataarray_to_ds_list(dsl, da_name='feature_importances'): """add data array to ds_list even if it does not exist, use shape of data array that exists in other part of ds list""" import numpy as np import xarray as xr # print(da_name) fi = [x for x in dsl if da_name in x][0] print(da_name, fi[da_name].shape) fi = fi[da_name].copy(data=np.zeros(shape=fi[da_name].shape)) new_dsl = [] for ds in dsl: if da_name not in ds: ds = xr.merge([ds, fi], combine_attrs='no_conflicts') new_dsl.append(ds) return new_dsl def load_ML_run_results(path=hydro_ml_path, prefix='CVR', change_DOY_to_doy=True): from aux_gps import path_glob import xarray as xr # from aux_gps import save_ncfile import pandas as pd import numpy as np print('loading hydro ML results for all models and features') # print('loading hydro ML results for station {}'.format(pw_station)) model_files = path_glob(path, '{}_*.nc'.format(prefix)) model_files = sorted(model_files) # model_files = [x for x in model_files if pw_station in x.as_posix()] ds_list = [xr.load_dataset(x) for x in model_files] if change_DOY_to_doy: for ds in ds_list: if 'DOY' in ds.features: new_feats = [x.replace('DOY', 'doy') for x in ds['feature'].values] ds['feature'] = new_feats ds.attrs['features'] = [x.replace('DOY', 'doy') for x in ds.attrs['features']] model_as_str = [x.as_posix().split('/')[-1].split('.')[0] for x in model_files] model_names = [x.split('_')[1] for x in model_as_str] model_scores = [x.split('_')[3] for x in model_as_str] model_features = [x.split('_')[2] for x in model_as_str] if change_DOY_to_doy: model_features = [x.replace('DOY', 'doy') for x in model_features] new_model_features = order_features_list(model_features) ind = pd.MultiIndex.from_arrays( [model_names, new_model_features, model_scores], names=( 'model', 'features', 'scoring')) # ind1 = pd.MultiIndex.from_product([model_names, model_scores, model_features], names=[ # 'model', 'scoring', 'feature']) # ds_list = [x[data_vars] for x in ds_list] # complete non-existant fields like best and fi for all ds: data_vars = [x for x in ds_list[0] if x.startswith('test')] # data_vars += ['AUC', 'TPR'] data_vars += [x for x in ds_list[0] if x.startswith('y_')] bests = [[x for x in y if x.startswith('best')] for y in ds_list] data_vars += list(set([y for x in bests for y in x])) if 'RF' in model_names: data_vars += ['feature_importances'] new_ds_list = [] for dvar in data_vars: ds_list = smart_add_dataarray_to_ds_list(ds_list, dvar) # # check if all data vars are in each ds and merge them: new_ds_list = [xr.merge([y[x] for x in data_vars if x in y], combine_attrs='no_conflicts') for y in ds_list] # concat all dss = xr.concat(new_ds_list, dim='dim_0') dss['dim_0'] = ind dss = dss.unstack('dim_0') # dss.attrs['pwv_id'] = pw_station # fix roc_auc to roc-auc in dss datavars dss = dss.rename_vars({'test_roc_auc': 'test_roc-auc'}) # dss['test_roc_auc'].name = 'test_roc-auc' print('calculating ROC, PR metrics.') dss = calculate_metrics_from_ML_dss(dss) print('Done!') return dss def plot_nested_CV_test_scores(dss, feats=None, fontsize=16, save=True, wv_label='pwv'): import seaborn as sns import matplotlib.pyplot as plt from aux_gps import convert_da_to_long_form_df import numpy as np import xarray as xr def change_width(ax, new_value) : for patch in ax.patches : current_width = patch.get_width() diff = current_width - new_value # we change the bar width patch.set_width(new_value) # we recenter the bar patch.set_x(patch.get_x() + diff * .5) def show_values_on_bars(axs, fs=12, fw='bold', exclude_bar_num=None): import numpy as np def _show_on_single_plot(ax, exclude_bar_num=3): for i, p in enumerate(ax.patches): if i != exclude_bar_num and exclude_bar_num is not None: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = '{:.2f}'.format(p.get_height()) ax.text(_x, _y, value, ha="right", fontsize=fs, fontweight=fw, zorder=20) if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax, exclude_bar_num) else: _show_on_single_plot(axs, exclude_bar_num) splits = dss['outer_split'].size try: assert 'best' in dss.attrs['comment'] best = True except AssertionError: best = False except KeyError: best = False if 'neg_sample' in dss.dims: neg = dss['neg_sample'].size else: neg = 1 if 'model' not in dss.dims: dss = dss.expand_dims('model') dss['model'] = [dss.attrs['model']] dss = dss.sortby('model', ascending=False) dss = dss.reindex(scorer=scorer_order) if feats is None: feats = ['pwv', 'pwv+pressure', 'pwv+pressure+doy'] dst = dss.sel(features=feats) # .reset_coords(drop=True) # df = dst['test_score'].to_dataframe() # df['scorer'] = df.index.get_level_values(3) # df['model'] = df.index.get_level_values(0) # df['features'] = df.index.get_level_values(1) # df['outer_splits'] = df.index.get_level_values(2) # df['model'] = df['model'].str.replace('SVC', 'SVM') # df = df.melt(value_vars='test_score', id_vars=[ # 'features', 'model', 'scorer', 'outer_splits'], var_name='test_score', # value_name='score') da = dst['test_score'] if len(feats) == 5: da_empty = da.isel(features=0).copy( data=np.zeros(da.isel(features=0).shape)) da_empty['features'] = 'empty' da = xr.concat([da, da_empty], 'features') da = da.reindex(features=['doy', 'pressure', 'pwv', 'empty', 'pwv+pressure', 'pwv+pressure+doy']) da.name = 'feature groups' df = convert_da_to_long_form_df(da, value_name='score', var_name='feature groups') sns.set(font_scale=1.5) sns.set_style('whitegrid') sns.set_style('ticks') cmap = sns.color_palette('tab10', n_colors=len(feats)) if len(feats) == 5: cmap = ['tab:purple', 'tab:brown', 'tab:blue', 'tab:blue', 'tab:orange', 'tab:green'] fg = sns.FacetGrid(data=df, row='model', col='scorer', height=4, aspect=0.9) # fg.map_dataframe(sns.stripplot, x="test_score", y="score", hue="features", # data=df, dodge=True, alpha=1, zorder=1, palette=cmap) # fg.map_dataframe(sns.pointplot, x="test_score", y="score", hue="features", # data=df, dodge=True, join=False, palette=cmap, # markers="o", scale=.75, ci=None) fg.map_dataframe(sns.barplot, x='feature groups', y="score", hue='features', ci='sd', capsize=None, errwidth=2, errcolor='k', palette=cmap, dodge=True) # g = sns.catplot(x='test_score', y="score", hue='features', # col="scorer", row='model', ci='sd', # data=df, kind="bar", capsize=0.25, # height=4, aspect=1.5, errwidth=1.5) #fg.set_xticklabels(rotation=45) # fg.set_yticklabels([0, 0.2, 0.4, 0.6, 0.8, 1.0], fontsize=fontsize) fg.set_ylabels('score') [x.grid(True) for x in fg.axes.flatten()] handles, labels = fg.axes[0, 0].get_legend_handles_labels() if len(feats) == 5: del handles[3] del labels[3] show_values_on_bars(fg.axes, fs=fontsize-4, exclude_bar_num=3) for i in range(fg.axes.shape[0]): # i is rows model = dss['model'].isel(model=i).item() if model == 'SVC': model = 'SVM' for j in range(fg.axes.shape[1]): # j is cols ax = fg.axes[i, j] scorer = dss['scorer'].isel(scorer=j).item() title = '{} | scorer={}'.format(model, scorer) ax.set_title(title, fontsize=fontsize) ax.set_xlabel('') ax.set_ylim(0, 1) change_width(ax, 0.110) fg.set_xlabels(' ') if wv_label is not None: labels = [x.replace('pwv', wv_label) for x in labels] fg.fig.legend(handles=handles, labels=labels, prop={'size': fontsize}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=len(feats), fontsize=fontsize, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) # true_scores = dst.sel(scorer=scorer, model=model)['true_score'] # dss['permutation_score'].plot.hist(ax=ax, bins=25, color=color) # ymax = ax.get_ylim()[-1] - 0.2 # ax.vlines(x=true_scores.values, ymin=0, ymax=ymax, linestyle='--', color=cmap) fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.92) if save: if best: filename = 'ML_scores_models_nested_CV_best_hp_{}_{}_neg_{}.png'.format('_'.join(feats), splits, neg) else: filename = 'ML_scores_models_nested_CV_{}_{}_neg_{}.png'.format('_'.join(feats), splits, neg) plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_holdout_test_scores(dss, feats='pwv+pressure+doy'): import seaborn as sns import matplotlib.pyplot as plt def show_values_on_bars(axs, fs=12, fw='bold'): import numpy as np def _show_on_single_plot(ax): for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = '{:.2f}'.format(p.get_height()) ax.text(_x, _y, value, ha="center", fontsize=fs, fontweight=fw) if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) if feats is None: feats = ['pwv', 'pwv+pressure', 'pwv+pressure+doy'] dst = dss.sel(features=feats) # .reset_coords(drop=True) df = dst['holdout_test_scores'].to_dataframe() df['scorer'] = df.index.droplevel(1).droplevel(0) df['model'] = df.index.droplevel(2).droplevel(1) df['features'] = df.index.droplevel(2).droplevel(0) df['model'] = df['model'].str.replace('SVC', 'SVM') df = df.melt(value_vars='holdout_test_scores', id_vars=[ 'features', 'model', 'scorer'], var_name='test_score') sns.set(font_scale=1.5) sns.set_style('whitegrid') sns.set_style('ticks') g = sns.catplot(x="model", y="value", hue='features', col="scorer", ci='sd', row=None, col_wrap=3, data=df, kind="bar", capsize=0.15, height=4, aspect=1.5, errwidth=0.8) g.set_xticklabels(rotation=45) [x.grid(True) for x in g.axes.flatten()] show_values_on_bars(g.axes) filename = 'ML_scores_models_holdout_{}.png'.format('_'.join(feats)) plt.savefig(savefig_path / filename, bbox_inches='tight') return df def prepare_test_df_to_barplot_from_dss(dss, feats='doy+pwv+pressure', plot=True, splitfigs=True): import seaborn as sns import matplotlib.pyplot as plt dvars = [x for x in dss if 'test_' in x] scores = [x.split('_')[-1] for x in dvars] dst = dss[dvars] # dst['scoring'] = [x+'_inner' for x in dst['scoring'].values] # for i, ds in enumerate(dst): # dst[ds] = dst[ds].sel(scoring=scores[i]).reset_coords(drop=True) if feats is None: feats = ['pwv', 'pressure+pwv', 'doy+pressure+pwv'] dst = dst.sel(features=feats) # .reset_coords(drop=True) dst = dst.rename_vars(dict(zip(dvars, scores))) # dst = dst.drop('scoring') df = dst.to_dataframe() # dfu = df df['inner score'] = df.index.droplevel(2).droplevel(1).droplevel(0) df['features'] = df.index.droplevel(2).droplevel(2).droplevel(1) df['model'] = df.index.droplevel(2).droplevel(0).droplevel(1) df = df.melt(value_vars=scores, id_vars=[ 'features', 'model', 'inner score'], var_name='outer score') # return dfu # dfu.columns = dfu.columns.droplevel(1) # dfu = dfu.T # dfu['score'] = dfu.index # dfu = dfu.reset_index() # df = dfu.melt(value_vars=['MLP', 'RF', 'SVC'], id_vars=['score']) df1 = df[(df['inner score']=='f1') | (df['inner score']=='precision') | (df['inner score']=='recall')] df2 = df[(df['inner score']=='hss') | (df['inner score']=='tss') | (df['inner score']=='roc-auc') | (df['inner score']=='accuracy')] if plot: sns.set(font_scale = 1.5) sns.set_style('whitegrid') sns.set_style('ticks') if splitfigs: g = sns.catplot(x="outer score", y="value", hue='features', col="inner score", ci='sd',row='model', data=df1, kind="bar", capsize=0.15, height=4, aspect=1.5,errwidth=0.8) g.set_xticklabels(rotation=45) filename = 'ML_scores_models_{}_1.png'.format('_'.join(feats)) plt.savefig(savefig_path / filename, bbox_inches='tight') g = sns.catplot(x="outer score", y="value", hue='features', col="inner score", ci='sd',row='model', data=df2, kind="bar", capsize=0.15, height=4, aspect=1.5,errwidth=0.8) g.set_xticklabels(rotation=45) filename = 'ML_scores_models_{}_2.png'.format('_'.join(feats)) plt.savefig(savefig_path / filename, bbox_inches='tight') else: g = sns.catplot(x="outer score", y="value", hue='features', col="inner score", ci='sd',row='model', data=df, kind="bar", capsize=0.15, height=4, aspect=1.5,errwidth=0.8) g.set_xticklabels(rotation=45) filename = 'ML_scores_models_{}.png'.format('_'.join(feats)) plt.savefig(savefig_path / filename, bbox_inches='tight') return df def calculate_metrics_from_ML_dss(dss): from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import auc from sklearn.metrics import precision_recall_curve import xarray as xr import numpy as np import pandas as pd mean_fpr = np.linspace(0, 1, 100) # fpr = dss['y_true'].copy(deep=False).values # tpr = dss['y_true'].copy(deep=False).values # y_true = dss['y_true'].values # y_prob = dss['y_prob'].values ok = [x for x in dss['outer_kfold'].values] ik = [x for x in dss['inner_kfold'].values] m = [x for x in dss['model'].values] sc = [x for x in dss['scoring'].values] f = [x for x in dss['features'].values] # r = [x for x in dss['neg_pos_ratio'].values] ind = pd.MultiIndex.from_product( [ok, ik, m, sc, f], names=[ 'outer_kfold', 'inner_kfold', 'model', 'scoring', 'features']) # , 'station']) okn = [x for x in range(dss['outer_kfold'].size)] ikn = [x for x in range(dss['inner_kfold'].size)] mn = [x for x in range(dss['model'].size)] scn = [x for x in range(dss['scoring'].size)] fn = [x for x in range(dss['features'].size)] ds_list = [] for i in okn: for j in ikn: for k in mn: for n in scn: for m in fn: ds = xr.Dataset() y_true = dss['y_true'].isel( outer_kfold=i, inner_kfold=j, model=k, scoring=n, features=m).reset_coords(drop=True).squeeze() y_prob = dss['y_prob'].isel( outer_kfold=i, inner_kfold=j, model=k, scoring=n, features=m).reset_coords(drop=True).squeeze() y_true = y_true.dropna('sample') y_prob = y_prob.dropna('sample') if y_prob.size == 0: # in case of NaNs in the results: fpr_da = xr.DataArray( np.nan*np.ones((1)), dims=['sample']) fpr_da['sample'] = [ x for x in range(fpr_da.size)] tpr_da = xr.DataArray( np.nan*np.ones((1)), dims=['sample']) tpr_da['sample'] = [ x for x in range(tpr_da.size)] prn_da = xr.DataArray( np.nan*np.ones((1)), dims=['sample']) prn_da['sample'] = [ x for x in range(prn_da.size)] rcll_da = xr.DataArray( np.nan*np.ones((1)), dims=['sample']) rcll_da['sample'] = [ x for x in range(rcll_da.size)] tpr_fpr = xr.DataArray( np.nan*np.ones((100)), dims=['FPR']) tpr_fpr['FPR'] = mean_fpr prn_rcll = xr.DataArray( np.nan*np.ones((100)), dims=['RCLL']) prn_rcll['RCLL'] = mean_fpr pr_auc_da = xr.DataArray(np.nan) roc_auc_da = xr.DataArray(np.nan) no_skill_da = xr.DataArray(np.nan) else: no_skill = len( y_true[y_true == 1]) / len(y_true) no_skill_da = xr.DataArray(no_skill) fpr, tpr, _ = roc_curve(y_true, y_prob) interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 roc_auc = roc_auc_score(y_true, y_prob) prn, rcll, _ = precision_recall_curve( y_true, y_prob) interp_prn = np.interp( mean_fpr, rcll[::-1], prn[::-1]) interp_prn[0] = 1.0 pr_auc_score = auc(rcll, prn) roc_auc_da = xr.DataArray(roc_auc) pr_auc_da = xr.DataArray(pr_auc_score) prn_da = xr.DataArray(prn, dims=['sample']) prn_da['sample'] = [x for x in range(len(prn))] rcll_da = xr.DataArray(rcll, dims=['sample']) rcll_da['sample'] = [ x for x in range(len(rcll))] fpr_da = xr.DataArray(fpr, dims=['sample']) fpr_da['sample'] = [x for x in range(len(fpr))] tpr_da = xr.DataArray(tpr, dims=['sample']) tpr_da['sample'] = [x for x in range(len(tpr))] tpr_fpr = xr.DataArray( interp_tpr, dims=['FPR']) tpr_fpr['FPR'] = mean_fpr prn_rcll = xr.DataArray( interp_prn, dims=['RCLL']) prn_rcll['RCLL'] = mean_fpr ds['fpr'] = fpr_da ds['tpr'] = tpr_da ds['roc-auc'] = roc_auc_da ds['pr-auc'] = pr_auc_da ds['prn'] = prn_da ds['rcll'] = rcll_da ds['TPR'] = tpr_fpr ds['PRN'] = prn_rcll ds['no_skill'] = no_skill_da ds_list.append(ds) ds = xr.concat(ds_list, 'dim_0') ds['dim_0'] = ind ds = ds.unstack() ds.attrs = dss.attrs ds['fpr'].attrs['long_name'] = 'False positive rate' ds['tpr'].attrs['long_name'] = 'True positive rate' ds['prn'].attrs['long_name'] = 'Precision' ds['rcll'].attrs['long_name'] = 'Recall' ds['roc-auc'].attrs['long_name'] = 'ROC or FPR-TPR Area under curve' ds['pr-auc'].attrs['long_name'] = 'Precition-Recall Area under curve' ds['PRN'].attrs['long_name'] = 'Precision-Recall' ds['TPR'].attrs['long_name'] = 'TPR-FPR (ROC)' dss = xr.merge([dss, ds], combine_attrs='no_conflicts') return dss # # def load_ML_models(path=hydro_ml_path, station='drag', prefix='CVM', suffix='.pkl'): # from aux_gps import path_glob # import joblib # import matplotlib.pyplot as plt # import seaborn as sns # import xarray as xr # import pandas as pd # model_files = path_glob(path, '{}_*{}'.format(prefix, suffix)) # model_files = sorted(model_files) # model_files = [x for x in model_files if station in x.as_posix()] # m_list = [joblib.load(x) for x in model_files] # model_files = [x.as_posix().split('/')[-1].split('.')[0] for x in model_files] # # fix roc-auc: # model_files = [x.replace('roc_auc', 'roc-auc') for x in model_files] # print('loading {} station only.'.format(station)) # model_names = [x.split('_')[3] for x in model_files] ## model_pw_stations = [x.split('_')[1] for x in model_files] ## model_hydro_stations = [x.split('_')[2] for x in model_files] # model_nsplits = [x.split('_')[6] for x in model_files] # model_scores = [x.split('_')[5] for x in model_files] # model_features = [x.split('_')[4] for x in model_files] # model_test_sizes = [] # for file in model_files: # try: # model_test_sizes.append(int(file.split('_')[7])) # except IndexError: # model_test_sizes.append(20) ## model_pwv_hs_id = list(zip(model_pw_stations, model_hydro_stations)) ## model_pwv_hs_id = ['_'.join(x) for filename = 'CVR_{}_{}_{}_{}_{}.nc'.format( # name, features, refitted_scorer, ikfolds, okfolds) # x in model_pwv_hs_id] # # transform model_dict to dataarray: # tups = [tuple(x) for x in zip(model_names, model_scores, model_nsplits, model_features, model_test_sizes)] #, model_pwv_hs_id)] # ind = pd.MultiIndex.from_tuples((tups), names=['model', 'scoring', 'splits', 'feature', 'test_size']) #, 'station']) # da = xr.DataArray(m_list, dims='dim_0') # da['dim_0'] = ind # da = da.unstack('dim_0') # da['splits'] = da['splits'].astype(int) # da['test_size'].attrs['units'] = '%' # return da def plot_heatmaps_for_all_models_and_scorings(dss, var='roc-auc'): # , save=True): import xarray as xr import seaborn as sns import matplotlib.pyplot as plt # assert station == dss.attrs['pwv_id'] cmaps = {'roc-auc': sns.color_palette("Blues", as_cmap=True), 'pr-auc': sns.color_palette("Greens", as_cmap=True)} fg = xr.plot.FacetGrid( dss, col='model', row='scoring', sharex=True, sharey=True, figsize=(10, 20)) dss = dss.mean('inner_kfold', keep_attrs=True) vmin, vmax = dss[var].min(), 1 norm = plt.Normalize(vmin=vmin, vmax=vmax) for i in range(fg.axes.shape[0]): # i is rows for j in range(fg.axes.shape[1]): # j is cols ax = fg.axes[i, j] modelname = dss['model'].isel(model=j).item() scoring = dss['scoring'].isel(scoring=i).item() model = dss[var].isel( {'model': j, 'scoring': i}).reset_coords(drop=True) df = model.to_dataframe() title = '{} model ({})'.format(modelname, scoring) df = df.unstack() mean = df.mean() mean.name = 'mean' df = df.append(mean).T.droplevel(0) ax = sns.heatmap(df, annot=True, cmap=cmaps[var], cbar=False, ax=ax, norm=norm) ax.set_title(title) ax.vlines([4], 0, 10, color='r', linewidth=2) if j > 0: ax.set_ylabel('') if i < 2: ax.set_xlabel('') cax = fg.fig.add_axes([0.1, 0.025, .8, .015]) fg.fig.colorbar(ax.get_children()[0], cax=cax, orientation="horizontal") fg.fig.suptitle('{}'.format( dss.attrs[var].upper()), fontweight='bold') fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.937, bottom=0.099, left=0.169, right=0.993, hspace=0.173, wspace=0.051) # if save: # filename = 'hydro_models_heatmaps_on_{}_{}_{}.png'.format( # station, dss['outer_kfold'].size, var) # plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_ROC_from_dss(dss, feats=None, fontsize=16, save=True, wv_label='pwv', best=False): import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from aux_gps import convert_da_to_long_form_df sns.set_style('whitegrid') sns.set_style('ticks') sns.set(font_scale=1.0) cmap = sns.color_palette('tab10', n_colors=3) splits = dss['outer_split'].size if 'neg_sample' in dss.dims: neg = dss['neg_sample'].size else: neg = 1 dss = dss.reindex(scorer=scorer_order) if feats is None: feats = ['pwv', 'pwv+pressure', 'pwv+pressure+doy'] if 'model' not in dss.dims: dss = dss.expand_dims('model') dss['model'] = [dss.attrs['model']] dss = dss.sortby('model', ascending=False) dst = dss.sel(features=feats) # .reset_coords(drop=True) # df = dst['TPR'].to_dataframe() # if 'neg_sample' in dss.dims: # fpr_lnum = 5 # model_lnum = 0 # scorer_lnum = 4 # features_lnum = 1 # else: # fpr_lnum = 4 # model_lnum = 0 # scorer_lnum = 3 # features_lnum = 1 # df['FPR'] = df.index.get_level_values(fpr_lnum) # df['model'] = df.index.get_level_values(model_lnum) # df['scorer'] = df.index.get_level_values(scorer_lnum) # df['features'] = df.index.get_level_values(features_lnum) df = convert_da_to_long_form_df(dst['TPR'], var_name='score') # df = df.melt(value_vars='TPR', id_vars=[ # 'features', 'model', 'scorer', 'FPR'], var_name='score') if best is not None: if best == 'compare_negs': df1 = df.copy()[df['neg_sample'] == 1] df2 = df.copy() df2.drop('neg_sample', axis=1, inplace=True) df1.drop('neg_sample', axis=1, inplace=True) df1['neg_group'] = 1 df2['neg_group'] = 25 df = pd.concat([df1, df2]) col = 'neg_group' titles = ['Neg=1', 'Neg=25'] else: col=None else: col = 'scorer' df['model'] = df['model'].str.replace('SVC', 'SVM') fg = sns.FacetGrid(df, col=col, row='model', aspect=1) fg.map_dataframe(sns.lineplot, x='FPR', y='value', hue='features', ci='sd', palette=cmap, n_boot=None, estimator='mean') for i in range(fg.axes.shape[0]): # i is rows model = dss['model'].isel(model=i).item() auc_model = dst.sel(model=model) if model == 'SVC': model = 'SVM' for j in range(fg.axes.shape[1]): # j is cols scorer = dss['scorer'].isel(scorer=j).item() auc_scorer_df = auc_model['roc_auc_score'].sel(scorer=scorer).reset_coords(drop=True).to_dataframe() auc_scorer_mean = [auc_scorer_df.loc[x].mean() for x in feats] auc_scorer_std = [auc_scorer_df.loc[x].std() for x in feats] auc_mean = [x.item() for x in auc_scorer_mean] auc_std = [x.item() for x in auc_scorer_std] if j == 0 and best is not None: scorer = dss['scorer'].isel(scorer=j).item() auc_scorer_df = auc_model['roc_auc_score'].sel(scorer=scorer).isel(neg_sample=0).reset_coords(drop=True).to_dataframe() auc_scorer_mean = [auc_scorer_df.loc[x].mean() for x in feats] auc_scorer_std = [auc_scorer_df.loc[x].std() for x in feats] auc_mean = [x.item() for x in auc_scorer_mean] auc_std = [x.item() for x in auc_scorer_std] ax = fg.axes[i, j] ax.plot([0, 1], [0, 1], color='tab:red', linestyle='--', lw=2, label='chance') if best is not None: if best == 'compare_negs': title = '{} | {}'.format(model, titles[j]) else: title = '{}'.format(model) else: title = '{} | scorer={}'.format(model, scorer) ax.set_title(title, fontsize=fontsize) handles, labels = ax.get_legend_handles_labels() hands = handles[0:3] # labes = labels[0:3] new_labes = [] for auc, auc_sd in zip(auc_mean, auc_std): l = r'{:.2}$\pm${:.1}'.format(auc, auc_sd) new_labes.append(l) ax.legend(handles=hands, labels=new_labes, loc='lower right', title='AUCs', prop={'size': fontsize-4}) ax.set_xticks([0, 0.2, 0.4, 0.6, 0.8, 1]) ax.grid(True) # return handles, labels fg.set_ylabels('True Positive Rate', fontsize=fontsize) fg.set_xlabels('False Positive Rate', fontsize=fontsize) if wv_label is not None: labels = [x.replace('pwv', wv_label) for x in labels] if best is not None: if best == 'compare_negs': fg.fig.legend(handles=handles, labels=labels, prop={'size': fontsize}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=2, fontsize=fontsize, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.865, bottom=0.079, left=0.144, right=0.933, hspace=0.176, wspace=0.2) else: fg.fig.legend(handles=handles, labels=labels, prop={'size': fontsize}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=1, fontsize=fontsize, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.825, bottom=0.079, left=0.184, right=0.933, hspace=0.176, wspace=0.2) else: fg.fig.legend(handles=handles, labels=labels, prop={'size': fontsize}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=5, fontsize=fontsize, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) # true_scores = dst.sel(scorer=scorer, model=model)['true_score'] # dss['permutation_score'].plot.hist(ax=ax, bins=25, color=color) # ymax = ax.get_ylim()[-1] - 0.2 # ax.vlines(x=true_scores.values, ymin=0, ymax=ymax, linestyle='--', color=cmap) fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.915) if save: if best is not None: filename = 'ROC_plots_models_nested_CV_best_hp_{}_{}_neg_{}.png'.format('_'.join(feats), splits, neg) else: filename = 'ROC_plots_models_nested_CV_{}_{}_neg_{}.png'.format('_'.join(feats), splits, neg) plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_permutation_importances_from_dss(dss, feat_dim='features', outer_dim='outer_split', features='pwv+pressure+doy', fix_xticklabels=True,split=1, axes=None, save=True): import matplotlib.pyplot as plt import numpy as np import seaborn as sns from natsort import natsorted sns.set_palette('Dark2', 6) sns.set_style('whitegrid') sns.set_style('ticks') model = dss.attrs['model'] # use dss.sel(model='RF') first as input dss['feature'] = dss['feature'].str.replace('DOY', 'doy') dss = dss.sel({feat_dim: features}) # tests_ds = dss['test_score'] # tests_ds = tests_ds.sel(scorer=scorer) # max_score_split = int(tests_ds.idxmax(outer_dim).item()) # use mean outer split: # dss = dss.mean(outer_dim) dss = dss.sel({outer_dim: split}) feats = features.split('+') fn = len(feats) if fn == 1: gr_spec = None fix_xticklabels = False elif fn == 2: gr_spec = [1, 1] elif fn == 3: gr_spec = [2, 5, 5] if axes is None: fig, axes = plt.subplots(1, fn, sharey=True, figsize=(17, 5), gridspec_kw={'width_ratios': gr_spec}) try: axes.flatten() except AttributeError: axes = [axes] for i, f in enumerate(sorted(feats)): fe = [x for x in dss['feature'].values if f in x] dsf = dss['PI_mean'].sel( feature=fe).reset_coords( drop=True) sorted_feat = natsorted([x for x in dsf.feature.values]) dsf = dsf.reindex(feature=sorted_feat) print([x for x in dsf.feature.values]) # dsf = dss['PI_mean'].sel( # feature=fe).reset_coords( # drop=True) dsf = dsf.to_dataset('scorer').to_dataframe( ).reset_index(drop=True) title = '{}'.format(f.upper()) dsf.plot.bar(ax=axes[i], title=title, rot=0, legend=False, zorder=20, width=.8) dsf_sum = dsf.sum().tolist() handles, labels = axes[i].get_legend_handles_labels() labels = [ '{} ({:.1f})'.format( x, y) for x, y in zip( labels, dsf_sum)] axes[i].legend(handles=handles, labels=labels, prop={'size': 10}, loc='upper left') axes[i].set_ylabel('Scores') axes[i].grid(axis='y', zorder=1) if fix_xticklabels: n = sum(['pwv' in x for x in dss.feature.values]) axes[0].xaxis.set_ticklabels('') hrs = np.arange(-24, -24+n) axes[1].set_xticklabels(hrs, rotation=30, ha="center", fontsize=12) axes[2].set_xticklabels(hrs, rotation=30, ha="center", fontsize=12) axes[1].set_xlabel('Hours prior to flood') axes[2].set_xlabel('Hours prior to flood') fig.tight_layout() fig.suptitle('permutation importance scores for {} model split #{}'.format(model, split)) fig.subplots_adjust(top=0.904) if save: filename = 'permutation_importances_{}_split_{}_all_scorers_{}.png'.format(model, split, features) plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_feature_importances_from_dss( dss, feat_dim='features', outer_dim='outer_split', features='pwv+pressure+doy', fix_xticklabels=True, axes=None, save=True, ylim=[0, 12], fontsize=16): import matplotlib.pyplot as plt import numpy as np import seaborn as sns from natsort import natsorted sns.set_palette('Dark2', 6) # sns.set_style('whitegrid') # sns.set_style('ticks') sns.set_theme(style='ticks', font_scale=1.5) # use dss.sel(model='RF') first as input dss['feature'] = dss['feature'].str.replace('DOY', 'doy') dss = dss.sel({feat_dim: features}) # tests_ds = dss['test_score'] # tests_ds = tests_ds.sel(scorer=scorer) # max_score_split = int(tests_ds.idxmax(outer_dim).item()) # use mean outer split: dss = dss.mean(outer_dim) feats = features.split('+') fn = len(feats) if fn == 1: gr_spec = None fix_xticklabels = False elif fn == 2: gr_spec = [1, 1] elif fn == 3: gr_spec = [5, 5, 2] if axes is None: fig, axes = plt.subplots(1, fn, sharey=True, figsize=(17, 5), gridspec_kw={'width_ratios': gr_spec}) try: axes.flatten() except AttributeError: axes = [axes] for i, f in enumerate(feats): fe = [x for x in dss['feature'].values if f in x] dsf = dss['feature_importances'].sel( feature=fe).reset_coords( drop=True) # dsf = dss['PI_mean'].sel( # feature=fe).reset_coords( # drop=True) sorted_feat = natsorted([x for x in dsf.feature.values]) # sorted_feat = [x for x in dsf.feature.values] print(sorted_feat) dsf = dsf.reindex(feature=sorted_feat) dsf = dsf.to_dataset('scorer').to_dataframe( ).reset_index(drop=True) * 100 title = '{}'.format(f.upper()) dsf.plot.bar(ax=axes[i], title=title, rot=0, legend=False, zorder=20, width=.8) axes[i].set_title(title, fontsize=fontsize) dsf_sum = dsf.sum().tolist() handles, labels = axes[i].get_legend_handles_labels() labels = [ '{} ({:.1f} %)'.format( x, y) for x, y in zip( labels, dsf_sum)] axes[i].legend(handles=handles, labels=labels, prop={'size': 12}, loc='upper center') axes[i].set_ylabel('Feature importances [%]') axes[i].grid(axis='y', zorder=1) if ylim is not None: [ax.set_ylim(*ylim) for ax in axes] if fix_xticklabels: n = sum(['pwv' in x for x in dss.feature.values]) axes[2].xaxis.set_ticklabels('') hrs = np.arange(-1, -25, -1) axes[0].set_xticklabels(hrs, rotation=30, ha="center", fontsize=14) axes[1].set_xticklabels(hrs, rotation=30, ha="center", fontsize=14) axes[2].tick_params(labelsize=fontsize) axes[0].set_xlabel('Hours prior to flood') axes[1].set_xlabel('Hours prior to flood') fig.tight_layout() if save: filename = 'RF_feature_importances_all_scorers_{}.png'.format(features) plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_feature_importances( dss, feat_dim='features', features='pwv+pressure+doy', scoring='f1', fix_xticklabels=True, axes=None, save=True): # use dss.sel(model='RF') first as input import matplotlib.pyplot as plt import numpy as np dss = dss.sel({feat_dim: features}) tests_ds = dss[[x for x in dss if 'test' in x]] tests_ds = tests_ds.sel(scoring=scoring) score_ds = tests_ds['test_{}'.format(scoring)] max_score = score_ds.idxmax('outer_kfold').values feats = features.split('+') fn = len(feats) if axes is None: fig, axes = plt.subplots(1, fn, sharey=True, figsize=(17, 5), gridspec_kw={'width_ratios': [1, 4, 4]}) try: axes.flatten() except AttributeError: axes = [axes] for i, f in enumerate(feats): fe = [x for x in dss['feature'].values if f in x] dsf = dss['feature_importances'].sel( feature=fe, outer_kfold=max_score).reset_coords( drop=True) dsf = dsf.to_dataset('scoring').to_dataframe( ).reset_index(drop=True) * 100 title = '{} ({})'.format(f.upper(), scoring) dsf.plot.bar(ax=axes[i], title=title, rot=0, legend=False, zorder=20, width=.8) dsf_sum = dsf.sum().tolist() handles, labels = axes[i].get_legend_handles_labels() labels = [ '{} ({:.1f} %)'.format( x, y) for x, y in zip( labels, dsf_sum)] axes[i].legend(handles=handles, labels=labels, prop={'size': 8}) axes[i].set_ylabel('Feature importance [%]') axes[i].grid(axis='y', zorder=1) if fix_xticklabels: axes[0].xaxis.set_ticklabels('') hrs = np.arange(-24,0) axes[1].set_xticklabels(hrs, rotation = 30, ha="center", fontsize=12) axes[2].set_xticklabels(hrs, rotation = 30, ha="center", fontsize=12) axes[1].set_xlabel('Hours prior to flood') axes[2].set_xlabel('Hours prior to flood') if save: fig.tight_layout() filename = 'RF_feature_importances_{}.png'.format(scoring) plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_feature_importances_for_all_scorings(dss, features='doy+pwv+pressure', model='RF', splitfigs=True): import matplotlib.pyplot as plt # station = dss.attrs['pwv_id'].upper() dss = dss.sel(model=model).reset_coords(drop=True) fns = len(features.split('+')) scores = dss['scoring'].values scores1 = ['f1', 'precision', 'recall'] scores2 = ['hss', 'tss', 'accuracy','roc-auc'] if splitfigs: fig, axes = plt.subplots(len(scores1), fns, sharey=True, figsize=(15, 20)) for i, score in enumerate(scores1): plot_feature_importances( dss, features=features, scoring=score, axes=axes[i, :]) fig.suptitle( 'feature importances of {} model'.format(model)) fig.tight_layout() fig.subplots_adjust(top=0.935, bottom=0.034, left=0.039, right=0.989, hspace=0.19, wspace=0.027) filename = 'RF_feature_importances_1.png' plt.savefig(savefig_path / filename, bbox_inches='tight') fig, axes = plt.subplots(len(scores2), fns, sharey=True, figsize=(15, 20)) for i, score in enumerate(scores2): plot_feature_importances( dss, features=features, scoring=score, axes=axes[i, :]) fig.suptitle( 'feature importances of {} model'.format(model)) fig.tight_layout() fig.subplots_adjust(top=0.935, bottom=0.034, left=0.039, right=0.989, hspace=0.19, wspace=0.027) filename = 'RF_feature_importances_2.png' plt.savefig(savefig_path / filename, bbox_inches='tight') else: fig, axes = plt.subplots(len(scores), fns, sharey=True, figsize=(15, 20)) for i, score in enumerate(scores): plot_feature_importances( dss, features=features, scoring=score, axes=axes[i, :]) fig.suptitle( 'feature importances of {} model'.format(model)) fig.tight_layout() fig.subplots_adjust(top=0.935, bottom=0.034, left=0.039, right=0.989, hspace=0.19, wspace=0.027) filename = 'RF_feature_importances.png' plt.savefig(savefig_path / filename, bbox_inches='tight') return dss def plot_ROC_curve_from_dss_nested_CV(dss, outer_dim='outer_split', plot_chance=True, color='tab:blue', fontsize=14, plot_legend=True, title=None, ax=None, main_label=None): import matplotlib.pyplot as plt import numpy as np if ax is None: fig, ax = plt.subplots() if title is None: title = "Receiver operating characteristic" mean_fpr = dss['FPR'].values mean_tpr = dss['TPR'].mean(outer_dim).values mean_auc = dss['roc_auc_score'].mean().item() if np.isnan(mean_auc): return ValueError std_auc = dss['roc_auc_score'].std().item() field = 'TPR' xlabel = 'False Positive Rate' ylabel = 'True Positive Rate' if main_label is None: main_label = r'Mean ROC (AUC={:.2f}$\pm${:.2f})'.format(mean_auc, std_auc) textstr = '\n'.join(['{}'.format( main_label), r'(AUC={:.2f}$\pm${:.2f})'.format(mean_auc, std_auc)]) main_label = textstr ax.plot(mean_fpr, mean_tpr, color=color, lw=3, alpha=.8, label=main_label) std_tpr = dss[field].std(outer_dim).values n = dss[outer_dim].size tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) # plot Chance line: if plot_chance: ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8, zorder=206) stdlabel = r'$\pm$ 1 Std. dev.' stdstr = '\n'.join(['{}'.format(stdlabel), r'({} outer splits)'.format(n)]) ax.fill_between( mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=stdstr) ax.grid() ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05]) # ax.set_title(title, fontsize=fontsize) ax.tick_params(axis='y', labelsize=fontsize) ax.tick_params(axis='x', labelsize=fontsize) ax.set_xlabel(xlabel, fontsize=fontsize) ax.set_ylabel(ylabel, fontsize=fontsize) ax.set_title(title, fontsize=fontsize) return ax def plot_ROC_PR_curve_from_dss( dss, outer_dim='outer_kfold', inner_dim='inner_kfold', plot_chance=True, ax=None, color='b', title=None, std_on='inner', main_label=None, fontsize=14, plot_type='ROC', plot_std_legend=True): """plot classifier metrics, plot_type=ROC or PR""" import matplotlib.pyplot as plt import numpy as np if ax is None: fig, ax = plt.subplots() if title is None: title = "Receiver operating characteristic" if plot_type == 'ROC': mean_fpr = dss['FPR'].values mean_tpr = dss['TPR'].mean(outer_dim).mean(inner_dim).values mean_auc = dss['roc-auc'].mean().item() if np.isnan(mean_auc): return ValueError std_auc = dss['roc-auc'].std().item() field = 'TPR' xlabel = 'False Positive Rate' ylabel = 'True Positive Rate' elif plot_type == 'PR': mean_fpr = dss['RCLL'].values mean_tpr = dss['PRN'].mean(outer_dim).mean(inner_dim).values mean_auc = dss['pr-auc'].mean().item() if np.isnan(mean_auc): return ValueError std_auc = dss['pr-auc'].std().item() no_skill = dss['no_skill'].mean(outer_dim).mean(inner_dim).item() field = 'PRN' xlabel = 'Recall' ylabel = 'Precision' # plot mean ROC: if main_label is None: main_label = r'Mean {} (AUC={:.2f}$\pm${:.2f})'.format( plot_type, mean_auc, std_auc) else: textstr = '\n'.join(['Mean ROC {}'.format( main_label), r'(AUC={:.2f}$\pm${:.2f})'.format(mean_auc, std_auc)]) main_label = textstr ax.plot(mean_fpr, mean_tpr, color=color, lw=2, alpha=.8, label=main_label) if std_on == 'inner': std_tpr = dss[field].mean(outer_dim).std(inner_dim).values n = dss[inner_dim].size elif std_on == 'outer': std_tpr = dss[field].mean(inner_dim).std(outer_dim).values n = dss[outer_dim].size elif std_on == 'all': std_tpr = dss[field].stack( dumm=[inner_dim, outer_dim]).std('dumm').values n = dss[outer_dim].size * dss[inner_dim].size tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) # plot Chance line: if plot_chance: if plot_type == 'ROC': ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) elif plot_type == 'PR': ax.plot([0, 1], [no_skill, no_skill], linestyle='--', color='r', lw=2, label='No Skill', alpha=.8) # plot ROC STD range: ax.fill_between( mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev. ({} {} splits)'.format(n, std_on)) ax.grid() ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05]) ax.set_title(title, fontsize=fontsize) ax.tick_params(axis='y', labelsize=fontsize) ax.tick_params(axis='x', labelsize=fontsize) ax.set_xlabel(xlabel, fontsize=fontsize) ax.set_ylabel(ylabel, fontsize=fontsize) # handles, labels = ax.get_legend_handles_labels() # if not plot_std_legend: # if len(handles) == 7: # handles = handles[:-2] # labels = labels[:-2] # else: # handles = handles[:-1] # labels = labels[:-1] # ax.legend(handles=handles, labels=labels, loc="lower right", # fontsize=fontsize) return ax def load_cv_splits_from_pkl(savepath): import joblib from aux_gps import path_glob file = path_glob(savepath, 'CV_inds_*.pkl')[0] n_splits = int(file.as_posix().split('/')[-1].split('_')[2]) shuffle = file.as_posix().split('/')[-1].split('.')[0].split('=')[-1] cv_dict = joblib.load(file) spl = len([x for x in cv_dict.keys()]) assert spl == n_splits print('loaded {} with {} splits.'.format(file, n_splits)) return cv_dict def save_cv_splits_to_dict(X, y, cv, train_key='train', test_key='test', savepath=None): import joblib cv_dict = {} for i, (train, test) in enumerate(cv.split(X, y)): cv_dict[i+1] = {train_key: train, test_key: test} # check for completness: all_train = [x['train'] for x in cv_dict.values()] flat_train = set([item for sublist in all_train for item in sublist]) all_test = [x['test'] for x in cv_dict.values()] flat_test = set([item for sublist in all_test for item in sublist]) assert flat_test == flat_train if savepath is not None: filename = 'CV_inds_{}_splits_shuffle={}.pkl'.format(cv.n_splits, cv.shuffle) joblib.dump(cv_dict, savepath / filename) print('saved {} to {}.'.format(filename, savepath)) return cv_dict def plot_many_ROC_curves(model, X, y, name='', color='b', ax=None, plot_chance=True, title=None, n_splits=None): from sklearn.metrics import plot_roc_curve import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score from sklearn.metrics import roc_curve from sklearn.metrics import auc import numpy as np from sklearn.model_selection import StratifiedKFold if ax is None: fig, ax = plt.subplots() if title is None: title = "Receiver operating characteristic" # just plot the ROC curve for X, y, no nsplits and stats: if n_splits is None: viz = plot_roc_curve(model, X, y, color=color, ax=ax, name=name) else: cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) for i, (train, val) in enumerate(cv.split(X, y)): model.fit(X[train], y[train]) # y_score = model.fit(X[train], y[train]).predict_proba(X[val])[:, 1] y_pred = model.predict(X[val]) fpr, tpr, _ = roc_curve(y[val], y_pred) # viz = plot_roc_curve(model, X[val], y[val], # name='ROC fold {}'.format(i), # alpha=0.3, lw=1, ax=ax) # fpr = viz.fpr # tpr = viz.tpr interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(roc_auc_score(y[val], y_pred)) # scores.append(f1_score(y[val], y_pred)) # scores = np.array(scores) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color=color, label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % ( mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') if plot_chance: ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], title=title) ax.legend(loc="lower right") return ax def HP_tuning(X, y, model_name='SVC', val_size=0.18, n_splits=None, test_size=None, best_score='f1', seed=42, savepath=None): from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedKFold """ do HP tuning with ML_Classfier_Switcher object and return a DataSet of results. note that the X, y are already after split to val/test""" # first get the features from X: features = list(set(['_'.join(x.split('_')[0:2]) for x in X['feature'].values])) ml = ML_Classifier_Switcher() sk_model = ml.pick_model(model_name) param_grid = ml.param_grid if n_splits is None and val_size is not None: n_splits = int((1 // val_size) - 1) elif val_size is not None and n_splits is not None: raise('Both val_size and n_splits are defined, choose either...') print('StratifiedKfolds of {}.'.format(n_splits)) cv = StratifiedKFold(n_splits=n_splits, shuffle=True) gr = GridSearchCV(estimator=sk_model, param_grid=param_grid, cv=cv, n_jobs=-1, scoring=['f1', 'roc_auc', 'accuracy'], verbose=1, refit=best_score, return_train_score=True) gr.fit(X, y) if best_score is not None: ds, best_model = process_gridsearch_results(gr, model_name, features=features, pwv_id=X.attrs['pwv_id'], hs_id=y.attrs['hydro_station_id'], test_size=test_size) else: ds = process_gridsearch_results(gr, model_name, features=features, pwv_id=X.attrs['pwv_id'], hs_id=y.attrs['hydro_station_id'], test_size=test_size) best_model = None if savepath is not None: save_cv_results(ds, best_model=best_model, savepath=savepath) return ds, best_model def save_gridsearchcv_object(GridSearchCV, savepath, filename): import joblib print('{} was saved to {}'.format(filename, savepath)) joblib.dump(GridSearchCV, savepath / filename) return def run_RF_feature_importance_on_all_features(path=hydro_path, gr_path=hydro_ml_path/'holdout'): import xarray as xr from aux_gps import get_all_possible_combinations_from_list feats = get_all_possible_combinations_from_list( ['pwv', 'pressure', 'doy'], reduce_single_list=True, combine_by_sep='+') feat_list = [] for feat in feats: da = holdout_test(model_name='RF', return_RF_FI=True, features=feat) feat_list.append(da) daa = xr.concat(feat_list, 'features') daa['features'] = feats return daa def load_nested_CV_test_results_from_all_models(path=hydro_ml_path, best=False, neg=1, splits=4, permutation=False): from aux_gps import path_glob import xarray as xr if best: if splits is not None: file_str = 'nested_CV_test_results_*_all_features_with_hyper_params_best_hp_neg_{}_{}a.nc'.format(neg, splits) if permutation: file_str = 'nested_CV_test_results_*_all_features_permutation_tests_best_hp_neg_{}_{}a.nc'.format(neg, splits) else: if splits is not None: file_str = 'nested_CV_test_results_*_all_features_with_hyper_params_neg_{}_{}a.nc'.format(neg, splits) if permutation: file_str = 'nested_CV_test_results_*_all_features_permutation_tests_neg_{}_{}a.nc'.format(neg, splits) files = path_glob(path, file_str) print(files) models = [x.as_posix().split('/')[-1].split('_')[4] for x in files] print('loading CV test results only for {} models'.format(', '.join(models))) dsl = [xr.load_dataset(x) for x in files] if not permutation: dsl = [x[['mean_score', 'std_score', 'test_score', 'roc_auc_score', 'TPR']] for x in dsl] dss = xr.concat(dsl, 'model') dss['model'] = models return dss # def plot_all_permutation_test_results(dss, feats=None): # import xarray as xr # fg = xr.plot.FacetGrid( # dss, # col='scorer', # row='model', # sharex=True, # sharey=True, figsize=(20, 20)) # for i in range(fg.axes.shape[0]): # i is rows # model = dss['model'].isel(model=i).item() # for j in range(fg.axes.shape[1]): # j is cols # ax = fg.axes[i, j] # scorer = dss['scorer'].isel(scorer=j).item() # ax = plot_single_permutation_test_result(dss, feats=feats, # scorer=scorer, # model=model, # ax=ax) # fg.fig.tight_layout() # return fg def plot_permutation_test_results_from_dss(dss, feats=None, fontsize=14, save=True, wv_label='pwv'): # ax=None, scorer='f1', model='MLP'): import matplotlib.pyplot as plt import seaborn as sns from PW_from_gps_figures import get_legend_labels_handles_title_seaborn_histplot from aux_gps import convert_da_to_long_form_df sns.set_style('whitegrid') sns.set_style('ticks') try: splits = dss['outer_split'].size except KeyError: splits = 5 try: assert 'best' in dss.attrs['comment'] best = True except AssertionError: best = False if 'neg_sample' in dss.dims: neg = dss['neg_sample'].size else: neg = 1 if 'model' not in dss.dims: dss = dss.expand_dims('model') dss['model'] = [dss.attrs['model']] dss = dss.reindex(scorer=scorer_order) # dss = dss.mean('outer_split') cmap = sns.color_palette('tab10', n_colors=3) if feats is None: feats = ['pwv', 'pwv+pressure', 'pwv+pressure+doy'] dss = dss.sortby('model', ascending=False) dst = dss.sel(features=feats) # .reset_coords(drop=True) # df = dst[['permutation_score', 'true_score', 'pvalue']].to_dataframe() # df['permutations'] = df.index.get_level_values(2) # df['scorer'] = df.index.get_level_values(3) # df['features'] = df.index.get_level_values(0) # df['model'] = df.index.get_level_values(1) # df['model'] = df['model'].str.replace('SVC', 'SVM') # df = df.melt(value_vars=['permutation_score', 'true_score', 'pvalue'], id_vars=[ # 'features', 'model', 'scorer'], var_name='scores') df = convert_da_to_long_form_df(dst[['permutation_score', 'true_score', 'pvalue']], var_name='scores') df_p = df[df['scores'] == 'permutation_score'] df_pval = df[df['scores'] == 'pvalue'] # if ax is None: # fig, ax = plt.subplots(figsize=(6, 8)) fg = sns.FacetGrid(df_p, col='scorer', row='model', legend_out=True, sharex=False) fg.map_dataframe(sns.histplot, x="value", hue="features", legend=True, palette=cmap, stat='density', kde=True, element='bars', bins=10) # pvals = dst.sel(scorer=scorer, model=model)[ # 'pvalue'].reset_coords(drop=True) # pvals = pvals.values # handles, labels, title = get_legend_labels_handles_title_seaborn_histplot(ax) # new_labels = [] # for pval, label in zip(pvals, labels): # label += ' (p={:.1})'.format(pval) # new_labels.append(label) # ax.legend(handles, new_labels, title=title) df_t = df[df['scores'] == 'true_score'] for i in range(fg.axes.shape[0]): # i is rows model = dss['model'].isel(model=i).item() df_model = df_t[df_t['model'] == model] df_pval_model = df_pval[df_pval['model'] == model] for j in range(fg.axes.shape[1]): # j is cols scorer = dss['scorer'].isel(scorer=j).item() df1 = df_model[df_model['scorer'] == scorer] df2 = df_pval_model[df_pval_model['scorer'] == scorer] ax = fg.axes[i, j] ymax = ax.get_ylim()[-1] - 0.2 plabels = [] for k, feat in enumerate(feats): val = df1[df1['features']==feat]['value'].unique().item() pval = df2[df2['features']==feat]['value'].unique().item() plabels.append('pvalue: {:.2g}'.format(pval)) # print(i, val, feat, scorer, model) ax.axvline(x=val, ymin=0, ymax=ymax, linestyle='--', color=cmap[k], label=feat) handles, labels = ax.get_legend_handles_labels() ax.legend(handles=handles, labels=plabels, prop={'size': fontsize-4}, loc='upper left') if 'hss' in scorer or 'tss' in scorer: ax.set_xlim(-0.35, 1) else: ax.set_xlim(0.15, 1) # ax.set_xticks([0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1]) # handles, labels, title = get_legend_labels_handles_title_seaborn_histplot(ax) if model == 'SVC': model = 'SVM' title = '{} | scorer={}'.format(model, scorer) ax.set_title(title, fontsize=fontsize) # ax.set_xlim(-0.3, 1) fg.set_ylabels('Density', fontsize=fontsize) fg.set_xlabels('Score', fontsize=fontsize) if wv_label is not None: labels = [x.replace('pwv', wv_label) for x in labels] fg.fig.legend(handles=handles, labels=labels, prop={'size': fontsize}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=5, fontsize=fontsize, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) # true_scores = dst.sel(scorer=scorer, model=model)['true_score'] # dss['permutation_score'].plot.hist(ax=ax, bins=25, color=color) # ymax = ax.get_ylim()[-1] - 0.2 # ax.vlines(x=true_scores.values, ymin=0, ymax=ymax, linestyle='--', color=cmap) fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.92) if save: if best: filename = 'permutation_test_models_nested_CV_best_hp_{}_{}_neg_{}.png'.format('_'.join(feats), splits, neg) else: filename = 'permutation_test_models_nested_CV_{}_{}_neg_{}.png'.format('_'.join(feats), splits, neg) plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def run_CV_nested_tests_on_all_features(path=hydro_path, gr_path=hydro_ml_path/'nested4', verbose=False, model_name='SVC', params=None, savepath=None, drop_hours=None, PI=30, Ptest=None, suffix=None, sample_from_negatives=1): """returns the nested CV test results for all scorers, features and models, if model is chosen, i.e., model='MLP', returns just this model results and its hyper-parameters per each outer split""" import xarray as xr from aux_gps import get_all_possible_combinations_from_list from aux_gps import save_ncfile feats = get_all_possible_combinations_from_list( ['pwv', 'pressure', 'doy'], reduce_single_list=True, combine_by_sep='+') feat_list = [] for feat in feats: print('Running CV on feature {}'.format(feat)) ds = CV_test_after_GridSearchCV(path=path, gr_path=gr_path, model_name=model_name, params=params, features=feat, PI=PI, Ptest=Ptest, verbose=verbose, drop_hours=drop_hours, sample_from_negatives=sample_from_negatives) feat_list.append(ds) dsf = xr.concat(feat_list, 'features') dsf['features'] = feats dss = dsf dss.attrs['model'] = model_name if Ptest is not None: filename = 'nested_CV_test_results_{}_all_features_permutation_tests'.format(model_name) else: filename = 'nested_CV_test_results_{}_all_features_with_hyper_params'.format(model_name) if params is not None: dss.attrs['comment'] = 'using best hyper parameters for all features and outer splits' filename += '_best_hp' filename += '_neg_{}'.format(sample_from_negatives) if suffix is not None: filename += '_{}'.format(suffix) filename += '.nc' if savepath is not None: save_ncfile(dss, savepath, filename) return dss def run_holdout_test_on_all_models_and_features(path=hydro_path, gr_path=hydro_ml_path/'holdout'): import xarray as xr from aux_gps import get_all_possible_combinations_from_list feats = get_all_possible_combinations_from_list( ['pwv', 'pressure', 'doy'], reduce_single_list=True, combine_by_sep='+') models = ['MLP', 'SVC', 'RF'] model_list = [] model_list2 = [] for model in models: feat_list = [] feat_list2 = [] for feat in feats: best, roc = holdout_test(path=path, gr_path=gr_path, model_name=model, features=feat) best.index.name = 'scorer' ds = best[['mean_score', 'std_score', 'holdout_test_scores']].to_xarray() roc.index.name = 'FPR' roc_da = roc.to_xarray().to_array('scorer') feat_list.append(ds) feat_list2.append(roc_da) dsf = xr.concat(feat_list, 'features') dsf2 = xr.concat(feat_list2, 'features') dsf['features'] = feats dsf2['features'] = feats model_list.append(dsf) model_list2.append(dsf2) dss = xr.concat(model_list, 'model') rocs = xr.concat(model_list2, 'model') dss['model'] = models rocs['model'] = models dss['roc'] = rocs return dss def prepare_X_y_for_holdout_test(features='pwv+doy', model_name='SVC', path=hydro_path, drop_hours=None, negative_samples=1): # combine X,y and split them according to test ratio and seed: X, y = combine_pos_neg_from_nc_file(path, negative_sample_num=negative_samples) # re arange X features according to model: feats = features.split('+') if model_name == 'RF' and 'doy' in feats: if isinstance(feats, list): feats.remove('doy') feats.append('DOY') elif isinstance(feats, str): feats = 'DOY' elif model_name != 'RF' and 'doy' in feats: if isinstance(feats, list): feats.remove('doy') feats.append('doy_sin') feats.append('doy_cos') elif isinstance(feats, str): feats = ['doy_sin'] feats.append('doy_cos') if isinstance(X, list): Xs = [] for X1 in X: Xs.append(select_features_from_X(X1, feats)) X = Xs else: X = select_features_from_X(X, feats) if drop_hours is not None: if isinstance(X, list): Xs = [] for X1 in X: Xs.append(drop_hours_in_pwv_pressure_features(X1, drop_hours, verbose=True)) X = Xs else: X = drop_hours_in_pwv_pressure_features(X, drop_hours, verbose=True) return X, y def CV_test_after_GridSearchCV(path=hydro_path, gr_path=hydro_ml_path/'nested4', model_name='SVC', features='pwv', params=None, verbose=False, drop_hours=None, PI=None, Ptest=None, sample_from_negatives=1): """do cross_validate with all scorers on all gridsearchcv folds, reads the nested outer splits CV file in gr_path""" import xarray as xr import numpy as np # cv = read_cv_params_and_instantiate(gr_path/'CV_outer.csv') cv_dict = load_cv_splits_from_pkl(gr_path) if verbose: print(cv_dict) param_df_dict = load_one_gridsearchcv_object(path=gr_path, cv_type='nested', features=features, model_name=model_name, verbose=verbose) Xs, ys = prepare_X_y_for_holdout_test(features, model_name, path, drop_hours=drop_hours, negative_samples=sample_from_negatives) bests = [] for i, negative_sample in enumerate(np.arange(1, sample_from_negatives + 1)): print('running with negative sample #{} out of {}'.format( negative_sample, sample_from_negatives)) if isinstance(Xs, list): X = Xs[i] y = ys[i] else: X = Xs y = ys if Ptest is not None: print('Permutation Test is in progress!') ds = run_permutation_classifier_test(X, y, 5, param_df_dict, Ptest=Ptest, params=params, model_name=model_name, verbose=verbose) return ds if params is not None: if verbose: print('running with custom hyper parameters: ', params) outer_bests = [] outer_rocs = [] fis = [] pi_means = [] pi_stds = [] n_splits = len([x for x in cv_dict.keys()]) for split, tt in cv_dict.items(): X_train = X[tt['train']] y_train = y[tt['train']] X_test = X[tt['test']] y_test = y[tt['test']] outer_split = '{}-{}'.format(split, n_splits) # for i, (train_index, test_index) in enumerate(cv.split(X, y)): # X_train = X[train_index] # y_train = y[train_index] # X_test = X[test_index] # y_test = y[test_index] # outer_split = '{}-{}'.format(i+1, cv.n_splits) best_params_df = param_df_dict.get(outer_split) if params is not None: for key, value in params.items(): if isinstance(value, tuple): for ind in best_params_df.index: best_params_df.at[ind, key] = value else: best_params_df[key] = value if model_name == 'RF': if PI is not None: bdf, roc, fi, pi_mean, pi_std = run_test_on_CV_split(X_train, y_train, X_test, y_test, best_params_df, PI=PI, Ptest=Ptest, model_name=model_name, verbose=verbose) else: bdf, roc, fi = run_test_on_CV_split(X_train, y_train, X_test, y_test, best_params_df, PI=PI, Ptest=Ptest, model_name=model_name, verbose=verbose) fis.append(fi) else: if PI is not None: bdf, roc, pi_mean, pi_std = run_test_on_CV_split(X_train, y_train, X_test, y_test, best_params_df, PI=PI, model_name=model_name, verbose=verbose) else: bdf, roc = run_test_on_CV_split(X_train, y_train, X_test, y_test, best_params_df, PI=PI, model_name=model_name, verbose=verbose) if PI is not None: pi_means.append(pi_mean) pi_stds.append(pi_std) bdf.index.name = 'scorer' roc.index.name = 'FPR' if 'hidden_layer_sizes' in bdf.columns: bdf['hidden_layer_sizes'] = bdf['hidden_layer_sizes'].astype(str) bdf_da = bdf.to_xarray() roc_da = roc.to_xarray().to_array('scorer') roc_da.name = 'TPR' outer_bests.append(bdf_da) outer_rocs.append(roc_da) best_da = xr.concat(outer_bests, 'outer_split') roc_da = xr.concat(outer_rocs, 'outer_split') best = xr.merge([best_da, roc_da]) best['outer_split'] = np.arange(1, n_splits + 1) if model_name == 'RF': fi_da = xr.concat(fis, 'outer_split') best['feature_importances'] = fi_da if PI is not None: pi_mean_da = xr.concat(pi_means, 'outer_split') pi_std_da = xr.concat(pi_stds, 'outer_split') best['PI_mean'] = pi_mean_da best['PI_std'] = pi_std_da bests.append(best) if len(bests) == 1: return bests[0] else: best_ds = xr.concat(bests, 'neg_sample') best_ds['neg_sample'] = np.arange(1, sample_from_negatives + 1) return best_ds def run_permutation_classifier_test(X, y, cv, best_params_df, Ptest=100, model_name='SVC', verbose=False, params=None): from sklearn.model_selection import permutation_test_score import xarray as xr import numpy as np def run_one_permutation_test(X=X, y=y, cv=cv, bp_df=best_params_df, model_name=model_name, n_perm=Ptest, verbose=verbose): true_scores = [] pvals = [] perm_scores = [] for scorer in bp_df.index: sk_model = ml.pick_model(model_name) # get best params (drop two last cols since they are not params): b_params = bp_df.T[scorer][:-2].to_dict() if verbose: print('{} scorer, params:{}'.format(scorer, b_params)) true, perm_scrs, pval = permutation_test_score(sk_model, X, y, cv=cv, n_permutations=Ptest, scoring=scorers(scorer), random_state=0, n_jobs=-1) true_scores.append(true) pvals.append(pval) perm_scores.append(perm_scrs) true_da = xr.DataArray(true_scores, dims=['scorer']) true_da['scorer'] = [x for x in bp_df.index.values] true_da.name = 'true_score' pval_da = xr.DataArray(pvals, dims=['scorer']) pval_da['scorer'] = [x for x in bp_df.index.values] pval_da.name = 'pvalue' perm_da = xr.DataArray(perm_scores, dims=['scorer', 'permutations']) perm_da['scorer'] = [x for x in bp_df.index.values] perm_da['permutations'] = np.arange(1, Ptest+1) perm_da.name = 'permutation_score' ds = xr.merge([true_da, pval_da, perm_da]) return ds ml = ML_Classifier_Switcher() if params is not None: best_p_df = best_params_df['1-{}'.format(len(best_params_df))] for key, value in params.items(): if isinstance(value, tuple): for ind in best_p_df.index: best_p_df.at[ind, key] = value else: best_p_df[key] = value dss = run_one_permutation_test(bp_df=best_p_df) else: if verbose: print('Picking {} model with best params'.format(model_name)) splits = [] for i, df in enumerate(best_params_df.values()): if verbose: print('running on split #{}'.format(i+1)) ds = run_one_permutation_test() splits.append(ds) dss = xr.concat(splits, dim='outer_split') dss['outer_split'] = np.arange(1, len(best_params_df)+ 1) return dss def run_test_on_CV_split(X_train, y_train, X_test, y_test, param_df, model_name='SVC', verbose=False, PI=None, Ptest=None): import numpy as np import xarray as xr import pandas as pd from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.inspection import permutation_importance best_df = param_df.copy() ml = ML_Classifier_Switcher() if verbose: print('Picking {} model with best params'.format(model_name)) # print('Features are: {}'.format(features)) test_scores = [] fi_list = [] mean_fpr = np.linspace(0, 1, 100) tprs = [] roc_aucs = [] pi_mean_list = [] pi_std_list = [] for scorer in best_df.index: sk_model = ml.pick_model(model_name) # get best params (drop two last cols since they are not params): params = best_df.T[scorer][:-2].to_dict() if verbose: print('{} scorer, params:{}'.format(scorer, params)) sk_model.set_params(**params) sk_model.fit(X_train, y_train) if hasattr(sk_model, 'feature_importances_'): # print(X_train['feature']) # input('press any key') FI = xr.DataArray(sk_model.feature_importances_, dims=['feature']) FI['feature'] = X_train['feature'] fi_list.append(FI) y_pred = sk_model.predict(X_test) fpr, tpr, _ = roc_curve(y_test, y_pred) interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 roc_auc = roc_auc_score(y_test, y_pred) roc_aucs.append(roc_auc) tprs.append(interp_tpr) score = scorer_function(scorer, y_test, y_pred) test_scores.append(score) if PI is not None: pi = permutation_importance(sk_model, X_test, y_test, n_repeats=PI, scoring=scorers(scorer), random_state=0, n_jobs=-1) pi_mean = xr.DataArray(pi['importances_mean'], dims='feature') pi_std = xr.DataArray(pi['importances_std'], dims='feature') pi_mean.name = 'PI_mean' pi_std.name = 'PI_std' pi_mean['feature'] = X_train['feature'] pi_std['feature'] = X_train['feature'] pi_mean_list.append(pi_mean) pi_std_list.append(pi_std) if PI is not None: pi_mean_da = xr.concat(pi_mean_list, 'scorer') pi_std_da = xr.concat(pi_std_list, 'scorer') pi_mean_da['scorer'] = [x for x in best_df.index.values] pi_std_da['scorer'] = [x for x in best_df.index.values] roc_df = pd.DataFrame(tprs).T roc_df.columns = [x for x in best_df.index] roc_df.index = mean_fpr best_df['test_score'] = test_scores best_df['roc_auc_score'] = roc_aucs if hasattr(sk_model, 'feature_importances_'): fi = xr.concat(fi_list, 'scorer') fi['scorer'] = [x for x in best_df.index.values] if PI is not None: return best_df, roc_df, fi, pi_mean_da, pi_std_da else: return best_df, roc_df, fi elif PI is not None: return best_df, roc_df, pi_mean_da, pi_std_da else: return best_df, roc_df def holdout_test(path=hydro_path, gr_path=hydro_ml_path/'holdout', model_name='SVC', features='pwv', return_RF_FI=False, verbose=False): """do a holdout test with best model from gridsearchcv with all scorers""" from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score import xarray as xr import pandas as pd import numpy as np # process gridsearchcv results: best_df, test_ratio, seed = load_one_gridsearchcv_object(path=gr_path, cv_type='holdout', features=features, model_name=model_name, verbose=False) print('Using random seed of {} and {}% test ratio'.format(seed, test_ratio)) ts = int(test_ratio) / 100 X, y = prepare_X_y_for_holdout_test(features, model_name, path) # split using test_size and seed: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=ts, random_state=int(seed), stratify=y) if verbose: print('y train pos/neg:{}, {}'.format((y_train==1).sum().item(),(y_train==0).sum().item())) print('y test pos/neg:{}, {}'.format((y_test==1).sum().item(),(y_test==0).sum().item())) # pick model and set the params to best from gridsearchcv: ml = ML_Classifier_Switcher() print('Picking {} model with best params'.format(model_name)) print('Features are: {}'.format(features)) test_scores = [] fi_list = [] mean_fpr = np.linspace(0, 1, 100) tprs = [] roc_aucs = [] for scorer in best_df.index: sk_model = ml.pick_model(model_name) # get best params (drop two last cols since they are not params): params = best_df.T[scorer][:-2].to_dict() if verbose: print('{} scorer, params:{}'.format(scorer, params)) sk_model.set_params(**params) sk_model.fit(X_train, y_train) if hasattr(sk_model, 'feature_importances_'): FI = xr.DataArray(sk_model.feature_importances_, dims=['feature']) FI['feature'] = X_train['feature'] fi_list.append(FI) y_pred = sk_model.predict(X_test) fpr, tpr, _ = roc_curve(y_test, y_pred) interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 roc_auc = roc_auc_score(y_test, y_pred) roc_aucs.append(roc_auc) tprs.append(interp_tpr) score = scorer_function(scorer, y_test, y_pred) test_scores.append(score) roc_df = pd.DataFrame(tprs).T roc_df.columns = [x for x in best_df.index] roc_df.index = mean_fpr best_df['holdout_test_scores'] = test_scores best_df['roc_auc_score'] = roc_aucs if fi_list and return_RF_FI: da = xr.concat(fi_list, 'scorer') da['scorer'] = best_df.index.values da.name = 'RF_feature_importances' return da return best_df, roc_df def load_one_gridsearchcv_object(path=hydro_ml_path, cv_type='holdout', features='pwv', model_name='SVC', verbose=True): """load one gridsearchcv obj with model_name and features and run read_one_gridsearchcv_object""" from aux_gps import path_glob import joblib # first filter for model name: if verbose: print('loading GridsearchCVs results for {} model with {} cv type'.format(model_name, cv_type)) model_files = path_glob(path, 'GRSRCHCV_{}_*.pkl'.format(cv_type)) model_files = [x for x in model_files if model_name in x.as_posix()] # now select features: if verbose: print('loading GridsearchCVs results with {} features'.format(features)) model_features = [x.as_posix().split('/')[-1].split('_')[3] for x in model_files] feat_ind = get_feature_set_from_list(model_features, features) # also get the test ratio and seed number: if len(feat_ind) > 1: if verbose: print('found {} GR objects.'.format(len(feat_ind))) files = sorted([model_files[x] for x in feat_ind]) outer_splits = [x.as_posix().split('/')[-1].split('.')[0].split('_')[-3] for x in files] grs = [joblib.load(x) for x in files] best_dfs = [read_one_gridsearchcv_object(x) for x in grs] di = dict(zip(outer_splits, best_dfs)) return di else: file = model_files[feat_ind] seed = file.as_posix().split('/')[-1].split('.')[0].split('_')[-1] outer_splits = file.as_posix().split('/')[-1].split('.')[0].split('_')[-3] # load and produce best_df: gr = joblib.load(file) best_df = read_one_gridsearchcv_object(gr) return best_df, outer_splits, seed def get_feature_set_from_list(model_features_list, features, sep='+'): """select features from model_features_list, return the index in the model_features_list and the entry itself""" # first find if features is a single or multiple features: if isinstance(features, str) and sep not in features: try: ind = [i for i, e in enumerate(model_features_list) if e == features] # ind = model_features_list.index(features) except ValueError: raise ValueError('{} is not in {}'.format(features, ', '.join(model_features_list))) elif isinstance(features, str) and sep in features: features_split = features.split(sep) mf = [x.split(sep) for x in model_features_list] bool_list = [set(features_split) == (set(x)) for x in mf] ind = [i for i, x in enumerate(bool_list) if x] # print(len(ind)) # ind = ind[0] # feat = model_features_list[ind] # feat = model_features_list[ind] return ind def read_one_gridsearchcv_object(gr): """read one gridsearchcv multimetric object and get the best params, best mean/std scores""" import pandas as pd # first get all the scorers used: scorers = [x for x in gr.scorer_.keys()] # now loop over the scorers: best_params = [] best_mean_scores = [] best_std_scores = [] for scorer in scorers: df_mean = pd.concat([pd.DataFrame(gr.cv_results_["params"]), pd.DataFrame( gr.cv_results_["mean_test_{}".format(scorer)], columns=[scorer])], axis=1) df_std = pd.concat([pd.DataFrame(gr.cv_results_["params"]), pd.DataFrame( gr.cv_results_["std_test_{}".format(scorer)], columns=[scorer])], axis=1) # best index = highest score: best_ind = df_mean[scorer].idxmax() best_mean_scores.append(df_mean.iloc[best_ind][scorer]) best_std_scores.append(df_std.iloc[best_ind][scorer]) best_params.append(df_mean.iloc[best_ind].to_frame().T.iloc[:, :-1]) best_df = pd.concat(best_params) best_df['mean_score'] = best_mean_scores best_df['std_score'] = best_std_scores best_df.index = scorers return best_df # # param grid dict: # params = gr.param_grid # # scorer names: # scoring = [x for x in gr.scoring.keys()] # # df: # df = pd.DataFrame().from_dict(gr.cv_results_) # # produce multiindex from param_grid dict: # param_names = [x for x in params.keys()] # # unpack param_grid vals to list of lists: # pro = [[y for y in x] for x in params.values()] # ind = pd.MultiIndex.from_product((pro), names=param_names) # df.index = ind # best_params = [] # best_mean_scores = [] # best_std_scores = [] # for scorer in scoring: # best_params.append(df[df['rank_test_{}'.format(scorer)]==1]['mean_test_{}'.format(scorer)].index[0]) # best_mean_scores.append(df[df['rank_test_{}'.format(scorer)]==1]['mean_test_{}'.format(scorer)].iloc[0]) # best_std_scores.append(df[df['rank_test_{}'.format(scorer)]==1]['std_test_{}'.format(scorer)].iloc[0]) # best_df = pd.DataFrame(best_params, index=scoring, columns=param_names) # best_df['mean_score'] = best_mean_scores # best_df['std_score'] = best_std_scores # return best_df, best_df_1 def process_gridsearch_results(GridSearchCV, model_name, split_dim='inner_kfold', features=None, pwv_id=None, hs_id=None, test_size=None): import xarray as xr import pandas as pd import numpy as np # finish getting best results from all scorers togather """takes GridSreachCV object with cv_results and xarray it into dataarray""" params = GridSearchCV.param_grid scoring = GridSearchCV.scoring results = GridSearchCV.cv_results_ # for scorer in scoring: # for sample in ['train', 'test']: # sample_score_mean = results['mean_{}_{}'.format(sample, scorer)] # sample_score_std = results['std_{}_{}'.format(sample, scorer)] # best_index = np.nonzero(results['rank_test_{}'.format(scorer)] == 1)[0][0] # best_score = results['mean_test_{}'.format(scorer)][best_index] names = [x for x in params.keys()] # unpack param_grid vals to list of lists: pro = [[y for y in x] for x in params.values()] ind = pd.MultiIndex.from_product((pro), names=names) # result_names = [x for x in GridSearchCV.cv_results_.keys() if 'split' # not in x and 'time' not in x and 'param' not in x and # 'rank' not in x] result_names = [ x for x in results.keys() if 'param' not in x] ds = xr.Dataset() for da_name in result_names: da = xr.DataArray(results[da_name]) ds[da_name] = da ds = ds.assign(dim_0=ind).unstack('dim_0') for dim in ds.dims: if ds[dim].dtype == 'O': try: ds[dim] = ds[dim].astype(str) except ValueError: ds = ds.assign_coords({dim: [str(x) for x in ds[dim].values]}) if ('True' in ds[dim]) and ('False' in ds[dim]): ds[dim] = ds[dim] == 'True' # get all splits data and concat them along number of splits: all_splits = [x for x in ds.data_vars if 'split' in x] train_splits = [x for x in all_splits if 'train' in x] test_splits = [x for x in all_splits if 'test' in x] # loop over scorers: trains = [] tests = [] for scorer in scoring: train_splits_scorer = [x for x in train_splits if scorer in x] trains.append(xr.concat([ds[x] for x in train_splits_scorer], split_dim)) test_splits_scorer = [x for x in test_splits if scorer in x] tests.append(xr.concat([ds[x] for x in test_splits_scorer], split_dim)) splits_scorer = np.arange(1, len(train_splits_scorer) + 1) train_splits = xr.concat(trains, 'scoring') test_splits = xr.concat(tests, 'scoring') # splits = [x for x in range(len(train_splits))] # train_splits = xr.concat([ds[x] for x in train_splits], 'split') # test_splits = xr.concat([ds[x] for x in test_splits], 'split') # replace splits data vars with newly dataarrays: ds = ds[[x for x in ds.data_vars if x not in all_splits]] ds['split_train_score'] = train_splits ds['split_test_score'] = test_splits ds[split_dim] = splits_scorer if isinstance(scoring, list): ds['scoring'] = scoring elif isinstance(scoring, dict): ds['scoring'] = [x for x in scoring.keys()] ds.attrs['name'] = 'CV_results' ds.attrs['param_names'] = names ds.attrs['model_name'] = model_name ds.attrs['{}_splits'.format(split_dim)] = ds[split_dim].size if GridSearchCV.refit: if hasattr(GridSearchCV.best_estimator_, 'feature_importances_'): f_import = xr.DataArray( GridSearchCV.best_estimator_.feature_importances_, dims=['feature']) f_import['feature'] = features ds['feature_importances'] = f_import ds['best_score'] = GridSearchCV.best_score_ # ds['best_model'] = GridSearchCV.best_estimator_ ds.attrs['refitted_scorer'] = GridSearchCV.refit for name in names: if isinstance(GridSearchCV.best_params_[name], tuple): GridSearchCV.best_params_[name] = ','.join( map(str, GridSearchCV.best_params_[name])) ds['best_{}'.format(name)] = GridSearchCV.best_params_[name] return ds, GridSearchCV.best_estimator_ else: return ds, None def save_cv_results(cvr, savepath=hydro_path): from aux_gps import save_ncfile features = '+'.join(cvr.attrs['features']) # pwv_id = cvr.attrs['pwv_id'] # hs_id = cvr.attrs['hs_id'] # neg_pos_ratio = cvr.attrs['neg_pos_ratio'] ikfolds = cvr.attrs['inner_kfold_splits'] okfolds = cvr.attrs['outer_kfold_splits'] name = cvr.attrs['model_name'] refitted_scorer = cvr.attrs['refitted_scorer'].replace('_', '-') # filename = 'CVR_{}_{}_{}_{}_{}_{}_{}_{}.nc'.format(pwv_id, hs_id, # name, features, refitted_scorer, ikfolds, okfolds, neg_pos_ratio) filename = 'CVR_{}_{}_{}_{}_{}.nc'.format( name, features, refitted_scorer, ikfolds, okfolds) save_ncfile(cvr, savepath, filename) return def scikit_fit_predict(X, y, seed=42, with_pressure=True, n_splits=7, plot=True): # step1: CV for train/val (80% from 80-20 test). display results with # model and scores(AUC, f1), use StratifiedKFold # step 2: use validated model with test (20%) and build ROC curve # step 3: add features (pressure) but check for correlation # check permutations with scikit learn from sklearn.model_selection import train_test_split from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.metrics import f1_score from sklearn.metrics import plot_roc_curve from sklearn.svm import SVC from numpy import interp from sklearn.metrics import auc import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import KFold from sklearn.model_selection import LeaveOneOut from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold if not with_pressure: just_pw = [x for x in X.feature.values if 'pressure' not in x] X = X.sel(feature=just_pw) X_tt, X_test, y_tt, y_test = train_test_split( X, y, test_size=0.2, shuffle=True, random_state=seed) cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) # cv = LeaveOneOut() classifier = SVC(kernel='rbf', probability=False, random_state=seed) # classifier = LinearDiscriminantAnalysis() # clf = QuadraticDiscriminantAnalysis() scores = [] fig, ax = plt.subplots() tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) for i, (train, val) in enumerate(cv.split(X_tt, y_tt)): # for i in range(100): # X_train, X_val, y_train, y_val = train_test_split( # X_tt, y_tt, shuffle=True, test_size=0.5, random_state=i) # clf.fit(X_train, y_train) classifier.fit(X_tt[train], y_tt[train]) # viz = plot_roc_curve(clf, X_val, y_val, # name='ROC run {}'.format(i), # alpha=0.3, lw=1, ax=ax) viz = plot_roc_curve(classifier, X_tt[val], y_tt[val], name='ROC fold {}'.format(i), alpha=0.3, lw=1, ax=ax) interp_tpr = interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) # aucs.append(viz.roc_auc) # y_pred = clf.predict(X_val) y_pred = classifier.predict(X_tt[val]) aucs.append(roc_auc_score(y_tt[val], y_pred)) # scores.append(clf.score(X_val, y_val)) scores.append(f1_score(y_tt[val], y_pred)) scores = np.array(scores) ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], title="Receiver operating characteristic example") ax.legend(loc="lower right") ax.set_title( 'ROC curve for KFold={}, with pressure anomalies.'.format(n_splits)) if not with_pressure: ax.set_title( 'ROC curve for KFold={}, without pressure anomalies.'.format(n_splits)) y_test_predict = classifier.predict(X_test) print('final test predict score:') print(f1_score(y_test, y_test_predict)) if plot: plt.figure() plt.hist(scores, bins=15, edgecolor='k') return scores # clf.fit(X,y) def produce_X_y_from_list(pw_stations=['drag', 'dsea', 'elat'], hs_ids=[48125, 48199, 60170], pressure_station='bet-dagan', max_flow=0, window=25, neg_pos_ratio=1, path=work_yuval, ims_path=ims_path, hydro_path=hydro_path, concat_Xy=False): if isinstance(hs_ids, int): hs_ids = [hs_ids for x in range(len(pw_stations))] kwargs = locals() [kwargs.pop(x) for x in ['pw_stations', 'hs_ids', 'concat_Xy']] Xs = [] ys = [] for pw_station, hs_id in list(zip(pw_stations, hs_ids)): X, y = produce_X_y(pw_station, hs_id, **kwargs) Xs.append(X) ys.append(y) if concat_Xy: print('concatenating pwv stations {}, with hydro_ids {}.'.format( pw_stations, hs_ids)) X, y = concat_X_y(Xs, ys) return X, y else: return Xs, ys def concat_X_y(Xs, ys): import xarray as xr import pandas as pd X_attrs = [x.attrs for x in Xs] X_com_attrs = dict(zip(
pd.DataFrame(X_attrs)
pandas.DataFrame
# <NAME> # 2020-08-16 import numpy as np import pandas as pd import geopandas as gpd import rtree import itertools from shapely.geometry import MultiPoint, LineString from shapely.ops import snap, split pd.options.mode.chained_assignment = None def connect_poi(pois, nodes, edges, key_col=None, path=None, threshold=200, knn=5, meter_epsg=3857): """Connect and integrate a set of POIs into an existing road network. Given a road network in the form of two GeoDataFrames: nodes and edges, link each POI to the nearest edge (road segment) based on its projection point (PP) and generate a new integrated road network including the POIs, the projected points, and the connection edge. Args: pois (GeoDataFrame): a gdf of POI (geom: Point) nodes (GeoDataFrame): a gdf of road network nodes (geom: Point) edges (GeoDataFrame): a gdf of road network edges (geom: LineString) key_col (str): a unique key column of pois should be provided, e.g., 'index', 'osmid', 'poi_number', etc. Currently, this will be renamed into 'osmid' in the output. [NOTE] For use in pandana, you may want to ensure this column is numeric-only to avoid processing errors. Preferably use unique integers (int or str) only, and be aware not to intersect with the node key, 'osmid' if you use OSM data, in the nodes gdf. path (str): directory path to use for saving files (nodes and edges). Outputs will NOT be saved if this arg is not specified. threshold (int): the max length of a POI connection edge, POIs with connection edge beyond this length will be removed. The unit is in meters as crs epsg is set to 3857 by default during processing. knn (int): k nearest neighbors to query for the nearest edge. Consider increasing this number up to 10 if the connection output is slightly unreasonable. But higher knn number will slow down the process. meter_epsg (int): preferred EPSG in meter units. Suggested 3857 or 3395. Returns: nodes (GeoDataFrame): the original gdf with POIs and PPs appended edges (GeoDataFrame): the original gdf with connection edges appended and existing edges updated (if PPs are present) Note: 1. Make sure all three input GeoDataFrames have defined crs attribute. Try something like `gdf.crs` or `gdf.crs = 'epsg:4326'`. They will then be converted into epsg:3857 or specified meter_epsg for processing. """ ## STAGE 0: initialization # 0-1: helper functions def find_kne(point, lines): dists = np.array(list(map(lambda l: l.distance(point), lines))) kne_pos = dists.argsort()[0] kne = lines.iloc[[kne_pos]] kne_idx = kne.index[0] return kne_idx, kne.values[0] def get_pp(point, line): """Get the projected point (pp) of 'point' on 'line'.""" # project new Point to be interpolated pp = line.interpolate(line.project(point)) # PP as a Point return pp def split_line(line, pps): """Split 'line' by all intersecting 'pps' (as multipoint). Returns: new_lines (list): a list of all line segments after the split """ # IMPORTANT FIX for ensuring intersection between splitters and the line # but no need for updating edges_meter manually because the old lines will be # replaced anyway line = snap(line, pps, 1e-8) # slow? try: new_lines = list(split(line, pps)) # split into segments return new_lines except TypeError as e: print('Error when splitting line: {}\n{}\n{}\n'.format(e, line, pps)) return [] def update_nodes(nodes, new_points, ptype, meter_epsg=3857): """Update nodes with a list (pp) or a GeoDataFrame (poi) of new_points. Args: ptype: type of Point list to append, 'pp' or 'poi' """ # create gdf of new nodes (projected PAPs) if ptype == 'pp': new_nodes = gpd.GeoDataFrame(new_points, columns=['geometry'], crs=f'epsg:{meter_epsg}') n = len(new_nodes) new_nodes['highway'] = node_highway_pp new_nodes['osmid'] = [int(osmid_prefix + i) for i in range(n)] # create gdf of new nodes (original POIs) elif ptype == 'poi': new_nodes = new_points[['geometry', key_col]] new_nodes.columns = ['geometry', 'osmid'] new_nodes['highway'] = node_highway_poi new_nodes['osmid'] = new_nodes['osmid'].astype(int) else: print("Unknown ptype when updating nodes.") # merge new nodes (it is safe to ignore the index for nodes) gdfs = [nodes, new_nodes] nodes = gpd.GeoDataFrame(
pd.concat(gdfs, ignore_index=True, sort=False)
pandas.concat
import os import argparse import pandas as pd from tools.utils import process_gt_metadata def combine_inferences( ground_truth_csv: str, our_csv: str, bsnet_csv: str, covid_net_csv: str, save_dir: str, save_name: str, ) -> None: df_ground_truth = pd.read_csv(ground_truth_csv) df_ground_truth = process_gt_metadata(df_ground_truth) df_ground_truth = df_ground_truth.rename(columns={'Score C': 'GT'}) df_our = pd.read_csv(our_csv) df_our = df_our.rename(columns={'score': 'Our'}) df_bsnet =
pd.read_csv(bsnet_csv)
pandas.read_csv
"""Daily avg wind speeds""" import datetime import psycopg2.extras import numpy as np import pandas as pd import matplotlib.patheffects as PathEffects from pyiem.util import drct2text from pyiem.datatypes import speed from pyiem.util import get_autoplot_context, get_dbconn from pyiem.plot.use_agg import plt from pyiem.exceptions import NoDataFound PDICT = {'KT': 'knots', 'MPH': 'miles per hour', 'MPS': 'meters per second', 'KMH': 'kilometers per hour'} def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['cache'] = 86400 desc['description'] = """This plot displays daily average wind speeds for a given year and month of your choice. These values are computed by the IEM using available observations. Some observation sites explicitly produce an average wind speed, but that is not considered for this plot. You can download daily summary data <a href="/request/daily.phtml" class="alert-link">here</a>. The average wind direction is computed by vector averaging of the wind speed and direction reports. """ desc['arguments'] = [ dict(type='sid', name='zstation', default='DSM', network='IA_ASOS', label='Select Station:'), dict(type='year', name='year', default=datetime.datetime.now().year, label='Select Year:'), dict(type='month', name='month', default=datetime.datetime.now().month, label='Select Month:'), dict(type='select', name='units', default='MPH', label='Wind Speed Units:', options=PDICT), ] return desc def draw_line(x, y, angle): """Draw a line""" r = 0.25 plt.arrow(x, y, r * np.cos(angle), r * np.sin(angle), head_width=0.35, head_length=0.5, fc='k', ec='k') def plotter(fdict): """ Go """ pgconn = get_dbconn('iem') cursor = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor) ctx = get_autoplot_context(fdict, get_description()) station = ctx['zstation'] units = ctx['units'] year = ctx['year'] month = ctx['month'] sts = datetime.date(year, month, 1) ets = (sts + datetime.timedelta(days=35)).replace(day=1) cursor.execute(""" SELECT day, avg_sknt, vector_avg_drct from summary s JOIN stations t ON (t.iemid = s.iemid) WHERE t.id = %s and t.network = %s and s.day >= %s and s.day < %s ORDER by day ASC """, (station, ctx['network'], sts, ets)) days = [] drct = [] sknt = [] for row in cursor: if row[1] is None: continue days.append(row[0].day) drct.append(row[2]) sknt.append(row[1]) if not sknt: raise NoDataFound("ERROR: No Data Found") df = pd.DataFrame(dict(day=pd.Series(days), drct=pd.Series(drct), sknt=
pd.Series(sknt)
pandas.Series