prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import re import numpy as np import pandas as pd import pytest from woodwork import DataTable from woodwork.logical_types import ( URL, Boolean, Categorical, CountryCode, Datetime, Double, Filepath, FullName, Integer, IPAddress, LatLong, NaturalLanguage, Ordinal, PhoneNumber, SubRegionCode, ZIPCode ) def test_datatable_physical_types(sample_df): dt = DataTable(sample_df) assert isinstance(dt.physical_types, dict) assert set(dt.physical_types.keys()) == set(sample_df.columns) for k, v in dt.physical_types.items(): assert isinstance(k, str) assert v == sample_df[k].dtype def test_sets_category_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series(['a', 'b', 'c'], name=column_name), pd.Series(['a', None, 'c'], name=column_name),
pd.Series(['a', np.nan, 'c'], name=column_name)
pandas.Series
from scipy import stats import pandas as pd import numpy as np path_mutlivariate_feat_imps = '/n/groups/patel/samuel/EWAS/feature_importances_paper/' Environmental = ['Clusters_Alcohol', 'Clusters_Diet', 'Clusters_Education', 'Clusters_ElectronicDevices', 'Clusters_Employment', 'Clusters_FamilyHistory', 'Clusters_Eyesight', 'Clusters_Mouth', 'Clusters_GeneralHealth', 'Clusters_Breathing', 'Clusters_Claudification', 'Clusters_GeneralPain', 'Clusters_ChestPain', 'Clusters_CancerScreening', 'Clusters_Medication', 'Clusters_Hearing', 'Clusters_Household', 'Clusters_MentalHealth', 'Clusters_OtherSociodemographics', 'Clusters_PhysicalActivityQuestionnaire', 'Clusters_SexualFactors', 'Clusters_Sleep', 'Clusters_SocialSupport', 'Clusters_SunExposure', 'Clusters_EarlyLifeFactors', 'Clusters_Smoking'] Biomarkers = ['Clusters_PhysicalActivity', 'Clusters_HandGripStrength', 'Clusters_BrainGreyMatterVolumes', 'Clusters_BrainSubcorticalVolumes', 'Clusters_HeartSize', 'Clusters_HeartPWA', 'Clusters_ECGAtRest', 'Clusters_AnthropometryImpedance', 'Clusters_UrineBiochemistry', 'Clusters_BloodBiochemistry', 'Clusters_BloodCount', 'Clusters_EyeAutorefraction', 'Clusters_EyeAcuity', 'Clusters_EyeIntraoculaPressure', 'Clusters_BraindMRIWeightedMeans', 'Clusters_Spirometry', 'Clusters_BloodPressure', 'Clusters_AnthropometryBodySize', 'Clusters_ArterialStiffness', 'Clusters_CarotidUltrasound', 'Clusters_BoneDensitometryOfHeel', 'Clusters_HearingTest', 'Clusters_CognitiveFluidIntelligence', 'Clusters_CognitiveMatrixPatternCompletion', 'Clusters_CognitiveNumericMemory', 'Clusters_CognitivePairedAssociativeLearning', 'Clusters_CognitivePairsMatching', 'Clusters_CognitiveProspectiveMemory', 'Clusters_CognitiveReactionTime', 'Clusters_CognitiveSymbolDigitSubstitution', 'Clusters_CognitiveTowerRearranging', 'Clusters_CognitiveTrailMaking'] Pathologies = ['medical_diagnoses_%s' % letter for letter in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']] Clusters = [] All = Environmental + Biomarkers + Pathologies #+ ['Genetics'] organs = ['\*', '*instances01', '*instances1.5x', '*instances23', 'Abdomen' , 'AbdomenLiver' , 'AbdomenPancreas' , 'Arterial' , 'ArterialCarotids' , 'ArterialPulseWaveAnalysis' , 'Biochemistry' , 'BiochemistryBlood' , 'BiochemistryUrine' , 'Brain' , 'BrainCognitive' , 'BrainMRI' , 'Eyes' , 'EyesAll' , 'EyesFundus' , 'EyesOCT' , 'Hearing' , 'Heart' , 'HeartECG' , 'HeartMRI' , 'ImmuneSystem' , 'Lungs' , 'Musculoskeletal' , 'MusculoskeletalFullBody' , 'MusculoskeletalHips' , 'MusculoskeletalKnees' , 'MusculoskeletalScalars' , 'MusculoskeletalSpine' , 'PhysicalActivity'] path_heritability = '/n/groups/patel/Alan/Aging/Medical_Images/GWAS_hits_Age' def Create_data(corr_type, model): df_corr_env = pd.DataFrame(columns = ['env_dataset', 'organ_1', 'organ_2', 'corr', 'sample_size']) for env_dataset in All: print("Env dataset : ", env_dataset) for organ_1 in organs: try : df_1 =
pd.read_csv(path_mutlivariate_feat_imps + 'FeatureImp_%s_%s_%s.csv' % (env_dataset, organ_1, model))
pandas.read_csv
from pandas import Series from sklearn.preprocessing import MinMaxScaler # define contrived series data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0] series =
Series(data)
pandas.Series
# Initially downloaded after conversation with <NAME>/<NAME> # # url for download: https://www.dropbox.com/s/ftwkozmk373t45s/fmi_report_data.py?dl=0 # # Downloaded 2021-09-15 import xml.etree.ElementTree as et from glob import glob import pandas as pd from os import path import os import datetime ''' This script connects to the a folder with Foundation XML files and then parses and summarizes returned mutation information from the FMI patient reports in one Excel file, and outputs csvs for further analysis ''' cwd = os.getcwd() fmi_dir = '/mnt/' xml = fmi_dir + '*.xml' files = [path.basename(x) for x in glob(xml)] global todays_date now = datetime.datetime.now() todays_date = now.strftime("%Y-%m-%d") def report_variable_to_frame(root): report_detail = [] report_dict = {} for result in root.iter('{http://foundationmedicine.com/compbio/variant-report-external}variant-report'): result_dict = result.attrib report_detail.append(result_dict) for i in enumerate(report_detail): report_dict[i[0]] = (i[1]) patient_report_detail = pd.DataFrame.from_dict(report_dict, orient='index', columns = ['test-request', 'specimen', 'disease', 'disease-ontology', 'gender', 'pathology-diagnosis', 'tissue-of-origin', 'purity-assessment']) treq = ttype = recd = seqd = fullname = mrn = dob = '' colld = biop = ordmd = medfnm = medfid = spec = '' diag = dis = disOnt = pathd = orig = pure = qual = '' for repId in root.iter('ReportId'): treq = repId.text for test in root.iter('TestType'): ttype = test.text for receipt in root.iter('ReceivedDate'): recd = receipt.text dt = datetime.datetime.strptime(recd, "%Y-%m-%d") seqd = dt.strftime("%m-%d-%Y") for colldate in root.iter('CollDate'): colld = colldate.text dt = datetime.datetime.strptime(colld, "%Y-%m-%d") biop = dt.strftime("%m-%d-%Y") for doctor in root.iter('OrderingMD'): ordmd = doctor.text for ptntname in root.iter('FullName'): fullname = ptntname.text for mrnumber in root.iter('MRN'): mrn = mrnumber.text for birthdate in root.iter('DOB'): dob = birthdate.text for inst in root.iter('MedFacilName'): facnm = inst.text for facil in root.iter('MedFacilID'): facid = facil.text for site in root.iter('SpecSite'): spec = site.text for submDiag in root.iter('SubmittedDiagnosis'): diag = submDiag.text for qc in root.iter('{http://foundationmedicine.com/compbio/variant-report-external}quality-control'): qual = qc.attrib qcstat = qual.get('status', 0) dd = {'ReportId': [treq], 'TestType': [ttype], 'Disease': [dis], 'DiseaseOntology': [disOnt], 'PathologyDiagnosis': [pathd], 'SubmittedDiagnosis': [diag], 'OrderingMD': [ordmd], 'Patient': [fullname], 'MRN': [mrn], 'DOB': [dob], 'SpecimenSite': [spec], 'TissueOfOrigin': [orig], 'DateSequenced': [seqd], 'DateCollected': [biop], 'Facility': [facnm], 'FacilityId': [facid], 'Purity': [pure], 'QualityControl': [qcstat]} patient_report_frame =
pd.DataFrame.from_dict(dd, orient='columns')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import os from glob import glob import numpy as np import pandas as pd import torch as t from torch import optim from collections import OrderedDict from typing import Tuple from pathlib import Path from datetime import datetime as dt from dataclasses import dataclass from tqdm import tqdm os.environ['KMP_DUPLICATE_LIB_OK']='True' np.random.seed(2021) @dataclass class M4Config: pathDatasetOrg: str pathDatasetDump: str pathResult: str seasonal_patterns: list horizons: list horizons_map: dict frequencies: list frequency_map: dict history_size: dict iterations: dict layer_size: int layers: int stacks: int batch_size: int learning_rate: float # Ensemble parameters repeats: int lookbacks: list losses: list def __init__(self): self.pathDatasetOrg = r'C:/Users/taeni/Documents/GitHub/nbeats_reproduce/datasets/m4/' self.pathDatasetDump = r'C:/Users/taeni/Documents/GitHub/nbeats_reproduce/datasets/m4/' self.pathResult = r'C:/Users/taeni/Documents/GitHub/nbeats_reproduce/results/m4/' self.seasonal_patterns = ['Yearly', 'Quarterly', 'Monthly', 'Weekly', 'Daily', 'Hourly'] self.horizons = [6, 8, 18, 13, 14, 48] self.horizons_map = { 'Yearly': 6, 'Quarterly': 8, 'Monthly': 18, 'Weekly': 13, 'Daily': 14, 'Hourly': 48 } self.frequencies = [1, 4, 12, 1, 1, 24] self.frequency_map = { 'Yearly': 1, 'Quarterly': 4, 'Monthly': 12, 'Weekly': 1, 'Daily': 1, 'Hourly': 24 } self.history_size = { 'Yearly': 1.5, 'Quarterly': 1.5, 'Monthly': 1.5, 'Weekly': 10, 'Daily': 10, 'Hourly': 10 } self.iterations = { 'Yearly': 15000, 'Quarterly': 15000, 'Monthly': 15000, 'Weekly': 5000, 'Daily': 5000, 'Hourly': 5000 } # generic self.layers = 4 self.stacks = 30 self.layer_size = 512 # trend self.trend_layers = 4 self.trend_blocks = 3 self.trend_layer_size = 256 self.trend_degree_of_polynomial = 2 # seasonality self.seasonality_layers = 4 self.seasonality_blocks = 3 self.seasonality_layer_size = 2048 self.seasonality_num_of_harmonics = 1 # build self.batch_size = 1024 self.learning_rate = 0.001 # Ensemble parameters self.repeats = 10 self.lookbacks = [2, 3, 4, 5, 6, 7] self.losses = ['MASE', 'MAPE', 'SMAPE'] class M4Dataset: info = pd.DataFrame() ids: np.ndarray groups: np.ndarray frequencies: np.ndarray horizons: np.ndarray trainset: np.ndarray testset: np.ndarray def __init__(self, path_org, path_dump): self.pathDatasetOrg = path_org self.pathDatasetDump = path_dump info = pd.read_csv(path_org + "M4-info.csv") self.info = info self.ids = info.M4id.values self.groups = info.SP.values self.frequencies = info.Frequency.values self.horizons = info.Horizon.values def build_cache(files: str, cache_path: str) -> None: ts_dict = OrderedDict(list(zip(info.M4id.values, [[]] * len(info.M4id.values)))) for f in glob(os.path.join(path_org, files)): dataset = pd.read_csv(f) dataset.set_index(dataset.columns[0], inplace=True) for m4id, row in dataset.iterrows(): values = row.values ts_dict[m4id] = values[~np.isnan(values)] np.array(list(ts_dict.values())).dump(cache_path) if not os.path.isfile(path_dump + "train.npz"): print("Dump train datset process...") build_cache(os.path.join(path_org,'Train/*-train.csv'), os.path.join(path_dump, 'train.npz')) else: print("Skip train dataset process... train.npz") if not os.path.isfile(path_dump + "test.npz"): print("Dump test datset process...") build_cache(os.path.join(path_org,'Test/*-test.csv'), os.path.join(path_dump, 'test.npz')) else: print("Skip test dataset process... test.npz") self.trainset = np.load(os.path.join(path_dump, 'train.npz'), allow_pickle=True) self.testset = np.load(os.path.join(path_dump, 'test.npz'), allow_pickle=True) ############################################################################### class NBeatsBlock(t.nn.Module): """ N-BEATS block which takes a basis function as an argument. """ def __init__(self, input_size, theta_size: int, basis_function: t.nn.Module, layers: int, layer_size: int): """ N-BEATS block. :param input_size: Insample size. :param theta_size: Number of parameters for the basis function. :param basis_function: Basis function which takes the parameters and produces backcast and forecast. :param layers: Number of layers. :param layer_size: Layer size. """ super().__init__() self.layers = t.nn.ModuleList([t.nn.Linear(in_features=input_size, out_features=layer_size)] + [t.nn.Linear(in_features=layer_size, out_features=layer_size) for _ in range(layers - 1)]) self.basis_parameters = t.nn.Linear(in_features=layer_size, out_features=theta_size) self.basis_function = basis_function def forward(self, x: t.Tensor) -> Tuple[t.Tensor, t.Tensor]: block_input = x for layer in self.layers: block_input = t.relu(layer(block_input)) basis_parameters = self.basis_parameters(block_input) return self.basis_function(basis_parameters) class NBeats(t.nn.Module): """ N-Beats Model. """ def __init__(self, blocks: t.nn.ModuleList): super().__init__() self.blocks = blocks def forward(self, x: t.Tensor, input_mask: t.Tensor) -> t.Tensor: residuals = x.flip(dims=(1,)) # left<->right input_mask = input_mask.flip(dims=(1,)) # left<->right forecast = x[:, -1:] for i, block in enumerate(self.blocks): backcast, block_forecast = block(residuals) residuals = (residuals - backcast) * input_mask forecast = forecast + block_forecast return forecast class GenericBasis(t.nn.Module): """ Generic basis function. """ def __init__(self, backcast_size: int, forecast_size: int): super().__init__() self.backcast_size = backcast_size self.forecast_size = forecast_size def forward(self, theta: t.Tensor): return theta[:, :self.backcast_size], theta[:, -self.forecast_size:] class TrendBasis(t.nn.Module): """ Polynomial function to model trend. """ def __init__(self, degree_of_polynomial: int, backcast_size: int, forecast_size: int): super().__init__() self.polynomial_size = degree_of_polynomial + 1 # degree of polynomial with constant term self.backcast_time = t.nn.Parameter( t.tensor(np.concatenate([np.power(np.arange(backcast_size, dtype=np.float) / backcast_size, i)[None, :] for i in range(self.polynomial_size)]), dtype=t.float32), requires_grad=False) self.forecast_time = t.nn.Parameter( t.tensor(np.concatenate([np.power(np.arange(forecast_size, dtype=np.float) / forecast_size, i)[None, :] for i in range(self.polynomial_size)]), dtype=t.float32), requires_grad=False) def forward(self, theta: t.Tensor): backcast = t.einsum('bp,pt->bt', theta[:, self.polynomial_size:], self.backcast_time) forecast = t.einsum('bp,pt->bt', theta[:, :self.polynomial_size], self.forecast_time) return backcast, forecast class SeasonalityBasis(t.nn.Module): """ Harmonic functions to model seasonality. """ def __init__(self, harmonics: int, backcast_size: int, forecast_size: int): super().__init__() self.frequency = np.append(np.zeros(1, dtype=np.float32), np.arange(harmonics, harmonics / 2 * forecast_size, dtype=np.float32) / harmonics)[None, :] backcast_grid = -2 * np.pi * ( np.arange(backcast_size, dtype=np.float32)[:, None] / forecast_size) * self.frequency forecast_grid = 2 * np.pi * ( np.arange(forecast_size, dtype=np.float32)[:, None] / forecast_size) * self.frequency self.backcast_cos_template = t.nn.Parameter(t.tensor(np.transpose(np.cos(backcast_grid)), dtype=t.float32), requires_grad=False) self.backcast_sin_template = t.nn.Parameter(t.tensor(np.transpose(np.sin(backcast_grid)), dtype=t.float32), requires_grad=False) self.forecast_cos_template = t.nn.Parameter(t.tensor(np.transpose(np.cos(forecast_grid)), dtype=t.float32), requires_grad=False) self.forecast_sin_template = t.nn.Parameter(t.tensor(np.transpose(np.sin(forecast_grid)), dtype=t.float32), requires_grad=False) def forward(self, theta: t.Tensor): params_per_harmonic = theta.shape[1] // 4 backcast_harmonics_cos = t.einsum('bp,pt->bt', theta[:, 2 * params_per_harmonic:3 * params_per_harmonic], self.backcast_cos_template) backcast_harmonics_sin = t.einsum('bp,pt->bt', theta[:, 3 * params_per_harmonic:], self.backcast_sin_template) backcast = backcast_harmonics_sin + backcast_harmonics_cos forecast_harmonics_cos = t.einsum('bp,pt->bt', theta[:, :params_per_harmonic], self.forecast_cos_template) forecast_harmonics_sin = t.einsum('bp,pt->bt', theta[:, params_per_harmonic:2 * params_per_harmonic], self.forecast_sin_template) forecast = forecast_harmonics_sin + forecast_harmonics_cos return backcast, forecast # util def median_ensemble(experiment_path: str, summary_filter: str = '*', forecast_file: str = 'forecast.csv', group_by: str = 'id'): """ Build a median ensemble from files found in the experiment path. :param experiment_path: Experiment path. :param summary_filter: Filter which experiment instances should be included in ensemble. :param forecast_file: Name of the file with results. :param group_by: Grouping key. :return: Pandas dataframe with median forecasts. """ return pd.concat([pd.read_csv(file) for file in tqdm(glob(os.path.join(experiment_path, summary_filter + forecast_file)))], sort=False) \ .set_index(group_by).groupby(level=group_by, sort=False).median().values def group_ids(ids: np.ndarray, groups: np.ndarray, group_name: str) -> np.ndarray: """ Filter ids array by group indices and clean it from NaNs. :param values: Values to filter. :param groups: Timeseries groups. :param group_name: Group name to filter by. :return: Filtered and cleaned timeseries - ids. """ ids = np.array([v for v in ids[groups == group_name]], dtype=object) return ids def group_values(values: np.ndarray, groups: np.ndarray, group_name: str) -> np.ndarray: """ Filter values array by group indices and clean it from NaNs. :param values: Values to filter. :param groups: Timeseries groups. :param group_name: Group name to filter by. :return: Filtered and cleaned timeseries - values. """ values = np.array([v for v in values[groups == group_name]], dtype=object) return values def do_sample(ts, insample_size, outsample_size, batch_size, window_sampling_limit): insample = np.zeros((batch_size, insample_size)) insample_mask = np.zeros((batch_size, insample_size)) outsample = np.zeros((batch_size, outsample_size)) outsample_mask = np.zeros((batch_size, outsample_size)) sampled_ts_indices = np.random.randint(len(ts), size=batch_size) for i, sampled_index in enumerate(sampled_ts_indices): sampled_timeseries = ts[sampled_index] cut_point = np.random.randint(low=max(1, len(sampled_timeseries) - window_sampling_limit), high=len(sampled_timeseries), size=1)[0] insample_window = sampled_timeseries[max(0, cut_point - insample_size):cut_point] insample[i, -len(insample_window):] = insample_window insample_mask[i, -len(insample_window):] = 1.0 outsample_window = sampled_timeseries[ cut_point:min(len(sampled_timeseries), cut_point + outsample_size)] outsample[i, :len(outsample_window)] = outsample_window outsample_mask[i, :len(outsample_window)] = 1.0 return insample, insample_mask, outsample, outsample_mask def last_insample_window(ts, insample_size): """ The last window of insample size of all timeseries. This function does not support batching and does not reshuffle timeseries. :return: Last insample window of all timeseries. Shape "timeseries, insample size" """ insample = np.zeros((len(ts), insample_size)) insample_mask = np.zeros((len(ts), insample_size)) for i, ts in enumerate(ts): ts_last_window = ts[-insample_size:] insample[i, -len(ts):] = ts_last_window insample_mask[i, -len(ts):] = 1.0 return insample, insample_mask def default_device() -> t.device: """ PyTorch default device is GPU when available, CPU otherwise. :return: Default device. """ return t.device('cuda' if t.cuda.is_available() else 'cpu') def to_tensor(array: np.ndarray) -> t.Tensor: """ Convert numpy array to tensor on default device. :param array: Numpy array to convert. :return: PyTorch tensor on default device. """ return t.tensor(array, dtype=t.float32).to(default_device()) # loss function def divide_no_nan(a, b): """ a/b where the resulted NaN or Inf are replaced by 0. """ result = a / b result[result != result] = .0 result[result == np.inf] = .0 return result def mape_loss(forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float: """ MAPE loss as defined in: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error :param forecast: Forecast values. Shape: batch, time :param target: Target values. Shape: batch, time :param mask: 0/1 mask. Shape: batch, time :return: Loss value """ weights = divide_no_nan(mask, target) return t.mean(t.abs((forecast - target) * weights)) def smape_2_loss(forecast, target, mask) -> t.float: """ sMAPE loss as defined in https://robjhyndman.com/hyndsight/smape/ (Makridakis 1993) :param forecast: Forecast values. Shape: batch, time :param target: Target values. Shape: batch, time :param mask: 0/1 mask. Shape: batch, time :return: Loss value """ return 200 * t.mean(divide_no_nan(t.abs(forecast - target), t.abs(forecast.data) + t.abs(target.data)) * mask) def mase_loss(insample: t.Tensor, freq: int, forecast: t.Tensor, target: t.Tensor, mask: t.Tensor) -> t.float: """ MASE loss as defined in "Scaled Errors" https://robjhyndman.com/papers/mase.pdf :param insample: Insample values. Shape: batch, time_i :param freq: Frequency value :param forecast: Forecast values. Shape: batch, time_o :param target: Target values. Shape: batch, time_o :param mask: 0/1 mask. Shape: batch, time_o :return: Loss value """ masep = t.mean(t.abs(insample[:, freq:] - insample[:, :-freq]), dim=1) masked_masep_inv = divide_no_nan(mask, masep[:, None]) return t.mean(t.abs(target - forecast) * masked_masep_inv) def __loss_fn(loss_name: str): def loss(x, freq, forecast, target, target_mask): if loss_name == 'MAPE': return mape_loss(forecast, target, target_mask) elif loss_name == 'MASE': return mase_loss(x, freq, forecast, target, target_mask) elif loss_name == 'SMAPE': return smape_2_loss(forecast, target, target_mask) else: raise Exception(f'Unknown loss function: {loss_name}') return loss # metric def mase(forecast: np.ndarray, insample: np.ndarray, outsample: np.ndarray, frequency: int) -> np.ndarray: """ MASE loss as defined in "Scaled Errors" https://robjhyndman.com/papers/mase.pdf :param forecast: Forecast values. Shape: batch, time_o :param insample: Insample values. Shape: batch, time_i :param outsample: Target values. Shape: batch, time_o :param frequency: Frequency value :return: Same shape array with error calculated for each time step """ return np.mean(np.abs(forecast - outsample)) / np.mean(np.abs(insample[:-frequency] - insample[frequency:])) def nd(forecast: np.ndarray, target: np.ndarray) -> float: """ Normalized deviation as defined in https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf :param forecast: Forecast values. Shape: batch, time :param target: Target values. Shape: batch, time :return: Error value """ return np.mean(np.abs(target - forecast)) / np.mean(np.abs(target)) def nrmse(forecast: np.ndarray, target: np.ndarray) -> float: """ Normalized RMSE as defined in https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf :param forecast: Forecast values. Shape: batch, time :param target: Target values. Shape: batch, time :return: Error values """ return np.sqrt(np.mean(np.power((forecast - target), 2))) / (np.mean(np.abs(target))) def mape(forecast: np.ndarray, target: np.ndarray) -> np.ndarray: """ MAPE loss as defined in: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error :param forecast: Predicted values. :param target: Target values. :return: Same shape array with error calculated for each time step """ return 100 * np.abs(forecast - target) / target def smape_1(forecast: np.ndarray, target: np.ndarray) -> np.ndarray: """ sMAPE loss as defined in "Appendix A" of http://www.forecastingprinciples.com/files/pdf/Makridakia-The%20M3%20Competition.pdf :param forecast: Forecast values. Shape: batch, time :param target: Target values. Shape: batch, time :return: Same shape array with error calculated for each time step """ return 200 * np.abs(forecast - target) / (target + forecast) def smape_2(forecast: np.ndarray, target: np.ndarray) -> np.ndarray: """ sMAPE loss as defined in https://robjhyndman.com/hyndsight/smape/ (Makridakis 1993) :param forecast: Forecast values. Shape: batch, time :param target: Target values. Shape: batch, time :return: Same shape array with sMAPE calculated for each time step of each timeseries. """ denom = np.abs(target) + np.abs(forecast) # divide by 1.0 instead of 0.0, in case when denom is zero the enumerator will be 0.0 anyway. denom[denom == 0.0] = 1.0 return 200 * np.abs(forecast - target) / denom def check_directorys(f: str) -> None: if not Path(f).is_dir(): print(f"create directory: {f.split(sep='/')[-1]}") Path(f).mkdir(parents=True, exist_ok=True) ############################################################################### # init # M4 Experiments # Models: seasonal -> lookback -> loss def m4experiments(cfg: M4Config, dataset: M4Dataset, model_type='generic') -> None: trainset = dataset.trainset for seasonal_pattern in cfg.seasonal_patterns: for j, lookback in enumerate(cfg.lookbacks): for k, loss in enumerate(cfg.losses): history_size_in_horizons = cfg.history_size[seasonal_pattern] horizon = cfg.horizons_map[seasonal_pattern] input_size = lookback * horizon timeseries_frequency=cfg.frequency_map[seasonal_pattern] # Data sampling train_ids = group_values(dataset.ids, dataset.groups, seasonal_pattern) train_values = group_values(trainset, dataset.groups, seasonal_pattern) #test_values = group_values(testset, dataset.groups, seasonal_pattern) timeseries = [ts for ts in train_values] window_sampling_limit = int(history_size_in_horizons * horizon) batch_size = cfg.batch_size insample_size = input_size outsample_size = horizon if model_type == 'generic': model = NBeats(t.nn.ModuleList([NBeatsBlock(input_size=insample_size, theta_size=insample_size + outsample_size, basis_function=GenericBasis(backcast_size=insample_size, forecast_size=outsample_size), layers=cfg.layers, layer_size=cfg.layer_size) for _ in range(cfg.stacks)])) elif model_type == 'interpretable': trend_block = NBeatsBlock(input_size=insample_size, theta_size=2 * (cfg.trend_degree_of_polynomial + 1), basis_function=TrendBasis(degree_of_polynomial=cfg.trend_degree_of_polynomial, backcast_size=insample_size, forecast_size=outsample_size), layers=cfg.trend_layers, layer_size=cfg.trend_layer_size) seasonality_block = NBeatsBlock(input_size=insample_size, theta_size=4 * int( np.ceil(cfg.seasonality_num_of_harmonics / 2 * outsample_size) - (cfg.seasonality_num_of_harmonics - 1)), basis_function=SeasonalityBasis(harmonics=cfg.seasonality_num_of_harmonics, backcast_size=insample_size, forecast_size=outsample_size), layers=cfg.seasonality_layers, layer_size=cfg.seasonality_layer_size) model = NBeats(t.nn.ModuleList([trend_block for _ in range(cfg.trend_blocks)] + [seasonality_block for _ in range(cfg.seasonality_blocks)])) else: print(f"There is no {model_type} model-!!") return model = model.to(default_device()) learning_rate = cfg.learning_rate optimizer = optim.Adam(model.parameters(), lr=learning_rate) training_loss_fn = __loss_fn(loss) iterations = cfg.iterations[seasonal_pattern] lr_decay_step = iterations // 3 if lr_decay_step == 0: lr_decay_step = 1 forecasts = [] for i in range(1, iterations + 1): model.train() training_set = do_sample(timeseries, insample_size, outsample_size, batch_size, window_sampling_limit) x, x_mask, y, y_mask = map(to_tensor, training_set) optimizer.zero_grad() # init gradients before back-propagation forecast = model(x, x_mask) training_loss = training_loss_fn(x, timeseries_frequency, forecast, y, y_mask) if np.isnan(float(training_loss)): break training_loss.backward() t.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() for param_group in optimizer.param_groups: param_group["lr"] = learning_rate * 0.5 ** (i // lr_decay_step) if iterations <= 15 or i % 100 == 0: f = f'./steps/{model_type}-{seasonal_pattern}-{lookback}-{loss}/' check_directorys(f) f += f'weight_iter_{i}.pth' print('Save Model:', f) t.save(model, f) print(f'iter:{i}/{iterations} \t loss:{training_loss:.3f}') # Evaluate x, x_mask = map(to_tensor, last_insample_window(timeseries, insample_size)) model.eval() with t.no_grad(): forecasts.extend(model(x, x_mask).cpu().detach().numpy()) forecasts_df = pd.DataFrame(forecasts, columns=[f'V{i + 1}' for i in range(horizon)]) forecasts_df.index = train_ids forecasts_df.index.name = 'id' f = cfg.pathResult + f'{model_type}/' check_directorys(f) f += dt.now().strftime("%Y-%m-%d %H%M%S") f += f'+{seasonal_pattern}+{lookback}+{loss}+forecast.csv' print(f'Dump start: {f}') forecasts_df.to_csv(f) def summarize_groups(groups, scores): """ Re-group scores respecting M4 rules. :param scores: Scores per group. :return: Grouped scores. """ scores_summary = OrderedDict() def group_count(group_name): return len(np.where(groups == group_name)[0]) weighted_score = {} for g in ['Yearly', 'Quarterly', 'Monthly']: weighted_score[g] = scores[g] * group_count(g) scores_summary[g] = scores[g] others_score = 0 others_count = 0 for g in ['Weekly', 'Daily', 'Hourly']: others_score += scores[g] * group_count(g) others_count += group_count(g) weighted_score['Others'] = others_score scores_summary['Others'] = others_score / others_count average = np.sum(list(weighted_score.values())) / len(groups) scores_summary['Average'] = average return scores_summary def m4evaluate(cfg: M4Config, dataset: M4Dataset, target_path: str) -> None: # Need path check later... target_path = cfg.pathResult + f'/{target_path}/' forecast = median_ensemble(experiment_path = target_path, summary_filter = '**', forecast_file = 'forecast.csv', group_by = 'id') forecast = np.array([v[~np.isnan(v)] for v in forecast], dtype=object) groups = dataset.groups grouped_smapes = {group_name: np.mean(smape_2(forecast=group_values(values=forecast, groups=groups, group_name=group_name), target=group_values(values=dataset.testset, groups=groups, group_name=group_name))) for group_name in np.unique(groups)} grouped_smapes = summarize_groups(groups, grouped_smapes) grouped_owa = OrderedDict() naive2_forecasts = pd.read_csv(os.path.join(cfg.pathDatasetOrg, 'submission-Naive2.csv')).values[:, 1:].astype(np.float32) naive2_forecasts = np.array([v[~np.isnan(v)] for v in naive2_forecasts], dtype=object) model_mases = {} naive2_smapes = {} naive2_mases = {} for group_name in np.unique(groups): model_forecast = group_values(forecast, groups, group_name) naive2_forecast = group_values(naive2_forecasts, groups, group_name) target = group_values(dataset.testset, groups, group_name) # all timeseries within group have same frequency frequency = dataset.frequencies[groups == group_name][0] insample = group_values(dataset.trainset, groups, group_name) model_mases[group_name] = np.mean([mase(forecast=model_forecast[i], insample=insample[i], outsample=target[i], frequency=frequency) for i in range(len(model_forecast))]) naive2_mases[group_name] = np.mean([mase(forecast=naive2_forecast[i], insample=insample[i], outsample=target[i], frequency=frequency) for i in range(len(model_forecast))]) naive2_smapes[group_name] = np.mean(smape_2(naive2_forecast, target)) grouped_model_mases = summarize_groups(groups, model_mases) grouped_naive2_smapes = summarize_groups(groups, naive2_smapes) grouped_naive2_mases = summarize_groups(groups, naive2_mases) for k in grouped_model_mases.keys(): grouped_owa[k] = (grouped_model_mases[k] / grouped_naive2_mases[k] + grouped_smapes[k] / grouped_naive2_smapes[k]) / 2 def round_all(d): return dict(map(lambda kv: (kv[0], np.round(kv[1], 3)), d.items())) return round_all(grouped_smapes), round_all(grouped_owa) if __name__ == '__main__': # working directory os.chdir(r"C:\Users\taeni\Documents\GitHub\nbeats_reproduce/") # Set Config m4cfg = M4Config() m4cfg.lookbacks = [2, 4, 7] m4cfg.iterations = {'Yearly': 5, 'Quarterly': 5, 'Monthly': 5, 'Weekly': 5, 'Daily': 5, 'Hourly': 5 } # M4 Dataset m4dataset = M4Dataset(path_org = m4cfg.pathDatasetOrg, path_dump = m4cfg.pathDatasetDump) # M4 Experiments print("Experiment - generic") m4experiments(m4cfg, m4dataset, 'generic') print("Experiment - interpretable") m4experiments(m4cfg, m4dataset, 'interpretable') # M4 Evaluate eval_generic = m4evaluate(m4cfg, m4dataset, 'generic') eval_generic = pd.DataFrame(eval_generic, index=['SMAPE', 'OWA']) eval_interpretable = m4evaluate(m4cfg, m4dataset, 'interpretable') eval_interpretable =
pd.DataFrame(eval_interpretable, index=['SMAPE', 'OWA'])
pandas.DataFrame
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '{end_dt}'".format(end_dt=end_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = "index > '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert 0 == len(results) def test_select_iterator_many_empty_frames(self, setup_path): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = int(1e4) # with iterator, range limited to the first chunk with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100000, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = "index <= '{beg_dt}' & index >= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be [] assert len(results) == 0 @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes(self, setup_path): # GH 3499, losing frequency info on index recreation df = DataFrame( dict(A=Series(range(3), index=date_range("2000-1-1", periods=3, freq="H"))) ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "data") store.put("data", df, format="table") result = store.get("data") tm.assert_frame_equal(df, result) for attr in ["freq", "tz", "name"]: for idx in ["index", "columns"]: assert getattr(getattr(df, idx), attr, None) == getattr( getattr(result, idx), attr, None ) # try to append a table with a different frequency with catch_warnings(record=True): df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("data", df2) assert store.get_storer("data").info["index"]["freq"] is None # this is ok _maybe_remove(store, "df2") df2 = DataFrame( dict( A=Series( range(3), index=[ Timestamp("20010101"), Timestamp("20010102"), Timestamp("20020101"), ], ) ) ) store.append("df2", df2) df3 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("df2", df3) @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes2(self, setup_path): with ensure_clean_path(setup_path) as path: with catch_warnings(record=True): df = DataFrame( dict( A=Series( range(3), index=date_range("2000-1-1", periods=3, freq="H") ) ) ) df.to_hdf(path, "data", mode="w", append=True) df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) df2.to_hdf(path, "data", append=True) idx = date_range("2000-1-1", periods=3, freq="H") idx.name = "foo" df = DataFrame(dict(A=Series(range(3), index=idx))) df.to_hdf(path, "data", mode="w", append=True) assert read_hdf(path, "data").index.name == "foo" with catch_warnings(record=True): idx2 = date_range("2001-1-1", periods=3, freq="H") idx2.name = "bar" df2 = DataFrame(dict(A=Series(range(3), index=idx2))) df2.to_hdf(path, "data", append=True) assert read_hdf(path, "data").index.name is None def test_frame_select(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") date = df.index[len(df) // 2] crit1 = Term("index>=date") assert crit1.env.scope["date"] == date crit2 = "columns=['A', 'D']" crit3 = "columns=A" result = store.select("frame", [crit1, crit2]) expected = df.loc[date:, ["A", "D"]] tm.assert_frame_equal(result, expected) result = store.select("frame", [crit3]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append("df_time", df) with pytest.raises(ValueError): store.select("df_time", "index>0") # can't select if not written as table # store['frame'] = df # with pytest.raises(ValueError): # store.select('frame', [crit1, crit2]) def test_frame_select_complex(self, setup_path): # select via complex criteria df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[df.index[0:4], "string"] = "bar" with ensure_clean_store(setup_path) as store: store.put("df", df, format="table", data_columns=["string"]) # empty result = store.select("df", 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select("df", 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == "foo")] tm.assert_frame_equal(result, expected) # or result = store.select("df", 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select( "df", "(index>df.index[3] & " 'index<=df.index[6]) | string="bar"' ) expected = df.loc[ ((df.index > df.index[3]) & (df.index <= df.index[6])) | (df.string == "bar") ] tm.assert_frame_equal(result, expected) # invert result = store.select("df", 'string!="bar"') expected = df.loc[df.string != "bar"] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( with pytest.raises(NotImplementedError): store.select("df", '~(string="bar")') # invert ok for filters result = store.select("df", "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(["A", "B"])] tm.assert_frame_equal(result, expected) # in result = store.select("df", "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(self, setup_path): with ensure_clean_path(["parms.hdf", "hist.hdf"]) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({"A": [1, 1, 2, 2, 3]}) parms.to_hdf(pp, "df", mode="w", format="table", data_columns=["A"]) selection = read_hdf(pp, "df", where="A=[2,3]") hist = DataFrame( np.random.randn(25, 1), columns=["data"], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=["l1", "l2"] ), ) hist.to_hdf(hh, "df", mode="w", format="table") expected = read_hdf(hh, "df", where="l1=[2, 3, 4]") # scope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select("df", where="l1=l") tm.assert_frame_equal(result, expected) store.close() result = read_hdf(hh, "df", where="l1=l") tm.assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, "df", where="l1=index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) # scope with index store = HDFStore(hh) result = store.select("df", where="l1=index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) store.close() def test_invalid_filtering(self, setup_path): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") # not implemented with pytest.raises(NotImplementedError): store.select("df", "columns=['A'] | columns=['B']") # in theory we could deal with this with pytest.raises(NotImplementedError): store.select("df", "columns=['A','B'] & columns=['C']") def test_string_select(self, setup_path): # GH 2973 with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df["x"] = "none" df.loc[2:7, "x"] = "" store.append("df", df, data_columns=["x"]) result = store.select("df", "x=none") expected = df[df.x == "none"] tm.assert_frame_equal(result, expected) result = store.select("df", "x!=none") expected = df[df.x != "none"] tm.assert_frame_equal(result, expected) df2 = df.copy() df2.loc[df2.x == "", "x"] = np.nan store.append("df2", df2, data_columns=["x"]) result = store.select("df2", "x!=none") expected = df2[isna(df2.x)] tm.assert_frame_equal(result, expected) # int ==/!= df["int"] = 1 df.loc[2:7, "int"] = 2 store.append("df3", df, data_columns=["int"]) result = store.select("df3", "int=2") expected = df[df.int == 2] tm.assert_frame_equal(result, expected) result = store.select("df3", "int!=2") expected = df[df.int != 2] tm.assert_frame_equal(result, expected) def test_read_column(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # GH 17912 # HDFStore.select_column should raise a KeyError # exception if the key is not a valid store with pytest.raises(KeyError, match="No object named df in the file"): store.select_column("df", "index") store.append("df", df) # error with pytest.raises( KeyError, match=re.escape("'column [foo] not found in the table'") ): store.select_column("df", "foo") with pytest.raises(Exception): store.select_column("df", "index", where=["index>5"]) # valid result = store.select_column("df", "index") tm.assert_almost_equal(result.values, Series(df.index).values) assert isinstance(result, Series) # not a data indexable column with pytest.raises(ValueError): store.select_column("df", "values_block_0") # a data column df2 = df.copy() df2["string"] = "foo" store.append("df2", df2, data_columns=["string"]) result = store.select_column("df2", "string") tm.assert_almost_equal(result.values, df2["string"].values) # a data column with NaNs, result excludes the NaNs df3 = df.copy() df3["string"] = "foo" df3.loc[4:6, "string"] = np.nan store.append("df3", df3, data_columns=["string"]) result = store.select_column("df3", "string") tm.assert_almost_equal(result.values, df3["string"].values) # start/stop result = store.select_column("df3", "string", start=2) tm.assert_almost_equal(result.values, df3["string"].values[2:]) result = store.select_column("df3", "string", start=-2) tm.assert_almost_equal(result.values, df3["string"].values[-2:]) result = store.select_column("df3", "string", stop=2) tm.assert_almost_equal(result.values, df3["string"].values[:2]) result = store.select_column("df3", "string", stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[:-2]) result = store.select_column("df3", "string", start=2, stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[2:-2]) result = store.select_column("df3", "string", start=-2, stop=2) tm.assert_almost_equal(result.values, df3["string"].values[-2:2]) # GH 10392 - make sure column name is preserved df4 = DataFrame({"A": np.random.randn(10), "B": "foo"}) store.append("df4", df4, data_columns=True) expected = df4["B"] result = store.select_column("df4", "B") tm.assert_series_equal(result, expected) def test_coordinates(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append("df", df) # all c = store.select_as_coordinates("df") assert (c.values == np.arange(len(df.index))).all() # get coordinates back & test vs frame _maybe_remove(store, "df") df = DataFrame(dict(A=range(5), B=range(5))) store.append("df", df) c = store.select_as_coordinates("df", ["index<3"]) assert (c.values == np.arange(3)).all() result = store.select("df", where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates("df", ["index>=3", "index<=4"]) assert (c.values == np.arange(2) + 3).all() result = store.select("df", where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables _maybe_remove(store, "df1") _maybe_remove(store, "df2") df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) store.append("df1", df1, data_columns=["A", "B"]) store.append("df2", df2) c = store.select_as_coordinates("df1", ["A>0", "B>0"]) df1_result = store.select("df1", c) df2_result = store.select("df2", c) result = concat([df1_result, df2_result], axis=1) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # pass array/mask as the coordinates with ensure_clean_store(setup_path) as store: df = DataFrame( np.random.randn(1000, 2), index=date_range("20000101", periods=1000) ) store.append("df", df) c = store.select_column("df", "index") where = c[DatetimeIndex(c).month == 5].index expected = df.iloc[where] # locations result = store.select("df", where=where) tm.assert_frame_equal(result, expected) # boolean result = store.select("df", where=where) tm.assert_frame_equal(result, expected) # invalid with pytest.raises(ValueError): store.select("df", where=np.arange(len(df), dtype="float64")) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df) + 1)) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df)), start=5) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df)), start=5, stop=10) # selection with filter selection = date_range("20000101", periods=500) result = store.select("df", where="index in selection") expected = df[df.index.isin(selection)] tm.assert_frame_equal(result, expected) # list df = DataFrame(np.random.randn(10, 2)) store.append("df2", df) result = store.select("df2", where=[0, 3, 5]) expected = df.iloc[[0, 3, 5]] tm.assert_frame_equal(result, expected) # boolean where = [True] * 10 where[-2] = False result = store.select("df2", where=where) expected = df.loc[where] tm.assert_frame_equal(result, expected) # start/stop result = store.select("df2", start=5, stop=10) expected = df[5:10] tm.assert_frame_equal(result, expected) def test_append_to_multiple(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df2["foo"] = "bar" df =
concat([df1, df2], axis=1)
pandas.concat
""" Script to perform tests by use of the pytest suite """ import os from os import path import logging import pandas as pd import joblib import churn_library as cl import constants def test_import(test_dataframe): """ tests data import - Uses the test_dataframe fixture to read in the csv """ try: assert test_dataframe.shape[0] > 0 assert test_dataframe.shape[1] > 0 except AssertionError as err: logging.error( "Testing import_data: The file doesn't appear to have rows or columns") raise err def test_create_churn_col(): """ tests create_churn_col """ dataframe =
pd.DataFrame(columns=['Attrition_Flag'])
pandas.DataFrame
""" Get AWS spot price information """ import datetime import time import boto3 import pandas as pd from decisionengine.framework.modules import Transform # default values REGION = "us-west-2" INSTANCE_TYPES = ["m3.2xlarge", "c3.2xlarge"] HISTORY_OBSERVATION_TIME = 3600 # observe spot price for the last hour # HISTORY_START_TIME = HISTORY_END_TIME.replace(day=(HISTORY_END_TIME.day-1)) # 1 day ago PRODUCT_DESCRIPTIONS = ["Linux/UNIX"] DRY_RUN = False MAX_RESULTS = 1000 AVAILABILITY_ZONE = "" # any class SpotPriceData: """ Spot Price data element """ def __init__(self, sp_data): """ :type sp_data: :obj:`dict` :arg sp_data: spot price data """ self.data = sp_data self.data["Timestamp"] = sp_data["Timestamp"].isoformat() def __eq__(self, other): """ overrides comparison method """ if not isinstance(other, SpotPriceData): return False return (self.data["AvailabilityZone"], self.data["InstanceType"]) == ( other.data["AvailabilityZone"], other.data["InstanceType"], ) def __ne__(self, other): return not self.__eq__(other) class AWSSpotPriceForRegion: """ Spot price data and methods """ def __init__(self, region=REGION, profile_name=None): """ :type region: :obj:`str` :arg region: AWS region name :type profile_name: :obj:`str` :arg profile_name: legal AWS profile name """ if profile_name: session = boto3.session.Session(profile_name=profile_name, region_name=region) self.ec2 = session.client("ec2", region_name=region) else: self.ec2 = boto3.client("ec2", region_name=region) self.account_name = profile_name t = time.time() self.start_time = datetime.datetime.utcfromtimestamp(t - HISTORY_OBSERVATION_TIME) self.end_time = datetime.datetime.utcfromtimestamp(t) self.intance_types = INSTANCE_TYPES self.dry_run = DRY_RUN self.max_results = MAX_RESULTS self.product_descriptions = PRODUCT_DESCRIPTIONS self.availability_zone = AVAILABILITY_ZONE def init_query( self, spot_price_history_start_time=None, spot_price_history_end_time=None, instance_types=INSTANCE_TYPES, product_descriptions=PRODUCT_DESCRIPTIONS, dry_run=DRY_RUN, max_resuts=MAX_RESULTS, availability_zone=AVAILABILITY_ZONE, ): """ Init AWS spot price query :type spot_price_history_start_time: :obj:`str` :arg spot_price_history_start_time: price since. :type spot_price_history_end_time: :obj:`str` :arg spot_price_history_end_time: price till. :type instance_types: :obj:`list` :arg instance_types: list of AWS instance types to query spot price for. :type dry_run: :obj:`bool` :arg dry_run: as described in boto3 documentation. :type max_resuts: :obj:`int` :arg max_resuts: maximum number of results to return. """ if spot_price_history_start_time: self.start_time = spot_price_history_start_time if spot_price_history_end_time: self.end_time = spot_price_history_end_time self.intance_types = instance_types self.dry_run = dry_run self.max_results = max_resuts self.product_descriptions = product_descriptions self.availability_zone = availability_zone def get_price(self, logger): """ Get AWS spot prices. """ try: rc = self.ec2.describe_spot_price_history( DryRun=self.dry_run, StartTime=self.start_time, EndTime=self.end_time, InstanceTypes=self.intance_types, ProductDescriptions=self.product_descriptions, Filters=[], AvailabilityZone=self.availability_zone, MaxResults=self.max_results, NextToken="", ) except Exception: logger.exception("Exception in AWSSpotPrice call to get_price") return None price_history = rc.get("SpotPriceHistory") if len(price_history) == 0: price_history = None return price_history def spot_price_summary(self, spot_price_history): """ Returns the current spot prices per availability zone and instance type :type spot_price_history: :obj:`list` :arg spot_price_history: list of dictonaries :rtype: :obj:`list`: list of spot price data (:class:`SpotPriceData`) """ ll = [] for item in spot_price_history: item["AccountName"] = self.account_name spd = SpotPriceData(item) if spd not in ll: # append if there is no element with given # availability zone and instance type ll.append(spd) else: # replace spot price by the most recent i = ll.index(spd) ll[i].data["Timestamp"] = spd.data["Timestamp"] ll[i].data["SpotPrice"] = spd.data["SpotPrice"] return ll @Transform.consumes(spot_occupancy_config=pd.DataFrame) @Transform.produces(provisioner_resource_spot_prices=pd.DataFrame) class AWSSpotPrice(Transform.Transform): def __init__(self, config): super().__init__(config) def transform(self, data_block): """ Gets data from AWS :rtype: pandas frame (:class:`pd.DataFramelist`) """ self.logger.debug("in AWSSpotPrice transform") account_dict = data_block.get("spot_occupancy_config").to_dict() self.logger.debug(f"account_dict {account_dict}") sp_data = [] for account in account_dict: for region, instances in account_dict[account].items(): spot_price_info = AWSSpotPriceForRegion(region, profile_name=account) spot_price_info.init_query(instance_types=instances) spot_price_history = spot_price_info.get_price(self.logger) if spot_price_history: sp_data += spot_price_info.spot_price_summary(spot_price_history) sp_list = [i.data for i in sp_data] column_names = [ "AccountName", "AvailabilityZone", "InstanceType", "ProductDescription", "SpotPrice", "Timestamp", ] return {"provisioner_resource_spot_prices":
pd.DataFrame(sp_list, columns=column_names)
pandas.DataFrame
# coding: utf-8 import warnings warnings.filterwarnings('ignore') #reading the text file containing x and y coordinates of 654 customer locations import pandas as pd df =
pd.read_csv('p654.txt', skiprows=1, skipfooter=22, engine='python', delimiter = r"\s+", names=['x', 'y', 'c'])
pandas.read_csv
import numpy as np import utils.gen_cutouts as gc from sklearn import metrics import pandas as pd import ipdb import matplotlib from matplotlib import pyplot as plt matplotlib.rcParams['mathtext.fontset'] = 'stixsans' matplotlib.rcParams['font.family'] = 'STIXGeneral' MEAN_TEMP = 2.726 * (10**6) DEFAULT_FONT = 24 import os from global_settings import DATA_PATH, FULL_DATA_PATH, FULL_DATA_LABEL_PATH, CNN_MODEL_OUTPUT_DIR, CACHE_FULLDF, CACHE_MAPPED_HALOS, CACHE_FULLDF_DIST2EDGE_CAL import os def prepare_data_class(dir_test, num_frequency=3, get_all_components=False, label_fname="1025_hashalo_freq%03i.npy" % 148, balanced=False, suffix=""): """ read data from dir_test, and prepare data with different noise level (components) """ freqs=[90,148,219] def _load_help(name_format): paths = [os.path.join(dir_test, name_format%freq) for freq in freqs] ret = [np.load(p) for p in paths] #print(paths) return ret # set file names for data #y_data = np.load(dir_test + "1025_hashalo_freq%03i.npy"%148) # y data (labels) y_data = np.load(os.path.join(dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) nsamples = len(y_data) #load data into dictionary x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 #load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) noises = [np.load(os.path.join(dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90","_150", "_220"]] noises = [noises[0]*2.8, noises[1]*2.6, noises[2]*6.6] #samples has CMB+TSZ try: com = ['samples','ksz','ir_pts','rad_pts','dust'] x_data_all['base'] = _load_help("1025_samples_freq%03i{}.npy".format(suffix)) ksz_comp = _load_help("1025_ksz_freq%03i{}.npy".format(suffix)) x_data_all['ksz'] = [x_data_all['base'][i] + ksz_comp[i] for i in range(3)] ir_comp = _load_help("1025_ir_pts_freq%03i{}.npy".format(suffix)) x_data_all['ir'] = [x_data_all['ksz'][i] + ir_comp[i] for i in range(3)] rad_comp = _load_help("1025_rad_pts_freq%03i{}.npy".format(suffix)) x_data_all['rad'] = [x_data_all['ir'][i] + rad_comp[i] for i in range(3)] dust_comp = _load_help("1025_dust_freq%03i{}.npy".format(suffix)) x_data_all['dust'] = [x_data_all['rad'][i] + dust_comp[i] for i in range(3)] except Exception as err: print("error: ", err) print("reading only the composite") x_data_all['dust'] = _load_help("1025_skymap_freq%03i{}.npy".format(suffix)) #return x_data_all['dust'], y_data x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples,num_frequency,10,10),dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:,i,:,:] = np.squeeze(x_data_all[com1][i]*k2uk*Tcmb) + noises[i] else: x_data[com1][:,0,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,0,:,:] += np.squeeze(x_data_all[com1][1]*k2uk*Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:,1,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,1,:,:] += np.squeeze(x_data_all[com1][0]*k2uk*Tcmb) + noises[0] if balanced: n_pos = int(y_data.sum()) idx = np.arange(nsamples) idx = np.concatenate([idx[y_data==0.0][:n_pos], idx[y_data==1.0]]) x_data = {k: x_data[k][idx] for k in x_data.keys()} return x_data if get_all_components else x_data['dust'], y_data[idx], idx return x_data if get_all_components else x_data['dust'], y_data def prepare_data_class2(dir_test, num_frequency=3, component="skymap", label_fname="1025_hashalo_freq%03i.npy" % 148, balanced=False, use_noise=True, get_test_idx=False, suffix=""): """ read data from dir_test, and prepare data with different noise level (components) """ freqs=[90,148,219] def _load_help(name_format): paths = [os.path.join(dir_test, name_format%freq) for freq in freqs] ret = [np.load(p) for p in paths] #print(paths) return ret # set file names for data y_data = np.load(os.path.join(dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) nsamples = len(y_data) #load data into dictionary x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 #load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) if use_noise: noises = [np.load(os.path.join(dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90","_150", "_220"]] noises = [noises[0]*2.8, noises[1]*2.6, noises[2]*6.6] else: noises = [0., 0., 0.] #samples has CMB+TSZ x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(component, suffix)) x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples,num_frequency,10,10),dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:,i,:,:] = np.squeeze(x_data_all[com1][i]*k2uk*Tcmb) + noises[i] else: x_data[com1][:,0,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,0,:,:] += np.squeeze(x_data_all[com1][1]*k2uk*Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:,1,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,1,:,:] += np.squeeze(x_data_all[com1][0]*k2uk*Tcmb) + noises[0] splits = np.asarray([0.8, 0.2]) splits = np.round(splits / splits.sum() * nsamples).astype(int).cumsum() split_idx = np.split(np.arange(nsamples),splits[:-1]) x_data, x_test = {k: x_data[k][split_idx[0]] for k in x_data.keys()}, {k: x_data[k][split_idx[-1]] for k in x_data.keys()} y_data, y_test = y_data[split_idx[0]], y_data[split_idx[-1]] nsamples = len(y_data) if balanced: n_pos = int(y_data.sum()) idx = np.arange(nsamples) idx = np.concatenate([idx[y_data==0.0][:n_pos], idx[y_data==1.0]]) x_data = {k: x_data[k][idx] for k in x_data.keys()} if get_test_idx: return x_data[component], y_data[idx], x_test[component], y_test, idx, split_idx[-1] return x_data[component], y_data[idx], x_test[component], y_test, idx if get_test_idx: return x_data[component], y_data, x_test[component], y_test, split_idx[-1] return x_data[component], y_data, x_test[component], y_test class DataHolder: def __init__(self, data, label, idx): self.data = data self.label = label self.idx = idx def get(self, which, ratio=None, incl_idx=False): curr_idx = self.idx[which] y_data = self.label[curr_idx] if ratio is not None: n_pos = int(y_data.sum()) idx = np.arange(len(y_data)) idx = np.concatenate([idx[y_data == 0.0][:int(ratio * n_pos)], idx[y_data == 1.0]]) curr_idx = curr_idx[idx] if incl_idx: return self.data[curr_idx], self.label[curr_idx], curr_idx return self.data[curr_idx], self.label[curr_idx] class DataGetter: WO_DUST_MAPPING = ("dust", ['samples', 'ksz', 'ir_pts', 'rad_pts']) def __init__(self, dir_test, overlap=False): self.dir_test = dir_test self.overlap = overlap self.halocounter = gc.HalosCounter(overlap=overlap) df = self.halocounter.get_complete_df() if overlap: df = df.reset_index().rename(columns={"index": "cutout_id"}) test_idx = df[(df['cutout_ra'] >= 0.5 * 90) & (df['cutout_dec'] > 0.5 * 90)].index train_idx = df[~df.index.isin(test_idx)].index n_samples = len(train_idx) splits = np.asarray([0.65, 0.1]) splits = np.round(splits / splits.sum() * n_samples).astype(int).cumsum() #print(splits) #print(train_idx, len(train_idx)) split_idx = np.split(train_idx, splits[:-1]) split_idx = [split_idx[0], split_idx[1], test_idx] #print(len(split_idx[0]), len(split_idx[1]), len(split_idx[2])) #print(split_idx[0], split_idx[1], split_idx[2]) else: n_samples = df.shape[0] splits = np.asarray([0.7, 0.1, 0.2]) # (train ratio, valid ratio, test ratio) splits = np.round(splits / splits.sum() * n_samples).astype(int).cumsum() split_idx = np.split(np.arange(n_samples), splits[:-1]) #print(list(map(len, split_idx)), df.shape) self.split_idx = {"train":split_idx[0], 'valid':split_idx[1], 'test':split_idx[2]} pass def get_labels(self, thres=5e13, which='full'): if isinstance(thres, float) or isinstance(thres, int): thres = ("%0.0e"%(thres)).replace("+", "") label_fname = {"5e13": "m5e13_z0.25_y.npy", "2e14":"m2e14_z0.5_y.npy"}[thres] y_data = np.load(os.path.join(self.dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) if which == 'full': return y_data return y_data[self.split_idx[which]] def get_data(self, component, thres=5e13, use_noise=False, num_frequency=3): suffix = "_overlap" if self.overlap else "" freqs = [90, 148, 219] def _load_help(name_format): paths = [os.path.join(self.dir_test, name_format % freq) for freq in freqs] return [np.load(p) for p in paths] y_data = self.get_labels(thres, which='full') nsamples = len(y_data) x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 # load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) if use_noise: noises = [np.load(os.path.join(self.dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90", "_150", "_220"]] noises = [noises[0] * 2.8, noises[1] * 2.6, noises[2] * 6.6] else: noises = [0., 0., 0.] # samples has CMB+TSZ if isinstance(component, str): x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(component, suffix)) elif isinstance(component,tuple): component, lc = component x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(lc[0], suffix)) for cc in lc[1:]: tx = _load_help("1025_{}_freq%03i{}.npy".format(cc, suffix)) assert len(tx) == len(x_data_all[component]) x_data_all[component] = [x_data_all[component][i] + tx[i] for i in range(len(tx))] x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples, num_frequency, 10, 10), dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:, i, :, :] = np.squeeze(x_data_all[com1][i] * k2uk * Tcmb) + noises[i] else: x_data[com1][:, 0, :, :] = -np.squeeze(x_data_all[com1][2] * k2uk * Tcmb) - noises[2] x_data[com1][:, 0, :, :] += np.squeeze(x_data_all[com1][1] * k2uk * Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:, 1, :, :] = -np.squeeze(x_data_all[com1][2] * k2uk * Tcmb) - noises[2] x_data[com1][:, 1, :, :] += np.squeeze(x_data_all[com1][0] * k2uk * Tcmb) + noises[0] return DataHolder(x_data[component], y_data, self.split_idx) def get_full_df(self): df = self.halocounter.get_complete_df().reset_index().rename(columns={"index":"cutout_id"}) for k, idx in self.split_idx.items(): df.loc[idx, "which_set"] = k return df class IndexMapper: #map cutout_id to the index location def __init__(self, overlap=False): self.overlap = overlap o = DataGetter(overlap) self.split_idx = o.split_idx self.full_idx = gc.HalosCounter(overlap=overlap).get_complete_df().index self.split_idx = {"train":self.full_idx[self.split_idx['train']], "valid":self.full_idx[self.split_idx['valid']], "test":self.full_idx[self.split_idx['test']], "full":self.full_idx} self.reverse_idx = {'train':{}, 'valid':{}, 'test':{}, 'full':{}} for k in self.split_idx.keys(): idx = self.split_idx[k] for i, d in enumerate(idx): self.reverse_idx[k][d] = i def get(self, i, which='test'): return self.reverse_idx[which][i] def eval(models, get_test_func, model_weight_paths=None, pred_only=False): y_prob_avg = None y_probs = [] x_test, y_test = get_test_func() num_nets = len(models) for i in range(num_nets): model = models[i] if model_weight_paths is not None: model.load_weights(model_weight_paths[i]) y_prob = model.predict(x_test) y_probs.append(y_prob.squeeze()) y_prob_avg = y_prob if y_prob_avg is None else y_prob + y_prob_avg y_probs = np.stack(y_probs, 0) y_prob_avg /= float(num_nets) y_pred = (y_prob_avg > 0.5).astype('int32').squeeze() # binary classification if pred_only: return y_prob_avg return summary_results_class(y_probs, y_test), y_pred, y_prob_avg, y_test, x_test, models def summary_results_class(y_probs, y_test, threshold=0.5, log_roc=False, show_f1=True): """ y_probs: a list of independent predictions y_test: true label threshold: predict the image to be positive when the prediction > threshold """ # measure confusion matrix if show_f1: threshold, maxf1 = get_F1(y_probs.mean(0),y_test) threshold = threshold - 1e-7 cm = pd.DataFrame(0, index=['pred0','pred1'], columns=['actual0','actual1']) cm_std = pd.DataFrame(0, index=['pred0', 'pred1'], columns=['actual0', 'actual1']) #memorizing the number of samples in each case (true positive, false positive, etc.) tp_rate, tn_rate = np.zeros(len(y_probs)), np.zeros(len(y_probs)) for actual_label in range(2): for pred_label in range(2): cnt = np.zeros(len(y_probs)) for i in range(len(y_probs)): cnt[i] = np.sum(np.logical_and(y_test == actual_label, (y_probs[i] > threshold) == pred_label)) cm.loc["pred%d"%pred_label,"actual%d"%actual_label] = cnt.mean() cm_std.loc["pred%d" % pred_label, "actual%d" % actual_label] = cnt.std() print("Confusion matrix (cnts)",cm) print("Confusion matrix (stdev of cnts)", cm_std) #Measuring the true positive and negative rates, #since the false positive/negative rates are always 1 minus these, #they are not printed and have the same standard deviation for i in range(len(y_probs)): pred_i = y_probs[i] > threshold tp_rate[i] = np.sum(np.logical_and(y_test==1, pred_i==1)) / np.sum(pred_i==1) tn_rate[i] = np.sum(np.logical_and(y_test==0, pred_i==0)) / np.sum(pred_i == 0) print("True Positive (rate): {0:0.4f} ({1:0.4f})".format(tp_rate.mean(), tp_rate.std())) print("True Negative (rate): {0:0.4f} ({1:0.4f})".format(tn_rate.mean(), tn_rate.std())) def vertical_averaging_help(xs, ys, xlen=101): """ Interpolate the ROC curves to the same grid on x-axis """ numnets = len(xs) xvals = np.linspace(0,1,xlen) yinterp = np.zeros((len(ys),len(xvals))) for i in range(numnets): yinterp[i,:] = np.interp(xvals, xs[i], ys[i]) return xvals, yinterp fprs, tprs = [], [] for i in range(len(y_probs)): fpr, tpr, _ = metrics.roc_curve(y_test, y_probs[i], pos_label=1) fprs.append(fpr) tprs.append(tpr) new_fprs, new_tprs = vertical_averaging_help(fprs, tprs) # measure Area Under Curve (AUC) y_prob_mean = y_probs.mean(0) auc = metrics.roc_auc_score(y_test, y_prob_mean) try: auc = metrics.roc_auc_score(y_test, y_prob_mean) print() print("AUC:", auc) except Exception as err: print(err) auc = np.nan #Take the percentiles for of the ROC curves at each point new_tpr_mean, new_tpr_5, new_tpr_95 = new_tprs.mean(0), np.percentile(new_tprs, 95, 0), np.percentile(new_tprs, 5, 0) # plot ROC curve plt.figure(figsize=[12,8]) lw = 2 plt.plot(new_fprs, new_tpr_mean, color='darkorange', lw=lw, label='ROC curve (area = %0.4f)' % metrics.auc(new_fprs, new_tpr_mean)) if len(y_probs) > 1: plt.plot(new_fprs, new_tpr_95, color='yellow', lw=lw, label='ROC curve 5%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_95))) plt.plot(new_fprs, new_tpr_5, color='yellow', lw=lw, label='ROC curve 95%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_5))) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate', fontsize=16) plt.ylabel('True Positive Rate', fontsize=16) plt.title('Receiver operating characteristic') plt.legend(loc="lower right", fontsize=16) plt.grid() plt.show() #If log flag is set, plot also the log of the ROC curves within some reasonable range if log_roc: # plot ROC curve plt.figure(figsize=[12,8]) lw = 2 plt.plot(np.log(new_fprs), np.log(new_tpr_mean), color='darkorange', lw=lw, label='ROC curve (area = %0.4f)' % metrics.auc(new_fprs, new_tpr_mean)) if len(y_probs) > 1: plt.plot(np.log(new_fprs), np.log(new_tpr_95), color='yellow', lw=lw, label='ROC curve 5%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_95))) plt.plot(np.log(new_fprs), np.log(new_tpr_5), color='yellow', lw=lw, label='ROC curve 95%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_5))) #plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([-5, -3]) plt.ylim([-1, 0.2]) plt.xlabel('Log False Positive Rate', fontsize=16) plt.ylabel('Log True Positive Rate', fontsize=16) plt.title('Receiver operating characteristic') plt.legend(loc="lower right", fontsize=16) plt.grid() plt.show() return (auc,maxf1) if show_f1 else auc, (tp_rate.mean(),tn_rate.mean()), new_fprs, new_tprs #=======================================================Prediction criteria here import numpy as np import pickle import pandas as pd from scipy.optimize import minimize def _get_Fbeta(y, yhat, beta=1., debug=False, get_raw=False): TP = ((y == 1) & (yhat == 1)).sum() FP = ((y == 0) & (yhat == 1)).sum() TN = ((y == 0) & (yhat == 0)).sum() FN = ((y == 1) & (yhat == 0)).sum() if debug: print("TP: {}, FP:{}, TN:{}, FN:{}".format(TP, FP, TN, FN)) if FP+TP == 0 or TP + FN==0 or TP == 0: return -1. precision = (TP) / (FP + TP).astype(float) recall = (TP) / (TP + FN).astype(float) if debug: print("TP={}; FP={}; TN={}; FN={}; precision={};recall={}".format(((y == 1) & (yhat == 1)).sum(), ((y == 0) & (yhat == 1)).sum(), ((y == 0) & (yhat == 0)).sum(), ((y == 1) & (yhat == 0)).sum(), precision, recall)) if get_raw: return precision, recall, (1 + beta ** 2) * (precision * recall) / (beta * precision + recall) return (1 + beta ** 2) * (precision * recall) / (beta * precision + recall) def get_F1(y_pred, y, xlim=None, method='cnn', mass_thresh='5e13', plot=True, save_path=None, xlabel=None, get_raw=False, font=DEFAULT_FONT): plt.rcParams.update({'font.size': font}) if xlim is None: xlim = (0, 0.997) x = np.linspace(xlim[0], xlim[1]) elif isinstance(xlim, tuple): x = np.linspace(xlim[0], xlim[1]) else: x = xlim Fscore = lambda x: _get_Fbeta(y, (y_pred > x).astype(int)) y = np.asarray([Fscore(xx) for xx in x]).clip(0.) if plot: f = plt.figure(figsize=(8, 5)) plt.plot(x, y) plt.xlim(x[0], x[-1]) if xlabel: plt.xlabel(xlabel) else: plt.xlabel('%s Threshold' % ("CNN Prob" if method == 'cnn' else "MF S/N")) plt.ylabel('F1 Score', fontsize=font) if save_path is not None: plt.savefig(save_path, dpi=500, bbox_inches='tight') plt.show(block=True) if get_raw: return x, y return x[np.argmax(y)], np.max(y) def stack_F1(xmf, ymf, xcnn, ycnn, save_path=None, font=DEFAULT_FONT, title="", hist={}, nxbins=20): lns = [] fig = plt.figure(figsize=(8,5)) ax1 = fig.add_subplot(111) ax2 = ax1.twiny() plt.rcParams.update({'font.size': font}) lns.extend(ax1.plot(xmf, ymf, label='MF', color='purple')) ax1.set_xlabel("MF S/N Ratio") ax1.set_ylabel("F1 Score") lns.extend(ax2.plot(xcnn, ycnn, label='CNN', color='black')) ax2.set_xlabel("CNN Prob") import matplotlib.patches as mpatches if 'MF' in hist: assert 'CNN' in hist ax12 = ax1.twinx() bins = np.linspace(*ax1.get_xlim(), num=nxbins) #ax12.set_ylim(0, 100000) ax12.hist(hist['MF'][~pd.isnull(hist['MF'])], alpha=0.3, bins=bins, color='purple', #weights=np.ones(len(hist['MF']))/len(hist['MF']) ) lns.append(mpatches.Patch(color='purple', label='MF Score Dist.', alpha=0.3)) ax12.set_yscale('log') ax22 = ax2.twinx() bins = np.linspace(*ax2.get_xlim(), num=nxbins) #ax22.set_ylim(0, 100000) ax22.hist(hist['CNN'], alpha=0.3, bins=bins, color='black', #weights=np.ones(len(hist['CNN']))/len(hist['CNN']) ) lns.append(mpatches.Patch(color='black', label='CNN Score Dist.', alpha=0.3)) ax22.set_yscale('log') if ax12.get_ylim()[1] > ax22.get_ylim()[1]: ax22.set_ylim(ax12.get_ylim()) else: ax12.set_ylim(ax22.get_ylim()) #ylim1 = ax12.get_ylim() #ylim2 = ax22.get_ylim() #ylim = (min(ylim1[0], ylim2[0]), max(ylim1[1], ylim2[1])) #print(ylim) #for _temp in [ax12, ax22]: #_temp.set_ylim(ylim) #_temp.set_yscale('log') ax12.set_ylabel("Counts", fontsize=font) #ax12.set_yscale('log') labs = [l.get_label() for l in lns] plt.title(title) plt.legend(lns, labs, loc='lower center', prop={"size":font-8}) if save_path is not None: plt.savefig(save_path, dpi=500, bbox_inches="tight") return def get_F1_CNN_and_MF(vdf, col_cnn='score_wdust (trained>%s)', col_mf ='mf_peaksig', col_label='Truth(>%s)', mass_thresh='5e13', method='and', save_path=None, font=DEFAULT_FONT): plt.rcParams.update({'font.size': font}) import itertools if mass_thresh == '5e13': cnn_range = (0, 0.997) mf_range = (3, 15) else: #cnn_range = (0.4, 0.8) #mf_range = (3, 15) cnn_range = (0.2, 0.9) mf_range = (3, 25) cnn_range = np.linspace(cnn_range[0], cnn_range[1]) mf_range = np.linspace(mf_range[0], mf_range[1]) #criteria = itertools.product(cnn_range, mf_range) criteria = [(c,m) for c in cnn_range for m in mf_range] if method == 'or': Fscore = lambda cc, mc: _get_Fbeta(vdf[col_label], ((vdf[col_cnn] > cc) | (vdf[col_mf] > mc)).astype(int)) elif method == 'and': Fscore = lambda cc, mc: _get_Fbeta(vdf[col_label], ((vdf[col_cnn] > cc) & (vdf[col_mf] > mc)).astype(int)) elif method == 'rankproduct': rnk_cnn = vdf[col_cnn].rank() / len(vdf) rnk_mf = vdf[col_mf].rank() / float(vdf[col_mf].count()) return get_F1(rnk_cnn * rnk_mf, vdf[col_label], xlim=(0.7, .985), xlabel='rank product', save_path=save_path, font=font) cnn_x = np.asarray([c[0] for c in criteria]) mf_y = np.asarray([c[1] for c in criteria]) vals = np.asarray([Fscore(cc,mc) for cc,mc in criteria]) cm = plt.cm.get_cmap('YlGn') sc = plt.scatter(cnn_x, mf_y, c=vals, cmap=cm) plt.scatter(*criteria[np.argmax(vals)], s=100, c='black', marker='x', linewidth=3) cbar = plt.colorbar(sc) cbar.set_label("F1 Score", rotation=270, labelpad=20) plt.xlabel("CNN Threshold") plt.ylabel("MF Threshold") if save_path is not None: plt.savefig(save_path, dpi=500, bbox_inches="tight") return criteria[np.argmax(vals)], np.max(vals) import glob import ipdb class PytorchResultReader(object): def __init__(self, data_dir = CNN_MODEL_OUTPUT_DIR, exp_name="ratio1-20_convbody=R-50-C4_SGD_lr=0.005_wd=0.003_steps=1000-4000_comp=skymap", xlim=(0.5, 0.7)): self.data_dir = data_dir if exp_name is None: exp_name = [f for f in os.listdir(self.data_dir) if "_lr" in f and '_wd' in f] self.exp_names = [exp_name] if isinstance(exp_name,str) else exp_name labels = pd.read_pickle(FULL_DATA_LABEL_PATH) test_labels, val_labels = labels[labels['which'] == 'test'], labels[labels['which'] == 'valid'] np.random.seed(0) self.labels = test_labels.iloc[np.random.permutation(len(test_labels))] np.random.seed(0) self.val_labels = val_labels.iloc[np.random.permutation(len(val_labels))] self.xlim = xlim def _read_one(self, exp_name, xlim=None): dir_path = os.path.join(self.data_dir, exp_name) fs = sorted(glob.glob(os.path.join(dir_path, 'results', 'epoch*.pkl')), key=lambda x: int(x.replace(".pkl", "").split("epoch")[1])) if len(fs) ==0: return None, None, None dfs = {w:
pd.DataFrame(columns=['acc', 'loss', 'F1', "F1_thres"], dtype=float)
pandas.DataFrame
import pandas as pd import os import sys sys.path.append('..') from subprocess import getstatusoutput import pandas as pd from gpu import config class DataBase(object): """ An abstract class for datasets. """ def __init__(self, file, reset=False): self.name = 'None' self.file = file self.columns = [] def set(nr, key, value, save=True): self.df[key].iloc[nr] = value if save: self.local() def local(self): self.df.to_csv(self.file, index=None, header=True) def __getitem__(self, index): return self.df.iloc[index].values def __len__(self): return self.df.shape[0] def __new__(cls, *args, **kwargs): """singleton mode """ if not hasattr(cls, '_instance'): cls._instance = super().__new__(cls) return cls._instance class _GpuCore(object): """ GPU information for each GPU. include gpu memary in using/free/total and each process on this gpu """ def __init__(self, nr=-1): self.nr = nr # procs --> precesses # for each processing: # pid : this processing pid # name : command line # gpu_mem : self.procs = [] self.total = 0 self.used = 0 self.free = 0 def data(self): total = int(self.total.split()[0].strip()) used = int(self.used.split()[0].strip()) free = int(self.free.split()[0].strip()) processes = [[x['pid'], x['name'], int(x['gpu_mem'].split()[0].strip()) ] for x in self.procs] return total, used, free, processes def updata(self): ''' console command : sudo nvidia-smi -q -i 5 -d PIDS,MEMORY output: GPU 00000000:0B:00.0 FB Memory Usage Total : 11172 MiB Used : 10795 MiB Free : 377 MiB Processes Process ID : 44070 Type : C Name : /home/ljg/anaconda3/envs/tensorflow/bin/python Used GPU Memory : 10785 MiB ''' stat, output = getstatusoutput('nvidia-smi -q -i %d -d PIDS,MEMORY' % self.nr) if stat == 0: output = [x.strip() for x in output.strip().split('\n')] print(output) mem_inx = output.index('FB Memory Usage') # memeary self.total = output[mem_inx+1].split(':')[-1].strip() # 11172 MiB self.used = output[mem_inx+2].split(':')[-1].strip() self.free = output[mem_inx+3].split(':')[-1].strip() # processes try: proc_inx = output.index('Processes') for inx in range(proc_inx+1, len(output), 4): # find a process if output[inx].split(':')[0].strip() == 'Process ID': P = {} P['pid'] = int(output[inx].split(':')[1].strip()) P['name'] = output[inx+2].split(':')[1].strip() P['gpu_mem'] = output[inx+3].split(':')[1].strip() self.procs.append(P) except Exception as e: # No processes print(e) pass # updata GpuData pass class GPUs(DataBase): """ runtime GPU status. """ def __init__(self): super(GPUs, self).__init__(None, reset=False) self._gpus = [] for i in range(config.NR_GPU): gpu = _GpuCore(nr=i) gpu.updata() self._gpus.append(gpu) def __getitem__(self, inx): return self._gpus[inx] def updata(self): for i in range(config.NR_GPU): self._gpus[i].updata() class GpuData(DataBase): def __init__(self, file, reset=False): super(GpuData, self).__init__(file, reset) self.name = 'gpu database' self.file = file # GPU status # nr : Nomber of gpu range from 0 to 9 # status : free/requested/using/release/other # onwer : who is using this gpu. # start. : time of requesting this gpu # end. : time of auto free this gpu # why. : why auto free this gpu, [requested, released] # self.columns = ['nr', 'status', 'onwer', 'start', 'end', 'why'] if not reset: if not os.path.exists(self.file): self.reset() else: self.df = pd.read_csv(file) else: self.reset() def reset(self): """ Reset gpu database """ if os.path.exists(self.file): os.remove(self.file) self.df =
pd.DataFrame(columns=self.columns)
pandas.DataFrame
# pylint: disable=E1101 from datetime import datetime import datetime as dt import os import warnings import nose import struct import sys from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.core.common import is_categorical_dtype from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) import pandas.util.testing as tm from pandas.tslib import NaT from pandas import compat class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds = DataFrame(columns=['unit']) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path,write_index=False) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) def test_data_method(self): # Minimal testing of legacy data method reader_114 = StataReader(self.dta1_114) with warnings.catch_warnings(record=True) as w: parsed_114_data = reader_114.data() reader_114 = StataReader(self.dta1_114) parsed_114_read = reader_114.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read) def test_read_dta1(self): reader_114 = StataReader(self.dta1_114) parsed_114 = reader_114.read() reader_117 = StataReader(self.dta1_117) parsed_117 = reader_117.read() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta2(self): if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('datetime interp under 2.6 is faulty') expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) expected['yearly_date'] = expected['yearly_date'].astype('O') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta tm.assert_equal(len(w), 3) # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta3(self): parsed_113 = self.read_dta(self.dta3_113) parsed_114 = self.read_dta(self.dta3_114) parsed_115 = self.read_dta(self.dta3_115) parsed_117 = self.read_dta(self.dta3_117) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int16) expected['quarter'] = expected['quarter'].astype(np.int8) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta4(self): parsed_113 = self.read_dta(self.dta4_113) parsed_114 = self.read_dta(self.dta4_114) parsed_115 = self.read_dta(self.dta4_115) parsed_117 = self.read_dta(self.dta4_117) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled']) # these are all categoricals expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=['x', 'y', 'z']) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_write_dta5(self): original = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = 'index' original.index = original.index.astype(np.int32) original['year'] = original['year'].astype(np.int32) original['quarter'] = original['quarter'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_read_write_dta10(self): original = DataFrame(data=[["string", "object", 1, 1.1, np.datetime64('2003-12-25')]], columns=['string', 'object', 'integer', 'floating', 'datetime']) original["object"] = Series(original["object"], dtype=object) original.index.name = 'index' original.index = original.index.astype(np.int32) original['integer'] = original['integer'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {'datetime': 'tc'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = pd.DataFrame(np.random.randn(5,4), columns=list('abcd')) df.ix[2, 'a':'c'] = np.nan df_copy = df.copy() df.to_stata('test.dta', write_index=False) tm.assert_frame_equal(df, df_copy) def test_encoding(self): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding, encoding="latin-1") result = encoded.kreis1849[0] if compat.PY3: expected = raw.kreis1849[0] self.assertEqual(result, expected) self.assertIsInstance(result, compat.string_types) else: expected = raw.kreis1849.str.decode("latin-1")[0] self.assertEqual(result, expected) self.assertIsInstance(result, unicode) with tm.ensure_clean() as path: encoded.to_stata(path,encoding='latin-1', write_index=False) reread_encoded = read_stata(path, encoding='latin-1') tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame([(1, 2, 3, 4)], columns=['good', compat.u('b\u00E4d'), '8number', 'astringwithmorethan32characters______']) formatted = DataFrame([(1, 2, 3, 4)], columns=['good', 'b_d', '_8number', 'astringwithmorethan32characters_']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta12(self): original = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_1', 'astringwithmorethan32characters_2', '+', '-', 'short', 'delete']) formatted = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_', '_0astringwithmorethan32character', '_', '_1_', '_short', '_delete']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) tm.assert_equal(len(w), 1) # should get a warning for that format. written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta13(self): s1 = Series(2**9, dtype=np.int16) s2 = Series(2**17, dtype=np.int32) s3 = Series(2**33, dtype=np.int64) original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3}) original.index.name = 'index' formatted = original formatted['int64'] = formatted['int64'].astype(np.float64) with
tm.ensure_clean()
pandas.util.testing.ensure_clean
import tensorflow as tf import pandas as pd import random import numpy as np import tensorflow.keras.backend as K from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.neural_network import MLPClassifier class Main: if __name__ == '__main__': usersToTrainLabelEncoder = pd.read_csv('data/featureset.csv', usecols=['USER_ID']) print(usersToTrainLabelEncoder) ROW_COUNT = 4842367 ALL_INDICES = [i for i in range(ROW_COUNT)] random.shuffle(ALL_INDICES) pd.set_option('display.max_columns', None) pd.set_option('display.width', 200) data = pd.read_csv('data/output.csv', nrows=200000) data = data.drop(columns=["DATASET", "SENTENCE_ID"]) train, test = train_test_split(data, test_size=0.01, shuffle=True) train_current_key_code=pd.get_dummies(train['KEYCODE'], prefix='current') train_prev_current_key_code= pd.get_dummies(train['KEYCODE_PREV'], prefix='prev') train_tri_current_key_code=
pd.get_dummies(train['KEYCODE_TRI'], prefix='tri')
pandas.get_dummies
from contextlib import nullcontext as does_not_raise from functools import partial import pandas as pd from pandas.testing import assert_series_equal from solarforecastarbiter import datamodel from solarforecastarbiter.reference_forecasts import persistence from solarforecastarbiter.conftest import default_observation import pytest def load_data_base(data, observation, data_start, data_end): # slice doesn't care about closed or interval label # so here we manually adjust start and end times if 'instant' in observation.interval_label: pass elif observation.interval_label == 'ending': data_start += pd.Timedelta('1s') elif observation.interval_label == 'beginning': data_end -= pd.Timedelta('1s') return data[data_start:data_end] @pytest.fixture def powerplant_metadata(): """1:1 AC:DC""" modeling_params = datamodel.FixedTiltModelingParameters( ac_capacity=200, dc_capacity=200, temperature_coefficient=-0.3, dc_loss_factor=3, ac_loss_factor=0, surface_tilt=30, surface_azimuth=180) metadata = datamodel.SolarPowerPlant( name='Albuquerque Baseline', latitude=35.05, longitude=-106.54, elevation=1657.0, timezone='America/Denver', modeling_parameters=modeling_params) return metadata @pytest.mark.parametrize('interval_label,closed,end', [ ('beginning', 'left', '20190404 1400'), ('ending', 'right', '20190404 1400'), ('instant', None, '20190404 1359') ]) def test_persistence_scalar(site_metadata, interval_label, closed, end): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) data = pd.Series(100., index=data_index) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start =
pd.Timestamp('20190404 1300', tz=tz)
pandas.Timestamp
import gzip import pickle5 as pickle # import pickle from collections import defaultdict import numpy as np import pandas as pd import os from copy import deepcopy import datetime import neat from tensorflow.python.framework.ops import default_session from scipy.optimize import curve_fit from ongoing.prescriptors.base import BasePrescriptor, PRED_CASES_COL, CASES_COL, NPI_COLUMNS, NPI_MAX_VALUES import ongoing.prescriptors.base as base path = '5days-results-2d-1-hidden' num_checkpoint = 26 ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) CHECKPOINTS_PREFIX = os.path.join(ROOT_DIR, 'neat-checkpoint-') # CONFIG_FILE = os.path.join(ROOT_DIR, '{}/config-prescriptor-multiobjective'.format(path)) CONFIG_FILE = os.path.join(ROOT_DIR, '{}/config-prescriptor-{}'.format(path, num_checkpoint)) TMP_PRED_FILE_NAME = os.path.join(ROOT_DIR, 'tmp_predictions_for_prescriptions', 'preds.csv') TMP_PRESCRIPTION_FILE = os.path.join(ROOT_DIR, 'tmp_prescription.csv') # Number of days the prescriptors will look at in the past. # Larger values here may make convergence slower, but give # prescriptors more context. The number of inputs of each neat # network will be NB_LOOKBACK_DAYS * (NPI_COLUMNS + 1) + NPI_COLUMNS. # The '1' is for previous case data, and the final NPI_COLUMNS # is for IP cost information. NB_LOOKBACK_DAYS = 21 # Number of countries to use for training. Again, lower numbers # here will make training faster, since there will be fewer # input variables, but could potentially miss out on useful info. NB_EVAL_COUNTRIES = 10 # Number of prescriptions to make per country. # This can be set based on how many solutions in PRESCRIPTORS_FILE # we want to run and on time constraints. NB_PRESCRIPTIONS = 10 # Number of days to fix prescribed IPs before changing them. # This could be a useful toggle for decision makers, who may not # want to change policy every day. Increasing this value also # can speed up the prescriptor, at the cost of potentially less # interesting prescriptions. ACTION_DURATION = 14 # Range of days the prescriptors will be evaluated on. # To save time during training, this range may be significantly # shorter than the maximum days a prescriptor can be evaluated on. EVAL_START_DATE = '2020-08-01' EVAL_END_DATE = '2020-08-02' # Maximum number of generations to run (unlimited if None) NB_GENERATIONS = 200 # Path to file containing neat prescriptors. Here we simply use a # recent checkpoint of the population from train_prescriptor.py, # but this is likely not the most complementary set of prescriptors. # Many approaches can be taken to generate/collect more diverse sets. # Note: this set can contain up to 10 prescriptors for evaluation. # PRESCRIPTORS_FILE = os.path.join(ROOT_DIR, '{}/neat-checkpoint-{}'.format(path, num_checkpoint)) PRESCRIPTORS_FILE = os.path.join(ROOT_DIR, '{}/neat-checkpoint-{}_short_pickle4'.format(path, num_checkpoint)) def dominates(one, other): """Return true if each objective of *one* is not strictly worse than the corresponding objective of *other* and at least one objective is strictly better. """ not_equal = False for self_wvalue, other_wvalue in zip(one, other): if self_wvalue > other_wvalue: not_equal = True elif self_wvalue < other_wvalue: return False return not_equal def sortNondominatedNSGA2(pop_arr, k, first_front_only=False): """Sort the first *k* *individuals* into different nondomination levels using the "Fast Nondominated Sorting Approach" proposed by Deb et al., see [Deb2002]_. This algorithm has a time complexity of :math:`O(MN^2)`, where :math:`M` is the number of objectives and :math:`N` the number of individuals. :param individuals: A list of individuals to select from. :param k: The number of individuals to select. :param first_front_only: If :obj:`True` sort only the first front and exit. :returns: A list of Pareto fronts (lists), the first list includes nondominated individuals. .. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II", 2002. """ if k == 0: return [] map_fit_ind = defaultdict(list) for ind in pop_arr: map_fit_ind[ind.fitness_mult].append(ind) fits = list(map_fit_ind.keys()) current_front = [] next_front = [] dominating_fits = defaultdict(int) dominated_fits = defaultdict(list) # Rank first Pareto front for i, fit_i in enumerate(fits): for fit_j in fits[i + 1:]: if dominates(fit_i, fit_j): dominating_fits[fit_j] += 1 dominated_fits[fit_i].append(fit_j) elif dominates(fit_j, fit_i): dominating_fits[fit_i] += 1 dominated_fits[fit_j].append(fit_i) if dominating_fits[fit_i] == 0: current_front.append(fit_i) fronts = [[]] for fit in current_front: fronts[-1].extend(map_fit_ind[fit]) pareto_sorted = len(fronts[-1]) # Rank the next front until all individuals are sorted or # the given number of individual are sorted. if not first_front_only: N = min(len(pop_arr), k) while pareto_sorted < N: fronts.append([]) for fit_p in current_front: for fit_d in dominated_fits[fit_p]: dominating_fits[fit_d] -= 1 if dominating_fits[fit_d] == 0: next_front.append(fit_d) pareto_sorted += len(map_fit_ind[fit_d]) fronts[-1].extend(map_fit_ind[fit_d]) current_front = next_front next_front = [] return fronts def assignCrowdingDist(individuals): """Assign a crowding distance to each individual's fitness. It is done per front. """ if len(individuals) == 0: return distances = [0.0] * len(individuals) crowd = [(ind.fitness_mult, i) for i, ind in enumerate(individuals)] nobj = len(individuals[0].fitness_mult) for i in range(nobj): crowd.sort(key=lambda element: element[0][i]) distances[crowd[0][1]] = float("inf") distances[crowd[-1][1]] = float("inf") if crowd[-1][0][i] == crowd[0][0][i]: continue norm = nobj * float(crowd[-1][0][i] - crowd[0][0][i]) for prev, cur, next in zip(crowd[:-2], crowd[1:-1], crowd[2:]): distances[cur[1]] += (next[0][i] - prev[0][i]) / norm # find max and min distance max_val = -float("inf") min_val = float("inf") flag_plus_inf = False flag_minus_inf = False for dist in distances: if dist != float("inf") and max_val < dist: max_val = dist pass if dist != -float("inf") and min_val > dist: min_val = dist pass if dist == float("inf"): flag_plus_inf = True elif dist == -float("inf"): flag_minus_inf = True pass # set values equal to inf to be max + 0.5 # set values equal to -inf to be max - 0.5 # and rescale the rest if flag_plus_inf: max_val += 0.5 if flag_minus_inf: min_val -= 0.5 for i in range(0, len(distances)): if distances[i] == float("inf"): distances[i] = 1. elif distances[i] == -float("inf"): distances[i] = 0. else: distances[i] = (distances[i] - min_val) / (max_val - min_val) pass pass for i, dist in enumerate(distances): individuals[i].crowding_dist = dist / 2 pass pass def get_best_n_points(n, x_arr, y_arr): # 1. fit the curve # define the true objective function def objective(x, a, b, c): return a + b / (c - x) # fit curve popt, _ = curve_fit(objective, x_arr, y_arr) # get coefficients a, b, c = popt # define a sequence of inputs between the smallest and largest known inputs x_line = np.arange(min(x_arr), max(x_arr), 1) # calculate the output for the range y_line = objective(x_line, a, b, c) # 2. find arc length arc_len_arr = [] for pos in range(0, len(x_line) - 1): p1 = np.array([x_line[pos], y_line[pos]]) p2 = np.array([x_line[pos + 1], y_line[pos + 1]]) arc_len_arr.append(np.linalg.norm(p2 - p1)) arc_len_arr = np.array(arc_len_arr) # distance delta d = sum(arc_len_arr) / (n-1) # cumul_sum of art length arc_len_arr_cum = np.cumsum(arc_len_arr) # 3. choose ref. points # positions of reference points points_pos = [0] for i in range(1, (n-1)): dist = abs(arc_len_arr_cum - i * d) points_pos.append(np.argmin(dist) + 1) pass points_pos.append(len(x_line) - 1) ref_points = np.array([x_line[points_pos], y_line[points_pos]]).T # 4. approximate ref. points all_my_points = np.array([x_arr, y_arr]).T chosen_points = [] for ref_point in ref_points: dist = np.linalg.norm((all_my_points - ref_point), axis=1) pos = np.argmin(dist) chosen_points.append(pos) pass ref_points_pos = points_pos return chosen_points class Neat(BasePrescriptor): def __init__(self, seed=base.SEED, eval_start_date=EVAL_START_DATE, eval_end_date=EVAL_END_DATE, nb_eval_countries=NB_EVAL_COUNTRIES, nb_lookback_days=NB_LOOKBACK_DAYS, nb_prescriptions=NB_PRESCRIPTIONS, nb_generations=NB_GENERATIONS, action_duration=ACTION_DURATION, config_file=CONFIG_FILE, prescriptors_file=PRESCRIPTORS_FILE, hist_df=None, verbose=True): super().__init__(seed=seed) self.eval_start_date = pd.to_datetime(eval_start_date, format='%Y-%m-%d') self.eval_end_date = pd.to_datetime(eval_end_date, format='%Y-%m-%d') self.nb_eval_countries = nb_eval_countries self.nb_lookback_days = nb_lookback_days self.nb_prescriptions = nb_prescriptions self.nb_generations = nb_generations self.action_duration = action_duration self.config_file = config_file self.prescriptors_file = prescriptors_file self.hist_df = hist_df self.verbose = verbose def fit(self, hist_df=None): if hist_df is not None: self.hist_df = hist_df # As a heuristic, use the top NB_EVAL_COUNTRIES w.r.t. ConfirmedCases # so far as the geos for evaluation. eval_geos = list(self.hist_df.groupby('GeoID').max()['ConfirmedCases'].sort_values( ascending=False).head(self.nb_eval_countries).index) if self.verbose: print("Nets will be evaluated on the following geos:", eval_geos) # Pull out historical data for all geos past_cases = {} past_ips = {} for geo in eval_geos: geo_df = self.hist_df[self.hist_df['GeoID'] == geo] past_cases[geo] = np.maximum(0, np.array(geo_df[CASES_COL])) past_ips[geo] = np.array(geo_df[NPI_COLUMNS]) # Gather values for scaling network output ip_max_values_arr = np.array([NPI_MAX_VALUES[ip] for ip in NPI_COLUMNS]) # Load configuration. config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, self.config_file) # Create the population, which is the top-level object for a NEAT run. p = neat.Population(config) if self.verbose: # Add a stdout reporter to show progress in the terminal. p.add_reporter(neat.StdOutReporter(show_species_detail=True)) # Add statistics reporter to provide extra info about training progress. stats = neat.StatisticsReporter() p.add_reporter(stats) # Add checkpointer to save population every generation and every 10 minutes. p.add_reporter(neat.Checkpointer(generation_interval=1, time_interval_seconds=600, filename_prefix=CHECKPOINTS_PREFIX)) # Function that evaluates the fitness of each prescriptor model, equal costs def eval_genomes_multy_ones(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='equal') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: if genome.fitness is not None: continue # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = np.zeros(config.genome_config.num_outputs) # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += prescribed_ips # Create dataframe from prescriptions. pres_df = pd.DataFrame(df_dict) # Make prediction given prescription for all countries pred_df = self.get_predictions(self.eval_start_date.strftime("%Y-%m-%d"), date_str, pres_df) # Update past data with new day of prescriptions and predictions pres_df = base.add_geo_id(pres_df) pred_df = base.add_geo_id(pred_df) new_pres_df = pres_df[pres_df['Date'] == date_str] new_pred_df = pred_df[pred_df['Date'] == date_str] for geo in eval_geos: geo_pres = new_pres_df[new_pres_df['GeoID'] == geo] geo_pred = new_pred_df[new_pred_df['GeoID'] == geo] # Append array of prescriptions pres_arr = np.array([geo_pres[ip_col].values[0] for ip_col in NPI_COLUMNS]).reshape(1, -1) eval_past_ips[geo] = np.concatenate([eval_past_ips[geo], pres_arr]) # Append predicted cases eval_past_cases[geo] = np.append(eval_past_cases[geo], geo_pred[PRED_CASES_COL].values[0]) # Compute fitness. There are many possibilities for computing fitness and ranking # candidates. Here we choose to minimize the product of ip stringency and predicted # cases. This product captures the area of the 2D objective space that dominates # the candidate. We minimize it by including a negation. To place the fitness on # a reasonable scale, we take means over all geos and days. Note that this fitness # function can lead directly to the degenerate solution of all ips 0, i.e., # stringency zero. To achieve more interesting behavior, a different fitness # function may be required. new_cases = pred_df[PRED_CASES_COL].mean().mean() fitness_mult = list(-stringency) fitness_mult.append(-new_cases) genome.fitness_mult = tuple(fitness_mult) if self.verbose: print('Evaluated Genome', genome_id) print('New cases:', new_cases) print('Stringency:', stringency) print('Fitness:', genome.fitness_mult) # Function that evaluates the fitness of each prescriptor model, equal costs def eval_genomes_2d_ones(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='equal') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = 0. # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += np.sum(geo_costs[geo] * prescribed_ips) # Create dataframe from prescriptions. pres_df = pd.DataFrame(df_dict) # Make prediction given prescription for all countries pred_df = self.get_predictions(self.eval_start_date.strftime("%Y-%m-%d"), date_str, pres_df) # Update past data with new day of prescriptions and predictions pres_df = base.add_geo_id(pres_df) pred_df = base.add_geo_id(pred_df) new_pres_df = pres_df[pres_df['Date'] == date_str] new_pred_df = pred_df[pred_df['Date'] == date_str] for geo in eval_geos: geo_pres = new_pres_df[new_pres_df['GeoID'] == geo] geo_pred = new_pred_df[new_pred_df['GeoID'] == geo] # Append array of prescriptions pres_arr = np.array([geo_pres[ip_col].values[0] for ip_col in NPI_COLUMNS]).reshape(1, -1) eval_past_ips[geo] = np.concatenate([eval_past_ips[geo], pres_arr]) # Append predicted cases eval_past_cases[geo] = np.append(eval_past_cases[geo], geo_pred[PRED_CASES_COL].values[0]) # Compute fitness. There are many possibilities for computing fitness and ranking # candidates. Here we choose to minimize the product of ip stringency and predicted # cases. This product captures the area of the 2D objective space that dominates # the candidate. We minimize it by including a negation. To place the fitness on # a reasonable scale, we take means over all geos and days. Note that this fitness # function can lead directly to the degenerate solution of all ips 0, i.e., # stringency zero. To achieve more interesting behavior, a different fitness # function may be required. new_cases = pred_df[PRED_CASES_COL].mean().mean() genome.fitness_mult = (-new_cases, -stringency) if self.verbose: print('Evaluated Genome', genome_id) print('New cases:', new_cases) print('Stringency:', stringency) print('Fitness:', genome.fitness_mult) # Function that evaluates the fitness of each prescriptor model, random costs def eval_genomes_2d(genomes, config): # Every generation sample a different set of costs per geo, # so that over time solutions become robust to different costs. cost_df = base.generate_costs(self.hist_df, mode='random') cost_df = base.add_geo_id(cost_df) geo_costs = {} for geo in eval_geos: costs = cost_df[cost_df['GeoID'] == geo] cost_arr = np.array(costs[NPI_COLUMNS])[0] geo_costs[geo] = cost_arr # Evaluate each individual for genome_id, genome in genomes: # Create net from genome net = neat.nn.FeedForwardNetwork.create(genome, config) # Set up dictionary to keep track of prescription df_dict = {'CountryName': [], 'RegionName': [], 'Date': []} for ip_col in NPI_COLUMNS: df_dict[ip_col] = [] # Set initial data eval_past_cases = deepcopy(past_cases) eval_past_ips = deepcopy(past_ips) # Compute prescribed stringency incrementally stringency = 0. # Make prescriptions one day at a time, feeding resulting # predictions from the predictor back into the prescriptor. for date in pd.date_range(self.eval_start_date, self.eval_end_date): date_str = date.strftime("%Y-%m-%d") # Prescribe for each geo for geo in eval_geos: # Prepare input data. Here we use log to place cases # on a reasonable scale; many other approaches are possible. X_cases = np.log(eval_past_cases[geo][-self.nb_lookback_days:] + 1) X_ips = eval_past_ips[geo][-self.nb_lookback_days:] X_costs = geo_costs[geo] X = np.concatenate([X_cases.flatten(), X_ips.flatten(), X_costs]) # Get prescription prescribed_ips = net.activate(X) # Map prescription to integer outputs prescribed_ips = (prescribed_ips * ip_max_values_arr).round() # Add it to prescription dictionary country_name, region_name = (geo.split(' / ') + [np.nan])[:2] df_dict['CountryName'].append(country_name) df_dict['RegionName'].append(region_name) df_dict['Date'].append(date_str) for ip_col, prescribed_ip in zip(NPI_COLUMNS, prescribed_ips): df_dict[ip_col].append(prescribed_ip) # Update stringency. This calculation could include division by # the number of IPs and/or number of geos, but that would have # no effect on the ordering of candidate solutions. stringency += np.sum(geo_costs[geo] * prescribed_ips) # Create dataframe from prescriptions. pres_df =
pd.DataFrame(df_dict)
pandas.DataFrame
import os from datetime import datetime import time import tqdm import pickle import pandas as pd import random from sklearn.preprocessing import LabelEncoder import numpy as np import torch import math import copy import random from multiprocessing import Pool import multiprocessing from collections import Counter class Preprocess: def __init__(self,args): self.args = args self.train_data = None self.test_data = None def get_train_data(self): return self.train_data def get_test_data(self): return self.test_data def split_data(self, data, ratio=0.7, shuffle=True, seed=0): """ split data into two parts with a given ratio. """ if self.args.cv_strategy : if self.args.sep_grade : # valid_user_path = os.path.join(self.args.data_dir,'cv_strategy',"cv_train_2.pkl") valid_user_path = os.path.join(self.args.data_dir,"cv_valid_index.pickle") if os.path.exists(valid_user_path): with open(valid_user_path,"rb") as file : valid_idx = pickle.load(file) data_1 = data[~data['userID'].isin(valid_idx)] data_2 = data[data['userID'].isin(valid_idx)] else : valid_user_path = os.path.join(self.args.data_dir,"cv_valid_index.pickle") if os.path.exists(valid_user_path): with open(valid_user_path,"rb") as file : valid_idx = pickle.load(file) data_1 = data[~data['userID'].isin(valid_idx)] data_2 = data[data['userID'].isin(valid_idx)] # else : # train_user_path = os.path.join(self.args.data_dir,"cv_train_index.pickle") # valid_user_path = os.path.join(self.args.data_dir,"cv_valid_index.pickle") # with open(train_user_path,"rb") as file : # train_idx = pickle.load(file) # with open(valid_user_path,"rb") as file : # valid_idx = pickle.load(file) # data_1 = data[data['userID'].isin(train_idx)] # data_2 = data[data['userID'].isin(valid_idx)] else : idx_list = list(set(data['userID'])) size = int(len(idx_list) * ratio) train_idx = random.sample(idx_list,size) data_1 = data[data['userID'].isin(train_idx)] data_2 = data[~data['userID'].isin(train_idx)] return data_1, data_2 def __save_labels(self, encoder, name): le_path = os.path.join(self.args.asset_dir, name + '_classes.npy') np.save(le_path, encoder.classes_) def __preprocessing(self, df, is_train = True): # Encoding the Categorical Embedding cols = list(set(self.args.cate_col + self.args.temp_col)) # not to encode twice if not os.path.exists(self.args.asset_dir): os.makedirs(self.args.asset_dir) other = [] for col in cols: le = LabelEncoder() if col in ['assessmentItemID', 'testId', 'KnowledgeTag', 'grade', 'last_problem', 'problem_number'] : if is_train: #For UNKNOWN class a = df[col].unique().tolist() a = sorted(a) if str(type(a[0])) == "<class 'int'>" else a a = a + ['unknown'] le.fit(a) self.__save_labels(le, col) else: label_path = os.path.join(self.args.asset_dir,col+'_classes.npy') le.classes_ = np.load(label_path) df[col]= df[col].astype(str) df[col] = df[col].apply(lambda x: x if x in le.classes_ else 'unknown') #모든 컬럼이 범주형이라고 가정 df[col]= df[col].astype(str) test = le.transform(df[col]) df[col] = test else : if is_train : unq = df[col].unique().tolist() unq = sorted(unq) if str(type(unq[0])) == "<class 'int'>" else unq other += list(map(lambda x : col+'_'+str(x),unq)) df[col] = df[col].apply(lambda x : col+'_'+str(x)) else : label_path = os.path.join(self.args.asset_dir,'other_classes.npy') le.classes_ = np.load(label_path) df[col]= df[col].astype(str) df[col] = df[col].apply(lambda x : col+'_'+x) df[col] = df[col].apply(lambda x: x if x in le.classes_ else 'unknown') if other : other += ['unknown'] le = LabelEncoder() le.fit(other) self.__save_labels(le, 'other') label_path = os.path.join(self.args.asset_dir,'other_classes.npy') if os.path.exists(label_path): le.classes_ = np.load(label_path) for col in cols: if col in ['assessmentItemID', 'testId', 'KnowledgeTag', 'grade', 'last_problem', 'problem_number'] : continue else : df[col]= df[col].astype(str) test = le.transform(df[col]) df[col] = test if not is_train and self.args.sep_grade: ddf = df[df['answerCode']==-1] df = df[df.set_index(['userID','grade']).index.isin(ddf.set_index(['userID','grade']).index)] return df def __feature_engineering(self, df,file_name, is_train): data_path = os.path.join(self.args.asset_dir,f"{file_name[:-4]}_FE.pkl") # .csv빼고 if os.path.exists(data_path): df = pd.read_pickle(data_path) else : df.sort_values(by=['userID','Timestamp'], inplace=True) df['hour'] = df['Timestamp'].dt.hour df['dow'] = df['Timestamp'].dt.dayofweek diff = df.loc[:, ['userID','Timestamp']].groupby('userID').diff().fillna(pd.Timedelta(seconds=0)) diff = diff.fillna(pd.Timedelta(seconds=0)) diff = diff['Timestamp'].apply(lambda x: x.total_seconds()) # 푸는 시간 df['elapsed'] = diff df['elapsed'] = df['elapsed'].apply(lambda x : x if x <650 and x >=0 else 0) df['grade']=df['testId'].apply(lambda x : int(x[1:4])//10) df['mid'] = df['testId'].apply(lambda x : int(x[-3:])) df['problem_number'] = df['assessmentItemID'].apply(lambda x : int(x[-3:])) if is_train : sub_data_path = os.path.join("/opt/ml/input/data/train_dataset/test_data.csv") # .csv빼고 sub_df = pd.read_csv(sub_data_path) full_df = pd.concat([df,sub_df[sub_df['answerCode']!= -1]]) else : sub_data_path = os.path.join(self.args.asset_dir,"train_data_FE.csv") # .csv빼고 sub_df = pd.read_csv(sub_data_path) full_df = pd.concat([df[df['answerCode']!= -1],sub_df]) correct_t = full_df.groupby(['testId'])['answerCode'].agg(['mean', 'sum']) correct_t.columns = ["test_mean", 'test_sum'] correct_k = full_df.groupby(['KnowledgeTag'])['answerCode'].agg(['mean', 'sum']) correct_k.columns = ["tag_mean", 'tag_sum'] correct_a = full_df.groupby(['assessmentItemID'])['answerCode'].agg(['mean', 'sum']) correct_a.columns = ["ass_mean", 'ass_sum'] correct_p = full_df.groupby(['problem_number'])['answerCode'].agg(['mean', 'sum']) correct_p.columns = ["prb_mean", 'prb_sum'] correct_h = full_df.groupby(['hour'])['answerCode'].agg(['mean', 'sum']) correct_h.columns = ["hour_mean", 'hour_sum'] correct_d = full_df.groupby(['dow'])['answerCode'].agg(['mean', 'sum']) correct_d.columns = ["dow_mean", 'dow_sum'] df = pd.merge(df, correct_t, on=['testId'], how="left") df = pd.merge(df, correct_k, on=['KnowledgeTag'], how="left") df = pd.merge(df, correct_a, on=['assessmentItemID'], how="left") df = pd.merge(df, correct_p, on=['problem_number'], how="left") df = pd.merge(df, correct_h, on=['hour'], how="left") df = pd.merge(df, correct_d, on=['dow'], how="left") o_df = full_df[full_df['answerCode']==1] x_df = full_df[full_df['answerCode']==0] elp_k = full_df.groupby(['KnowledgeTag'])['elapsed'].agg('mean').reset_index() elp_k.columns = ['KnowledgeTag',"tag_elp"] elp_k_o = o_df.groupby(['KnowledgeTag'])['elapsed'].agg('mean').reset_index() elp_k_o.columns = ['KnowledgeTag', "tag_elp_o"] elp_k_x = x_df.groupby(['KnowledgeTag'])['elapsed'].agg('mean').reset_index() elp_k_x.columns = ['KnowledgeTag', "tag_elp_x"] df = pd.merge(df, elp_k, on=['KnowledgeTag'], how="left") df = pd.merge(df, elp_k_o, on=['KnowledgeTag'], how="left") df = pd.merge(df, elp_k_x, on=['KnowledgeTag'], how="left") ass_k = full_df.groupby(['assessmentItemID'])['elapsed'].agg('mean').reset_index() ass_k.columns = ['assessmentItemID',"ass_elp"] ass_k_o = o_df.groupby(['assessmentItemID'])['elapsed'].agg('mean').reset_index() ass_k_o.columns = ['assessmentItemID',"ass_elp_o"] ass_k_x = x_df.groupby(['assessmentItemID'])['elapsed'].agg('mean').reset_index() ass_k_x.columns = ['assessmentItemID',"ass_elp_x"] df = pd.merge(df, ass_k, on=['assessmentItemID'], how="left") df = pd.merge(df, ass_k_o, on=['assessmentItemID'], how="left") df =
pd.merge(df, ass_k_x, on=['assessmentItemID'], how="left")
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- # Import necessary packages import re import json import collections import numpy as np import pandas as pd from collections import Counter def read_txt(path_txt: str) -> np.array: """ Read the TXT file and convert it into numpy array :param path_txt: The path of the TXT file :return txt: The TXT info as numpy array """ txt = pd.read_table(path_txt, encoding='utf-8', keep_default_na=False) txt = np.array(txt) return txt def read_csv(path_txt: str) -> np.array: """ Read the CSV file and convert it into numpy array :param path_txt: The path of the CSV file :return txt: The CSV info as numpy array """ csv = pd.read_csv(path_txt, encoding='utf-8', keep_default_na=False) csv = np.array(csv) return csv def read_xls(path_txt: str) -> np.array: """ Read the XLS file and convert it into numpy array :param path_txt: The path of the XLS file :return txt: The XLS info as the numpy array """ xls = pd.read_excel(path_txt, keep_default_na=False) xls = np.array(xls) return xls def read_xls_sheet(path_txt: str, sheet_name: str) -> np.array: """ Read the xls' sheet file and convert it into numpy array :param sheet_name: The sheet name of the xls file :param path_txt: The path of the xls file :return txt: The xls sheet info as numpy array """ xls =
pd.read_excel(path_txt, header=None, sheet_name=sheet_name, keep_default_na=False)
pandas.read_excel
import json from pathlib import Path import pandas as pd from os import path from collections import Counter from configs import Level, LEVEL_MAP, PROCESS_METRICS_FIELDS from db.QueryBuilder import get_level_refactorings from refactoring_statistics.plot_utils import box_plot_seaborn from refactoring_statistics.query_utils import retrieve_columns, get_metrics_stable_level from utils.log import log_init, log_close, log import datetime import time INPUT_DIRECTORY = "results/predictions/reproduction/" SAVE_DIRECTORY = "results/Evaluation/reproduction/" # metrics CLASS_METRICS_Fields = ["classCbo", # "classLcom", to large for plotting "classLCC", "classTCC", "classRfc", "classWmc"] CLASS_ATTRIBUTES_QTY_Fields = ["classUniqueWordsQty", "classNumberOfMethods", "classStringLiteralsQty", "classNumberOfPublicFields", "classVariablesQty", # "classLoc" to large for plotting ] ALL_METRICS = CLASS_METRICS_Fields + CLASS_ATTRIBUTES_QTY_Fields + PROCESS_METRICS_FIELDS # import all json files in the given directory and return them as pd dataframe def import_evaluation(dir_path: str): path_list = Path(dir_path).glob('**/*.json') evaluation_data = pd.DataFrame() prediction_data = pd.DataFrame() for file_path in path_list: with open(str(file_path), 'r') as file: current_data = json.load(file) current_evaluation = json.loads(current_data["test_scores"]) current_predictions = json.loads(current_data["test_results"]) current_predictions["model_name"] = current_evaluation["model_name"] current_predictions["refactoring_name"] = current_evaluation["refactoring type"] current_evaluation['level'] = get_refactoring_level(current_evaluation["refactoring type"]) current_predictions['level'] = get_refactoring_level(current_evaluation["refactoring type"]) prediction_data = prediction_data.append(current_predictions, ignore_index=True) evaluation_data = evaluation_data.append(current_evaluation, ignore_index=True) return evaluation_data, prediction_data def extract_predictions(current_prediction_raw): return list(zip(current_prediction_raw["db_id"].values(), current_prediction_raw["label"].values(), current_prediction_raw["prediction"].values())) # extract all test scores from the given data def extract_columns(data, scores): return data[["model_name", "refactoring type", "validation_sets", "level"] + scores] def get_top_k(dict, k): if len(dict.items()) > 0: k = min(len(dict.items()), k) top_k = sorted(dict.items(), key=lambda x: abs(x[1]) if not isinstance(x[1], list) else abs(x[1][0]), reverse=True)[:k] return top_k else: return [] def extract_top_k_feature_importance(data_features, k): features = data_features["feature_importance"] features_top_k = [] for index, value in features.items(): current_features = json.loads(value) current_top_k = get_top_k(current_features, k) features_top_k.append(current_top_k) return features_top_k def extract_top_k_permutation_importance(data_features, k): features = data_features["permutation_importance"] features_top_k = [] for index, value in features.items(): current_features = json.loads(value) for key, current_validation in current_features.items(): current_top_k = get_top_k(current_validation, k) features_top_k.append(current_top_k) return features_top_k def extract_top_k_coef(data_features, k): features = data_features["feature_coefficients"] features_top_k = [] for index, value in features.items(): current_features = json.loads(value) current_top_k = get_top_k(current_features, k) features_top_k.append(current_top_k) return features_top_k def get_refactoring_level(refactoring_name): for level in Level: refactorings = LEVEL_MAP[level] if refactoring_name in refactorings: return level return Level.NONE # extract all feature importances from the given data # Also enrich the feature importance by filtering for the top 1, 5 and 10 features and filtering for > 1.% features def add_feature_importances(data, feature_importances): data_features = extract_columns(data, feature_importances) # extract top k for k in [1, 5, 10]: data_features[f"feature_importance Top-{k}"] = extract_top_k_feature_importance(data_features, k) data_features[f"feature_coefficients Top-{k}"] = extract_top_k_coef(data_features, k) data_features[f"permutation_importance Top-{k}"] = extract_top_k_permutation_importance(data_features, k) return data_features def extract_feature_importances_statistic(data_features, feature_importances): columns = [] for k in [1, 5, 10]: for importance in feature_importances: columns += [f"{importance} Top-{k}"] grouped_importances_model_level = data_features.groupby(['model_name', 'level'])[columns].agg(count_appearances) grouped_importances_model = data_features.groupby(['model_name'])[columns].agg(count_appearances) return
pd.concat([grouped_importances_model_level, grouped_importances_model])
pandas.concat
import json import networkx as nx import numpy as np import os import pandas as pd from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from config import logger, config def read_profile_data(): profile_na = np.zeros(67) profile_na[0] = -1 profile_na = pd.DataFrame(profile_na.reshape(1, -1)) profile_df = pd.read_csv(config.profile_file) profile_na.columns = profile_df.columns profile_df = profile_df.append(profile_na) return profile_df def merge_raw_data(): tr_queries = pd.read_csv(config.train_query_file, parse_dates=['req_time']) te_queries = pd.read_csv(config.test_query_file, parse_dates=['req_time']) tr_plans = pd.read_csv(config.train_plan_file, parse_dates=['plan_time']) te_plans = pd.read_csv(config.test_plan_file, parse_dates=['plan_time']) tr_click = pd.read_csv(config.train_click_file) trn = tr_queries.merge(tr_click, on='sid', how='left') trn = trn.merge(tr_plans, on='sid', how='left') trn = trn.drop(['click_time'], axis=1) trn['click_mode'] = trn['click_mode'].fillna(0) tst = te_queries.merge(te_plans, on='sid', how='left') tst['click_mode'] = -1 df = pd.concat([trn, tst], axis=0, sort=False) df = df.drop(['plan_time'], axis=1) df = df.reset_index(drop=True) df['weekday'] = df['req_time'].dt.weekday df['day'] = df['req_time'].dt.day df['hour'] = df['req_time'].dt.hour df = df.drop(['req_time'], axis=1) logger.info('total data size: {}'.format(df.shape)) logger.info('data columns: {}'.format(', '.join(df.columns))) return df def extract_plans(df): plans = [] for sid, plan in tqdm(zip(df['sid'].values, df['plans'].values)): try: p = json.loads(plan) for x in p: x['sid'] = sid plans.extend(p) except: pass return pd.DataFrame(plans) def generate_od_features(df): feat = df[['o','d']].drop_duplicates() feat = feat.merge(df.groupby('o')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='o') feat.rename(columns={'day': 'o_nunique_day', 'hour': 'o_nunique_hour', 'pid': 'o_nunique_pid', 'click_mode': 'o_nunique_click'}, inplace=True) feat = feat.merge(df.groupby('d')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='d') feat.rename(columns={'day': 'd_nunique_day', 'hour': 'd_nunique_hour', 'pid': 'd_nunique_pid', 'click_mode': 'd_nunique_click'}, inplace=True) feat = feat.merge(df.groupby(['o', 'd'])[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on=['o', 'd']) feat.rename(columns={'day': 'od_nunique_day', 'hour': 'od_nunique_hour', 'pid': 'od_nunique_pid', 'click_mode': 'od_nunique_click'}, inplace=True) return feat def generate_pid_features(df): feat = df.groupby('pid')[['hour', 'day']].nunique().reset_index() feat.rename(columns={'hour': 'pid_nunique_hour', 'day': 'pid_nunique_day'}, inplace=True) feat['nunique_hour_d_nunique_day'] = feat['pid_nunique_hour'] / feat['pid_nunique_day'] feat = feat.merge(df.groupby('pid')[['o', 'd']].nunique().reset_index(), how='left', on='pid') feat.rename(columns={'o': 'pid_nunique_o', 'd': 'pid_nunique_d'}, inplace=True) feat['nunique_o_d_nunique_d'] = feat['pid_nunique_o'] / feat['pid_nunique_d'] return feat def generate_od_cluster_features(df): G = nx.Graph() G.add_nodes_from(df['o'].unique().tolist()) G.add_nodes_from(df['d'].unique().tolist()) edges = df[['o','d']].apply(lambda x: (x[0],x[1]), axis=1).tolist() G.add_edges_from(edges) cluster = nx.clustering(G) cluster_df = pd.DataFrame([{'od': key, 'cluster': cluster[key]} for key in cluster.keys()]) return cluster_df def gen_od_feas(data): data['o1'] = data['o'].apply(lambda x: float(x.split(',')[0])) data['o2'] = data['o'].apply(lambda x: float(x.split(',')[1])) data['d1'] = data['d'].apply(lambda x: float(x.split(',')[0])) data['d2'] = data['d'].apply(lambda x: float(x.split(',')[1])) data = data.drop(['o', 'd'], axis=1) return data def gen_plan_feas(data): n = data.shape[0] mode_list_feas = np.zeros((n, 12)) max_dist, min_dist, mean_dist, std_dist = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_price, min_price, mean_price, std_price = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_eta, min_eta, mean_eta, std_eta = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) min_dist_mode, max_dist_mode, min_price_mode, max_price_mode, min_eta_mode, max_eta_mode, first_mode = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) mode_texts = [] for i, plan in tqdm(enumerate(data['plans'].values)): try: cur_plan_list = json.loads(plan) except: cur_plan_list = [] if len(cur_plan_list) == 0: mode_list_feas[i, 0] = 1 first_mode[i] = 0 max_dist[i] = -1 min_dist[i] = -1 mean_dist[i] = -1 std_dist[i] = -1 max_price[i] = -1 min_price[i] = -1 mean_price[i] = -1 std_price[i] = -1 max_eta[i] = -1 min_eta[i] = -1 mean_eta[i] = -1 std_eta[i] = -1 min_dist_mode[i] = -1 max_dist_mode[i] = -1 min_price_mode[i] = -1 max_price_mode[i] = -1 min_eta_mode[i] = -1 max_eta_mode[i] = -1 mode_texts.append('word_null') else: distance_list = [] price_list = [] eta_list = [] mode_list = [] for tmp_dit in cur_plan_list: distance_list.append(int(tmp_dit['distance'])) if tmp_dit['price'] == '': price_list.append(0) else: price_list.append(int(tmp_dit['price'])) eta_list.append(int(tmp_dit['eta'])) mode_list.append(int(tmp_dit['transport_mode'])) mode_texts.append( ' '.join(['word_{}'.format(mode) for mode in mode_list])) distance_list = np.array(distance_list) price_list = np.array(price_list) eta_list = np.array(eta_list) mode_list = np.array(mode_list, dtype='int') mode_list_feas[i, mode_list] = 1 distance_sort_idx = np.argsort(distance_list) price_sort_idx = np.argsort(price_list) eta_sort_idx = np.argsort(eta_list) max_dist[i] = distance_list[distance_sort_idx[-1]] min_dist[i] = distance_list[distance_sort_idx[0]] mean_dist[i] = np.mean(distance_list) std_dist[i] = np.std(distance_list) max_price[i] = price_list[price_sort_idx[-1]] min_price[i] = price_list[price_sort_idx[0]] mean_price[i] = np.mean(price_list) std_price[i] = np.std(price_list) max_eta[i] = eta_list[eta_sort_idx[-1]] min_eta[i] = eta_list[eta_sort_idx[0]] mean_eta[i] = np.mean(eta_list) std_eta[i] = np.std(eta_list) first_mode[i] = mode_list[0] max_dist_mode[i] = mode_list[distance_sort_idx[-1]] min_dist_mode[i] = mode_list[distance_sort_idx[0]] max_price_mode[i] = mode_list[price_sort_idx[-1]] min_price_mode[i] = mode_list[price_sort_idx[0]] max_eta_mode[i] = mode_list[eta_sort_idx[-1]] min_eta_mode[i] = mode_list[eta_sort_idx[0]] feature_data = pd.DataFrame(mode_list_feas) feature_data.columns = ['mode_feas_{}'.format(i) for i in range(12)] feature_data['max_dist'] = max_dist feature_data['min_dist'] = min_dist feature_data['mean_dist'] = mean_dist feature_data['std_dist'] = std_dist feature_data['max_price'] = max_price feature_data['min_price'] = min_price feature_data['mean_price'] = mean_price feature_data['std_price'] = std_price feature_data['max_eta'] = max_eta feature_data['min_eta'] = min_eta feature_data['mean_eta'] = mean_eta feature_data['std_eta'] = std_eta feature_data['max_dist_mode'] = max_dist_mode feature_data['min_dist_mode'] = min_dist_mode feature_data['max_price_mode'] = max_price_mode feature_data['min_price_mode'] = min_price_mode feature_data['max_eta_mode'] = max_eta_mode feature_data['min_eta_mode'] = min_eta_mode feature_data['first_mode'] = first_mode logger.info('mode tfidf...') tfidf_enc = TfidfVectorizer(ngram_range=(1, 2)) tfidf_vec = tfidf_enc.fit_transform(mode_texts) svd_enc = TruncatedSVD(n_components=10, n_iter=20, random_state=2019) mode_svd = svd_enc.fit_transform(tfidf_vec) mode_svd = pd.DataFrame(mode_svd) mode_svd.columns = ['svd_mode_{}'.format(i) for i in range(10)] data = pd.concat([data, feature_data, mode_svd], axis=1) data = data.drop(['plans'], axis=1) return data def gen_profile_feas(data): profile_data = read_profile_data() x = profile_data.drop(['pid'], axis=1).values svd = TruncatedSVD(n_components=20, n_iter=20, random_state=2019) svd_x = svd.fit_transform(x) svd_feas = pd.DataFrame(svd_x) svd_feas.columns = ['svd_fea_{}'.format(i) for i in range(20)] svd_feas['pid'] = profile_data['pid'].values data['pid'] = data['pid'].fillna(-1) data = data.merge(svd_feas, on='pid', how='left') return data def group_weekday_and_hour(row): if row['weekday'] == 0 or row['weekday'] == 6: w = 0 else: w = row['weekday'] if row['hour'] > 7 and row['hour'] < 18: # 7:00 - 18:00 h = row['hour'] elif row['hour'] >= 18 and row['hour'] < 21: # 18:00 - 21:00 h = 1 elif row['hour'] >= 21 or row['hour'] < 6: # 21:00 - 6:00 h = 0 else: # 6:00 - 7:00 h = 2 return str(w) + '_' + str(h) def gen_ratio_feas(data): data['dist-d-eta'] = data['mean_dist'] / data['mean_eta'] data['price-d-dist'] = data['mean_price'] / data['mean_dist'] data['price-d-eta'] = data['mean_price'] / data['mean_eta'] data['o1-d-d1'] = data['o1'] / data['d1'] data['o2-d-d2'] = data['o2'] / data['d2'] return data def gen_fly_dist_feas(data): data['fly-dist'] = ((data['d1'] - data['o1'])**2 + (data['d2'] - data['o2'])**2)**0.5 data['fly-dist-d-dist'] = data['fly-dist'] / data['mean_dist'] data['fly-dist-d-eta'] = data['fly-dist'] / data['mean_eta'] data['price-d-fly-dist'] = data['mean_price'] / data['fly-dist'] return data def gen_aggregate_profile_feas(data): aggr = data.groupby('pid')['sid'].agg(['count']) aggr.columns = ['%s_%s' % ('sid', col) for col in aggr.columns.values] aggr = aggr.reset_index() aggr.loc[aggr['pid'] == -1.0,'sid_count'] = 0 # reset in case pid == -1 data = data.merge(aggr, how='left', on=['pid']) return data def gen_pid_feat(data): feat = pd.read_csv(config.pid_feature_file) data = data.merge(feat, how='left', on='pid') return data def gen_od_feat(data): feat = pd.read_csv(config.od_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) logger.info('sid shape={}'.format(sid.shape)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) logger.info('feature shape={}'.format(feat.shape)) logger.info('feature columns={}'.format(feat.columns)) data = data.merge(feat, how='left', on='sid') click_cols = [c for c in feat.columns if c.endswith('click')] data.drop(click_cols, axis=1, inplace=True) return data def gen_od_cluster_feat(data): feat = pd.read_csv(config.od_cluster_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) f = feat.copy() feat = sid.merge(feat, how='left', left_on='o', right_on='od').drop(['od','o'], axis=1) feat.rename(columns={'cluster': 'o_cluster'}, inplace=True) feat = feat.merge(f, how='left', left_on='d', right_on='od').drop(['od','d'], axis=1) feat.rename(columns={'cluster': 'd_cluster'}, inplace=True) data = data.merge(feat, how='left', on='sid') return data def gen_od_eq_feat(data): data['o1-eq-d1'] = (data['o1'] == data['d1']).astype(int) data['o2-eq-d2'] = (data['o2'] == data['d2']).astype(int) data['o-eq-d'] = data['o1-eq-d1']*data['o2-eq-d2'] data['o1-m-o2'] = np.abs(data['o1'] - data['o2']) data['d1-m-d2'] = np.abs(data['d1'] - data['d2']) data['od_area'] = data['o1-m-o2']*data['d1-m-d2'] data['od_ratio'] = data['o1-m-o2']/data['d1-m-d2'] return data def gen_od_mode_cnt_feat(data): feat = pd.read_csv(config.od_mode_cnt_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid =
pd.concat((tr_sid, te_sid))
pandas.concat
import numpy as np import pandas as pd import scipy.stats as stats from faker import Faker from preparation.transformers.base import BaseTransformer MAPS = {} class CategoricalTransformer(BaseTransformer): mapping = None intervals = None dtype = None def __init__(self, anonymize=False, fuzzy=False, clip=False): self.anonymize = anonymize self.fuzzy = fuzzy self.clip = clip def _get_faker(self): if isinstance(self.anonymize, (tuple, list)): category, *args = self.anonymize else: category = self.anonymize args = tuple() try: faker_method = getattr(Faker(), category) def faker(): return faker_method(*args) return faker except AttributeError as attrerror: error = 'Category "{}" couldn\'t be found on faker'.format(self.anonymize) raise ValueError(error) from attrerror def _anonymize(self, data): faker = self._get_faker() uniques = data.unique() fake_data = [faker() for x in range(len(uniques))] mapping = dict(zip(uniques, fake_data)) MAPS[id(self)] = mapping return data.map(mapping) @staticmethod def _get_intervals(data): frequencies = data.value_counts(dropna=False).reset_index() # Sort also by index to make sure that results are always the same name = data.name or 0 sorted_freqs = frequencies.sort_values([name, 'index'], ascending=False) frequencies = sorted_freqs.set_index('index', drop=True)[name] start = 0 end = 0 elements = len(data) intervals = dict() for value, frequency in frequencies.items(): prob = frequency / elements end = start + prob mean = (start + end) / 2 std = (end - mean) / 24 intervals[value] = (start, end, mean, std) start = end return intervals def fit(self, data): self.mapping = dict() self.dtype = data.dtype if isinstance(data, np.ndarray): data = pd.Series(data) if self.anonymize: data = self._anonymize(data) self.intervals = self._get_intervals(data) def _get_value(self, category): start, end, mean, std = self.intervals[category] min_value = (start - mean) / std max_value = (end - mean) / std if self.fuzzy: return stats.truncnorm.rvs(min_value, max_value, loc=mean, scale=std) return mean def transform(self, data): if not isinstance(data, pd.Series): data = pd.Series(data) if self.anonymize: data = data.map(MAPS[id(self)]) return data.fillna(np.nan).apply(self._get_value).to_numpy() def _normalize(self, data): if self.clip: return data.clip(0, 1) return np.mod(data, 1) def reverse_transform(self, data): if not isinstance(data, pd.Series): if len(data.shape) > 1: data = data[:, 0] data = pd.Series(data) data = self._normalize(data) result = pd.Series(index=data.index, dtype=self.dtype) for category, values in self.intervals.items(): start, end = values[:2] result[(start < data) & (data < end)] = category return result class OneHotEncodingTransformer(BaseTransformer): dummy_na = None dummies = None def __init__(self, error_on_unknown=True): self.error_on_unknown = error_on_unknown @staticmethod def _prepare_data(data): if isinstance(data, list): data = np.array(data) if len(data.shape) > 2: raise ValueError('Unexpected format.') if len(data.shape) == 2: if data.shape[1] != 1: raise ValueError('Unexpected format.') data = data[:, 0] return data def fit(self, data): data = self._prepare_data(data) self.dummy_na = pd.isnull(data).any() self.dummies = list(pd.get_dummies(data, dummy_na=self.dummy_na).columns) def transform(self, data): data = self._prepare_data(data) dummies =
pd.get_dummies(data, dummy_na=self.dummy_na)
pandas.get_dummies
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '<NAME>' from pathlib import Path import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from gensim.models import LdaModel from gensim.matutils import Sparse2Corpus from scipy import sparse from itertools import product from random import shuffle from time import time import spacy import logging pd.set_option('display.expand_frame_repr', False) np.random.seed(42) nlp = spacy.load('en') logging.basicConfig( filename='gensim.log', level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%H:%M:%S') def format_time(t): m_, s = divmod(t, 60) h, m = divmod(m_, 60) return f'{h:>02.0f}:{m:>02.0f}:{s:>02.0f}' clean_text = Path('clean_text.txt') # experiment setup cols = ['vocab_size', 'test_vocab', 'min_df', 'max_df', 'binary', 'num_topics', 'passes', 'perplexity'] experiment_path = Path('experiments') # get text files clean_docs = clean_text.read_text().split('\n') print('\n', len(clean_docs)) train_docs, test_docs = train_test_split(clean_docs, test_size=.1) # dtm params min_dfs = [50, 100, 250, 500] max_dfs = [.1, .25, .5, 1.0] binarys = [True, False] dtm_params = list(product(*[min_dfs, max_dfs, binarys])) n = len(dtm_params) shuffle(dtm_params) topicss = [3, 5, 7, 10, 15, 20, 25, 50] passess = [1, 25] model_params = list(product(*[topicss, passess])) corpus = id2word = train_corpus = train_tokens = test_corpus = vocab_size = test_vocab = None start = time() for i, (min_df, max_df, binary) in enumerate(dtm_params, 1): print(min_df, max_df, binary) result = [] vocab_path = experiment_path / str(min_df) / str(max_df) / str(int(binary)) if vocab_path.exists(): continue else: vocab_path.mkdir(exist_ok=True, parents=True) vectorizer = CountVectorizer(min_df=min_df, max_df=max_df, binary=binary) train_dtm = vectorizer.fit_transform(train_docs) train_corpus = Sparse2Corpus(train_dtm, documents_columns=False) train_tokens = vectorizer.get_feature_names() test_dtm = vectorizer.transform(test_docs) test_corpus = Sparse2Corpus(test_dtm, documents_columns=False) test_vocab = test_dtm.count_nonzero() dtm = vectorizer.fit_transform(clean_docs) sparse.save_npz(vocab_path / f'dtm.npz', dtm) tokens = vectorizer.get_feature_names() vocab_size = len(tokens) pd.Series(tokens).to_csv(vocab_path / f'tokens.csv', index=False) id2word =
pd.Series(tokens)
pandas.Series
"""Concept analysis functionality. For details on the workflow of a concept analysis see :py:meth:`ConceptAnalysis.analysis`. In short: :Input: All of - The *concept* (defined via concept data) - The *main model* - The *layers* to analyse and compare :Output: All of - The *layer* hosting the best embedding, - The *best embedding*, - The *quality metric values* for the best embedding """ # Copyright (c) 2020 Continental Automotive GmbH import enum import logging import os from typing import Tuple, Dict, Any, Sequence, Callable, List, Optional, Union import numpy as np import pandas as pd import torch from hybrid_learning.datasets import data_visualization as datavis from . import visualization as vis from .concepts import ConceptTypes, Concept, SegmentationConcept2D from .embeddings import ConceptEmbedding # For type hints: from .models import ConceptDetectionModel2D, ConceptDetection2DTrainTestHandle LOGGER = logging.getLogger(__name__) class EmbeddingReduction(enum.Enum): """Aggregator callables to get the mean from a list of embeddings.""" MEAN_NORMALIZED_DIST = (ConceptEmbedding.mean,) """Embedding with distance function the mean of those of the normed representations""" MEAN_DIST = (ConceptEmbedding.mean_by_distance,) """Embedding with distance the mean of the distance functions""" MEAN_ANGLE = (ConceptEmbedding.mean_by_angle,) """Embedding with distance function the mean of the distance functions weighted by cosine distance of the normal vectors""" DEFAULT = MEAN_NORMALIZED_DIST """The default instance to be used.""" def __init__(self, func: Callable[[Sequence[ConceptEmbedding]], ConceptEmbedding]): """The init routine for enum members makes function available as instance fields. It is automatically called for all defined enum instances. """ self.function: Callable[[Sequence[ConceptEmbedding]], ConceptEmbedding] = func """Actual function that reduces a list of embeddings to a new one. .. note:: The function is manually saved as attribute during ``__init__`` due to the following issue: Enums currently do not support functions as values, as explained in `this <https://stackoverflow.com/questions/40338652>`_ and `this discussion <https://mail.python.org/pipermail/python-ideas/2017-April/045435.html>`_. The chosen workaround follows `this suggestion <https://stackoverflow.com/a/30311492>`_ *(though the code is not used)*. """ def __call__(self, embeddings: Sequence[ConceptEmbedding]) -> ConceptEmbedding: """Call aggregation function behind the instance on the embeddings.""" return self.function(embeddings) class ConceptAnalysis: r"""Handle for conducting a concept embedding analysis. Saves the analysis settings and can run a complete analysis. The core methods are: - :py:meth:`analysis`: plain analysis (collect :math:`\text{cross_val_runs}\cdot\text{num_val_splits}` embeddings for each layer in :py:attr`layer_infos`) - :py:meth:`best_embedding`: aggregate embeddings of an analysis per layer, then choose best one - :py:meth:`best_embedding_with_logging`: combination of the latter two with automatic logging and result saving """ def __init__(self, concept: Concept, model: torch.nn.Module, layer_infos: Union[Dict[str, Dict[str, Any]], Sequence[str]] = None, cross_val_runs: int = 1, num_val_splits: int = 5, emb_reduction: EmbeddingReduction = EmbeddingReduction.DEFAULT, show_train_progress_bars: bool = True, concept_model_args: Dict[str, Any] = None, train_val_args: Dict[str, Any] = None, ): """Init. :param concept: concept to find the embedding of :param model: the DNN :param layer_infos: information about the layers in which to look for the best concept embedding; it may be given either as sequence of layer IDs or as dict where the indices are the layer keys in the model's :py:meth:`torch.nn.Module.named_modules` dict; used keys: - kernel_size: fixed kernel size to use for this layer (overrides value from ``concept_model_args``) - lr: learning rate to use :param num_val_splits: the number of validation splits to use for each cross-validation run :param cross_val_runs: for a layer, several concept models are trained in different runs; the runs differ by model initialization, and the validation data split; ``cross_val_runs`` is the number of cross-validation runs, i.e. collections of runs with num_val_splits distinct validation sets each :param emb_reduction: aggregation function to reduce list of embeddings to one :param show_train_progress_bars: whether to show the training progress bars of the models :param concept_model_args: dict with arguments for the concept model initialization :param train_val_args: any further arguments to initialize the concept model handle """ if not concept.type == ConceptTypes.SEGMENTATION: raise NotImplementedError( ("Analysis only available for segmentation concepts," "but concept was of type {}").format(concept.type)) self.concept: Concept = concept """The concept to find the embedding for.""" self.model: torch.nn.Module = model """The model in which to find the embedding.""" self.layer_infos: Dict[str, Dict[str, Any]] = layer_infos \ if isinstance(layer_infos, dict) \ else {l_id: {} for l_id in layer_infos} """Information about the layers in which to look for the best concept embedding; the indices are the layer keys in the model's :py:meth:`torch.nn.Module.named_modules` dict""" self.cross_val_runs: int = cross_val_runs """The number of cross-validation runs to conduct for each layer. A cross-validation run consists of :py:attr:`num_val_splits` training runs with distinct validation sets. The resulting embeddings of all runs of all cross-validation runs are then used to obtain the layer's best concept embedding.""" self.num_val_splits: int = num_val_splits """The number of validation splits per cross-validation run.""" self.emb_reduction: EmbeddingReduction = emb_reduction """Aggregation function to reduce a list of embeddings from several runs to one.""" self.show_train_progress_bars: bool = show_train_progress_bars """Whether to show the training progress bars of the models""" self.train_val_args: Dict[str, Any] = train_val_args \ if train_val_args is not None else {} """Any training and evaluation arguments for the concept model initialization.""" self.concept_model_args: Dict[str, Any] = concept_model_args \ if concept_model_args is not None else {} """Any arguments for initializing a new concept model.""" @property def settings(self) -> Dict[str, Any]: """Settings dict to reproduce instance.""" return dict( concept=self.concept, model=self.model, layer_infos=self.layer_infos, cross_val_runs=self.cross_val_runs, num_val_splits=self.num_val_splits, emb_reduction=self.emb_reduction, show_train_progress_bars=self.show_train_progress_bars, train_val_args=self.train_val_args, concept_model_args=self.concept_model_args ) def __repr__(self): setts = self.settings # handle dict attribute representation for k, val in setts.items(): if isinstance(val, dict) and len(val) > 0: setts[k] = '{\n' + ',\n'.join( ["\t{!s}:\t{!s}".format(sub_k, sub_v) for sub_k, sub_v in val.items()]) + '\n}' return (str(self.__class__.__name__) + '(\n' + ',\n'.join( ["{!s} =\t{!s}".format(k, v) for k, v in setts.items()]) + '\n)') def best_embedding(self, analysis_results: Dict[ str, Dict[int, Tuple[ConceptEmbedding, pd.Series]]] = None) -> ConceptEmbedding: """Conduct an analysis and from results derive the best embedding. :param analysis_results: optionally the results of a previously run analysis; defaults to running a new analysis via :py:meth:`analysis` :return: the determined best embedding of all layers analysed """ analysis_results = analysis_results or self.analysis() best_embs_stds_stats: Dict[ str, Tuple[ConceptEmbedding, Tuple, pd.Series]] = {} for layer_id, results_per_run in analysis_results.items(): best_embs_stds_stats[layer_id] = \ self.embedding_reduction(results_per_run) best_layer_id = self.best_layer_from_stats(best_embs_stds_stats) LOGGER.info("Concept %s final layer: %s", self.concept.name, best_layer_id) best_embedding, _, _ = best_embs_stds_stats[best_layer_id] return best_embedding def analysis(self) -> Dict[str, Dict[int, Tuple[ConceptEmbedding, pd.Series]]]: """Conduct a concept embedding analysis. For each layer in :py:attr:`layer_infos`: - train :py:attr:`cross_val_runs` x :py:attr:`num_val_splits` concept models, - collect their evaluation results, - convert them to embeddings. :return: a dictionary of ``{layer_id: {run: (embedding, pandas.Series with {pre_: metric_val}}}`` """ results_per_layer: Dict[ str, Dict[int, Tuple[ConceptEmbedding, pd.Series]]] = {} for layer_id in self.layer_infos: results_per_run: Dict[int, Tuple[ConceptEmbedding, pd.Series]] = \ self.analysis_for_layer(layer_id) results_per_layer[layer_id] = results_per_run return results_per_layer @classmethod def analysis_results_to_pandas(cls, analysis_results): """Provide :py:class:`pandas.DataFrame` multi-indexed by layer and run w/ info for each run. The information for each run is the one obtained by :py:meth:`emb_info_to_pandas`. :param analysis_results: analysis results in the for as produced by :py:meth:`analysis` :returns: a :py:class:`pandas.DataFrame` with run result information multi-indexed by ``(layer, run)`` """ return pd.DataFrame({(layer_id, run): cls.emb_info_to_pandas(emb, stats) for layer_id, runs in analysis_results.items() for run, (emb, stats) in runs.items() }).transpose() @classmethod def best_emb_infos_to_pandas(cls, results: Dict[str, Tuple[ ConceptEmbedding, Tuple[np.ndarray, float, float], pd.Series]]) -> pd.DataFrame: """Provide :py:class:`pandas.DataFrame` indexed by layer ID wt/ info about embeddings. The format of results must be a dictionary indexed by the layer ID and with values as provided by :py:meth:`embedding_reduction` """ return pd.DataFrame({layer_id: cls.emb_info_to_pandas(emb, stats, var) for layer_id, (emb, var, stats) in results.items() }).transpose() @classmethod def save_best_emb_results( cls, results: Dict[str, Tuple[ConceptEmbedding, Tuple[np.ndarray, float, float], pd.Series]], folder_path: str): """Save results of embedding reduction. The format of results must be a dict with layer IDs as keys and values as provided by :py:meth:`embedding_reduction`. """ info = cls.best_emb_infos_to_pandas(results) info['embedding'] = None for layer in info.index: emb: ConceptEmbedding = results[layer][0] emb_fn = "{} best.npz".format(layer) # Save and note in the info frame: emb.save(os.path.join(folder_path, emb_fn)) info.loc[layer, 'embedding'] = emb_fn info.to_csv(os.path.join(folder_path, "best_emb_stats.csv")) @classmethod def save_analysis_results(cls, results: Dict[str, Dict[ int, Tuple[ConceptEmbedding, pd.Series]]], folder_path: str): """Save analysis results. The format is one retrievable by :py:meth:`load_analysis_results`. The results are saved in the following files within ``folder_path`` - ``<layer> <run>.npz``: npz file with embedding resulting from ``<run>`` on ``<layer>``; can be loaded to an embedding using :py:meth:`hybrid_learning.concepts.embeddings.ConceptEmbedding.load` - ``stats.csv``: CSV file holding a :py:class:`pandas.DataFrame` with each rows holding an embedding statistics; additional columns are ``'layer'``, ``'run'``, and ``'embedding'``, where the ``'embedding'`` column holds the path to the npz-saved embedding corresponding of the row relative to the location of ``stats.csv`` :param results: results dictionary in the format returned by :py:meth:`analysis` :param folder_path: the root folder to save files under; must not yet exist """ info = cls.analysis_results_to_pandas(results) info['embedding'] = None for layer, run in info.index: emb: ConceptEmbedding = results[layer][run][0] emb_fn = "{} {}.npz".format(layer, run) # Save and note in the info frame: emb.save(os.path.join(folder_path, emb_fn)) info.loc[(layer, run), 'embedding'] = emb_fn info.to_csv(os.path.join(folder_path, "stats.csv")) @staticmethod def load_analysis_results(folder_path: str ) -> Dict[str, Dict[int, Tuple[ConceptEmbedding, pd.Series]]]: """Load analysis results previously saved. The saving format is assumed to be that of :py:meth:`save_analysis_results`.""" if not os.path.isdir(folder_path): raise ValueError("Folder {} does not exist!".format(folder_path)) stats_frame = pd.read_csv(os.path.join(folder_path, "stats.csv")) assert all([col in stats_frame.columns for col in ("layer", "run", "embedding")]) stats_frame.set_index(['layer', 'run']) layers = stats_frame.index.get_level_values('layer').unique() runs = stats_frame.index.get_level_values('run').unique() analysis_results = {layer: {run: None for run in runs} for layer in layers} for layer in layers: for run in runs: row = stats_frame.loc[(layer, run)] emb = ConceptEmbedding.load( os.path.join(folder_path, row['embedding'])) stat = row.drop('embedding', axis=1) analysis_results[layer][run] = (emb, stat) return analysis_results def analysis_for_layer(self, layer_id: str ) -> Dict[int, Tuple[ConceptEmbedding, pd.Series]]: """Get a concept embedding of the given concept in the given layer. :param layer_id: ID of the layer to find embedding in; key in :py:attr:`layer_infos` :return: a tuple of the best found embedding, the standard deviation, and its performance """ c_model = self.concept_model_for_layer(layer_id) c_handle: ConceptDetection2DTrainTestHandle = \ self.concept_model_handle(c_model) if 'lr' in self.layer_infos[layer_id]: c_handle.optimizer.lr = self.layer_infos[layer_id]['lr'] stats_per_run = {} for cross_val_run in range(self.cross_val_runs): states, _, _ = zip(*c_handle.cross_validate( num_splits=self.num_val_splits, run_info_templ=("{}, cv {}/{}, ".format( layer_id, cross_val_run + 1, self.cross_val_runs) + "run {run}/{runs}"), show_progress_bars=self.show_train_progress_bars)) for split, state_dict in enumerate(states): c_model.load_state_dict(state_dict) embedding = c_model.to_embedding() metrics: pd.Series = self.evaluate_embedding(embedding) # storing & logging run = split + cross_val_run * self.num_val_splits stats_per_run[run] = (embedding, metrics) context = "Concept {}, layer {}, run {}".format( self.concept.name, layer_id, run) LOGGER.info("%s:\n%s", context, self.emb_info_to_string(embedding, metrics)) return stats_per_run def concept_model_handle(self, c_model: ConceptDetectionModel2D = None, emb: ConceptEmbedding = None, layer_id: str = None ) -> ConceptDetection2DTrainTestHandle: """Train and eval handle for the given concept model. The concept model to handle can either be specified directly or is created from an embedding or from a given ``layer_id``. :param c_model: the concept model to provide a handle for :param emb: if ``c_model`` is not given, it is initialized using :py:meth:`concept_model_from_embedding` on ``emb`` :param layer_id: if c_model and emb is not given, it is initialized using :py:meth:`concept_model_for_layer` on ``layer_id`` :return: a handle for the specified or created concept model """ if c_model is None: if emb is not None: c_model = self.concept_model_from_embedding(emb) elif layer_id is not None: c_model = self.concept_model_for_layer(layer_id) else: raise ValueError("Either c_model, emb, or layer_id must " "be given.") return ConceptDetection2DTrainTestHandle(c_model, **self.train_val_args) def concept_model_for_layer(self, layer_id): """Return a concept model for the given layer ID. :param layer_id: ID of the layer the concept model should be attached to; key in :py:attr:`layer_infos` :returns: concept model for :py:attr:`concept` attached to given layer in :py:attr:`model` """ c_model: ConceptDetectionModel2D = ConceptDetectionModel2D( concept=SegmentationConcept2D.new(self.concept), model=self.model, layer_id=layer_id, **{'kernel_size': self.layer_infos[layer_id].get('kernel_size', None), **self.concept_model_args} ) return c_model @staticmethod def concept_model_from_embedding(embedding: ConceptEmbedding ) -> ConceptDetectionModel2D: """Get concept model from embedding for training and eval.""" return ConceptDetectionModel2D.from_embedding(embedding) @staticmethod def emb_info_to_string( emb: ConceptEmbedding, stats: pd.Series = None, std_dev: Tuple[np.ndarray, float, float] = None) -> str: """Printable quick info about the given embedding with stats (and standard deviation).""" info: pd.Series = ConceptAnalysis.emb_info_to_pandas(emb, stats, std_dev=std_dev) # Formatting float_format: str = "{: < 14.6f}" exp_format: str = "{: < 14.6e}" for idx in [i for i in info.index if "std" in i]: info[idx] = exp_format.format(info[idx]) return info.to_string(float_format=float_format.format) @staticmethod def emb_info_to_pandas(emb: ConceptEmbedding, stats: pd.Series = None, std_dev: Tuple[np.ndarray, float, float] = None ) -> pd.Series: """Quick info about embedding with stats (and standard dev) as :py:class:`pandas.Series`.""" stats_info = stats if stats is not None else {} emb_info = {"normal vec len": np.linalg.norm(emb.normal_vec), "support factor": float(emb.support_factor), "scaling factor": float(emb.scaling_factor)} std_info = {"std dev normal vec (len)": np.linalg.norm(std_dev[0]), "std dev support factor": std_dev[1], "std dev scaling factor": std_dev[2]} \ if std_dev is not None else {} return
pd.Series({**stats_info, **emb_info, **std_info})
pandas.Series
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = pd.DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = pd.DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = pd.DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = pd.DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = pd.DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = pd.DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = pd.Series(dtype=np.float64) result = df + ser expected = pd.DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) result = df == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # non-float case should not raise on comparison df2 = pd.DataFrame(df.values.view("M8[ns]"), columns=df.columns) result = df2 == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_zero_len_frame_with_series_corner_cases(): # GH#28600 df = pd.DataFrame(columns=["A", "B"], dtype=np.float64) ser = pd.Series([1, 2], index=["A", "B"]) result = df + ser expected = df tm.assert_frame_equal(result, expected) def test_frame_single_columns_object_sum_axis_1(): # GH 13758 data = { "One": pd.Series(["A", 1.2, np.nan]), } df = pd.DataFrame(data) result = df.sum(axis=1) expected = pd.Series(["A", 1.2, 0]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------- # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestFrameArithmeticUnsorted: def test_frame_add_tz_mismatch_converts_to_utc(self): rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") df = pd.DataFrame(np.random.randn(len(rng)), index=rng, columns=["a"]) df_moscow = df.tz_convert("Europe/Moscow") result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_align_frame(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = pd.DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) half = ts[::2] result = ts + half.take(np.random.permutation(len(half))) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "op", [operator.add, operator.sub, operator.mul, operator.truediv] ) def test_operators_none_as_na(self, op): df = DataFrame( {"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object ) # since filling converts dtypes from object, changed expected to be # object filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df.fillna(7)) tm.assert_frame_equal(result, expected) result = op(df.fillna(7), df) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)]) # TODO: not sure what's correct here. @pytest.mark.filterwarnings("ignore:elementwise:FutureWarning") def test_logical_typeerror_with_non_valid(self, op, res, float_frame): # we are comparing floats vs a string result = getattr(float_frame, op)("foo") assert bool(result.all().all()) is res def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product( [list("abc"), ["one", "two", "three"], [1, 2, 3]], names=["first", "second", "third"], ) df = DataFrame( np.arange(27 * 3).reshape(27, 3), index=index, columns=["value1", "value2", "value3"], ).sort_index() idx = pd.IndexSlice for op in ["add", "sub", "mul", "div", "truediv"]: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level="third", axis=0) expected = pd.concat( [opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()] ).sort_index() tm.assert_frame_equal(result, expected) x = Series([1.0, 10.0], ["two", "three"]) result = getattr(df, op)(x, level="second", axis=0) expected = ( pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()]) .reindex_like(df) .sort_index() ) tm.assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([["A", "B"], ["a", "b"]]) df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx) s = pd.Series({"a": 1, "b": 2}) df2 = df.copy() df2.columns.names = ["lvl0", "lvl1"] s2 = s.copy() s2.index.name = "lvl1" # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level="lvl1") res6 = df2.mul(s2, axis=1, level="lvl1") exp = DataFrame( np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx ) for res in [res1, res2]: tm.assert_frame_equal(res, exp) exp.columns.names = ["lvl0", "lvl1"] for res in [res3, res4, res5, res6]: tm.assert_frame_equal(res, exp) def test_add_with_dti_mismatched_tzs(self): base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC") idx1 = base.tz_convert("Asia/Tokyo")[:2] idx2 = base.tz_convert("US/Eastern")[1:] df1 = DataFrame({"A": [1, 2]}, index=idx1) df2 = DataFrame({"A": [1, 1]}, index=idx2) exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base) tm.assert_frame_equal(df1 + df2, exp) def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame): frame_copy = float_frame.reindex(float_frame.index[::2]) del frame_copy["D"] frame_copy["C"][:5] = np.nan added = float_frame + frame_copy indexer = added["A"].dropna().index exp = (float_frame["A"] * 2).copy() tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added["A"], exp.loc[added["A"].index]) assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added["D"]).all() self_added = float_frame + float_frame tm.assert_index_equal(self_added.index, float_frame.index) added_rev = frame_copy + float_frame assert np.isnan(added["D"]).all() assert np.isnan(added_rev["D"]).all() # corner cases # empty plus_empty = float_frame + DataFrame() assert np.isnan(plus_empty.values).all() empty_plus = DataFrame() + float_frame assert np.isnan(empty_plus.values).all() empty_empty = DataFrame() + DataFrame() assert empty_empty.empty # out of order reverse = float_frame.reindex(columns=float_frame.columns[::-1]) tm.assert_frame_equal(reverse + float_frame, float_frame * 2) # mix vs float64, upcast added = float_frame + mixed_float_frame _check_mixed_float(added, dtype="float64") added = mixed_float_frame + float_frame _check_mixed_float(added, dtype="float64") # mix vs mix added = mixed_float_frame + mixed_float_frame _check_mixed_float(added, dtype=dict(C=None)) # with int added = float_frame + mixed_int_frame _check_mixed_float(added, dtype="float64") def test_combine_series( self, float_frame, mixed_float_frame, mixed_int_frame, datetime_frame ): # Series series = float_frame.xs(float_frame.index[0]) added = float_frame + series for key, s in added.items(): tm.assert_series_equal(s, float_frame[key] + series[key]) larger_series = series.to_dict() larger_series["E"] = 1 larger_series = Series(larger_series) larger_added = float_frame + larger_series for key, s in float_frame.items(): tm.assert_series_equal(larger_added[key], s + series[key]) assert "E" in larger_added assert np.isnan(larger_added["E"]).all() # no upcast needed added = mixed_float_frame + series assert np.all(added.dtypes == series.dtype) # vs mix (upcast) as needed added = mixed_float_frame + series.astype("float32") _check_mixed_float(added, dtype=dict(C=None)) added = mixed_float_frame + series.astype("float16") _check_mixed_float(added, dtype=dict(C=None)) # FIXME: don't leave commented-out # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = mixed_int_frame + (100*series).astype('int64') # _check_mixed_int(added, dtype = dict(A = 'int64', B = 'float64', C = # 'int64', D = 'int64')) # added = mixed_int_frame + (100*series).astype('int32') # _check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = # 'int32', D = 'int64')) # TimeSeries ts = datetime_frame["A"] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = datetime_frame.add(ts, axis="index") for key, col in datetime_frame.items(): result = col + ts tm.assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == "A" else: assert result.name is None smaller_frame = datetime_frame[:-5] smaller_added = smaller_frame.add(ts, axis="index") tm.assert_index_equal(smaller_added.index, datetime_frame.index) smaller_ts = ts[:-5] smaller_added2 = datetime_frame.add(smaller_ts, axis="index") tm.assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = datetime_frame.add(ts[:0], axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # Frame is all-nan result = datetime_frame[:0].add(ts, axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # empty but with non-empty index frame = datetime_frame[:1].reindex(columns=[]) result = frame.mul(ts, axis="index") assert len(result) == len(ts) def test_combineFunc(self, float_frame, mixed_float_frame): result = float_frame * 2 tm.assert_numpy_array_equal(result.values, float_frame.values * 2) # vs mix result = mixed_float_frame * 2 for c, s in result.items(): tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2) _check_mixed_float(result, dtype=dict(C=None)) result = DataFrame() * 2 assert result.index.equals(DataFrame().index) assert len(result.columns) == 0 def test_comparisons(self, simple_frame, float_frame): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = simple_frame.xs("a") ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) msg = ( "Unable to coerce to Series/DataFrame, " "dimension must be <= 2: (30, 4, 1, 1, 1)" ) with pytest.raises(ValueError, match=re.escape(msg)): func(df1, ndim_5) result2 = func(simple_frame, row) tm.assert_numpy_array_equal( result2.values, func(simple_frame.values, row.values) ) result3 = func(float_frame, 0) tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0)) msg = "Can only compare identically-labeled DataFrame" with pytest.raises(ValueError, match=msg): func(simple_frame, simple_frame[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne): # GH 11565 df = DataFrame( {x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]} ) f = getattr(operator, compare_operators_no_eq_ne) msg = "'[<>]=?' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): f(df, 0) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]["A"] = np.nan with np.errstate(invalid="ignore"): expected = missing_df.values < 0 with np.errstate(invalid="raise"): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T lst = [2, 2, 2] tup = tuple(lst) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b tm.assert_frame_equal(result, expected) result = df.values > b tm.assert_numpy_array_equal(result, expected.values) msg1d = "Unable to coerce to Series, length must be 2: given 3" msg2d = "Unable to coerce to DataFrame, shape must be" msg2db = "operands could not be broadcast together with shapes" with pytest.raises(ValueError, match=msg1d): # wrong shape df > lst with pytest.raises(ValueError, match=msg1d): # wrong shape result = df > tup # broadcasts like ndarray (GH#23000) result = df > b_r tm.assert_frame_equal(result, expected) result = df.values > b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df > b_c with pytest.raises(ValueError, match=msg2db): df.values > b_c # == expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == b tm.assert_frame_equal(result, expected) with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup # broadcasts like ndarray (GH#23000) result = df == b_r tm.assert_frame_equal(result, expected) result = df.values == b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df == b_c assert df.values.shape != b_c.shape # with alignment df = DataFrame( np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc") ) expected.index = df.index expected.columns = df.columns with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup def test_inplace_ops_alignment(self): # inplace ops / ops alignment # GH 8511 columns = list("abcdefg") X_orig = DataFrame( np.arange(10 * len(columns)).reshape(-1, len(columns)), columns=columns, index=range(10), ) Z = 100 * X_orig.iloc[:, 1:-1].copy() block1 = list("bedcf") subs = list("bcdef") # add X = X_orig.copy() result1 = (X[block1] + Z).reindex(columns=subs) X[block1] += Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] + Z[block1]).reindex(columns=subs) X[block1] += Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) # sub X = X_orig.copy() result1 = (X[block1] - Z).reindex(columns=subs) X[block1] -= Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] - Z[block1]).reindex(columns=subs) X[block1] -= Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) def test_inplace_ops_identity(self): # GH 5104 # make sure that we are actually changing the object s_orig = Series([1, 2, 3]) df_orig = DataFrame(np.random.randint(0, 5, size=10).reshape(-1, 5)) # no dtype change s = s_orig.copy() s2 = s s += 1 tm.assert_series_equal(s, s2) tm.assert_series_equal(s_orig + 1, s) assert s is s2 assert s._mgr is s2._mgr df = df_orig.copy() df2 = df df += 1 tm.assert_frame_equal(df, df2)
tm.assert_frame_equal(df_orig + 1, df)
pandas._testing.assert_frame_equal
import os import pandas as pd from pandas.api.types import is_string_dtype import numpy as np from numpy import log from scipy.linalg import norm from scipy.stats import entropy import nltk import nltk.data from nltk.tokenize import sent_tokenize from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from textblob import TextBlob # Consider changing from gensim.models import word2vec from sklearn.manifold import TSNE from sklearn.preprocessing import normalize from sklearn.decomposition import PCA from sklearn.linear_model import Perceptron from polo2 import PoloDb from polo2 import PoloFile class PoloCorpus(PoloDb): ngram_prefixes = ['no', 'uni', 'bi', 'tri', 'quadri'] def __init__(self, config): """Initialize corpus object""" # Import Configs self.config = config self.config.set_config_attributes(self) if not os.path.isfile(self.cfg_src_file_name): raise ValueError("Missing source file. Check value of `src_file_name` in INI file.") self.dbfile = config.generate_corpus_db_file_path() PoloDb.__init__(self, self.dbfile) # self.db = PoloDb(self.dbfile) # Why not do this? if self.cfg_nltk_data_path: nltk.data.path.append(self.cfg_nltk_data_path) # For tokenizing into sentences # fixme: TOKENIZER ASSUMES ENGLISH -- PARAMETIZE THIS nltk.download('punkt') nltk.download('tagsets') nltk.download('averaged_perceptron_tagger') self.tokenizer = nltk.data.load('nltk:tokenizers/punkt/english.pickle') def import_table_doc(self, src_file_name=None, normalize=True): """Import source file into doc table""" # Read in file content if not src_file_name: src_file_name = self.cfg_src_file_name doc = pd.read_csv(src_file_name, header=0, sep=self.cfg_src_file_sep, lineterminator='\n') doc.index.name = 'doc_id' # todo: Find a more efficient way of handling this -- such as not duplicating! # This is a legacy of an older procedure which now has performance implications. if 'doc_original' not in doc.columns: doc['doc_original'] = doc.doc_content # todo: Put this in a separate and configurable function for general text normalization. # Preliminary normalization of documents doc['doc_content'] = doc.doc_content.str.replace(r'\n+', ' ', regex=True) # Remove newlines doc['doc_content'] = doc.doc_content.str.replace(r'<[^>]+>', ' ', regex=True) # Remove tags doc['doc_content'] = doc.doc_content.str.replace(r'\s+', ' ', regex=True) # Collapse spaces # Remove empty docs doc = doc[~doc.doc_content.isnull()] doc.reindex() self.put_table(doc, 'doc', index=True) def import_table_stopword(self, use_nltk=False): """Import stopwords""" swset = set() # fixme: Cast integers in config object # fixme: Parametize language if int(self.cfg_use_nltk) == 1: nltk_stopwords = set(stopwords.words('english')) swset.update(nltk_stopwords) if self.cfg_extra_stops and os.path.isfile(self.cfg_extra_stops): src = PoloFile(self.cfg_extra_stops) swset.update([word for word in src.read_bigline().split()]) swdf = pd.DataFrame({'token_str': list(swset)}) self.put_table(swdf, 'stopword') # todo: Consider changing table name to DOCTERM or TOKEN def add_table_doctoken(self): """Create doctoken and doctokenbow tables; update doc table""" docs = self.get_table('doc', set_index=True) # todo: Consider dividing this in two parts, the first to create a Phrase model with Gensim # This takes a long time doctokens = pd.DataFrame([(sentences[0], j, k, token[0], token[1]) for sentences in docs.apply(lambda x: (x.name, sent_tokenize(x.doc_content)), 1) for j, sentence in enumerate(sentences[1]) for k, token in enumerate(nltk.pos_tag(nltk.word_tokenize(sentence)))], columns=['doc_id', 'sentence_id', 'token_ord', 'token_str', 'pos']) doctokens = doctokens.set_index(['doc_id', 'sentence_id', 'token_ord']) # Normalize doctokens.token_str = doctokens.token_str.str.lower() doctokens.token_str = doctokens.token_str.str.replace(r'[^a-z]+', '', regex=True) doctokens = doctokens[~doctokens.token_str.str.match(r'^\s*$')] # todo: Instead of removing stopwords, identify with feature stopwords = self.get_table('stopword').token_str.tolist() doctokens = doctokens[~doctokens.token_str.isin(stopwords)] self.put_table(doctokens, 'doctoken', if_exists='replace', index=True) # Creates a BOW model for the doc, removing words in sequence and only keeping counts doctokenbow = pd.DataFrame(doctokens.groupby('doc_id').token_str.value_counts()) doctokenbow.columns = ['token_count'] self.put_table(doctokenbow, 'doctokenbow', index=True) # Add token counts to doc docs['token_count'] = doctokenbow.groupby('doc_id').token_count.sum() self.put_table(docs, 'doc', if_exists='replace', index=True) # fixme: TOKEN should be the TERM table (aka VOCAB) def add_table_token(self): """Get token data from doctoken and doctokenbow""" doctoken = self.get_table('doctoken') token = pd.DataFrame(doctoken.token_str.value_counts()) token.sort_index(inplace=True) token.reset_index(inplace=True) token.columns = ['token_str', 'token_count'] token.index.name = 'token_id' # Add pos_max to token pos_max = doctoken.groupby(['token_str', 'pos']).pos.count().unstack().idxmax(1) token['pos_max'] = token.token_str.map(pos_max) # Replace token_str with token_id in doctokenbow token.reset_index(inplace=True) doctokenbow = self.get_table('doctokenbow') doctokenbow = doctokenbow.merge(token[['token_id', 'token_str']], on="token_str") doctokenbow = doctokenbow[['doc_id', 'token_id', 'token_count']] doctokenbow.sort_values('doc_id', inplace=True) doctokenbow.set_index(['doc_id', 'token_id'], inplace=True) self.put_table(doctokenbow, 'doctokenbow', if_exists='replace', index=True) # Add doc counts to token token.set_index('token_id', inplace=True) token['doc_count'] = doctokenbow.groupby('token_id').count() self.put_table(token, 'token', index=True) # fixme: Use a better sentiment detector def _get_sentiment(self, doc): doc2 = TextBlob(doc) return doc2.sentiment def add_tfidf_to_doctokenbow(self): """Add TFIDF data to doctokenbow table""" doctokenbow = self.get_table('doctokenbow', set_index=True) tokens = self.get_table('token', set_index=True) docs = pd.read_sql_query("SELECT doc_id, token_count FROM doc", self.conn, index_col='doc_id') num_docs = docs.index.size # Compute local and gloabl token (actually term) significance self.alpha = .4 doc_max = doctokenbow.groupby('doc_id').token_count.max() tokens['df'] = doctokenbow.groupby('token_id').token_count.count() # n_docs = len(doctokenbow.index.levels[0]) tokens['idf'] = np.log2(num_docs/tokens.df) tokens['dfidf'] = tokens.df * tokens.idf doctokenbow['tf'] = self.alpha + (1 - self.alpha) * (doctokenbow.token_count / doc_max) doctokenbow['tfidf'] = doctokenbow.tf * tokens.idf doctokenbow['tfidf_l2'] = doctokenbow['tfidf'] / doctokenbow.groupby(['doc_id']).apply(lambda x: norm(x.tfidf, 2)) tokens['tfidf_sum'] = doctokenbow.groupby('token_id').tfidf_l2.sum() tokens['tfidf_avg'] = doctokenbow.groupby('token_id').tfidf_l2.mean() self.put_table(doctokenbow, 'doctokenbow', if_exists='replace', index=True) self.put_table(tokens, 'token', if_exists='replace', index=True) def add_stems_to_token(self): """Add stems to token table""" # We only use one stemmer since stemmers suck anyway :-) porter_stemmer = PorterStemmer() tokens = self.get_table('token', set_index=True) tokens['token_stem_porter'] = tokens.token_str.apply(porter_stemmer.stem) self.put_table(tokens, 'token', if_exists='replace', index=True) def add_sentimant_to_doc(self): """Add sentiment to doc table""" doc = self.get_table('doc', set_index=True) doc['doc_sentiment'] = doc.doc_content.apply(self._get_sentiment) doc['doc_sentiment_polarity'] = doc.doc_sentiment.apply(lambda x: round(x[0], 1)) doc['doc_sentiment_subjectivity'] = doc.doc_sentiment.apply(lambda x: round(x[1], 2)) del(doc['doc_sentiment']) self.put_table(doc, 'doc', index=True) def add_tables_ngram_and_docngram(self, n=2): """Create ngram and docngram tables for n (using stems)""" key = {2:'bi', 3:'tri'} try: infix = key[n] except KeyError as e: print('Invalid ngram length. Must be 2 or 3') return False sql = {} sql['bi'] = """ SELECT dt_x.doc_id AS doc_id, t_x.token_stem_porter AS tx, t_y.token_stem_porter AS ty, t_x.token_stem_porter || '_' || t_y.token_stem_porter AS ngram, count() AS tf FROM doctoken dt_x JOIN doctoken dt_y ON (dt_x.doc_id = dt_y.doc_id AND dt_x.sentence_id = dt_y.sentence_id AND dt_y.rowid = (dt_x.rowid + 1)) JOIN token t_x ON dt_x.token_str = t_x.token_str JOIN token t_y ON dt_y.token_str = t_y.token_str GROUP BY dt_x.doc_id, ngram """ sql['tri'] = """ SELECT dt_x.doc_id AS doc_id, t_x.token_stem_porter AS tx, t_y.token_stem_porter AS ty, t_z.token_stem_porter AS tz, t_x.token_stem_porter || '_' || t_y.token_stem_porter || '_' || t_z.token_stem_porter AS ngram, count() AS tf FROM doctoken dt_x JOIN doctoken dt_y ON (dt_x.doc_id = dt_y.doc_id AND dt_x.sentence_id = dt_y.sentence_id AND dt_y.rowid = (dt_x.rowid + 1)) JOIN doctoken dt_z ON (dt_x.doc_id = dt_z.doc_id AND dt_x.sentence_id = dt_z.sentence_id AND dt_z.rowid = (dt_y.rowid + 1)) JOIN token t_x ON dt_x.token_str = t_x.token_str JOIN token t_y ON dt_y.token_str = t_y.token_str JOIN token t_z ON dt_z.token_str = t_z.token_str GROUP BY dt_x.doc_id, ngram """ docngrams = pd.read_sql(sql[infix], self.conn) self.put_table(docngrams, 'ngram{}doc'.format(infix), index=False) def add_stats_to_ngrams(self, type='bi'): """Create distinct ngram tables with stats""" sql1 = """ SELECT g.doc_id, d.doc_label, g.ngram, g.tf FROM ngram{}doc g JOIN doc d USING(doc_id) """.format(type) sql2 = """ SELECT ngram, doc_label, sum(tf) AS tf_sum FROM ( SELECT g.doc_id, d.doc_label, g.ngram, g.tf FROM ngram{}doc g JOIN doc d USING(doc_id) ) GROUP BY doc_label, ngram """.format(type) sql3 = """ WITH stats(n) AS (SELECT COUNT() AS n FROM doc) SELECT ngram, count() AS c, (SELECT n FROM stats) AS n, CAST(COUNT() AS REAL) / CAST((SELECT n FROM stats) AS REAL) AS df FROM ngram{}doc GROUP BY ngram ORDER BY c DESC """.format(type) docngram = pd.read_sql_query(sql1, self.conn, index_col='doc_id') labelngram =
pd.read_sql_query(sql2, self.conn, index_col=['ngram','doc_label'])
pandas.read_sql_query
import pandas as pd def preprocess_repo2(df,asset,Trading_env): df = df.to_frame() index = df.index.strftime('%Y-%m-%d') index = [str.replace("-", "") for str in index] liste = [] for i in index: liste.append(i) liste.append(i) df_context = Trading_env.preprocess_context_data(asset) df['gold'] = df_context.iloc[:,0] df['interest'] = df_context.iloc[:,1] df['index'] = df_context.iloc[:,2] df['similar'] = df_context.iloc[:,3] df['vix'] = df_context.iloc[:,4] columns = df.columns.values.tolist() columns[0] = 'adjcp' df.columns = columns #df = df.rename(columns={'AAPL': 'adjcp'}) df = df.reset_index(drop=True) df.index = range(0, len(df) * 2, 2) for i in range(1, len(df) * 2, 2): line = pd.DataFrame({"gold": 1, "interest": 1, "index": 1, "similar": 1, 'adjcp': 1, 'vix':1}, index=[i]) df = df.append(line, ignore_index=False) df = df.sort_index().reset_index(drop=True) df["datadate"] = liste liste = [] for i in range(0, len(df) // 2): liste.append(i) liste.append(i) df.index = liste df["datadate"] = pd.to_numeric(df["datadate"]) fold1 = df[(df.datadate > 20100103) & (df.datadate <= 20161231)] fold2 = df[(df.datadate > 20170101) & (df.datadate <= 20171231)] fold3 = df[(df.datadate > 20180101) & (df.datadate <= 20181231)] fold4 = df[(df.datadate > 20190101) & (df.datadate <= 20191231)] ind1, ind2, ind3 = [], [], [] longerfold = fold1.append(fold2) for i in range(0, len(fold1) // 2): ind1.append(i) ind1.append(i) for i in range(0, len(fold2) // 2): ind2.append(i) ind2.append(i) for i in range(0, len(longerfold) // 2): ind3.append(i) ind3.append(i) fold1.index = ind1 fold2.index = ind2 try: fold3.index = ind2[:len(fold3.index)] fold4.index = ind2[:len(fold4.index)] except ValueError: fold3.index = ind2[:len(fold3.index)]+[len(fold2) // 2 +2,len(fold2) // 2+2,len(fold2) // 2 +3,len(fold2) // 2+3] longerfold.index = ind3 return [[fold1, fold2, fold3], [longerfold, fold3, fold4]] def merge_folds_test(fold1,fold2): longerfold = fold1.append(fold2) ind3 = [] for i in range(0, len(longerfold) // 2): ind3.append(i) ind3.append(i) longerfold.index = ind3 return longerfold def preprocess_repo2_corona(df,asset,Trading_env): df = df.to_frame() index = df.index.strftime('%Y-%m-%d') index = [str.replace("-", "") for str in index] liste = [] for i in index: liste.append(i) liste.append(i) df_context = Trading_env.preprocess_context_data(asset, True) df['gold'] = df_context.iloc[:,0] df['interest'] = df_context.iloc[:,1] df['index'] = df_context.iloc[:,2] df['similar'] = df_context.iloc[:,3] df['vix'] = df_context.iloc[:,4] columns = df.columns.values.tolist() columns[0] = 'adjcp' df.columns = columns #df = df.rename(columns={'AAPL': 'adjcp'}) df = df.reset_index(drop=True) df.index = range(0, len(df) * 2, 2) for i in range(1, len(df) * 2, 2): line =
pd.DataFrame({"gold": 1, "interest": 1, "index": 1, "similar": 1, 'adjcp': 1, 'vix':1}, index=[i])
pandas.DataFrame
from datetime import timedelta import pytest from pandas import PeriodIndex, Series, Timedelta, date_range, period_range, to_datetime import pandas._testing as tm class TestToTimestamp: def test_to_timestamp(self): index = period_range(freq="A", start="1/1/2001", end="12/1/2009") series = Series(1, index=index, name="foo") exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC") result = series.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) assert result.name == "foo" exp_index = date_range("1/1/2001", end="1/1/2009", freq="AS-JAN") result = series.to_timestamp(how="start") tm.assert_index_equal(result.index, exp_index) def _get_with_delta(delta, freq="A-DEC"): return date_range( to_datetime("1/1/2001") + delta, to_datetime("12/31/2009") + delta, freq=freq, ) delta = timedelta(hours=23) result = series.to_timestamp("H", "end") exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "h") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) delta = timedelta(hours=23, minutes=59) result = series.to_timestamp("T", "end") exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "m") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) result = series.to_timestamp("S", "end") delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) index = period_range(freq="H", start="1/1/2001", end="1/2/2001") series = Series(1, index=index, name="foo") exp_index = date_range("1/1/2001 00:59:59", end="1/2/2001 00:59:59", freq="H") result = series.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) assert result.name == "foo" def test_to_timestamp_raises(self, index): # https://github.com/pandas-dev/pandas/issues/33327 ser =
Series(index=index, dtype=object)
pandas.Series
import pytest import numpy as np import pandas as pd from pandas._testing import assert_frame_equal from wetterdienst.dwd.util import ( coerce_field_types, build_parameter_set_identifier, ) from wetterdienst.util.enumeration import parse_enumeration_from_template from wetterdienst.dwd.observations import ( DWDObservationPeriod, DWDObservationResolution, DWDObservationParameterSet, ) from wetterdienst.exceptions import InvalidEnumeration def test_parse_enumeration_from_template(): assert ( parse_enumeration_from_template("climate_summary", DWDObservationParameterSet) == DWDObservationParameterSet.CLIMATE_SUMMARY ) assert ( parse_enumeration_from_template("kl", DWDObservationParameterSet) == DWDObservationParameterSet.CLIMATE_SUMMARY ) with pytest.raises(InvalidEnumeration): parse_enumeration_from_template("climate", DWDObservationParameterSet) def test_coerce_field_types(): df = pd.DataFrame( { "QN": ["1"], "RS_IND_01": ["1"], "DATE": ["1970010100"], "END_OF_INTERVAL": ["1970010100:00"], "V_VV_I": ["P"], } ) expected_df = pd.DataFrame( { "QN": pd.Series([1], dtype=pd.Int64Dtype()), "RS_IND_01": pd.Series([1], dtype=pd.Int64Dtype()), "DATE": [pd.Timestamp("1970-01-01")], "END_OF_INTERVAL": [pd.Timestamp("1970-01-01")], "V_VV_I": pd.Series(["P"], dtype=
pd.StringDtype()
pandas.StringDtype
import pytest from cellrank.tl._colors import _map_names_and_colors, _create_categorical_colors import numpy as np import pandas as pd from pandas.api.types import is_categorical_dtype from matplotlib.colors import is_color_like class TestColors: def test_create_categorical_colors_too_many_colors(self): with pytest.raises(ValueError): _create_categorical_colors(1000) def test_create_categorical_colors_no_categories(self): c = _create_categorical_colors(0) assert c == [] def test_create_categorical_colors_neg_categories(self): with pytest.raises(RuntimeError): _create_categorical_colors(-1) def test_create_categorical_colors_normal_run(self): colors = _create_categorical_colors(62) assert len(colors) == 62 assert all(map(lambda c: isinstance(c, str), colors)) assert all(map(lambda c: is_color_like(c), colors)) class TestMappingColors: def test_mapping_colors_not_categorical(self): query = pd.Series(["foo", "bar", "baz"], dtype="str") reference = pd.Series(["foo", np.nan, "bar", "baz"], dtype="category") with pytest.raises(TypeError): _map_names_and_colors(reference, query) def test_mapping_colors_invalid_size(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", np.nan, "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors(reference, query) def test_mapping_colors_different_index(self): query = pd.Series(["foo", "bar", "baz"], dtype="category", index=[2, 3, 4]) reference = pd.Series(["foo", "bar", "baz"], dtype="category", index=[1, 2, 3]) with pytest.raises(ValueError): _map_names_and_colors(reference, query) def test_mapping_colors_invalid_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors( reference, query, colors_reference=["red", "green", "foo"] ) def test_mapping_colors_too_few_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors(reference, query, colors_reference=["red", "green"]) def test_mapping_colors_simple_1(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, np.nan, "d", "a"]).astype("category") expected = pd.Series(["a_1", "a_2", "b"]) expected_index = pd.Index(["a", "b", "d"]) res = _map_names_and_colors(x, y) assert isinstance(res, pd.Series) np.testing.assert_array_equal(res.values, expected.values) np.testing.assert_array_equal(res.index.values, expected_index.values) def test_mapping_colors_simple_2(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res = _map_names_and_colors(reference, query) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) def test_mapping_colors_simple_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=["red", "green", "blue"] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#008000", "#0000ff"] def test_mapping_colors_too_many_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=["red", "green", "blue", "black"] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#008000", "#0000ff"] def test_mapping_colors_different_color_representation(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=[(1, 0, 0), "green", (0, 0, 1, 0)] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#008000", "#0000ff"] def test_mapping_colors_non_unique_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=["red", "red", "red"] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert
is_categorical_dtype(res)
pandas.api.types.is_categorical_dtype
# Recorder that records agent states as dataframes and also stores a carla recording, in synchronous mode #!/usr/bin/env python # Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. import glob import os import sys import pandas as pd from tqdm import tqdm from pathlib import Path CARLA_VERSION = "0.9.11" try: # sys.path.append("./libs/carla-0.9.9-py3.7-linux-x86_64.egg") if CARLA_VERSION == "0.9.9": sys.path.append("./libs/carla-0.9.9-py3.7-linux-x86_64.egg") elif CARLA_VERSION == "0.9.11": sys.path.append("./libs/carla-0.9.11-py3.7-linux-x86_64.egg") except IndexError: pass import carla import logging import pathlib import click current_dir = pathlib.Path(__file__).parent.absolute() def get_metadata(actor, frame_id): type_id = actor.type_id def splitCarlaVec(vect): return vect.x, vect.y, vect.z id = actor.id # clsname = ClientSideBoundingBoxes.get_class_name(actor) tf = actor.get_transform() roll, pitch, yaw = tf.rotation.roll, tf.rotation.pitch, tf.rotation.yaw loc = actor.get_location() pos_x, pos_y, pos_z = splitCarlaVec(loc) try: bbox3d = actor.bounding_box bbox3d_offset_x, bbox3d_offset_y, bbox3d_offset_z = splitCarlaVec( bbox3d.location ) bbox3d_extent_x, bbox3d_extent_y, bbox3d_extent_z = splitCarlaVec(bbox3d.extent) except: bbox3d_offset_x, bbox3d_offset_y, bbox3d_offset_z = None, None, None bbox3d_extent_x, bbox3d_extent_y, bbox3d_extent_z = None, None, None velocity_x, velocity_y, velocity_z = splitCarlaVec(actor.get_velocity()) acc_x, acc_y, acc_z = splitCarlaVec(actor.get_acceleration()) angular_vel_x, angular_vel_y, angular_vel_z = splitCarlaVec( actor.get_angular_velocity() ) try: # need to do this because Carla's Actor object doesnt support getattr traffic_light_state = actor.state.name except: traffic_light_state = None return ( frame_id, id, type_id, pos_x, pos_y, pos_z, roll, pitch, yaw, velocity_x, velocity_y, velocity_z, acc_x, acc_y, acc_z, angular_vel_x, angular_vel_y, angular_vel_z, bbox3d_offset_x, bbox3d_offset_y, bbox3d_offset_z, bbox3d_extent_x, bbox3d_extent_y, bbox3d_extent_z, traffic_light_state, ) def run(client, round_name, dest_folder="", session_duration_sec=10): # num_vehicles = 70 # safe = True # avoid spawning vehicles prone to accidents" actor_list = [] logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.INFO) dest_folder = Path(dest_folder) try: SESSION_DURATION = session_duration_sec # seconds # TODO is it possible to read this from the carla recording file? or an external config? FPS = 5 DELTA_T = 1 / FPS # RECORDING_FILENAME = "" START_TIME = 0.0 DURATION = 0.0 # client.set_timeout(2.0) world = client.get_world() # blueprints = world.get_blueprint_library().filter("vehicle.*") # traffic_manager = client.get_trafficmanager() settings = client.get_world().get_settings() if not settings.synchronous_mode: # traffic_manager.set_synchronous_mode(True) synchronous_master = True settings.synchronous_mode = True settings.fixed_delta_seconds = DELTA_T client.get_world().apply_settings(settings) else: synchronous_master = False session_recording = f"{round_name}" destination_filename = dest_folder / Path(session_recording) world.tick() # fmt: off df_columns = [ "frame_id", "id", "type_id", "pos_x", "pos_y", "pos_z", "roll", "pitch", "yaw", "velocity_x", "velocity_y", "velocity_z", "acc_x", "acc_y", "acc_z", "angular_vel_x", "angular_vel_y", "angular_vel_z", "bbox3d_offset_x", "bbox3d_offset_y", "bbox3d_offset_z", "bbox3d_extent_x", "bbox3d_extent_y", "bbox3d_extent_z", "traffic_light_color", ] # fmt: on # get all non vehicle agents actors = world.get_actors() non_vehicles = [ x for x in actors if ("vehicle" not in x.type_id and "traffic_light" not in x.type_id) ] # signs, traffic lights etc frame_id = 0 df_arr = [] non_vehicle_arr = [get_metadata(actor, frame_id) for actor in non_vehicles] df_arr += non_vehicle_arr pbar = tqdm(total=FPS * SESSION_DURATION) while frame_id < (FPS * SESSION_DURATION): actors = world.get_actors() vehicles_and_lights = [ x for x in actors if "vehicle" in x.type_id or "traffic_light" in x.type_id ] metadata_arr = [ get_metadata(actor, frame_id) for actor in vehicles_and_lights ] df_arr += metadata_arr frame_id += 1 pbar.update(1) world.tick() df =
pd.DataFrame(df_arr, columns=df_columns)
pandas.DataFrame
import numpy as np import pandas as pd class make_fisher_info_matrix(): def __init__(self, dataDir, testCosts): self.txset = pd.read_csv(f"{ dataDir }/ratrtpcrabvec.csv") self.highs = pd.read_csv(f"{ dataDir }/ratrtpcrabhighs.csv") self.highs = self.highs.drop(columns=['Infection.State']).to_numpy() self.testCosts = testCosts self.Spec = [0.975,0.97,0.977] # Spec is the specificity values for 0=RAT,1=RTPCR,2=AB self.Sen = [0.5,0.95,0.921] # Sen are the sensitivity values for 0=RAT,1=RTPCR,2=AB self.ttypevalid, self.patternCost = self.getCosting() self.patternCost = self.patternCost[1:] self.lenw = len(self.patternCost) def set_sensitivities(self, senRAT, senRTPCR, senIGG): self.Sen = [senRAT, senRTPCR, senIGG] def set_specificities(self, specRAT, specRTPCR, specIGG): self.Spec = [specRAT, specRTPCR, specIGG] def get_lenw(self): return self.lenw def get_patternCost(self): return self.patternCost def get_ttypevalid(self): return self.ttypevalid def getCosting(self): ttypevalid = self.txset.copy() #null value based values ttypevalid['RAT'] = 1 - ttypevalid['RAT'].apply(lambda x: 1 if pd.isna(x) else 0) ttypevalid['RTPCR'] = 1 - ttypevalid['RTPCR'].apply(lambda x: 1 if pd.isna(x) else 0) ttypevalid['AB'] = 1 - ttypevalid['AB'].apply(lambda x: 1 if
pd.isna(x)
pandas.isna
import shutil import os import numpy as np import pandas as pd import lib.scoring as scoring from decimal import Decimal from pathlib import Path from Crypto.Cipher import PKCS1_OAEP, AES from Crypto.PublicKey import RSA from lib.blockchain import Challenge, Participant def compute_error(participant: Participant, force=False) -> float: """computes the RMSE of a participant's prediction w.r.t. correct values""" challenge = participant.challenge competition = challenge.competition challenge_scores_file = challenge.get_challenge_dir().joinpath("_challenge_scores.csv") if challenge_scores_file.exists() and not force: df = pd.read_csv(challenge_scores_file) return df.error.loc[df.address == participant.address].values[0] # check if requested challenge is not the last if challenge.get_phase() != 4: raise IndexError(f"challenge {challenge.number} is not closed") if challenge.number == competition.get_latest_challenge_number(): raise IndexError(f"no challenge after challenge {challenge.number}") next_challenge = competition.get_challenge(challenge.number + 1) if next_challenge.get_phase() == 0: raise IndexError(f"dataset not available for challenge {challenge.number}") # get requested assets and challenge final values requested_assets = get_requested_assets(challenge, force=force) values = get_values(next_challenge, force=force) valued_assets = [asset for asset, value in values] # if the participant did not submit a prediction return NaN submitters = challenge.get_all_submitter_addresses() # TODO: a set would be better if participant.address not in submitters: return np.nan # get the predictions, and if it cannot be decrypted of is not valid return NaN try: predictions_pairs = get_predictions(participant) except (ValueError, AssertionError) as e: print(f"exception: {str(e)}") return np.nan if not scoring.validate_prediction(requested_assets, predictions_pairs): return np.nan # sort predictions values according to assets list predictions_by_asset = dict(predictions_pairs) predictions = [predictions_by_asset[asset] for asset in valued_assets] # return error computed from predictions and correct values return scoring.compute_raw_score(challenge.number, predictions, [value for _, value in values]) def compute_challenge_scores(challenge: Challenge, force=False) -> {str: float}: """compute the list of all participant challenge scores for a given challenge""" challenge_scores_file = challenge.get_challenge_dir().joinpath("_challenge_scores.csv") if challenge_scores_file.exists() and not force: df = pd.read_csv(challenge_scores_file) return dict(zip(df.address, df.challenge_score)) # read all submitters to the challenge participants = challenge.get_all_participants() # compute all participant errors errors = [compute_error(participant, force) for participant in participants] # compute the normalized rank of each submitter from the error challenge_scores = scoring.compute_challenge_scores(challenge.number, errors) # save errors and challenge scores to file df = pd.DataFrame() df["address"] = [participant.address for participant in participants] df["error"] = errors df["challenge_score"] = challenge_scores df.to_csv(challenge_scores_file, index=False) # return a dictionary with the challenge scores return {participant.address: score for participant, score in zip(participants, challenge_scores)} def compute_challenge_score(participant: Participant, force=False) -> float: """computes the challenge score of a participant_address to a challenge""" challenge_scores = compute_challenge_scores(participant.challenge, force) return challenge_scores.get(participant.address, np.nan) def compute_competition_score(participant: Participant, force=False) -> float: """computes the competition score of a participant_address to a challenge""" challenge = participant.challenge competition = challenge.competition # gets last challenge scores of a submitter according to challenge window size # and compute the competition score window_size = scoring.get_window_size(challenge.number) first_challenge = max(1, challenge.number - window_size + 1) challenge_scores = [compute_challenge_score(challenge.get_participant(participant.address), force) for challenge in [competition.get_challenge(challenge_number) for challenge_number in range(first_challenge, challenge.number + 1)]] return scoring.compute_competition_score(challenge.number, challenge_scores) def compute_challenge_rewards(challenge: Challenge) -> {str, Decimal}: """computes the challenge rewards of challenge""" challenge_pool = challenge.get_challenge_pool() addresses = [staker.address for staker in challenge.get_all_participants()] scores_by_address = compute_challenge_scores(challenge) scores = [scores_by_address.get(address) for address in addresses] rewards = scoring.compute_challenge_rewards(challenge.number, scores, challenge_pool) return dict(zip(addresses, rewards)) def compute_competition_rewards(challenge: Challenge) -> {str, Decimal}: """computes the competition reward of challenge""" competition_pool = challenge.get_competition_pool() addresses = [staker.address for staker in challenge.get_all_participants()] challenge_scores = [compute_challenge_score(participant) for participant in challenge.get_all_participants()] competition_scores = [compute_competition_score(participant) for participant in challenge.get_all_participants()] rewards = scoring.compute_competition_rewards(challenge.number, competition_scores, challenge_scores, competition_pool) return dict(zip(addresses, rewards)) def get_stakes(challenge: Challenge) -> {str, Decimal}: """returns the stakes of all participants to a challenge""" return {staker.address: staker.get_stake() for staker in challenge.get_all_participants()} def compute_stake_rewards(challenge: Challenge) -> {str, Decimal}: """computes all stake rewards in a challenge""" stake_pool = challenge.get_stake_pool() stakers = challenge.get_all_participants() addresses = [staker.address for staker in stakers] stakes = [staker.get_stake() for staker in stakers] rewards = scoring.compute_stake_rewards(challenge.number, stakes, stake_pool) return dict(zip(addresses, rewards)) def get_predictions(participant: Participant) -> [(str, Decimal)]: """gets all predictions of a submitter to a challenge""" # get the submission cid and download the prediction file if needed submission_zip_file = participant.download_submission_file(verbose=True) # expand the file submission_dir = submission_zip_file.parent.joinpath(submission_zip_file.stem) shutil.unpack_archive(submission_zip_file, submission_dir) # decrypt the file encrypted_symmetric_key_file = submission_dir.joinpath("encrypted_symmetric_key.pem") private_key_file = participant.challenge.download_private_key_file(verbose=True) symmetric_key_file = submission_dir.joinpath("_symmetric_key.bin") _asymmetric_decrypt_file(encrypted_symmetric_key_file, private_key_file, symmetric_key_file) # decrypt and read the originator file and check if the originator is the submitter encrypted_originator_file = submission_dir.joinpath("originator.bin") originator_file = submission_dir.joinpath("_originator.txt") _decrypt_file(encrypted_originator_file, symmetric_key_file, originator_file) with open(originator_file, "r") as fin: originator_address = fin.read().strip() assert originator_address[2:].lower() == participant.address.lower(),\ f"originator != participant ({submission_zip_file.name})" # check and decrypt the submission file encrypted_prediction_filenames = [filename for filename in os.listdir(submission_dir) if submission_dir.joinpath(filename).is_file() and submission_dir.joinpath(filename).match("*.bin") and filename not in ["originator.bin", "_symmetric_key.bin"]] assert len(encrypted_prediction_filenames) == 1, f"multiple prediction files ({submission_zip_file.name})" encrypted_prediction_file = submission_dir.joinpath(encrypted_prediction_filenames[0]) prediction_file = submission_dir.joinpath("_predictions.csv") _decrypt_file(encrypted_prediction_file, symmetric_key_file, prediction_file) # load the file df = pd.read_csv(prediction_file, header=None) # re-read skipping header if present has_header = isinstance(df.iloc[0,1], str) if has_header: df = pd.read_csv(prediction_file) assert len(df.columns) == 2, f"too many columns ({submission_zip_file.name})" return df.to_records(index=False) def get_requested_assets(challenge: Challenge, force=False) -> [str]: """gets assets to be predicted at the beginning of the challenge""" # download and unzip the dataset dataset_zip_file = challenge.download_dataset_file(force=force, verbose=True) dataset_dir = dataset_zip_file.parent.joinpath(dataset_zip_file.stem) if not dataset_dir.exists() or force: shutil.unpack_archive(dataset_zip_file, dataset_dir) # load the test dataset if needed in memory assets_dataset_file = dataset_dir.joinpath("_assets.csv") if not assets_dataset_file.exists() or force: validation_dataset_file = dataset_dir.joinpath("dataset/validation_dataset.csv") df =
pd.read_csv(validation_dataset_file)
pandas.read_csv
import numpy as np import pandas as pd from IPython import embed from keras.models import load_model from keras import backend as K from qlknn.models.ffnn import determine_settings, _prescale, clip_to_bounds def rmse(y_true, y_pred): return K.sqrt(K.mean(K.square( y_true-y_pred ))) class KerasNDNN(): def __init__(self, model, feature_names, target_names, feature_prescale_factor, feature_prescale_bias, target_prescale_factor, target_prescale_bias, feature_min=None, feature_max=None, target_min=None, target_max=None, target_names_mask=None, ): self.model = model self._feature_names = feature_names self._target_names = target_names self._feature_prescale_factor = feature_prescale_factor self._feature_prescale_bias = feature_prescale_bias self._target_prescale_factor = target_prescale_factor self._target_prescale_bias = target_prescale_bias if feature_min is None: feature_min = pd.Series({var: -np.inf for var in self._feature_names}) self._feature_min = feature_min if feature_max is None: feature_max = pd.Series({var: np.inf for var in self._feature_names}) self._feature_max = feature_max if target_min is None: target_min = pd.Series({var: -np.inf for var in self._target_names}) self._target_min = target_min if target_max is None: target_max = pd.Series({var: np.inf for var in self._target_names}) self._target_max = target_max self._target_names_mask = target_names_mask def get_output(self, inp, clip_low=False, clip_high=False, low_bound=None, high_bound=None, safe=True, output_pandas=True, shift_output_by=0): """ This should accept a pandas dataframe, and should return a pandas dataframe """ nn_input, safe, clip_low, clip_high, low_bound, high_bound = \ determine_settings(self, inp, safe, clip_low, clip_high, low_bound, high_bound) nn_input = _prescale(nn_input, self._feature_prescale_factor.values, self._feature_prescale_bias.values) # Apply all NN layers an re-scale the outputs branched_in = [nn_input.loc[:, self._branch1_names].values, nn_input.loc[:, self._branch2_names].values] nn_out = self.model.predict(branched_in) # Get prediction output = (nn_out - np.atleast_2d(self._target_prescale_bias)) / np.atleast_2d(self._target_prescale_factor) output -= shift_output_by output = clip_to_bounds(output, clip_low, clip_high, low_bound, high_bound) if output_pandas: output = pd.DataFrame(output, columns=self._target_names) if self._target_names_mask is not None: output.columns = self._target_names_mask return output class Daniel7DNN(KerasNDNN): _branch1_names = ['Ati', 'An', 'q', 'smag', 'x', 'Ti_Te'] _branch2_names = ['Ate'] def __init__(self, model, feature_names, target_names, feature_prescale_factor, feature_prescale_bias, target_prescale_factor, target_prescale_bias, feature_min=None, feature_max=None, target_min=None, target_max=None, target_names_mask=None, ): super().__init__(model, feature_names, target_names, feature_prescale_factor, feature_prescale_bias, target_prescale_factor, target_prescale_bias, feature_min=feature_min, feature_max=feature_max, target_min=target_min, target_max=target_max, target_names_mask=target_names_mask, ) self.shift = self.find_shift() @classmethod def from_files(cls, model_file, standardization_file): model = load_model(model_file, custom_objects={'rmse': rmse}) stds = pd.read_csv(standardization_file) feature_names = pd.Series(cls._branch1_names + cls._branch2_names) target_names =
pd.Series(['efeETG_GB'])
pandas.Series
# coding: utf-8 # In[1]: from __future__ import division, print_function, absolute_import from past.builtins import basestring import os import gzip import pandas as pd from twip.constant import DATA_PATH from gensim.models import TfidfModel, LsiModel from gensim.corpora import Dictionary # In[2]: import matplotlib from IPython.display import display, HTML get_ipython().magic(u'matplotlib inline') np = pd.np display(HTML("<style>.container { width:100% !important; }</style>")) pd.set_option('display.max_rows', 6) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 800) pd.set_option('precision', 2) get_ipython().magic(u'precision 4') get_ipython().magic(u'pprint') # In[3]: from sklearn.linear_model import SGDRegressor from sklearn.svm import SVR # In[6]: lsi = LsiModel.load(os.path.join(DATA_PATH, 'lsi100')) lsi2 = LsiModel.load(os.path.join(DATA_PATH, 'lsi2')) # In[7]: with gzip.open(os.path.join(DATA_PATH, 'tweet_topic_vectors.csv.gz'), 'rb') as f: topics = pd.DataFrame.from_csv(f, encoding='utf8') topics = topics.fillna(0) # In[8]: dates = pd.read_csv(os.path.join(DATA_PATH, 'datetimes.csv.gz'), engine='python') nums = pd.read_csv(os.path.join(DATA_PATH, 'numbers.csv.gz'), engine='python') # In[9]: nums.favorite_count.hist(bins=[0,1,2,3,4,5,7,10,15,25,40,100,1000]) from matplotlib import pyplot as plt plt.yscale('log', nonposy='clip') plt.xscale('log', nonposy='clip') plt.xlabel('Number of Favorites') plt.ylabel('Number of Tweets') # When I first ran this, my dataframes weren't "aligned". # So it's very important to check your datasets after every load. # The correspondence between dates and topics and numerical features is critical for training! # In[10]: print(len(dates)) print(len(topics)) print(len(nums)) print(sum(nums.favorite_count >= 1)) # In[11]: sum(nums.index == dates.index) == len(dates) # In[12]: sum(nums.index == topics.index) == len(dates) # In[13]: sgd = SGDRegressor() sgd # In[14]: sgd = SGDRegressor().fit(topics.values, nums.favorite_count) # Well, that was **much** faster... # In[15]: predicted_favorites = sgd.predict(topics.values) predicted_favorites # In[16]: np.sum(predicted_favorites >= 1) # Well that seems more "balanced" at least. # And it's nice to have a continuous score. # In[17]: np.sum(nums.favorite_count.values >= 1) # In[18]: from pug.nlp.stats import Confusion # In[19]: results =
pd.DataFrame()
pandas.DataFrame
import numpy as np from pandas import DataFrame import matplotlib.pyplot as plt class ccor(object): """ Docstring for function ecopy.ccor ==================== Conducts canonical correlation analysis for two matrices Y1 and Y2 Use ---- ccor(Y1, Y2, stand_1=False, stand_2=False, varNames_1=None, varNames_2=None, siteNames=None) Returns an object of class ccor Parameters ---------- Y1: A pandas.DataFrame or numpy.ndarray containing one set of response variables Y2: A pandas.DataFrame or numpy.ndarray containing a second set of response variables varNames_1: A list of variable names for matrix Y1. If None, inherits from column names of Y1 varNames_2: A list of variable names for matrix Y2. If None, inherits from column names of Y2 stand_1: Whether or not to standardize columns of Y1 stand_2: Whether or not to standardize columns of Y2 siteNames: A list of site/row names. If None, inherits from index of Y1 Attributes --------- Scores1: Scores of each row of matrix Y1 Scores2: Scores of each row of matrix Y2 loadings1: Variable loadings of Y1 loadings2: Variable loadings of Y2 evals: Eigenvalues associated with each axis Methods -------- summary(): A summary table for each canonical axis biplot(matrix=1, xax=1, yax=1) matrix: Which matrix should be plotted. matrix=1 plots the scores and loadings of matrix=2, while matrix=2 plots the scores and loadings of matrix 2 xax: Which canonical axis should on the x-axis yax: Which canonical axis should be on the y-axis Example -------- import ecopy as ep import numpy as np Y1 = np.random.normal(size=20*5).reshape(20, 5) Y2 = np.random.normal(size=20*3).reshape(20, 3) cc = ep.ccor(Y1, Y2) cc.summary() cc.biplot() """ def __init__(self, Y1, Y2, varNames_1=None, varNames_2=None, stand_1=False, stand_2=False, siteNames=None): if not isinstance(Y1, (DataFrame, np.ndarray)): msg = 'Matrix Y1 must be a pandas.DataFrame or numpy.ndarray' raise ValueError(msg) if not isinstance(Y2, (DataFrame, np.ndarray)): msg = 'Matrix Y2 must be a pandas.DataFrame or numpy.ndarray' raise ValueError(msg) if isinstance(Y2, DataFrame): if Y2.isnull().any().any(): msg = 'Matrix Y2 contains null values' raise ValueError(msg) if isinstance(Y2, np.ndarray): if Y2.dtype=='object': msg = 'Matrix Y2 cannot be a numpy.ndarray with object dtype' raise ValueError(msg) if np.isnan(Y2).any(): msg = 'Matrix Y2 contains null values' raise ValueError(msg) if isinstance(Y1, DataFrame): if Y1.isnull().any().any(): msg = 'Matrix Y1 contains null values' raise ValueError(msg) if (Y1.dtypes == 'object').any(): msg = 'Matrix Y1 can only contain numeric values' raise ValueError(msg) if isinstance(Y1, np.ndarray): if np.isnan(Y1).any(): msg = 'Matrix Y1 contains null values' raise ValueError(msg) if varNames_1 is None: if isinstance(Y1, DataFrame): varNames_1 = Y1.columns elif isinstance(Y1, np.ndarray): varNames_1 = ['Y1 {0}'.format(x) for x in range(1, Y1.shape[1]+1)] if varNames_2 is None: if isinstance(Y2, DataFrame): varNames_2 = Y2.columns elif isinstance(Y2, np.ndarray): varNames_2 = ['Y2 {0}'.format(x) for x in range(1, Y2.shape[1]+1)] if siteNames is None: if isinstance(Y1, DataFrame): siteNames = Y1.index.values elif isinstance(Y1, np.ndarray): siteNames = ['Site {0}'.format(x) for x in range(1, Y1.shape[0]+1)] if Y1.shape[0] != Y2.shape[0]: msg = 'Matrices must have same number of rows' raise ValueError(msg) Y1 = np.array(Y1) Y2 = np.array(Y2) if stand_1: Y1 = (Y1 - Y1.mean(axis=0)) / Y1.std(axis=0) if stand_2: Y2 = (Y2 - Y2.mean(axis=0)) / Y2.std(axis=0) df = float(Y1.shape[0] - 1) D1 = Y1 - Y1.mean(axis=0) D2 = Y2 - Y2.mean(axis=0) S1 = D1.T.dot(D1) * 1./df S2 = D2.T.dot(D2) * 1./df S12 = D1.T.dot(D2) * 1./df Chol1 = np.linalg.pinv(np.linalg.cholesky(S1).T) Chol2 = np.linalg.pinv(np.linalg.cholesky(S2).T) K = Chol1.T.dot(S12).dot(Chol2) V, W, U = np.linalg.svd(K) U = U.T CoefY1 = Chol1.dot(V) CoefY2 = Chol2.dot(U) self.Scores1 = DataFrame(Y1.dot(CoefY1), index=siteNames) self.Scores2 = DataFrame(Y2.dot(CoefY2), index=siteNames) self.loadings1 = np.corrcoef(Y1, self.Scores1, rowvar=0)[:5, 5:] self.loadings2 = np.corrcoef(Y2, self.Scores2, rowvar=0)[:3, 3:] axes1 = ['CA Axis {0}'.format(x) for x in range(1, self.loadings1.shape[1]+1)] self.loadings1 = DataFrame(self.loadings1, index=varNames_1, columns=axes1) axes2 = ['CA Axis {0}'.format(x) for x in range(1, self.loadings2.shape[1]+1)] self.loadings2 =
DataFrame(self.loadings2, index=varNames_2, columns=axes2)
pandas.DataFrame
from collections import defaultdict import pandas as pd import numpy as np import logging from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.svm import SVC from sklearn.dummy import DummyClassifier from sklearn.model_selection import LeaveOneOut from sklearn.utils import shuffle from sklearn import metrics from module import labeling file = "./data/metadata/questionnaire.csv" metadf = pd.read_csv(file, sep=";", index_col="name") def _video_of(name, nrs): return list(map(lambda nr: metadf.loc[name]["video%d"%nr], nrs)) classifiers = { "RandomForest": RandomForestClassifier( n_estimators=100), "AdaBoost": AdaBoostClassifier( n_estimators=100), "SVC": SVC(gamma='auto'), "MostFrequent": DummyClassifier(strategy="most_frequent"), "Random": DummyClassifier(strategy="uniform"), } labelConfig = labeling.SimpleConfig() #labeling.RankingThresholdConfig() # RankingThresholdConfig() SimpleConfig() OnlineConfig() ExpertConfig() testlabelConfig = labeling.SimpleConfig() #labeling.RankingThresholdConfig() # RankingThresholdConfig() SimpleConfig() OnlineConfig() videoCombis = [ [[1,3], [2,4]], [[2,4], [1,3]], [[1,4], [2,3]], [[2,3], [1,4]], #[[2,4],[2,4]], #[[1,2,3,4],[1,2,3,4]] ] def run_clf(clf, train_x, train_y, test_x, test_y, state): logging.getLogger('distributed.utils_perf').setLevel(logging.CRITICAL) clf.random_state = state model = clf.fit(train_x, train_y) test_yp = model.predict(test_x) score = metrics.accuracy_score(test_y, test_yp) cm = metrics.confusion_matrix(test_y, test_yp, labels=["tense", "relax"]) # ACHTUNG: Geht nur bei diesen zwei Label !!! verteilung_klassen_true = pd.Series(test_y).value_counts(normalize=True) verteilung_klassen_pred =
pd.Series(test_yp)
pandas.Series
import sys import os import warnings import itertools import subprocess import numpy as np import pandas as pd import slack import scipy.stats as st import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.patches import Patch from matplotlib.gridspec import GridSpec exec(open(os.path.abspath(os.path.join( os.path.dirname(__file__), os.path.pardir, 'visualisation', 'light_mode.py'))).read()) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from rotvel_correlation.simstats import Simstats warnings.filterwarnings("ignore") pathSave = '/cosma6/data/dp004/dc-alta2/C-Eagle-analysis-work/rotvel_correlation' def bayesian_blocks(t): """Bayesian Blocks Implementation By <NAME>. License: BSD Based on algorithm outlined in http://adsabs.harvard.edu/abs/2012arXiv1207.5578S Parameters ---------- t : ndarray, length N data to be histogrammed Returns ------- bins : ndarray array containing the (N+1) bin edges Notes ----- This is an incomplete implementation: it may fail for some datasets. Alternate fitness functions and prior forms can be found in the paper listed above. """ # copy and sort the array t = np.sort(t) N = t.size # create length-(N + 1) array of cell edges edges = np.concatenate([t[:1], 0.5 * (t[1:] + t[:-1]), t[-1:]]) block_length = t[-1] - edges # arrays needed for the iteration nn_vec = np.ones(N) best = np.zeros(N, dtype=float) last = np.zeros(N, dtype=int) #----------------------------------------------------------------- # Start with first data cell; add one cell at each iteration #----------------------------------------------------------------- for K in range(N): # Compute the width and count of the final bin for all possible # locations of the K^th changepoint width = block_length[:K + 1] - block_length[K + 1] count_vec = np.cumsum(nn_vec[:K + 1][::-1])[::-1] # evaluate fitness function for these possibilities fit_vec = count_vec * (np.log(count_vec) - np.log(width)) fit_vec -= 4 # 4 comes from the prior on the number of changepoints fit_vec[1:] += best[:K] # find the max of the fitness: this is the K^th changepoint i_max = np.argmax(fit_vec) last[K] = i_max best[K] = fit_vec[i_max] #----------------------------------------------------------------- # Recover changepoints by iteratively peeling off the last block #----------------------------------------------------------------- change_points = np.zeros(N, dtype=int) i_cp = N ind = N while True: i_cp -= 1 change_points[i_cp] = ind if ind == 0: break ind = last[ind - 1] change_points = change_points[i_cp:] return edges[change_points] def freedman_diaconis(x: np.ndarray) -> np.ndarray: """ The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of a.size. Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very robust to outliers. :param x: np.ndarray The 1-dimensional x-data to bin. :return: np.ndarray The bins edges computed using the FD method. """ return np.histogram_bin_edges(x, bins='fd') def equal_number_FD(x: np.ndarray) -> np.ndarray: """ Takes the number of bins computed using the FD method, but then selects the bin edges splitting the dataset in bins with equal number of data-points. :param x: np.ndarray The 1-dimensional x-data to bin. :return: np.ndarray The bins edges computed using the equal-N method. """ nbin = len(np.histogram_bin_edges(x, bins='fd')) - 1 npt = len(x) return np.interp(np.linspace(0, npt, nbin + 1), np.arange(npt), np.sort(x)) # Print some overall stats about the datasets sys.stdout = open(os.devnull, 'w') read_apertures = [Simstats(simulation_name='macsis', aperture_id=i).read_simstats() for i in range(20)] sys.stdout = sys.__stdout__ for apid, stat in enumerate(read_apertures): print(f"Aperture radius {apid} \t --> \t {stat['R_aperture'][0]/stat['R_200_crit'][0]:1.2f} R_200_crit") del read_apertures sys.stdout = open(os.devnull, 'w') read_redshifts = [Simstats(simulation_name=i, aperture_id=0).read_simstats() for i in ['macsis', 'celr_e']] sys.stdout = sys.__stdout__ for sim_name, stat in zip(['macsis', 'celr_e'], read_redshifts): print('\n') for zid, redshift in enumerate(stat.query('cluster_id == 0')['redshift_float']): print(f"Simulation: {sim_name:<10s} Redshift {zid:2d} --> {redshift:1.2f}") del read_redshifts # Start with one single aperture aperture_id = 9 simstats = list() simstats.append(Simstats(simulation_name='macsis', aperture_id=aperture_id)) simstats.append(Simstats(simulation_name='celr_e', aperture_id=aperture_id)) simstats.append(Simstats(simulation_name='celr_b', aperture_id=aperture_id)) stats_out = [sim.read_simstats() for sim in simstats] attrs = [sim.read_metadata() for sim in simstats] print(f"\n{' stats_out DATASET INFO ':-^50s}") print(stats_out[0].info()) # Create SQL query query_COLLECTIVE = list() query_COLLECTIVE.append('redshift_float < 0.02') query_COLLECTIVE.append('M_200_crit > 10**9') query_COLLECTIVE.append('thermodynamic_merging_index_T < 1') stats_filtered = [stat.query(' and '.join(query_COLLECTIVE)) for stat in stats_out] # Generate plots catalog x_labels = ['redshift_float', 'R_500_crit', 'R_aperture', 'M_2500_crit', 'M_aperture_T', 'peculiar_velocity_T_magnitude', 'angular_momentum_T_magnitude', 'dynamical_merging_index_T', 'thermodynamic_merging_index_T', 'substructure_fraction_T'] y_labels = ['M_200_crit','rotTvelT','rot0rot4','rot1rot4','dynamical_merging_index_T', 'thermodynamic_merging_index_T','substructure_fraction_T'] data_entries = list(itertools.product(x_labels, y_labels)) x_labels = [] y_labels = [] for entry in data_entries: if entry[0] is not entry[1]: x_labels.append(entry[0]) y_labels.append(entry[1]) xscale = [] yscale = [] for x in x_labels: scale = 'log' if 'M' in x or 'velocity' in x else 'linear' xscale.append(scale) for y in y_labels: scale = 'log' if 'M' in y or 'velocity' in y else 'linear' yscale.append(scale) data_summary = { 'x' : x_labels, 'y' : y_labels, 'xscale' : xscale, 'yscale' : yscale, } summary = pd.DataFrame(data=data_summary, columns=data_summary.keys()) summary = summary[summary['y'].str.contains('rot')] summary = summary[~summary['x'].str.contains('redshift')] print(f"\n{' summary DATASET PLOTS INFO ':-^40s}\n", summary) # Activate the plot factory print(f"\n{' RUNNING PLOT FACTORY ':-^50s}") data_entries = summary.to_dict('r') x_binning = bayesian_blocks print(f"[+] Binning method for x_data set to `{x_binning.__name__}`.") for entry_index, data_entry in enumerate(data_entries): filename = f"{data_entry['x'].replace('_', '')}_{data_entry['y'].replace('_', '')}_aperture{aperture_id}.pdf" are_files = [os.path.isfile(os.path.join(pathSave, 'scatter', filename)), os.path.isfile(os.path.join(pathSave, 'kdeplot', filename)), os.path.isfile(os.path.join(pathSave, 'median', filename))] #if any(are_files): continue fig = plt.figure(figsize=(15, 10)) gs = GridSpec(2, 3, figure=fig) gs.update(wspace=0., hspace=0.) info_ax0 = fig.add_subplot(gs[0]); info_ax0.axis('off') ax1 = fig.add_subplot(gs[1]) info_ax1 = fig.add_subplot(gs[2]); info_ax1.axis('off') ax2 = fig.add_subplot(gs[3], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[4], sharex=ax2, sharey=ax2) ax4 = fig.add_subplot(gs[5], sharex=ax3, sharey=ax3) ax = [ax1, ax2, ax3, ax4] plt.setp(ax[0].get_xticklabels(), visible=False) plt.setp(ax[2].get_yticklabels(), visible=False) plt.setp(ax[3].get_yticklabels(), visible=False) xlims = [np.min(pd.concat(stats_filtered)[data_entry['x']]), np.max(pd.concat(stats_filtered)[data_entry['x']])] ylims = [np.min(pd.concat(stats_filtered)[data_entry['y']]), np.max(pd.concat(stats_filtered)[data_entry['y']])] # Unresolved issue with the Latex labels # Some contain an extra `$` at the end of the string, which should not be there. label_x = attrs[0]['Columns/labels'][data_entry['x']] label_y = attrs[0]['Columns/labels'][data_entry['y']] if label_x.endswith('$'): label_x = label_x.rstrip('$') if label_y.endswith('$'): label_y = label_y.rstrip('$') ax[0].set_ylabel(label_y) ax[1].set_ylabel(label_y) ax[1].set_xlabel(label_x) ax[2].set_xlabel(label_x) ax[3].set_xlabel(label_x) simstats_palette = ['#1B9E77','#D95F02','#7570B3','#E7298A'] z_range = [np.min(pd.concat(stats_filtered)['redshift_float']), np.max(pd.concat(stats_filtered)['redshift_float'])] z_range_str = f'{z_range[0]:1.2f} - {z_range[1]:1.2f}' if round(z_range[0]) < round(z_range[1]) else f'{z_range[0]:1.2f}' items_labels = [ f"{label_x.split(r'quad')[0]} -\\ {label_y.split(r'quad')[0]}", f"Number of clusters: {np.sum([attr['Number of clusters'] for attr in attrs]):d}", f"$z$ = {z_range_str:s}", f"Aperture radius = {stats_filtered[0]['R_aperture'][0] / stats_filtered[0]['R_200_crit'][0]:2.2f} $R_{{200\\ true}}$" ] info_ax0.text(0.03, 0.97, '\n'.join(items_labels), horizontalalignment='left', verticalalignment='top', size=15, transform=info_ax0.transAxes) axisinfo_kwargs = dict( horizontalalignment='right', verticalalignment='top', size=15 ) handles = [Patch(facecolor=simstats_palette[i], label=attrs[i]['Simulation'], edgecolor='k', linewidth=1) for i in range(len(attrs))] leg = info_ax1.legend(handles=handles, loc='lower right', handlelength=1, fontsize=20) info_ax1.add_artist(leg) ################################################################################################## # SCATTER PLOTS # ################################################################################################## plot_type = 'scatterplot' for ax_idx, axes in enumerate(ax): axes.set_xscale(data_entry['xscale']) axes.set_yscale(data_entry['yscale']) axes.tick_params(direction='in', length=5, top=True, right=True) if ax_idx == 0: axes.scatter( pd.concat(stats_filtered)[data_entry['x']], pd.concat(stats_filtered)[data_entry['y']], s=5, c=simstats_palette[ax_idx-1] ) axes.text(0.95, 0.95, f'\\textsc{{Total}}', transform=axes.transAxes, **axisinfo_kwargs) else: axes.scatter( stats_filtered[ax_idx-1][data_entry['x']], stats_filtered[ax_idx-1][data_entry['y']], s=5, c=simstats_palette[ax_idx-1] ) axes.text(0.95, 0.95, f"\\textsc{{{attrs[ax_idx-1]['Simulation']}}}", transform=axes.transAxes, **axisinfo_kwargs) if not os.path.exists(os.path.join(pathSave, plot_type)): os.makedirs(os.path.join(pathSave, plot_type)) plt.savefig(os.path.join(pathSave, plot_type, filename)) print(f"[+] Plot {entry_index:3d}/{len(data_entries)} Figure saved: {plot_type:>15s} >> {filename}") ################################################################################################## # kde PLOTS # ################################################################################################## plot_type = 'kdeplot' fig_kde = fig ax_kde = [fig_kde.axes[i] for i in [1, 3, 4, 5]] for axes in ax_kde: for artist in axes.lines + axes.collections: artist.remove() x_space = np.linspace(xlims[0], xlims[1], 101) y_space = np.linspace(ylims[0], ylims[1], 101) if data_entry['xscale'] is 'log': x_space = np.linspace(np.log10(xlims[0]), np.log10(xlims[1]), 101) if data_entry['yscale'] is 'log': y_space = np.linspace(np.log10(ylims[0]), np.log10(ylims[1]), 101) xx, yy = np.meshgrid(x_space, y_space) positions = np.vstack([xx.ravel(), yy.ravel()]) for ax_idx, axes in enumerate(ax_kde): if ax_idx == 0: x = pd.concat(stats_filtered)[data_entry['x']] y = pd.concat(stats_filtered)[data_entry['y']] values = np.vstack([x if data_entry['xscale'] is 'linear' else np.log10(x), y]) kernel = st.gaussian_kde(values) f = np.reshape(kernel(positions).T, xx.shape) #cfset = axes.contourf(xx, yy, f, cmap='Blues') cset = axes.contour(xx if data_entry['xscale'] is 'linear' else 10**xx, yy, f, colors=simstats_palette[ax_idx-1]) axes.scatter(x, y, s=3, c=simstats_palette[ax_idx-1], alpha=0.2) axes.text(0.95, 0.95, f'\\textsc{{Total}}', transform=axes.transAxes, **axisinfo_kwargs) else: x = stats_filtered[ax_idx-1][data_entry['x']] y = stats_filtered[ax_idx-1][data_entry['y']] values = np.vstack([x if data_entry['xscale'] is 'linear' else np.log10(x), y]) kernel = st.gaussian_kde(values) f = np.reshape(kernel(positions).T, xx.shape) #cfset = axes.contourf(xx, yy, f, cmap='Blues') cset = axes.contour(xx if data_entry['xscale'] is 'linear' else 10**xx, yy, f, colors=simstats_palette[ax_idx-1]) axes.scatter(x, y, s=3, c=simstats_palette[ax_idx-1], alpha=0.2) axes.text(0.95, 0.95, f"\\textsc{{{attrs[ax_idx-1]['Simulation']}}}", transform=axes.transAxes, **axisinfo_kwargs) if not os.path.exists(os.path.join(pathSave, plot_type)): os.makedirs(os.path.join(pathSave, plot_type)) plt.savefig(os.path.join(pathSave, plot_type, filename)) print(f"[+] Plot {entry_index:3d}/{len(data_entries)} Figure saved: {plot_type:>15s} >> {filename}") ################################################################################################## # MEDIAN PLOTS # ################################################################################################## plot_type = 'median' fig_median = fig ax_median = [fig_median.axes[i] for i in [1, 3, 4, 5]] for axes in ax_median: for artist in axes.lines + axes.collections: artist.remove() perc84 = Line2D([], [], color='k', marker='^', linestyle='-.', markersize=12, label=r'$84^{th}$ percentile') perc50 = Line2D([], [], color='k', marker='o', linestyle='-', markersize=12, label=r'median') perc16 = Line2D([], [], color='k', marker='v', linestyle='--', markersize=12, label=r'$16^{th}$ percentile') leg1 = fig_median.axes[2].legend(handles=[perc84, perc50, perc16], loc='center right', handlelength=2, fontsize=20) fig_median.axes[2].add_artist(leg1) xlims = [np.min(pd.concat(stats_filtered)[data_entry['x']]), np.max(pd.concat(stats_filtered)[data_entry['x']])] ylims = [np.min(pd.concat(stats_filtered)[data_entry['y']]), np.max(pd.concat(stats_filtered)[data_entry['y']])] x_space = np.linspace(np.log10(xlims[0]), np.log10(xlims[1]), 101) y_space = np.linspace(ylims[0], ylims[1], 101) for ax_idx, axes in enumerate(ax_median): axes.set_xlim([xlims[0] - 0.1 * np.diff(xlims), xlims[1] + 0.1 * np.diff(xlims)]) axes.set_ylim([ylims[0] - 0.1 * np.diff(ylims), ylims[1] + 0.1 * np.diff(ylims)]) axes_to_data = axes.transAxes + axes.transData.inverted() ax_frame = axes_to_data.transform if ax_idx == 0: x = pd.concat(stats_filtered)[data_entry['x']] y =
pd.concat(stats_filtered)
pandas.concat
import numpy as np import pandas as pd class MinMaxScaler: """ MinMaxScaler is used to normalize the input array or dataframe such that the array values get into the range-[0,1]. Note: This version of MinMaxScaler only accepts a dataframe or an array of as input. :return: It returns a multidimensional array """ def fit(self,X): if type(X)!=type(pd.DataFrame()) and type(X)!=type(np.array([1,2])): # checks for the datatype raise TypeError(f"MinMaxScaler accepts either a dataframe or a numpy array as input. It does not accept {type(X)} as input dtype") if type(X)==type(
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from matplotlib import pylab from textwrap import fill from . import univariate def cross_table(variables, category1, category2, data, use_names=True): """ Gives a cross table of category1 and category2 Args: variables: Variables class category1: name of category category2: name of category data: structured data in pandas Data Frame use_names: return object used variable names instead of ids """ # if category in ["country", "region", "district", "clinic"]: # return data[category].value_counts() if category1 not in variables.groups: raise KeyError("Category1 does not exists") if category2 not in variables.groups: raise KeyError("Category1 does not exists") ids1 = sorted(variables.groups[category1]) ids2 = sorted(variables.groups[category2]) if use_names: columns = [variables.name(i) for i in ids1] else: columns = ids1 results =
pd.DataFrame(columns=columns)
pandas.DataFrame
import pandas as pd class NewWave: def __init__(self, data): self.df = data # ->Covid Tracker Shutdown Services def tracker(self): self.df["date"] =
pd.to_datetime(self.df["date"], format="%Y-%m-%d")
pandas.to_datetime
import pandas as pd import numpy as np import matplotlib.pyplot as plt import umap from sklearn.preprocessing import StandardScaler # load the dataframes and attach labels to the weller and wu set ww = pd.read_csv(snakemake.input.ww, index_col=0) jor = pd.read_csv(snakemake.input.jor, index_col=0) labs = pd.read_csv(snakemake.input.labs, index_col=0) labels = labs[['assembly_id', 'spore_forming']] labels = labels.rename({'assembly_id' : 'genome'}, axis=1) ww_labels = pd.merge(ww, labels, on='genome') # Get all of this into array form y = ww_labels['spore_forming'].values X_ww = ww_labels.drop(['spore_forming', 'genome'], axis=1).values ww_names = ww_labels['genome'].values X_jor = jor.drop('genome', axis=1).values jor_names = jor['genome'].values # standardize ss = StandardScaler() jor_std = ss.fit_transform(X_jor) ww_std = ss.transform(X_ww) # fit UMAP um = umap.UMAP() jor_umap = um.fit_transform(jor_std) ww_umap = um.transform(ww_std) # save these reduced versions (because umap take long?) ww_dict_umap = {'genome': ww_names, 'umap_0': ww_umap[:, 0], 'umap_1': ww_umap[:, 1], 'spore_forming': y} jor_dict_umap = {'genome': jor_names, 'umap_0': jor_umap[:, 0], 'umap_1': jor_umap[:, 1]} wwdf = pd.DataFrame(ww_dict_umap) wwdf.to_csv(snakemake.output.ww_umap) jordf =
pd.DataFrame(jor_dict_umap)
pandas.DataFrame
import numpy as np from scipy import optimize import pandas as pd from sklearn.base import BaseEstimator from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from scipy.stats import norm import qng class ErlangcEstimator(BaseEstimator): """ Erlang-C formula for probability of wait in an M/M/c queue. No parameters are actually fit. This is just an analytical formula implemented as an sklearn Estimator so that it can be used in pipelines. Parameters ---------- col_idx_arate : float Column number in X corresponding to arrival rate col_idx_meansvctime : float Column number in X corresponding to mean service time col_idx_numservers : int Column number in X corresponding to number of servers (c) in system """ def __init__(self, col_idx_arate, col_idx_meansvctime, col_idx_numservers): self.col_idx_arate = col_idx_arate self.col_idx_meansvctime = col_idx_meansvctime self.col_idx_numservers = col_idx_numservers def fit(self, X, y=None): """Empty fit method since no parameters to be fit Checks shapes of X, y and sets is_fitted_ to True. Use ``predict`` to get predicted y values. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers in regression). Returns ------- self : object Returns self. """ if y is not None: X, y = check_X_y(X, y, accept_sparse=False) else: X = check_array(X, accept_sparse=False) self.is_fitted_ = True # `fit` should always return `self` return self def predict(self, X): """ Compute Erlang-C using qng library Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) The training input samples. Returns ------- y : ndarray, shape (n_samples,) Returns an array of ones. """ X = check_array(X, accept_sparse=False) check_is_fitted(self, 'is_fitted_') X_df = pd.DataFrame(X) y = X_df.apply( lambda x: qng.erlangc(x[self.col_idx_arate] * x[self.col_idx_meansvctime], int(x[self.col_idx_numservers])), axis=1) return np.array(y) class LoadEstimator(BaseEstimator): """ Load as approximation for mean occupancy No parameters are actually fit. This is just an analytical formula implemented as an sklearn Estimator so that it can be used in pipelines. Parameters ---------- col_idx_arate : float Column number in X corresponding to arrival rate col_idx_meansvctime : float Column number in X corresponding to mean service time """ def __init__(self, col_idx_arate, col_idx_meansvctime): self.col_idx_arate = col_idx_arate self.col_idx_meansvctime = col_idx_meansvctime def fit(self, X, y=None): """Empty fit method since no parameters to be fit Checks shapes of X, y and sets is_fitted_ to True. Use ``predict`` to get predicted y values. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers in regression). Returns ------- self : object Returns self. """ if y is not None: X, y = check_X_y(X, y, accept_sparse=False) else: X = check_array(X, accept_sparse=False) self.is_fitted_ = True # `fit` should always return `self` return self def predict(self, X): """ Compute load as arrival_rate * avg_svc_time Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) The training input samples. Returns ------- y : ndarray, shape (n_samples,) Returns an array of ones. """ X = check_array(X, accept_sparse=False) check_is_fitted(self, 'is_fitted_') X_df =
pd.DataFrame(X)
pandas.DataFrame
import pandas as pd import matplotlib as plt def teamSearch(teamName): teams = pd.read_html("https://en.wikipedia.org/wiki/Wikipedia:WikiProject_National_Basketball_Association/National_Basketball_Association_team_abbreviations", header=0) team_names =
pd.DataFrame(columns=["Abbreviation/Acronym", "Franchise"])
pandas.DataFrame
#Import necessary package import requests import re from bs4 import BeautifulSoup import pandas as pd import numpy as np import datetime as dt import configparser import os import json #Configure parameter config = configparser.ConfigParser() config.read(os.path.join(os.path.dirname(__file__), 'config.ini')) mall = config['general']['mall'] shoplistapi = config['api']['shoplistapi'] fnblistapi = config['api']['fnblistapi'] entertainmentlistapi = config['api']['entertainmentlistapi'] shopdetailurl = config['url']['shopdetailurl'] def getShopCategory(): #Create empty DataFrame for shop category shopcategory =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jan 29 08:35:09 2019 @author: user """ # execute primary input data building script # import build_input_res_heating print('####################') print('BUILDING INPUT DATA FOR INCLUDING DEMAND-SIDE RESPONSE, ENERGY EFFICIENCY AND DHW BOILERS') print('####################') import os import itertools import hashlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import grimsel.auxiliary.sqlutils.aux_sql_func as aql import datetime import seaborn as sns from grimsel.auxiliary.aux_general import print_full from grimsel.auxiliary.aux_general import translate_id import config_local as conf from grimsel.auxiliary.aux_general import expand_rows base_dir = conf.BASE_DIR data_path = conf.PATH_CSV data_path_prv = conf.PATH_CSV + '_res_heating' seed = 2 np.random.seed(seed) db = conf.DATABASE sc = conf.SCHEMA #db = 'grimsel_1' #sc = 'lp_input_ht_ee_dsm' def append_new_rows(df, tb): list_col = list(aql.get_sql_cols(tb, sc, db).keys()) aql.write_sql(df[list_col], db=db, sc=sc, tb=tb, if_exists='append') def del_new_rows(ind, tb, df): del_list = df[ind].drop_duplicates() for i in ind: del_list[i] = '%s = '%i + del_list[i].astype(str) del_str = ' OR '.join(del_list.apply(lambda x: '(' + ' AND '.join(x) + ')', axis=1)) exec_strg = ''' DELETE FROM {sc}.{tb} WHERE {del_str} '''.format(tb=tb, sc=sc, del_str=del_str) aql.exec_sql(exec_strg, db=db) def replace_table(df, tb): print('Replace table %s'%tb) # list_col = list(aql.get_sql_cols(tb, sc, db).keys()) aql.write_sql(df, db=db, sc=sc, tb=tb, if_exists='replace') def append_new_cols(df, tb): # list_col = list(aql.get_sql_cols(tb, sc, db).keys()) col_new = dict.fromkeys((set(df.columns.tolist()) - set(list_col))) for key, value in col_new.items(): col_new[key] = 'DOUBLE PRECISION' # col_new = dict.fromkeys((set(list_col[0].columns.tolist()) - set(list_col)),1) aql.add_column(df_src=df,tb_tgt=[sc,tb],col_new=col_new,on_cols=list_col, db=db) # %% DHW loads dfload_arch_dhw = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_dec.csv') dfload_arch_dhw['DateTime'] = dfload_arch_dhw['DateTime'].astype('datetime64[ns]') # dfload_arch_dhw = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_dec') dferg_arch_dhw = dfload_arch_dhw.groupby('nd_id')['erg_tot'].sum().reset_index() dferg_arch_dhw['nd_id_new'] = dferg_arch_dhw.nd_id dfload_arch_dhw_central = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_cen.csv') # dfload_arch_dhw_central = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_cen') dferg_arch_dhw_central = dfload_arch_dhw_central.groupby('nd_id')['erg_tot'].sum().reset_index() dferg_arch_dhw_central['nd_id_new'] = dferg_arch_dhw_central.nd_id # dfload_dhw_elec = pd.read_csv(os.path.join(base_dir,'../heat_dhw/dhw_el_load_night_charge.csv'),sep=';') # dfload_dhw_elec['DateTime'] = pd.to_datetime(dfload_dhw_elec.DateTime) # dfload_dhw_remove = pd.merge(dfload_arch_dhw,dfload_dhw_elec.drop(columns='dhw_mw'), on='DateTime' ) # dfload_dhw_remove = pd.merge(dfload_dhw_remove,dferg_arch_dhw.drop(columns='nd_id_new').rename(columns={'erg_tot':'erg_year'}),on='nd_id' # ).assign(load_dhw_rem = lambda x: x.dhw_rel_load*x.erg_year) # %% Central DHW loads #Bau load dfload_arch_dhw_central = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_cen.csv') # dfload_arch_dhw_central = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_cen') dfload_arch_dhw_central['erg_tot'] = dfload_arch_dhw_central.erg_tot/24 # MWh -> MW dfload_arch_dhw_central['erg_tot_retr_1pc'] = dfload_arch_dhw_central.erg_tot # here already in MW previous line dfload_arch_dhw_central['erg_tot_retr_2pc'] = dfload_arch_dhw_central.erg_tot # here already in MW previous line dfload_arch_dhw_central = dfload_arch_dhw_central.set_index('DateTime') dfload_arch_dhw_central.index = pd.to_datetime(dfload_arch_dhw_central.index) #fossil load dfload_arch_dhw_central_fossil = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_cen_fossil.csv') # dfload_arch_dhw_central_fossil = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_cen_fossil') dfload_arch_dhw_central_fossil['erg_tot_fossil'] = dfload_arch_dhw_central_fossil.erg_tot/24 # MWh -> MW dfload_arch_dhw_central_fossil['erg_tot_retr_1pc_fossil'] = dfload_arch_dhw_central_fossil.erg_tot/24 # MWh -> MW dfload_arch_dhw_central_fossil['erg_tot_retr_2pc_fossil'] = dfload_arch_dhw_central_fossil.erg_tot/24 # MWh -> MW dfload_arch_dhw_central_fossil = dfload_arch_dhw_central_fossil.drop(columns='erg_tot') dfload_arch_dhw_central_fossil = dfload_arch_dhw_central_fossil.set_index('DateTime') dfload_arch_dhw_central_fossil.index = pd.to_datetime(dfload_arch_dhw_central_fossil.index) dfload_arch_dhw_central = dfload_arch_dhw_central.reset_index() dfload_arch_dhw_central = pd.merge(dfload_arch_dhw_central,dfload_arch_dhw_central_fossil,on=['index','doy','nd_id']) dfload_arch_dhw_central = dfload_arch_dhw_central.set_index('DateTime') dfload_arch_dhw_central.index = pd.to_datetime(dfload_arch_dhw_central.index) # %% Seperation for aw and bw heat pumps DHW central dfload_arch_dhw_central_aw = dfload_arch_dhw_central.copy() dfload_arch_dhw_central_aw[['erg_tot', 'erg_tot_fossil', 'erg_tot_retr_1pc', 'erg_tot_retr_2pc', 'erg_tot_retr_1pc_fossil', 'erg_tot_retr_2pc_fossil']] *= 0.615 dfload_arch_dhw_central_ww = dfload_arch_dhw_central.copy() dfload_arch_dhw_central_ww[['erg_tot', 'erg_tot_fossil', 'erg_tot_retr_1pc', 'erg_tot_retr_2pc', 'erg_tot_retr_1pc_fossil', 'erg_tot_retr_2pc_fossil']] *= 0.385 # %% DSR loads dfload_arch_dsr_sfh_1day = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_sfh_1day.csv') dfload_arch_dsr_mfh_1day = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_mfh_1day.csv') # dfload_arch_dsr_sfh_1day = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_sfh_1day') # dfload_arch_dsr_mfh_1day = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_mfh_1day') dfload_arch_dsr_sfh_1h = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_sfh_1h.csv') dfload_arch_dsr_sfh_1h['DateTime'] = dfload_arch_dsr_sfh_1h['DateTime'].astype('datetime64[ns]') dfload_arch_dsr_mfh_1h = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_mfh_1h.csv') dfload_arch_dsr_mfh_1h['DateTime'] = dfload_arch_dsr_mfh_1h['DateTime'].astype('datetime64[ns]') # dfload_arch_dsr_sfh_1h = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_sfh_1h') # dfload_arch_dsr_mfh_1h = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_mfh_1h') dfload_arch_dsr_1day = pd.concat([dfload_arch_dsr_sfh_1day,dfload_arch_dsr_mfh_1day]) dfload_arch_dsr_1day['erg_dsr_1day_MW'] = dfload_arch_dsr_1day.erg_dsr_1day/24 # MWh -> MW dfload_arch_dsr_1h = pd.concat([dfload_arch_dsr_sfh_1h,dfload_arch_dsr_mfh_1h]) dfload_arch_dsr_1h_2015 = dfload_arch_dsr_1h.loc[dfload_arch_dsr_1h.nd_id.str.contains('2015')] dfload_arch_dsr_1h_2015 = dfload_arch_dsr_1h_2015.reset_index(drop=True) dferg_arch_dsr = dfload_arch_dsr_1day.groupby('nd_id')['erg_dsr_1day'].sum().reset_index() # dferg_arch_dsr_1h = dfload_arch_dsr_1h.groupby('nd_id')['erg_dsr_1h'].sum().reset_index() dferg_arch_dsr_1day = dfload_arch_dsr_1day.groupby('nd_id')['erg_dsr_1day'].sum().reset_index() dferg_arch_dsr['nd_id_new'] = dferg_arch_dsr.nd_id.str[0:13] dferg_arch_dsr_1day['nd_id_new'] = dferg_arch_dsr.nd_id.str[0:13] dferg_arch_dsr_1day['erg_dsr_2015'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_2015')].erg_dsr_1day dferg_arch_dsr_1day['erg_dsr_2035'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_2035')].erg_dsr_1day dferg_arch_dsr_1day['erg_dsr_2050'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_2050')].erg_dsr_1day dferg_arch_dsr_1day['erg_dsr_best_2035'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_best_2035')].erg_dsr_1day # dferg_arch_dsr_1day = dferg_arch_dsr_1day.fillna(method='ffill').loc[dferg_arch_dsr_1day.nd_id.str.contains('2050')].reset_index(drop=True) dferg_arch_dsr_1day = dferg_arch_dsr_1day.fillna(method='ffill').loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_best_2035')].reset_index(drop=True) # %% EE loads just others (without DSR hourly demand) dfload_arch_ee_sfh =
pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_ee_sfh_diff_wo_dsr.csv')
pandas.read_csv
import glob import logging import os import numpy as np import pandas as pd import ssbio.protein.sequence.utils.alignment from ssbio.utils import percentage_to_float log = logging.getLogger(__name__) def sequence_checker(reference_seq_aln, structure_seq_aln, seq_ident_cutoff=0.5, allow_missing_on_termini=0.2, allow_mutants=False, allow_deletions=False, allow_insertions=False, allow_unresolved=False): """Report if a structure's sequence meets coverage checks to a reference sequence. First aligns a sequence from a chain of a PDB structure to "reference" sequence. Then creates a DataFrame of results to check for everything. Args: reference_seq_aln (str, Seq, SeqRecord): Reference sequence, alignment form structure_seq_aln (str, Seq, SeqRecord): Structure sequence, alignment form seq_ident_cutoff (float): Percent sequence identity cutoff, in decimal form allow_missing_on_termini (float): Percentage of the total length of the reference sequence which will be ignored when checking for modifications. Example: if 0.1, and reference sequence is 100 AA, then only residues 5 to 95 will be checked for modifications. allow_mutants (bool): If mutations should be allowed or checked for allow_deletions (bool): If deletions should be allowed or checked for allow_insertions (bool): If insertions should be allowed or checked for allow_unresolved (bool): If unresolved residues should be allowed or checked for Returns: bool: If the structure's sequence meets the quality checks. """ reference_seq_aln = ssbio.protein.sequence.utils.cast_to_str(reference_seq_aln) structure_seq_aln = ssbio.protein.sequence.utils.cast_to_str(structure_seq_aln) results = ssbio.protein.sequence.utils.alignment.pairwise_alignment_stats(reference_seq_aln=reference_seq_aln, other_seq_aln=structure_seq_aln) # Check percent identity cutoff stats_percent_ident = results['percent_identity'] log.debug('{}: percent identity'.format(stats_percent_ident)) if stats_percent_ident < seq_ident_cutoff: log.debug('Alignment does not meet percent identity cutoff') return False else: log.debug('Alignment meets percent identity cutoff') # Get cutoff stuff ready ref_seq_len = len(reference_seq_aln.replace('-', '')) allow_missing_on_termini /= 2 # If any differences appear before start, they are ignored start = ref_seq_len - (ref_seq_len * (1 - allow_missing_on_termini)) # If any differences appear before end, they are ignored end = ref_seq_len - (ref_seq_len * allow_missing_on_termini) no_deletions_in_pdb = False no_insertions_in_pdb = False no_mutants_in_pdb = False no_unresolved_in_pdb = False # Check everything if not allow_deletions: # Get indices of the deletions deletions = results['deletions'] # If there are no deletions, that's great if len(deletions) == 0: log.debug('No deletion regions') no_deletions_in_pdb = True else: log.debug('{} deletion region(s)'.format(len(deletions))) # If the deletion appears before or after the cutoff, that's also great for deletion in deletions: if deletion[0][1] < start or deletion[0][0] > end: no_deletions_in_pdb = True log.debug('Deletion region(s) are not within structure core') else: no_deletions_in_pdb = False log.debug('Deletions within structure') log.debug('{} > {} or {} < {}'.format(deletion[0][1], start, deletion[0][0], end)) break else: no_deletions_in_pdb = True if not allow_insertions: # Get indices of the insertions insertions = results['insertions'] # If there are no insertions, that's great if len(insertions) == 0: log.debug('No insertion regions') no_insertions_in_pdb = True else: log.debug('{} insertion region(s)'.format(len(insertions))) # If the insertion appears before or after the cutoff, that's also great for insertion in insertions: if insertion[0][1] < start or insertion[0][0] > end: no_insertions_in_pdb = True log.debug('Insertion region(s) are not within structure core') else: no_insertions_in_pdb = False log.debug('Insertion regions within structure') break else: no_insertions_in_pdb = True if not allow_mutants: # Get indices of the mutants mutations_full = results['mutations'] mutations = [x[1] for x in mutations_full] # If there are no mutants, that's great if len(mutations) == 0: log.debug('No point mutations') no_mutants_in_pdb = True else: log.debug('{} point mutation(s)'.format(len(mutations))) # If the mutant appears before or after the cutoff, that's also great for mutation in mutations: if mutation < start or mutation > end: no_mutants_in_pdb = True log.debug('Mutation region(s) are not within structure core') else: no_mutants_in_pdb = False log.debug('Mutantion regions within structure') break else: no_mutants_in_pdb = True if not allow_unresolved: # Get indices of the unresolved residues unresolved = results['unresolved'] # If there are no unresolved, that's great if len(unresolved) == 0: log.debug('No unresolved mutations') no_unresolved_in_pdb = True else: log.debug('{} unresolved residue(s)'.format(len(unresolved))) # If the unresolved residue appears before or after the cutoff, that's also great for unr in unresolved: if unr < start or unr > end: no_unresolved_in_pdb = True log.debug('Unresolved region(s) are not within structure core') else: no_unresolved_in_pdb = False log.debug('Unresolved residues within structure') break else: no_unresolved_in_pdb = True if no_deletions_in_pdb and no_insertions_in_pdb and no_mutants_in_pdb and no_unresolved_in_pdb: return True else: return False def parse_procheck(quality_directory): """Parses all PROCHECK files in a directory and returns a Pandas DataFrame of the results Args: quality_directory: path to directory with PROCHECK output (.sum files) Returns: Pandas DataFrame: Summary of PROCHECK results """ # TODO: save as dict instead, offer df as option # TODO: parse for one file instead procheck_summaries = glob.glob(os.path.join(quality_directory, '*.sum')) if len(procheck_summaries) == 0: return pd.DataFrame() all_procheck = {} for summ in procheck_summaries: structure_id = os.path.basename(summ).split('.sum')[0] procheck_dict = {} with open(summ) as f_in: lines = (line.rstrip() for line in f_in) # All lines including the blank ones lines = (line for line in lines if line) # Non-blank lines for line in lines: if len(line.split()) > 1: if line.split()[1] == 'Ramachandran': procheck_dict['procheck_rama_favored'] = percentage_to_float(line.split()[3]) procheck_dict['procheck_rama_allowed'] = percentage_to_float(line.split()[5]) procheck_dict['procheck_rama_allowed_plus'] = percentage_to_float(line.split()[7]) procheck_dict['procheck_rama_disallowed'] = percentage_to_float(line.split()[9]) if line.split()[1] == 'G-factors': procheck_dict['procheck_gfac_dihedrals'] = line.split()[3] procheck_dict['procheck_gfac_covalent'] = line.split()[5] procheck_dict['procheck_gfac_overall'] = line.split()[7] all_procheck[structure_id] = procheck_dict DF_PROCHECK =
pd.DataFrame.from_dict(all_procheck, orient='index')
pandas.DataFrame.from_dict
import numpy as np import pandas as pd #import sys #sys.path.append("../") def read_round(filename): mask = [False, False, True, True, False, False, False, True, True] header = ["epic_number", "mix_mean", "mix_sd", "mix_neff", "mix_rhat", "logdeltaQ_mean", "logdeltaQ_sd", "logdeltaQ_neff", "logdeltaQ_rhat", "logQ0_mean", "logQ0_sd", "logQ0_neff", "logQ0_rhat", "logperiod_mean", "logperiod_sd", "logperiod_neff", "logperiod_rhat", "logamp_mean", "logamp_sd", "logamp_neff", "logamp_rhat", "logs2_mean", "logs2_sd", "logs2_neff", "logs2_rhat", "acfpeak"] with open(filename, "r") as file: lines = file.readlines() nstars = (np.int((len(lines)/7))) data = np.zeros((nstars, 26)) for i in range(nstars): data[i, 0] = lines[7*i].split()[0] for j in range(6): data[i, 4*j+1:4*(j+1)+1] = np.array(lines[7*i+j].split())[mask] acfpeak = lines[7*i+6].split()[2] if "None" in acfpeak: data[i, 25] = np.nan else: data[i, 25] = acfpeak return
pd.DataFrame(data=data, columns=header)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([pd.Period("2014Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - pi # --------------------------------------------------------------- # Timedelta-like (timedelta, timedelta64, Timedelta, Tick) # TODO: Some of these are misnomers because of non-Tick DateOffsets def test_pi_add_timedeltalike_minute_gt1(self, three_days): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # minute frequency with n != 1. A more general case is tested below # in test_pi_add_timedeltalike_tick_gt1, but here we write out the # expected result more explicitly. other = three_days rng = pd.period_range("2014-05-01", periods=3, freq="2D") expected = pd.PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D") result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D") result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng @pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5T", "5h", "5d"]) def test_pi_add_timedeltalike_tick_gt1(self, three_days, freqstr): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # tick-like frequency with n != 1 other = three_days rng = pd.period_range("2014-05-01", periods=6, freq=freqstr) expected = pd.period_range(rng[0] + other, periods=6, freq=freqstr) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.period_range(rng[0] - other, periods=6, freq=freqstr) result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng def test_pi_add_iadd_timedeltalike_daily(self, three_days): # Tick other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-05-04", "2014-05-18", freq="D") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_sub_isub_timedeltalike_daily(self, three_days): # Tick-like 3 Days other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-04-28", "2014-05-12", freq="D") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_daily(self, not_daily): other = not_daily rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") msg = "Input has different freq(=.+)? from Period.*?\\(freq=D\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="H") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_add_timedeltalike_mismatched_freq_hourly(self, not_hourly): other = not_hourly rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") msg = "Input has different freq(=.+)? from Period.*?\\(freq=H\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other def test_pi_sub_isub_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="H") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_add_iadd_timedeltalike_annual(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng + pd.offsets.YearEnd(5) expected = pd.period_range("2019", "2029", freq="A") tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014", "2024", freq="A") msg = "Input has different freq(=.+)? from Period.*?\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_M(self): rng = pd.period_range("2014-01", "2016-12", freq="M") expected = pd.period_range("2014-06", "2017-05", freq="M") result = rng + pd.offsets.MonthEnd(5) tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014-01", "2016-12", freq="M") msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_parr_add_sub_td64_nat(self, box_transpose_fail): # GH#23320 special handling for timedelta64("NaT") box, transpose = box_transpose_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") other = np.timedelta64("NaT") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = obj + other
tm.assert_equal(result, expected)
pandas.util.testing.assert_equal
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import json import pickle import datetime from pathlib import Path from dataclasses import dataclass, field, asdict, fields from typing import List, Union, Iterable from seir.argparser import DataClassArgumentParser from seir.cli import MetaCLI, LockdownCLI, OdeParamCLI, FittingCLI, BaseDistributionCLI, BaseCLI from seir.parameters import FittingParams from seir.ode import CovidSeirODE from seir.solvers import ScipyOdeIntSolver from seir.data import DsfsiData, CovidData, TimestampData, extend_data_samples, append_data_time from seir.fitting import BayesSIRFitter import warnings warnings.filterwarnings("ignore", category=UserWarning) @dataclass class DataCLI(BaseCLI): data_source: str = field( default='dsfsi/total', metadata={ "help": "Selects the data source for the fitting procedure. If a csv file, it will look for a deaths, " "hospitalised, critical, infected, and recovered columns and fit the output of the model to those " "(if selected for fitting). Can also point to dsfsi/<province> to load the DSFSI data for a " "particular province Defaults to dsfsi/total." } ) population_source: str = field( default=None, metadata={ "help": "A csv file containing a column labeled 'ageband' and 'population' that yields the number of " "people in each ten year age group, from 0-9, 10-19, ..., 80+. This should correspond to the data " "selected for fitting. NOTE: This is not needed when DSFSI data are selected as the data source." } ) lockdown_date: str = field( default=None, metadata={ "help": "The day of the start of a lockdown period. The model internally computes time values (such as " "the seeding time t0) relative to this date. Should be in YYYY/mm/dd format. This is not needed when " "DSFSI data is used, as it is set to 2020/03/27)." } ) min_date: str = field( default='2020/04/05', metadata={ "help": "Minimum date from which to fit. Can help reduce noise due to early reporting faults." } ) max_date: str = field( default=None, metadata={ "help": "Maximum date from which to fit. Can help reduce noise at the end of reported data, due to lag." } ) lockdown_date_dt: datetime.datetime = field(init=False) min_date_dt: datetime.datetime = field(init=False) max_date_dt: datetime.datetime = field(init=False) dsfsi_province: str = field(default=None, init=False) mode: str = field(default=None, init=False) def __post_init__(self): if self.data_source.split('/')[0] == 'dsfsi': self.mode = 'dsfsi' self.lockdown_date = '2020/03/27' if len(self.data_source.split('/')) == 1: self.dsfsi_province = 'total' else: province = self.data_source.split('/')[1] self.dsfsi_province = province.upper() if not province.lower() == 'total' else province.lower() elif Path(self.data_source).is_file(): self.mode = 'file' if not Path(self.population_source).is_file(): raise ValueError('--population_source not correctly specified for given data source.') else: raise ValueError('--data_source flag does not point to a dsfsi dataset or a local file.') self.lockdown_date = '2020/03/27' if self.lockdown_date is None else self.lockdown_date self.lockdown_date_dt = pd.to_datetime(self.lockdown_date, format='%Y/%m/%d') if self.lockdown_date is not None else None self.min_date_dt = pd.to_datetime(self.min_date, format='%Y/%m/%d') if self.min_date is not None else None self.max_date_dt = pd.to_datetime(self.max_date, format='%Y/%m/%d') if self.max_date is not None else None @dataclass class InitialCLI(BaseDistributionCLI): _defaults_dict = { 't0': -50, 'prop_e0': [0, 1e-5], 'prop_immune': [0], } t0: int = field( default=-50, metadata={ "help": "Initial time at which to process y0" } ) prop_e0: List[float] = field( default_factory=lambda: None, metadata={ "help": "Proportion of exposed individuals at t0. Used to seed the SEIR model." } ) prop_immune: List[float] = field( default_factory=lambda: None, metadata={ "help": "Proportion of initial population who are immune to the disease and will never contract it." } ) @dataclass class InputOutputCLI: from_config: str = field( default=None, metadata={ "help": "Load parameter values from a config file instead of the command line" } ) output_dir: str = field( default=None, metadata={ "help": "Location to place output files" } ) overwrite: bool = field( default=False, metadata={ "help": "Whether to overwrite the contents of the output directory" } ) output_path: Path = field(init=False) run_path: Path = field(init=False) def __post_init__(self): if self.output_dir is None: self.output_dir = './results' self.output_path = Path(self.output_dir) if not self.output_path.is_dir(): self.output_path.mkdir() if ( self.output_path.is_dir() and any(self.output_path.iterdir()) and not self.from_config and not self.overwrite ): raise ValueError('Detected files in output directory. Define a new output directory or use --overwrite to ' 'overcome.') self.run_path = self.output_path.joinpath('runs/') if not self.run_path.is_dir(): self.run_path.mkdir() def save_all_cli_to_config(clis: Union[BaseCLI, Iterable[BaseCLI]], directory: Union[str, Path], exclude: list = None): if exclude is None: exclude = [] if isinstance(clis, BaseCLI): clis = [clis] json_data = {} for cli in clis: x = asdict(cli) f = [f.name for f in fields(cli) if f.init and f.name not in exclude] xx = {k: v for k, v in x.items() if k in f} json_data.update(xx) if isinstance(directory, str): directory = Path(directory) if not directory.is_dir(): directory.mkdir() json.dump(json_data, directory.joinpath('config.json').open('w'), indent=4) def plot_priors_posterior(prior_dict: dict, posterior_dict: dict, params_to_plot: Iterable): for param in params_to_plot: assert param in prior_dict, \ f"Parameter {param} not found in given prior dictionary" assert param in posterior_dict, \ f"Parameter {param} not found in given posterior dictionary" if not param == 'rel_beta_lockdown': assert isinstance(prior_dict[param], np.ndarray), \ f"Parameter in prior dict {param} is not a numpy array" assert prior_dict[param].ndim == posterior_dict[param].ndim and 2 >= prior_dict[param].ndim > 0, \ f"Mismatch of dimensions for parameter {param}." nb_plots = 0 for param in params_to_plot: if param == 'rel_beta_lockdown': for x in prior_dict[param]: if x.ndim > 0: nb_plots += x.shape[0] elif prior_dict[param].ndim == 1: nb_plots += 1 else: nb_plots += prior_dict[param].shape[0] # plot params on a square grid n = int(np.ceil(np.sqrt(nb_plots))) fig, axes = plt.subplots(n, n, figsize=(3 * n, 3 * n)) axes = axes.flat i = 0 for param in params_to_plot: if param == 'rel_beta_lockdown': for x in range(len(prior_dict[param])): if prior_dict[param][x].ndim == 2: for nb_group in range(prior_dict[param][x].shape[0]): sns.distplot(prior_dict[param][x][nb_group], color='C0', ax=axes[i]) sns.distplot(posterior_dict[param][x][nb_group], color='C1', ax=axes[i]) axes[i].set_title(f"{param}_{x}_{nb_group}") i += 1 elif prior_dict[param].ndim == 1: sns.distplot(prior_dict[param], color='C0', ax=axes[i]) sns.distplot(posterior_dict[param], color='C1', ax=axes[i]) axes[i].set_title(param) i += 1 else: for nb_group in range(prior_dict[param].shape[0]): sns.distplot(prior_dict[param][nb_group], color='C0', ax=axes[i]) sns.distplot(posterior_dict[param][nb_group], color='C1', ax=axes[i]) axes[i].set_title(f"{param}_{nb_group}") i += 1 return fig, axes def append_samples(a: np.ndarray, b: np.ndarray): if isinstance(a, np.ndarray): assert isinstance(b, np.ndarray) if a.ndim > 0 and b.ndim > 0 and a.shape[-1] > 1 and b.shape[-1] > 1: return np.concatenate([a, b], axis=-1) return a def process_runs(run_path: Path, nb_runs: int) -> dict: all_priors = None for run in range(nb_runs): prior_dict = pickle.load(run_path.joinpath(f'run{run:02}_prior_dict.pkl').open('rb')) if all_priors is None: all_priors = prior_dict else: for k, v in all_priors.items(): if isinstance(v, list): for i in range(len(v)): all_priors[k][i] = append_samples(all_priors[k][i], prior_dict[k][i]) else: all_priors[k] = append_samples(all_priors[k], prior_dict[k]) return all_priors def main(): sns.set(style='darkgrid') argparser = DataClassArgumentParser( [MetaCLI, LockdownCLI, OdeParamCLI, FittingCLI, InitialCLI, InputOutputCLI, DataCLI]) meta_cli, lockdown_cli, ode_cli, fitting_cli, initial_cli, output_cli, data_cli = argparser.parse_args_into_dataclasses() if output_cli.from_config: meta_cli, lockdown_cli, ode_cli, fitting_cli, initial_cli, output_cli, data_cli = argparser.parse_json_file( output_cli.from_config) save_all_cli_to_config([meta_cli, lockdown_cli, ode_cli, fitting_cli, initial_cli, output_cli, data_cli], directory=output_cli.output_path, exclude=['from_config']) if data_cli.mode == 'dsfsi': df_pop = pd.read_csv('data/sa_age_band_population.csv') population_band = df_pop[data_cli.dsfsi_province].values if not meta_cli.age_heterogeneity: population_band = np.sum(population_band) population_band = np.expand_dims(population_band, axis=1) data = DsfsiData(province=data_cli.dsfsi_province, filter_kwargs={'min_date': data_cli.min_date_dt, 'max_date': data_cli.max_date_dt}) elif data_cli.mode == 'file': data_fp = Path(data_cli.data_source) pop_fp = Path(data_cli.population_source) if data_fp.suffix != '.csv': raise ValueError('Only csv files are supported as data sources') if pop_fp.suffix != '.csv': raise ValueError('Only csv files are supported as population sources') df_pop =
pd.read_csv(pop_fp, index_col='ageband')
pandas.read_csv
import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta import re import os import xgboost as xgb from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score from sklearn.ensemble import RandomForestClassifier PATH = 'data/' submissions_path = 'submissions/' train = pd.read_csv(f"{PATH}train.csv") test = pd.read_csv(f"{PATH}test.csv") def replace_lower_freq(df, col, replace_val, threshold): value_counts = df[col].value_counts() to_remove = value_counts[value_counts <= threshold].index return df[col].replace(to_remove, replace_val) def add_datepart(df, fldname, drop=True): fld = df[fldname] if not np.issubdtype(fld.dtype, np.datetime64): df[fldname] = fld = pd.to_datetime(fld, infer_datetime_format=True) targ_pre = re.sub('[Dd]ate$', '', fldname) for n in ('Year', 'Month', 'Week', 'Day', 'Dayofweek', 'Dayofyear', 'Is_month_end', 'Is_month_start', 'Is_quarter_end', 'Is_quarter_start', 'Is_year_end', 'Is_year_start'): df[targ_pre+n] = getattr(fld.dt, n.lower()) df[targ_pre+'Elapsed'] = fld.astype(np.int64) // 10**9 if drop: df.drop(fldname, axis=1, inplace=True) def preprocess(df, id_col, target_col): df['Gender'] = df['Gender'].map({'Male': 1, 'Female': 0}) df['City_Code'] = replace_lower_freq(df, 'City_Code', "C00000", 5) df['City_Code'] = df['City_Code'].fillna("C00000") df['City_Code'] = df['City_Code'].str.lstrip('C').astype(int) df['City_Category'] = df['City_Category'].fillna("M") df['City_Category'] = df['City_Category'].map({'A': 1, 'B': 2, 'C': 3, 'M': -1}) df['Employer_Code'] = replace_lower_freq(df, 'Employer_Code', "COM0000000", 5) df['Employer_Code'] = df['Employer_Code'].fillna("COM0000000") df['Employer_Code'] = df['Employer_Code'].str.lstrip('COM').astype(int) df['Employer_Category1'] = df['Employer_Category1'].fillna("M") df['Employer_Category1'] = df['Employer_Category1'].map({'A': 1, 'B': 2, 'C': 3, 'M': -1}) df['Employer_Category2'] = df['Employer_Category2'].fillna(-1) df['Employer_Category2'] = df['Employer_Category2'].astype(int) df['DOB'] = df['DOB'].fillna('11/01/82') df['DOB'] = pd.to_datetime(df['DOB']) df.loc[df['DOB'].dt.year > 2000, 'DOB'] = df.loc[df['DOB'].dt.year > 2000, 'DOB'].apply(lambda x: x-relativedelta(years=100)) df['Lead_Creation_Date'] =
pd.to_datetime(df['Lead_Creation_Date'])
pandas.to_datetime
""" execution environment: cdips, + pipe-trex .pth file in /home/lbouma/miniconda3/envs/cdips/lib/python3.7/site-packages python -u paper_plot_all_figures.py &> logs/paper_plot_all.log & """ from glob import glob import datetime, os, pickle, shutil, subprocess import numpy as np, pandas as pd import matplotlib.pyplot as plt from numpy import array as nparr from datetime import datetime from astropy.io import fits from astropy.io.votable import from_table, writeto, parse from astropy.coordinates import SkyCoord from astropy import units as u from astrobase import lcmath from astrobase.lcmath import phase_magseries from lcstatistics import compute_lc_statistics_fits import lcstatistics as lcs from cdips.utils import tess_noise_model as tnm from cdips.utils import collect_cdips_lightcurves as ccl from cdips.plotting import plot_star_catalog as psc from cdips.plotting import plot_catalog_to_gaia_match_statistics as xms from cdips.plotting import plot_wcsqa as wcsqa from cdips.plotting import plot_quilt_PCs as pqp from cdips.plotting import plot_quilt_s6_s7 as pqps from cdips.plotting import savefig import imageutils as iu import matplotlib.colors as colors from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.patches as patches import matplotlib.patheffects as path_effects from skim_cream import plot_initial_period_finding_results from collections import Counter OUTDIR = '/nfs/phtess2/ar0/TESS/PROJ/lbouma/cdips/results/paper_V_figures/' if not os.path.exists(OUTDIR): os.mkdir(OUTDIR) CLUSTERDATADIR = '/home/lbouma/proj/cdips/data/cluster_data' LCDIR = '/nfs/phtess2/ar0/TESS/PROJ/lbouma/CDIPS_LCS/' OC_MG_CAT_ver=0.5 def main(): # fig N: T magnitude CDF for all CDIPS target stars. plot_target_star_cumulative_counts(OC_MG_CAT_ver=OC_MG_CAT_ver, overwrite=1) # fig N: HRD for CDIPS TARGET (not LC) stars. sectors = None plot_hrd_scat(sectors, overwrite=1, closest_subset=1) plot_hrd_scat(sectors, overwrite=1, close_subset=1) plot_hrd_scat(sectors, overwrite=1) # fig N: histogram of CDIPS target star age. plot_target_star_hist_logt(OC_MG_CAT_ver=OC_MG_CAT_ver, overwrite=1) assert 0 # fig N: pmRA and pmDEC scatter for CDIPS LC stars. plot_pm_scat(sectors, overwrite=1, close_subset=1) plot_pm_scat(sectors, overwrite=1, close_subset=0) # fig N: histogram of ages of LC stars plot_hist_logt(sectors, overwrite=1) # fig N: histogram (or CDF) of T magnitude for LC stars plot_cdf_T_mag(sectors, overwrite=1) sectors = [6,7,8,9,10,11,12,13] # fig N: RMS vs catalog T mag for LC stars, with TFA LCs plot_rms_vs_mag(sectors, overwrite=1) # fig N: positions of field and cluster LC stars (currently all cams) plot_cluster_and_field_star_scatter(sectors=sectors, overwrite=1, galacticcoords=True) plot_cluster_and_field_star_scatter(sectors=sectors, overwrite=1) # plot_singleccd_rms_vs_mag(sectors, overwrite=0) # fig N: average autocorrelation fn of LCs plot_avg_acf(sectors, size=10000, overwrite=1, cleanprevacf=False) # fig N: stages of image processing. plot_stages_of_image_processing(niceimage=1, overwrite=1) plot_stages_of_image_processing(niceimage=0, overwrite=1) # fig N: catalog_to_gaia_match_statistics for CDIPS target stars plot_catalog_to_gaia_match_statistics(overwrite=1) # fig N: quilt of interesting light curves, phase-folded pqps.plot_quilt_s6_s7(overwrite=1) # fig N: 3x2 quilt of phased PC pqp.plot_quilt_PCs(overwrite=1, paper_aspect_ratio=0) pqp.plot_quilt_PCs(overwrite=1, paper_aspect_ratio=1) # timeseries figures for sector in range(6,8): for cam in range(1,5): for ccd in range(1,5): try: plot_detrended_light_curves( sector=sector, cam=cam, ccd=ccd, overwrite=0, seed=42 ) except Exception as e: print('{}-{}-{} failed, because {}'. format(sector,cam,ccd,repr(e))) pass plot_external_parameters_vs_time( sector=6, cam=1, ccd=1, overwrite=1, seed=43) plot_raw_light_curve_systematics( sector=6, cam=1, ccd=2, overwrite=1, seed=43) plot_raw_light_curve_systematics( sector=7, cam=2, ccd=4, overwrite=1, seed=42) # fig N: wcs quality verification for one photometric reference plot_wcs_verification(overwrite=1) # fig N: target star provenance plot_target_star_reference_pie_chart(OC_MG_CAT_ver=OC_MG_CAT_ver, overwrite=1) # fig N: tls_sde_vs_period_scatter plot_tls_sde_vs_period_scatter(sectors, overwrite=1) # fig N: LS period vs color evolution in time plot_LS_period_vs_color_and_age(sectors, overwrite=1, OC_MG_CAT_ver=OC_MG_CAT_ver) # fig N: histogram (or CDF) of TICCONT. unfortunately this is only # calculated for CTL stars, so by definition it has limited use plot_cdf_cont(sectors, overwrite=0) def get_Tmag(fitspath): with fits.open(fitspath) as hdulist: mag = hdulist[0].header['TESSMAG'] return mag def get_mag(fitspath, ap='IRM2'): with fits.open(fitspath) as hdulist: mag = hdulist[1].data[ap] return mag def plot_external_parameters_vs_time(sector=6, cam=1, ccd=2, overwrite=1, seed=42): outpath = os.path.join( OUTDIR, 'external_parameters_vs_time_sec{}cam{}ccd{}.png'. format(sector, cam, ccd) ) if os.path.exists(outpath) and not overwrite: print('found {} and not overwrite; return'.format(outpath)) return # # data dir with what lcs exist, and what their T mags are. # dfpath = os.path.join( OUTDIR, 'detrended_light_curves_sec{}cam{}ccd{}.csv'. format(sector, cam, ccd) ) if not os.path.exists(dfpath): lcdir = ( '/nfs/phtess2/ar0/TESS/PROJ/lbouma/CDIPS_LCS/sector-{}/cam{}_ccd{}'. format(sector, cam, ccd) ) lcpaths = glob(os.path.join(lcdir, '*_llc.fits')) Tmags = np.array([get_Tmag(l) for l in lcpaths]) df = pd.DataFrame({'lcpaths':lcpaths,'Tmags':Tmags}) df.to_csv(dfpath, index=False, sep=',') else: df = pd.read_csv(dfpath, sep=',') sel = (df['Tmags'] > 13) & (df['Tmags'] < 14) lcpaths = nparr(df['lcpaths'][sel]) np.random.seed(seed) spath = np.random.choice(lcpaths, size=1, replace=False)[0] # # define some keys. open the chosen lc. and get the times of momentum dumps. # lc = fits.open(spath)[1].data magtype = 'IRM2' keys = [magtype, 'XIC', 'YIC', 'FSV', 'FDV', 'FKV', 'CCDTEMP', 'BGV'] labels = [magtype, 'x', 'y', 's', 'd', 'k', 'T [$^\circ$C]', 'bkgd [ADU]'] time = lc['TMID_BJD'] baddir = ( '/nfs/phtess2/ar0/TESS/FFI/RED_IMGSUB/FULL/'+ 's{}/'.format(str(sector).zfill(4))+ 'RED_{}-{}-15??_ISP/badframes'.format(cam, ccd) ) badframes = glob(os.path.join(baddir, '*.fits')) mom_dump_times = [] qualitys = [] for badframe in badframes: quality = iu.get_header_keyword(badframe, 'DQUALITY') if not quality > 0 : continue tstart = iu.get_header_keyword(badframe, 'TSTART') telapse = iu.get_header_keyword(badframe, 'TELAPSE') bjdrefi = iu.get_header_keyword(badframe, 'BJDREFI') tmid = bjdrefi + tstart + telapse / 2 mom_dump_times.append(tmid) qualitys.append(quality) # # now make the plot # plt.close('all') fig,axs = plt.subplots(nrows=len(keys), ncols=1, figsize=(4, 1.2*len(keys)), sharex=True) axs = axs.flatten() for ax, key, label in zip(axs, keys, labels): xval = time yval = lc[key] if label in ['x','y']: yoffset = int(np.mean(yval)) yval -= yoffset label += '- {:d} [px]'.format(yoffset) elif label in [magtype]: yoffset = np.round(np.median(yval), decimals=1) yval -= yoffset yval *= 1e3 label += '- {:.1f} [mmag]'.format(yoffset) ax.scatter(xval, yval, rasterized=True, alpha=0.8, zorder=3, c='k', lw=0, s=3) ax.set_ylabel(label, fontsize='small') ax.yaxis.set_ticks_position('both') ax.xaxis.set_ticks_position('both') ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') ax.xaxis.set_tick_params(labelsize='small') ax.yaxis.set_tick_params(labelsize='small') if label in [magtype]: ylim = ax.get_ylim() ax.set_ylim((max(ylim), min(ylim))) ylim = ax.get_ylim() ax.vlines(mom_dump_times, min(ylim), max(ylim), color='orangered', linestyle='--', zorder=0, lw=1, alpha=0.3) ax.set_ylim((min(ylim), max(ylim))) ax.set_xlabel('Time $\mathrm{{BJD}}_{{\mathrm{{TDB}}}}$ [days]', fontsize='small') fig.tight_layout(h_pad=-0.5, pad=0.2) savefig(fig, outpath) def plot_raw_light_curve_systematics(sector=None, cam=None, ccd=None, overwrite=False, N_to_plot=20, seed=42): """ get a random sample of IRM2 light curves from the same camera & ccd. plot them all together to show how we are systematics dominated. """ outpath = os.path.join( OUTDIR, 'raw_light_curve_systematics_sec{}cam{}ccd{}.png'. format(sector, cam, ccd) ) if os.path.exists(outpath) and not overwrite: print('found {} and not overwrite; return'.format(outpath)) return dfpath = os.path.join( OUTDIR, 'raw_light_curve_systematics_sec{}cam{}ccd{}.csv'. format(sector, cam, ccd) ) if not os.path.exists(dfpath): lcdir = ( '/nfs/phtess2/ar0/TESS/PROJ/lbouma/CDIPS_LCS/sector-{}/cam{}_ccd{}'. format(sector, cam, ccd) ) lcpaths = glob(os.path.join(lcdir, '*_llc.fits')) Tmags = np.array([get_Tmag(l) for l in lcpaths]) df = pd.DataFrame({'lcpaths':lcpaths,'Tmags':Tmags}) df.to_csv(dfpath, index=False, sep=',') else: df = pd.read_csv(dfpath, sep=',') sel = (df['Tmags'] > 13) & (df['Tmags'] < 14) lcpaths = nparr(df['lcpaths'][sel]) Tmags = nparr(df['Tmags'][sel]) np.random.seed(seed) spaths = np.random.choice(lcpaths, size=2*N_to_plot, replace=False) # shape: (N_to_plot x N_observations) rawmags = nparr([get_mag(s, ap='IRM2') for s in spaths]) pcamags = nparr([get_mag(s, ap='PCA2') for s in spaths]) tfmags = nparr([get_mag(s, ap='TFA2') for s in spaths]) time = fits.open(spaths[0])[1].data['TMID_BJD'] assert time.shape[0] == rawmags.shape[1] # # make the stacked plot of raw mags. # f, ax = plt.subplots(figsize=(4,8)) colors = plt.cm.tab20b( list(range(N_to_plot)) ) ind = 0 for i in range(N_to_plot): ind += 1 mag = rawmags[ind,:] if np.all(pd.isnull(mag)): continue mag -= np.nanmean(mag) offset = i*0.15 expected_norbits = 2 orbitgap = 0.5 norbits, groups = lcmath.find_lc_timegroups(time, mingap=orbitgap) if norbits != expected_norbits: errmsg = 'got {} orbits, expected {}. groups are {}'.format( norbits, expected_norbits, repr(groups)) raise AssertionError for group in groups: tg_time = time[group] tg_mag = mag[group] ax.plot(tg_time, tg_mag+offset, c=colors[i], lw=0.5, rasterized=True) ax.set_xlabel('Time $\mathrm{{BJD}}_{{\mathrm{{TDB}}}}$ [days]') ax.set_ylabel('Magnitude [arbitrary offset]') ax.yaxis.set_ticks_position('both') ax.xaxis.set_ticks_position('both') ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') f.tight_layout(pad=0.2) savefig(f, outpath) def plot_detrended_light_curves(sector=None, cam=None, ccd=None, overwrite=False, N_to_plot=20, seed=42): """ use the sample of light curves from plot_raw_light_curve_systematics to show how super-awesome the detrending is. """ outpath = os.path.join( OUTDIR, 'detrended_light_curves_sec{}cam{}ccd{}.png'. format(sector, cam, ccd) ) if os.path.exists(outpath) and not overwrite: print('found {} and not overwrite; return'.format(outpath)) return dfpath = os.path.join( OUTDIR, 'detrended_light_curves_sec{}cam{}ccd{}.csv'. format(sector, cam, ccd) ) if not os.path.exists(dfpath): lcdir = ( '/nfs/phtess2/ar0/TESS/PROJ/lbouma/CDIPS_LCS/sector-{}/cam{}_ccd{}'. format(sector, cam, ccd) ) lcpaths = glob(os.path.join(lcdir, '*_llc.fits')) Tmags = np.array([get_Tmag(l) for l in lcpaths]) df = pd.DataFrame({'lcpaths':lcpaths,'Tmags':Tmags}) df.to_csv(dfpath, index=False, sep=',') else: df = pd.read_csv(dfpath, sep=',') sel = (df['Tmags'] > 13) & (df['Tmags'] < 14) lcpaths = nparr(df['lcpaths'][sel]) Tmags = nparr(df['Tmags'][sel]) np.random.seed(seed) spaths = np.random.choice(lcpaths, size=2*N_to_plot, replace=False) # shape: (N_to_plot x N_observations) rawmags = nparr([get_mag(s, ap='IRM2') for s in spaths]) pcamags = nparr([get_mag(s, ap='PCA2') for s in spaths]) tfamags = nparr([get_mag(s, ap='TFA2') for s in spaths]) time = fits.open(spaths[0])[1].data['TMID_BJD'] assert time.shape[0] == rawmags.shape[1] # # make the stacked plot of raw mags. # f, ax = plt.subplots(figsize=(4,8)) colors = plt.cm.tab20b( list(range(N_to_plot)) ) ind = 0 i = 0 while i < N_to_plot-1: ind += 1 rawmag = rawmags[ind,:] pcamag = pcamags[ind,:] tfamag = tfamags[ind,:] if ( np.any(np.isnan(rawmag)) or np.any(np.isnan(pcamag)) or np.any(np.isnan(tfamag)) ): continue rawmag -= np.nanmean(rawmag) pcamag -= np.nanmean(pcamag) tfamag -= np.nanmean(tfamag) offset = i*0.45 i += 1 expected_norbits = 2 orbitgap = 0.5 norbits, groups = lcmath.find_lc_timegroups(time, mingap=orbitgap) if norbits != expected_norbits: errmsg = 'got {} orbits, expected {}. groups are {}'.format( norbits, expected_norbits, repr(groups)) raise AssertionError for group in groups: tg_time = time[group] tg_rawmag = rawmag[group] tg_pcamag = pcamag[group] tg_tfamag = tfamag[group] ax.plot(tg_time, tg_rawmag+offset, c=colors[i], lw=0.5, rasterized=True) ax.plot(tg_time, tg_pcamag+offset-0.07, c=colors[i], lw=0.5, rasterized=True) ax.plot(tg_time, tg_tfamag+offset-0.14, c=colors[i], lw=0.5, rasterized=True) ax.set_xlabel('Time $\mathrm{{BJD}}_{{\mathrm{{TDB}}}}$ [days]') ax.set_ylabel('Magnitude [arbitrary offset]') ax.yaxis.set_ticks_position('both') ax.xaxis.set_ticks_position('both') ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') f.tight_layout(pad=0.2) savefig(f, outpath) def plot_stages_of_image_processing(niceimage=1, overwrite=0): if niceimage: outpath = os.path.join( OUTDIR, 'stages_of_image_processing_good.png') else: outpath = os.path.join( OUTDIR, 'stages_of_image_processing_bad.png') if os.path.exists(outpath) and not overwrite: print('found {} and not overwrite; return'.format(outpath)) return if niceimage: # mid orbit, good registration imgid = 'tess2018363152939' else: # near periapse, during scattered light, bad registration imgid = 'tess2018358075939' datadir = '/nfs/phtess2/ar0/TESS/FFI/RED/sector-6/cam1_ccd2/' bkgdfile = os.path.join( datadir,imgid+'-s0006-1-2-0126_cal_img_bkgd.fits') calfile = os.path.join( datadir,imgid+'-s0006-1-2-0126_cal_img.fits') diffdir = '/nfs/phtess2/ar0/TESS/FFI/RED_IMGSUB/FULL/s0006/RED_1-2-1501_ISP' difffile = os.path.join( diffdir, 'rsub-d2f9343c-{}-s0006-1-2-0126_cal_img_bkgdsub-xtrns.fits'. format(imgid) ) ########################################## vmin, vmax = 10, int(1e3) bkgd_img, _ = iu.read_fits(bkgdfile) cal_img, _ = iu.read_fits(calfile) diff_img, _ = iu.read_fits(difffile) plt.close('all') plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' fig, axs = plt.subplots(ncols=2, nrows=3) # top right: log of calibrated image lognorm = colors.LogNorm(vmin=vmin, vmax=vmax) cset1 = axs[0,1].imshow(cal_img, cmap='binary_r', vmin=vmin, vmax=vmax, norm=lognorm) #txt = axs[0,1].text(0.02, 0.96, 'image', ha='left', va='top', # fontsize='small', transform=axs[0,1].transAxes, # color='black') #txt.set_path_effects([path_effects.Stroke(linewidth=1, foreground='white'), # path_effects.Normal()]) diff_vmin, diff_vmax = -1000, 1000 diffnorm = colors.SymLogNorm(linthresh=0.03, linscale=0.03, vmin=diff_vmin, vmax=diff_vmax) # top left: background map axs[0,0].imshow(bkgd_img - np.median(cal_img), cmap='RdBu_r', vmin=diff_vmin, vmax=diff_vmax, norm=diffnorm) #txt = axs[0,0].text(0.02, 0.96, 'background', ha='left', va='top', # fontsize='small', transform=axs[0,0].transAxes, # color='black') #txt.set_path_effects([path_effects.Stroke(linewidth=1, foreground='white'), # path_effects.Normal()]) # middle left: calibrated - background cset2 = axs[1,0].imshow(cal_img - bkgd_img, cmap='RdBu_r', vmin=diff_vmin, vmax=diff_vmax, norm=diffnorm) #txt = axs[1,0].text(0.02, 0.96, 'image - background', ha='left', va='top', # fontsize='small', transform=axs[1,0].transAxes, # color='black') #txt.set_path_effects([path_effects.Stroke(linewidth=1, foreground='white'), # path_effects.Normal()]) # middle right: calibrated - median axs[1,1].imshow(cal_img - np.median(cal_img), cmap='RdBu_r', vmin=diff_vmin, vmax=diff_vmax, norm=diffnorm) #txt = axs[1,1].text(0.02, 0.96, 'image - median(image)', ha='left', va='top', # fontsize='small', transform=axs[1,1].transAxes, # color='black') #txt.set_path_effects([path_effects.Stroke(linewidth=1, foreground='white'), # path_effects.Normal()]) # lower left: difference image (full) toplen = 57 top = cm.get_cmap('Oranges_r', toplen) bottom = cm.get_cmap('Blues', toplen) newcolors = np.vstack((top(np.linspace(0, 1, toplen)), np.zeros(((256-2*toplen),4)), bottom(np.linspace(0, 1, toplen)))) newcmp = ListedColormap(newcolors, name='lgb_cmap') cset3 = axs[2,0].imshow(diff_img, cmap='RdBu_r', vmin=diff_vmin, vmax=diff_vmax, norm=diffnorm) #txt = axs[2,0].text(0.02, 0.96, 'difference', ha='left', va='top', # fontsize='small', transform=axs[2,0].transAxes, # color='black') #txt.set_path_effects([path_effects.Stroke(linewidth=1, foreground='white'), # path_effects.Normal()]) rect = patches.Rectangle((300, 300), 512, 512, linewidth=0.6, edgecolor='black', facecolor='none', linestyle='--') axs[2,0].add_patch(rect) # lower right: difference image (zoom) sel = [slice(300,812), slice(300,812)] axs[2,1].imshow(diff_img[sel], cmap='RdBu_r', vmin=diff_vmin, vmax=diff_vmax, norm=diffnorm) #txt = axs[2,1].text(0.02, 0.96, 'difference (zoom)', ha='left', va='top', # fontsize='small', transform=axs[2,1].transAxes, # color='black') #txt.set_path_effects([path_effects.Stroke(linewidth=1, foreground='white'), # path_effects.Normal()]) for ax in axs.flatten(): ax.set_xticklabels('') ax.set_yticklabels('') ax.get_xaxis().set_tick_params(which='both', direction='in') ax.get_yaxis().set_tick_params(which='both', direction='in') ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') divider0 = make_axes_locatable(axs[0,1]) divider1 = make_axes_locatable(axs[1,1]) divider2 = make_axes_locatable(axs[2,1]) cax0 = divider0.append_axes('right', size='5%', pad=0.05) cax1 = divider1.append_axes('right', size='5%', pad=0.05) cax2 = divider2.append_axes('right', size='5%', pad=0.05) cb1 = fig.colorbar(cset1, ax=axs[0,1], cax=cax0, extend='both') cb2 = fig.colorbar(cset2, ax=axs[1,1], cax=cax1, extend='both') cb3 = fig.colorbar(cset3, ax=axs[2,1], cax=cax2, extend='both') cb2.set_ticks([-1e3,-1e2,-1e1,0,1e1,1e2,1e3]) cb2.set_ticklabels(['-$10^3$','-$10^2$','-$10^1$','0', '$10^1$','$10^2$','$10^3$']) cb3.set_ticks([-1e3,-1e2,-1e1,0,1e1,1e2,1e3]) cb3.set_ticklabels(['-$10^3$','-$10^2$','-$10^1$','0', '$10^1$','$10^2$','$10^3$']) fig.tight_layout(h_pad=0, w_pad=-14, pad=0) fig.savefig(outpath, bbox_inches='tight', dpi=400) print('{}: made {}'.format(datetime.utcnow().isoformat(), outpath)) def plot_tls_sde_vs_period_scatter(sectors, overwrite=1): outpath = os.path.join( OUTDIR, 'tls_sde_vs_period_scatter.png') if os.path.exists(outpath) and not overwrite: print('found {} and not overwrite; return'.format(outpath)) return if len(sectors) != 2: raise AssertionError f,axs = plt.subplots(nrows=2, sharex=True, figsize=(4,6)) for sector, ax in zip(sectors, axs): pfdir = ('/nfs/phtess2/ar0/TESS/PROJ/lbouma/cdips/' 'results/cdips_lc_periodfinding/sector-{}'.format(sector)) pfpath = os.path.join( pfdir, 'initial_period_finding_results_with_limit.csv') df = pd.read_csv(pfpath, sep=',') ax.scatter(df['tls_period'], df['tls_sde'], c='k', alpha=1, s=0.2, rasterized=True, linewidths=0) ax.scatter(df['tls_period'], df['limit'], c='C1', alpha=1, rasterized=True, linewidths=0, zorder=2, s=1) #ax.scatter(df['tls_period'], df['limit'], c='C1', alpha=1, rasterized=True, # linewidths=0, zorder=2, s=0.2) txt = ('$N_{{\mathrm{{above}}}}$: '+ '{}'.format(len(df[df['tls_sde']>df['limit']]))+ '\n$N_{{\mathrm{{below}}}}$: '+ '{}'.format(len(df[df['tls_sde']<df['limit']])) ) ax.text(0.96, 0.96, txt, ha='right', va='top', fontsize='medium', transform=ax.transAxes) ax.set_xscale('log') ax.set_ylim([0,40]) ax.yaxis.set_ticks_position('both') ax.xaxis.set_ticks_position('both') ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') f.text(0.5,-0.01, 'TLS peak period [days]', ha='center') f.text(-0.03,0.5, 'TLS SDE', va='center', rotation=90) f.tight_layout(h_pad=0.2, pad=0.2) savefig(f, outpath) def plot_avg_acf(sectors, size=10000, overwrite=0, percentiles=[25,50,75], cleanprevacf=True): outpath = os.path.join(OUTDIR, 'avg_acf.png') if os.path.exists(outpath) and not overwrite: print('found {} and not overwrite; return'.format(outpath)) return # # collect acfs for however many random LCs passed # np.random.seed(42) lcpaths = [] for sector in sectors: lcpaths.append( np.random.choice( glob(os.path.join(LCDIR, 'sector-{}'.format(sector), 'cam?_ccd?', 'hlsp_*llc.fits')), size=size, replace=False ) ) lcpaths = nparr(lcpaths).flatten() acfdir = os.path.join(OUTDIR, 'avg_acf_data') if cleanprevacf: # annoyingly fails. maybe nfs problem? pass #cmd = 'rm -rf {}'.format(acfdir) #subprocess.call(cmd) if not os.path.exists(acfdir): os.mkdir(acfdir) acfstatfiles = glob(os.path.join(acfdir,'*_acf_stats.csv')) if len(acfstatfiles)<10: lcs.parallel_compute_acf_statistics( lcpaths, acfdir, nworkers=40, eval_times_hr=np.arange(1,301,1), dtrtypes=['IRM','PCA','TFA'] ) acfstatfiles = glob(os.path.join(acfdir,'*_acf_stats.csv')) df = lcs.read_acf_stat_files(acfstatfiles) plt.close('all') fig, axs = plt.subplots(ncols=3, figsize=(2.5*3,3)) linestyles = ['--','-',':'] apstrs = ['IRM2','PCA2','TFA2'] for ax, apstr in zip(axs, apstrs): timelags = np.sort(np.unique(df['LAG_TIME_HR'])) percentile_dict = {} for timelag in timelags: percentile_dict[timelag] = {} sel = df['LAG_TIME_HR']==timelag for percentile in percentiles: val = np.nanpercentile(df[sel][apstr+'_ACF'], percentile) percentile_dict[timelag][percentile] = np.round(val,7) pctile_df =
pd.DataFrame(percentile_dict)
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.api.indexers import ( BaseIndexer, FixedForwardWindowIndexer, ) from pandas.core.window.indexers import ( ExpandingIndexer, FixedWindowIndexer, VariableOffsetWindowIndexer, ) from pandas.tseries.offsets import BusinessDay def test_bad_get_window_bounds_signature(): class BadIndexer(BaseIndexer): def get_window_bounds(self): return None indexer = BadIndexer() with pytest.raises(ValueError, match="BadIndexer does not implement"): Series(range(5)).rolling(indexer) def test_expanding_indexer(): s = Series(range(10)) indexer = ExpandingIndexer() result = s.rolling(indexer).mean() expected = s.expanding().mean() tm.assert_series_equal(result, expected) def test_indexer_constructor_arg(): # Example found in computation.rst use_expanding = [True, False, True, False, True] df = DataFrame({"values": range(5)}) class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if self.use_expanding[i]: start[i] = 0 end[i] = i + 1 else: start[i] = i end[i] = i + self.window_size return start, end indexer = CustomIndexer(window_size=1, use_expanding=use_expanding) result = df.rolling(indexer).sum() expected = DataFrame({"values": [0.0, 1.0, 3.0, 3.0, 10.0]}) tm.assert_frame_equal(result, expected) def test_indexer_accepts_rolling_args(): df = DataFrame({"values": range(5)}) class CustomIndexer(BaseIndexer): def get_window_bounds(self, num_values, min_periods, center, closed): start = np.empty(num_values, dtype=np.int64) end = np.empty(num_values, dtype=np.int64) for i in range(num_values): if center and min_periods == 1 and closed == "both" and i == 2: start[i] = 0 end[i] = num_values else: start[i] = i end[i] = i + self.window_size return start, end indexer = CustomIndexer(window_size=1) result = df.rolling(indexer, center=True, min_periods=1, closed="both").sum() expected = DataFrame({"values": [0.0, 1.0, 10.0, 3.0, 4.0]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("constructor", [Series, DataFrame]) @pytest.mark.parametrize( "func,np_func,expected,np_kwargs", [ ("count", len, [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.0, np.nan], {}), ("min", np.min, [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 6.0, 7.0, 8.0, np.nan], {}), ( "max", np.max, [2.0, 3.0, 4.0, 100.0, 100.0, 100.0, 8.0, 9.0, 9.0, np.nan], {}, ), ( "std", np.std, [ 1.0, 1.0, 1.0, 55.71654452, 54.85739087, 53.9845657, 1.0, 1.0, 0.70710678, np.nan, ], {"ddof": 1}, ), ( "var", np.var, [ 1.0, 1.0, 1.0, 3104.333333, 3009.333333, 2914.333333, 1.0, 1.0, 0.500000, np.nan, ], {"ddof": 1}, ), ( "median", np.median, [1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 7.0, 8.0, 8.5, np.nan], {}, ), ], ) @pytest.mark.filterwarnings("ignore:min_periods:FutureWarning") def test_rolling_forward_window(constructor, func, np_func, expected, np_kwargs): # GH 32865 values = np.arange(10.0) values[5] = 100.0 indexer = FixedForwardWindowIndexer(window_size=3) match = "Forward-looking windows can't have center=True" with pytest.raises(ValueError, match=match): rolling = constructor(values).rolling(window=indexer, center=True) getattr(rolling, func)() match = "Forward-looking windows don't support setting the closed argument" with pytest.raises(ValueError, match=match): rolling = constructor(values).rolling(window=indexer, closed="right") getattr(rolling, func)() rolling = constructor(values).rolling(window=indexer, min_periods=2) result = getattr(rolling, func)() # Check that the function output matches the explicitly provided array expected = constructor(expected) tm.assert_equal(result, expected) # Check that the rolling function output matches applying an alternative # function to the rolling window object expected2 = constructor(rolling.apply(lambda x: np_func(x, **np_kwargs))) tm.assert_equal(result, expected2) # Check that the function output matches applying an alternative function # if min_periods isn't specified # GH 39604: After count-min_periods deprecation, apply(lambda x: len(x)) # is equivalent to count after setting min_periods=0 min_periods = 0 if func == "count" else None rolling3 = constructor(values).rolling(window=indexer, min_periods=min_periods) result3 = getattr(rolling3, func)() expected3 = constructor(rolling3.apply(lambda x: np_func(x, **np_kwargs))) tm.assert_equal(result3, expected3) @pytest.mark.parametrize("constructor", [Series, DataFrame]) def test_rolling_forward_skewness(constructor): values = np.arange(10.0) values[5] = 100.0 indexer = FixedForwardWindowIndexer(window_size=5) rolling = constructor(values).rolling(window=indexer, min_periods=3) result = rolling.skew() expected = constructor( [ 0.0, 2.232396, 2.229508, 2.228340, 2.229091, 2.231989, 0.0, 0.0, np.nan, np.nan, ] ) tm.assert_equal(result, expected) @pytest.mark.parametrize( "func,expected", [ ("cov", [2.0, 2.0, 2.0, 97.0, 2.0, -93.0, 2.0, 2.0, np.nan, np.nan]), ( "corr", [ 1.0, 1.0, 1.0, 0.8704775290207161, 0.018229084250926637, -0.861357304646493, 1.0, 1.0, np.nan, np.nan, ], ), ], ) def test_rolling_forward_cov_corr(func, expected): values1 = np.arange(10).reshape(-1, 1) values2 = values1 * 2 values1[5, 0] = 100 values = np.concatenate([values1, values2], axis=1) indexer = FixedForwardWindowIndexer(window_size=3) rolling = DataFrame(values).rolling(window=indexer, min_periods=3) # We are interested in checking only pairwise covariance / correlation result = getattr(rolling, func)().loc[(slice(None), 1), 0] result = result.reset_index(drop=True) expected = Series(expected) expected.name = result.name tm.assert_equal(result, expected) @pytest.mark.parametrize( "closed,expected_data", [ ["right", [0.0, 1.0, 2.0, 3.0, 7.0, 12.0, 6.0, 7.0, 8.0, 9.0]], ["left", [0.0, 0.0, 1.0, 2.0, 5.0, 9.0, 5.0, 6.0, 7.0, 8.0]], ], ) def test_non_fixed_variable_window_indexer(closed, expected_data): index = date_range("2020", periods=10) df = DataFrame(range(10), index=index) offset =
BusinessDay(1)
pandas.tseries.offsets.BusinessDay
from collections import defaultdict from sklearn import preprocessing import pandas as pd from math import * import datetime #from .pygradu import portcalls from .gridify import * import math EARTH_RADIUS_KM = 6371.0 class Graph(): def __init__(self): """ self.edges is a dict of all possible next nodes e.g. {'X': ['A', 'B', 'C', 'E'], ...} self.weights has all the weights between two nodes, with the two nodes as a tuple as the key e.g. {('X', 'A'): 7, ('X', 'B'): 2, ...} """ self.edges = defaultdict(list) self.costs = {} self.type_weights = {} self.positions = {} self.use_dirways = True self.use_turn_penalty = False self.use_shallow_penalty = False def add_edge(self, from_node, to_node, cost): # Note: assumes edges are bi-directional if to_node not in self.edges[from_node]: self.edges[from_node].append(to_node) self.costs[(from_node, to_node)] = cost def cost(self, current_node, next_node, current_course, next_course, dirways_graph, shallow_graph): cost = self.costs[(current_node, next_node)] if self.use_dirways and next_node in dirways_graph: return 0.05 shallow_penalty = 0 if self.use_shallow_penalty and next_node in shallow_graph: shallow_penalty = 0.2 turn_penalty = 0 if self.use_turn_penalty: phi = abs(current_course - next_course) % 360 if phi > 180: change = 360 - phi else: change = phi turn_penalty = change/180 * 0.05 return cost + turn_penalty + shallow_penalty def print_parameters(self): print('use_dirways=', self.use_dirways) print('use_turn_penalty=', self.use_turn_penalty) print('use_shallow_penalty=', self.use_shallow_penalty) def df_to_graph(complete_graph): edges = complete_graph.values graph = Graph() # Convert df to format that A* understands for e in edges: edge = (e[0], e[1], e[2]) graph.add_edge(*edge) return graph class Node(): """A node class for A* Pathfinding""" def __init__(self, parent=None, position=None, coords=None, speed=None, course=None, transitions=None): self.parent = parent self.position = position self.coords = coords self.g = 0 self.h = 0 self.f = 0 self.speed = speed self.course = course self.transitions = transitions def __eq__(self, other): return self.position == other.position def __hash__(self): return hash(self.position) def deg2rad(deg): return deg * (math.pi / 180) def rad2deg(rad): return rad * (180 / math.pi) def normalize(value, min, max): if value < min: return value + (max - min) if value > max: return value - (max - min) return value def angleFromCoordinatesInDeg(coordinate1, coordinate2): lat1 = deg2rad(coordinate1[0]) lat2 = deg2rad(coordinate2[0]) long1 = deg2rad(coordinate1[1]) long2 = deg2rad(coordinate2[1]) dLon = (long2 - long1) y = math.sin(dLon) * math.cos(lat2) x = math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dLon) bearing = math.atan2(y, x) return normalize(rad2deg(bearing), 0.0, 360.0) def distance_from_coords_in_km(coordinate1, coordinate2): lat1 = deg2rad(coordinate1[0]) lat2 = deg2rad(coordinate2[0]) long1 = deg2rad(coordinate1[1]) long2 = deg2rad(coordinate2[1]) dLat = (lat2 - lat1) dLon = (long2 - long1) a = math.sin(dLat / 2) * math.sin(dLat / 2) + math.cos((lat1)) * math.cos((lat2)) * math.sin(dLon / 2) * math.sin(dLon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) return EARTH_RADIUS_KM * c def calculate_time(coords1, coords2, speed, start_time): distance = distance_from_coords_in_km(coords1, coords2) * 1000 return start_time + datetime.timedelta(seconds=distance / speed) def interpolate_to_time(latlon1, latlon2, speed, start_time, end_time): bearing = deg2rad(angleFromCoordinatesInDeg(latlon1, latlon2)) lat1 = deg2rad(latlon1[0]) long1 = deg2rad(latlon1[1]) distance = ((end_time-start_time).total_seconds() * speed) / 1000 lat2 = math.asin(math.sin(lat1) * math.cos(distance / EARTH_RADIUS_KM) + math.cos(lat1) * math.sin(distance / EARTH_RADIUS_KM) * math.cos(bearing)) long2 = long1 + math.atan2(math.sin(bearing) * math.sin(distance / EARTH_RADIUS_KM) * math.cos(lat1), math.cos(distance / EARTH_RADIUS_KM) - math.sin(lat1) * math.sin(lat2)) return [rad2deg(lat2), rad2deg(long2)] def get_speed(avg_speeds, vessel_type, prev_speed, node_pos, transitions): max_transitions = 3 if transitions > max_transitions: transitions = max_transitions multiplier = max_transitions - transitions # Speed as moving average try: speeds_by_type = avg_speeds[node_pos] pred_speed = speeds_by_type[vessel_type] if isnan(speeds_by_type[vessel_type]): pred_speed = 7 except KeyError: pred_speed = 7 speed = ((prev_speed * multiplier) + (pred_speed * (max_transitions - multiplier))) / max_transitions if speed > 5: speed += 0.28 return speed def pythagoras(x,y): return math.sqrt(((x.coords[0] - y.coords[0]) ** 2) + ((x.coords[1] - y.coords[1]) ** 2)) # TODO: Calculate timestamps for each node instead of adding the start time into them def retrace_route(grid, current_node, start_latlon, end_latlon, mmsi, voyage, start_time): path = [] current = current_node row = [] while current is not None: if len(path) is 0: row = end_latlon elif current.parent is None: row = start_latlon else: row = grid.extract_coords_lat_lon(current.position) row.extend([current.position, current.speed, mmsi, voyage, start_time, current.transitions]) path.append(row) current = current.parent return path[::-1] # Return reversed pat def retrace_search_area(grid, closed_list, voyage): area = [] for node in closed_list: row = grid.extract_coords_lat_lon(node.position) row.extend([voyage, node.g, node.h, node.f]) area.append(row) return area def distance_to_dest(next_node, end_node, speed): return pythagoras(next_node, end_node) def manhattan_distance(x,y, speed): return sum(abs(a-b) for a, b in zip(x.coords, y.coords)) def diagonal_distance(next_node, end_node, speed): d = 1 d2 = sqrt(2) dx = abs(next_node.coords[0] - end_node.coords[0]) dy = abs(next_node.coords[1] - end_node.coords[1]) return (d * (dx + dy) + (d2 - 2 * d) * min(dx, dy)) def a_star(graph, start_latlon, end_latlon, avg_speeds, speed, course, vessel_type, grid, dirways_graph, shallow_graph, mmsi, voyage, start_time): # open_list is a list of nodes which have been visited, but who's neighbors # haven't all been inspected, starts off with the start node # closed_list is a list of nodes which have been visited # and who's neighbors have been inspected open_list = set() closed_list = set() start_pos = get_node(grid, start_latlon[0], start_latlon[1]) end_pos = get_node(grid, end_latlon[0], end_latlon[1]) start_node = Node(None, start_pos, grid.extract_coords(start_pos), speed, course, 0) start_node.g = start_node.h = start_node.f = 0 end_node = Node(None, end_pos, grid.extract_coords(end_pos)) end_node.g = end_node.h = end_node.f = 0 # parents contains an adjacency map of all nodes parents = dict() parents[start_node.position] = start_node open_list.add(start_node) while open_list: current_node = None # find a node with the lowest value of f() - evaluation function for tmp_node in open_list: if current_node is None or tmp_node.f < current_node.f: current_node = tmp_node if current_node is None: print('Failed to predict route') return None # Found the goal if current_node == end_node: route = retrace_route(grid, current_node, start_latlon, end_latlon, mmsi, voyage, start_time) search_area = retrace_search_area(grid, closed_list, voyage) return [route, search_area] neighbours = graph.edges[current_node.position] # for all neighbors of the current node do for next_node in neighbours: speed = get_speed(avg_speeds, vessel_type, current_node.speed, current_node.position, current_node.transitions + 1) course = None if graph.use_turn_penalty: current_latlon = grid.extract_coords_lat_lon(current_node.position) next_latlon = grid.extract_coords_lat_lon(next_node) course = angleFromCoordinatesInDeg(current_latlon, next_latlon) next_node = Node(current_node, next_node, grid.extract_coords(next_node), speed, course, current_node.transitions + 1) if next_node in closed_list: continue # G is the sum of all costs from the beginning next_node.g = current_node.g + graph.cost(current_node.position, next_node.position, current_node.course, next_node.course, dirways_graph, shallow_graph) next_node.h = diagonal_distance(next_node, end_node, speed) next_node.f = next_node.g + next_node.f # if the current node isn't in both open_list and closed_list # add it to open_list and note n as it's parent if next_node not in open_list: open_list.add(next_node) else: # otherwise, check if it's quicker to first visit n, then m # and if it is, update parent data and g data # and if the node was in the closed_list, move it to open_list for open_neighbor in open_list: if open_neighbor == next_node and next_node.g < open_neighbor.g: open_neighbor.g = next_node.g open_neighbor.h = next_node.h open_neighbor.f = next_node.f open_neighbor.parent = next_node.parent open_neighbor.transitions = next_node.transitions open_neighbor.speed = next_node.speed open_neighbor.course = next_node.course if next_node in closed_list: closed_list.remove(next_node) open_list.add(next_node) # remove n from the open_list, and add it to closed_list # because all of his neighbors were inspected open_list.remove(current_node) closed_list.add(current_node) print('Path does not exist!') print('Voyage=', str(voyage)) return None def measure_accuracy(grid, real_pos, pred_pos, pred_speed, actual_speed): nm_multiplier = 0.539956803 distance_nm = distance_from_coords_in_km(real_pos, pred_pos) * nm_multiplier error_rate_lat = abs(real_pos[0] - pred_pos[0]) / real_pos[0] * 100 error_rate_lon = abs(real_pos[1] - pred_pos[1]) / real_pos[1] * 100 error_rate_speed = None if actual_speed > 0: error_rate_speed = abs((actual_speed - pred_speed)) / actual_speed * 100 real_node = get_node(grid, real_pos[0], real_pos[1]) pred_node = get_node(grid, pred_pos[0], pred_pos[1]) return [distance_nm, error_rate_lat, error_rate_lon, error_rate_speed, int(real_node == pred_node)] def extract_test_voyage_ids(voyages, port_id, n): voyage_sizes = voyages.loc[voyages['port_id'] == port_id].loc[voyages['speed'] > 2].groupby([ 'voyage']).size().sort_values(ascending=False) return voyage_sizes.head(n).index.values.tolist() def get_test_voyage(voyages, voyage_id, minutes_forward): test_voyage = voyages[voyages.voyage == voyage_id] ata = test_voyage.head(1).iloc[0].ata start_time = pd.to_datetime(test_voyage.head(1).iloc[0].timestamp) if test_voyage.head(1).iloc[0].speed < 1: return None test_voyage = test_voyage.loc[test_voyage['timestamp'] <= ata] test_voyage = test_voyage.loc[test_voyage['timestamp'] <= pd.Timestamp(start_time + datetime.timedelta(minutes=minutes_forward))] return test_voyage def get_node(grid, lat, lon): start = dict() start['grid_point'] = grid.get_grid_point(lat, lon) return grid.get_grid_position(start) def interpolate_by_distance(row, next_row, distanceKm): brng = deg2rad(angleFromCoordinatesInDeg([row.lat, row.lon], [next_row.lat, next_row.lon])) lat1 = deg2rad(row.lat) long1 = deg2rad(row.lon) lat2 = math.asin(math.sin(lat1) * math.cos(distanceKm / EARTH_RADIUS_KM) + math.cos(lat1) * math.sin(distanceKm / EARTH_RADIUS_KM) * math.cos(brng)) long2 = long1 + math.atan2(math.sin(brng) * math.sin(distanceKm / EARTH_RADIUS_KM) * math.cos(lat1), math.cos(distanceKm / EARTH_RADIUS_KM) - math.sin(lat1) * math.sin(lat2)) row.lat = rad2deg(lat2) row.lon = rad2deg(long2) return row def create_dirways_graph(dirways, grid): dirways.sort_values(by=['id', 'number'], inplace=True) dirways.reset_index(inplace=True) dirways = dirways.groupby('id') interpolated_dirways = [] distance_km = 1 dirway_nodes = set() for id, dw_points in dirways: order_number = 0 interpolated = [] dw_points.reset_index(inplace=True) for i, current in dw_points.iterrows(): interpolated.append(current) if i+1 == len(dw_points.lat): break next = dw_points.loc[(i+1)] current.number = order_number coords = dict() coords['grid_point'] = grid.get_grid_point(current.lat, current.lon) node = grid.get_grid_position(coords) if node not in dirway_nodes: dirway_nodes.add(node) while distance_km < distance_from_coords_in_km([current.lat, current.lon], [next.lat, next.lon]): current = interpolate_by_distance(current, next, distance_km) order_number += 1 current.number = order_number interpolated.append(current) coords = dict() coords['grid_point'] = grid.get_grid_point(current.lat, current.lon) node = grid.get_grid_position(coords) if node not in dirway_nodes: dirway_nodes.add(node) interpolated_dirways.append(interpolated) return dirway_nodes def get_observations_at_time(voyages, timestamp): start_time = pd.to_datetime(timestamp) voyages['course'] = -1 columns = voyages.columns voyages = voyages.loc[(voyages['timestamp'] >= timestamp) & (voyages['timestamp'] < pd.Timestamp(start_time + datetime.timedelta(minutes=60))) & (voyages['ata'] > timestamp) & (voyages['speed'] > 1)] voyages = voyages.groupby('voyage') test_voyages = [] for voyage, observations in voyages: if len(observations) is 1: continue course = angleFromCoordinatesInDeg([observations.iloc[0].lat, observations.iloc[0].lon], [observations.iloc[1].lat, observations.iloc[1].lon]) row = observations.iloc[1] row.course = course test_voyages.append(row) return pd.DataFrame(data=test_voyages, columns=columns) def predict_routes(observations, grid, graph, avg_speeds, dirways, shallow_graph, print_params=True): if print_params: graph.print_parameters() grid.print_parameters() routes = [] errors = [] search_areas = [] for i, observation in observations.iterrows(): dirway_graph = None if graph.use_dirways: active_dirways = dirways.loc[(dirways.publishtime < observation.ata) & (observation.ata <= dirways.deletetime)] dirway_graph = create_dirways_graph(active_dirways, grid) start_coords = [observation.lat, observation.lon] start_time = pd.to_datetime(observation.timestamp) end_coords = [observation.end_lat, observation.end_lon] route = a_star(graph, start_coords, end_coords, avg_speeds, observation.speed, observation.course, observation.vessel_type, grid , dirway_graph, shallow_graph, observation.mmsi, observation.voyage, start_time) if route is None: errors.append([start_coords, end_coords]) else: routes.extend(route[0]) search_areas.extend(route[1]) # return routes if print_params: print('Error count=',len(errors)) print(errors) return [routes, search_areas] # def calculate_time(coords1, coords2, speed, start_time): def calculate_timestamps(routes): routes.sort_values(by=['voyage', 'number'], inplace=True) routes['timestamp'] = -1 routes = routes.groupby('voyage') test = [] for voyage, route in routes: route = route.reset_index(drop=True) for i, current in route.iterrows(): timestamp = None if i == 0: timestamp = current.start_time else: current.speed = (prev.speed+current.speed) / 2 timestamp = calculate_time([prev.lat, prev.lon], [current.lat, current.lon], current.speed, prev.timestamp) current.timestamp = timestamp prev = current test.append(current.values) return pd.DataFrame(data=test, columns=['lat', 'lon', 'node', 'speed', 'mmsi', 'voyage', 'start_time', 'number', 'timestamp']) def test_accuracy(grid, predicted, voyages, minutes_forward=None): predicted.sort_values(by=['voyage', 'number'], inplace=True) predicted = predicted.groupby('voyage') results = [] errors = [] for voyage, pred_route in predicted: start_row = pred_route.head(1).iloc[0] end_row = pred_route.tail(1).iloc[0] actual_route = voyages.loc[(voyages['voyage'] == voyage) & (voyages['timestamp'] >= start_row.start_time) & (voyages['timestamp'] <= end_row.timestamp)] pred_route.sort_values(by=['timestamp'], inplace=True) pred_route = pred_route.reset_index(drop=True) for i, obs in actual_route.iterrows(): try: if minutes_forward is not None and pd.to_datetime(obs.timestamp) > (pd.to_datetime(start_row.start_time) + datetime.timedelta(minutes=minutes_forward)): break next = pred_route.loc[pred_route['timestamp'] > obs.timestamp].head(1).iloc[0] next_index = next.name pred_pos = None pred_speed = None if int(next_index) is 0: pred_pos = [pred_route.head(1).iloc[0].lat, pred_route.head(1).iloc[0].lon] pred_speed = pred_route.head(1).iloc[0].speed else: prev = pred_route.loc[next_index-1] pred_speed = (prev.speed + next.speed) / 2 pred_pos = interpolate_to_time([prev.lat, prev.lon], [next.lat, next.lon], pred_speed, prev.timestamp, obs.timestamp) mins_to_future = (pd.to_datetime(obs.timestamp) - pd.to_datetime(start_row.start_time)).total_seconds() / 60.0 acc_measures = measure_accuracy(grid, [obs.lat, obs.lon], pred_pos, pred_speed, obs.speed) result = [voyage, obs.vessel_type, obs.end_port, obs.end_port_sea_area, start_row.start_time, obs.timestamp, mins_to_future, obs.lat, obs.lon, pred_pos[0], pred_pos[1], obs.speed, pred_speed] result.extend(acc_measures) results.append(result) except IndexError: errors.append(obs) continue print('error count=', len(errors)) columns = ['voyage', 'vessel_type', 'end_port', 'end_port_sea_area', 'start_time', 'pred_time', 'mins_to_future', 'actual_lat', 'actual_lon', 'pred_lat', 'pred_lon', 'actual_speed', 'pred_speed', 'acc_distance_nm', 'error_rate_lat', 'error_rate_lon', 'error_rate_speed', 'correct_node'] return pd.DataFrame(data=results, columns=columns) def test_accuracy_to_end(grid, predicted, voyages, minutes_forward=None): predicted.sort_values(by=['voyage', 'number'], inplace=True) predicted = predicted.groupby('voyage') results = [] errors = [] for voyage, pred_route in predicted: start_row = pred_route.head(1).iloc[0] end_row = pred_route.tail(1).iloc[0] actual_route = voyages.loc[(voyages['voyage'] == voyage) & (voyages['timestamp'] >= start_row.start_time) & (voyages['timestamp'] <= end_row.timestamp)] actual_end = actual_route.tail(1).iloc[0] pred_route.sort_values(by=['timestamp'], inplace=True) pred_route = pred_route.reset_index(drop=True) prev = None last = None for i, next in pred_route.iterrows(): last = next if prev is None: prev = next continue observations_between_preds = actual_route.loc[(actual_route['timestamp'] >= prev.timestamp) & (actual_route['timestamp'] < next.timestamp)] pred_speed = (prev.speed + next.speed) / 2 if actual_end.ata < next.timestamp: mins_to_future = (pd.to_datetime(next.timestamp) - pd.to_datetime(start_row.start_time)).total_seconds() / 60.0 acc_measures = measure_accuracy(grid, [actual_end.lat, actual_end.lon], [next.lat, next.lon], pred_speed, actual_end.speed) result = [voyage, actual_end.vessel_type, actual_end.end_port, actual_end.end_port_sea_area, start_row.start_time, next.timestamp, mins_to_future, actual_end.lat, actual_end.lon, next.lat, next.lon, actual_end.speed, pred_speed] result.extend(acc_measures) results.append(result) prev = next continue for j, obs in observations_between_preds.iterrows(): if minutes_forward is not None and pd.to_datetime(obs.timestamp) > (pd.to_datetime(start_row.start_time) + datetime.timedelta(minutes=minutes_forward)): break pred_pos = interpolate_to_time([prev.lat, prev.lon], [next.lat, next.lon], pred_speed, prev.timestamp, obs.timestamp) mins_to_future = (
pd.to_datetime(obs.timestamp)
pandas.to_datetime
from __future__ import print_function, division import logging import os, os.path import re import math import copy on_rtd = os.environ.get('READTHEDOCS') == 'True' if not on_rtd: import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm from scipy.stats import gaussian_kde from scipy.integrate import quad else: np, pd, plt, cm = (None, None, None, None) gaussian_kde, quad = (None, None) try: from sklearn.neighbors import KernelDensity from sklearn.grid_search import GridSearchCV from sklearn.preprocessing import normalize from sklearn.model_selection import LeaveOneOut except ImportError: logging.warning('sklearn not available') KernelDensity = None GridSearchCV = None if not on_rtd: from isochrones import StarModel, get_ichrone else: class StarModel(object): pass #from transit import Central, System, Body from .transit_basic import occultquad, ldcoeffs, minimum_inclination from .transit_basic import MAInterpolationFunction from .transit_basic import eclipse_pars from .transit_basic import eclipse, eclipse_tt, NoEclipseError, NoFitError from .transit_basic import MAXSLOPE from .fitebs import fitebs from .plotutils import setfig, plot2dhist from .hashutils import hashcombine from .stars.populations import StarPopulation, MultipleStarPopulation from .stars.populations import BGStarPopulation, BGStarPopulation_TRILEGAL from .stars.populations import Observed_BinaryPopulation, Observed_TriplePopulation # from .stars.populations import DARTMOUTH from .stars.utils import draw_eccs, semimajor, withinroche from .stars.utils import mult_masses, randpos_in_circle from .stars.utils import fluxfrac, addmags from .stars.utils import RAGHAVAN_LOGPERKDE from .stars.constraints import UpperLimit try: import simpledist.distributions as dists except ImportError: logging.warning('simpledist not available') dists = None try: from progressbar import Percentage,Bar,RotatingMarker,ETA,ProgressBar pbar_ok = True except ImportError: pbar_ok = False from .orbits.populations import OrbitPopulation, TripleOrbitPopulation SHORT_MODELNAMES = {'Planets':'pl', 'EBs':'eb', 'HEBs':'heb', 'BEBs':'beb', 'EBs (Double Period)':'eb_Px2', 'HEBs (Double Period)':'heb_Px2', 'BEBs (Double Period)':'beb_Px2', 'Blended Planets':'bpl', 'Specific BEB':'sbeb', 'Specific HEB':'sheb'} INV_SHORT_MODELNAMES = {v:k for k,v in SHORT_MODELNAMES.items()} DEFAULT_MODELS = ['beb','heb','eb', 'beb_Px2', 'heb_Px2','eb_Px2', 'pl'] if not on_rtd: from astropy.units import Quantity import astropy.units as u import astropy.constants as const AU = const.au.cgs.value RSUN = const.R_sun.cgs.value MSUN = const.M_sun.cgs.value G = const.G.cgs.value REARTH = const.R_earth.cgs.value MEARTH = const.M_earth.cgs.value else: Quantity = None u = None const = None AU, RSUN, MSUN, G, REARTH, MEARTH = (None, None, None, None, None, None) class EclipsePopulation(StarPopulation): """Base class for populations of eclipsing things. This is the base class for populations of various scenarios that could explain a tranist signal; that is, astrophysical false positives or transiting planets. Once set up properly, :func:`EclipsePopulation.fit_trapezoids` can be used to fit the trapezoidal shape parameters, after which the likelihood of a transit signal under the model may be calculated. Subclasses :class:`vespa.stars.StarPopulation`, which enables all the functionality of observational constraints. if prob is not passed; should be able to calculated from given star/orbit properties. As with :class:`vespa.stars.StarPopulation`, any subclass must be able to be initialized with no arguments passed, in order for :func:`vespa.stars.StarPopulation.load_hdf` to work properly. :param stars: ``DataFrame`` with star properties. Must contain ``M_1, M_2, R_1, R_2, u1_1, u1_2, u2_1, u2_2``. Also, either the ``period`` keyword argument must be provided or a ``period`` column should be in ``stars``. ``stars`` must also have the eclipse parameters: `'inc, ecc, w, dpri, dsec, b_sec, b_pri, fluxfrac_1, fluxfrac_2``. :param period: (optional) Orbital period. If not provided, then ``stars`` must have period column. :param model: (optional) Name of the model. :param priorfactors: (optional) Multiplicative factors that quantify the model prior for this particular model; e.g. ``f_binary``, etc. :param lhoodcachefile: (optional) File where likelihood calculation cache is written. :param orbpop: (optional) Orbit population. :type orbpop: :class:`orbits.OrbitPopulation` or :class:`orbits.TripleOrbitPopulation` :param prob: (optional) Averaged eclipse probability of scenario instances. If not provided, this should be calculated, though this is not implemented yet. :param cadence: (optional) Observing cadence, in days. Defaults to *Kepler* value. :param **kwargs: Additional keyword arguments passed to :class:`vespa.stars.StarPopulation`. """ def __init__(self, stars=None, period=None, model='', priorfactors=None, lhoodcachefile=None, orbpop=None, prob=None, cadence=1626./86400, #Kepler observing cadence, in days **kwargs): self.period = period self.model = model if priorfactors is None: priorfactors = {} self.priorfactors = priorfactors self.prob = prob #calculate this if not provided? self.cadence = cadence self.lhoodcachefile = lhoodcachefile self.is_specific = False StarPopulation.__init__(self, stars=stars, orbpop=orbpop, name=model, **kwargs) if stars is not None: if len(self.stars)==0: raise EmptyPopulationError('Zero elements in {} population'.format(model)) if 'slope' in self.stars: self._make_kde() def fit_trapezoids(self, MAfn=None, msg=None, use_pbar=True, **kwargs): """ Fit trapezoid shape to each eclipse in population For each instance in the population, first the correct, physical Mandel-Agol transit shape is simulated, and then this curve is fit with a trapezoid model :param MAfn: :class:`transit_basic.MAInterpolationFunction` object. If not passed, then one with default parameters will be created. :param msg: Message to be displayed for progressbar output. :param **kwargs: Additional keyword arguments passed to :func:`fitebs.fitebs`. """ logging.info('Fitting trapezoid models for {}...'.format(self.model)) if msg is None: msg = '{}: '.format(self.model) n = len(self.stars) deps, durs, slopes = (np.zeros(n), np.zeros(n), np.zeros(n)) secs = np.zeros(n, dtype=bool) dsec = np.zeros(n) if use_pbar and pbar_ok: widgets = [msg+'fitting shape parameters for %i systems: ' % n,Percentage(), ' ',Bar(marker=RotatingMarker()),' ',ETA()] pbar = ProgressBar(widgets=widgets,maxval=n) pbar.start() for i in range(n): logging.debug('Fitting star {}'.format(i)) pri = (self.stars['dpri'][i] > self.stars['dsec'][i] or np.isnan(self.stars['dsec'][i])) sec = not pri secs[i] = sec if sec: dsec[i] = self.stars['dpri'][i] else: dsec[i] = self.stars['dsec'][i] try: trap_pars = self.eclipse_trapfit(i, secondary=sec, **kwargs) except NoEclipseError: logging.error('No eclipse registered for star {}'.format(i)) trap_pars = (np.nan, np.nan, np.nan) except NoFitError: logging.error('Fit did not converge for star {}'.format(i)) trap_pars = (np.nan, np.nan, np.nan) except KeyboardInterrupt: raise except: logging.error('Unknown error for star {}'.format(i)) trap_pars = (np.nan, np.nan, np.nan) if use_pbar and pbar_ok: pbar.update(i) durs[i], deps[i], slopes[i] = trap_pars logging.info('Done.') self.stars['depth'] = deps self.stars['duration'] = durs self.stars['slope'] = slopes self.stars['secdepth'] = dsec self.stars['secondary'] = secs self._make_kde() @property def eclipse_features(self): stars = self.stars ok = (stars.depth > 0).values stars = stars[ok] texp = self.cadence # Define features sec = stars.secondary pri = ~sec P = stars.P T14 = sec*stars.T14_sec + pri*stars.T14_pri T23 = sec*stars.T23_sec + pri*stars.T23_pri T14 += texp T23 = np.clip(T23 - texp, 0, T14) tau = (T14 - T23)/2. k = (sec*(stars.radius_A/stars.radius_B) + ~sec*(stars.radius_B/stars.radius_A)) b = sec*(stars.b_sec/k) + pri*stars.b_pri logd = np.log10(sec*stars.dsec + pri*stars.dpri) u1 = sec*stars.u1_2 + pri*stars.u1_1 u2 = sec*stars.u2_2 + pri*stars.u2_1 #fluxfrac = sec*stars.fluxfrac_2 + pri*stars.fluxfrac_1 dilution = self.dilution_factor[ok] X = np.array([P,T14,tau,k,b,logd,u1,u2,dilution,sec]).T return X @property def eclipse_targets(self): ok = (self.stars.depth > 0).values stars = self.stars[ok] duration = np.array(stars.duration) logdepth = np.array(np.log10(stars.depth)) slope = np.array(stars.slope) return duration, logdepth, slope def apply_multicolor_transit(self, band, depth): raise NotImplementedError('multicolor transit not yet implemented') @property def eclipseprob(self): """ Array of eclipse probabilities. """ #TODO: incorporate eccentricity/omega for exact calculation? s = self.stars return ((s['radius_1'] + s['radius_2'])*RSUN / (semimajor(s['P'],s['mass_1'] + s['mass_2'])*AU)) @property def mean_eclipseprob(self): """Mean eclipse probability for population """ return self.eclipseprob.mean() @property def modelshort(self): """ Short version of model name Dictionary defined in ``populations.py``:: SHORT_MODELNAMES = {'Planets':'pl', 'EBs':'eb', 'HEBs':'heb', 'BEBs':'beb', 'Blended Planets':'bpl', 'Specific BEB':'sbeb', 'Specific HEB':'sheb'} """ try: name = SHORT_MODELNAMES[self.model] #add index if specific model is indexed if hasattr(self,'index'): name += '-{}'.format(self.index) return name except KeyError: raise KeyError('No short name for model: %s' % self.model) @property def dilution_factor(self): """ Multiplicative factor (<1) that converts true depth to diluted depth. """ return np.ones(len(self.stars)) @property def depth(self): """ Observed primary depth (fitted undiluted depth * dilution factor) """ return self.dilution_factor * self.stars['depth'] @property def secondary_depth(self): """ Observed secondary depth (fitted undiluted sec. depth * dilution factor) """ return self.dilution_factor * self.stars['secdepth'] def constrain_secdepth(self, thresh): """ Constrain the observed secondary depth to be less than a given value :param thresh: Maximum allowed fractional depth for diluted secondary eclipse depth """ self.apply_constraint(UpperLimit(self.secondary_depth, thresh, name='secondary depth')) def apply_secthresh(self, *args, **kwargs): """Another name for constrain_secdepth """ return self.constrain_secdepth(*args, **kwargs) def fluxfrac_eclipsing(self, band=None): """Stub for future multicolor transit implementation """ pass def depth_in_band(self, band): """Stub for future multicolor transit implementation """ pass @property def prior(self): """ Model prior for particular model. Product of eclipse probability (``self.prob``), the fraction of scenario that is allowed by the various constraints (``self.selectfrac``), and all additional factors in ``self.priorfactors``. """ prior = self.prob * self.selectfrac for f in self.priorfactors: prior *= self.priorfactors[f] return prior def add_priorfactor(self,**kwargs): """Adds given values to priorfactors If given keyword exists already, error will be raised to use :func:`EclipsePopulation.change_prior` instead. """ for kw in kwargs: if kw in self.priorfactors: logging.error('%s already in prior factors for %s. use change_prior function instead.' % (kw,self.model)) continue else: self.priorfactors[kw] = kwargs[kw] logging.info('%s added to prior factors for %s' % (kw,self.model)) def change_prior(self, **kwargs): """ Changes existing priorfactors. If given keyword isn't already in priorfactors, then will be ignored. """ for kw in kwargs: if kw in self.priorfactors: self.priorfactors[kw] = kwargs[kw] logging.info('{0} changed to {1} for {2} model'.format(kw,kwargs[kw], self.model)) def _make_kde(self, use_sklearn=False, bandwidth=None, rtol=1e-6, sig_clip=50, no_sig_clip=False, cov_all=True, **kwargs): """Creates KDE objects for 3-d shape parameter distribution KDE represents likelihood as function of trapezoidal shape parameters (log(delta), T, T/tau). Uses :class:`scipy.stats.gaussian_kde`` KDE by default; Scikit-learn KDE implementation tested a bit, but not fully implemented. :param use_sklearn: Whether to use scikit-learn implementation of KDE. Not yet fully implemented, so this should stay ``False``. :param bandwidth, rtol: Parameters for sklearn KDE. :param **kwargs: Additional keyword arguments passed to :class:`scipy.stats.gaussian_kde``. """ try: #define points that are ok to use first_ok = ((self.stars['slope'] > 0) & (self.stars['duration'] > 0) & (self.stars['duration'] < self.period) & (self.depth > 0)) except KeyError: logging.warning('Must do trapezoid fits before making KDE.') return self.empty = False if first_ok.sum() < 4: logging.warning('Empty population ({}): < 4 valid systems! Cannot calculate lhood.'.format(self.model)) self.is_empty = True #will cause is_ruled_out to be true as well. return #raise EmptyPopulationError('< 4 valid systems in population') logdeps = np.log10(np.ma.array(self.depth, mask=~first_ok)) durs = np.ma.array(self.stars['duration'], mask=~first_ok) slopes = np.ma.array(self.stars['slope'], mask=~first_ok) #Now sigma-clip those points that passed first cuts ok = np.ones(len(logdeps), dtype=bool) for x in [logdeps, durs, slopes]: med = np.ma.median(x) mad = np.ma.median((x - med).__abs__()) after_clip = np.ma.masked_where((x - med).__abs__() / mad > sig_clip, x) ok &= ~after_clip.mask second_ok = ok & first_ok assert np.allclose(second_ok, ok) # Before making KDE for real, first calculate # covariance and inv_cov of uncut data, to use # when it's cut, too. points = np.ma.array([logdeps, durs, slopes], mask=np.row_stack((~second_ok, ~second_ok, ~second_ok))) points = points.compress(~points.mask[0],axis=1).data #from numpy.linalg import LinAlgError try: from scipy import linalg kde = gaussian_kde(points) #backward compatibility? inv = linalg.inv(kde._data_covariance) #print(np.vstack(points), np.shape(np.vstack(points))) except np.linalg.linalg.LinAlgError: print(points, np.shape(points)) cov_all = kde._data_covariance icov_all = kde._data_inv_cov factor = kde.factor # OK, now cut the data for constraints & proceed ok = second_ok & self.distok points = np.ma.array([durs, logdeps, slopes], mask=np.row_stack((~ok, ~ok, ~ok))) points = points.compress(~points.mask[0],axis=1) logdeps = points.data[1] durs = points.data[0] slopes = points.data[2] if ok.sum() < 4 and not self.empty: logging.warning('Empty population ({}): < 4 valid systems! Cannot calculate lhood.'.format(self.model)) self.is_empty = True return #raise EmptyPopulationError('< 4 valid systems in population') if use_sklearn: self.sklearn_kde = True logdeps_normed = (logdeps - logdeps.mean())/logdeps.std() durs_normed = (durs - durs.mean())/durs.std() slopes_normed = (slopes - slopes.mean())/slopes.std() #TODO: use sklearn preprocessing to replace below self.mean_logdepth = logdeps.mean() self.std_logdepth = logdeps.std() self.mean_dur = durs.mean() self.std_dur = durs.std() self.mean_slope = slopes.mean() self.std_slope = slopes.std() points = np.array([logdeps_normed, durs_normed, slopes_normed]) try: points_skl = normalize(np.transpose([durs, logdeps, slopes])) except ValueError: from nose.tools import set_trace; set_trace() set_trace() #assert np.allclose(points_pre, points_skl) #find best bandwidth. For some reason this doesn't work? if bandwidth is None: bandwidths = np.linspace(0.05,1,100) grid = GridSearchCV(KernelDensity(kernel='gaussian'),\ {'bandwidth': bandwidths},\ cv=3) grid.fit(points_skl) self._best_bandwidth = grid.best_params_ self.kde = grid.best_estimator_ else: self.kde = KernelDensity(rtol=rtol, bandwidth=bandwidth).fit(points_skl) else: self.sklearn_kde = False #Yangyang: method 1 points = (points+1e-07*np.random.uniform(-1.0, 1.0, np.shape(points))).data self.kde = gaussian_kde(points, **kwargs) #backward compatibility? # Reset covariance based on uncut data self.kde._data_covariance = cov_all self.kde._data_inv_cov = icov_all self.kde._compute_covariance() def _density(self, dataset): """ Evaluate KDE at given points. Prepares data according to whether sklearn or scipy KDE in use. :param log, dur, slope: Trapezoidal shape parameters. """ if self.sklearn_kde: #TODO: fix preprocessing #Yangyang's modification(method2): #pts = np.array([(logd - self.mean_logdepth)/self.std_logdepth, # (dur - self.mean_dur)/self.std_dur, # (slope - self.mean_slope)/self.std_slope]) pts = normalize(dataset.T)#(#sample, #features)to make consistent with scipy method, besides their density is in log, then... return np.exp(self.kde.score_samples(pts)) else: return self.kde(dataset) def lhood(self, trsig, recalc=False, cachefile=None): """Returns likelihood of transit signal Returns sum of ``trsig`` MCMC samples evaluated at ``self.kde``. :param trsig: :class:`vespa.TransitSignal` object. :param recalc: (optional) Whether to recalculate likelihood (if calculation is cached). :param cachefile: (optional) File that holds likelihood calculation cache. """ if not hasattr(self,'kde'): self._make_kde() if cachefile is None: cachefile = self.lhoodcachefile if cachefile is None: cachefile = 'lhoodcache.dat' lhoodcache = _loadcache(cachefile) key = hashcombine(self, trsig) if key in lhoodcache and not recalc: return lhoodcache[key] if self.is_ruled_out: return 0 N = trsig.kde.dataset.shape[1] lh = np.sum(self._density(trsig.kde.dataset)) / N with open(cachefile, 'a') as fout: fout.write('%i %g\n' % (key, lh)) return lh def lhoodplot(self, trsig=None, fig=None, piechart=True, figsize=None, logscale=True, constraints='all', suptitle=None, Ltot=None, maxdur=None, maxslope=None, inverse=False, colordict=None, cachefile=None, nbins=20, dur_range=None, slope_range=None, depth_range=None, recalc=False,**kwargs): """ Makes plot of likelihood density function, optionally with transit signal If ``trsig`` not passed, then just density plot of the likelidhoo will be made; if it is passed, then it will be plotted over the density plot. :param trsig: (optional) :class:`vespa.TransitSignal` object. :param fig: (optional) Argument for :func:`plotutils.setfig`. :param piechart: (optional) Whether to include a plot of the piechart that describes the effect of the constraints on the population. :param figsize: (optional) Passed to :func:`plotutils.setfig`. :param logscale: (optional) If ``True``, then shading will be based on the log-histogram (thus showing more detail at low density). Passed to :func:`vespa.stars.StarPopulation.prophist2d`. :param constraints: (``'all', 'none'`` or ``list``; optional) Which constraints to apply in making plot. Picking specific constraints allows you to visualize in more detail what the effect of a constraint is. :param suptitle: (optional) Title for the figure. :param Ltot: (optional) Total of ``prior * likelihood`` for all models. If this is passed, then "Probability of scenario" gets a text box in the middle. :param inverse: (optional) Intended to allow showing only the instances that are ruled out, rather than those that remain. Not sure if this works anymore. :param colordict: (optional) Dictionary to define colors of constraints to be used in pie chart. Intended to unify constraint colors among different models. :param cachefile: (optional) Likelihood calculation cache file. :param nbins: (optional) Number of bins with which to make the 2D histogram plot; passed to :func:`vespa.stars.StarPopulation.prophist2d`. :param dur_range, slope_range, depth_range: (optional) Define ranges of plots. :param **kwargs: Additional keyword arguments passed to :func:`vespa.stars.StarPopulation.prophist2d`. """ setfig(fig, figsize=figsize) if trsig is not None: dep,ddep = trsig.logdepthfit dur,ddur = trsig.durfit slope,dslope = trsig.slopefit ddep = ddep.reshape((2,1)) ddur = ddur.reshape((2,1)) dslope = dslope.reshape((2,1)) if dur_range is None: dur_range = (0,dur*2) if slope_range is None: slope_range = (2,slope*2) if constraints == 'all': mask = self.distok elif constraints == 'none': mask = np.ones(len(self.stars)).astype(bool) else: mask = np.ones(len(self.stars)).astype(bool) for c in constraints: if c not in self.distribution_skip: mask &= self.constraints[c].ok if inverse: mask = ~mask if dur_range is None: dur_range = (self.stars[mask]['duration'].min(), self.stars[mask]['duration'].max()) if slope_range is None: slope_range = (2,self.stars[mask]['slope'].max()) if depth_range is None: depth_range = (-5,-0.1) #This may mess with intended "inverse" behavior, probably? mask &= ((self.stars['duration'] > dur_range[0]) & (self.stars['duration'] < dur_range[1])) mask &= ((self.stars['duration'] > dur_range[0]) & (self.stars['duration'] < dur_range[1])) mask &= ((self.stars['slope'] > slope_range[0]) & (self.stars['slope'] < slope_range[1])) mask &= ((self.stars['slope'] > slope_range[0]) & (self.stars['slope'] < slope_range[1])) mask &= ((np.log10(self.depth) > depth_range[0]) & (np.log10(self.depth) < depth_range[1])) mask &= ((np.log10(self.depth) > depth_range[0]) & (np.log10(self.depth) < depth_range[1])) if piechart: a_pie = plt.axes([0.07, 0.5, 0.4, 0.5]) self.constraint_piechart(fig=0, colordict=colordict) ax1 = plt.subplot(222) if not self.is_ruled_out: self.prophist2d('duration', 'depth', logy=True, fig=0, mask=mask, interpolation='bicubic', logscale=logscale, nbins=nbins, **kwargs) if trsig is not None: plt.errorbar(dur,dep,xerr=ddur,yerr=ddep,color='w',marker='x', ms=12,mew=3,lw=3,capsize=3,mec='w') plt.errorbar(dur,dep,xerr=ddur,yerr=ddep,color='r',marker='x', ms=10,mew=1.5) plt.ylabel(r'log($\delta$)') plt.xlabel('') plt.xlim(dur_range) plt.ylim(depth_range) yt = ax1.get_yticks() plt.yticks(yt[1:]) xt = ax1.get_xticks() plt.xticks(xt[2:-1:2]) ax3 = plt.subplot(223) if not self.is_ruled_out: self.prophist2d('depth', 'slope', logx=True, fig=0, mask=mask, interpolation='bicubic', logscale=logscale, nbins=nbins, **kwargs) if trsig is not None: plt.errorbar(dep,slope,xerr=ddep,yerr=dslope,color='w',marker='x', ms=12,mew=3,lw=3,capsize=3,mec='w') plt.errorbar(dep,slope,xerr=ddep,yerr=dslope,color='r',marker='x', ms=10,mew=1.5) plt.ylabel(r'$T/\tau$') plt.xlabel(r'log($\delta$)') plt.ylim(slope_range) plt.xlim(depth_range) yt = ax3.get_yticks() plt.yticks(yt[1:]) ax4 = plt.subplot(224) if not self.is_ruled_out: self.prophist2d('duration', 'slope', fig=0, mask=mask, interpolation='bicubic', logscale=logscale, nbins=nbins, **kwargs) if trsig is not None: plt.errorbar(dur,slope,xerr=ddur,yerr=dslope,color='w',marker='x', ms=12,mew=3,lw=3,capsize=3,mec='w') plt.errorbar(dur,slope,xerr=ddur,yerr=dslope,color='r',marker='x', ms=10,mew=1.5) plt.ylabel('') plt.xlabel(r'$T$ [days]') plt.ylim(slope_range) plt.xlim(dur_range) plt.xticks(xt[2:-1:2]) plt.yticks(ax3.get_yticks()) ticklabels = ax1.get_xticklabels() + ax4.get_yticklabels() plt.setp(ticklabels,visible=False) plt.subplots_adjust(hspace=0.001,wspace=0.001) if suptitle is None: suptitle = self.model plt.suptitle(suptitle,fontsize=20) if Ltot is not None: lhood = self.lhood(trsig, recalc=recalc) plt.annotate('%s:\nProbability\nof scenario: %.3f' % (trsig.name, self.prior*lhood/Ltot), xy=(0.5,0.5),ha='center',va='center', bbox=dict(boxstyle='round',fc='w'), xycoords='figure fraction',fontsize=15) def eclipse_pars(self, i, secondary=False): s = self.stars.iloc[i] P = s['P'] #p0, b, aR = eclipse_pars(P, s['mass_1'], s['mass_2'], # s['radius_1'], s['radius_2'], # ecc=s['ecc'], inc=s['inc'], # w=s['w']) p0 = s['radius_2']/s['radius_1'] aR = semimajor(P, s['mass_1']+s['mass_2'])*AU/(s['radius_1']*RSUN) if secondary: mu1, mu2 = s[['u1_2', 'u2_2']] b = s['b_sec'] frac = s['fluxfrac_2'] else: mu1, mu2 = s[['u1_1', 'u2_1']] b = s['b_pri'] frac = s['fluxfrac_1'] return dict(P=P, p0=p0, b=b, aR=aR, frac=frac, u1=mu1, u2=mu2, ecc=s['ecc'], w=s['w']) def eclipse(self, i, secondary=False, **kwargs): pars = self.eclipse_pars(i, secondary=secondary) for k,v in pars.items(): kwargs[k] = v return eclipse(sec=secondary, **kwargs) def eclipse_trapfit(self, i, secondary=False, **kwargs): pars = self.eclipse_pars(i, secondary=secondary) for k,v in pars.items(): kwargs[k] = v kwargs['cadence'] = self.cadence return eclipse_tt(sec=secondary, **kwargs) def eclipse_new(self, i, secondary=False, npoints=200, width=3, texp=None): """ Returns times and fluxes of eclipse i (centered at t=0) """ texp = self.cadence s = self.stars.iloc[i] e = s['ecc'] P = s['P'] if secondary: mu1, mu2 = s[['u1_2', 'u2_2']] w = np.mod(np.deg2rad(s['w']) + np.pi, 2*np.pi) mass_central, radius_central = s[['mass_2','radius_2']] mass_body, radius_body = s[['mass_1','radius_1']] b = s['b_sec'] * s['radius_1']/s['radius_2'] frac = s['fluxfrac_2'] else: mu1, mu2 = s[['u1_1', 'u2_1']] w = np.deg2rad(s['w']) mass_central, radius_central = s[['mass_1','radius_1']] mass_body, radius_body = s[['mass_2','radius_2']] b = s['b_pri'] frac = s['fluxfrac_1'] central_kwargs = dict(mass=mass_central, radius=radius_central, mu1=mu1, mu2=mu2) central = Central(**central_kwargs) body_kwargs = dict(radius=radius_body, mass=mass_body, b=b, period=P, e=e, omega=w) body = Body(**body_kwargs) logging.debug('central: {}'.format(central_kwargs)) logging.debug('body: {}'.format(body_kwargs)) s = System(central) s.add_body(body) # As of now, body.duration returns strictly circular duration dur = body.duration logging.debug('duration: {}'.format(dur)) ts = np.linspace(-width/2*dur, width/2*dur, npoints) fs = s.light_curve(ts, texp=texp) fs = 1 - frac*(1-fs) return ts, fs @property def _properties(self): return ['period','model','priorfactors','prob','lhoodcachefile', 'is_specific', 'cadence'] + \ super(EclipsePopulation,self)._properties @classmethod def load_hdf(cls, filename, path=''): #perhaps this doesn't need to be written? """ Loads EclipsePopulation from HDF file Also runs :func:`EclipsePopulation._make_kde` if it can. :param filename: HDF file :param path: (optional) Path within HDF file """ new = StarPopulation.load_hdf(filename, path=path) #setup lazy loading of starmodel if present try: with pd.HDFStore(filename) as store: if '{}/starmodel'.format(path) in store: new._starmodel = None new._starmodel_file = filename new._starmodel_path = '{}/starmodel'.format(path) except: pass try: new._make_kde() except NoTrapfitError: logging.warning('Trapezoid fit not done.') return new @property def starmodel(self): if not hasattr(self, '_starmodel'): raise AttributeError('{} does not have starmodel.'.format(self)) if (hasattr(self, '_starmodel_file') and hasattr(self, '_starmodel_path')): self._starmodel = StarModel.load_hdf(self._starmodel_file, path=self._starmodel_path) return self._starmodel def resample(self): """ Returns a copy of population with stars resampled (with replacement). Used in bootstrap estimate of FPP uncertainty. TODO: check to make sure constraints properly copied! """ new = copy.deepcopy(self) N = len(new.stars) inds = np.random.randint(N, size=N) # Resample stars new.stars = new.stars.iloc[inds].reset_index() # Resample constraints if hasattr(new, '_constraints'): for c in new._constraints: new._constraints[c] = new._constraints[c].resample(inds) new._make_kde() return new class EclipsePopulation_Px2(EclipsePopulation): def apply_secthresh(self, *args, **kwargs): logging.warning('Secondary depth cut should not be used on a double-period scenario!') @property def depth_difference(self): return np.absolute(self.depth - self.secondary_depth) def constrain_oddeven(self, diff): self.apply_constraint(UpperLimit(self.depth_difference, diff, name='odd-even')) class PlanetPopulation(EclipsePopulation): """Population of Transiting Planets Subclass of :class:`EclipsePopulation`. This is mostly a copy of :class:`EBPopulation`, with small modifications. Star properties may be defined either with either a :class:`isochrones.StarModel` or by defining just its ``mass`` and ``radius`` (and ``Teff`` and ``logg`` if desired to set limb darkening coefficients appropriately). :param period: Period of signal. :param rprs: Point-estimate of Rp/Rs radius ratio. :param mass, radius: (optional) Mass and radius of host star. If defined, must be either tuples of form ``(value, error)`` or :class:`simpledist.Distribution` objects. :param Teff, logg: (optional) Teff and logg point estimates for host star. These are used only for calculating limb darkening coefficients. :param starmodel: (optional) The preferred way to define the properties of the host star. If MCMC has been run on this model, then samples are just read off; if it hasn't, then it will run it. :type starmodel: :class:`isochrones.StarModel` :param band: (optional) Photometric band in which eclipse is detected. :param model: (optional) Name of the model. :param n: (optional) Number of instances to simulate. Default = ``2e4``. :param fp_specific: (optional) "Specific occurrence rate" for this type of planets; that is, the planet occurrence rate integrated from ``(1-rbin_width)x`` to ``(1+rbin_width)x`` this planet radius. This goes into the ``priorfactor`` for this model. :param u1, u2: (optional) Limb darkening parameters. If not provided, then calculated based on ``Teff, logg`` or just defaulted to solar values. :param rbin_width: (optional) Fractional width of rbin for ``fp_specific``. :param MAfn: (optional) :class:`transit_basic.MAInterpolationFunction` object. If not passed, then one with default parameters will be created. :param lhoodcachefile: (optional) Likelihood calculation cache file. """ def __init__(self, period=None, cadence=1626./86400, #Kepler observing cadence, in days rprs=None, mass=None, radius=None, Teff=None, logg=None, starmodel=None, band='Kepler', model='Planets', n=2e4, fp_specific=None, u1=None, u2=None, rbin_width=0.3, MAfn=None, lhoodcachefile=None): self.period = period self.cadence = cadence self.n = n self.model = model self.band = band self.rprs = rprs self.Teff = Teff self.logg = logg self._starmodel = starmodel if radius is not None and mass is not None or starmodel is not None: # calculates eclipses logging.debug('generating planet population...') self.generate(rprs=rprs, mass=mass, radius=radius, n=n, fp_specific=fp_specific, starmodel=starmodel, rbin_width=rbin_width, u1=u1, u2=u2, Teff=Teff, logg=logg, MAfn=MAfn,lhoodcachefile=lhoodcachefile) def generate(self,rprs=None, mass=None, radius=None, n=2e4, fp_specific=0.01, u1=None, u2=None, starmodel=None, Teff=None, logg=None, rbin_width=0.3, MAfn=None, lhoodcachefile=None): """Generates Population All arguments defined in ``__init__``. """ n = int(n) if starmodel is None: if type(mass) is type((1,)): mass = dists.Gaussian_Distribution(*mass) if isinstance(mass, dists.Distribution): mdist = mass mass = mdist.rvs(1e5) if type(radius) is type((1,)): radius = dists.Gaussian_Distribution(*radius) if isinstance(radius, dists.Distribution): rdist = radius radius = rdist.rvs(1e5) else: samples = starmodel.random_samples(1e5) mass = samples['mass_0_0'].values radius = samples['radius_0_0'].values Teff = samples['Teff_0_0'].mean() logg = samples['logg_0_0'].mean() logging.debug('star mass: {}'.format(mass)) logging.debug('star radius: {}'.format(radius)) logging.debug('Teff: {}'.format(Teff)) logging.debug('logg: {}'.format(logg)) if u1 is None or u2 is None: if Teff is None or logg is None: logging.warning('Teff, logg not provided; using solar limb darkening') u1 = 0.394; u2=0.296 else: u1,u2 = ldcoeffs(Teff, logg) #use point estimate of rprs to construct planets in radius bin #rp = self.rprs*np.median(radius) #rbin_min = (1-rbin_width)*rp #rbin_max = (1+rbin_width)*rp rprs_bin_min = (1-rbin_width)*self.rprs rprs_bin_max = (1+rbin_width)*self.rprs radius_p = radius * (np.random.random(int(1e5))*(rprs_bin_max - rprs_bin_min) + rprs_bin_min) mass_p = (radius_p*RSUN/REARTH)**2.06 * MEARTH/MSUN #hokey, but doesn't matter logging.debug('planet radius: {}'.format(radius_p)) stars = pd.DataFrame() #df_orbpop = pd.DataFrame() #for orbit population tot_prob = None; tot_dprob = None; prob_norm = None n_adapt = n while len(stars) < n: n_adapt = int(n_adapt) inds = np.random.randint(len(mass), size=n_adapt) #calculate eclipses. ecl_inds, df, (prob,dprob) = calculate_eclipses(mass[inds], mass_p[inds], radius[inds], radius_p[inds], 15, np.inf, #arbitrary u11s=u1, u21s=u2, band=self.band, period=self.period, calc_mininc=True, return_indices=True, MAfn=MAfn) df['mass_A'] = mass[inds][ecl_inds] df['mass_B'] = mass_p[inds][ecl_inds] df['radius_A'] = radius[inds][ecl_inds] df['radius_B'] = radius_p[inds][ecl_inds] df['u1'] = u1 * np.ones_like(df['mass_A']) df['u2'] = u2 * np.ones_like(df['mass_A']) df['P'] = self.period * np.ones_like(df['mass_A']) ok = (df['dpri']>0) & (df['T14_pri'] > 0) stars = pd.concat((stars, df[ok])) logging.info('{} Transiting planet systems generated (target {})'.format(len(stars),n)) logging.debug('{} nans in stars[dpri]'.format(np.isnan(stars['dpri']).sum())) if tot_prob is None: prob_norm = (1/dprob**2) tot_prob = prob tot_dprob = dprob else: prob_norm = (1/tot_dprob**2 + 1/dprob**2) tot_prob = (tot_prob/tot_dprob**2 + prob/dprob**2)/prob_norm tot_dprob = 1/np.sqrt(prob_norm) n_adapt = min(int(1.2*(n-len(stars)) * n_adapt//len(df)), 5e4) n_adapt = max(n_adapt, 100) stars = stars.reset_index() stars.drop('index', axis=1, inplace=True) stars = stars.iloc[:n] stars['mass_1'] = stars['mass_A'] stars['radius_1'] = stars['radius_A'] stars['mass_2'] = stars['mass_B'] stars['radius_2'] = stars['radius_B'] #make OrbitPopulation? #finish below. if fp_specific is None: rp = stars['radius_2'].mean() * RSUN/REARTH fp_specific = fp_fressin(rp) priorfactors = {'fp_specific':fp_specific} self._starmodel = starmodel EclipsePopulation.__init__(self, stars=stars, period=self.period, cadence=self.cadence, model=self.model, priorfactors=priorfactors, prob=tot_prob, lhoodcachefile=lhoodcachefile) @property def _properties(self): return ['rprs', 'Teff', 'logg'] + \ super(PlanetPopulation, self)._properties def save_hdf(self, filename, path='', **kwargs): super(PlanetPopulation, self).save_hdf(filename, path=path, **kwargs) self.starmodel.save_hdf(filename, path='{}/starmodel'.format(path), append=True) #@classmethod #def load_hdf(cls, filename, path=''): # pop = super(PlanetPopulation, cls).load_hdf(filename, path=path) # pop.starmodel = StarModel.load_hdf(filename, # path='{}/starmodel'.format(path)) # return pop class EBPopulation(EclipsePopulation, Observed_BinaryPopulation): """Population of Eclipsing Binaries (undiluted) Eclipsing Binary (EB) population is generated by fitting a two-star model to the observed properties of the system (photometric and/or spectroscopic), using :class:`isochrones.starmodel.BinaryStarModel`. Inherits from :class:`EclipsePopulation` and :class:`stars.Observed_BinaryPopulation`. :param period: Orbital period :param mags: Observed apparent magnitudes. Won't work if this is ``None``, which is the default. :type mags: ``dict`` :param Teff,logg,feh: Spectroscopic properties of primary, if measured, in ``(value, err)`` format. :param starmodel: (optional) Must be a BinaryStarModel. If MCMC has been run on this model, then samples are just read off; if it hasn't, then it will run it. :type starmodel: :class:`isochrones.BinaryStarModel` :param band: (optional) Photometric bandpass in which transit signal is observed. :param model: (optional) Name of model. :param f_binary: (optional) Binary fraction to be assumed. Will be one of the ``priorfactors``. :param n: (optional) Number of instances to simulate. Default = 2e4. :param MAfn: (optional) :class:`transit_basic.MAInterpolationFunction` object. If not passed, then one with default parameters will be created. :param lhoodcachefile: (optional) Likelihood calculation cache file. """ def __init__(self, period=None, cadence=1626./86400, #Kepler observing cadence, in days mags=None, mag_errs=None, Teff=None, logg=None, feh=None, starmodel=None, band='Kepler', model='EBs', f_binary=0.4, n=2e4, MAfn=None, lhoodcachefile=None, **kwargs): self.period = period self.cadence = cadence self.n = n self.model = model self.band = band self.lhoodcachefile = lhoodcachefile if mags is not None or starmodel is not None: self.generate(mags=mags, n=n, MAfn=MAfn, mag_errs=mag_errs, f_binary=f_binary, starmodel=starmodel, **kwargs) def generate(self, mags, n=2e4, mag_errs=None, Teff=None, logg=None, feh=None, MAfn=None, f_binary=0.4, starmodel=None, **kwargs): """Generates stars and eclipses All arguments previously defined. """ n = int(n) #create master population from which to create eclipses pop = Observed_BinaryPopulation(mags=mags, mag_errs=mag_errs, Teff=Teff, logg=logg, feh=feh, starmodel=starmodel, period=self.period, n=2*n) all_stars = pop.stars #start with empty; will concatenate onto stars = pd.DataFrame() df_orbpop = pd.DataFrame() #calculate eclipses if MAfn is None: MAfn = MAInterpolationFunction(pmin=0.007, pmax=1/0.007, nzs=200, nps=400) tot_prob = None; tot_dprob = None; prob_norm = None n_adapt = n while len(stars) < n: n_adapt = int(n_adapt) inds = np.random.randint(len(all_stars), size=n_adapt) s = all_stars.iloc[inds] #calculate limb-darkening coefficients u1A, u2A = ldcoeffs(s['Teff_A'], s['logg_A']) u1B, u2B = ldcoeffs(s['Teff_B'], s['logg_B']) cur_orbpop_df = pop.orbpop.dataframe.iloc[inds].copy() #calculate eclipses. inds, df, (prob,dprob) = calculate_eclipses(s['mass_A'], s['mass_B'], s['radius_A'], s['radius_B'], s['{}_mag_A'.format(self.band)], s['{}_mag_B'.format(self.band)], u11s=u1A, u21s=u2A, u12s=u1B, u22s=u2B, band=self.band, period=self.period, calc_mininc=True, return_indices=True, MAfn=MAfn) s = s.iloc[inds].copy() s.reset_index(inplace=True) for col in df.columns: s[col] = df[col] stars = pd.concat((stars, s)) new_df_orbpop = cur_orbpop_df.iloc[inds].copy() new_df_orbpop.reset_index(inplace=True) df_orbpop = pd.concat((df_orbpop, new_df_orbpop)) logging.info('{} Eclipsing EB systems generated (target {})'.format(len(stars),n)) logging.debug('{} nans in stars[dpri]'.format(np.isnan(stars['dpri']).sum())) logging.debug('{} nans in df[dpri]'.format(np.isnan(df['dpri']).sum())) if tot_prob is None: prob_norm = (1/dprob**2) tot_prob = prob tot_dprob = dprob else: prob_norm = (1/tot_dprob**2 + 1/dprob**2) tot_prob = (tot_prob/tot_dprob**2 + prob/dprob**2)/prob_norm tot_dprob = 1/np.sqrt(prob_norm) n_adapt = min(int(1.2*(n-len(stars)) * n_adapt//len(s)), 5e4) n_adapt = max(n_adapt, 100) stars = stars.iloc[:n] df_orbpop = df_orbpop.iloc[:n] orbpop = OrbitPopulation.from_df(df_orbpop) stars = stars.reset_index() stars.drop('index', axis=1, inplace=True) stars['mass_1'] = stars['mass_A'] stars['radius_1'] = stars['radius_A'] stars['mass_2'] = stars['mass_B'] stars['radius_2'] = stars['radius_B'] ## Why does this make it go on infinite loop?? #Observed_BinaryPopulation.__init__(self, stars=stars, orbpop=orbpop, # mags=mags, mag_errs=mag_errs, # Teff=Teff, logg=logg, feh=feh, # starmodel=starmodel) ########### self.mags = mags self.mag_errs = mag_errs self.Teff = Teff self.logg = logg self.feh = feh self._starmodel = pop.starmodel priorfactors = {'f_binary':f_binary} EclipsePopulation.__init__(self, stars=stars, orbpop=orbpop, period=self.period, cadence=self.cadence, model=self.model, priorfactors=priorfactors, prob=tot_prob, lhoodcachefile=self.lhoodcachefile) class EBPopulation_Px2(EclipsePopulation_Px2, EBPopulation): def __init__(self, period=None, model='EBs (Double Period)', **kwargs): try: period *= 2 except: pass EBPopulation.__init__(self, period=period, model=model, **kwargs) class HEBPopulation(EclipsePopulation, Observed_TriplePopulation): """Population of Hierarchical Eclipsing Binaries Hierarchical Eclipsing Binary (HEB) population is generated by fitting a two-star model to the observed properties of the system (photometric and/or spectroscopic), using :class:`isochrones.starmodel.BinaryStarModel`. by Inherits from :class:`EclipsePopulation` and :class:`stars.Observed_TriplePopulation`. :param period: Orbital period :param mags,mag_errs: Observed apparent magnitudes; uncertainties optional. If uncertainties not provided, :class:`Observed_TriplePopulation` will default to uncertainties in all bands of 0.05 mag. :type mags: ``dict`` :param Teff,logg,feh: Spectroscopic properties of primary, if measured, in ``(value, err)`` format. :param starmodel: (optional) Must be a BinaryStarModel. If MCMC has been run on this model, then samples are just read off; if it hasn't, then it will run it. :type starmodel: :class:`isochrones.BinaryStarModel` :param band: (optional) Photometric bandpass in which transit signal is observed. :param model: (optional) Name of model. :param f_binary: (optional) Binary fraction to be assumed. Will be one of the ``priorfactors``. :param n: (optional) Number of instances to simulate. Default = 2e4. :param MAfn: (optional) :class:`transit_basic.MAInterpolationFunction` object. If not passed, then one with default parameters will be created. :param lhoodcachefile: (optional) Likelihood calculation cache file. """ def __init__(self, period=None, cadence=1626./86400, #Kepler observing cadence, in days mags=None, mag_errs=None, Teff=None, logg=None, feh=None, starmodel=None, band='Kepler', model='HEBs', f_triple=0.12, n=2e4, MAfn=None, lhoodcachefile=None, **kwargs): self.period = period self.cadence = cadence self.n = n self.model = model self.band = band self.lhoodcachefile = lhoodcachefile if mags is not None or starmodel is not None: self.generate(mags=mags, n=n, MAfn=MAfn, mag_errs=mag_errs, f_triple=f_triple, starmodel=starmodel, **kwargs) def generate(self, mags, n=2e4, mag_errs=None, Teff=None, logg=None, feh=None, MAfn=None, f_triple=0.12, starmodel=None, **kwargs): """Generates stars and eclipses All arguments previously defined. """ n = int(n) #create master population from which to create eclipses pop = Observed_TriplePopulation(mags=mags, mag_errs=mag_errs, Teff=Teff, logg=logg, feh=feh, starmodel=starmodel, period=self.period, n=2*n) all_stars = pop.stars #start with empty; will concatenate onto stars = pd.DataFrame() df_orbpop_short = pd.DataFrame() df_orbpop_long = pd.DataFrame() #calculate eclipses if MAfn is None: MAfn = MAInterpolationFunction(pmin=0.007, pmax=1/0.007, nzs=200, nps=400) tot_prob = None; tot_dprob = None; prob_norm = None n_adapt = n while len(stars) < n: n_adapt = int(n_adapt) inds = np.random.randint(len(all_stars), size=n_adapt) s = all_stars.iloc[inds] #calculate limb-darkening coefficients u1A, u2A = ldcoeffs(s['Teff_A'], s['logg_A']) u1B, u2B = ldcoeffs(s['Teff_B'], s['logg_B']) u1C, u2C = ldcoeffs(s['Teff_C'], s['logg_C']) cur_orbpop_short_df = pop.orbpop.orbpop_short.dataframe.iloc[inds].copy() cur_orbpop_long_df = pop.orbpop.orbpop_long.dataframe.iloc[inds].copy() #calculate eclipses. inds, df, (prob,dprob) = calculate_eclipses(s['mass_B'], s['mass_C'], s['radius_B'], s['radius_C'], s['{}_mag_B'.format(self.band)], s['{}_mag_C'.format(self.band)], u11s=u1A, u21s=u2A, u12s=u1B, u22s=u2B, band=self.band, period=self.period, calc_mininc=True, return_indices=True, MAfn=MAfn) s = s.iloc[inds].copy() s.reset_index(inplace=True) for col in df.columns: s[col] = df[col] stars = pd.concat((stars, s)) new_df_orbpop_short = cur_orbpop_short_df.iloc[inds].copy() new_df_orbpop_short.reset_index(inplace=True) new_df_orbpop_long = cur_orbpop_long_df.iloc[inds].copy() new_df_orbpop_long.reset_index(inplace=True) df_orbpop_short =
pd.concat((df_orbpop_short, new_df_orbpop_short))
pandas.concat
import numpy as np import pandas as pd import pytest from dppd import dppd import plotnine as p9 import dppd_plotnine # noqa: F401 from plotnine.data import mtcars dp, X = dppd() def test_simple(): actual = dp(mtcars).p9().geom_point({"x": "cyl", "y": "hp"}).pd assert actual == "test_simple" def test_scale(): actual = ( dp(mtcars) .p9() .geom_point({"x": "cyl", "y": "hp"}) .scale_y_continuous(trans="log10") .pd ) assert actual == "test_scale" def test_simple_add(): actual = dp(mtcars).p9().add_point(x="cyl", y="hp").pd assert actual == "test_simple_add" def test_more_than_the_number_of_required_aes_raises(): with pytest.raises(ValueError): dp(mtcars).p9().add_point("mpg", "hp", "cyl").scale_color_brewer().pd def test_unmapped(): actual = dp(mtcars).p9().add_point(x="mpg", y="hp", _color="blue").pd assert actual == "test_unmapped" def test_hline(): actual = ( dp(mtcars) .p9() .add_point(x="mpg", y="hp", _color="blue") .add_hline(200, _color="red") .pd ) assert actual == "test_hline" def test_spec_by_position_and_kwarg_raises(): with pytest.raises(ValueError): ( dp(pd.DataFrame({"x": [1, 2], "y": [2, 2]})) .p9() .add_crossbar("x", "y", "y", "y", ymin="y") ) def test_broken_data_mapping_raises_pandas_error(): with pytest.raises(ValueError): ( dp(pd.DataFrame({"x": [1, 2], "y": [2, 1.5]})) .p9() .add_point(x={"1": "shu"}, y=["4"], data=None) .pd ) def test_default_order(): actual = ( dp(pd.DataFrame({"x": [1, 2], "y": [2, 1.5]})) .p9() .add_crossbar("x", "y", "y-1", "y+.5") .pd ) assert actual == "test_default_order" def test_passing_in_lists(): actual = dp(pd.DataFrame({"y": [2, 1.5]})).p9().add_point(["a", "b"], "y").pd assert actual == "test_passing_in_lists" def test_passing_in_lists_unmapped(): actual = ( dp(pd.DataFrame({"x": ["a", "b"], "y": [2, 1.5]})) .p9() .add_point(x="x", y="y") .add_point(_x=[0.5, 0.8], y="y") .pd ) assert actual == "test_unmapped_list" def test_passing_in_scalar(): actual = dp(pd.DataFrame({"y": [2, 1.5]})).p9().add_point('"a"', "y").pd assert actual == "test_passing_in_scalar" def test_expression_vs_column(): actual = ( dp(pd.DataFrame({"x": [1, 2], "x*5": [0, 1], "y": [2, 1.5]})) .p9() .add_point("x*5", "y") .pd ) assert actual == "test_expression_vs_column" def test_expression_outside_variables(): def times_two(x): return x * 2 actual = ( dp(
pd.DataFrame({"x": [1, 2], "y": [2, 1.5]})
pandas.DataFrame
import pandas as pd import numpy as np import os import sys import tensorflow as tf import json import joblib import time from tensorflow import keras from keras import optimizers from datetime import datetime,timedelta from sklearn.preprocessing import MinMaxScaler from datetime import datetime pd.set_option('display.max_columns', None) #--------------------------------------- # variables #--------------------------------------- start = time.time() DATASET_NUM = 7 MODEL_NUM = 10 # path PATH_BASE = './' PATH_MODEL = PATH_BASE + '/model/' PATH_RESULT = PATH_BASE + '/result/' # power capacity power_nm_list = ['onm1_h','onm2_h','onm3_h','onm4_h'] capacity_list = [89.7, 96.6, 90, 46.2] RSRS_ID = 0 POWER_NM = power_nm_list[RSRS_ID] CAPACITY = capacity_list[RSRS_ID] print("POWER_NM:{}, CAPACITY:{}".format(POWER_NM,CAPACITY)) # timesteps SHIFT_DAYS = 7 PRED_STEPS = 24 dataX_STEPS = SHIFT_DAYS*PRED_STEPS #--------------------------------------- # functions #--------------------------------------- # 이상치 nan 처리 def power_anomal(x) : if x > CAPACITY : return np.nan return x def sensor_anomal(x) : if x < -900 : return np.nan return x # load sol omn def load_power(POWER_NM): df_power = pd.read_csv(PATH_BASE + '/df_power.csv',index_col=0) df_power['POWER']=df_power['POWER'].apply(power_anomal).apply(lambda x:x) df_power.sort_values(by=['DATE'], axis=0) df_power = df_power.set_index(pd.DatetimeIndex(df_power['DATE'])) df_power.drop(['_id','DATE'], axis=1, inplace=True) df_power = df_power.interpolate(method='linear',limit_direction='forward') return df_power # load sensor def load_sensor(): df_sensor= pd.read_csv(PATH_BASE + '/df_sensor.csv',index_col=0) df_sensor.sort_values(by=['DATE'], axis=0) df_sensor = df_sensor.set_index(pd.DatetimeIndex(df_sensor['DATE'])) df_sensor.drop(['_id','DATE'], axis=1, inplace=True) df_sensor['uv']=df_sensor['uv'].apply(sensor_anomal).apply(lambda x:x) df_sensor['solarradiation']=df_sensor['solarradiation'].apply(sensor_anomal).apply(lambda x:x) df_sensor['humidity']=df_sensor['humidity'].apply(sensor_anomal).apply(lambda x:x) df_sensor['windspeed']=df_sensor['windspeed'].apply(sensor_anomal).apply(lambda x:x) df_sensor['windgust']=df_sensor['windgust'].apply(sensor_anomal).apply(lambda x:x) df_sensor['temp']=df_sensor['temp'].apply(sensor_anomal).apply(lambda x:x) df_sensor['winddir']=df_sensor['winddir'].apply(sensor_anomal).apply(lambda x:x) df_sensor = df_sensor.interpolate(method='linear',limit_direction='forward') return df_sensor def get_df(df_power, df_sensor, POWER_NM): # load the scaler power_scaler = joblib.load(open('{}scaler/power_{}.pkl'.format(PATH_MODEL,POWER_NM[:-2]), 'rb')) weather_scaler = joblib.load(open('{}scaler/weather.pkl'.format(PATH_MODEL), 'rb')) # power scaledpower = power_scaler.fit_transform(df_power.values) scaledpower_df = pd.DataFrame(scaledpower, columns=df_power.columns, index=list(df_power.index.values)) # weather df_weather = df_sensor.copy() df_weather.drop(['dailyrainin','weeklyrainin','monthlyrainin','yearlyrainin'], axis=1, inplace=True) scaledweather = weather_scaler.fit_transform(df_weather.values) scaledweather_df = pd.DataFrame(scaledweather, columns=df_weather.columns, index=list(df_weather.index.values)) # JOIN (index merge) df = pd.merge(scaledpower_df,scaledweather_df, how='outer',left_index=True, right_index=True) df = df[[ 'POWER', 'solarradiation', 'humidity', 'windspeed', 'windgust', 'temp', 'winddir' ]] df = df.interpolate(method='linear') return power_scaler, df #--------------------------------------- # MODEL_TYPE iteration #--------------------------------------- total_accRate = 0 total_accRate_list = [] result_pred = pd.DataFrame() result_acc = pd.DataFrame() result_target= pd.DataFrame() for m in range(0,MODEL_NUM): # for m in range(0,1): model = tf.keras.models.load_model(PATH_MODEL+'model'+str(m)+'.h5') print("\n\n MODEL", m, "-"*100) accRate_sum = 0 #--------------------------------------- # dataset iteration #--------------------------------------- for T in range(0,DATASET_NUM): PRED_DAY = datetime(2021, 8, 25, 0,0,0)+timedelta(T) PRED_DAY = datetime(PRED_DAY.year, PRED_DAY.month, PRED_DAY.day, 0,0,0) X_START = PRED_DAY - timedelta(7) X_END = PRED_DAY - timedelta(1) X_END = datetime(X_END.year, X_END.month, X_END.day, 23,0,0) # print("X DATA: {} ~ {} => PRED: {} ".format(str(X_START)[:10], str(X_END)[:10], str(PRED_DAY)[:10])) # get data df_power = load_power(POWER_NM) df_sensor = load_sensor() power_scaler, df = get_df(df_power, df_sensor,POWER_NM) # create x,y arr x_arr = [] X_df = df.loc[str(X_START):str(X_END)] x_arr.append(X_df.iloc[:].values.tolist()) x_arr=np.asarray(x_arr).astype(np.float64) y_arr = [] Y_df = df.loc[str(PRED_DAY):str(PRED_DAY + timedelta(1))] y_arr.append(Y_df.iloc[:,[0]].values.tolist()) y_arr=np.asarray(y_arr).astype(np.float64) #--------------------------------------- # predict #--------------------------------------- n_dataset= x_arr.shape[0] predList=[] accRate=[] yList=[] pred = model.predict([x_arr]) pred[pred<0] = 0 pred = pred[:,:,0] pred = power_scaler.inverse_transform(pred) predList = pred.reshape(-1,1) #--------------------------------------- # calculate predictaccRate #--------------------------------------- if(str(PRED_DAY.strftime("%Y-%m-%d")) > str(df.index[-1])[:10]): for hr in range(0, PRED_STEPS): accRate.append(0) else: y = power_scaler.inverse_transform(y_arr[:,:,0]) yList = y.reshape(-1,1) for hr in range(0, PRED_STEPS): pred = predList[hr] target = yList[hr] difference = np.abs(target-pred) accRate.append(100-np.round(difference/CAPACITY*100, 2)) accRate_df = pd.DataFrame(np.array(accRate).reshape(1,-1)) accRate_df.insert(0,'PRED_DATE',PRED_DAY, allow_duplicates=False) accRate_df.insert(0,'MODEL',m, allow_duplicates=False) pred_df = pd.DataFrame(np.array(predList).reshape(1,-1)) pred_df.insert(0,'PRED_DATE',PRED_DAY, allow_duplicates=False) pred_df.insert(0,'MODEL',m, allow_duplicates=False) y_df = pd.DataFrame(np.array(yList).reshape(1,-1)) y_df.insert(0,'PRED_DATE',PRED_DAY, allow_duplicates=False) y_df.insert(0,'MODEL',m, allow_duplicates=False) mean_accRate = np.round(accRate_df.mean(axis = 1,numeric_only = True)[0],2) accRate_sum = accRate_sum + mean_accRate print("dataset {} : {}".format(T+1,mean_accRate)) if result_pred.shape[0] == 0: result_pred = pred_df result_acc = accRate_df result_target= y_df else: result_pred = pd.concat([result_pred, pred_df]) result_acc =
pd.concat([result_acc, accRate_df])
pandas.concat
# Copyright 2019 Toyota Research Institute. All rights reserved. """Unit tests related to batch validation""" import json import os import unittest import pandas as pd import numpy as np import boto3 from botocore.exceptions import NoRegionError, NoCredentialsError from monty.tempfile import ScratchDir from beep.validate import ValidatorBeep, validate_file_list_from_json, \ SimpleValidator from beep import S3_CACHE, VALIDATION_SCHEMA_DIR TEST_DIR = os.path.dirname(__file__) TEST_FILE_DIR = os.path.join(TEST_DIR, "test_files") @unittest.skip class ValidationArbinTest(unittest.TestCase): def setUp(self): # Setup events for testing try: kinesis = boto3.client('kinesis') response = kinesis.list_streams() self.events_mode = "test" except NoRegionError or NoCredentialsError as e: self.events_mode = "events_off" def test_validation_arbin_bad_index(self): path = "2017-05-09_test-TC-contact_CH33.csv" path = os.path.join(TEST_FILE_DIR, path) v = ValidatorBeep() v.allow_unknown = True df = pd.read_csv(path, index_col=0) self.assertFalse(v.validate_arbin_dataframe(df)) self.assertEqual(v.errors['cycle_index'][0][0][0], 'must be of number type') # Test bigger file path = "2017-08-14_8C-5per_3_47C_CH44.csv" path = os.path.join(TEST_FILE_DIR, path) v = ValidatorBeep() v.allow_unknown = True df = pd.read_csv(path, index_col=0) self.assertFalse(v.validate_arbin_dataframe(df)) self.assertEqual(v.errors['cycle_index'][0][0][0], 'must be of number type') def test_validation_arbin_bad_data(self): path = "2017-12-04_4_65C-69per_6C_CH29.csv" path = os.path.join(TEST_FILE_DIR, path) v = ValidatorBeep() v.allow_unknown = True df = pd.read_csv(path, index_col=0) self.assertTrue(v.validate_arbin_dataframe(df)) # Alter the schema on-the-fly to induce error v.schema['discharge_capacity']['schema']['max'] = 1.8 self.assertFalse(v.validate_arbin_dataframe(df, schema=v.schema)) self.assertEqual(v.errors['discharge_capacity'][0][11264][0], 'max value is 1.8') # Alter the schema on-the-fly to move on to the next errors v.schema['discharge_capacity']['schema']['max'] = 2.1 v.schema['step_time'] = {"schema": {"min": 0.0, "type": "float"}, "type": "list"} self.assertFalse(v.validate_arbin_dataframe(df, schema=None)) self.assertEqual(v.errors['step_time'][0][206][0], 'min value is 0.0') # Alter schema once more to recover validation del v.schema['step_time']['schema']['min'] self.assertTrue(v.validate_arbin_dataframe(df, schema=None)) def test_validation_many_from_paths(self): paths = ["2017-05-09_test-TC-contact_CH33.csv", "2017-12-04_4_65C-69per_6C_CH29.csv"] paths = [os.path.join(TEST_FILE_DIR, path) for path in paths] v = ValidatorBeep() temp_records = os.path.join(TEST_FILE_DIR, 'temp_records.json') with open(temp_records, 'w') as f: f.write("{}") results = v.validate_from_paths(paths, record_results=False) self.assertFalse(results["2017-05-09_test-TC-contact_CH33.csv"]["validated"]) errmsg = results["2017-05-09_test-TC-contact_CH33.csv"]["errors"]['cycle_index'][0][0][0] self.assertEqual(errmsg, 'must be of number type') self.assertTrue(results["2017-12-04_4_65C-69per_6C_CH29.csv"]["validated"]) v.validate_from_paths(paths, record_results=True, record_path=temp_records) with open(temp_records, 'r') as f: results_form_rec = json.load(f) self.assertFalse(results_form_rec["2017-05-09_test-TC-contact_CH33.csv"]["validated"]) results = v.validate_from_paths(paths, record_results=True, skip_existing=True, record_path=temp_records) self.assertEqual(results, {}) @unittest.skip def test_bad_file(self): paths = ["2017-08-14_8C-5per_3_47C_CH44.csv"] paths = [os.path.join(TEST_FILE_DIR, path) for path in paths] v = ValidatorBeep() results = v.validate_from_paths(paths, record_results=False) def test_validation_from_json(self): with ScratchDir('.'): os.environ['BEEP_ROOT'] = os.getcwd() os.mkdir("data-share") os.mkdir(os.path.join("data-share", "validation")) paths = ["2017-05-09_test-TC-contact_CH33.csv", "2017-12-04_4_65C-69per_6C_CH29.csv"] paths = [os.path.join(TEST_FILE_DIR, path) for path in paths] # Create dummy json obj json_obj = { "mode": self.events_mode, "file_list": paths, 'run_list': list(range(len(paths))) } json_string = json.dumps(json_obj) json_output = validate_file_list_from_json(json_string) loaded = json.loads(json_output) self.assertEqual(loaded['validity'][0], 'invalid') self.assertEqual(loaded['validity'][1], 'valid') class ValidationMaccorTest(unittest.TestCase): # To further develop as Maccor data / schema becomes available def setUp(self): # Setup events for testing try: kinesis = boto3.client('kinesis') response = kinesis.list_streams() self.events_mode = "test" except NoRegionError or NoCredentialsError as e: self.events_mode = "events_off" def test_validation_maccor(self): path = "xTESLADIAG_000019_CH70.070" path = os.path.join(TEST_FILE_DIR, path) v = SimpleValidator(schema_filename=os.path.join(VALIDATION_SCHEMA_DIR, "schema-maccor-2170.yaml")) v.allow_unknown = True header =
pd.read_csv(path, delimiter='\t', nrows=0)
pandas.read_csv
import tensorflow as tf from tensorflow.keras.datasets import cifar10 import os import pandas as pd import matplotlib.pyplot as plt import matplotlib.pylab as plt import numpy as np import time import pathlib import timeit import seaborn as sns (train_images, train_labels), (test_images, test_labels) = cifar10.load_data() # Normalize pixel values to be between 0 and 1 test_images = test_images / 255.0 ## No_quant testcode = ''' def test(): model = keras.models.load_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/greedy_approch_Cifar10_ResNet50') model.predict(test_images[0]) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("NQ_greedy_approch_Cifar10_ResNet50.csv") print("Latency saved...") testcode = ''' def test(): model = keras.models.load_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/Bayesian_Search_Cifar10_ResNet50') model.predict(test_images[0]) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("NQ_Bayesian_Search_Cifar10_ResNet50.csv") print("Latency saved...") testcode = ''' def test(): model = keras.models.load_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/Random_Search_Cifar10_ResNet50') model.predict(test_images[0]) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("NQ_Random_Search_Cifar10_ResNet50.csv") print("Latency saved...") #Q1 converter = tf.lite.TFLiteConverter.from_saved_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/greedy_approch_Cifar10_ResNet50') converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_quant_model = converter.convert() tflite_models_dir = pathlib.Path("Quant_Models") tflite_models_dir.mkdir(exist_ok=True, parents=True) tflite_model_file = tflite_models_dir/"Q1_greedy_approch_Cifar10_ResNet50.tflite" tflite_model_file.write_bytes(tflite_quant_model) interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter.allocate_tensors() interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter_quant.allocate_tensors() testcode = ''' def test(): test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32) input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] interpreter.set_tensor(input_index, test_image) interpreter.invoke() predictions = interpreter.get_tensor(output_index) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("Q1_greedy_approch_Cifar10_ResNet50.csv") print("Latency saved...") converter = tf.lite.TFLiteConverter.from_saved_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/Bayesian_Search_Cifar10_ResNet50') converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_quant_model = converter.convert() tflite_models_dir = pathlib.Path("Quant_Models") tflite_models_dir.mkdir(exist_ok=True, parents=True) tflite_model_file = tflite_models_dir/"Q1_Bayesian_Search_Cifar10_ResNet50.tflite" tflite_model_file.write_bytes(tflite_quant_model) interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter.allocate_tensors() interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter_quant.allocate_tensors() testcode = ''' def test(): test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32) input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] interpreter.set_tensor(input_index, test_image) interpreter.invoke() predictions = interpreter.get_tensor(output_index) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("Q1_Bayesian_Search_Cifar10_ResNet50.csv") print("Latency saved...") converter = tf.lite.TFLiteConverter.from_saved_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/Random_Search_Cifar10_ResNet50') converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_quant_model = converter.convert() tflite_models_dir = pathlib.Path("Quant_Models") tflite_models_dir.mkdir(exist_ok=True, parents=True) tflite_model_file = tflite_models_dir/"Q1_Random_Search_Cifar10_ResNet50.tflite" tflite_model_file.write_bytes(tflite_quant_model) interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter.allocate_tensors() interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter_quant.allocate_tensors() testcode = ''' def test(): test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32) input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] interpreter.set_tensor(input_index, test_image) interpreter.invoke() predictions = interpreter.get_tensor(output_index) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("Q1_Random_Search_Cifar10_ResNet50.csv") print("Latency saved...") #Q2 converter = tf.lite.TFLiteConverter.from_saved_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/greedy_approch_Cifar10_ResNet50') converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_quant_model = converter.convert() tflite_models_dir = pathlib.Path("Quant_Models") tflite_models_dir.mkdir(exist_ok=True, parents=True) tflite_model_file = tflite_models_dir/"Q2_greedy_approch_Cifar10_ResNet50.tflite" tflite_model_file.write_bytes(tflite_quant_model) interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter.allocate_tensors() interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter_quant.allocate_tensors() testcode = ''' def test(): test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32) input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] interpreter.set_tensor(input_index, test_image) interpreter.invoke() predictions = interpreter.get_tensor(output_index) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time) pd.DataFrame(time).to_csv("Q2_greedy_approch_Cifar10_ResNet50.csv") print("Latency saved...") converter = tf.lite.TFLiteConverter.from_saved_model('/home/anjir29/Desktop/greedyhpo-main/Main_test_case/CIFAR10/Bayesian_Search_Cifar10_ResNet50') converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_quant_model = converter.convert() tflite_models_dir = pathlib.Path("Quant_Models") tflite_models_dir.mkdir(exist_ok=True, parents=True) tflite_model_file = tflite_models_dir/"Q2_Bayesian_Search_Cifar10_ResNet50.tflite" tflite_model_file.write_bytes(tflite_quant_model) interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter.allocate_tensors() interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_file)) interpreter_quant.allocate_tensors() testcode = ''' def test(): test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32) input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] interpreter.set_tensor(input_index, test_image) interpreter.invoke() predictions = interpreter.get_tensor(output_index) ''' time = timeit.repeat(stmt=testcode, repeat=100) #time = np.array(time) time = np.reshape(time, (100, 1)) #print(time)
pd.DataFrame(time)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import division, print_function from six import StringIO import os.path as op import numpy as np import pandas as pd import cooler import pytest from cooler.create import ( sanitize_records, sanitize_pixels, validate_pixels, aggregate_records, BadInputError, ) testdir = op.dirname(op.realpath(__file__)) datadir = op.join(testdir, "data") columns = [ "chrom1", "pos1", "strand1", "chrom2", "pos2", "strand2", "name", "pair_type", "triu", ] valid_data = """chr1\t1\t+\tchr2\t100\t-\t.\tLL\t1 chr2\t99\t+\tchr1\t13\t-\t.\tLL\t0 chr2\t13\t+\tchr2\t60\t-\t.\tLL\t1 chr1\t200\t+\tchr2\t50\t-\t.\tLL\t1 chr3\t11\t+\tchr3\t40\t-\t.\tLL\t1 chr1\t234\t+\tchr3\t30\t-\t.\tLL\t1 chr3\t3\t+\tchr2\t20\t-\t.\tLL\t0 chr2\t23\t+\tchr3\t11\t-\t.\tLL\t1 chr1\t123\t+\tchr1\t200\t-\t.\tLL\t1 """ nuisance_chroms = """chr1\t222\t+\tchr9\t200\t-\t.\tLL\t1 chr9\t222\t+\tchr9\t200\t-\t.\tLL\t1""" oob_lower = """chr1\t-1\t+\tchr1\t10\t+\t.\tLL\t1""" oob_upper = """chr1\t123\t+\tchr1\t301\t+\t.\tLL\t1""" binsize = 10 chromsizes =
pd.Series(index=["chr1", "chr2", "chr3"], data=[300, 300, 300])
pandas.Series
# %% import os import pandas as pd import numpy as np import threading import time base_dir = os.getcwd() # %% # 初始化表头 header = ['user', 'n_op', 'n_trans', 'op_type_0', 'op_type_1', 'op_type_2', 'op_type_3', 'op_type_4', 'op_type_5', 'op_type_6', 'op_type_7', 'op_type_8', 'op_type_9', 'op_type_perc', 'op_type_std', 'op_type_n', 'op_mode_0', 'op_mode_1', 'op_mode_2', 'op_mode_3', 'op_mode_4', 'op_mode_5', 'op_mode_6', 'op_mode_7', 'op_mode_8', 'op_mode_9', 'op_mode_perc', 'op_mode_std', 'op_mode_n', 'op_device_perc', 'op_device_std', 'op_device_nan_perc', 'op_device_n', 'op_ip_perc', 'op_ip_std', 'op_ip_nan_perc', 'op_ip_n', 'op_net_type_0', 'op_net_type_1', 'op_net_type_2', 'op_net_type_3', 'op_net_type_perc', 'op_net_type_std', 'op_net_type_nan_perc', 'op_channel_0', 'op_channel_1', 'op_channel_2', 'op_channel_3', 'op_channel_4', 'op_channel_perc', 'op_channel_std', 'op_channel_n', 'op_ip_3_perc', 'op_ip_3_std', 'op_ip_3_nan_perc', 'op_ip_3_n', 'op_ip_3_ch_freq', 'op_ip_48h_n', 'op_device_48h_n', 'op_48h_n', 'trans_platform_0', 'trans_platform_1', 'trans_platform_2', 'trans_platform_3', 'trans_platform_4', 'trans_platform_5', 'trans_platform_perc', 'trans_platform_std', 'trans_platform_n', 'trans_tunnel_in_0', 'trans_tunnel_in_1', 'trans_tunnel_in_2', 'trans_tunnel_in_3', 'trans_tunnel_in_4', 'trans_tunnel_in_5', 'trans_tunnel_in_perc', 'trans_tunnel_in_std', 'trans_tunnel_in_n', 'trans_tunnel_in_nan_perc', 'trans_tunnel_out_0', 'trans_tunnel_out_1', 'trans_tunnel_out_2', 'trans_tunnel_out_3', 'trans_tunnel_out_perc', 'trans_tunnel_out_std', 'trans_tunnel_n', 'trans_amount_max', 'trans_amount_avg', 'trans_amount_std', 'trans_type1_0', 'trans_type1_1', 'trans_type1_2', 'trans_type1_3', 'trans_type1_4', 'trans_type1_perc', 'trans_type1_std', 'trans_ip_perc', 'trans_ip_std', 'trans_ip_nan_perc', 'trans_ip_n', 'trans_type2_0', 'trans_type2_1', 'trans_type2_2', 'trans_type2_3', 'trans_type2_4', 'trans_type2_perc', 'trans_type2_std', 'trans_ip_3_perc', 'trans_ip_3_std', 'trans_ip_3_nan_perc', 'trans_ip_3_n', 'trans_ip_3_ch_freq', 'trans_amount_48h_n', 'trans_48h_n', 'trans_platform_48h_n', 'trans_ip_48h_n'] print(len(header)) # %% feature_train = pd.DataFrame(columns=header) feature_test_a = pd.DataFrame(columns=header) feature_test_b = pd.DataFrame(columns=header) train_base_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_base.csv') train_op_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_op.csv') train_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/trainset/train_trans.csv') test_a_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_base.csv') test_a_op_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_op.csv') test_a_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_a_trans.csv') test_b_base_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_base.csv') test_b_op_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_op.csv') test_b_trans_df = pd.read_csv(base_dir + '/dataset/dataset2/testset/test_b_trans.csv') n_train = len(train_base_df) n_test_a = len(test_a_base_df) n_test_b = len(test_b_base_df) # %% # load encoder op_type = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_type.csv') mp_op_type = {} for col in op_type.columns.values: mp_op_type[col] = op_type[col].values op_mode = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_mode.csv') mp_op_mode = {} for col in op_mode.columns.values: mp_op_mode[col] = op_mode[col].values net_type = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_net_type.csv') mp_net_type = {} for col in net_type.columns.values: mp_net_type[col] = net_type[col].values channel = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_op_channel.csv') mp_channel = {} for col in channel.columns.values: mp_channel[col] = channel[col].values platform = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_platform.csv') mp_platform = {} for col in platform.columns.values: mp_platform[col] = platform[col].values tunnel_in = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_tunnel_in.csv') mp_tunnel_in = {} for col in tunnel_in.columns.values: mp_tunnel_in[col] = tunnel_in[col].values tunnel_out = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_tunnel_out.csv') mp_tunnel_out = {} for col in tunnel_out.columns.values: mp_tunnel_out[col] = tunnel_out[col].values type1 = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_type1.csv') mp_type1 = {} for col in type1.columns.values: mp_type1[col] = type1[col].values type2 = pd.read_csv(base_dir + '/dataset/dataset2/encoders/enc_trans_type2.csv') mp_type2 = {} for col in type2.columns.values: mp_type2[col] = type2[col].values # %% def process(n, isTrain=True, isA=False): for i in range(n): if i % 1000 == 0: print("train - " if isTrain else "test_a - " if isA else "test_b - ", end='') print(i) if isTrain: cur_user = train_base_df['user'].loc[i] tr_trans_user = train_trans_df[train_trans_df['user'] == cur_user] # 该用户的trans记录 tr_op_user = train_op_df[train_op_df['user'] == cur_user] # 该用户的op记录 elif isA: cur_user = test_a_base_df['user'].loc[i] tr_trans_user = test_a_trans_df[test_a_trans_df['user'] == cur_user] # 该用户的trans记录 tr_op_user = test_a_op_df[test_a_op_df['user'] == cur_user] # 该用户的op记录 else: cur_user = test_b_base_df['user'].loc[i] tr_trans_user = test_b_trans_df[test_b_trans_df['user'] == cur_user] # 该用户的trans记录 tr_op_user = test_b_op_df[test_b_op_df['user'] == cur_user] # 该用户的op记录 n_tr_trans_user = len(tr_trans_user) # 该用户的trans记录条数 n_tr_op_user = len(tr_op_user) # 该用户的op记录条数 line = [cur_user, n_tr_op_user, n_tr_trans_user] # 一行,即当前用户的所有二次特征 if n_tr_op_user > 0: ### op_type mode_op_type = tr_op_user['op_type'].mode()[0] code = mp_op_type[mode_op_type] line.extend(code) line.append(sum(tr_op_user['op_type'].apply(lambda x: 1 if x == mode_op_type else 0)) / n_tr_op_user) s = tr_op_user['op_type'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### op_mode mode_op_mode = tr_op_user['op_mode'].mode()[0] code = mp_op_mode[mode_op_mode] line.extend(code) line.append(sum(tr_op_user['op_mode'].apply(lambda x: 1 if x == mode_op_mode else 0)) / n_tr_op_user) s = tr_op_user['op_mode'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### op_device mode_op_device = tr_op_user['op_device'].mode()[0] line.append(sum(tr_op_user['op_device'].apply(lambda x: 1 if x == mode_op_device else 0)) / n_tr_op_user) s = tr_op_user['op_device'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['op_device'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['op_device'].apply(lambda x: 1 if x == 'op_device_nan' else 0)) / n_tr_op_user) line.append(len(s)) ### op_ip mode_op_ip = tr_op_user['ip'].mode()[0] line.append(sum(tr_op_user['ip'].apply(lambda x: 1 if x == mode_op_ip else 0)) / n_tr_op_user) s = tr_op_user['ip'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['ip'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['ip'].apply(lambda x: 1 if x == 'ip_nan' else 0)) / n_tr_op_user) line.append(len(s)) ### op_net_type mode_op_net_type = tr_op_user['net_type'].mode()[0] code = mp_net_type[mode_op_net_type] line.extend(code) line.append(sum(tr_op_user['net_type'].apply(lambda x: 1 if x == mode_op_net_type else 0)) / n_tr_op_user) s = tr_op_user['net_type'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['net_type'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['net_type'].apply(lambda x: 1 if x == 'net_type_nan' else 0)) / n_tr_op_user) ### channel mode_op_channel = tr_op_user['channel'].mode()[0] code = mp_channel[mode_op_channel] line.extend(code) line.append(sum(tr_op_user['channel'].apply(lambda x: 1 if x == mode_op_channel else 0)) / n_tr_op_user) s = tr_op_user['channel'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### ip_3 mode_op_ip_3 = tr_op_user['ip_3'].mode()[0] line.append(sum(tr_op_user['ip_3'].apply(lambda x: 1 if x == mode_op_ip_3 else 0)) / n_tr_op_user) s = tr_op_user['ip_3'].value_counts() line.append(np.std(s.values)) # line.append(tr_op_user['ip_3'].isnull().sum() / n_tr_op_user) line.append(sum(tr_op_user['ip_3'].apply(lambda x: 1 if x == 'ip_3_nan' else 0)) / n_tr_op_user) line.append(len(s)) ### 对tm_diff排序 tr_op_user.sort_values('tm_diff', inplace=True) cnt = 0 l = tr_op_user['ip_3'].values pre = l[0] for j in range(1, n_tr_op_user): if l[j] != pre: pre = l[j] cnt += 1 line.append(cnt) ### 48h最高ip种类数量、最高的op_device种类数量、最高的op记录次数 tr_op_tm_max = tr_op_user['tm_diff'].values.max() tr_op_tm_min = tr_op_user['tm_diff'].values.min() gap = 48 * 3600 start = tr_op_tm_min end = start + gap max_48h_ip_n = 0 max_48h_op_device_n = 0 max_48h_op_n = 0 while start <= tr_op_tm_max: gap_df = tr_op_user[(start <= tr_op_user['tm_diff']) & (tr_op_user['tm_diff'] < end)] max_48h_ip_n = max(max_48h_ip_n, gap_df['ip'].nunique()) max_48h_op_device_n = max(max_48h_op_device_n, gap_df['op_device'].nunique()) max_48h_op_n = max(max_48h_op_n, len(gap_df)) start = end end += gap line.extend([max_48h_ip_n, max_48h_op_device_n, max_48h_op_n]) else: line.extend([-1] * 57) if n_tr_trans_user > 0: ### platform mode_trans_platform = tr_trans_user['platform'].mode()[0] code = mp_platform[mode_trans_platform] line.extend(code) line.append( sum(tr_trans_user['platform'].apply(lambda x: 1 if x == mode_trans_platform else 0)) / n_tr_trans_user) s = tr_trans_user['platform'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### tunnel_in mode_trans_tunnel_in = tr_trans_user['tunnel_in'].mode()[0] code = mp_tunnel_in[mode_trans_tunnel_in] line.extend(code) line.append(sum( tr_trans_user['tunnel_in'].apply(lambda x: 1 if x == mode_trans_tunnel_in else 0)) / n_tr_trans_user) s = tr_trans_user['tunnel_in'].value_counts() line.append(np.std(s.values)) line.append(len(s)) # line.append(tr_trans_user['tunnel_in'].isnull().sum() / n_tr_trans_user) line.append( sum(tr_trans_user['tunnel_in'].apply(lambda x: 1 if x == 'tunnel_in_nan' else 0)) / n_tr_trans_user) ### tunnel_out mode_trans_tunnel_out = tr_trans_user['tunnel_out'].mode()[0] code = mp_tunnel_out[mode_trans_tunnel_out] line.extend(code) line.append(sum( tr_trans_user['tunnel_out'].apply(lambda x: 1 if x == mode_trans_tunnel_out else 0)) / n_tr_trans_user) s = tr_trans_user['tunnel_out'].value_counts() line.append(np.std(s.values)) line.append(len(s)) ### amount s = tr_trans_user['amount'] line.append(s.values.max()) line.append(s.values.mean()) line.append(s.values.std()) ### type1 mode_trans_type1 = tr_trans_user['type1'].mode()[0] code = mp_type1[mode_trans_type1] line.extend(code) line.append( sum(tr_trans_user['type1'].apply(lambda x: 1 if x == mode_trans_type1 else 0)) / n_tr_trans_user) s = tr_trans_user['type1'].value_counts() line.append(np.std(s.values)) ### trans_ip mode_trans_ip = tr_trans_user['ip'].mode()[0] line.append(sum(tr_trans_user['ip'].apply(lambda x: 1 if x == mode_trans_ip else 0)) / n_tr_trans_user) s = tr_trans_user['ip'].value_counts() line.append(np.std(s.values)) # line.append(tr_trans_user['ip'].isnull().sum() / n_tr_trans_user) line.append(sum(tr_trans_user['ip'].apply(lambda x: 1 if x == 'ip_nan' else 0)) / n_tr_trans_user) line.append(len(s)) ### type2 mode_trans_type2 = tr_trans_user['type2'].mode()[0] code = mp_type2[mode_trans_type2] line.extend(code) line.append( sum(tr_trans_user['type2'].apply(lambda x: 1 if x == mode_trans_type2 else 0)) / n_tr_trans_user) s = tr_trans_user['type2'].value_counts() line.append(np.std(s.values)) ### trans_ip_3 mode_trans_ip_3 = tr_trans_user['ip_3'].mode()[0] line.append(sum(tr_trans_user['ip_3'].apply(lambda x: 1 if x == mode_trans_ip_3 else 0)) / n_tr_trans_user) s = tr_trans_user['ip'].value_counts() line.append(np.std(s.values)) line.append(sum(tr_trans_user['ip_3'].apply(lambda x: 1 if x == 'ip_3_nan' else 0)) / n_tr_trans_user) line.append(len(s)) ### 对tm_diff排序 tr_trans_user.sort_values('tm_diff', inplace=True) cnt = 0 l = tr_trans_user['ip_3'].values pre = l[0] for j in range(1, n_tr_trans_user): if l[j] != pre: pre = l[j] cnt += 1 line.append(cnt) ### 48h最高amount总量、最高的trans数量、最高的platform种类数量、最高的ip种类数量 tr_trans_tm_max = tr_trans_user['tm_diff'].values.max() tr_trans_tm_min = tr_trans_user['tm_diff'].values.min() gap = 48 * 3600 start = tr_trans_tm_min end = start + gap max_48h_sum_amount = 0 max_48h_trans_n = 0 max_48h_platform_n = 0 max_48h_ip_n = 0 while start <= tr_trans_tm_max: gap_df = tr_trans_user[(start <= tr_trans_user['tm_diff']) & (tr_trans_user['tm_diff'] < end)] max_48h_sum_amount = max(max_48h_sum_amount, gap_df['amount'].values.sum()) max_48h_trans_n = max(max_48h_trans_n, len(gap_df)) max_48h_platform_n = max(max_48h_platform_n, gap_df['platform'].nunique()) max_48h_ip_n = max(max_48h_ip_n, gap_df['ip'].nunique()) start = end end += gap line.extend([max_48h_sum_amount, max_48h_trans_n, max_48h_platform_n, max_48h_ip_n]) else: line.extend([-1] * 56) # print(len(line)) ### 填入feature矩阵 if isTrain: feature_train.loc[len(feature_train)] = line elif isA: feature_test_a.loc[len(feature_test_a)] = line else: feature_test_b.loc[len(feature_test_b)] = line # 存 if isTrain: feature_train.to_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv', index=False) elif isA: feature_test_a.to_csv(base_dir + '/dataset/dataset2/testset/feature_test_a.csv', index=False) else: feature_test_b.to_csv(base_dir + '/dataset/dataset2/testset/feature_test_b.csv', index=False) # %% process(n_train, isTrain=True) process(n_test_a, isTrain=False, isA=True) process(n_test_b, isTrain=False, isA=False) # %% # 多线程 def process_threaded(n_train, n_test_a, n_test_b): def process1(): process(n_train, isTrain=True) def process2(): process(n_test_a, isTrain=False, isA=True) def process3(): process(n_test_b, isTrain=False, isA=False) t1 = threading.Thread(target=process1) t1.start() t2 = threading.Thread(target=process2) t2.start() t3 = threading.Thread(target=process3) t3.start() # %% process_threaded(n_train, n_test_a, n_test_b) # %% # 并入主矩阵 ### 以下l六行可以不跑 feature_train =
pd.read_csv(base_dir + '/dataset/dataset2/trainset/feature_train.csv')
pandas.read_csv
import sys import pandas as pd import numpy as np import math def topsis(): try : n = len(sys.argv) if n != 5: raise ValueError("Incorrect number of arguments.") if not sys.argv[1].lower().endswith('.csv') or not sys.argv[4].lower().endswith('.csv'): raise ValueError("File format of input and result file should be .csv") try: df = pd.read_csv(sys.argv[1]) except: print("Find not found.") quit() if(df.shape[1] <3): raise ValueError("Number of columns should be >= 3") if(len(sys.argv[2].split(',')) != len(sys.argv[3].split(','))): raise ValueError("Number of weights and number of impacts are unequal.") i=0 while i<len(sys.argv[3]): if sys.argv[3][i] not in ["+","-"]: raise ValueError("The impacts should be either '+'/'-'") i+=2 data=df.copy(deep=True) #Check for all numeric values li=[] for i in range(1,len(data.columns)): li.append(
pd.to_numeric(data.iloc[:,i], errors='coerce')
pandas.to_numeric
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from bs4 import BeautifulSoup from bs4.element import Comment import copy import logging class KeywordAnalysis(): # (chrome | firefox) BROWSER_SETTING = "chrome" driver = None targets_response = None keywords_counts_url1, keywords_counts_url2 = None, None log = None def __init__(self): super(KeywordAnalysis, self).__init__() # Parse Input self.input_keyword_string = input\ ("Please Enter Keywords to Search, split multiple keyword with semicolon (for Ex. Narendra Modi;one ): ") self.input_url_string = input("Please Enter the URLs, split 2 URLs with semicolon (with http/https):") self.target_urls = copy.deepcopy(str(self.input_url_string).split(";")) self.keywords_list = copy.deepcopy(str(self.input_keyword_string).split(";")) # Check Input if not len(self.target_urls) == 2: logging.error("Please make sure that you have exactly 2 urls in your url string") quit() else: print("=" * 30) print("This is URL1:") print(self.target_urls[0]) print("=" * 30) print("This is URL2:") print(self.target_urls[1]) print("=" * 30) if len(self.keywords_list) <= 0: logging.error("Please make sure that you have entered at least 1 keywords") else: print("Here are your keywords:") print("=" * 30) [print(keyword) for keyword in self.keywords_list] print("Input Verified, Begin Scraping") def run(self): # Start Scrapping self.driver = self.start_selenium() self.targets_response = self.scrape_sites() self.keywords_counts_url1, self.keywords_counts_url2 = self.result_analysis() self.log = self.result_to_pandas() self.plot_graphs() def start_selenium(self): chrome_options = Options() chrome_options.add_argument("--headless") if self.BROWSER_SETTING == "firefox": return webdriver.Firefox(executable_path=r'geckodriver.exe') elif self.BROWSER_SETTING == "chrome": return webdriver.Chrome(executable_path=r'chromedriver.exe', chrome_options=chrome_options) else: logging.error("Please check your BROWSER_SETTING variable") @staticmethod def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def scrape_sites(self): targets_response = [] for target in self.target_urls: self.driver.get(target) WebDriverWait(self.driver, 5) self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight*4);") self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight*4);") bs_obj = BeautifulSoup(self.driver.page_source, 'html.parser') texts = bs_obj.find_all(text=True) visible_texts = filter(KeywordAnalysis.tag_visible, texts) visible_texts_string = u" ".join(t.strip() for t in visible_texts) targets_response.append(copy.deepcopy(visible_texts_string)) self.driver.close() return targets_response def result_analysis(self): keywords_counts_url1 = [] for keyword in self.keywords_list: keywords_counts_url1.append(self.targets_response[0].count(keyword)) keywords_counts_url2 = [] for keyword in self.keywords_list: keywords_counts_url2.append(self.targets_response[1].count(keyword)) return keywords_counts_url1, keywords_counts_url2 def result_to_pandas(self): log_cols = ["Keywords", "Keyword Counts in URL1", "Keyword Counts in URL2"] log = pd.DataFrame(columns=log_cols) for index in range(0, len(self.keywords_list)): keyword = copy.deepcopy(self.keywords_list[index]) keyword_count_url1 = copy.deepcopy(self.keywords_counts_url1[index]) keyword_count_url2 = copy.deepcopy(self.keywords_counts_url2[index]) log_entry =
pd.DataFrame([[keyword, keyword_count_url1, keyword_count_url2]], columns=log_cols)
pandas.DataFrame
import numpy as np import pandas as pd INVALID_VALUE = -10 def get_price_features(sales_df, X_df): return _get_price_features(sales_df, X_df, 'item_price') def get_dollar_value_features(sales_df, X_df): sales_df['dollar_value'] = (sales_df['item_price'] * sales_df['item_cnt_day']).astype(np.float32) output_df = _get_price_features(sales_df, X_df, 'dollar_value') sales_df.drop('dollar_value', axis=1, inplace=True) return output_df def _get_price_features(sales_df, X_df, price_col): """ sales_df is monthly """ # use original sales data. msg = 'X_df has >1 recent months data. To speed up the process, we are just handling 1 month into the future case' assert X_df.date_block_num.max() <= sales_df.date_block_num.max() + 1, msg sales_df = sales_df[sales_df.item_cnt_day > 0].copy() sales_df.loc[sales_df[price_col] < 0, price_col] = 0 grp = sales_df.groupby(['item_id', 'date_block_num'])[price_col] # std for 1 entry should be 0. std for 0 entry should be -10 std = grp.std().fillna(0).unstack() std[sales_df.date_block_num.max() + 1] = 0 std = std.sort_index(axis=1).fillna(method='ffill', axis=1).shift(1, axis=1).fillna(INVALID_VALUE) std_col = 'std_{}'.format(price_col) std = std.stack().to_frame(std_col).reset_index() avg_price = grp.mean().unstack() avg_price[sales_df.date_block_num.max() + 1] = 0 avg_price = avg_price.sort_index(axis=1).fillna(method='ffill', axis=1).shift(1, axis=1).fillna(INVALID_VALUE) avg_col = 'avg_{}'.format(price_col) avg_price = avg_price.stack().to_frame(avg_col).reset_index() last_price_df = sales_df[['item_id', 'shop_id', 'date_block_num', price_col]].copy() last_price_df['date_block_num'] += 1 last_pr_col = 'last_{}'.format(price_col) last_price_df.rename({price_col: last_pr_col}, inplace=True, axis=1) # index X_df = X_df.reset_index() # item_id price X_df = pd.merge(X_df, avg_price, on=['item_id', 'date_block_num'], how='left') X_df[avg_col] = X_df[avg_col].fillna(INVALID_VALUE) # shop_id item_id coupled price X_df =
pd.merge(X_df, last_price_df, on=['item_id', 'shop_id', 'date_block_num'], how='left')
pandas.merge
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["PC1_cos2"] = loading_outlier_scale_df_covar["PC1"] ** 2 loading_outlier_scale_df_covar["PC2_cos2"] = loading_outlier_scale_df_covar["PC2"] ** 2 loading_outlier_scale_df_covar["PC1_contrib"] = \ (loading_outlier_scale_df_covar["PC1_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["PC2_contrib"] = \ (loading_outlier_scale_df_covar["PC2_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["contrib"] = loading_outlier_scale_df_covar["PC1_contrib"] + \ loading_outlier_scale_df_covar[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf_covar = pd.concat( [loading_outlier_scale_df_covar.iloc[:, 0:2], loading_outlier_scale_df_covar.iloc[:, 6]], axis=1) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_dataf_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff_covar = pd.concat( [zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='contrib') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0), ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["PC1_cos2"] = loading_scale_input_df["PC1"] ** 2 loading_scale_input_df["PC2_cos2"] = loading_scale_input_df["PC2"] ** 2 loading_scale_input_df["PC1_contrib"] = \ (loading_scale_input_df["PC1_cos2"] * 100) / (loading_scale_input_df["PC1_cos2"].sum(axis=0)) loading_scale_input_df["PC2_contrib"] = \ (loading_scale_input_df["PC2_cos2"] * 100) / (loading_scale_input_df["PC2_cos2"].sum(axis=0)) loading_scale_input_df["contrib"] = loading_scale_input_df["PC1_contrib"] + loading_scale_input_df[ "PC2_contrib"] loading_scale_input_dataf = pd.concat( [loading_scale_input_df.iloc[:, 0:2], loading_scale_input_df.iloc[:, 6]], axis=1) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_dataf, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["PC1_cos2"] = loading_scale_input_outlier_df["PC1"] ** 2 loading_scale_input_outlier_df["PC2_cos2"] = loading_scale_input_outlier_df["PC2"] ** 2 loading_scale_input_outlier_df["PC1_contrib"] = \ (loading_scale_input_outlier_df["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df["PC2_contrib"] = \ (loading_scale_input_outlier_df["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df["contrib"] = loading_scale_input_outlier_df["PC1_contrib"] + \ loading_scale_input_outlier_df[ "PC2_contrib"] loading_scale_input_outlier_dataf = pd.concat( [loading_scale_input_outlier_df.iloc[:, 0:2], loading_scale_input_outlier_df.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat( [loading_scale_input_outlier_dataf, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='contrib') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["PC1_cos2"] = loading_scale_input_df_covar["PC1"] ** 2 loading_scale_input_df_covar["PC2_cos2"] = loading_scale_input_df_covar["PC2"] ** 2 loading_scale_input_df_covar["PC1_contrib"] = \ (loading_scale_input_df_covar["PC1_cos2"] * 100) / (loading_scale_input_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_df_covar["PC2_contrib"] = \ (loading_scale_input_df_covar["PC2_cos2"] * 100) / (loading_scale_input_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_df_covar["contrib"] = loading_scale_input_df_covar["PC1_contrib"] + \ loading_scale_input_df_covar[ "PC2_contrib"] loading_scale_input_dataf_covar = pd.concat( [loading_scale_input_df_covar.iloc[:, 0:2], loading_scale_input_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_dataf_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["PC1_cos2"] = loading_scale_input_outlier_df_covar["PC1"] ** 2 loading_scale_input_outlier_df_covar["PC2_cos2"] = loading_scale_input_outlier_df_covar["PC2"] ** 2 loading_scale_input_outlier_df_covar["PC1_contrib"] = \ (loading_scale_input_outlier_df_covar["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["PC2_contrib"] = \ (loading_scale_input_outlier_df_covar["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["contrib"] = loading_scale_input_outlier_df_covar["PC1_contrib"] + \ loading_scale_input_outlier_df_covar[ "PC2_contrib"] loading_scale_input_outlier_dataf_covar = pd.concat( [loading_scale_input_outlier_df_covar.iloc[:, 0:2], loading_scale_input_outlier_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat( [loading_scale_input_outlier_dataf_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff_covar = pd.concat( [zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='contrib') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_sort_covar variance = Var_scale_input_outlier_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0) )) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('download-link', 'download'), [Input('all-custom-choice', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(all_custom, outlier, matrix_type): if all_custom == 'All' and outlier == 'Yes' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'Yes' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_data.csv' return download @app.callback(Output('download-link', 'href'), [Input('all-custom-choice', 'value'), Input('feature-input', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')]) def update_link(all_custom, input, outlier, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) # COVARIANCE MATRIX REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) # COVARIANCE MATRIX OUTLIERS REMOVED x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar csv_string = dat.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return csv_string @app.callback(Output('download-link-correlation', 'download'), [Input('eigenA-outlier', 'value'), ]) def update_filename(outlier): if outlier == 'Yes': download = 'feature_correlation_removed_outliers_data.csv' elif outlier == 'No': download = 'feature_correlation_data.csv' return download @app.callback([Output('data-table-correlation', 'data'), Output('data-table-correlation', 'columns'), Output('download-link-correlation', 'href')], [Input("eigenA-outlier", 'value'), Input('csv-data', 'data')], ) def update_output(outlier, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff_table = correlation_dff * correlation_dff r2_dff_table.insert(0, 'Features', features) data_frame = r2_dff_table if outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier_table = correlation_dff_outlier * correlation_dff_outlier r2_dff_outlier_table.insert(0, 'Features', features_outlier) data_frame = r2_dff_outlier_table data = data_frame.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame.columns] csv_string = data_frame.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-eigenA', 'download'), [Input("matrix-type-data-table", 'value'), Input('eigenA-outlier', 'value')]) def update_filename(matrix_type, outlier): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_data.csv' elif outlier == "No" and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_data.csv' return download @app.callback([Output('data-table-eigenA', 'data'), Output('data-table-eigenA', 'columns'), Output('download-link-eigenA', 'href')], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) Var_dfff = pd.concat([(Var_cumsum * 100)], axis=1) Eigen_Analysis = pd.concat([PC_df.T, Eigen_df.T, Var_df.T, Var_dfff.T], axis=0) Eigen_Analysis = Eigen_Analysis.rename(columns=Eigen_Analysis.iloc[0]) Eigen_Analysis = Eigen_Analysis.drop(Eigen_Analysis.index[0]) Eigen_Analysis.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) Var_dfff_outlier = pd.concat([Var_cumsum_outlier * 100], axis=1) Eigen_Analysis_Outlier = pd.concat( [PC_df_outlier.T, Eigen_df_outlier.T, Var_df_outlier.T, Var_dfff_outlier.T], axis=0) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.rename(columns=Eigen_Analysis_Outlier.iloc[0]) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.drop(Eigen_Analysis_Outlier.index[0]) Eigen_Analysis_Outlier.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_Outlier elif outlier == "No" and matrix_type == "Covariance": features1 = dff.columns features = list(features1) x_covar = dff.loc[:, features].values pca_covar = PCA(n_components=len(features)) principalComponents_covar = pca_covar.fit_transform(x_covar) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) dfff_covar = finalDf_covar loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar =
pd.concat([PC_df_covar, Eigen_df_covar], axis=1)
pandas.concat
import subprocess import datetime import os import pandas as pd from absl import logging def exec_bash(cmd: str): def gen_exec(cmd): popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) for path in gen_exec(cmd.split()): print(path, end="") def datetime_str(sep=""): str_format = f'{sep.join([f"%{t}" for t in "ymd"])}_{sep.join([f"%{t}" for t in "HMS"])}' return datetime.datetime.now().strftime(str_format) def res_to_csv(flags_dict, total_results, hash=None): file_path = f"{flags_dict['output_dir']}/{flags_dict['results_file']}" if hash is not None: file_path = "".join(file_path.split(".csv")[:-1]+["_",hash, ".csv"]) file_path = fix_path(file_path, False) logging.info(f"Saving results to {file_path}") res_dict = {k: [flags_dict[k]] for k in ["model", "seed", "dataset", "loss_fn", "ensemble_size", "train_epochs", "base_learning_rate", "mlp_hidden_dim", "divide_l2_loss", "random_init"]} for k, v in total_results.items(): res_dict[k] = [total_results[k]] res_df = pd.DataFrame.from_dict(res_dict) if os.path.exists(file_path): res_df = pd.concat([
pd.read_csv(file_path, index_col=0)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 9 09:58:22 2020 @author: lenakilian """ import tabula import pandas as pd import numpy as np use_for_io = ['1.1.1.1', '1.1.1.2', '1.1.1.3', '1.1.2', '1.1.3.1', '1.1.3.2', '1.1.4', '1.1.5', '1.1.6', '1.1.7', '1.1.8', '1.1.9', '1.1.10.1', '1.1.10.2', '1.1.10.3', '1.1.10.4', '1.1.11.1', '1.1.11.2', '1.1.11.3', '1.1.12.1', '1.1.12.2', '1.1.12.3', '1.1.13', '1.1.14', '1.1.15.1', '1.1.15.2', '1.1.16', '1.1.17', '1.1.18.1', '1.1.18.2', '1.1.19.1', '1.1.19.2', '1.1.19.3', '1.1.19.4', '1.1.19.5', '1.1.19.6', '1.1.20', '1.1.21', '1.1.22', '1.1.23.1', '1.1.23.2', '1.1.23.3', '1.1.23.4', '1.1.24', '1.1.25', '1.1.26', '1.1.27', '1.1.28.1', '1.1.28.2', '1.1.29', '1.1.30', '1.1.31', '1.1.32', '1.1.33.1', '1.1.33.2', '1.1.33.3', '1.2.1', '1.2.2', '1.2.3', '1.2.4', '1.2.5', '1.2.6', '2.1.1', '2.1.2.1', '2.1.2.2', '2.1.2.3', '2.1.3.1', '2.1.3.2', '2.1.4', '2.2.1', '2.2.2.1', '2.2.2.2', '3.1.1', '3.1.2', '3.1.3', '3.1.4', '3.1.5', '3.1.6', '3.1.7', '3.1.8', '3.1.9.1', '3.1.9.2', '3.1.9.3', '3.1.9.4', '3.1.10', '3.1.11.1', '3.1.11.2', '3.2.1', '3.2.2', '3.2.3', '3.2.4', '4.1.1', '4.1.2', '4.2.1', '4.2.2', '4.2.3', '4.2.4', '4.3.1', '4.3.2', '4.3.3', '4.4.1', '4.4.2', '4.4.3.1', '4.4.3.2', '4.4.3.3', '5.1.1.1', '5.1.1.2', '5.1.1.3', '5.1.2.1', '5.1.2.2', '5.2.1', '5.2.2', '5.3.1', '5.3.2', '5.3.3', '5.3.4', '5.3.5', '5.3.6', '5.3.7', '5.3.8', '5.3.9', '5.4.1', '5.4.2', '5.4.3', '5.4.4', '5.5.1', '5.5.2', '5.5.3', '5.5.4', '5.5.5', '5.6.1.1', '5.6.1.2', '5.6.2.1', '5.6.2.2', '5.6.2.3', '5.6.2.4', '5.6.3.1', '5.6.3.2', '5.6.3.3', '6.1.1.1', '6.1.1.2', '6.1.1.3', '6.1.1.4', '6.1.2.1', '6.1.2.2', '6.2.1.1', '6.2.1.2', '6.2.1.3', '6.2.2', '7.1.1.1', '7.1.1.2', '7.1.2.1', '7.1.2.2', '7.1.3.1', '7.1.3.2', '7.1.3.3', '7.2.1.1', '7.2.1.2', '7.2.1.3', '7.2.1.4', '7.2.2.1', '7.2.2.2', '7.2.2.3', '7.2.3.1', '7.2.3.2', '7.2.4.1', '7.2.4.2', '7.2.4.3', '7.2.4.4', '7.2.4.5', '7.3.1.1', '7.3.1.2', '7.3.2.1', '7.3.2.2', '7.3.3.1', '7.3.3.2', '7.3.4.1', '7.3.4.2', '7.3.4.3', '7.3.4.4', '7.3.4.5', '7.3.4.6', '7.3.4.7', '7.3.4.8', '8.1', '8.2.1', '8.2.2', '8.2.3', '8.3.1', '8.3.2', '8.3.3', '8.3.4', '8.4', '9.1.1.1', '9.1.1.2', '9.1.2.1', '9.1.2.2', '9.1.2.3', '9.1.2.4', '9.1.2.5', '9.1.2.6', '9.1.2.7', '9.1.2.8', '9.1.2.9', '9.1.3.1', '9.1.3.2', '9.1.3.3', '9.2.1', '9.2.2', '9.2.3', '9.2.4', '9.2.5', '9.2.6', '9.2.7', '9.2.8', '9.3.1', '9.3.2.1', '9.3.2.2', '9.3.3', '9.3.4.1', '9.3.4.2', '9.3.4.3', '9.3.4.4', '9.3.5.1', '9.3.5.2', '9.3.5.3', '9.4.1.1', '9.4.1.2', '9.4.1.3', '9.4.1.4', '9.4.1.5', '9.4.2.1', '9.4.2.2', '9.4.2.3', '9.4.3.1', '9.4.3.2', '9.4.3.3', '9.4.3.4', '9.4.3.5', '9.4.3.6', '9.4.4.1', '9.4.4.2', '9.4.4.3', '9.4.5', '9.4.6.1', '9.4.6.2', '9.4.6.3', '9.4.6.4', '9.5.1', '9.5.2', '9.5.3', '9.5.4', '9.5.5', '10.1', '10.2', '11.1.1', '11.1.2', '11.1.3', '192.168.127.12', '172.16.31.10', '192.168.3.11', '172.16.17.32', '11.1.5', '172.16.17.32', '172.16.17.32', '11.2.1', '11.2.2', '11.2.3', '12.1.1', '12.1.2', '192.168.3.11', '172.16.17.32', '172.16.17.32', '12.1.4', '172.16.17.32', '172.16.31.10', '172.16.17.32', '172.16.58.3', '172.16.58.3', '172.16.17.32', '172.16.17.32', '192.168.127.12', '192.168.3.11', '192.168.3.11', '192.168.3.11', '192.168.127.12', '192.168.3.11', '192.168.127.12', '172.16.31.10', '172.16.17.32', '12.4.2', '192.168.3.11', '172.16.58.3', '12.4.4', '172.16.58.3', '172.16.31.10', '192.168.3.11', '192.168.3.11', '192.168.127.12', '172.16.31.10', '172.16.31.10', '172.16.17.32', '172.16.17.32', '192.168.3.11', '192.168.3.11', '172.16.17.32', '172.16.58.3', '13.1.1', '13.1.2', '13.1.3', '13.2.1', '13.2.2', '13.2.3', '13.3.1', '13.3.2', '192.168.3.11', '172.16.17.32', '172.16.31.10', '172.16.17.32', '172.16.31.10', '172.16.31.10', '172.16.58.3', '172.16.31.10', '14.1.1', '14.1.2', '14.1.3', '14.2', '14.3.1', '14.3.2', '14.3.3', '14.3.4', '14.3.5', '14.3.6', '14.3.7', '14.4.1', '14.4.2', '14.5.1', '14.5.2', '14.5.3', '14.5.4', '14.5.5', '14.5.6', '14.5.7', '14.5.8', '14.6.1', '14.6.2', '14.6.3', '14.7', '14.8'] # import specs documentation years = ['2001-2002', '2002-2003', '2003-2004', '2004-2005', '2005-2006', '2006', '2007', '2009', '2010', '2013', '2014', '2015-2016', '2016-2017'] # save first 2 as excel --> come in PDF pages = ['261-277', '203-219']; names = ['4697userguide1.pdf', '5003userguide3.pdf'] for j in range(2): file = 'LCFS/'+ years[j] + '/mrdoc/pdf/' + names[j] temp = tabula.io.read_pdf(file, pages = pages[j], multiple_tables = True, pandas_options={'header':None}) writer = pd.ExcelWriter('LCFS/'+ years[j] + '/mrdoc/excel/specs.xlsx') for i in range(len(temp)): temp[i].to_excel(writer, 'Sheet ' + str(i)) writer.save() names = ['specs.xlsx', 'specs.xlsx', '5210spec2003-04.xls', '5375tablea1spec2004-05.xls', '5688_specification_family_spending_EFS_2005-06.xls', '5986_spec2006_userguide.xls', '6118_spec2007_userguide.xls', '6655spec2009_v2.xls', '6945spec2010.xls', '7702_2013_specification.xls', '7992_spec2014.xls', '8210_spec_2015-16.xls', '8351_spec2016-17.xls'] specs = {} for j in range(len(years)): specs[int(years[j][:4])] = pd.read_excel('LCFS/'+ years[j] + '/mrdoc/excel/' + names[j], sheet_name=None, header=None) cleaned_specs = {} for year in list(specs.keys())[2:]: cleaned_specs[year] = {} i = 0 for item in list(specs[year].keys()): cleaned_specs[year][item] = specs[year][item] if 'Family Spending' in item: pass elif 'changes' in item: pass else: if 'FS code' in cleaned_specs[year][item].iloc[:, 1].tolist(): cleaned_specs[year][item] = cleaned_specs[year][item].iloc[:, 1:] if 'FS code' in cleaned_specs[year][item].iloc[:, 0].tolist(): cleaned_specs[year][item] = cleaned_specs[year][item].iloc[:, 1:] if 'FS codes' in cleaned_specs[year][item].iloc[:, 0].tolist(): cleaned_specs[year][item] = cleaned_specs[year][item].iloc[:, 1:] cleaned_specs[year][item] = cleaned_specs[year][item].loc[cleaned_specs[year][item].iloc[:, 0] != 'FS code']\ .dropna(axis=0, how='all').dropna(axis=1, how='all') cleaned_specs[year][item] = cleaned_specs[year][item].loc[cleaned_specs[year][item].iloc[:, 0] != 'Variable'] if 'Alcohol' in item or 'Clothing' in item: if len(cleaned_specs[year][item].columns) > 6: cleaned_specs[year][item] = cleaned_specs[year][item].dropna(axis=1, how='all') if len(cleaned_specs[year][item].columns) > 6: cleaned_specs[year][item] = cleaned_specs[year][item].iloc[:, :-1] else: if len(cleaned_specs[year][item].columns) > 6: cleaned_specs[year][item] = cleaned_specs[year][item].iloc[:, :-1] if len(cleaned_specs[year][item].columns) > 6: cleaned_specs[year][item] = cleaned_specs[year][item].dropna(axis=1, how='all') cleaned_specs[year][item].columns = ['LCFS_1', 'COIPLUS_1', 'Desc_1', 'LCFS_2', 'COIPLUS_2', 'Desc_2'] cleaned_specs[year][item].loc[cleaned_specs[year][item]['LCFS_1'].str.len() > 90, 'LCFS_1'] = np.nan cleaned_specs[year][item] = cleaned_specs[year][item].dropna(how='all') for j in range(1, 3): cleaned_specs[year][item].loc[ cleaned_specs[year][item]['COIPLUS_' + str(j)].str[-1] == '.', 'COIPLUS_' + str(j)] = cleaned_specs[year][item]['COIPLUS_' + str(j)].str[:-1] if i == 0: cleaned_specs[year]['all'] = cleaned_specs[year][item] i += 1 else: cleaned_specs[year]['all'] = cleaned_specs[year]['all'].append(cleaned_specs[year][item]) writer = pd.ExcelWriter('LCFS/lcfs_coiplus_lookup.xlsx') check_specs = all_specs = {year:cleaned_specs[year]['all'].dropna(how='all') for year in list(specs.keys())[2:]} new_specs = {} no_rooms = ['A114', 'a114', 'a114', 'a114', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p', 'a114p'] room_dict = dict(zip([int(x[:4]) for x in years], no_rooms)) for year in list(check_specs.keys()): check_specs[year].index = list(range(len(check_specs[year]))) check_specs[year].loc[check_specs[year]['COIPLUS_2'].isnull() == True, 'COIPLUS_2'] = check_specs[year]['COIPLUS_1'] for i in range(1, 3): if i == 1: temp = check_specs[year][['LCFS_1', 'LCFS_2', 'COIPLUS_1', 'Desc_1']] temp.loc[temp['LCFS_1'].isnull() == True, 'LCFS_1'] = temp['LCFS_2'] else: temp = all_specs[year][['LCFS_2', 'COIPLUS_2', 'Desc_2']] temp.index = list(range(len(temp))) temp2 = temp['COIPLUS_' + str(i)].tolist(); temp3 = temp['Desc_' + str(i)].tolist() for j in range(1, len(temp2)): if pd.isnull(temp2[j]) == True: temp2[j] = temp2[j-1]; temp3[j] = temp3[j-1] temp['COIPLUS_all'] = temp2; temp['Desc_all'] = temp3 temp = temp[['LCFS_' + str(i), 'COIPLUS_all', 'Desc_all']].apply(lambda x: x.astype(str)) temp = temp.set_index(['COIPLUS_all', 'Desc_all']).groupby('COIPLUS_all')['LCFS_' + str(i)].transform(lambda x: '+'.join(x)).drop_duplicates() temp.columns = 'LCFS' if i == 1: new_specs[year] = temp else: new_specs[year] = new_specs[year].append(temp).reset_index() new_specs[year].columns = ['COIPLUS', 'Description', 'LCFS_Code'] new_specs[year]['LCFS_Code'] = [x.replace(' ', '').replace('nan+', '')\ .replace('+nan', '').replace('nan', '')\ .replace('++', '+').replace('+-', '-')\ .replace('-', '-1*') for x in new_specs[year]['LCFS_Code'].tolist()] new_specs[year]['COIPLUS'] = [x.split(' ')[0] for x in new_specs[year]['COIPLUS'].tolist()] new_specs[year] = new_specs[year].loc[new_specs[year]['COIPLUS'] != 'nan'] new_specs[year]['Level_1'] = [pd.to_numeric(x.split('.')[0], errors='coerce') for x in new_specs[year]['COIPLUS'].tolist()] for i in range(2, 5): temp = [] for x in new_specs[year]['COIPLUS'].tolist(): if len(x.split('.')) > i-1: temp.append(pd.to_numeric(x.split('.')[i-1], errors='coerce')) else: temp.append(0) new_specs[year]['Level_' + str(i)] = temp new_specs[year].loc[new_specs[year]['LCFS_Code'].str[-1] == '+', 'LCFS_Code'] = new_specs[year]['LCFS_Code'].str[:-1] new_specs[year] = new_specs[year].set_index(['Level_1', 'Level_2', 'Level_3', 'Level_4']).sort_index().drop_duplicates() new_specs[year].loc[new_specs[year]['COIPLUS'] == '4.1.2', 'Description'] = 'Imputed Rent' new_specs[year].loc[new_specs[year]['COIPLUS'] == '4.1.2', 'LCFS_Code'] = 'owned_prop*' + room_dict[year] new_specs[year] = new_specs[year].loc[new_specs[year]['Description'] != 'nan'] new_specs[year] = new_specs[year].loc[new_specs[year]['LCFS_Code'] != ''] new_specs[year]['IO_use'] = False new_specs[year].loc[new_specs[year]['COIPLUS'].isin( use_for_io) == True, 'IO_use'] = True new_specs[year].loc[new_specs[year][ 'Description'] != 'Stationery, diaries, address books, art materials'] new_specs[year]['Description'] = new_specs[year]['Description'].str.replace(' and ', ' & ') new_specs[year] = new_specs[year].drop_duplicates() new_specs[year].to_excel(writer, str(year)) writer.save() check = new_specs[2003].loc[new_specs[2003]['IO_use'] == True] # missing # 8.4 - Internet Subscription Fees - 9.4.3.7 in coiplus desc_anne_john = pd.read_excel('LCFS/lcfs_desc_anne&john.xlsx', header=None) desc_anne_john['COICOP'] = [x.split(' ')[0] for x in desc_anne_john[0]] desc_anne_john['Description_AJ'] = [' '.join(x.split(' ')[1:]) for x in desc_anne_john[0]] coicop_anne_john = pd.read_excel('LCFS/lcfs_coicop_lookup_anne&john.xlsx', sheet_name=None) writer =
pd.ExcelWriter('LCFS/lcfs_coicop_full_lookup.xlsx')
pandas.ExcelWriter
from datetime import date, datetime, timedelta import pandas as pd import numpy as np import math import os from pathlib import Path import scipy.interpolate import sys import PySimpleGUI as sg files = os.listdir('.') calibrationFilename = "timeDelayCalibration.csv" calibrationFile = "" for file in files: if file.endswith(calibrationFilename): calibrationFile=file layout = [[sg.T("Please load the files below:")], [sg.Text("Impulse logfile: "), sg.Input(), sg.FileBrowse(key="-DATA-")], [sg.Text("Calibration file: "), sg.Input(calibrationFile), sg.FileBrowse(key="-CAL-")],[sg.Button("Process")]] ###Building Window window = sg.Window('Load files', layout, size=(600,150)) while True: event, values = window.read() if event == sg.WIN_CLOSED or event=="Exit": sys.exit("No files loaded.") elif event == "Process": window.close() break if values['-DATA-']=="": sys.exit("No Impulse file loaded.") else: impulseLogfilePath = Path(values['-DATA-']) if values['-CAL-'] != "": timeDelayCalibrationPath = Path(values['-CAL-']) else: timeDelayCalibrationPath = calibrationFile ############################################# MSLogfilePath = "" beforeTemParameters = ["TimeStamp", "Experiment time", "MFC1 Measured", "MFC1 Setpoint","MFC2 Measured", "MFC2 Setpoint","MFC3 Measured", "MFC3 Setpoint", "MixValve", "% Gas1 Measured", "% Gas2 Measured", "% Gas3 Measured", "% Gas1 Setpoint", "% Gas2 Setpoint", "PumpRotation", "ActiveProgram"] inTemParameters = ["TimeStamp", "Experiment time", "Fnr", "Fnr Setpoint", "Temperature Setpoint","Temperature Measured", "Pin Measured", "Pin Setpoint", "Pout Measured", "Pout Setpoint", "Pnr (Calculated from Pin Pout)", "Pnr Setpoint","Measured power", "Pvac", "Relative power reference", "Relative power"] afterTemParameters = ["TimeStamp", "Experiment time", "Channel#1", "Channel#2", "Channel#3", "Channel#4", "Channel#5", "Channel#6", "Channel#7", "Channel#8", "Channel#9", "Channel#10"] if timeDelayCalibrationPath!="": print("Loaded curve parameters used.") curveParameters =
pd.read_csv(timeDelayCalibrationPath)
pandas.read_csv
""" Library of standardized plotting functions for basic plot formats """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import xarray as xr from scipy.interpolate import interp1d from scipy.signal import welch # Standard field labels # - default: e.g., "Km/s" # - all superscript: e.g., "K m s^{-1}" fieldlabels_default_units = { 'wspd': r'Wind speed [m/s]', 'wdir': r'Wind direction [$^\circ$]', 'u': r'u [m/s]', 'v': r'v [m/s]', 'w': r'Vertical wind speed [m/s]', 'theta': r'$\theta$ [K]', 'thetav': r'$\theta_v$ [K]', 'uu': r'$\langle u^\prime u^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'vv': r'$\langle v^\prime v^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'ww': r'$\langle w^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'uv': r'$\langle u^\prime v^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'uw': r'$\langle u^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'vw': r'$\langle v^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'tw': r'$\langle w^\prime \theta^\prime \rangle \;[\mathrm{Km/s}]$', 'TI': r'TI $[-]$', 'TKE': r'TKE $[\mathrm{m^2/s^2}]$', } fieldlabels_superscript_units = { 'wspd': r'Wind speed [m s$^{-1}$]', 'wdir': r'Wind direction [$^\circ$]', 'u': r'u [m s$^{-1}$]', 'v': r'v [m s$^{-1}$]', 'w': r'Vertical wind speed [m s$^{-1}$]', 'theta': r'$\theta$ [K]', 'thetav': r'$\theta_v$ [K]', 'uu': r'$\langle u^\prime u^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'vv': r'$\langle v^\prime v^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'ww': r'$\langle w^\prime w^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'uv': r'$\langle u^\prime v^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'uw': r'$\langle u^\prime w^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'vw': r'$\langle v^\prime w^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'tw': r'$\langle w^\prime \theta^\prime \rangle \;[\mathrm{K m s^{-1}}]$', 'TI': r'TI $[-]$', 'TKE': r'TKE $[\mathrm{m^2 s^{-2}}]$', } # Standard field labels for frequency spectra spectrumlabels_default_units = { 'u': r'$E_{uu}\;[\mathrm{m^2/s}]$', 'v': r'$E_{vv}\;[\mathrm{m^2/s}]$', 'w': r'$E_{ww}\;[\mathrm{m^2/s}]$', 'theta': r'$E_{\theta\theta}\;[\mathrm{K^2 s}]$', 'thetav': r'$E_{\theta\theta}\;[\mathrm{K^2 s}]$', 'wspd': r'$E_{UU}\;[\mathrm{m^2/s}]$', } spectrumlabels_superscript_units = { 'u': r'$E_{uu}\;[\mathrm{m^2\;s^{-1}}]$', 'v': r'$E_{vv}\;[\mathrm{m^2\;s^{-1}}]$', 'w': r'$E_{ww}\;[\mathrm{m^2\;s^{-1}}]$', 'theta': r'$E_{\theta\theta}\;[\mathrm{K^2\;s}]$', 'thetav': r'$E_{\theta\theta}\;[\mathrm{K^2\;s}]$', 'wspd': r'$E_{UU}\;[\mathrm{m^2\;s^{-1}}]$', } # Default settings default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] standard_fieldlabels = fieldlabels_default_units standard_spectrumlabels = spectrumlabels_default_units # Supported dimensions and associated names dimension_names = { 'time': ['datetime','time','Time'], 'height': ['height','heights','z'], 'frequency': ['frequency','f',] } # Show debug information debug = False def plot_timeheight(datasets, fields=None, fig=None,ax=None, colorschemes={}, fieldlimits=None, heightlimits=None, timelimits=None, fieldlabels={}, labelsubplots=False, showcolorbars=True, fieldorder='C', ncols=1, subfigsize=(12,4), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot time-height contours for different datasets and fields Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are MultiIndex Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal ndatasets*nfields colorschemes : str or dict Name of colorschemes. If only one field is plotted, colorschemes can be a string. Otherwise, it should be a dictionary with entries <fieldname>: name_of_colorschemes Missing colorschemess are set to 'viridis' fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically heightlimits : list or tuple Height axis limits timelimits : list or tuple Time axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showcolorbars : bool Show colorbar per subplot fieldorder : 'C' or 'F' Index ordering for assigning fields and datasets to axes grid (row by row). Fields is considered the first axis, so 'C' means fields change slowest, 'F' means fields change fastest. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool or str Plot dual x axes with both UTC time and local time. If a str is provided, then plot_local_time is assumed to be True and the str is used as the datetime format. local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets and fields and can not be used to set dataset or field specific limits, colorschemess, norms, etc. Example uses include setting shading, rasterized, etc. """ args = PlottingInput( datasets=datasets, fields=fields, fieldlimits=fieldlimits, fieldlabels=fieldlabels, colorschemes=colorschemes, fieldorder=fieldorder ) args.set_missing_fieldlimits() nfields = len(args.fields) ndatasets = len(args.datasets) ntotal = nfields * ndatasets # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, sharex=True, sharey=True, subfigsize=subfigsize, hspace=0.2, fig=fig, ax=ax ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Initialise list of colorbars cbars = [] # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] heightvalues = _get_dim_values(df,'height') timevalues = _get_dim_values(df,'time') assert(heightvalues is not None), 'timeheight plot needs a height axis' assert(timevalues is not None), 'timeheight plot needs a time axis' if isinstance(timevalues, pd.DatetimeIndex): # If plot local time, shift timevalues if plot_local_time is not False: timevalues = timevalues + pd.to_timedelta(local_time_offset,'h') # Convert to days since 0001-01-01 00:00 UTC, plus one numerical_timevalues = mdates.date2num(timevalues.values) else: if isinstance(timevalues, pd.TimedeltaIndex): timevalues = timevalues.total_seconds() # Timevalues is already a numerical array numerical_timevalues = timevalues # Create time-height mesh grid tst = _get_staggered_grid(numerical_timevalues) zst = _get_staggered_grid(heightvalues) Ts,Zs = np.meshgrid(tst,zst,indexing='xy') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # Pivot all fields in a dataset at once df_pivot = _get_pivot_table(df,'height',available_fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue # Store plotting options in dictionary plotting_properties = { 'vmin': args.fieldlimits[field][0], 'vmax': args.fieldlimits[field][1], 'cmap': args.cmap[field] } # Index of axis corresponding to dataset i and field j if args.fieldorder=='C': axi = i*nfields + j else: axi = j*ndatasets + i # Extract data from dataframe fieldvalues = _get_pivoted_field(df_pivot,field) # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data im = axv[axi].pcolormesh(Ts,Zs,fieldvalues.T,**plotting_properties) # Colorbar mark up if showcolorbars: cbar = fig.colorbar(im,ax=axv[axi],shrink=1.0) # Set field label if known try: cbar.set_label(args.fieldlabels[field]) except KeyError: pass # Save colorbar cbars.append(cbar) # Set title if more than one dataset if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Format time axis if isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): ax2 = _format_time_axis(fig,axv[(nrows-1)*ncols:],plot_local_time,local_time_offset,timelimits) else: ax2 = None # Set time limits if specified if not timelimits is None: axv[-1].set_xlim(timelimits) # Set time label for axi in axv[(nrows-1)*ncols:]: axi.set_xlabel('time [s]') if not heightlimits is None: axv[-1].set_ylim(heightlimits) # Add y labels for r in range(nrows): axv[r*ncols].set_ylabel(r'Height [m]') # Align time, height and color labels _align_labels(fig,axv,nrows,ncols) if showcolorbars: _align_labels(fig,[cb.ax for cb in cbars],nrows,ncols) # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, 1.0 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Return cbar instead of array if ntotal==1 if len(cbars)==1: cbars=cbars[0] if (plot_local_time is not False) and ax2 is not None: return fig, ax, ax2, cbars else: return fig, ax, cbars def plot_timehistory_at_height(datasets, fields=None, heights=None, fig=None,ax=None, fieldlimits=None, timelimits=None, fieldlabels={}, cmap=None, stack_by_datasets=None, labelsubplots=False, showlegend=None, ncols=1, subfigsize=(12,3), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot time history at specified height(s) for various dataset(s) and/or field(s). By default, data for multiple datasets or multiple heights are stacked in a single subplot. When multiple datasets and multiple heights are specified together, heights are stacked in a subplot per field and per dataset. Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) heights : float, list, 'all' (or None) Height(s) for which time history is plotted. heights can be None if all datasets combined have no more than one height value. 'all' means the time history for all heights in the datasets will be plotted (in this case all datasets should have the same heights) fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * (ndatasets or nheights) fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically timelimits : list or tuple Time axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel cmap : str Colormap used when stacking heights stack_by_datasets : bool (or None) Flag to specify what is plotted ("stacked") together per subfigure. If True, stack datasets together, otherwise stack by heights. If None, stack_by_datasets will be set based on the number of heights and datasets. labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool or str Plot dual x axes with both UTC time and local time. If a str is provided, then plot_local_time is assumed to be True and the str is used as the datetime format. local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and heights, and they can not be used to set dataset, field or height specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ # Avoid FutureWarning concerning the use of an implicitly registered # datetime converter for a matplotlib plotting method. The converter # was registered by pandas on import. Future versions of pandas will # require explicit registration of matplotlib converters, as done here. from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() args = PlottingInput( datasets=datasets, fields=fields, heights=heights, fieldlimits=fieldlimits, fieldlabels=fieldlabels, ) nfields = len(args.fields) nheights = len(args.heights) ndatasets = len(args.datasets) # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} # Set up subplot grid if stack_by_datasets is None: if nheights>1: stack_by_datasets = False else: stack_by_datasets = True if stack_by_datasets: ntotal = nfields*nheights else: ntotal = nfields*ndatasets fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, sharex=True, subfigsize=subfigsize, hspace=0.2, fig=fig, ax=ax ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if (stack_by_datasets and ndatasets>1) or (not stack_by_datasets and nheights>1): showlegend = True else: showlegend = False # Loop over datasets and fields for i,dfname in enumerate(args.datasets): df = args.datasets[dfname] timevalues = _get_dim_values(df,'time',default_idx=True) assert(timevalues is not None), 'timehistory plot needs a time axis' heightvalues = _get_dim_values(df,'height') if isinstance(timevalues, pd.TimedeltaIndex): timevalues = timevalues.total_seconds() # If plot local time, shift timevalues if (plot_local_time is not False) and \ isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): timevalues = timevalues + pd.to_timedelta(local_time_offset,'h') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # If any of the requested heights is not available, # pivot the dataframe to allow interpolation. # Pivot all fields in a dataset at once to reduce computation time if (not heightvalues is None) and (not all([h in heightvalues for h in args.heights])): df_pivot = _get_pivot_table(df,'height',available_fields) pivoted = True if debug: print('Pivoting '+dfname) else: pivoted = False for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, height in enumerate(args.heights): # Store plotting options in dictionary # Set default linestyle to '-' and no markers plotting_properties = { 'linestyle':'-', 'marker':None, } # Axis order, label and title depend on value of stack_by_datasets if stack_by_datasets: # Index of axis corresponding to field j and height k axi = k*nfields + j # Use datasetname as label if showlegend: plotting_properties['label'] = dfname # Set title if multiple heights are compared if nheights>1: axv[axi].set_title('z = {:.1f} m'.format(height),fontsize=16) # Set colors plotting_properties['color'] = default_colors[i % len(default_colors)] else: # Index of axis corresponding to field j and dataset i axi = i*nfields + j # Use height as label if showlegend: plotting_properties['label'] = 'z = {:.1f} m'.format(height) # Set title if multiple datasets are compared if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Set colors if cmap is not None: cmap = mpl.cm.get_cmap(cmap) plotting_properties['color'] = cmap(k/(nheights-1)) else: plotting_properties['color'] = default_colors[k % len(default_colors)] # Extract data from dataframe if pivoted: signal = interp1d(heightvalues,_get_pivoted_field(df_pivot,field).values,axis=-1,fill_value="extrapolate")(height) else: slice_z = _get_slice(df,height,'height') signal = _get_field(slice_z,field).values # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data axv[axi].plot(timevalues,signal,**plotting_properties) # Set field label if known try: axv[axi].set_ylabel(args.fieldlabels[field]) except KeyError: pass # Set field limits if specified try: axv[axi].set_ylim(args.fieldlimits[field]) except KeyError: pass # Set axis grid for axi in axv: axi.xaxis.grid(True,which='both') axi.yaxis.grid(True) # Format time axis if isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): ax2 = _format_time_axis(fig,axv[(nrows-1)*ncols:],plot_local_time,local_time_offset,timelimits) else: ax2 = None # Set time limits if specified if not timelimits is None: axv[-1].set_xlim(timelimits) # Set time label for axi in axv[(nrows-1)*ncols:]: axi.set_xlabel('time [s]') # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, 1.0 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) # Align labels _align_labels(fig,axv,nrows,ncols) if (plot_local_time is not False) and ax2 is not None: return fig, ax, ax2 else: return fig, ax def plot_profile(datasets, fields=None, times=None, timerange=None, fig=None,ax=None, fieldlimits=None, heightlimits=None, fieldlabels={}, cmap=None, stack_by_datasets=None, labelsubplots=False, showlegend=None, fieldorder='C', ncols=None, subfigsize=(4,5), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot vertical profile at specified time(s) for various dataset(s) and/or field(s). By default, data for multiple datasets or multiple times are stacked in a single subplot. When multiple datasets and multiple times are specified together, times are stacked in a subplot per field and per dataset. Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) times : str, int, float, list (or None) Time(s) for which vertical profiles are plotted, specified as either datetime strings or numerical values (seconds, e.g., simulation time). times can be None if all datasets combined have no more than one time value, or if timerange is specified. timerange : tuple or list Start and end times (inclusive) between which all times are plotted. If cmap is None, then it will automatically be set to viridis by default. This overrides times when specified. fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * (ndatasets or ntimes) fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically heightlimits : list or tuple Height axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel cmap : str Colormap used when stacking times stack_by_datasets : bool (or None) Flag to specify what is plotted ("stacked") together per subfigure. If True, stack datasets together, otherwise stack by times. If None, stack_by_datasets will be set based on the number of times and datasets. labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. fieldorder : 'C' or 'F' Index ordering for assigning fields and datasets/times (depending on stack_by_datasets) to axes grid (row by row). Fields is considered the first axis, so 'C' means fields change slowest, 'F' means fields change fastest. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool or str Plot dual x axes with both UTC time and local time. If a str is provided, then plot_local_time is assumed to be True and the str is used as the datetime format. local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and times, and they can not be used to set dataset, field or time specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ args = PlottingInput( datasets=datasets, fields=fields, times=times, timerange=timerange, fieldlimits=fieldlimits, fieldlabels=fieldlabels, fieldorder=fieldorder, ) nfields = len(args.fields) ntimes = len(args.times) ndatasets = len(args.datasets) # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} # Set up subplot grid if stack_by_datasets is None: if ntimes>1: stack_by_datasets = False else: stack_by_datasets = True if stack_by_datasets: ntotal = nfields * ntimes else: ntotal = nfields * ndatasets fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, default_ncols=int(ntotal/nfields), fieldorder=args.fieldorder, avoid_single_column=True, sharey=True, subfigsize=subfigsize, hspace=0.4, fig=fig, ax=ax, ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if (stack_by_datasets and ndatasets>1) or (not stack_by_datasets and ntimes>1): showlegend = True else: showlegend = False # Set default sequential colormap if timerange was specified if (timerange is not None) and (cmap is None): cmap = 'viridis' # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] heightvalues = _get_dim_values(df,'height',default_idx=True) assert(heightvalues is not None), 'profile plot needs a height axis' timevalues = _get_dim_values(df,'time') # If plot local time, shift timevalues timedelta_to_local = None if plot_local_time is not False: timedelta_to_local = pd.to_timedelta(local_time_offset,'h') timevalues = timevalues + timedelta_to_local # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # Pivot all fields in a dataset at once if timevalues is not None: df_pivot = _get_pivot_table(df,'height',available_fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, time in enumerate(args.times): plotting_properties = {} # Axis order, label and title depend on value of stack_by_datasets if stack_by_datasets: # Index of axis corresponding to field j and time k if args.fieldorder == 'C': axi = j*ntimes + k else: axi = k*nfields + j # Use datasetname as label if showlegend: plotting_properties['label'] = dfname # Set title if multiple times are compared if ntimes>1: if isinstance(time, (int,float,np.number)): tstr = '{:g} s'.format(time) else: if plot_local_time is False: tstr = pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC') elif plot_local_time is True: tstr = pd.to_datetime(time).strftime('%Y-%m-%d %H:%M') else: assert isinstance(plot_local_time,str), 'Unexpected plot_local_time format' tstr = pd.to_datetime(time).strftime(plot_local_time) axv[axi].set_title(tstr, fontsize=16) # Set color plotting_properties['color'] = default_colors[i % len(default_colors)] else: # Index of axis corresponding to field j and dataset i if args.fieldorder == 'C': axi = j*ndatasets + i else: axi = i*nfields + j # Use time as label if showlegend: if isinstance(time, (int,float,np.number)): plotting_properties['label'] = '{:g} s'.format(time) else: if plot_local_time is False: plotting_properties['label'] = pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC') elif plot_local_time is True: plotting_properties['label'] = pd.to_datetime(time).strftime('%Y-%m-%d %H:%M') else: assert isinstance(plot_local_time,str), 'Unexpected plot_local_time format' plotting_properties['label'] = pd.to_datetime(time).strftime(plot_local_time) # Set title if multiple datasets are compared if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Set colors if cmap is not None: cmap = mpl.cm.get_cmap(cmap) plotting_properties['color'] = cmap(k/(ntimes-1)) else: plotting_properties['color'] = default_colors[k % len(default_colors)] # Extract data from dataframe if timevalues is None: # Dataset will not be pivoted fieldvalues = _get_field(df,field).values else: if plot_local_time is not False: # specified times are in local time, convert back to UTC slice_t = _get_slice(df_pivot,time-timedelta_to_local,'time') else: slice_t = _get_slice(df_pivot,time,'time') fieldvalues = _get_pivoted_field(slice_t,field).values.squeeze() # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data try: axv[axi].plot(fieldvalues,heightvalues,**plotting_properties) except ValueError as e: print(e,'--', time, 'not found in index?') # Set field label if known try: axv[axi].set_xlabel(args.fieldlabels[field]) except KeyError: pass # Set field limits if specified try: axv[axi].set_xlim(args.fieldlimits[field]) except KeyError: pass for axi in axv: axi.grid(True,which='both') # Set height limits if specified if not heightlimits is None: axv[0].set_ylim(heightlimits) # Add y labels for r in range(nrows): axv[r*ncols].set_ylabel(r'Height [m]') # Align labels _align_labels(fig,axv,nrows,ncols) # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, -0.18 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) return fig,ax def plot_spectrum(datasets, fields=None, height=None, times=None, fig=None,ax=None, fieldlimits=None, freqlimits=None, fieldlabels={}, labelsubplots=False, showlegend=None, ncols=None, subfigsize=(4,5), datasetkwargs={}, **kwargs ): """ Plot frequency spectrum at a given height for different datasets, time(s) and field(s), using a subplot per time and per field. Note that this function does not interpolate to the requested height, i.e., if height is not None, the specified value should be available in all datasets. Usage ===== datasets : pandas.DataFrame or dict Dataset(s) with spectrum data. If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) height : float (or None) Height for which frequency spectra is plotted. If datasets have no height dimension, height does not need to be specified. times : str, int, float, list (or None) Time(s) for which frequency spectra are plotted, specified as either datetime strings or numerical values (seconds, e.g., simulation time). times can be None if all datasets combined have no more than one time value. fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * ntimes fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically freqlimits : list or tuple Frequency axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and times, and they can not be used to set dataset, field or time specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ args = PlottingInput( datasets=datasets, fields=fields, times=times, fieldlimits=fieldlimits, fieldlabels=fieldlabels, ) nfields = len(args.fields) ntimes = len(args.times) ndatasets = len(args.datasets) ntotal = nfields * ntimes # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_spectrumlabels, **args.fieldlabels} fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, default_ncols=ntimes, avoid_single_column=True, sharex=True, subfigsize=subfigsize, wspace=0.3, fig=fig, ax=ax, ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if ndatasets>1: showlegend = True else: showlegend = False # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] frequencyvalues = _get_dim_values(df,'frequency',default_idx=True) assert(frequencyvalues is not None), 'spectrum plot needs a frequency axis' timevalues = _get_dim_values(df,'time') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, time in enumerate(args.times): plotting_properties = {} if showlegend: plotting_properties['label'] = dfname # Index of axis corresponding to field j and time k axi = j*ntimes + k # Axes mark up if i==0 and ntimes>1: axv[axi].set_title(pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC'),fontsize=16) # Gather label, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Get field spectrum slice_t = _get_slice(df,time,'time') slice_tz = _get_slice(slice_t,height,'height') spectrum = _get_field(slice_tz,field).values # Plot data axv[axi].loglog(frequencyvalues[1:],spectrum[1:],**plotting_properties) # Specify field limits if specified try: axv[axi].set_ylim(args.fieldlimits[field]) except KeyError: pass # Set frequency label for c in range(ncols): axv[ncols*(nrows-1)+c].set_xlabel('$f$ [Hz]') # Specify field label if specified for r in range(nrows): try: axv[r*ncols].set_ylabel(args.fieldlabels[args.fields[r]]) except KeyError: pass # Align labels _align_labels(fig,axv,nrows,ncols) # Set frequency limits if specified if not freqlimits is None: axv[0].set_xlim(freqlimits) # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, -0.18 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) return fig, ax # --------------------------------------------- # # DEFINITION OF AUXILIARY CLASSES AND FUNCTIONS # # --------------------------------------------- class InputError(Exception): """Exception raised for errors in the input. Attributes: message -- explanation of the error """ def __init__(self, message): self.message = message class PlottingInput(object): """ Auxiliary class to collect input data and options for plotting functions, and to check if the inputs are consistent """ supported_datatypes = ( pd.Series, pd.DataFrame, xr.DataArray, xr.Dataset, ) def __init__(self, datasets, fields, **argd): # Add all arguments as class attributes self.__dict__.update({'datasets':datasets, 'fields':fields, **argd}) # Check consistency of all attributes self._check_consistency() def _check_consistency(self): """ Check consistency of all input data """ # ---------------------- # Check dataset argument # ---------------------- # If a single dataset is provided, convert to a dictionary # under a generic key 'Dataset' if isinstance(self.datasets, self.supported_datatypes): self.datasets = {'Dataset': self.datasets} for dfname,df in self.datasets.items(): # convert dataset types here if isinstance(df, (xr.Dataset,xr.DataArray)): # handle xarray datatypes self.datasets[dfname] = df.to_dataframe() columns = self.datasets[dfname].columns if len(columns) == 1: # convert to pd.Series self.datasets[dfname] = self.datasets[dfname][columns[0]] else: assert(isinstance(df, self.supported_datatypes)), \ "Dataset {:s} of type {:s} not supported".format(dfname,str(type(df))) # ---------------------- # Check fields argument # ---------------------- # If no fields are specified, check that # - all datasets are series # - the name of every series is either None or matches other series names if self.fields is None: assert(all([isinstance(self.datasets[dfname],pd.Series) for dfname in self.datasets])), \ "'fields' argument must be specified unless all datasets are pandas Series" series_names = set() for dfname in self.datasets: series_names.add(self.datasets[dfname].name) if len(series_names)==1: self.fields = list(series_names) else: raise InputError('attempting to plot multiple series with different field names') elif isinstance(self.fields,str): # If fields='all', retrieve fields from dataset if self.fields=='all': self.fields = _get_fieldnames(list(self.datasets.values())[0]) assert(all([_get_fieldnames(df)==self.fields for df in self.datasets.values()])), \ "The option fields = 'all' only works when all datasets have the same fields" # If fields is a single instance, convert to a list else: self.fields = [self.fields,] # ---------------------------------- # Check match of fields and datasets # ---------------------------------- # Check if all datasets have at least one of the requested fields for dfname in self.datasets: df = self.datasets[dfname] if isinstance(df,pd.DataFrame): assert(any([field in df.columns for field in self.fields])), \ 'DataFrame '+dfname+' does not contain any of the requested fields' elif isinstance(df,pd.Series): if df.name is None: assert(len(self.fields)==1), \ 'Series must have a name if more than one fields is specified' else: assert(df.name in self.fields), \ 'Series '+dfname+' does not match any of the requested fields' # --------------------------------- # Check heights argument (optional) # --------------------------------- try: # If no heights are specified, check that all datasets combined have # no more than one height value if self.heights is None: av_heights = set() for df in self.datasets.values(): heightvalues = _get_dim_values(df,'height') try: for height in heightvalues: av_heights.add(height) except TypeError: # heightvalues is None pass if len(av_heights)==0: # None of the datasets have height values self.heights = [None,] elif len(av_heights)==1: self.heights = list(av_heights) else: raise InputError("found more than one height value so 'heights' argument must be specified") # If heights='all', retrieve heights from dataset elif isinstance(self.heights,str) and self.heights=='all': self.heights = _get_dim_values(list(self.datasets.values())[0],'height') assert(all([np.allclose(_get_dim_values(df,'height'),self.heights) for df in self.datasets.values()])), \ "The option heights = 'all' only works when all datasets have the same vertical levels" # If heights is single instance, convert to list elif isinstance(self.heights,(int,float)): self.heights = [self.heights,] except AttributeError: pass # ----------------------------------- # Check timerange argument (optional) # ----------------------------------- try: if self.timerange is not None: if self.times is not None: print('Using specified time range',self.timerange, 'and ignoring',self.times) assert isinstance(self.timerange,(tuple,list)), \ 'Need to specify timerange as (starttime,endtime)' assert (len(self.timerange) == 2) try: starttime = pd.to_datetime(self.timerange[0]) endtime = pd.to_datetime(self.timerange[1]) except ValueError: print('Unable to convert timerange to timestamps') else: # get unique times from all datasets alltimes = [] for df in self.datasets.values(): alltimes += list(_get_dim_values(df,'time')) alltimes = pd.DatetimeIndex(np.unique(alltimes)) inrange = (alltimes >= starttime) & (alltimes <= endtime) self.times = alltimes[inrange] except AttributeError: pass # --------------------------------- # Check times argument (optional) # --------------------------------- # If times is single instance, convert to list try: # If no times are specified, check that all datasets combined have # no more than one time value if self.times is None: av_times = set() for df in self.datasets.values(): timevalues = _get_dim_values(df,'time') try: for time in timevalues.values: av_times.add(time) except AttributeError: pass if len(av_times)==0: # None of the datasets have time values self.times = [None,] elif len(av_times)==1: self.times = list(av_times) else: raise InputError("found more than one time value so 'times' argument must be specified") elif isinstance(self.times,(str,int,float,np.number,pd.Timestamp)): self.times = [self.times,] except AttributeError: pass # ------------------------------------- # Check fieldlimits argument (optional) # ------------------------------------- # If one set of fieldlimits is specified, check number of fields # and convert to dictionary try: if self.fieldlimits is None: self.fieldlimits = {} elif isinstance(self.fieldlimits, (list, tuple)): assert(len(self.fields)==1), 'Unclear to what field fieldlimits corresponds' self.fieldlimits = {self.fields[0]:self.fieldlimits} except AttributeError: self.fieldlimits = {} # ------------------------------------- # Check fieldlabels argument (optional) # ------------------------------------- # If one fieldlabel is specified, check number of fields try: if isinstance(self.fieldlabels, str): assert(len(self.fields)==1), 'Unclear to what field fieldlabels corresponds' self.fieldlabels = {self.fields[0]: self.fieldlabels} except AttributeError: self.fieldlabels = {} # ------------------------------------- # Check colorscheme argument (optional) # ------------------------------------- # If one colorscheme is specified, check number of fields try: self.cmap = {} if isinstance(self.colorschemes, str): assert(len(self.fields)==1), 'Unclear to what field colorschemes corresponds' self.cmap[self.fields[0]] = mpl.cm.get_cmap(self.colorschemes) else: # Set missing colorschemes to viridis for field in self.fields: if field not in self.colorschemes.keys(): if field == 'wdir': self.colorschemes[field] = 'twilight' else: self.colorschemes[field] = 'viridis' self.cmap[field] = mpl.cm.get_cmap(self.colorschemes[field]) except AttributeError: pass # ------------------------------------- # Check fieldorder argument (optional) # ------------------------------------- # Make sure fieldorder is recognized try: assert(self.fieldorder in ['C','F']), "Error: fieldorder '"\ +self.fieldorder+"' not recognized, must be either 'C' or 'F'" except AttributeError: pass def set_missing_fieldlimits(self): """ Set missing fieldlimits to min and max over all datasets """ for field in self.fields: if field not in self.fieldlimits.keys(): try: self.fieldlimits[field] = [ min([_get_field(df,field).min() for df in self.datasets.values() if _contains_field(df,field)]), max([_get_field(df,field).max() for df in self.datasets.values() if _contains_field(df,field)]) ] except ValueError: self.fieldlimits[field] = [None,None] def _get_dim(df,dim,default_idx=False): """ Search for specified dimension in dataset and return level (referred to by either label or position) and axis {0 or ‘index’, 1 or ‘columns’} If default_idx is True, return a single unnamed index if present """ assert(dim in dimension_names.keys()), \ "Dimension '"+dim+"' not supported" # 1. Try to find dim based on name for name in dimension_names[dim]: if name in df.index.names: if debug: print("Found "+dim+" dimension in index with name '{}'".format(name)) return name, 0 else: try: if name in df.columns: if debug: print("Found "+dim+" dimension in column with name '{}'".format(name)) return name, 1 except AttributeError: # pandas Series has no columns pass # 2. Look for Datetime or Timedelta index if dim=='time': for idx in range(len(df.index.names)): if isinstance(df.index.get_level_values(idx),(pd.DatetimeIndex,pd.TimedeltaIndex,pd.PeriodIndex)): if debug: print("Found "+dim+" dimension in index with level {} without a name ".format(idx)) return idx, 0 # 3. If default index is True, assume that a # single nameless index corresponds to the # requested dimension if (not isinstance(df.index,(pd.MultiIndex,pd.DatetimeIndex,pd.TimedeltaIndex,pd.PeriodIndex)) and default_idx and (df.index.name is None) ): if debug: print("Assuming nameless index corresponds to '{}' dimension".format(dim)) return 0,0 # 4. Did not found requested dimension if debug: print("Found no "+dim+" dimension") return None, None def _get_available_fieldnames(df,fieldnames): """ Return subset of fields available in df """ available_fieldnames = [] if isinstance(df,pd.DataFrame): for field in fieldnames: if field in df.columns: available_fieldnames.append(field) # A Series only has one field, so return that field name # (if that field is not in fields, an error would have been raised) elif isinstance(df,pd.Series): available_fieldnames.append(df.name) return available_fieldnames def _get_fieldnames(df): """ Return list of fieldnames in df """ if isinstance(df,pd.DataFrame): fieldnames = list(df.columns) # Remove any column corresponding to # a dimension (time, height or frequency) for dim in dimension_names.keys(): name, axis = _get_dim(df,dim) if axis==1: fieldnames.remove(name) return fieldnames elif isinstance(df,pd.Series): return [df.name,] def _contains_field(df,fieldname): if isinstance(df,pd.DataFrame): return fieldname in df.columns elif isinstance(df,pd.Series): return (df.name is None) or (df.name==fieldname) def _get_dim_values(df,dim,default_idx=False): """ Return values for a given dimension """ level, axis = _get_dim(df,dim,default_idx) # Requested dimension is an index if axis==0: return df.index.get_level_values(level).unique() # Requested dimension is a column elif axis==1: return df[level].unique() # Requested dimension not available else: return None def _get_pivot_table(df,dim,fieldnames): """ Return pivot table with given fieldnames as columns """ level, axis = _get_dim(df,dim) # Unstack an index if axis==0: return df.unstack(level=level) # Pivot about a column elif axis==1: return df.pivot(columns=level,values=fieldnames) # Dimension not found, return dataframe else: return df def _get_slice(df,key,dim): """ Return cross-section of dataset """ if key is None: return df # Get dimension level and axis level, axis = _get_dim(df,dim) # Requested dimension is an index if axis==0: if isinstance(df.index,pd.MultiIndex): return df.xs(key,level=level) else: return df.loc[df.index==key] # Requested dimension is a column elif axis==1: return df.loc[df[level]==key] # Requested dimension not available, return dataframe else: return df def _get_field(df,fieldname): """ Return field from dataset """ if isinstance(df,pd.DataFrame): return df[fieldname] elif isinstance(df,pd.Series): if df.name is None or df.name==fieldname: return df else: return None def _get_pivoted_field(df,fieldname): """ Return field from pivoted dataset """ if isinstance(df.columns,pd.MultiIndex): return df[fieldname] else: return df def _create_subplots_if_needed(ntotal, ncols=None, default_ncols=1, fieldorder='C', avoid_single_column=False, sharex=False, sharey=False, subfigsize=(12,3), wspace=0.2, hspace=0.2, fig=None, ax=None ): """ Auxiliary function to create fig and ax If fig and ax are None: - Set nrows and ncols based on ntotal and specified ncols, accounting for fieldorder and avoid_single_column - Create fig and ax with nrows and ncols, taking into account sharex, sharey, subfigsize, wspace, hspace If fig and ax are not None: - Try to determine nrows and ncols from ax - Check whether size of ax corresponds to ntotal """ if ax is None: if not ncols is None: # Use ncols if specified and appropriate assert(ntotal%ncols==0), 'Error: Specified number of columns is not a true divisor of total number of subplots' nrows = int(ntotal/ncols) else: # Defaut number of columns ncols = default_ncols nrows = int(ntotal/ncols) if fieldorder=='F': # Swap number of rows and columns nrows, ncols = ncols, nrows if avoid_single_column and ncols==1: # Swap number of rows and columns nrows, ncols = ncols, nrows # Create fig and ax with nrows and ncols fig,ax = plt.subplots(nrows=nrows,ncols=ncols,sharex=sharex,sharey=sharey,figsize=(subfigsize[0]*ncols,subfigsize[1]*nrows)) # Adjust subplot spacing fig.subplots_adjust(wspace=wspace,hspace=hspace) else: # Make sure user-specified axes has appropriate size assert(np.asarray(ax).size==ntotal), 'Specified axes does not have the right size' # Determine nrows and ncols in specified axes if isinstance(ax,mpl.axes.Axes): nrows, ncols = (1,1) else: try: nrows,ncols = np.asarray(ax).shape except ValueError: # ax array has only one dimension # Determine whether ax is single row or single column based # on individual ax positions x0 and y0 x0s = [axi.get_position().x0 for axi in ax] y0s = [axi.get_position().y0 for axi in ax] if all(x0==x0s[0] for x0 in x0s): # All axis have same relative x0 position nrows = np.asarray(ax).size ncols = 1 elif all(y0==y0s[0] for y0 in y0s): # All axis have same relative y0 position nrows = 1 ncols = np.asarray(ax).size else: # More complex axes configuration, # currently not supported raise InputError('could not determine nrows and ncols in specified axes, complex axes configuration currently not supported') return fig, ax, nrows, ncols def _format_legend(axv,index): """ Auxiliary function to format legend Usage ===== axv : numpy 1d array Flattened array of axes index : int Index of the axis where to place the legend """ all_handles = [] all_labels = [] # Check each axes and add new handle for axi in axv: handles, labels = axi.get_legend_handles_labels() for handle,label in zip(handles,labels): if not label in all_labels: all_labels.append(label) all_handles.append(handle) leg = axv[index].legend(all_handles,all_labels,loc='upper left',bbox_to_anchor=(1.05,1.0),fontsize=16) return leg def _format_time_axis(fig,ax, plot_local_time, local_time_offset, timelimits ): """ Auxiliary function to format time axis """ ax[-1].xaxis_date() if timelimits is not None: timelimits = [
pd.to_datetime(tlim)
pandas.to_datetime
import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor,RandomForestClassifier,IsolationForest # from sklearn.feature_selection import SelectKBest import numpy as np from sklearn.decomposition import PCA from sklearn.manifold import TSNE import data # first col of cols as target(y) , rest is x def randomForesetSetValue(df,cols , regression=True): data = df[cols] target = cols[0] train_data = data[data[target].notnull()] test_data = data[data[target].isnull()] x,y =train_data.values[:,1:], train_data.values[:,0] if regression == True: model = RandomForestRegressor(n_estimators=200) else: model = RandomForestClassifier(n_estimators=200) model.fit(x,y) target_predict = model.predict(test_data.values[:,1:]) df.loc[data[target].isnull(),target] = target_predict def drop_col(df): return df.drop(['PassengerId','Cabin','Name','Ticket'],axis=1) def fill_missing_data(df , is_train=True ,sex_cat=False, embarked_one_hot=False): print("preprocess data") # df = drop_col(df) if sex_cat: df['Sex'] = df.Sex.map({'female':0,'male':1}).astype(int) # Fare should > 0, fill Fare by pclass ,using median of pclass if len(df.Fare[df.Fare.isnull()]) > 0: fare = np.zeros(3) for f in range(0, 3): fare[f] = df[df.Pclass == f + 1]['Fare'].dropna().median() for f in range(0, 3): # loop 0 to 2 df.loc[(df.Fare.isnull()) & (df.Pclass == f + 1), 'Fare'] = fare[f] #默认用S df.loc[(df.Embarked.isnull()), 'Embarked'] = 'S' if embarked_one_hot: df['Embarked'] = df['Embarked'].map({'S': 0, 'C': 1, 'Q': 2, 'U': 0}).astype(int) embarked_data =
pd.get_dummies(df.Embarked)
pandas.get_dummies
import regex as re import emoji import datetime import pandas as pd def deEmojify(txt): """ Given as input string, the function removes all emojies and returns the input string """ converted="" for each in txt: if each not in emoji.UNICODE_EMOJI: converted = converted + each.lower() return converted def remove_unwanted_texts(txt): """ Removed messeges are of the type: '<media omitted>': Used by whatsapp to tell where a file was uploaded "(file attached)": Also Used by whatsapp to tell where a file was uploaded "this message was deleted": Used by whatsapp to tell where other users deleted a message "you message was deleted": Used by whatsapp to tell where user deleted a message """ if (txt != '<media omitted>') & (txt.find("(file attached)")==-1) & (txt !="this message was deleted") & (txt!="you deleted this message"): return 1 else: return 0 def correct_dateformat(data): """ The function takes in a dataframe and turns the Date coloumn which is initially in string format and converts it to a DateTime format. """ for i in range(len(data.Date.iloc[:])): if (len(data.Date.iloc[i])==10): data.Date.iloc[i] = pd.to_datetime(data.Date.iloc[i], format="%d/%m/%Y") else: data.Date.iloc[i] =
pd.to_datetime(data.Date.iloc[i], format="%m/%d/%y")
pandas.to_datetime
import pandas as pd import numpy as np import io from AutoPreProcessing import FeatureType from AutoPreProcessing import WOE_IV from jinja2 import Template from jinja2 import Environment, FileSystemLoader import random from scipy.stats import chi2_contingency import seaborn as sns import matplotlib.pyplot as plt import scipy.stats as stats from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.base import BaseEstimator, TransformerMixin #from sklearn.preprocessing import Imputer from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.preprocessing import MinMaxScaler import time import os class EDA: def __init__(self,df,CategoricalFeatures=[],filename="index.html",VIF_threshold=5,debug='YES'): ''' Constructor for this class. ''' self.df = df self.df.columns = [col.replace(" ", "_") for col in df.columns] self.df.columns = [col.replace("(", "_") for col in df.columns] self.df.columns = [col.replace(")", "_") for col in df.columns] self.SelectedColors = ["#5D535E", "#9A9EAB","#DFE166","#D9B44A","#4F6457","#4B7447","#8EBA43","#73605B","#D09683","#6E6702","#C05805","#DB9501","#50312F","#E4EA8C","#3F6C45","#B38867","#F69454","#A1BE95","#92AAC7","#FA6E59","#805A3B","#7F152E"] self.AllColors = ["#f2e1df","#ead6d5","#e3ccca","#dbc2c0","#d4b8b5","#ccaeaa","#c5a3a0","#bd9995","#b68f8b","#ae8480","#a77a75","#a0706b","#986660","#915c56","#89514b","#824740", "#7a3d36","#73322b","#6b2821","#641e16","#fdedec","#f5e3e1","#eed8d7","#e6cecc","#dec4c1","#d7b9b6","#cfafac","#c7a5a1","#c09a96","#b8908c","#b08681","#a97b76", "#a1716c","#9a6661","#925c56","#8a524c","#834741","#7b3d36","#73332b","#6c2821","#641e16","#ebe2ef","#e3d8e7","#dacedf","#d2c4d8","#cabad0","#c1b0c8","#b8a6c0", "#b09cb8","#a892b0","#9f88a8","#967da1","#8e7399","#866991","#7d5f89","#745581","#6c4b79","#644172","#5b376a","#522d62","#4a235a","#dfe9f0","#d5e0e9","#cad8e1", "#bfcfda","#b5c6d2","#aabdca","#9fb5c3","#95acbb","#8aa3b4","#809aac","#7592a4","#6a899d","#608095","#55788e","#4a6f86","#40667e","#355d77","#2a546f","#204c68", "#154360","#e1edf4","#d6e4ed","#ccdce6","#c1d4e0","#b7ccd9","#adc3d2","#a2bbcb","#98b3c4","#8daabd","#83a2b6","#799ab0","#6e91a9","#6489a2","#59819b","#4f7894", "#45708d","#3a6887","#306080","#255779","#1b4f72","#ddf0ed","#d2e9e5","#c7e1dc","#bcdad4","#b2d2cc","#a7cbc4","#9cc4bc","#91bcb3","#86b4ab","#7bada3","#70a69b", "#659e93","#5a968a","#4f8f82","#44887a","#3a8072","#2f786a","#247161","#196a59","#0e6251","#ddeeea","#d2e6e2","#c7ded9","#bcd5d0","#b1cdc8","#a6c5bf","#9bbdb6", "#90b5ad","#85ada5","#7aa49c","#6e9c93","#63948b","#588c82","#4d8479","#427c70","#377468","#2c6b5f","#216356","#165b4e","#0b5345","#deefe6","#d4e7dc","#c9dfd3", "#bed8c9","#b4d0c0","#a9c8b6","#9ec0ad","#94b8a3","#89b09a","#7ea890","#74a187","#69997e","#5f9174","#54896b","#498161","#3f7958","#34724e","#296a45","#1f623b", "#145a32","#dff3e8","#d5ecdf","#cae4d6","#c0ddcd","#b6d6c4","#abcfba","#a0c8b1","#96c0a8","#8cb99f","#81b296","#76ab8d","#6ca484","#629c7b","#579572","#4c8e68", "#42875f","#388056","#2d784d","#237144","#186a3b","#f9f3dc","#f4edd1","#efe6c6","#eae0bb","#e5dab0","#e0d4a5","#dbce9a","#d6c78f","#d1c184","#ccbb78","#c7b56d", "#c2af62","#bda857","#b8a24c","#b39c41","#ae9636","#a9902b","#a48920","#9f8315","#9a7d0a","#7D6608","#f9eedc","#f4e6d1","#efdfc6","#ead8bb","#e6d1b0","#e1caa5", "#dcc29a","#d7bb8f","#d2b484","#cdac7a","#c8a56f","#c39e64","#be9759","#b9904e","#b48843","#b08138","#ab7a2d","#a67222","#a16b17","#9c640c","#f6e9de","#f0e0d4", "#e9d8c9","#e2cfbe","#dcc6b3","#d5bda8","#ceb49e","#c8ac93","#c1a388","#ba9a7e","#b49173","#ad8868","#a7805d","#a07752","#996e48","#93653d","#8c5c32","#855427", "#7f4b1d","#784212","#f4e4da","#eddbcf","#e6d1c4","#dfc7b8","#d8beac","#d1b4a1","#caaa96","#c3a08a","#bc977f","#b48d73","#ad8367","#a67a5c","#9f7050","#986645", "#915c3a","#8a532e","#834923","#7c3f17","#75360c","#6e2c00","#e1e3e5","#d6d9dc","#cccfd2","#c1c5c9","#b7bbc0","#adb1b6","#a2a7ac","#989da3","#8d939a","#838a90", "#798086","#6e767d","#646c74","#59626a","#4f5860","#454e57","#3a444e","#303a44","#25303b","#1b2631","#dfe2e4","#d5d8da","#cacdd1","#c0c3c7","#b5b9bd","#abafb3", "#a0a5a9","#969aa0","#8b9096","#80868c","#767c82","#6b7278","#61676f","#565d65","#4c535b","#414951","#373f47","#2c343e","#222a34","#17202a"] featureType = FeatureType.FeatureType(df,CategoricalFeatures) self.CategoricalFeatures = featureType.CategoricalFeatures() self.NonCategoricalFeatures = featureType.NonCategoricalFeatures() self.ContinuousFeatures = featureType.ContinuousFeatures() self.OtherFeatures = featureType.OtherFeatures() self.BinaryCategoricalFeatures = featureType.BinaryCategoricalFeatures() self.NonBinaryCategoricalFeatures = featureType.NonBinaryCategoricalFeatures() self.filename = filename self.VIF_threshold = VIF_threshold self.debug = debug def EDAToHTML(self,title='EDA',out=None): filename = 'HTMLTemplate\\dist\\HTMLTemplate_V2.html' this_dir, this_filename = os.path.split(__file__) Template_PATH = os.path.join(this_dir, filename) # print(DATA_PATH) # templateLoader = FileSystemLoader(searchpath="./") # templateEnv = Environment(loader=templateLoader) # template = templateEnv.get_template(filename) with open(Template_PATH) as file: template = Template(file.read()) # #print(self.std_variance()) CorrList, ColumnNames = self.CorrList() # #transformer = VIF(VIF_threshold = self.VIF_threshold) # #print(transformer.fit_transform(self.df[self.ContinuousFeatures])) # out_filename = 'HTMLTemplate/dist/'+self.filename if(out): out_filename = out else: # out_filename = './HTMLTemplate/dist/result.html' out_filename = os.path.join(this_dir, 'HTMLTemplate\\dist\\result.html') html = template.render(title = title ,ListOfFields = self.ListOfFields() ,CategoricalFeatures = self.CategoricalFeatures ,OtherFeatures = self.OtherFeatures ,ContinuousFeatures = self.ContinuousFeatures ,BinaryCategoricalFeatures = self.BinaryCategoricalFeatures ,NonBinaryCategoricalFeatures = self.NonBinaryCategoricalFeatures ,FeatureTypes = self.CategoricalVsContinuous() ,CategoriesCount = self.CategoriesCount() ,WOEList = self.WOEList() ,ContinuousSummary = self.ContinuousSummary() ,CorrList = CorrList ,ColumnNames = ColumnNames ,AnovaList = self.Anova() #,VIF_columns = transformer.fit_transform(self.df[self.ContinuousFeatures]) ,VIF_columns = self.VIF() #,VIF_threshold = self.VIF_threshold ,Variance = self.std_variance() ,NullValue = pd.DataFrame(round(self.df.isnull().sum()/self.df.shape[0],3)).reset_index().rename(columns={'index': 'Feature',0:'NullPercentage'}) ) with io.open(out_filename, mode='w', encoding='utf-8') as f: f.write(html) import webbrowser url = 'file://'+out_filename webbrowser.open(url, new=2) return out_filename def ListOfFields(self): start = time.time() NameTypeDict = [] for name in list(self.df.columns.values): item = dict(name = name, type=self.df[name].dtype) NameTypeDict.append(item) end = time.time() if self.debug == 'YES': print("ListOfFields",end - start) return NameTypeDict def CategoricalVsContinuous(self): start = time.time() # Choose 3 random colors from Selected Colors indices = random.sample(range(len(self.SelectedColors)), 3) colors=[self.SelectedColors[i] for i in sorted(indices)] FeatureTypes = [] FeatureTypes.append(dict(Name = 'Categorical', Value = len(self.CategoricalFeatures), Color=colors[0])) FeatureTypes.append(dict(Name = 'Continuous', Value = len(self.ContinuousFeatures), Color=colors[1])) FeatureTypes.append(dict(Name = 'Others', Value = len(self.OtherFeatures), Color=colors[2])) end = time.time() if self.debug == 'YES': print("CategoricalVsContinuous",end - start) return (FeatureTypes) def getRandomColors(self,no_of_colors): start = time.time() colors = [] for i in range(0,no_of_colors): color = (random.randint(0,255),random.randint(0,255),random.randint(0,255)) colors.append('#%02x%02x%02x' % color) end = time.time() if self.debug == 'YES': print('CategoricalVsContinuous',end-start) return colors def CategoriesCount(self): start = time.time() CategoricalFeatures = self.CategoricalFeatures CategoriesCount = [] for var in CategoricalFeatures: df = self.df[var].groupby(self.df[var]).agg(['count']) df.index.names = ['Name'] df.columns = ['Value'] if df.shape[0] > len(self.SelectedColors): if df.shape[0] > len(self.AllColors): colors = self.getRandomColors(df.shape[0]) else: indices = random.sample(range(len(self.AllColors)), (df.shape[0])) colors=[self.AllColors[i] for i in sorted(indices)] else: indices = random.sample(range(len(self.SelectedColors)), (df.shape[0])) colors=[self.SelectedColors[i] for i in sorted(indices)] df['Color'] = colors CategoriesCount.append(dict(Variable = var, Count = df)) end = time.time() if self.debug == 'YES': print('CategoriesCount',end-start) return CategoriesCount def WOEList (self): start = time.time() woe = WOE_IV.WOE() WOEList = [] InsightStat = "The variable \"{0}\" is {1} of the variable \"{2}\"." ChiSqInsight = "With the confidence limit of 0.05, the variable \"{0}\" is statistically {1} the variable \"{2}\"" for DependentVar in self.CategoricalFeatures: for IndependentVar in self.CategoricalFeatures: if DependentVar != IndependentVar: # Update Weight Of Evidence(WOE) and Information Value (IV) if DependentVar in self.BinaryCategoricalFeatures: WOE,IV = woe.woe_single_x(self.df[IndependentVar],self.df[DependentVar],event=self.df[DependentVar].unique()[0]) if IV >= 0.3: IVInsight = InsightStat.format(IndependentVar,"strong predictor",DependentVar) elif IV >= 0.1: IVInsight = InsightStat.format(IndependentVar,"medium predictor",DependentVar) elif IV >= 0.02: IVInsight = InsightStat.format(IndependentVar,"weak predictor",DependentVar) else: IVInsight = InsightStat.format(IndependentVar,"very poor predictor",DependentVar) EntryPresent = False for entry in WOEList: if entry['DependentVar'] == DependentVar and entry['IndependentVar'] == IndependentVar: entry['WOE'] = WOE entry['IV'] = IV entry['IVInsight'] = IVInsight EntryPresent = True if EntryPresent == False: item = dict(DependentVar = DependentVar, IndependentVar = IndependentVar, WOE = WOE, IV = round(IV,2), IVInsight=IVInsight, ChiSq = 0, PValue = 0) WOEList.append(item) else: WOE = dict() IV = 0 # Update ChiSq and PValue EntryPresent = False for entry in WOEList: if (entry['DependentVar'] == DependentVar and entry['IndependentVar'] == IndependentVar) or (entry['DependentVar'] == IndependentVar and entry['IndependentVar'] == DependentVar ): EntryPresent = True if entry['ChiSq'] == 0: ChiSq,PValue = self.ChiSquareOfDFCols(DependentVar,IndependentVar) ChiSqInsight = ChiSqInsight.format(DependentVar, "dependent on", IndependentVar) if PValue <= 0.05 else ChiSqInsight.format(DependentVar, "independent from", IndependentVar) WOEList = self.UpdateChiSq(WOEList,DependentVar, IndependentVar, ChiSq,PValue,ChiSqInsight) if EntryPresent == False: ChiSq,PValue = self.ChiSquareOfDFCols(DependentVar,IndependentVar) ChiSqInsight = ChiSqInsight.format(DependentVar, "dependent on", IndependentVar) if PValue <= 0.05 else ChiSqInsight.format(DependentVar, "independent from", IndependentVar) item = dict(DependentVar = DependentVar, IndependentVar = IndependentVar, WOE = dict(), IV = 0, IVInsight = "", ChiSq = round(ChiSq,2), PValue = PValue, ChiSqInsight = ChiSqInsight) WOEList.append(item) item = dict(DependentVar = IndependentVar, IndependentVar = DependentVar, WOE = dict(), IV = 0, IVInsight = "", ChiSq = round(ChiSq,2), PValue = PValue, ChiSqInsight = ChiSqInsight) WOEList.append(item) end = time.time() if self.debug == 'YES': print('WOEList',end-start) return WOEList def UpdateChiSq(self,WOEList,DependentVar, IndependentVar, ChiSq, PValue, ChiSqInsight): start = time.time() for entry in WOEList: if entry['DependentVar'] == DependentVar and entry['IndependentVar'] == IndependentVar and entry['ChiSq'] == 0: entry['ChiSq'] = ChiSq entry['PValue'] = PValue entry['ChiSqInsight'] = ChiSqInsight if entry['DependentVar'] == IndependentVar and entry['IndependentVar'] == DependentVar and entry['ChiSq'] == 0: entry['ChiSq'] = ChiSq entry['PValue'] = PValue entry['ChiSqInsight'] = ChiSqInsight end = time.time() if self.debug == 'YES': print('UpdateChiSq',end-start) return WOEList def ChiSquareOfDFCols(self, c1, c2): start = time.time() groupsizes = self.df.groupby([c1, c2]).size() ctsum = groupsizes.unstack(c1) end = time.time() if self.debug == 'YES': print('ChiSquareOfDFCols',end-start) return(list(chi2_contingency(ctsum.fillna(0)))[0:2]) def ContinuousSummary(self): start = time.time() df = self.df[self.ContinuousFeatures] df = df.describe().transpose() VariableDetails = [] for key,value in df.iterrows(): Edges, Hist, HistValues, PDF, Color1, Color2 = self.HistChart(key) VariableDetails.append(dict(Name = key ,Count = value['count'] ,Mean = value['mean'] ,STD = value['std'] ,Min = value['min'] ,TwentyFive = value['25%'] ,Fifty = value['50%'] ,SeventyFive = value['75%'] ,Max = value['max'] ,Median = self.df[key].median() ,ImageFileName = self.BoxPlot(key) ,Hist = Hist ,HistValues = HistValues ,Edges = Edges ,PDF = PDF ,Color1 = Color1 ,Color2 = Color2 ,Variance = np.var(self.df[key]) )) end = time.time() if self.debug == 'YES': print('ContinuousSummary',end-start) return VariableDetails def BoxPlot(self,var): start = time.time() fig, ax = plt.subplots() ax = sns.boxplot(y=self.df[var], ax=ax) box = ax.artists[0] indices = random.sample(range(len(self.SelectedColors)), 2) colors=[self.SelectedColors[i] for i in sorted(indices)] box.set_facecolor(colors[0]) box.set_edgecolor(colors[1]) sns.despine(offset=10, trim=True) this_dir, this_filename = os.path.split(__file__) OutFileName = os.path.join(this_dir, 'HTMLTemplate/dist/output/'+var + '.png') plt.savefig(OutFileName) end = time.time() if self.debug == 'YES': print('BoxPlot',end-start) return OutFileName def HistChart (self, var): start = time.time() h = list(self.df[var].dropna()) hist, edges = np.histogram(h, density=True, bins=50) histValues, edgesValues = np.histogram(h, density=False, bins=50) h.sort() hmean = np.mean(h) hstd = np.std(h) pdf = stats.norm.pdf(edges, hmean, hstd) hist = ','.join([str(round(x,5)) for x in hist]) histValues = ','.join([str(x) for x in histValues]) edges = ','.join([str(x) for x in edges]) pdf = ','.join([str(round(x,5)) for x in pdf]) indices = random.sample(range(len(self.SelectedColors)), 2) colors=[self.SelectedColors[i] for i in sorted(indices)] end = time.time() if self.debug == 'YES': print('HistChart',end-start) return edges, hist, histValues, pdf, colors[0], colors[1] def CorrList (self): start = time.time() df = self.df[self.ContinuousFeatures] CorrDf = df.corr() CorrList = [] MasterList = [] for col in CorrDf.columns: for index,row in CorrDf.iterrows(): CorrList.append(row[col]) MasterList.append(','.join([str(round(x,4)) for x in CorrList])) CorrList = [] end = time.time() if self.debug == 'YES': print('CorrList',end-start) return MasterList, ','.join("'{0}'".format(x) for x in CorrDf.columns) def Anova(self): """ Calculate the F-Score (One Way Anova) for each of Categorical Variables with all the Continuous Variables """ start = time.time() AnovaList = [] Insight1 = "With Confidence interval of 0.05, the variable - \"{0}\" is influenced by the categorical variable - \"{1}\". " Insight2 = "As the Categorical variable - \"{0}\" is binary, Tukey's HSD test is not necessary. " Insight3 = "As the p-Value is higher than the Confidence Interval 0.05, the variable - \"{0}\" is not influenced by the categorical variable - \"{1}\". " for CategoricalVar in self.CategoricalFeatures: Binary = 'Yes' if CategoricalVar in self.BinaryCategoricalFeatures else 'No' for ContinuousVar in self.ContinuousFeatures: TukeyResult = None #f,p = stats.f_oneway(*[list(self.df[self.df[CategoricalVar]==name][ContinuousVar]) for name in set(self.df[CategoricalVar])]) f,p = stats.f_oneway(*[list(self.df[self.df[CategoricalVar]==name][ContinuousVar]) for name in set(self.df[CategoricalVar])]) if (p<0.05 and CategoricalVar in self.BinaryCategoricalFeatures): Insight = Insight1.format(ContinuousVar, CategoricalVar) + Insight2.format(CategoricalVar) elif p<0.05: TukeyResult = self.Tukey(CategoricalVar, ContinuousVar) Insight = Insight1.format(ContinuousVar, CategoricalVar) else: Insight = Insight3.format(ContinuousVar, CategoricalVar) AnovaList.append(dict(Categorical = CategoricalVar, Continuous = ContinuousVar, f = f, p = p, Binary = Binary, Insight = Insight, TukeyResult = TukeyResult)) end = time.time() if self.debug == 'YES': print('Anova',end-start) return AnovaList def Tukey(self,Categorical, Continuous): """ Calculate Tukey Honest Significance Difference (HSD) Test, to identify the groups whose distributions are significantly different """ start = time.time() mc = MultiComparison(self.df[Continuous], self.df[Categorical]) result = mc.tukeyhsd() reject = result.reject meandiffs = result.meandiffs UniqueGroup = mc.groupsunique group1 = [UniqueGroup[index] for index in mc.pairindices[0]] group2 = [UniqueGroup[index] for index in mc.pairindices[1]] reject = result.reject meandiffs = [round(float(meandiff),3) for meandiff in result.meandiffs] columns = ['Group 1', "Group 2", "Mean Difference", "Reject"] TukeyResult = pd.DataFrame(np.column_stack((group1, group2, meandiffs, reject)), columns=columns) end = time.time() if self.debug == 'YES': print('Tukey',end-start) return TukeyResult def std_variance(self): """ Scale the Continuous features with MinMaxScaler and then calculate variance """ start = time.time() scaler = MinMaxScaler() scaled = scaler.fit_transform(self.df[self.ContinuousFeatures].dropna()) var_list = [] i=0 for column in self.ContinuousFeatures: var_list.append(dict(column=column,variance=np.var(scaled[:,i]))) i=i+1 end = time.time() if self.debug == 'YES': print('std_variance',end-start) return pd.DataFrame(var_list) def VIF(self): """ Drop the NaN's and calculate the VIF """ start = time.time() vif_list = [] X = self.df[self.ContinuousFeatures].dropna() for var in X.columns: vif = variance_inflation_factor(X[X.columns].values,X.columns.get_loc(var)) vif_list.append(dict(column=var,vif=vif)) end = time.time() if self.debug == 'YES': print('VIF',end-start) return
pd.DataFrame(vif_list)
pandas.DataFrame
''' Class wrapper for label generation, transforming an input data-frame with endpoints and an input data-frame with imputed data to a Pandas data-frame with labels ''' import os import sys import os.path import ipdb import numpy as np import scipy as sp import pandas as pd import circews.functions.labels as bern_labels class AllLabel: ''' Annotate all labels jointly, including full WorseState and WorseStateSoft labels, multi-class classification labels, regression-time-to-event labels, and smaller component labels that refer to conditions on MAP, Lactate and the medications. ''' def __init__(self, lhours, rhours, dataset=None): self.abs_datetime_key="AbsDatetime" self.rel_datetime_key="RelDatetime" self.patient_id_key="PatientID" self.lhours=lhours self.rhours=rhours self.label_key="AllLabels{}To{}Hours".format(self.lhours, self.rhours) self.grid_step_seconds=300.0 self.dataset=dataset def transform(self, df_pat, df_endpoint, pid=None): abs_time_col=df_pat[self.abs_datetime_key] rel_time_col=df_pat[self.rel_datetime_key] patient_col=df_pat[self.patient_id_key] if df_pat.shape[0]==0 or df_endpoint.shape[0]==0: print("WARNING: Patient {} has no impute data, skipping...".format(pid), flush=True) return None df_endpoint.set_index(keys="Datetime", inplace=True, verify_integrity=True) try: if self.dataset=="bern": df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="nearest") elif self.dataset=="mimic": df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="ffill") except: print("WARNING: Issue when re-indexing frame of patient: {}".format(pid), flush=True) return None endpoint_status_arr=np.array(df_endpoint.endpoint_status) unique_status=np.unique(endpoint_status_arr) for status in unique_status: assert(status in ["unknown","event 0","event 1", "event 2", "event 3", "maybe 1","maybe 2", "maybe 3","probably not 1", "probably not 2", "probably not 3"]) lactate_above_ts=np.array(df_endpoint.lactate_above_threshold,dtype=np.float) map_below_ts=np.array(df_endpoint.MAP_below_threshold,dtype=np.float) l1_present=np.array(df_endpoint.level1_drugs_present,dtype=np.float) l2_present=np.array(df_endpoint.level2_drugs_present,dtype=np.float) l3_present=np.array(df_endpoint.level3_drugs_present,dtype=np.float) worse_state_arr=bern_labels.future_worse_state(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Joint (A|D|E) worse_state_soft_arr=bern_labels.future_worse_state_soft(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Joint (B|C|D|E) from_0_arr=bern_labels.future_worse_state_from_0(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate A from_0_soft_arr=bern_labels.future_worse_state_soft_from_0(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate B from_probably_not_arr=bern_labels.future_worse_state_from_pn(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate C from_1_arr=bern_labels.future_worse_state_from_1(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate D from_2_arr=bern_labels.future_worse_state_from_2(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Separate E; from_1_or_2_arr=bern_labels.future_worse_state_from_1_or_2(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) # Join(D|E) lactate_any_arr=bern_labels.any_positive_transition(lactate_above_ts, self.lhours, self.rhours, self.grid_step_seconds) map_any_arr=bern_labels.any_positive_transition(map_below_ts, self.lhours, self.rhours, self.grid_step_seconds) l1_drugs_any_arr=bern_labels.any_positive_transition(l1_present, self.lhours, self.rhours, self.grid_step_seconds) l2_drugs_any_arr=bern_labels.any_positive_transition(l2_present, self.lhours, self.rhours, self.grid_step_seconds) l3_drugs_any_arr=bern_labels.any_positive_transition(l3_present, self.lhours, self.rhours, self.grid_step_seconds) time_to_worse_state_binned_arr=bern_labels.time_to_worse_state_binned(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) time_to_worse_state_arr=bern_labels.time_to_worse_state(endpoint_status_arr, self.lhours, self.rhours, self.grid_step_seconds) output_df_dict={} output_df_dict[self.abs_datetime_key]=abs_time_col output_df_dict[self.rel_datetime_key]=rel_time_col output_df_dict[self.patient_id_key]=patient_col output_df_dict["WorseState{}To{}Hours".format(self.lhours, self.rhours)]=worse_state_arr output_df_dict["WorseStateSoft{}To{}Hours".format(self.lhours, self.rhours)]=worse_state_soft_arr output_df_dict["WorseStateFromZero{}To{}Hours".format(self.lhours, self.rhours)]=from_0_arr output_df_dict["WorseStateSoftFromZero{}To{}Hours".format(self.lhours, self.rhours)]=from_0_soft_arr output_df_dict["WorseStateFromPn{}To{}Hours".format(self.lhours, self.rhours)]=from_probably_not_arr output_df_dict["WorseStateFromOne{}To{}Hours".format(self.lhours, self.rhours)]=from_1_arr output_df_dict["WorseStateFromTwo{}To{}Hours".format(self.lhours, self.rhours)]=from_2_arr output_df_dict["WorseStateFromOneOrTwo{}To{}Hours".format(self.lhours, self.rhours)]=from_1_or_2_arr output_df_dict["LactateAboveTs{}To{}Hours".format(self.lhours, self.rhours)]=lactate_any_arr output_df_dict["MAPBelowTs{}To{}Hours".format(self.lhours, self.rhours)]=map_any_arr output_df_dict["L1Drugs{}To{}Hours".format(self.lhours, self.rhours)]=l1_drugs_any_arr output_df_dict["L2Drugs{}To{}Hours".format(self.lhours, self.rhours)]=l2_drugs_any_arr output_df_dict["L3Drugs{}To{}Hours".format(self.lhours, self.rhours)]=l3_drugs_any_arr output_df_dict["TimeToWorseState{}To{}Hours".format(self.lhours, self.rhours)]=time_to_worse_state_arr output_df_dict["TimeToWorseStateBinned{}To{}Hours".format(self.lhours, self.rhours)]=time_to_worse_state_binned_arr output_df=pd.DataFrame(output_df_dict) return output_df class DeteriorationLabel: def __init__(self,lhours,rhours): self.abs_datetime_key="AbsDatetime" self.rel_datetime_key="RelDatetime" self.patient_id_key="PatientID" self.lhours=lhours self.rhours=rhours self.label_key="Deterioration_{}To{}Hours".format(self.lhours,self.rhours) self.grid_step_seconds=300.0 def transform(self, df_pat, df_endpoint, pid=None): abs_time_col=df_pat[self.abs_datetime_key] rel_time_col=df_pat[self.rel_datetime_key] patient_col=df_pat[self.patient_id_key] ## Patient has no information in the imputed table or the endpoints (SHOULD NOT HAPPEN) if df_pat.shape[0]==0 or df_endpoint.shape[0]==0: print("WARNING: Patient {} has no impute data, skipping...".format(pid),flush=True) return None df_endpoint.set_index(keys="Datetime",inplace=True,verify_integrity=True) # Re-index the endpoint to the grid of the imputed data. try: df_endpoint=df_endpoint.reindex(index=df_pat.AbsDatetime,method="nearest") except : print("WARNING: Issue when re-indexing frame of patient {}".format(pid),flush=True) return None event1_arr=np.array(df_endpoint.event1) event2_arr=np.array(df_endpoint.event2) event3_arr=np.array(df_endpoint.event3) maybe1_arr=np.array(df_endpoint.maybe_event1) maybe2_arr=np.array(df_endpoint.maybe_event2) maybe3_arr=np.array(df_endpoint.maybe_event3) not1_arr=np.array(df_endpoint.probably_not_event1) not2_arr=np.array(df_endpoint.probably_not_event2) not3_arr=np.array(df_endpoint.probably_not_event3) # Any deterioration, does not require that the exact downward takes place in the forward horizon, but only if there # is some more severe endpoint in the period if self.lhours==0: label_arr=bern_labels.future_worse_state(event1_arr, event2_arr, event3_arr,maybe1_arr, maybe2_arr, maybe3_arr, self.lhours, self.rhours, self.grid_step_seconds) else: label_arr=bern_labels.future_deterioration(event1_arr, event2_arr, event3_arr,maybe1_arr, maybe2_arr, maybe3_arr, self.lhours, self.rhours, self.grid_step_seconds) output_df_dict={} output_df_dict[self.abs_datetime_key]=abs_time_col output_df_dict[self.rel_datetime_key]=rel_time_col output_df_dict[self.patient_id_key]=patient_col output_df_dict[self.label_key]=label_arr output_df=
pd.DataFrame(output_df_dict)
pandas.DataFrame
import requests import base64 import datetime from urllib.parse import urlencode import pandas as pd from IPython.display import Image from IPython.core.display import HTML def main(client_id, client_secret, artist, lookup_id=None, playlist_id=None, fields="", query=None, search_type='artist'): access_token = auth(client_id, client_secret) search = search_spotify(at=access_token , query=query, search_type=search_type) artist_id = get_artist_id(access_token, artist=artist) albums_ids = get_list_of_albums(lookup_id=lookup_id, artist=artist, at=access_token) album_info_list, albums_json = album_information(list_of_albums=albums_ids, at=access_token) artists_in_ablums_= get_multiple_artists_from_albums(albums_json= albums_json) list_of_songs_, list_of_songs_tolist= songs_information(albums_json= albums_json) artists_in_albums_, songs_json, artist_id_, songs_id_= artists_from_songs(list_of_songs_ids=list_of_songs_tolist ,at=access_token) artist_list_df= multiple_artists_songs(list_of_artists_ids= artist_id_, at=access_token) song_features, songs_features_json = song_features(list_of_songs_ids = songs_id_ , at=access_token) play_list_json_V2, empty_list_one_V2= playlist_data(at=access_token, playlist_id=playlist_id, fields=fields) def auth(): base_url = "https://accounts.spotify.com/api/token" client_id = input("client_id: ") client_secret = input("client_secret: ") credentials = f"{client_id}:{client_secret}" b64_credentials = base64.b64encode(credentials.encode()) data_for_token = {"grant_type": "client_credentials"} headers_for_token = {"Authorization": f"Basic {b64_credentials.decode()}"} access_token = requests.post(base_url, data=data_for_token, headers=headers_for_token).json() return access_token def search_spotify(at, query=None, search_type='artist'): """ Search_Type Options: album , artist, playlist, track, show and episode """ endpoint = "https://api.spotify.com/v1/search" headers = { "Authorization": f"Bearer {at['access_token']}" } data = urlencode({"q": query, "type": search_type.lower()}) lookup_url = f"{endpoint}?{data}" search = requests.get(lookup_url, headers=headers).json() return search def get_artist_id(access_token, artist): endpoint = "https://api.spotify.com/v1/search" headers = { "Authorization": f"Bearer {access_token['access_token']}" } data = urlencode({"q": artist, "type": "artist"}) lookup_url = f"{endpoint}?{data}" artist_id = requests.get(lookup_url, headers=headers).json()["artists"]["items"][0]["id"] return artist_id def get_list_of_albums(lookup_id, at, artist=None, resource_type='albums', versions='v1', market="US"): if lookup_id == None: lookup_id = get_artist_id(at, artist=artist) dataV1 = urlencode({"market": market}) endpoint = f"https://api.spotify.com/{versions}/artists/{lookup_id}/{resource_type}?{dataV1}" headers = { "Authorization": f"Bearer {at['access_token']}" } album_json = requests.get(endpoint, headers=headers).json() album_df=[] for albums in range(len(album_json["items"])): album_df.append({ "album_id":album_json["items"][albums]["id"], "artist_id":album_json["items"][0]["artists"][0]["id"] }) albums_ids = pd.DataFrame(album_df)["album_id"].tolist() return albums_ids def album_information(list_of_albums, at, market="US"): counter = len(list_of_albums) info=[] while counter > 0: var1 = counter-20 var2= counter headers = { "Authorization": f"Bearer {at['access_token']}" } if var1 < 0: var1 = 0 joined_list = ",".join(list_of_albums[var1:var2]) data = urlencode({"market": market,"ids":joined_list}) endpoint = f"https://api.spotify.com/v1/albums?{data}" albums_json = requests.get(endpoint, headers=headers).json() for index in range(len(list_of_albums[var1:var2])): albums= albums_json["albums"][index] info.append({ "name_of_album":albums["name"], "album_id":albums["id"], #"artist_name":albums["artists"][0]["name"], #"artist_id":albums["artists"][0]["id"], "album_url":albums["external_urls"]["spotify"], "album_genres":albums["genres"], "album_cover": albums["images"][1]["url"], "album_popularity":albums["popularity"], "release_date":albums["release_date"] }) counter -= 20 album_info_list= pd.DataFrame.from_dict(info) return album_info_list, albums_json def get_multiple_artists_from_albums(albums_json): artists_in_albums = [] for si in range(len(albums_json["albums"])): for i in range(len(albums_json["albums"][si]["artists"])): artists = albums_json["albums"][si]["artists"][i] album_info= albums_json["albums"][si] artists_in_albums.append({ "album_id":album_info["id"], "album_name":album_info["name"], f"album_artist{i+1}":artists["name"], f"album_artist{i+1}_id": artists["id"] }) artists_in_ablums_=pd.DataFrame.from_dict(artists_in_albums).groupby('album_id').first().reset_index() return artists_in_ablums_ def songs_information(albums_json): albums = albums_json["albums"] number_of_albums = len(albums) list_of_songs = [] for i in range(number_of_albums): songs_key = albums[i]["tracks"]["items"] number_of_songs_in_album = len(songs_key) album_id = albums[i]["id"] for si in range(number_of_songs_in_album): songs_subkey= songs_key[si] list_of_songs.append({ "album_id":album_id, "song_id":songs_subkey["id"], "name_of_song":songs_subkey["name"], "duration":songs_subkey["duration_ms"], "song_url": songs_subkey["external_urls"]["spotify"], "song_preview": songs_subkey["preview_url"] }) list_of_songs_= pd.DataFrame.from_dict(list_of_songs) list_of_songs_tolist = list_of_songs_["song_id"].tolist() return list_of_songs_, list_of_songs_tolist def artists_from_songs(list_of_songs_ids,at): counter = len(list_of_songs_ids) artists_in_albums=[] artists_id = [] while counter > 0: var1 = counter-50 var2= counter headers = { "Authorization": f"Bearer {at['access_token']}" } if var1 < 0: var1 = 0 joined_list = ",".join(list_of_songs_ids[var1:var2]) endpoint = f"https://api.spotify.com/v1/tracks?ids={joined_list}" songs_json = requests.get(endpoint, headers=headers).json() songs_in_list = len(songs_json["tracks"]) for i in range(songs_in_list): tracks_in_list = songs_json["tracks"][i] artists_in_track = len(tracks_in_list["artists"]) for si in range(artists_in_track): count_artist = tracks_in_list["artists"][si] artists_in_albums.append({ "song_id":tracks_in_list["id"], "song_popularity":tracks_in_list["popularity"], "song_image":tracks_in_list["album"]["images"][1]["url"], f"name_artist_{si+1}":count_artist["name"], f"id_artist_{si+1}": count_artist["id"] }) artists_id.append(count_artist["id"]) counter -= 50 artists_in_albums_= pd.DataFrame.from_dict(artists_in_albums).groupby('song_id').first().reset_index() artist_id_ = list(set(artists_id)) songs_id_ = artists_in_albums_["song_id"].tolist() return artists_in_albums_, songs_json, artist_id_, songs_id_ def multiple_artists_songs(list_of_artists_ids,at): counter = len(list_of_artists_ids) empty_list_one = [] while counter > 0: var1 = counter-50 var2= counter headers = { "Authorization": f"Bearer {at['access_token']}" } if var1 < 0: var1 = 0 joined_list = ",".join(list_of_artists_ids[var1:var2]) endpoint = f"https://api.spotify.com/v1/artists?ids={joined_list}" artists_json = requests.get(endpoint, headers=headers).json() artist_count = len(artists_json["artists"]) for i in range(artist_count): working_with_artist= artists_json["artists"][i] count_genres = len(working_with_artist["genres"]) for si in range(count_genres): empty_list_one.append({ "id_artist":working_with_artist["id"], "name_artist":working_with_artist["name"], "url": working_with_artist["external_urls"]["spotify"], "followers":working_with_artist["followers"]["total"], "image":working_with_artist["images"][1]["url"], "artist_popluarity":working_with_artist["popularity"], f"genre_{si}":working_with_artist["genres"][si] }) counter -= 50 artist_list_df = pd.DataFrame.from_dict(empty_list_one).groupby('id_artist').first().reset_index() return artist_list_df def song_features(list_of_songs_ids,at): counter = len(list_of_songs_ids) empty_list_one = [] while counter > 0: var1 = counter-100 var2 = counter headers = { "Authorization": f"Bearer {at['access_token']}" } if var1 < 0: var1 = 0 joined_list = ",".join(list_of_songs_ids[var1:var2]) print(joined_list) endpoint = f"https://api.spotify.com/v1/audio-features?ids={joined_list}" songs_features_json = requests.get(endpoint, headers=headers).json() count_features = len(songs_features_json["audio_features"]) for i in range(count_features): sf = songs_features_json["audio_features"][i] if sf != None: empty_list_one.append({ 'song_id': sf["id"],'danceability': sf["danceability"], 'energy': sf["energy"],'key': sf["key"], 'loudness': sf["loudness"],'mode': sf["mode"], 'speechiness': sf["speechiness"],'acousticness': sf["acousticness"], 'instrumentalness': sf["instrumentalness"],'liveness': sf["liveness"], 'valence': sf["valence"],'tempo': sf["tempo"], }) else: empty_list_one.append({ 'song_id': 0,'danceability': 0, 'energy': 0,'key': 0, 'loudness': 0,'mode': 0, 'speechiness': 0,'acousticness': 0, 'instrumentalness': 0,'liveness': 0, 'valence': 0,'tempo': 0, }) counter -= 100 song_features = pd.DataFrame.from_dict(empty_list_one) return song_features def playlist_data(at, playlist_id, market="US", fields=""): endpoint = f"https://api.spotify.com/v1/playlists/{playlist_id}" headers = { "Authorization": f"Bearer {at['access_token']}" } fields = fields data = urlencode({"market": market,"fields":fields}) lookup_url = f"{endpoint}?{data}" play_list_json_V2 = requests.get(lookup_url, headers=headers).json() songs_in_playlist = len(play_list_json_V2["tracks"]["items"]) empty_list_one=[] for i in range(songs_in_playlist): songs_data = play_list_json_V2["tracks"]["items"][i]["track"] count_artists = len(songs_data["artists"]) for si in range(count_artists): songs_data_artist = songs_data["artists"] empty_list_one.append({ "playlist_id":play_list_json_V2["id"], "playlist_name":play_list_json_V2["name"], "playlist_owner":play_list_json_V2["owner"]["display_name"], "owner_url":play_list_json_V2["owner"]["external_urls"]["spotify"], "playlist_url":play_list_json_V2["external_urls"]["spotify"], "playlist_followers": play_list_json_V2["followers"]["total"], "playlist_cover_art": play_list_json_V2["images"][0]["url"], "song_id":songs_data["id"], "song_added_at": play_list_json_V2["tracks"]["items"][i]["added_at"], "song_name":songs_data["name"], "song_duration":songs_data["duration_ms"], "song_popularity":songs_data["popularity"], "song_url":songs_data["external_urls"]["spotify"], f"name_artist_{si+1}":songs_data_artist[si]["name"], f"id_artist_{si+1}":songs_data_artist[si]["id"] }) empty_list_one_V2 = pd.DataFrame.from_dict(empty_list_one).groupby("song_id").first().reset_index() return play_list_json_V2, empty_list_one_V2 def podcast_info(at, show_id, market="MX"): endpoint = f"https://api.spotify.com/v1/shows/{show_id}" headers = { "Authorization": f"Bearer {at['access_token']}" } data = urlencode({"market": market}) lookup_url = f"{endpoint}?{data}" podcast_json = requests.get(lookup_url, headers=headers).json() empty_list =[] count_episodes = len(podcast_json["episodes"]["items"]) empty_list.append({ "name" : podcast_json["name"], "publisher":podcast_json["publisher"], "total_episodes":podcast_json["total_episodes"], "show_id":show_id, "show_cover": podcast_json["episodes"]["items"][0]["images"][1]["url"] }) podcast_basic_info = pd.DataFrame.from_dict(empty_list) return podcast_basic_info, podcast_json def browse_new_playlists(at,limit,offset, country="MX", asset_type="categories"): """ featured-playlists | new-releases | categories | categories/{category_id} | categories/{category_id}/playlists """ base_url =f"https://api.spotify.com/v1/browse/{asset_type}" headers = { "Authorization": f"Bearer {at['access_token']}" } data=urlencode({"country":country, "limit":limit, "offset":offset }) lookup_url = f"{base_url}?{data}" featured_playlist_json = requests.get(lookup_url, headers=headers).json() return featured_playlist_json def top_playlists(at, country): empty_list=[] for countries in range(len(country)): categories_toplists = browse_new_playlists(at, limit=50, offset=0, asset_type=f"featured-playlists", country=country[countries]) len_playlists= range(len(categories_toplists["playlists"]["items"])) for playlist_id in len_playlists: first_key = categories_toplists["playlists"]["items"][playlist_id] empty_list.append({ "name_of_playlist":first_key["name"], "playlist_id":first_key["id"], "owner":first_key["owner"]["display_name"], "playlist_cover":first_key["images"][0]["url"], "country": country[countries] }) top_playlists =
pd.DataFrame.from_dict(empty_list)
pandas.DataFrame.from_dict
from collections import defaultdict from datetime import datetime from itertools import product import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, array, concat, merge, ) import pandas._testing as tm from pandas.core.algorithms import safe_sort import pandas.core.common as com from pandas.core.sorting import ( decons_group_index, get_group_index, is_int64_overflow_possible, lexsort_indexer, nargsort, ) class TestSorting: @pytest.mark.slow def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame( { "A": A, "B": B, "C": A, "D": B, "E": A, "F": B, "G": A, "H": B, "values": np.random.randn(2500), } ) lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"]) rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"]) left = lg.sum()["values"] right = rg.sum()["values"] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values)) tups = com.asarray_tuplesafe(tups) expected = df.groupby(tups).sum()["values"] for k, v in expected.items(): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right) def test_int64_overflow_moar(self): # GH9096 values = range(55109) data = DataFrame.from_dict({"a": values, "b": values, "c": values, "d": values}) grouped = data.groupby(["a", "b", "c", "d"]) assert len(grouped) == len(values) arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5)) i = np.random.choice(len(arr), len(arr) * 4) arr = np.vstack((arr, arr[i])) # add sume duplicate rows i = np.random.permutation(len(arr)) arr = arr[i] # shuffle rows df = DataFrame(arr, columns=list("abcde")) df["jim"], df["joe"] = np.random.randn(2, len(df)) * 10 gr = df.groupby(list("abcde")) # verify this is testing what it is supposed to test! assert is_int64_overflow_possible(gr.grouper.shape) # manually compute groupings jim, joe = defaultdict(list), defaultdict(list) for key, a, b in zip(map(tuple, arr), df["jim"], df["joe"]): jim[key].append(a) joe[key].append(b) assert len(gr) == len(jim) mi = MultiIndex.from_tuples(jim.keys(), names=list("abcde")) def aggr(func): f = lambda a: np.fromiter(map(func, a), dtype="f8") arr = np.vstack((f(jim.values()), f(joe.values()))).T res = DataFrame(arr, columns=["jim", "joe"], index=mi) return res.sort_index() tm.assert_frame_equal(gr.mean(), aggr(np.mean)) tm.assert_frame_equal(gr.median(), aggr(np.median)) def test_lexsort_indexer(self): keys = [[np.nan] * 5 + list(range(100)) + [np.nan] * 5] # orders=True, na_position='last' result = lexsort_indexer(keys, orders=True, na_position="last") exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=True, na_position='first' result = lexsort_indexer(keys, orders=True, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='last' result = lexsort_indexer(keys, orders=False, na_position="last") exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) # orders=False, na_position='first' result = lexsort_indexer(keys, orders=False, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp)) def test_nargsort(self): # np.argsort(items) places NaNs last items = [np.nan] * 5 + list(range(100)) + [np.nan] * 5 # np.argsort(items2) may not place NaNs first items2 = np.array(items, dtype="O") # mergesort is the most difficult to get right because we want it to be # stable. # According to numpy/core/tests/test_multiarray, """The number of # sorted items must be greater than ~50 to check the actual algorithm # because quick and merge sort fall over to insertion sort for small # arrays.""" # mergesort, ascending=True, na_position='last' result = nargsort(items, kind="mergesort", ascending=True, na_position="last") exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items, kind="mergesort", ascending=True, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items, kind="mergesort", ascending=False, na_position="last") exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort(items, kind="mergesort", ascending=False, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='last' result = nargsort(items2, kind="mergesort", ascending=True, na_position="last") exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=True, na_position='first' result = nargsort(items2, kind="mergesort", ascending=True, na_position="first") exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='last' result = nargsort(items2, kind="mergesort", ascending=False, na_position="last") exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) # mergesort, ascending=False, na_position='first' result = nargsort( items2, kind="mergesort", ascending=False, na_position="first" ) exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)) tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False) class TestMerge: @pytest.mark.slow def test_int64_overflow_issues(self): # #2690, combinatorial explosion df1 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G1"]) df2 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G2"]) # it works! result = merge(df1, df2, how="outer") assert len(result) == 2000 low, high, n = -1 << 10, 1 << 10, 1 << 20 left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG")) left["left"] = left.sum(axis=1) # one-2-one match i = np.random.permutation(len(left)) right = left.iloc[i].copy() right.columns = right.columns[:-1].tolist() + ["right"] right.index = np.arange(len(right)) right["right"] *= -1 out = merge(left, right, how="outer") assert len(out) == len(left) tm.assert_series_equal(out["left"], -out["right"], check_names=False) result = out.iloc[:, :-2].sum(axis=1) tm.assert_series_equal(out["left"], result, check_names=False) assert result.name is None out.sort_values(out.columns.tolist(), inplace=True) out.index = np.arange(len(out)) for how in ["left", "right", "outer", "inner"]: tm.assert_frame_equal(out, merge(left, right, how=how, sort=True)) # check that left merge w/ sort=False maintains left frame order out = merge(left, right, how="left", sort=False) tm.assert_frame_equal(left, out[left.columns.tolist()]) out = merge(right, left, how="left", sort=False) tm.assert_frame_equal(right, out[right.columns.tolist()]) # one-2-many/none match n = 1 << 11 left = DataFrame( np.random.randint(low, high, (n, 7)).astype("int64"), columns=list("ABCDEFG"), ) # confirm that this is checking what it is supposed to check shape = left.apply(Series.nunique).values assert is_int64_overflow_possible(shape) # add duplicates to left frame left = concat([left, left], ignore_index=True) right = DataFrame( np.random.randint(low, high, (n // 2, 7)).astype("int64"), columns=list("ABCDEFG"), ) # add duplicates & overlap with left to the right frame i = np.random.choice(len(left), n) right = concat([right, right, left.iloc[i]], ignore_index=True) left["left"] = np.random.randn(len(left)) right["right"] = np.random.randn(len(right)) # shuffle left & right frames i = np.random.permutation(len(left)) left = left.iloc[i].copy() left.index = np.arange(len(left)) i = np.random.permutation(len(right)) right = right.iloc[i].copy() right.index = np.arange(len(right)) # manually compute outer merge ldict, rdict = defaultdict(list), defaultdict(list) for idx, row in left.set_index(list("ABCDEFG")).iterrows(): ldict[idx].append(row["left"]) for idx, row in right.set_index(list("ABCDEFG")).iterrows(): rdict[idx].append(row["right"]) vals = [] for k, lval in ldict.items(): rval = rdict.get(k, [np.nan]) for lv, rv in product(lval, rval): vals.append( k + ( lv, rv, ) ) for k, rval in rdict.items(): if k not in ldict: for rv in rval: vals.append( k + ( np.nan, rv, ) ) def align(df): df = df.sort_values(df.columns.tolist()) df.index = np.arange(len(df)) return df def verify_order(df): kcols = list("ABCDEFG") tm.assert_frame_equal( df[kcols].copy(), df[kcols].sort_values(kcols, kind="mergesort") ) out = DataFrame(vals, columns=list("ABCDEFG") + ["left", "right"]) out = align(out) jmask = { "left": out["left"].notna(), "right": out["right"].notna(), "inner": out["left"].notna() & out["right"].notna(), "outer": np.ones(len(out), dtype="bool"), } for how in ["left", "right", "outer", "inner"]: mask = jmask[how] frame = align(out[mask].copy()) assert mask.all() ^ mask.any() or how == "outer" for sort in [False, True]: res = merge(left, right, how=how, sort=sort) if sort: verify_order(res) # as in GH9092 dtypes break with outer/right join tm.assert_frame_equal( frame, align(res), check_dtype=how not in ("right", "outer") ) def test_decons(): def testit(codes_list, shape): group_index = get_group_index(codes_list, shape, sort=True, xnull=True) codes_list2 = decons_group_index(group_index, shape) for a, b in zip(codes_list, codes_list2): tm.assert_numpy_array_equal(a, b) shape = (4, 5, 6) codes_list = [ np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64), np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64), ] testit(codes_list, shape) shape = (10000, 10000) codes_list = [ np.tile(np.arange(10000, dtype=np.int64), 5), np.tile(np.arange(10000, dtype=np.int64), 5), ] testit(codes_list, shape) class TestSafeSort: def test_basic_sort(self): values = [3, 1, 2, 0, 4] result = safe_sort(values) expected = np.array([0, 1, 2, 3, 4]) tm.assert_numpy_array_equal(result, expected) values = list("baaacb") result = safe_sort(values) expected = np.array(list("aaabbc"), dtype="object") tm.assert_numpy_array_equal(result, expected) values = [] result = safe_sort(values) expected = np.array([]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("verify", [True, False]) def test_codes(self, verify): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) codes = [0, 1, 1, 2, 3, 0, -1, 4] result, result_codes = safe_sort(values, codes, verify=verify) expected_codes = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) # na_sentinel codes = [0, 1, 1, 2, 3, 0, 99, 4] result, result_codes = safe_sort(values, codes, na_sentinel=99, verify=verify) expected_codes = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) codes = [] result, result_codes = safe_sort(values, codes, verify=verify) expected_codes = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) @pytest.mark.parametrize("na_sentinel", [-1, 99]) def test_codes_out_of_bound(self, na_sentinel): values = [3, 1, 2, 0, 4] expected = np.array([0, 1, 2, 3, 4]) # out of bound indices codes = [0, 101, 102, 2, 3, 0, 99, 4] result, result_codes = safe_sort(values, codes, na_sentinel=na_sentinel) expected_codes = np.array( [3, na_sentinel, na_sentinel, 2, 0, 3, na_sentinel, 4], dtype=np.intp ) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) def test_mixed_integer(self): values = np.array(["b", 1, 0, "a", 0, "b"], dtype=object) result = safe_sort(values) expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object) tm.assert_numpy_array_equal(result, expected) values = np.array(["b", 1, 0, "a"], dtype=object) codes = [0, 1, 2, 3, 0, -1, 1] result, result_codes = safe_sort(values, codes) expected = np.array([0, 1, "a", "b"], dtype=object) expected_codes = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) tm.assert_numpy_array_equal(result_codes, expected_codes) def test_mixed_integer_from_list(self): values = ["b", 1, 0, "a", 0, "b"] result = safe_sort(values) expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_unsortable(self): # GH 13714 arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object) msg = "'[<>]' not supported between instances of .*" with pytest.raises(TypeError, match=msg): safe_sort(arr) def test_exceptions(self): with pytest.raises(TypeError, match="Only list-like objects are allowed"): safe_sort(values=1) with pytest.raises(TypeError, match="Only list-like objects or None"): safe_sort(values=[0, 1, 2], codes=1) with pytest.raises(ValueError, match="values should be unique"): safe_sort(values=[0, 1, 2, 1], codes=[0, 1]) def test_extension_array(self): # a = array([1, 3, np.nan, 2], dtype='Int64') a = array([1, 3, 2], dtype="Int64") result = safe_sort(a) # expected = array([1, 2, 3, np.nan], dtype='Int64') expected = array([1, 2, 3], dtype="Int64") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("verify", [True, False]) @pytest.mark.parametrize("na_sentinel", [-1, 99]) def test_extension_array_codes(self, verify, na_sentinel): a =
array([1, 3, 2], dtype="Int64")
pandas.array
""" from https://www.kaggle.com/bminixhofer/aggregated-features-lightgbm """ import gc import pandas as pd import numpy as np def run(): used_cols = ["item_id", "user_id"] train = pd.read_csv("../input/train.csv", usecols=used_cols) train_active =
pd.read_csv("../input/train_active.csv", usecols=used_cols)
pandas.read_csv
import torch import numpy as np import os, sys os.environ['TORCH_MODEL_ZOO'] = '/mnt/projects/counting/pretrained/resnet' import models, datasets, metrics import utils as ut import tqdm, time import pandas as pd def main(): exp_dict = {"model":"MRCNN", "max_epochs":10, "batch_size":1} model = models.mrcnn.MRCNN(exp_dict).cuda() path_base = "checkpoints" # model_state_dict = torch.load(path_base + "/model_state_dict.pth") # model.load_state_dict(model_state_dict) train_set = datasets.pascal2012.Pascal2012(split="train", exp_dict=exp_dict, root="/mnt/datasets/public/issam/VOCdevkit/VOC2012/") train_loader = torch.utils.data.DataLoader( train_set, collate_fn=train_set.collate_fn, batch_size=1, shuffle=True, num_workers=1, pin_memory=True) # Main loop model.history = {"score_list": []} for e in range(exp_dict["max_epochs"]): # Train for one epoch score_dict = train_epoch(model, train_loader) score_dict["epoch"] = e # Update history model.history["score_list"] += [score_dict] # Report results_df =
pd.DataFrame(model.history["score_list"])
pandas.DataFrame
import pandas as pd import io import lithops from .utils import derived_from, is_series_like, M no_default = "__no_default__" class DataFrame: def __init__(self, df, filepath, npartitions): self.filepath = filepath self.df = df self.npartitions = npartitions def reduction( self, chunk, aggregate=None, combine=None, meta=no_default, token=None, split_every=None, chunk_kwargs=None, aggregate_kwargs=None, combine_kwargs=None, **kwargs, ): """Generic row-wise reductions. Parameters ---------- chunk : callable Function to operate on each partition. Should return a ``pandas.DataFrame``, ``pandas.Series``, or a scalar. aggregate : callable, optional Function to operate on the concatenated result of ``chunk``. If not specified, defaults to ``chunk``. Used to do the final aggregation in a tree reduction. The input to ``aggregate`` depends on the output of ``chunk``. If the output of ``chunk`` is a: - scalar: Input is a Series, with one row per partition. - Series: Input is a DataFrame, with one row per partition. Columns are the rows in the output series. - DataFrame: Input is a DataFrame, with one row per partition. Columns are the columns in the output dataframes. Should return a ``pandas.DataFrame``, ``pandas.Series``, or a scalar. combine : callable, optional Function to operate on intermediate concatenated results of ``chunk`` in a tree-reduction. If not provided, defaults to ``aggregate``. The input/output requirements should match that of ``aggregate`` described above. $META token : str, optional The name to use for the output keys. split_every : int, optional Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used, and all intermediates will be concatenated and passed to ``aggregate``. Default is 8. chunk_kwargs : dict, optional Keyword arguments to pass on to ``chunk`` only. aggregate_kwargs : dict, optional Keyword arguments to pass on to ``aggregate`` only. combine_kwargs : dict, optional Keyword arguments to pass on to ``combine`` only. kwargs : All remaining keywords will be passed to ``chunk``, ``combine``, and ``aggregate``. Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': range(50), 'y': range(50, 100)}) >>> ddf = dd.from_pandas(df, npartitions=4) Count the number of rows in a DataFrame. To do this, count the number of rows in each partition, then sum the results: >>> res = ddf.reduction(lambda x: x.count(), ... aggregate=lambda x: x.sum()) >>> res.compute() x 50 y 50 dtype: int64 Count the number of rows in a Series with elements greater than or equal to a value (provided via a keyword). >>> def count_greater(x, value=0): ... return (x >= value).sum() >>> res = ddf.x.reduction(count_greater, aggregate=lambda x: x.sum(), ... chunk_kwargs={'value': 25}) >>> res.compute() 25 Aggregate both the sum and count of a Series at the same time: >>> def sum_and_count(x): ... return pd.Series({'count': x.count(), 'sum': x.sum()}, ... index=['count', 'sum']) >>> res = ddf.x.reduction(sum_and_count, aggregate=lambda x: x.sum()) >>> res.compute() count 50 sum 1225 dtype: int64 Doing the same, but for a DataFrame. Here ``chunk`` returns a DataFrame, meaning the input to ``aggregate`` is a DataFrame with an index with non-unique entries for both 'x' and 'y'. We groupby the index, and sum each group to get the final result. >>> def sum_and_count(x): ... return pd.DataFrame({'count': x.count(), 'sum': x.sum()}, ... columns=['count', 'sum']) >>> res = ddf.reduction(sum_and_count, ... aggregate=lambda x: x.groupby(level=0).sum()) >>> res.compute() count sum x 50 1225 y 50 3725 """ if aggregate is None: aggregate = chunk if combine is None: if combine_kwargs: raise ValueError("`combine_kwargs` provided with no `combine`") combine = aggregate combine_kwargs = aggregate_kwargs chunk_kwargs = chunk_kwargs.copy() if chunk_kwargs else {} chunk_kwargs["aca_chunk"] = chunk combine_kwargs = combine_kwargs.copy() if combine_kwargs else {} combine_kwargs["aca_combine"] = combine aggregate_kwargs = aggregate_kwargs.copy() if aggregate_kwargs else {} aggregate_kwargs["aca_aggregate"] = aggregate return aca( self, chunk=_reduction_chunk, aggregate=_reduction_aggregate, combine=_reduction_combine, meta=meta, token=token, split_every=split_every, chunk_kwargs=chunk_kwargs, aggregate_kwargs=aggregate_kwargs, combine_kwargs=combine_kwargs, **kwargs, ) def _reduction_agg(self, name, axis=None, skipna=True, split_every=False, out=None): axis = self._validate_axis(axis) meta = getattr(self._meta_nonempty, name)(axis=axis, skipna=skipna) token = self._token_prefix + name method = getattr(M, name) if axis == 1: result = self.map_partitions( method, meta=meta, token=token, skipna=skipna, axis=axis ) return handle_out(out, result) else: result = self.reduction( method, meta=meta, token=token, skipna=skipna, axis=axis, split_every=split_every, ) if isinstance(self, DataFrame): result.divisions = (self.columns.min(), self.columns.max()) return handle_out(out, result) def apply( self, func, axis=0, broadcast=None, raw=False, reduce=None, args=(), meta=no_default, result_type=None, **kwds, ): """Parallel version of pandas.DataFrame.apply This mimics the pandas version except for the following: 1. Only ``axis=1`` is supported (and must be specified explicitly). 2. The user should provide output metadata via the `meta` keyword. Parameters ---------- func : function Function to apply to each column/row axis : {0 or 'index', 1 or 'columns'}, default 0 - 0 or 'index': apply function to each column (NOT SUPPORTED) - 1 or 'columns': apply function to each row $META args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Returns ------- applied : Series or DataFrame Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5], ... 'y': [1., 2., 3., 4., 5.]}) >>> ddf = dd.from_pandas(df, npartitions=2) Apply a function to row-wise passing in extra arguments in ``args`` and ``kwargs``: >>> def myadd(row, a, b=1): ... return row.sum() + a + b >>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5) # doctest: +SKIP By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the ``meta`` keyword. This can be specified in many forms, for more information see ``dask.dataframe.utils.make_meta``. Here we specify the output is a Series with name ``'x'``, and dtype ``float64``: >>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5, meta=('x', 'f8')) In the case where the metadata doesn't change, you can also pass in the object itself directly: >>> res = ddf.apply(lambda row: row + 1, axis=1, meta=ddf) See Also -------- dask.DataFrame.map_partitions """ pandas_kwargs = {"axis": axis, "raw": raw, "result_type": result_type} if axis == 0: msg = ( "lithops.DataFrame.apply only supports axis=1\n" " Try: df.apply(func, axis=1)" ) raise NotImplementedError(msg) def pandas_apply_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.apply(func, args=args, **kwds, **pandas_kwargs) fexec = lithops.FunctionExecutor() fexec.map(pandas_apply_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def all(self, axis=None, skipna=True, split_every=False, out=None): def pandas_all_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.all(axis=axis, skipna=skipna) fexec = lithops.FunctionExecutor() fexec.map(pandas_all_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def any(self, axis=None, skipna=True, split_every=False, out=None): def pandas_any_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.any(axis=axis, skipna=skipna) fexec = lithops.FunctionExecutor() fexec.map(pandas_any_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def sum( self, axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None, ): # use self._reduction_agg() def pandas_sum_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.sum(axis=axis, skipna=skipna, min_count=min_count) fexec = lithops.FunctionExecutor() fexec.map(pandas_sum_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def prod( self, axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None, ): # use self._reduction_agg() def pandas_prod_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.prod(axis=axis, skipna=skipna) fexec = lithops.FunctionExecutor() fexec.map(pandas_prod_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def max(self, axis=None, skipna=True, split_every=False, out=None): # use self._reduction_agg() def pandas_max_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.max(axis=axis, skipna=skipna) fexec = lithops.FunctionExecutor() fexec.map(pandas_max_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def min(self, axis=None, skipna=True, split_every=False, out=None): # use self._reduction_agg() def pandas_min_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.min(axis=axis, skipna=skipna) fexec = lithops.FunctionExecutor() fexec.map(pandas_min_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def count(self, axis=None, split_every=False): # use self.map_partition whens axis = 1 , self.reduction when axis = 0() def pandas_count_function(obj): buf = io.BytesIO(obj.data_stream.read()) df =
pd.read_csv(buf)
pandas.read_csv
import json import pandas as pd import os import re def create_entry(raw_entry,hashfunction,encoding): return_dict = {} app_metadata = {'is_god':raw_entry['is_admin']} if not pd.isna(raw_entry['organisation_id']): app_metadata['organisation_id'] = round(raw_entry['organisation_id']) if not pd.isna(raw_entry['base_ids']): app_metadata['base_ids']=str(raw_entry['base_ids']).split(',') return_dict['user_id']=str(raw_entry['id']) return_dict['name']=raw_entry['naam'] if not pd.isna(raw_entry['deleted']) and raw_entry['deleted'] != '0000-00-00 00:00:00': return_dict['email']=re.sub(r'\.deleted\.\d+', '',raw_entry['email']) app_metadata['last_blocked_date']=raw_entry['deleted'] return_dict['blocked']=True else: return_dict['email']=raw_entry['email'] return_dict['email_verified']=False return_dict['custom_password_hash']= { "algorithm":hashfunction, "hash":{ "value":raw_entry['pass'], "encoding":encoding } } if not
pd.isna(raw_entry['cms_usergroups_id'])
pandas.isna
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas.compat as compat from pandas.compat import range import pandas as pd from pandas import ( Categorical, DataFrame, Index, NaT, Series, bdate_range, date_range, isna) from pandas.core import ops import pandas.core.nanops as nanops import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) from .common import TestData class TestSeriesLogicalOps(object): @pytest.mark.parametrize('bool_op', [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_operators_bitwise(self): # GH#9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) with pytest.raises(TypeError): s_1111 & 'a' with pytest.raises(TypeError): s_1111 & ['a', 'b', 'c', 'd'] with pytest.raises(TypeError): s_0123 & np.NaN with pytest.raises(TypeError): s_0123 & 3.14 with pytest.raises(TypeError): s_0123 & [0.1, 4, 3.14, 2] # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a', 'b', np.NaN, 'd']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) with pytest.raises(TypeError): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) assert_series_equal(result, expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented # this is an alignment issue; these are equivalent # https://github.com/pandas-dev/pandas/issues/5284 with pytest.raises(TypeError): d.__and__(s, axis='columns') with pytest.raises(TypeError): s & d # this is wrong as its not a boolean result # result = d.__and__(s,axis='index') @pytest.mark.parametrize('op', [ operator.and_, operator.or_, operator.xor, ]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) assert_series_equal(result, expected) @pytest.mark.parametrize("op, expected", [ (ops.rand_, pd.Index([False, True])), (ops.ror_, pd.Index([False, True])), (ops.rxor, pd.Index([])), ]) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([False, True, False], list('abc')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False], list('abc')) result = a | b assert_series_equal(result, expected) expected = Series([True, False, False], list('abc')) result = a ^ b assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([False, True, False, False], list('abcd')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False, False], list('abcd')) result = a | b assert_series_equal(result, expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result, expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ['z']) expected = Series([False, False, False, False], list('abcz')) assert_series_equal(result, expected) result = a | Series([1], ['z']) expected = Series([True, True, False, False], list('abcz')) assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]), Series([1], ['z']), Series(np.nan, b.index), Series(np.nan, a.index)]: result = a[a | e] assert_series_equal(result, a[a]) for e in [Series(['z'])]: if compat.PY3: with tm.assert_produces_warning(RuntimeWarning): result = a[a | e] else: result = a[a | e] assert_series_equal(result, a[a]) # vs scalars index = list('bca') t = Series([True, False, True]) for v in [True, 1, 2]: result = Series([True, False, True], index=index) | v expected = Series([True, True, True], index=index) assert_series_equal(result, expected) for v in [np.nan, 'foo']: with pytest.raises(TypeError): t | v for v in [False, 0]: result = Series([True, False, True], index=index) | v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [True, 1]: result = Series([True, False, True], index=index) & v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [False, 0]: result = Series([True, False, True], index=index) & v expected = Series([False, False, False], index=index) assert_series_equal(result, expected) for v in [np.nan]: with pytest.raises(TypeError): t & v def test_logical_ops_df_compat(self): # GH#1134 s1 = pd.Series([True, False, True], index=list('ABC'), name='x') s2 = pd.Series([True, True, False], index=list('ABD'), name='x') exp = pd.Series([True, False, False, False], index=list('ABCD'), name='x') assert_series_equal(s1 & s2, exp) assert_series_equal(s2 & s1, exp) # True | np.nan => True exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') assert_series_equal(s1 | s2, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, False, False], index=list('ABCD'), name='x') assert_series_equal(s2 | s1, exp) # DataFrame doesn't fill nan with False exp = pd.DataFrame({'x': [True, False, np.nan, np.nan]}, index=list('ABCD')) assert_frame_equal(s1.to_frame() & s2.to_frame(), exp) assert_frame_equal(s2.to_frame() & s1.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, np.nan, np.nan]}, index=list('ABCD')) assert_frame_equal(s1.to_frame() | s2.to_frame(), exp) assert_frame_equal(s2.to_frame() | s1.to_frame(), exp) # different length s3 = pd.Series([True, False, True], index=list('ABC'), name='x') s4 = pd.Series([True, True, True, True], index=list('ABCD'), name='x') exp = pd.Series([True, False, True, False], index=list('ABCD'), name='x') assert_series_equal(s3 & s4, exp) assert_series_equal(s4 & s3, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') assert_series_equal(s3 | s4, exp) # True | np.nan => True exp = pd.Series([True, True, True, True], index=list('ABCD'), name='x') assert_series_equal(s4 | s3, exp) exp = pd.DataFrame({'x': [True, False, True, np.nan]}, index=list('ABCD')) assert_frame_equal(s3.to_frame() & s4.to_frame(), exp) assert_frame_equal(s4.to_frame() & s3.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, True, np.nan]}, index=list('ABCD')) assert_frame_equal(s3.to_frame() | s4.to_frame(), exp) assert_frame_equal(s4.to_frame() | s3.to_frame(), exp) class TestSeriesComparisons(object): def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) assert_series_equal(s == s2, exp) assert_series_equal(s2 == s, exp) def test_categorical_comparisons(self): # GH 8938 # allow equality comparisons a = Series(list('abc'), dtype="category") b = Series(list('abc'), dtype="object") c = Series(['a', 'b', 'cc'], dtype="object") d = Series(list('acb'), dtype="object") e = Categorical(list('abc')) f = Categorical(list('acb')) # vs scalar assert not (a == 'a').all() assert ((a != 'a') == ~(a == 'a')).all() assert not ('a' == a).all() assert (a == 'a')[0] assert ('a' == a)[0] assert not ('a' != a)[0] # vs list-like assert (a == a).all() assert not (a != a).all() assert (a == list(a)).all() assert (a == b).all() assert (b == a).all() assert ((~(a == b)) == (a != b)).all() assert ((~(b == a)) == (b != a)).all() assert not (a == c).all() assert not (c == a).all() assert not (a == d).all() assert not (d == a).all() # vs a cat-like assert (a == e).all() assert (e == a).all() assert not (a == f).all() assert not (f == a).all() assert ((~(a == e) == (a != e)).all()) assert ((~(e == a) == (e != a)).all()) assert ((~(a == f) == (a != f)).all()) assert ((~(f == a) == (f != a)).all()) # non-equality is not comparable with pytest.raises(TypeError): a < b with pytest.raises(TypeError): b < a with pytest.raises(TypeError): a > b with pytest.raises(TypeError): b > a def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = ser[5] f = getattr(operator, op) result = f(ser, val) expected = f(ser.dropna(), val).reindex(ser.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) def test_unequal_categorical_comparison_raises_type_error(self): # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) with pytest.raises(TypeError): cat > "b" cat = Series(Categorical(list("abc"), ordered=False)) with pytest.raises(TypeError): cat > "b" # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) with pytest.raises(TypeError): cat < "d" with pytest.raises(TypeError): cat > "d" with pytest.raises(TypeError): "d" < cat with pytest.raises(TypeError): "d" > cat tm.assert_series_equal(cat == "d", Series([False, False, False])) tm.assert_series_equal(cat != "d", Series([True, True, True])) @pytest.mark.parametrize('pair', [ ([pd.Timestamp('2011-01-01'), NaT, pd.Timestamp('2011-01-03')], [NaT, NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), NaT, pd.Timedelta('3 days')], [NaT, NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), NaT, pd.Period('2011-03', freq='M')], [NaT, NaT, pd.Period('2011-03', freq='M')]), ]) @pytest.mark.parametrize('reverse', [True, False]) @pytest.mark.parametrize('box', [Series, Index]) @pytest.mark.parametrize('dtype', [None, object]) def test_nat_comparisons(self, dtype, box, reverse, pair): l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) # Series, Index expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected =
Series([False, False, False])
pandas.Series
# -*- coding: utf-8 -*- from __future__ import print_function from distutils.version import LooseVersion from numpy import nan, random import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Timestamp, date_range) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData, _check_mixed_float def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') class TestDataFrameMissingData(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_dropEmptyRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) original = Series(mat, index=self.frame.index, name='foo') expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how='all') # check that original was preserved assert_series_equal(frame['foo'], original) inplace_frame1.dropna(how='all', inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame1['foo'], expected) smaller_frame = frame.dropna(how='all', subset=['foo']) inplace_frame2.dropna(how='all', subset=['foo'], inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame2['foo'], expected) def test_dropIncompleteRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) frame['bar'] = 5 original = Series(mat, index=self.frame.index, name='foo') inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() assert_series_equal(frame['foo'], original) inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=self.frame.index[5:], name='foo') tm.assert_series_equal(smaller_frame['foo'], exp) tm.assert_series_equal(inp_frame1['foo'], exp) samesize_frame = frame.dropna(subset=['bar']) assert_series_equal(frame['foo'], original) self.assertTrue((frame['bar'] == 5).all()) inp_frame2.dropna(subset=['bar'], inplace=True) self.assert_index_equal(samesize_frame.index, self.frame.index) self.assert_index_equal(inp_frame2.index, self.frame.index) def test_dropna(self): df = DataFrame(np.random.randn(6, 4)) df[2][:2] = nan dropped = df.dropna(axis=1) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) # threshold dropped = df.dropna(axis=1, thresh=5) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, thresh=5, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0, thresh=4) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, thresh=4, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=1, thresh=4) assert_frame_equal(dropped, df) dropped = df.dropna(axis=1, thresh=3) assert_frame_equal(dropped, df) # subset dropped = df.dropna(axis=0, subset=[0, 1, 3]) inp = df.copy() inp.dropna(axis=0, subset=[0, 1, 3], inplace=True) assert_frame_equal(dropped, df) assert_frame_equal(inp, df) # all dropped = df.dropna(axis=1, how='all') assert_frame_equal(dropped, df) df[2] = nan dropped = df.dropna(axis=1, how='all') expected = df.ix[:, [0, 1, 3]] assert_frame_equal(dropped, expected) # bad input self.assertRaises(ValueError, df.dropna, axis=3) def test_drop_and_dropna_caching(self): # tst that cacher updates original = Series([1, 2, np.nan], name='A') expected = Series([1, 2], dtype=original.dtype, name='A') df = pd.DataFrame({'A': original.values.copy()}) df2 = df.copy() df['A'].dropna() assert_series_equal(df['A'], original) df['A'].dropna(inplace=True) assert_series_equal(df['A'], expected) df2['A'].drop([1])
assert_series_equal(df2['A'], original)
pandas.util.testing.assert_series_equal
""" Tests for Timestamp timezone-related methods """ from datetime import ( date, datetime, timedelta, ) import dateutil from dateutil.tz import ( gettz, tzoffset, ) import pytest import pytz from pytz.exceptions import ( AmbiguousTimeError, NonExistentTimeError, ) from pandas._libs.tslibs import timezones from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td from pandas import ( NaT, Timestamp, ) class TestTimestampTZOperations: # -------------------------------------------------------------- # Timestamp.tz_localize def test_tz_localize_pushes_out_of_bounds(self): # GH#12677 # tz_localize that pushes away from the boundary is OK msg = ( f"Converting {Timestamp.min.strftime('%Y-%m-%d %H:%M:%S')} " f"underflows past {Timestamp.min}" ) pac = Timestamp.min.tz_localize("US/Pacific") assert pac.value > Timestamp.min.value pac.tz_convert("Asia/Tokyo") # tz_convert doesn't change value with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp.min.tz_localize("Asia/Tokyo") # tz_localize that pushes away from the boundary is OK msg = ( f"Converting {Timestamp.max.strftime('%Y-%m-%d %H:%M:%S')} " f"overflows past {Timestamp.max}" ) tokyo = Timestamp.max.tz_localize("Asia/Tokyo") assert tokyo.value < Timestamp.max.value tokyo.tz_convert("US/Pacific") # tz_convert doesn't change value with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp.max.tz_localize("US/Pacific") def test_tz_localize_ambiguous_bool(self): # make sure that we are correctly accepting bool values as ambiguous # GH#14402 ts = Timestamp("2015-11-01 01:00:03") expected0 =
Timestamp("2015-11-01 01:00:03-0500", tz="US/Central")
pandas.Timestamp
""" Metrics for seismic objects: cubes and horizons. """ from copy import copy from textwrap import dedent from itertools import zip_longest from tqdm.auto import tqdm import numpy as np try: import cupy as cp CUPY_AVAILABLE = True except ImportError: cp = np CUPY_AVAILABLE = False import cv2 import pandas as pd from ..batchflow.notifier import Notifier from .labels import Horizon from .utils import Accumulator, to_list from .functional import to_device, from_device from .functional import correlation, crosscorrelation, btch, kl, js, hellinger, tv, hilbert from .functional import smooth_out, digitize, gridify, perturb, histo_reduce from .plotters import plot_image class BaseMetrics: """ Base class for seismic metrics. Child classes have to implement access to `data`, `probs`, `bad_traces` attributes. """ # pylint: disable=attribute-defined-outside-init, blacklisted-name PLOT_DEFAULTS = { 'cmap': 'Metric', 'fill_color': 'black' } LOCAL_DEFAULTS = { 'kernel_size': 3, 'agg': 'nanmean', 'device': 'gpu', 'amortize': True, } SUPPORT_DEFAULTS = { 'supports': 100, 'safe_strip': 50, 'agg': 'nanmean', 'device': 'gpu', 'amortize': True, } SMOOTHING_DEFAULTS = { 'kernel_size': 21, 'sigma': 10.0, } EPS = 0.00001 def evaluate(self, metric, plot=False, plot_supports=False, enlarge=True, width=5, **kwargs): """ Calculate desired metric, apply aggregation, then plot resulting metric-map. To plot the results, set `plot` argument to True. Parameters ---------- metric : str Name of metric to evaluate. enlarge : bool Whether to apply `:meth:.Horizon.matrix_enlarge` to the result. width : int Widening for the metric. Works only if `enlarge` set to True. plot : bool Whether to use `:func:.plot_image` to show the result. plot_supports : bool Whether to show support traces on resulting image. Works only if `plot` set to True. kwargs : dict Arguments to be passed in metric-calculation methods (see `:meth:.compute_local` and `:meth:.compute_support`), as well as plotting arguments (see `:func:.plot_image`). """ if 'support' in metric: kwargs = {**self.SUPPORT_DEFAULTS, **kwargs} elif 'local' in metric: kwargs = {**self.LOCAL_DEFAULTS, **kwargs} self._last_evaluation = {**kwargs} metric_fn = getattr(self, metric) metric_val, plot_dict = metric_fn(**kwargs) if cp is not np and cp.cuda.is_available(): # pylint: disable=protected-access cp._default_memory_pool.free_all_blocks() if hasattr(self, 'horizon') and self.horizon.is_carcass and enlarge: metric_val = self.horizon.matrix_enlarge(metric_val, width) if plot: plot_dict = {**self.PLOT_DEFAULTS, **plot_dict} figure = plot_image(metric_val, **plot_dict, return_figure=True) if 'support' in metric and plot_supports: support_coords = self._last_evaluation['support_coords'] figure.axes[0].scatter(support_coords[:, 0], support_coords[:, 1], s=33, marker='.', c='blue') # Store for debug / introspection purposes self._last_evaluation['plot_dict'] = plot_dict self._last_evaluation['figure'] = figure return metric_val def compute_local(self, function, data, bad_traces, kernel_size=3, normalize=True, agg='mean', amortize=False, axis=0, device='cpu', pbar=None): """ Compute metric in a local fashion, using `function` to compare nearest traces. Under the hood, each trace is compared against its nearest neighbours in a square window of `kernel_size` size. Results of comparisons are aggregated via `agg` function. Works on both `cpu` (via standard `NumPy`) and GPU (with the help of `cupy` library). The returned array is always on CPU. Parameters ---------- function : callable Function to compare two arrays. Must have the following signature: `(array1, array2, std1, std2)`, where `std1` and `std2` are pre-computed standard deviations. In order to work properly on GPU, must be device-agnostic. data : ndarray 3D array of data to evaluate on. bad_traces : ndarray 2D matrix of traces where the metric should not be computed. kernel_size : int Window size for comparison traces. normalize : bool Whether the data should be zero-meaned before computing metric. agg : str Function to aggregate values for each trace. See :class:`.Accumulator` for details. amortize : bool Whether the aggregation should be sequential or by stacking all the matrices. See :class:`.Accumulator` for details. axis : int Axis to stack arrays on. See :class:`.Accumulator` for details. device : str Device specificator. Can be either string (`cpu`, `gpu:4`) or integer (`4`). pbar : type or None Progress bar to use. """ i_range, x_range = data.shape[:2] k = kernel_size // 2 + 1 # Transfer to GPU, if needed data = to_device(data, device) bad_traces = to_device(bad_traces, device) xp = cp.get_array_module(data) if CUPY_AVAILABLE else np # Compute data statistics data_stds = data.std(axis=-1) bad_traces[data_stds == 0.0] = 1 if normalize: data_n = data - data.mean(axis=-1, keepdims=True) else: data_n = data # Pad everything padded_data = xp.pad(data_n, ((0, k), (k, k), (0, 0)), constant_values=xp.nan) padded_stds = xp.pad(data_stds, ((0, k), (k, k)), constant_values=0.0) padded_bad_traces = xp.pad(bad_traces, k, constant_values=1) # Compute metric by shifting arrays total = kernel_size * kernel_size - 1 pbar = Notifier(pbar, total=total) accumulator = Accumulator(agg=agg, amortize=amortize, axis=axis, total=total) for i in range(k): for j in range(-k+1, k): # Comparison between (x, y) and (x+i, y+j) vectors is the same as comparison between (x+i, y+j) # and (x, y). So, we can compare (x, y) with (x+i, y+j) and save computed result twice: # matrix associated with vector (x, y) and matrix associated with (x+i, y+j) vector. if (i == 0) and (j <= 0): continue shifted_data = padded_data[i:i+i_range, k+j:k+j+x_range] shifted_stds = padded_stds[i:i+i_range, k+j:k+j+x_range] shifted_bad_traces = padded_bad_traces[k+i:k+i+i_range, k+j:k+j+x_range] computed = function(data, shifted_data, data_stds, shifted_stds) # Using symmetry property: symmetric_bad_traces = padded_bad_traces[k-i:k-i+i_range, k-j:k-j+x_range] symmetric_computed = computed[:i_range-i, max(0, -j):min(x_range, x_range-j)] symmetric_computed = xp.pad(symmetric_computed, ((i, 0), (max(0, j), -min(0, j))), constant_values=xp.nan) computed[shifted_bad_traces == 1] = xp.nan symmetric_computed[symmetric_bad_traces == 1] = xp.nan accumulator.update(computed) accumulator.update(symmetric_computed) pbar.update(2) pbar.close() result = accumulator.get(final=True) return from_device(result) def compute_support(self, function, data, bad_traces, supports, safe_strip=0, normalize=True, agg='mean', amortize=False, axis=0, device='cpu', pbar=None): """ Compute metric in a support fashion, using `function` to compare all the traces against a set of (randomly chosen or supplied) reference ones. Results of comparisons are aggregated via `agg` function. Works on both `cpu` (via standard `NumPy`) and GPU (with the help of `cupy` library). The returned array is always on CPU. Parameters ---------- function : callable Function to compare two arrays. Must have the following signature: `(array1, array2, std1, std2)`, where `std1` and `std2` are pre-computed standard deviations. In order to work properly on GPU, must be device-agnostic. data : ndarray 3D array of data to evaluate on. bad_traces : ndarray 2D matrix of traces where the metric should not be computed. supports : int or ndarray If int, then number of supports to generate randomly from non-bad traces. If ndarray, then should be of (N, 2) shape and contain coordinates of reference traces. normalize : bool Whether the data should be zero-meaned before computing metric. agg : str Function to aggregate values for each trace. See :class:`.Accumulator` for details. amortize : bool Whether the aggregation should be sequential or by stacking all the matrices. See :class:`.Accumulator` for details. axis : int Axis to stack arrays on. See :class:`.Accumulator` for details. device : str Device specificator. Can be either string (`cpu`, `gpu:4`) or integer (`4`). pbar : type or None Progress bar to use. """ # Transfer to GPU, if needed data = to_device(data, device) bad_traces = to_device(bad_traces, device) xp = cp.get_array_module(data) if CUPY_AVAILABLE else np # Compute data statistics data_stds = data.std(axis=-1) bad_traces[data_stds == 0.0] = 1 if normalize: data_n = data - data.mean(axis=-1, keepdims=True) else: data_n = data # Generate support coordinates if isinstance(supports, int): if safe_strip: bad_traces_ = bad_traces.copy() bad_traces_[:, :safe_strip], bad_traces_[:, -safe_strip:] = 1, 1 bad_traces_[:safe_strip, :], bad_traces_[-safe_strip:, :] = 1, 1 else: bad_traces_ = bad_traces valid_traces = xp.where(bad_traces_ == 0) indices = xp.random.choice(len(valid_traces[0]), supports) support_coords = xp.asarray([valid_traces[0][indices], valid_traces[1][indices]]).T elif isinstance(supports, (tuple, list, np.ndarray)): support_coords = xp.asarray(supports) # Save for plot and introspection self._last_evaluation['support_coords'] = from_device(support_coords) # Generate support traces support_traces = data_n[support_coords[:, 0], support_coords[:, 1]] support_stds = data_stds[support_coords[:, 0], support_coords[:, 1]] # Compute metric pbar = Notifier(pbar, total=len(support_traces)) accumulator = Accumulator(agg=agg, amortize=amortize, axis=axis, total=len(support_traces)) for i, _ in enumerate(support_traces): computed = function(data_n, support_traces[i], data_stds, support_stds[i]) computed[bad_traces == 1] = xp.nan accumulator.update(computed) pbar.update() pbar.close() result = accumulator.get(final=True) return from_device(result) def local_corrs(self, kernel_size=3, normalize=True, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute correlation in a local fashion. """ metric = self.compute_local(function=correlation, data=self.data, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() title = f'Local correlation, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': -1.0, 'zmax': 1.0, **kwargs } return metric, plot_dict def support_corrs(self, supports=100, safe_strip=0, normalize=True, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute correlation against reference traces. """ metric = self.compute_support(function=correlation, data=self.data, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, device=device, amortize=amortize, pbar=pbar) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support correlation with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': -1.0, 'zmax': 1.0, 'colorbar': True, 'bad_color': 'k', **kwargs } return metric, plot_dict def local_crosscorrs(self, kernel_size=3, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute cross-correlation in a local fashion. """ metric = self.compute_local(function=crosscorrelation, data=self.data, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) zvalue = np.nanquantile(np.abs(metric), 0.98).astype(np.int32) title, plot_defaults = self.get_plot_defaults() title = f'Local cross-correlation, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'cmap': 'seismic_r', 'zmin': -zvalue, 'zmax': zvalue, **kwargs } return metric, plot_dict def support_crosscorrs(self, supports=100, safe_strip=0, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute cross-correlation against reference traces. """ metric = self.compute_support(function=crosscorrelation, data=self.data, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) zvalue = np.nanquantile(np.abs(metric), 0.98).astype(np.int32) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support cross-correlation with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'cmap': 'seismic_r', 'zmin': -zvalue, 'zmax': zvalue, **kwargs } return metric, plot_dict def local_btch(self, kernel_size=3, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Bhattacharyya divergence in a local fashion. """ metric = self.compute_local(function=btch, data=self.probs, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() title = f'Local Bhattacharyya divergence, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': 0.0, 'zmax': 1.0, **kwargs } return metric, plot_dict def support_btch(self, supports=100, safe_strip=0, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Bhattacharyya divergence against reference traces. """ metric = self.compute_support(function=btch, data=self.probs, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support Bhattacharyya divergence with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': 0.0, 'zmax': 1.0, **kwargs } return metric, plot_dict def local_kl(self, kernel_size=3, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Kullback-Leibler divergence in a local fashion. """ metric = self.compute_local(function=kl, data=self.probs, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() title = f'Local KL divergence, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def support_kl(self, supports=100, safe_strip=0, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Kullback-Leibler divergence against reference traces. """ metric = self.compute_support(function=kl, data=self.probs, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support KL divergence with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def local_js(self, kernel_size=3, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Jensen-Shannon divergence in a local fashion. """ metric = self.compute_local(function=js, data=self.probs, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() title = f'Local JS divergence, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def support_js(self, supports=100, safe_strip=0, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Jensen-Shannon divergence against reference traces. """ metric = self.compute_support(function=js, data=self.probs, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support JS divergence with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def local_hellinger(self, kernel_size=3, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Hellinger distance in a local fashion. """ metric = self.compute_local(function=hellinger, data=self.probs, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() title = f'Local Hellinger distance, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def support_hellinger(self, supports=100, safe_strip=0, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute Hellinger distance against reference traces. """ metric = self.compute_support(function=hellinger, data=self.probs, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support Hellinger distance with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def local_tv(self, kernel_size=3, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute total variation in a local fashion. """ metric = self.compute_local(function=tv, data=self.probs, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() title = f'Local total variation, k={kernel_size}, with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict def support_tv(self, supports=100, safe_strip=0, normalize=False, agg='mean', amortize=False, device='cpu', pbar=None, **kwargs): """ Compute total variation against reference traces. """ metric = self.compute_support(function=tv, data=self.probs, bad_traces=self.bad_traces, supports=supports, safe_strip=safe_strip, normalize=normalize, agg=agg, amortize=amortize, device=device, pbar=pbar) title, plot_defaults = self.get_plot_defaults() n_supports = supports if isinstance(supports, int) else len(supports) title = f'Support total variation with {n_supports} supports with `{agg}` aggregation\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'zmin': None, 'zmax': None, **kwargs } return metric, plot_dict class HorizonMetrics(BaseMetrics): """ Evaluate metric(s) on horizon(s). During initialization, data along the horizon is cut with the desired parameters. To get the value of a particular metric, use :meth:`.evaluate`:: HorizonMetrics(horizon).evaluate('support_corrs', supports=20, agg='mean') To plot the results, set `plot` argument of :meth:`.evaluate` to True. Parameters horizons : :class:`.Horizon` or sequence of :class:`.Horizon` Horizon(s) to evaluate. Can be either one horizon, then this horizon is evaluated on its own, or sequence of two horizons, then they are compared against each other, or nested sequence of horizon and list of horizons, then the first horizon is compared against the best match from the list. other parameters Passed direcly to :meth:`.Horizon.get_cube_values` or :meth:`.Horizon.get_cube_values_line`. """ AVAILABLE_METRICS = [ 'local_corrs', 'support_corrs', 'local_btch', 'support_btch', 'local_kl', 'support_kl', 'local_js', 'support_js', 'local_hellinger', 'support_hellinger', 'local_tv', 'support_tv', 'instantaneous_phase', ] def __init__(self, horizons, window=23, offset=0, normalize=False, chunk_size=256): super().__init__() horizons = list(horizons) if isinstance(horizons, tuple) else horizons horizons = horizons if isinstance(horizons, list) else [horizons] self.horizons = horizons # Save parameters for later evaluation self.window, self.offset, self.normalize, self.chunk_size = window, offset, normalize, chunk_size # The first horizon is used to evaluate metrics self.horizon = horizons[0] self.name = self.horizon.short_name # Properties self._data = None self._probs = None self._bad_traces = None def get_plot_defaults(self): """ Axis labels and horizon/cube names in the title. """ title = f'horizon `{self.name}` on cube `{self.horizon.field.displayed_name}`' return title, { 'xlabel': self.horizon.field.axis_names[0], 'ylabel': self.horizon.field.axis_names[1], } @property def data(self): """ Create `data` attribute at the first time of evaluation. """ if self._data is None: self._data = self.horizon.get_cube_values(window=self.window, offset=self.offset, chunk_size=self.chunk_size) self._data[self._data == Horizon.FILL_VALUE] = np.nan return self._data @property def probs(self): """ Probabilistic interpretation of `data`. """ if self._probs is None: hist_matrix = histo_reduce(self.data, self.horizon.field.bins) self._probs = hist_matrix / np.sum(hist_matrix, axis=-1, keepdims=True) + self.EPS return self._probs @property def bad_traces(self): """ Traces to fill with `nan` values. """ if self._bad_traces is None: self._bad_traces = self.horizon.field.zero_traces.copy() self._bad_traces[self.horizon.full_matrix == Horizon.FILL_VALUE] = 1 return self._bad_traces def perturbed(self, n=5, scale=2.0, clip=3, window=None, kernel_size=3, agg='nanmean', device='cpu', **kwargs): """ Evaluate horizon by: - compute the `local_corrs` metric - perturb the horizon `n` times by random shifts, generated from normal distribution of `scale` std and clipping of `clip` size - compute the `local_corrs` metric for each of the perturbed horizons - get a mean and max value of those metrics: they correspond to the `averagely shifted` and `best generated shifts` horizons - use difference between horizon metric and mean/max metrics of perturbed as a final assesment maps Parameters ---------- n : int Number of perturbed horizons to generate. scale : number Standard deviation (spread or “width”) of the distribution. Must be non-negative. clip : number Maximum size of allowed shifts window : int or None Size of the data along the height axis to evaluate perturbed horizons. Note that due to shifts, it must be smaller than the original data by atleast 2 * `clip` units. kernel_size, agg, device Parameters of individual metric evaluation """ w = self.data.shape[2] window = window or w - 2 * clip - 1 # Compute metrics for multiple perturbed horizons: generate shifts, apply them to data, # evaluate metric on the produced array acc_mean = Accumulator('nanmean') acc_max = Accumulator('nanmax') for _ in range(n): shifts = np.random.normal(scale=2., size=self.data.shape[:2]) shifts = np.rint(shifts).astype(np.int32) shifts = np.clip(shifts, -clip, clip) shifts[self.horizon.full_matrix == self.horizon.FILL_VALUE] = 0 pb = perturb(self.data, shifts, window) pb_metric = self.compute_local(function=correlation, data=pb, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=True, agg=agg, device=device) acc_mean.update(pb_metric) acc_max.update(pb_metric) pb_mean = acc_mean.get(final=True) pb_max = acc_max.get(final=True) # Subtract mean/max maps from the horizon metric horizon_metric = self.compute_local(function=correlation, data=self.data, bad_traces=self.bad_traces, kernel_size=kernel_size, normalize=True, agg=agg, device=device) diff_mean = horizon_metric - pb_mean diff_max = horizon_metric - pb_max title, plot_defaults = self.get_plot_defaults() title = f'Perturbed metrics\nfor {title}' plot_dict = { **plot_defaults, 'figsize': (20, 7), 'separate': True, 'suptitle_label': title, 'title_label': ['mean', 'max'], 'cmap': 'Reds_r', 'zmin': [0.0, -0.5], 'zmax': 0.5, **kwargs } return (diff_mean, diff_max), plot_dict def instantaneous_phase(self, device='cpu', **kwargs): """ Compute instantaneous phase via Hilbert transform. """ #pylint: disable=unexpected-keyword-arg # Transfer to GPU, if needed data = to_device(self.data, device) xp = cp.get_array_module(data) if CUPY_AVAILABLE else np # Compute hilbert transform and scale to 2pi range analytic = hilbert(data, axis=2) phase = xp.angle(analytic) phase_slice = phase[:, :, phase.shape[-1] // 2] phase_slice[np.isnan(xp.std(data, axis=-1))] = xp.nan phase_slice[self.horizon.full_matrix == self.horizon.FILL_VALUE] = xp.nan # Evaluate mode value values = phase_slice[~xp.isnan(phase_slice)].round(2) uniques, counts = xp.unique(values, return_counts=True) # 3rd most frequent value is chosen to skip the first two (they are highly likely -pi/2 and pi/2) mode = uniques[xp.argpartition(counts, -3)[-3]] shifted_slice = phase_slice - mode shifted_slice[shifted_slice >= xp.pi] -= 2 * xp.pi # Re-norm so that mode value is at zero point if xp.nanmin(shifted_slice) < -xp.pi: shifted_slice[shifted_slice < -xp.pi] += 2 * xp.pi if xp.nanmax(shifted_slice) > xp.pi: shifted_slice[shifted_slice > xp.pi] -= 2 * xp.pi title, plot_defaults = self.get_plot_defaults() title = f'Instantaneous phase\nfor {title}' plot_dict = { **plot_defaults, 'title_label': title, 'cmap': 'seismic', 'zmin': -np.pi, 'zmax': np.pi, 'colorbar': True, 'bad_color': 'k', **kwargs } return from_device(shifted_slice), plot_dict def find_best_match(self, offset=0, **kwargs): """ Find the closest horizon to the first one in the list of passed at initialization. """ _ = kwargs if isinstance(self.horizons[1], Horizon): self.horizons[1] = [self.horizons[1]] lst = [] for horizon in self.horizons[1]: if horizon.field.name == self.horizon.field.name: overlap_info = Horizon.check_proximity(self.horizon, horizon, offset=offset) lst.append((horizon, overlap_info)) lst.sort(key=lambda x: abs(x[1].get('mean', 999999))) other, overlap_info = lst[0] return (other, overlap_info), {} # actual return + fake plot dict def compare(self, offset=0, absolute=True, hist=True, printer=print, **kwargs): """ Compare horizons on against the best match from the list of horizons. Parameters ---------- offset : number Value to shift horizon down. Can be used to take into account different counting bases. absolute : bool Whether to use absolute values for differences. hist : bool Whether to plot histogram of differences. printer : callable Function to print results, for example `print` or any other callable that can log data. """ if len(self.horizons) != 2: raise ValueError('Can compare two horizons exactly or one to the best match from list of horizons. ') _ = kwargs (other, oinfo), _ = self.find_best_match(offset=offset) self_full_matrix = self.horizon.full_matrix other_full_matrix = other.full_matrix metric = np.where((self_full_matrix != other.FILL_VALUE) & (other_full_matrix != other.FILL_VALUE), offset + self_full_matrix - other_full_matrix, np.nan) if absolute: metric = np.abs(metric) at_1 = len(np.asarray((self_full_matrix != other.FILL_VALUE) & (other_full_matrix == other.FILL_VALUE)).nonzero()[0]) at_2 = len(np.asarray((self_full_matrix == other.FILL_VALUE) & (other_full_matrix != other.FILL_VALUE)).nonzero()[0]) if printer is not None: msg = f""" Comparing horizons: {self.horizon.name.rjust(45)} {other.name.rjust(45)} {'—'*45} Rate in 5ms: {oinfo['window_rate']:8.3f} Mean/std of errors: {oinfo['mean']:4.2f} / {oinfo['std']:4.2f} Mean/std of abs errors: {oinfo['abs_mean']:4.2f} / {oinfo['abs_std']:4.2f} Max error/abs error: {oinfo['max']:4} / {oinfo['abs_max']:4} {'—'*45} Lengths of horizons: {len(self.horizon):8} {len(other):8} {'—'*45} Average heights of horizons: {(offset + self.horizon.h_mean):8.2f} {other.h_mean:8.2f} {'—'*45} Coverage of horizons: {self.horizon.coverage:8.4f} {other.coverage:8.4f} {'—'*45} Solidity of horizons: {self.horizon.solidity:8.4f} {other.solidity:8.4f} {'—'*45} Number of holes in horizons: {self.horizon.number_of_holes:8} {other.number_of_holes:8} {'—'*45} Additional traces labeled: {at_1:8} (present in one, absent in other) {at_2:8} {'—'*45} """ printer(dedent(msg)) if hist: hist_dict = { 'bins': 100, 'xlabel': 'l1-values', 'ylabel': 'N', 'title_label': 'Histogram of l1 differences', } plot_image(metric, mode='hist', **hist_dict) title = f'Height differences between {self.horizon.name} and {other.name}' plot_dict = { 'spatial': True, 'title_label': f'{title} on cube {self.horizon.field.displayed_name}', 'cmap': 'Reds', 'zmin': 0, 'zmax': np.nanmax(metric), 'ignore_value': np.nan, 'xlabel': 'INLINE_3D', 'ylabel': 'CROSSLINE_3D', 'bad_color': 'black', 'colorbar': True, **kwargs } return metric, plot_dict class GeometryMetrics(BaseMetrics): """ Metrics to asses cube quality. """ AVAILABLE_METRICS = [ 'local_corrs', 'support_corrs', 'local_btch', 'support_btch', 'local_kl', 'support_kl', 'local_js', 'support_js', 'local_hellinger', 'support_hellinger', 'local_tv', 'support_tv', ] def __init__(self, geometries): super().__init__() geometries = list(geometries) if isinstance(geometries, tuple) else geometries geometries = geometries if isinstance(geometries, list) else [geometries] self.geometries = geometries self.geometry = geometries[0] self._data = None self._probs = None self._bad_traces = None self.name = 'hist_matrix' def get_plot_defaults(self): """ Axis labels and horizon/cube names in the title. """ title = f'`{self.name}` on cube `{self.geometry.displayed_name}`' return title, { 'xlabel': self.geometry.axis_names[0], 'ylabel': self.geometry.axis_names[1], } @property def data(self): """ Histogram of values for every trace in the cube. """ if self._data is None: self._data = self.geometry.hist_matrix return self._data @property def bad_traces(self): """ Traces to exclude from metric evaluations: bad traces are marked with `1`s. """ if self._bad_traces is None: self._bad_traces = self.geometry.zero_traces self._bad_traces[self.data.max(axis=-1) == self.data.sum(axis=-1)] = 1 return self._bad_traces @property def probs(self): """ Probabilistic interpretation of `data`. """ if self._probs is None: self._probs = self.data / np.sum(self.data, axis=-1, keepdims=True) + self.EPS return self._probs def quality_map(self, quantiles, metric_names=None, computed_metrics=None, agg='mean', amortize=False, axis=0, apply_smoothing=False, smoothing_params=None, local_params=None, support_params=None, **kwargs): """ Create a quality map based on number of metrics. Parameters ---------- quantiles : sequence of floats Quantiles for computing hardness thresholds. Must be in (0, 1) ranges. metric_names : sequence of str Which metrics to use to assess hardness of data. reduce_func : str Function to reduce multiple metrics into one spatial map. smoothing_params, local_params, support_params : dicts Additional parameters for smoothening, local metrics, support metrics. """ _ = kwargs computed_metrics = computed_metrics or [] smoothing_params = smoothing_params or self.SMOOTHING_DEFAULTS local_params = local_params or self.LOCAL_DEFAULTS support_params = support_params or self.SUPPORT_DEFAULTS smoothing_params = {**self.SMOOTHING_DEFAULTS, **smoothing_params, **kwargs} local_params = {**self.LOCAL_DEFAULTS, **local_params, **kwargs} support_params = {**self.SUPPORT_DEFAULTS, **support_params, **kwargs} if metric_names: for metric_name in metric_names: if 'local' in metric_name: kwds = copy(local_params) elif 'support' in metric_name: kwds = copy(support_params) metric = self.evaluate(metric_name, plot=False, **kwds) computed_metrics.append(metric) accumulator = Accumulator(agg=agg, amortize=amortize, axis=axis) for metric_matrix in computed_metrics: if apply_smoothing: metric_matrix = smooth_out(metric_matrix, **smoothing_params) digitized = digitize(metric_matrix, quantiles) accumulator.update(digitized) quality_map = accumulator.get(final=True) if apply_smoothing: quality_map = smooth_out(quality_map, **smoothing_params) title, plot_defaults = self.get_plot_defaults() plot_dict = { **plot_defaults, 'title_label': f'Quality map for {title}', 'cmap': 'Reds', 'zmin': 0.0, 'zmax': np.nanmax(quality_map), **kwargs } return quality_map, plot_dict def make_grid(self, quality_map, frequencies, iline=True, xline=True, full_lines=True, margin=0, **kwargs): """ Create grid with various frequencies based on quality map. """ _ = kwargs if margin: bad_traces = np.copy(self.geometry.zero_traces) bad_traces[:, 0] = 1 bad_traces[:, -1] = 1 bad_traces[0, :] = 1 bad_traces[-1, :] = 1 kernel = np.ones((2 + 2*margin, 2 + 2*margin), dtype=np.uint8) bad_traces = cv2.dilate(bad_traces.astype(np.uint8), kernel, iterations=1).astype(bad_traces.dtype) quality_map[(bad_traces - self.geometry.zero_traces) == 1] = 0.0 pre_grid = np.rint(quality_map) grid = gridify(pre_grid, frequencies, iline, xline, full_lines) if margin: grid[(bad_traces - self.geometry.zero_traces) == 1] = 0 return grid def tracewise(self, func, l=3, pbar=True, **kwargs): """ Apply `func` to compare two cubes tracewise. """ pbar = tqdm if pbar else lambda iterator, *args, **kwargs: iterator metric = np.full((*self.geometry.spatial_shape, l), np.nan) indices = [geometry.dataframe['trace_index'] for geometry in self.geometries] for idx, _ in pbar(indices[0].iteritems(), total=len(indices[0])): trace_indices = [ind[idx] for ind in indices] header = self.geometries[0].segyfile.header[trace_indices[0]] keys = [header.get(field) for field in self.geometries[0].byte_no] store_key = [self.geometries[0].uniques_inversed[i][item] for i, item in enumerate(keys)] store_key = tuple(store_key) traces = [geometry.load_trace(trace_index) for geometry, trace_index in zip(self.geometries, trace_indices)] metric[store_key] = func(*traces, **kwargs) title = f"tracewise {func}" plot_dict = { 'title_label': f'{title} for `{self.name}` on cube `{self.geometry.displayed_name}`', 'cmap': 'seismic', 'zmin': None, 'zmax': None, 'ignore_value': np.nan, 'xlabel': 'INLINE_3D', 'ylabel': 'CROSSLINE_3D', **kwargs } return metric, plot_dict def tracewise_unsafe(self, func, l=3, pbar=True, **kwargs): """ Apply `func` to compare two cubes tracewise in an unsafe way: structure of cubes is assumed to be identical. """ pbar = tqdm if pbar else lambda iterator, *args, **kwargs: iterator metric = np.full((*self.geometry.spatial_shape, l), np.nan) for idx in pbar(range(len(self.geometries[0].dataframe))): header = self.geometries[0].segyfile.header[idx] keys = [header.get(field) for field in self.geometries[0].byte_no] store_key = [self.geometries[0].uniques_inversed[i][item] for i, item in enumerate(keys)] store_key = tuple(store_key) traces = [geometry.load_trace(idx) for geometry in self.geometries] metric[store_key] = func(*traces, **kwargs) title = f"tracewise unsafe {func}" plot_dict = { 'title_label': f'{title} for {self.name} on cube {self.geometry.displayed_name}', 'cmap': 'seismic', 'zmin': None, 'zmax': None, 'ignore_value': np.nan, 'xlabel': 'INLINE_3D', 'ylabel': 'CROSSLINE_3D', **kwargs } return metric, plot_dict def blockwise(self, func, l=3, pbar=True, kernel=(5, 5), block_size=(1000, 1000), heights=None, prep_func=None, **kwargs): """ Apply function to all traces in lateral window """ window = np.array(kernel) low = window // 2 high = window - low total = np.product(self.geometries[0].lens - window) prep_func = prep_func if prep_func else lambda x: x pbar = tqdm if pbar else lambda iterator, *args, **kwargs: iterator metric = np.full((*self.geometries[0].lens, l), np.nan) heights = slice(0, self.geometries[0].depth) if heights is None else slice(*heights) with pbar(total=total) as prog_bar: for il_block in np.arange(0, self.geometries[0].cube_shape[0], block_size[0]-window[0]): for xl_block in np.arange(0, self.geometries[0].cube_shape[1], block_size[1]-window[1]): block_len = np.min((np.array(self.geometries[0].lens) - (il_block, xl_block), block_size), axis=0) locations = [slice(il_block, il_block + block_len[0]), slice(xl_block, xl_block + block_len[1]), heights] blocks = [prep_func(geometry.load_crop(locations)) for geometry in self.geometries] for il_kernel in range(low[0], blocks[0].shape[0] - high[0]): for xl_kernel in range(low[1], blocks[0].shape[1] - high[1]): il_from, il_to = il_kernel - low[0], il_kernel + high[0] xl_from, xl_to = xl_kernel - low[1], xl_kernel + high[1] subsets = [b[il_from:il_to, xl_from:xl_to, :].reshape((-1, b.shape[-1])) for b in blocks] metric[il_block + il_kernel, xl_block + xl_kernel, :] = func(*subsets, **kwargs) prog_bar.update(1) title = f"Blockwise {func}" plot_dict = { 'title_label': f'{title} for {self.name} on cube {self.geometry.displayed_name}', 'cmap': 'seismic', 'zmin': None, 'zmax': None, 'ignore_value': np.nan, **kwargs } return metric, plot_dict class FaultsMetrics: """ Faults metric class. """ SHIFTS = [-20, -15, -5, 5, 15, 20] def similarity_metric(self, semblance, masks, threshold=None): """ Compute similarity metric for faults mask. """ if threshold: masks = masks > threshold if semblance.ndim == 2: semblance = np.expand_dims(semblance, axis=0) if semblance.ndim == 3: semblance = np.expand_dims(semblance, axis=0) if masks.ndim == 2: masks = np.expand_dims(masks, axis=0) if masks.ndim == 3: masks = np.expand_dims(masks, axis=0) res = [] m = self.sum_with_axes(masks * (1 - semblance), axes=[1,2,3]) weights = np.ones((len(self.SHIFTS), 1)) weights = weights / weights.sum() for i in self.SHIFTS: random_mask = self.make_shift(masks, shift=i) rm = self.sum_with_axes(random_mask * (1 - semblance), axes=[1,2,3]) ratio = m/rm res += [np.log(ratio)] res = np.stack(res, axis=0) res = (res * weights).sum(axis=0) res = np.clip(res, -2, 2) return res def sum_with_axes(self, array, axes=None): """ Sum for several axes. """ if axes is None: return array.sum() if isinstance(axes, int): axes = [axes] res = array axes = sorted(axes) for i, axis in enumerate(axes): res = res.sum(axis=axis-i) return res def make_shift(self, array, shift=20): """ Make shifts for mask. """ result = np.zeros_like(array) for i, _array in enumerate(array): if shift > 0: result[i][:, shift:] = _array[:, :-shift] elif shift < 0: result[i][:, :shift] = _array[:, -shift:] else: result[i] = _array return result class FaciesMetrics(): """ Evaluate facies metrics. To get the value of a particular metric, use :meth:`.evaluate`:: FaciesMetrics(horizon, true_label, pred_label).evaluate('dice') Parameters horizons : :class:`.Horizon` or sequence of :class:`.Horizon` Horizon(s) to use as base labels that contain facies. true_labels : :class:`.Horizon` or sequence of :class:`.Horizon` Facies to use as ground-truth labels. pred_labels : :class:`.Horizon` or sequence of :class:`.Horizon` Horizon(s) to use as predictions labels. """ def __init__(self, horizons, true_labels=None, pred_labels=None): self.horizons = to_list(horizons) self.true_labels = to_list(true_labels or []) self.pred_labels = to_list(pred_labels or []) @staticmethod def true_positive(true, pred): """ Calculate correctly classified facies pixels. """ return np.sum(true * pred) @staticmethod def true_negative(true, pred): """ Calculate correctly classified non-facies pixels. """ return np.sum((1 - true) * (1 - pred)) @staticmethod def false_positive(true, pred): """ Calculate misclassified facies pixels. """ return np.sum((1 - true) * pred) @staticmethod def false_negative(true, pred): """ Calculate misclassified non-facies pixels. """ return np.sum(true * (1 - pred)) def sensitivity(self, true, pred): """ Calculate ratio of correctly classified facies points to ground-truth facies points. """ tp = self.true_positive(true, pred) fn = self.false_negative(true, pred) return tp / (tp + fn) def specificity(self, true, pred): """ Calculate ratio of correctly classified non-facies points to ground-truth non-facies points. """ tn = self.true_negative(true, pred) fp = self.false_positive(true, pred) return tn / (tn + fp) def dice(self, true, pred): """ Calculate the similarity of ground-truth facies mask and preditcted facies mask. """ tp = self.true_positive(true, pred) fp = self.false_positive(true, pred) fn = self.false_negative(true, pred) return 2 * tp / (2 * tp + fp + fn) def evaluate(self, metrics): """ Calculate desired metric and return a dataframe of results. Parameters ---------- metrics : str or list of str Name of metric(s) to evaluate. """ metrics = [getattr(self, fn) for fn in to_list(metrics)] names = [fn.__name__ for fn in metrics] rows = [] for horizon, true_label, pred_label in zip_longest(self.horizons, self.true_labels, self.pred_labels): kwargs = {} if true_label is not None: true = true_label.load_attribute('masks', fill_value=0) true = true[horizon.presence_matrix] kwargs['true'] = true if pred_label is not None: pred = pred_label.load_attribute('masks', fill_value=0) pred = pred[horizon.presence_matrix] kwargs['pred'] = pred values = [fn(**kwargs) for fn in metrics] index = pd.MultiIndex.from_arrays([[horizon.field.displayed_name], [horizon.short_name]], names=['field_name', 'horizon_name']) data = dict(zip(names, values)) row = pd.DataFrame(index=index, data=data) rows.append(row) df =
pd.concat(rows)
pandas.concat
#TODO: import tensorflow as tf import os import argparse import sys import random import math import logging import operator import itertools import datetime import numpy as np import pandas as pd from csv import reader from random import randrange FLAGS = None #FORMAT = '%(asctime)s %(levelname)s %(message)s' #logging.basicConfig(format=FORMAT) #logger = logging.getLogger('tensorflow') logger = logging.getLogger('tensorflow') formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logger.removeHandler(logger.handlers[0]) logger.propagate = False def sales_example(sales): record = { 'sales': tf.train.Feature(float_list=tf.train.FloatList(value=sales)) } return tf.train.Example(features=tf.train.Features(feature=record)) def capacity_example(capacity): record = { 'capacity': tf.train.Feature(float_list=tf.train.FloatList(value=capacity)) } return tf.train.Example(features=tf.train.Features(feature=record)) def stock_example(stock): record = { 'stock': tf.train.Feature(float_list=tf.train.FloatList(value=stock)) } return tf.train.Example(features=tf.train.Features(feature=record)) #https://stackoverflow.com/questions/553303/generate-a-random-date-between-two-other-dates def random_date(start, end): return start + datetime.timedelta( seconds=random.randint(0, int((end - start).total_seconds())), ) def create_records(number_of_products, start_date, end_date, start_time_period, middle_time_period, end_time_period, orders_file, products_file, departments_file, order_products_prior_file, order_products_train_file, train_tfrecords_file, test_tfrecords_file, capacity_tfrecords_file, stock_tfrecords_file): stock = np.random.uniform(low=0.0, high=1.0, size=(FLAGS.number_of_products)) with tf.io.TFRecordWriter(stock_tfrecords_file) as writer: logger.debug ("stock: {}".format(stock)) tf_example = stock_example(stock) writer.write(tf_example.SerializeToString()) with open(orders_file, 'r') as f: csv_reader = reader(f) next(csv_reader) orders_list = list(map(tuple, csv_reader)) sorted_orders = sorted(orders_list, key = lambda x: (int(x[1]), int(x[3]))) dated_orders = [] i = 0 for k, g in itertools.groupby(sorted_orders, lambda x : int(x[1])): item = next(g) order_date = random_date(start_date, end_date) while order_date.weekday() != int(item[4]): order_date = order_date + datetime.timedelta(days=1) start_date = datetime.datetime.combine(start_date, datetime.datetime.min.time()) end_date = datetime.datetime.combine(end_date, datetime.datetime.min.time()) order_date = datetime.datetime(order_date.year, order_date.month, order_date.day, int(item[5]), 0, 0) time_period = int((order_date - start_date).total_seconds() / (60*60*6)) dated_orders.append((int(item[0]), int(item[1]), int(item[4]), order_date, time_period)) for item in g: order_date = order_date + datetime.timedelta(days=int(float(item[6]))) order_date = datetime.datetime(order_date.year, order_date.month, order_date.day, int(item[5]), 0, 0) time_period = int((order_date - start_date).total_seconds() / (60*60*6)) dated_orders.append((int(item[0]), int(item[1]), int(item[4]), order_date, time_period)) orders = pd.DataFrame(dated_orders, columns =['order_id', 'user_id', 'order_dow', 'order_date', 'time_period']) products = pd.read_csv(products_file) departments = pd.read_csv(departments_file) prior_order = pd.read_csv("data/order_products__prior.csv") train_order = pd.read_csv("data/order_products__train.csv") #aisles = pd.read_csv("data/aisles.csv") ntop = int(FLAGS.top_products*products['product_id'].count()) all_ordered_products = pd.concat([prior_order, train_order], axis=0)[["order_id", "product_id"]] largest = all_ordered_products[['product_id']].groupby(['product_id']).size().nlargest(ntop).to_frame() largest.reset_index(inplace=True) products_largest = pd.merge(largest, products, how="left", on="product_id")[['product_id', 'product_name', 'aisle_id', 'department_id']] products_departments = pd.merge(products_largest, departments, how="left", on="department_id") products_departments = products_departments[products_departments["department"].isin(["frozen", "bakery", "produce", "beverages", "dry goods pasta", "meat seafood", "pantry", "breakfast", "canned goods", "dairy eggs", "snacks", "deli"])] products_departments_list = products_departments.values.tolist() products_subset=set() while len(products_subset) < number_of_products: products_subset.add((random.randint(0,len(products_departments_list)))) selected_products_departments_list = [products_departments_list[i] for i in products_subset] selected_products_list = [products_departments_list[i][0] for i in products_subset] for p, product_id in enumerate(selected_products_list): logger.info ("{} {}".format(p, product_id)) selected_products_departments = pd.DataFrame(selected_products_departments_list, columns =['product_id', 'product_name', 'aisle_id', 'department_id', 'department']) all_ordered_products_quantity_list = [] for item in all_ordered_products.itertuples(): all_ordered_products_quantity_list.append((item[1], item[2], 1)) #all_ordered_products_quantity_list.append((item[1], item[2], random.randint(1, 6))) all_ordered_products_quantity = pd.DataFrame(all_ordered_products_quantity_list, columns =["order_id", "product_id", 'quantity']) order_product_departments = pd.merge(selected_products_departments, all_ordered_products_quantity, how="left", on="product_id") order_product_departments_dates =
pd.merge(order_product_departments, orders, how="left", on="order_id")
pandas.merge
from collections import OrderedDict import numpy as np from numpy import nan, array import pandas as pd import pytest from .conftest import ( assert_series_equal, assert_frame_equal, fail_on_pvlib_version) from numpy.testing import assert_allclose import unittest.mock as mock from pvlib import inverter, pvsystem from pvlib import atmosphere from pvlib import iam as _iam from pvlib import irradiance from pvlib.location import Location from pvlib import temperature from pvlib._deprecation import pvlibDeprecationWarning @pytest.mark.parametrize('iam_model,model_params', [ ('ashrae', {'b': 0.05}), ('physical', {'K': 4, 'L': 0.002, 'n': 1.526}), ('martin_ruiz', {'a_r': 0.16}), ]) def test_PVSystem_get_iam(mocker, iam_model, model_params): m = mocker.spy(_iam, iam_model) system = pvsystem.PVSystem(module_parameters=model_params) thetas = 1 iam = system.get_iam(thetas, iam_model=iam_model) m.assert_called_with(thetas, **model_params) assert iam < 1. def test_PVSystem_multi_array_get_iam(): model_params = {'b': 0.05} system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=model_params), pvsystem.Array(module_parameters=model_params)] ) iam = system.get_iam((1, 5), iam_model='ashrae') assert len(iam) == 2 assert iam[0] != iam[1] with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_iam((1,), iam_model='ashrae') def test_PVSystem_get_iam_sapm(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) mocker.spy(_iam, 'sapm') aoi = 0 out = system.get_iam(aoi, 'sapm') _iam.sapm.assert_called_once_with(aoi, sapm_module_params) assert_allclose(out, 1.0, atol=0.01) def test_PVSystem_get_iam_interp(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) with pytest.raises(ValueError): system.get_iam(45, iam_model='interp') def test__normalize_sam_product_names(): BAD_NAMES = [' -.()[]:+/",', 'Module[1]'] NORM_NAMES = ['____________', 'Module_1_'] norm_names = pvsystem._normalize_sam_product_names(BAD_NAMES) assert list(norm_names) == NORM_NAMES BAD_NAMES = ['Module[1]', 'Module(1)'] NORM_NAMES = ['Module_1_', 'Module_1_'] with pytest.warns(UserWarning): norm_names = pvsystem._normalize_sam_product_names(BAD_NAMES) assert list(norm_names) == NORM_NAMES BAD_NAMES = ['Module[1]', 'Module[1]'] NORM_NAMES = ['Module_1_', 'Module_1_'] with pytest.warns(UserWarning): norm_names = pvsystem._normalize_sam_product_names(BAD_NAMES) assert list(norm_names) == NORM_NAMES def test_PVSystem_get_iam_invalid(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) with pytest.raises(ValueError): system.get_iam(45, iam_model='not_a_model') def test_retrieve_sam_raise_no_parameters(): """ Raise an exception if no parameters are provided to `retrieve_sam()`. """ with pytest.raises(ValueError) as error: pvsystem.retrieve_sam() assert 'A name or path must be provided!' == str(error.value) def test_retrieve_sam_cecmod(): """ Test the expected data is retrieved from the CEC module database. In particular, check for a known module in the database and check for the expected keys for that module. """ data = pvsystem.retrieve_sam('cecmod') keys = [ 'BIPV', 'Date', 'T_NOCT', 'A_c', 'N_s', 'I_sc_ref', 'V_oc_ref', 'I_mp_ref', 'V_mp_ref', 'alpha_sc', 'beta_oc', 'a_ref', 'I_L_ref', 'I_o_ref', 'R_s', 'R_sh_ref', 'Adjust', 'gamma_r', 'Version', 'STC', 'PTC', 'Technology', 'Bifacial', 'Length', 'Width', ] module = 'Itek_Energy_LLC_iT_300_HE' assert module in data assert set(data[module].keys()) == set(keys) def test_retrieve_sam_cecinverter(): """ Test the expected data is retrieved from the CEC inverter database. In particular, check for a known inverter in the database and check for the expected keys for that inverter. """ data = pvsystem.retrieve_sam('cecinverter') keys = [ 'Vac', 'Paco', 'Pdco', 'Vdco', 'Pso', 'C0', 'C1', 'C2', 'C3', 'Pnt', 'Vdcmax', 'Idcmax', 'Mppt_low', 'Mppt_high', 'CEC_Date', 'CEC_Type', ] inverter = 'Yaskawa_Solectria_Solar__PVI_5300_208__208V_' assert inverter in data assert set(data[inverter].keys()) == set(keys) def test_sapm(sapm_module_params): times = pd.date_range(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1000, 500, 1100, np.nan, 1000], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params) expected = pd.DataFrame(np.array( [[ -5.0608322 , -4.65037767, nan, nan, nan, -4.91119927, -4.15367716], [ 2.545575 , 2.28773882, 56.86182059, 47.21121608, 108.00693168, 2.48357383, 1.71782772], [ 5.65584763, 5.01709903, 54.1943277 , 42.51861718, 213.32011294, 5.52987899, 3.48660728], [ nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=times) assert_frame_equal(out, expected, check_less_precise=4) out = pvsystem.sapm(1000, 25, sapm_module_params) expected = OrderedDict() expected['i_sc'] = 5.09115 expected['i_mp'] = 4.5462909092579995 expected['v_oc'] = 59.260800000000003 expected['v_mp'] = 48.315600000000003 expected['p_mp'] = 219.65677305534581 expected['i_x'] = 4.9759899999999995 expected['i_xx'] = 3.1880204359100004 for k, v in expected.items(): assert_allclose(out[k], v, atol=1e-4) # just make sure it works with Series input pvsystem.sapm(effective_irradiance, temp_cell, pd.Series(sapm_module_params)) def test_PVSystem_sapm(sapm_module_params, mocker): mocker.spy(pvsystem, 'sapm') system = pvsystem.PVSystem(module_parameters=sapm_module_params) effective_irradiance = 500 temp_cell = 25 out = system.sapm(effective_irradiance, temp_cell) pvsystem.sapm.assert_called_once_with(effective_irradiance, temp_cell, sapm_module_params) assert_allclose(out['p_mp'], 100, atol=100) def test_PVSystem_multi_array_sapm(sapm_module_params): system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=sapm_module_params), pvsystem.Array(module_parameters=sapm_module_params)] ) effective_irradiance = (100, 500) temp_cell = (15, 25) sapm_one, sapm_two = system.sapm(effective_irradiance, temp_cell) assert sapm_one['p_mp'] != sapm_two['p_mp'] sapm_one_flip, sapm_two_flip = system.sapm( (effective_irradiance[1], effective_irradiance[0]), (temp_cell[1], temp_cell[0]) ) assert sapm_one_flip['p_mp'] == sapm_two['p_mp'] assert sapm_two_flip['p_mp'] == sapm_one['p_mp'] with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.sapm(effective_irradiance, 10) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.sapm(500, temp_cell) @pytest.mark.parametrize('airmass,expected', [ (1.5, 1.00028714375), (np.array([[10, np.nan]]), np.array([[0.999535, 0]])), (pd.Series([5]), pd.Series([1.0387675])) ]) def test_sapm_spectral_loss(sapm_module_params, airmass, expected): out = pvsystem.sapm_spectral_loss(airmass, sapm_module_params) if isinstance(airmass, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-4) def test_PVSystem_sapm_spectral_loss(sapm_module_params, mocker): mocker.spy(pvsystem, 'sapm_spectral_loss') system = pvsystem.PVSystem(module_parameters=sapm_module_params) airmass = 2 out = system.sapm_spectral_loss(airmass) pvsystem.sapm_spectral_loss.assert_called_once_with(airmass, sapm_module_params) assert_allclose(out, 1, atol=0.5) def test_PVSystem_multi_array_sapm_spectral_loss(sapm_module_params): system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=sapm_module_params), pvsystem.Array(module_parameters=sapm_module_params)] ) loss_one, loss_two = system.sapm_spectral_loss(2) assert loss_one == loss_two # this test could be improved to cover all cell types. # could remove the need for specifying spectral coefficients if we don't # care about the return value at all @pytest.mark.parametrize('module_parameters,module_type,coefficients', [ ({'Technology': 'mc-Si'}, 'multisi', None), ({'Material': 'Multi-c-Si'}, 'multisi', None), ({'first_solar_spectral_coefficients': ( 0.84, -0.03, -0.008, 0.14, 0.04, -0.002)}, None, (0.84, -0.03, -0.008, 0.14, 0.04, -0.002)) ]) def test_PVSystem_first_solar_spectral_loss(module_parameters, module_type, coefficients, mocker): mocker.spy(atmosphere, 'first_solar_spectral_correction') system = pvsystem.PVSystem(module_parameters=module_parameters) pw = 3 airmass_absolute = 3 out = system.first_solar_spectral_loss(pw, airmass_absolute) atmosphere.first_solar_spectral_correction.assert_called_once_with( pw, airmass_absolute, module_type, coefficients) assert_allclose(out, 1, atol=0.5) def test_PVSystem_multi_array_first_solar_spectral_loss(): system = pvsystem.PVSystem( arrays=[ pvsystem.Array( module_parameters={'Technology': 'mc-Si'}, module_type='multisi' ), pvsystem.Array( module_parameters={'Technology': 'mc-Si'}, module_type='multisi' ) ] ) loss_one, loss_two = system.first_solar_spectral_loss(1, 3) assert loss_one == loss_two @pytest.mark.parametrize('test_input,expected', [ ([1000, 100, 5, 45], 1140.0510967821877), ([np.array([np.nan, 1000, 1000]), np.array([100, np.nan, 100]), np.array([1.1, 1.1, 1.1]), np.array([10, 10, 10])], np.array([np.nan, np.nan, 1081.1574])), ([pd.Series([1000]), pd.Series([100]), pd.Series([1.1]), pd.Series([10])], pd.Series([1081.1574])) ]) def test_sapm_effective_irradiance(sapm_module_params, test_input, expected): test_input.append(sapm_module_params) out = pvsystem.sapm_effective_irradiance(*test_input) if isinstance(test_input, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-1) def test_PVSystem_sapm_effective_irradiance(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) mocker.spy(pvsystem, 'sapm_effective_irradiance') poa_direct = 900 poa_diffuse = 100 airmass_absolute = 1.5 aoi = 0 p = (sapm_module_params['A4'], sapm_module_params['A3'], sapm_module_params['A2'], sapm_module_params['A1'], sapm_module_params['A0']) f1 = np.polyval(p, airmass_absolute) expected = f1 * (poa_direct + sapm_module_params['FD'] * poa_diffuse) out = system.sapm_effective_irradiance( poa_direct, poa_diffuse, airmass_absolute, aoi) pvsystem.sapm_effective_irradiance.assert_called_once_with( poa_direct, poa_diffuse, airmass_absolute, aoi, sapm_module_params) assert_allclose(out, expected, atol=0.1) def test_PVSystem_multi_array_sapm_effective_irradiance(sapm_module_params): system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=sapm_module_params), pvsystem.Array(module_parameters=sapm_module_params)] ) poa_direct = (500, 900) poa_diffuse = (50, 100) aoi = (0, 10) airmass_absolute = 1.5 irrad_one, irrad_two = system.sapm_effective_irradiance( poa_direct, poa_diffuse, airmass_absolute, aoi ) assert irrad_one != irrad_two @pytest.fixture def two_array_system(pvsyst_module_params, cec_module_params): """Two-array PVSystem. Both arrays are identical. """ temperature_model = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass' ] # Need u_v to be non-zero so wind-speed changes cell temperature # under the pvsyst model. temperature_model['u_v'] = 1.0 # parameter for fuentes temperature model temperature_model['noct_installed'] = 45 # parameters for noct_sam temperature model temperature_model['noct'] = 45. temperature_model['module_efficiency'] = 0.2 module_params = {**pvsyst_module_params, **cec_module_params} return pvsystem.PVSystem( arrays=[ pvsystem.Array( temperature_model_parameters=temperature_model, module_parameters=module_params ), pvsystem.Array( temperature_model_parameters=temperature_model, module_parameters=module_params ) ] ) @pytest.mark.parametrize("poa_direct, poa_diffuse, aoi", [(20, (10, 10), (20, 20)), ((20, 20), (10,), (20, 20)), ((20, 20), (10, 10), 20)]) def test_PVSystem_sapm_effective_irradiance_value_error( poa_direct, poa_diffuse, aoi, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): two_array_system.sapm_effective_irradiance( poa_direct, poa_diffuse, 10, aoi ) def test_PVSystem_sapm_celltemp(mocker): a, b, deltaT = (-3.47, -0.0594, 3) # open_rack_glass_glass temp_model_params = {'a': a, 'b': b, 'deltaT': deltaT} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'sapm_cell') temps = 25 irrads = 1000 winds = 1 out = system.sapm_celltemp(irrads, temps, winds) temperature.sapm_cell.assert_called_once_with(irrads, temps, winds, a, b, deltaT) assert_allclose(out, 57, atol=1) def test_PVSystem_sapm_celltemp_kwargs(mocker): temp_model_params = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass'] system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'sapm_cell') temps = 25 irrads = 1000 winds = 1 out = system.sapm_celltemp(irrads, temps, winds) temperature.sapm_cell.assert_called_once_with(irrads, temps, winds, temp_model_params['a'], temp_model_params['b'], temp_model_params['deltaT']) assert_allclose(out, 57, atol=1) def test_PVSystem_multi_array_sapm_celltemp_different_arrays(): temp_model_one = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass'] temp_model_two = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'close_mount_glass_glass'] system = pvsystem.PVSystem( arrays=[pvsystem.Array(temperature_model_parameters=temp_model_one), pvsystem.Array(temperature_model_parameters=temp_model_two)] ) temp_one, temp_two = system.sapm_celltemp( (1000, 1000), 25, 1 ) assert temp_one != temp_two def test_PVSystem_pvsyst_celltemp(mocker): parameter_set = 'insulated' temp_model_params = temperature.TEMPERATURE_MODEL_PARAMETERS['pvsyst'][ parameter_set] alpha_absorption = 0.85 module_efficiency = 0.17 module_parameters = {'alpha_absorption': alpha_absorption, 'module_efficiency': module_efficiency} system = pvsystem.PVSystem(module_parameters=module_parameters, temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'pvsyst_cell') irrad = 800 temp = 45 wind = 0.5 out = system.pvsyst_celltemp(irrad, temp, wind_speed=wind) temperature.pvsyst_cell.assert_called_once_with( irrad, temp, wind_speed=wind, u_c=temp_model_params['u_c'], u_v=temp_model_params['u_v'], module_efficiency=module_efficiency, alpha_absorption=alpha_absorption) assert (out < 90) and (out > 70) def test_PVSystem_faiman_celltemp(mocker): u0, u1 = 25.0, 6.84 # default values temp_model_params = {'u0': u0, 'u1': u1} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'faiman') temps = 25 irrads = 1000 winds = 1 out = system.faiman_celltemp(irrads, temps, winds) temperature.faiman.assert_called_once_with(irrads, temps, winds, u0, u1) assert_allclose(out, 56.4, atol=1) def test_PVSystem_noct_celltemp(mocker): poa_global, temp_air, wind_speed, noct, module_efficiency = ( 1000., 25., 1., 45., 0.2) expected = 55.230790492 temp_model_params = {'noct': noct, 'module_efficiency': module_efficiency} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'noct_sam') out = system.noct_sam_celltemp(poa_global, temp_air, wind_speed) temperature.noct_sam.assert_called_once_with( poa_global, temp_air, wind_speed, effective_irradiance=None, noct=noct, module_efficiency=module_efficiency) assert_allclose(out, expected) # dufferent types out = system.noct_sam_celltemp(np.array(poa_global), np.array(temp_air), np.array(wind_speed)) assert_allclose(out, expected) dr = pd.date_range(start='2020-01-01 12:00:00', end='2020-01-01 13:00:00', freq='1H') out = system.noct_sam_celltemp(pd.Series(index=dr, data=poa_global), pd.Series(index=dr, data=temp_air), pd.Series(index=dr, data=wind_speed)) assert_series_equal(out, pd.Series(index=dr, data=expected)) # now use optional arguments temp_model_params.update({'transmittance_absorptance': 0.8, 'array_height': 2, 'mount_standoff': 2.0}) expected = 60.477703576 system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) out = system.noct_sam_celltemp(poa_global, temp_air, wind_speed, effective_irradiance=1100.) assert_allclose(out, expected) def test_PVSystem_noct_celltemp_error(): poa_global, temp_air, wind_speed, module_efficiency = (1000., 25., 1., 0.2) temp_model_params = {'module_efficiency': module_efficiency} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) with pytest.raises(KeyError): system.noct_sam_celltemp(poa_global, temp_air, wind_speed) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_functions(celltemp, two_array_system): times = pd.date_range(start='2020-08-25 11:00', freq='H', periods=3) irrad_one = pd.Series(1000, index=times) irrad_two = pd.Series(500, index=times) temp_air = pd.Series(25, index=times) wind_speed = pd.Series(1, index=times) temp_one, temp_two = celltemp( two_array_system, (irrad_one, irrad_two), temp_air, wind_speed) assert (temp_one != temp_two).all() @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_multi_temp(celltemp, two_array_system): times = pd.date_range(start='2020-08-25 11:00', freq='H', periods=3) irrad = pd.Series(1000, index=times) temp_air_one = pd.Series(25, index=times) temp_air_two = pd.Series(5, index=times) wind_speed = pd.Series(1, index=times) temp_one, temp_two = celltemp( two_array_system, (irrad, irrad), (temp_air_one, temp_air_two), wind_speed ) assert (temp_one != temp_two).all() temp_one_swtich, temp_two_switch = celltemp( two_array_system, (irrad, irrad), (temp_air_two, temp_air_one), wind_speed ) assert_series_equal(temp_one, temp_two_switch) assert_series_equal(temp_two, temp_one_swtich) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_multi_wind(celltemp, two_array_system): times = pd.date_range(start='2020-08-25 11:00', freq='H', periods=3) irrad = pd.Series(1000, index=times) temp_air = pd.Series(25, index=times) wind_speed_one = pd.Series(1, index=times) wind_speed_two = pd.Series(5, index=times) temp_one, temp_two = celltemp( two_array_system, (irrad, irrad), temp_air, (wind_speed_one, wind_speed_two) ) assert (temp_one != temp_two).all() temp_one_swtich, temp_two_switch = celltemp( two_array_system, (irrad, irrad), temp_air, (wind_speed_two, wind_speed_one) ) assert_series_equal(temp_one, temp_two_switch) assert_series_equal(temp_two, temp_one_swtich) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_temp_too_short( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), (1,), 1) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_temp_too_long( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), (1, 1, 1), 1) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_wind_too_short( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), 25, (1,)) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_wind_too_long( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), 25, (1, 1, 1)) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_poa_length_mismatch( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, 1000, 25, 1) def test_PVSystem_fuentes_celltemp(mocker): noct_installed = 45 temp_model_params = {'noct_installed': noct_installed} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) spy = mocker.spy(temperature, 'fuentes') index = pd.date_range('2019-01-01 11:00', freq='h', periods=3) temps = pd.Series(25, index) irrads = pd.Series(1000, index) winds = pd.Series(1, index) out = system.fuentes_celltemp(irrads, temps, winds) assert_series_equal(spy.call_args[0][0], irrads) assert_series_equal(spy.call_args[0][1], temps) assert_series_equal(spy.call_args[0][2], winds) assert spy.call_args[1]['noct_installed'] == noct_installed assert_series_equal(out, pd.Series([52.85, 55.85, 55.85], index, name='tmod')) def test_PVSystem_fuentes_celltemp_override(mocker): # test that the surface_tilt value in the cell temp calculation can be # overridden but defaults to the surface_tilt attribute of the PVSystem spy = mocker.spy(temperature, 'fuentes') noct_installed = 45 index = pd.date_range('2019-01-01 11:00', freq='h', periods=3) temps = pd.Series(25, index) irrads = pd.Series(1000, index) winds = pd.Series(1, index) # uses default value temp_model_params = {'noct_installed': noct_installed} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params, surface_tilt=20) system.fuentes_celltemp(irrads, temps, winds) assert spy.call_args[1]['surface_tilt'] == 20 # can be overridden temp_model_params = {'noct_installed': noct_installed, 'surface_tilt': 30} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params, surface_tilt=20) system.fuentes_celltemp(irrads, temps, winds) assert spy.call_args[1]['surface_tilt'] == 30 def test_Array__infer_temperature_model_params(): array = pvsystem.Array(module_parameters={}, racking_model='open_rack', module_type='glass_polymer') expected = temperature.TEMPERATURE_MODEL_PARAMETERS[ 'sapm']['open_rack_glass_polymer'] assert expected == array._infer_temperature_model_params() array = pvsystem.Array(module_parameters={}, racking_model='freestanding', module_type='glass_polymer') expected = temperature.TEMPERATURE_MODEL_PARAMETERS[ 'pvsyst']['freestanding'] assert expected == array._infer_temperature_model_params() array = pvsystem.Array(module_parameters={}, racking_model='insulated', module_type=None) expected = temperature.TEMPERATURE_MODEL_PARAMETERS[ 'pvsyst']['insulated'] assert expected == array._infer_temperature_model_params() def test_Array__infer_cell_type(): array = pvsystem.Array(module_parameters={}) assert array._infer_cell_type() is None def test_calcparams_desoto(cec_module_params): times = pd.date_range(start='2015-01-01', periods=3, freq='12H') effective_irradiance = pd.Series([0.0, 800.0, 800.0], index=times) temp_cell = pd.Series([25, 25, 50], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_desoto( effective_irradiance, temp_cell, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], EgRef=1.121, dEgdT=-0.0002677) assert_series_equal(IL, pd.Series([0.0, 6.036, 6.096], index=times), check_less_precise=3) assert_series_equal(I0, pd.Series([0.0, 1.94e-9, 7.419e-8], index=times), check_less_precise=3) assert_allclose(Rs, 0.094) assert_series_equal(Rsh, pd.Series([np.inf, 19.65, 19.65], index=times), check_less_precise=3) assert_series_equal(nNsVth, pd.Series([0.473, 0.473, 0.5127], index=times), check_less_precise=3) def test_calcparams_cec(cec_module_params): times = pd.date_range(start='2015-01-01', periods=3, freq='12H') effective_irradiance = pd.Series([0.0, 800.0, 800.0], index=times) temp_cell = pd.Series([25, 25, 50], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_cec( effective_irradiance, temp_cell, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], Adjust=cec_module_params['Adjust'], EgRef=1.121, dEgdT=-0.0002677) assert_series_equal(IL, pd.Series([0.0, 6.036, 6.0896], index=times), check_less_precise=3) assert_series_equal(I0, pd.Series([0.0, 1.94e-9, 7.419e-8], index=times), check_less_precise=3) assert_allclose(Rs, 0.094) assert_series_equal(Rsh, pd.Series([np.inf, 19.65, 19.65], index=times), check_less_precise=3) assert_series_equal(nNsVth, pd.Series([0.473, 0.473, 0.5127], index=times), check_less_precise=3) def test_calcparams_pvsyst(pvsyst_module_params): times = pd.date_range(start='2015-01-01', periods=2, freq='12H') effective_irradiance = pd.Series([0.0, 800.0], index=times) temp_cell = pd.Series([25, 50], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_pvsyst( effective_irradiance, temp_cell, alpha_sc=pvsyst_module_params['alpha_sc'], gamma_ref=pvsyst_module_params['gamma_ref'], mu_gamma=pvsyst_module_params['mu_gamma'], I_L_ref=pvsyst_module_params['I_L_ref'], I_o_ref=pvsyst_module_params['I_o_ref'], R_sh_ref=pvsyst_module_params['R_sh_ref'], R_sh_0=pvsyst_module_params['R_sh_0'], R_s=pvsyst_module_params['R_s'], cells_in_series=pvsyst_module_params['cells_in_series'], EgRef=pvsyst_module_params['EgRef']) assert_series_equal( IL.round(decimals=3), pd.Series([0.0, 4.8200], index=times)) assert_series_equal( I0.round(decimals=3), pd.Series([0.0, 1.47e-7], index=times)) assert_allclose(Rs, 0.500) assert_series_equal( Rsh.round(decimals=3), pd.Series([1000.0, 305.757], index=times)) assert_series_equal( nNsVth.round(decimals=4), pd.Series([1.6186, 1.7961], index=times)) def test_PVSystem_calcparams_desoto(cec_module_params, mocker): mocker.spy(pvsystem, 'calcparams_desoto') module_parameters = cec_module_params.copy() module_parameters['EgRef'] = 1.121 module_parameters['dEgdT'] = -0.0002677 system = pvsystem.PVSystem(module_parameters=module_parameters) effective_irradiance = np.array([0, 800]) temp_cell = 25 IL, I0, Rs, Rsh, nNsVth = system.calcparams_desoto(effective_irradiance, temp_cell) pvsystem.calcparams_desoto.assert_called_once_with( effective_irradiance, temp_cell, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], EgRef=module_parameters['EgRef'], dEgdT=module_parameters['dEgdT']) assert_allclose(IL, np.array([0.0, 6.036]), atol=1) assert_allclose(I0, 2.0e-9, atol=1.0e-9) assert_allclose(Rs, 0.1, atol=0.1) assert_allclose(Rsh, np.array([np.inf, 20]), atol=1) assert_allclose(nNsVth, 0.5, atol=0.1) def test_PVSystem_calcparams_pvsyst(pvsyst_module_params, mocker): mocker.spy(pvsystem, 'calcparams_pvsyst') module_parameters = pvsyst_module_params.copy() system = pvsystem.PVSystem(module_parameters=module_parameters) effective_irradiance = np.array([0, 800]) temp_cell = np.array([25, 50]) IL, I0, Rs, Rsh, nNsVth = system.calcparams_pvsyst(effective_irradiance, temp_cell) pvsystem.calcparams_pvsyst.assert_called_once_with( effective_irradiance, temp_cell, alpha_sc=pvsyst_module_params['alpha_sc'], gamma_ref=pvsyst_module_params['gamma_ref'], mu_gamma=pvsyst_module_params['mu_gamma'], I_L_ref=pvsyst_module_params['I_L_ref'], I_o_ref=pvsyst_module_params['I_o_ref'], R_sh_ref=pvsyst_module_params['R_sh_ref'], R_sh_0=pvsyst_module_params['R_sh_0'], R_s=pvsyst_module_params['R_s'], cells_in_series=pvsyst_module_params['cells_in_series'], EgRef=pvsyst_module_params['EgRef'], R_sh_exp=pvsyst_module_params['R_sh_exp']) assert_allclose(IL, np.array([0.0, 4.8200]), atol=1) assert_allclose(I0, np.array([0.0, 1.47e-7]), atol=1.0e-5) assert_allclose(Rs, 0.5, atol=0.1) assert_allclose(Rsh, np.array([1000, 305.757]), atol=50) assert_allclose(nNsVth, np.array([1.6186, 1.7961]), atol=0.1) @pytest.mark.parametrize('calcparams', [pvsystem.PVSystem.calcparams_pvsyst, pvsystem.PVSystem.calcparams_desoto, pvsystem.PVSystem.calcparams_cec]) def test_PVSystem_multi_array_calcparams(calcparams, two_array_system): params_one, params_two = calcparams( two_array_system, (1000, 500), (30, 20) ) assert params_one != params_two @pytest.mark.parametrize('calcparams, irrad, celltemp', [ (f, irrad, celltemp) for f in (pvsystem.PVSystem.calcparams_desoto, pvsystem.PVSystem.calcparams_cec, pvsystem.PVSystem.calcparams_pvsyst) for irrad, celltemp in [(1, (1, 1)), ((1, 1), 1)]]) def test_PVSystem_multi_array_calcparams_value_error( calcparams, irrad, celltemp, two_array_system): with pytest.raises(ValueError, match='Length mismatch for per-array parameter'): calcparams(two_array_system, irrad, celltemp) @pytest.fixture(params=[ { # Can handle all python scalar inputs 'Rsh': 20., 'Rs': 0.1, 'nNsVth': 0.5, 'I': 3., 'I0': 6.e-7, 'IL': 7., 'V_expected': 7.5049875193450521 }, { # Can handle all rank-0 array inputs 'Rsh': np.array(20.), 'Rs': np.array(0.1), 'nNsVth': np.array(0.5), 'I': np.array(3.), 'I0': np.array(6.e-7), 'IL': np.array(7.), 'V_expected': np.array(7.5049875193450521) }, { # Can handle all rank-1 singleton array inputs 'Rsh': np.array([20.]), 'Rs': np.array([0.1]), 'nNsVth': np.array([0.5]), 'I': np.array([3.]), 'I0': np.array([6.e-7]), 'IL': np.array([7.]), 'V_expected': np.array([7.5049875193450521]) }, { # Can handle all rank-1 non-singleton array inputs with infinite shunt # resistance, Rsh=inf gives V=Voc=nNsVth*(np.log(IL + I0) - np.log(I0) # at I=0 'Rsh': np.array([np.inf, 20.]), 'Rs': np.array([0.1, 0.1]), 'nNsVth': np.array([0.5, 0.5]), 'I': np.array([0., 3.]), 'I0': np.array([6.e-7, 6.e-7]), 'IL': np.array([7., 7.]), 'V_expected': np.array([0.5*(np.log(7. + 6.e-7) - np.log(6.e-7)), 7.5049875193450521]) }, { # Can handle mixed inputs with a rank-2 array with infinite shunt # resistance, Rsh=inf gives V=Voc=nNsVth*(np.log(IL + I0) - np.log(I0) # at I=0 'Rsh': np.array([[np.inf, np.inf], [np.inf, np.inf]]), 'Rs': np.array([0.1]), 'nNsVth': np.array(0.5), 'I': 0., 'I0': np.array([6.e-7]), 'IL': np.array([7.]), 'V_expected': 0.5*(np.log(7. + 6.e-7) - np.log(6.e-7))*np.ones((2, 2)) }, { # Can handle ideal series and shunt, Rsh=inf and Rs=0 give # V = nNsVth*(np.log(IL - I + I0) - np.log(I0)) 'Rsh': np.inf, 'Rs': 0., 'nNsVth': 0.5, 'I': np.array([7., 7./2., 0.]), 'I0': 6.e-7, 'IL': 7., 'V_expected': np.array([0., 0.5*(np.log(7. - 7./2. + 6.e-7) - np.log(6.e-7)), 0.5*(np.log(7. + 6.e-7) - np.log(6.e-7))]) }, { # Can handle only ideal series resistance, no closed form solution 'Rsh': 20., 'Rs': 0., 'nNsVth': 0.5, 'I': 3., 'I0': 6.e-7, 'IL': 7., 'V_expected': 7.804987519345062 }, { # Can handle all python scalar inputs with big LambertW arg 'Rsh': 500., 'Rs': 10., 'nNsVth': 4.06, 'I': 0., 'I0': 6.e-10, 'IL': 1.2, 'V_expected': 86.320000493521079 }, { # Can handle all python scalar inputs with bigger LambertW arg # 1000 W/m^2 on a Canadian Solar 220M with 20 C ambient temp # github issue 225 (this appears to be from PR 226 not issue 225) 'Rsh': 190., 'Rs': 1.065, 'nNsVth': 2.89, 'I': 0., 'I0': 7.05196029e-08, 'IL': 10.491262, 'V_expected': 54.303958833791455 }, { # Can handle all python scalar inputs with bigger LambertW arg # 1000 W/m^2 on a Canadian Solar 220M with 20 C ambient temp # github issue 225 'Rsh': 381.68, 'Rs': 1.065, 'nNsVth': 2.681527737715915, 'I': 0., 'I0': 1.8739027472625636e-09, 'IL': 5.1366949999999996, 'V_expected': 58.19323124611128 }, { # Verify mixed solution type indexing logic 'Rsh': np.array([np.inf, 190., 381.68]), 'Rs': 1.065, 'nNsVth': np.array([2.89, 2.89, 2.681527737715915]), 'I': 0., 'I0': np.array([7.05196029e-08, 7.05196029e-08, 1.8739027472625636e-09]), 'IL': np.array([10.491262, 10.491262, 5.1366949999999996]), 'V_expected': np.array([2.89*np.log1p(10.491262/7.05196029e-08), 54.303958833791455, 58.19323124611128]) }]) def fixture_v_from_i(request): return request.param @pytest.mark.parametrize( 'method, atol', [('lambertw', 1e-11), ('brentq', 1e-11), ('newton', 1e-8)] ) def test_v_from_i(fixture_v_from_i, method, atol): # Solution set loaded from fixture Rsh = fixture_v_from_i['Rsh'] Rs = fixture_v_from_i['Rs'] nNsVth = fixture_v_from_i['nNsVth'] I = fixture_v_from_i['I'] I0 = fixture_v_from_i['I0'] IL = fixture_v_from_i['IL'] V_expected = fixture_v_from_i['V_expected'] V = pvsystem.v_from_i(Rsh, Rs, nNsVth, I, I0, IL, method=method) assert(isinstance(V, type(V_expected))) if isinstance(V, type(np.ndarray)): assert(isinstance(V.dtype, type(V_expected.dtype))) assert(V.shape == V_expected.shape) assert_allclose(V, V_expected, atol=atol) def test_i_from_v_from_i(fixture_v_from_i): # Solution set loaded from fixture Rsh = fixture_v_from_i['Rsh'] Rs = fixture_v_from_i['Rs'] nNsVth = fixture_v_from_i['nNsVth'] I = fixture_v_from_i['I'] I0 = fixture_v_from_i['I0'] IL = fixture_v_from_i['IL'] V = fixture_v_from_i['V_expected'] # Convergence criteria atol = 1.e-11 I_expected = pvsystem.i_from_v(Rsh, Rs, nNsVth, V, I0, IL, method='lambertw') assert_allclose(I, I_expected, atol=atol) I = pvsystem.i_from_v(Rsh, Rs, nNsVth, V, I0, IL) assert(isinstance(I, type(I_expected))) if isinstance(I, type(np.ndarray)): assert(isinstance(I.dtype, type(I_expected.dtype))) assert(I.shape == I_expected.shape) assert_allclose(I, I_expected, atol=atol) @pytest.fixture(params=[ { # Can handle all python scalar inputs 'Rsh': 20., 'Rs': 0.1, 'nNsVth': 0.5, 'V': 7.5049875193450521, 'I0': 6.e-7, 'IL': 7., 'I_expected': 3. }, { # Can handle all rank-0 array inputs 'Rsh': np.array(20.), 'Rs': np.array(0.1), 'nNsVth': np.array(0.5), 'V': np.array(7.5049875193450521), 'I0': np.array(6.e-7), 'IL': np.array(7.), 'I_expected': np.array(3.) }, { # Can handle all rank-1 singleton array inputs 'Rsh': np.array([20.]), 'Rs': np.array([0.1]), 'nNsVth': np.array([0.5]), 'V': np.array([7.5049875193450521]), 'I0': np.array([6.e-7]), 'IL': np.array([7.]), 'I_expected': np.array([3.]) }, { # Can handle all rank-1 non-singleton array inputs with a zero # series resistance, Rs=0 gives I=IL=Isc at V=0 'Rsh': np.array([20., 20.]), 'Rs': np.array([0., 0.1]), 'nNsVth': np.array([0.5, 0.5]), 'V': np.array([0., 7.5049875193450521]), 'I0': np.array([6.e-7, 6.e-7]), 'IL': np.array([7., 7.]), 'I_expected': np.array([7., 3.]) }, { # Can handle mixed inputs with a rank-2 array with zero series # resistance, Rs=0 gives I=IL=Isc at V=0 'Rsh': np.array([20.]), 'Rs': np.array([[0., 0.], [0., 0.]]), 'nNsVth': np.array(0.5), 'V': 0., 'I0': np.array([6.e-7]), 'IL': np.array([7.]), 'I_expected': np.array([[7., 7.], [7., 7.]]) }, { # Can handle ideal series and shunt, Rsh=inf and Rs=0 give # V_oc = nNsVth*(np.log(IL + I0) - np.log(I0)) 'Rsh': np.inf, 'Rs': 0., 'nNsVth': 0.5, 'V': np.array([0., 0.5*(np.log(7. + 6.e-7) - np.log(6.e-7))/2., 0.5*(np.log(7. + 6.e-7) - np.log(6.e-7))]), 'I0': 6.e-7, 'IL': 7., 'I_expected': np.array([7., 7. - 6.e-7*np.expm1((np.log(7. + 6.e-7) - np.log(6.e-7))/2.), 0.]) }, { # Can handle only ideal shunt resistance, no closed form solution 'Rsh': np.inf, 'Rs': 0.1, 'nNsVth': 0.5, 'V': 7.5049875193450521, 'I0': 6.e-7, 'IL': 7., 'I_expected': 3.2244873645510923 }]) def fixture_i_from_v(request): return request.param @pytest.mark.parametrize( 'method, atol', [('lambertw', 1e-11), ('brentq', 1e-11), ('newton', 1e-11)] ) def test_i_from_v(fixture_i_from_v, method, atol): # Solution set loaded from fixture Rsh = fixture_i_from_v['Rsh'] Rs = fixture_i_from_v['Rs'] nNsVth = fixture_i_from_v['nNsVth'] V = fixture_i_from_v['V'] I0 = fixture_i_from_v['I0'] IL = fixture_i_from_v['IL'] I_expected = fixture_i_from_v['I_expected'] I = pvsystem.i_from_v(Rsh, Rs, nNsVth, V, I0, IL, method=method) assert(isinstance(I, type(I_expected))) if isinstance(I, type(np.ndarray)): assert(isinstance(I.dtype, type(I_expected.dtype))) assert(I.shape == I_expected.shape) assert_allclose(I, I_expected, atol=atol) def test_PVSystem_i_from_v(mocker): system = pvsystem.PVSystem() m = mocker.patch('pvlib.pvsystem.i_from_v', autospec=True) args = (20, 0.1, 0.5, 7.5049875193450521, 6e-7, 7) system.i_from_v(*args) m.assert_called_once_with(*args) def test_i_from_v_size(): with pytest.raises(ValueError): pvsystem.i_from_v(20, [0.1] * 2, 0.5, [7.5] * 3, 6.0e-7, 7.0) with pytest.raises(ValueError): pvsystem.i_from_v(20, [0.1] * 2, 0.5, [7.5] * 3, 6.0e-7, 7.0, method='brentq') with pytest.raises(ValueError): pvsystem.i_from_v(20, 0.1, 0.5, [7.5] * 3, 6.0e-7, np.array([7., 7.]), method='newton') def test_v_from_i_size(): with pytest.raises(ValueError): pvsystem.v_from_i(20, [0.1] * 2, 0.5, [3.0] * 3, 6.0e-7, 7.0) with pytest.raises(ValueError): pvsystem.v_from_i(20, [0.1] * 2, 0.5, [3.0] * 3, 6.0e-7, 7.0, method='brentq') with pytest.raises(ValueError): pvsystem.v_from_i(20, [0.1], 0.5, [3.0] * 3, 6.0e-7, np.array([7., 7.]), method='newton') def test_mpp_floats(): """test max_power_point""" IL, I0, Rs, Rsh, nNsVth = (7, 6e-7, .1, 20, .5) out = pvsystem.max_power_point(IL, I0, Rs, Rsh, nNsVth, method='brentq') expected = {'i_mp': 6.1362673597376753, # 6.1390251797935704, lambertw 'v_mp': 6.2243393757884284, # 6.221535886625464, lambertw 'p_mp': 38.194210547580511} # 38.194165464983037} lambertw assert isinstance(out, dict) for k, v in out.items(): assert np.isclose(v, expected[k]) out = pvsystem.max_power_point(IL, I0, Rs, Rsh, nNsVth, method='newton') for k, v in out.items(): assert np.isclose(v, expected[k]) def test_mpp_array(): """test max_power_point""" IL, I0, Rs, Rsh, nNsVth = (np.array([7, 7]), 6e-7, .1, 20, .5) out = pvsystem.max_power_point(IL, I0, Rs, Rsh, nNsVth, method='brentq') expected = {'i_mp': [6.1362673597376753] * 2, 'v_mp': [6.2243393757884284] * 2, 'p_mp': [38.194210547580511] * 2} assert isinstance(out, dict) for k, v in out.items(): assert np.allclose(v, expected[k]) out = pvsystem.max_power_point(IL, I0, Rs, Rsh, nNsVth, method='newton') for k, v in out.items(): assert np.allclose(v, expected[k]) def test_mpp_series(): """test max_power_point""" idx = ['2008-02-17T11:30:00-0800', '2008-02-17T12:30:00-0800'] IL, I0, Rs, Rsh, nNsVth = (np.array([7, 7]), 6e-7, .1, 20, .5) IL = pd.Series(IL, index=idx) out = pvsystem.max_power_point(IL, I0, Rs, Rsh, nNsVth, method='brentq') expected = pd.DataFrame({'i_mp': [6.1362673597376753] * 2, 'v_mp': [6.2243393757884284] * 2, 'p_mp': [38.194210547580511] * 2}, index=idx) assert isinstance(out, pd.DataFrame) for k, v in out.items(): assert np.allclose(v, expected[k]) out = pvsystem.max_power_point(IL, I0, Rs, Rsh, nNsVth, method='newton') for k, v in out.items(): assert np.allclose(v, expected[k]) def test_singlediode_series(cec_module_params): times = pd.date_range(start='2015-01-01', periods=2, freq='12H') effective_irradiance = pd.Series([0.0, 800.0], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_desoto( effective_irradiance, temp_cell=25, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], EgRef=1.121, dEgdT=-0.0002677 ) out = pvsystem.singlediode(IL, I0, Rs, Rsh, nNsVth) assert isinstance(out, pd.DataFrame) def test_singlediode_array(): # github issue 221 photocurrent = np.linspace(0, 10, 11) resistance_shunt = 16 resistance_series = 0.094 nNsVth = 0.473 saturation_current = 1.943e-09 sd = pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, method='lambertw') expected = np.array([ 0. , 0.54538398, 1.43273966, 2.36328163, 3.29255606, 4.23101358, 5.16177031, 6.09368251, 7.02197553, 7.96846051, 8.88220557]) assert_allclose(sd['i_mp'], expected, atol=0.01) sd = pvsystem.singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) expected = pvsystem.i_from_v(resistance_shunt, resistance_series, nNsVth, sd['v_mp'], saturation_current, photocurrent, method='lambertw') assert_allclose(sd['i_mp'], expected, atol=0.01) def test_singlediode_floats(): out = pvsystem.singlediode(7, 6e-7, .1, 20, .5, method='lambertw') expected = {'i_xx': 4.2498, 'i_mp': 6.1275, 'v_oc': 8.1063, 'p_mp': 38.1937, 'i_x': 6.7558, 'i_sc': 6.9651, 'v_mp': 6.2331, 'i': None, 'v': None} assert isinstance(out, dict) for k, v in out.items(): if k in ['i', 'v']: assert v is None else: assert_allclose(v, expected[k], atol=1e-3) def test_singlediode_floats_ivcurve(): out = pvsystem.singlediode(7, 6e-7, .1, 20, .5, ivcurve_pnts=3, method='lambertw') expected = {'i_xx': 4.2498, 'i_mp': 6.1275, 'v_oc': 8.1063, 'p_mp': 38.1937, 'i_x': 6.7558, 'i_sc': 6.9651, 'v_mp': 6.2331, 'i': np.array([6.965172e+00, 6.755882e+00, 2.575717e-14]), 'v': np.array([0., 4.05315, 8.1063])} assert isinstance(out, dict) for k, v in out.items(): assert_allclose(v, expected[k], atol=1e-3) def test_singlediode_series_ivcurve(cec_module_params): times = pd.date_range(start='2015-06-01', periods=3, freq='6H') effective_irradiance = pd.Series([0.0, 400.0, 800.0], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_desoto( effective_irradiance, temp_cell=25, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], EgRef=1.121, dEgdT=-0.0002677) out = pvsystem.singlediode(IL, I0, Rs, Rsh, nNsVth, ivcurve_pnts=3, method='lambertw') expected = OrderedDict([('i_sc', array([0., 3.01054475, 6.00675648])), ('v_oc', array([0., 9.96886962, 10.29530483])), ('i_mp', array([0., 2.65191983, 5.28594672])), ('v_mp', array([0., 8.33392491, 8.4159707])), ('p_mp', array([0., 22.10090078, 44.48637274])), ('i_x', array([0., 2.88414114, 5.74622046])), ('i_xx', array([0., 2.04340914, 3.90007956])), ('v', array([[0., 0., 0.], [0., 4.98443481, 9.96886962], [0., 5.14765242, 10.29530483]])), ('i', array([[0., 0., 0.], [3.01079860e+00, 2.88414114e+00, 3.10862447e-14], [6.00726296e+00, 5.74622046e+00, 0.00000000e+00]]))]) for k, v in out.items(): assert_allclose(v, expected[k], atol=1e-2) out = pvsystem.singlediode(IL, I0, Rs, Rsh, nNsVth, ivcurve_pnts=3) expected['i_mp'] = pvsystem.i_from_v(Rsh, Rs, nNsVth, out['v_mp'], I0, IL, method='lambertw') expected['v_mp'] = pvsystem.v_from_i(Rsh, Rs, nNsVth, out['i_mp'], I0, IL, method='lambertw') expected['i'] = pvsystem.i_from_v(Rsh, Rs, nNsVth, out['v'].T, I0, IL, method='lambertw').T expected['v'] = pvsystem.v_from_i(Rsh, Rs, nNsVth, out['i'].T, I0, IL, method='lambertw').T for k, v in out.items(): assert_allclose(v, expected[k], atol=1e-2) def test_scale_voltage_current_power(): data = pd.DataFrame( np.array([[2, 1.5, 10, 8, 12, 0.5, 1.5]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=[0]) expected = pd.DataFrame( np.array([[6, 4.5, 20, 16, 72, 1.5, 4.5]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=[0]) out = pvsystem.scale_voltage_current_power(data, voltage=2, current=3) assert_frame_equal(out, expected, check_less_precise=5) def test_PVSystem_scale_voltage_current_power(mocker): data = None system = pvsystem.PVSystem(modules_per_string=2, strings_per_inverter=3) m = mocker.patch( 'pvlib.pvsystem.scale_voltage_current_power', autospec=True) system.scale_voltage_current_power(data) m.assert_called_once_with(data, voltage=2, current=3) def test_PVSystem_multi_scale_voltage_current_power(mocker): data = (1, 2) system = pvsystem.PVSystem( arrays=[pvsystem.Array(modules_per_string=2, strings=3), pvsystem.Array(modules_per_string=3, strings=5)] ) m = mocker.patch( 'pvlib.pvsystem.scale_voltage_current_power', autospec=True ) system.scale_voltage_current_power(data) m.assert_has_calls( [mock.call(1, voltage=2, current=3), mock.call(2, voltage=3, current=5)], any_order=True ) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.scale_voltage_current_power(None) def test_PVSystem_get_ac_sandia(cec_inverter_parameters, mocker): inv_fun = mocker.spy(inverter, 'sandia') system = pvsystem.PVSystem( inverter=cec_inverter_parameters['Name'], inverter_parameters=cec_inverter_parameters, ) vdcs = pd.Series(np.linspace(0, 50, 3)) idcs = pd.Series(np.linspace(0, 11, 3)) pdcs = idcs * vdcs pacs = system.get_ac('sandia', pdcs, v_dc=vdcs) inv_fun.assert_called_once() assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) @fail_on_pvlib_version('0.10') def test_PVSystem_snlinverter(cec_inverter_parameters): system = pvsystem.PVSystem( inverter=cec_inverter_parameters['Name'], inverter_parameters=cec_inverter_parameters, ) vdcs = pd.Series(np.linspace(0,50,3)) idcs = pd.Series(np.linspace(0,11,3)) pdcs = idcs * vdcs with pytest.warns(pvlibDeprecationWarning): pacs = system.snlinverter(vdcs, pdcs) assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) def test_PVSystem_get_ac_sandia_multi(cec_inverter_parameters, mocker): inv_fun = mocker.spy(inverter, 'sandia_multi') system = pvsystem.PVSystem( arrays=[pvsystem.Array(), pvsystem.Array()], inverter=cec_inverter_parameters['Name'], inverter_parameters=cec_inverter_parameters, ) vdcs = pd.Series(np.linspace(0, 50, 3)) idcs = pd.Series(np.linspace(0, 11, 3)) / 2 pdcs = idcs * vdcs pacs = system.get_ac('sandia', (pdcs, pdcs), v_dc=(vdcs, vdcs)) inv_fun.assert_called_once() assert_series_equal(pacs, pd.Series([-0.020000, 132.004308, 250.000000])) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_ac('sandia', vdcs, (pdcs, pdcs)) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_ac('sandia', vdcs, (pdcs,)) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_ac('sandia', (vdcs, vdcs), (pdcs, pdcs, pdcs)) def test_PVSystem_get_ac_pvwatts(pvwatts_system_defaults, mocker): mocker.spy(inverter, 'pvwatts') pdc = 50 out = pvwatts_system_defaults.get_ac('pvwatts', pdc) inverter.pvwatts.assert_called_once_with( pdc, **pvwatts_system_defaults.inverter_parameters) assert out < pdc def test_PVSystem_get_ac_pvwatts_kwargs(pvwatts_system_kwargs, mocker): mocker.spy(inverter, 'pvwatts') pdc = 50 out = pvwatts_system_kwargs.get_ac('pvwatts', pdc) inverter.pvwatts.assert_called_once_with( pdc, **pvwatts_system_kwargs.inverter_parameters) assert out < pdc def test_PVSystem_get_ac_pvwatts_multi( pvwatts_system_defaults, pvwatts_system_kwargs, mocker): mocker.spy(inverter, 'pvwatts_multi') expected = [pd.Series([0.0, 48.123524, 86.400000]), pd.Series([0.0, 45.893550, 85.500000])] systems = [pvwatts_system_defaults, pvwatts_system_kwargs] for base_sys, exp in zip(systems, expected): system = pvsystem.PVSystem( arrays=[pvsystem.Array(), pvsystem.Array()], inverter_parameters=base_sys.inverter_parameters, ) pdcs = pd.Series([0., 25., 50.]) pacs = system.get_ac('pvwatts', (pdcs, pdcs)) assert_series_equal(pacs, exp) assert inverter.pvwatts_multi.call_count == 2 with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_ac('pvwatts', (pdcs,)) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_ac('pvwatts', pdcs) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_ac('pvwatts', (pdcs, pdcs, pdcs)) @pytest.mark.parametrize('model', ['sandia', 'adr', 'pvwatts']) def test_PVSystem_get_ac_single_array_tuple_input( model, pvwatts_system_defaults, cec_inverter_parameters, adr_inverter_parameters): vdcs = { 'sandia': pd.Series(np.linspace(0, 50, 3)), 'pvwatts': None, 'adr': pd.Series([135, 154, 390, 420, 551]) } pdcs = {'adr': pd.Series([135, 1232, 1170, 420, 551]), 'sandia': pd.Series(np.linspace(0, 11, 3)) * vdcs['sandia'], 'pvwatts': 50} inverter_parameters = { 'sandia': cec_inverter_parameters, 'adr': adr_inverter_parameters, 'pvwatts': pvwatts_system_defaults.inverter_parameters } expected = { 'adr': pd.Series([np.nan, 1161.5745, 1116.4459, 382.6679, np.nan]), 'sandia': pd.Series([-0.020000, 132.004308, 250.000000]) } system = pvsystem.PVSystem( arrays=[pvsystem.Array()], inverter_parameters=inverter_parameters[model] ) ac = system.get_ac(p_dc=(pdcs[model],), v_dc=(vdcs[model],), model=model) if model == 'pvwatts': assert ac < pdcs['pvwatts'] else: assert_series_equal(ac, expected[model]) def test_PVSystem_get_ac_adr(adr_inverter_parameters, mocker): mocker.spy(inverter, 'adr') system = pvsystem.PVSystem( inverter_parameters=adr_inverter_parameters, ) vdcs = pd.Series([135, 154, 390, 420, 551]) pdcs = pd.Series([135, 1232, 1170, 420, 551]) pacs = system.get_ac('adr', pdcs, vdcs) assert_series_equal(pacs, pd.Series([np.nan, 1161.5745, 1116.4459, 382.6679, np.nan])) inverter.adr.assert_called_once_with(vdcs, pdcs, system.inverter_parameters) def test_PVSystem_get_ac_adr_multi(adr_inverter_parameters): system = pvsystem.PVSystem( arrays=[pvsystem.Array(), pvsystem.Array()], inverter_parameters=adr_inverter_parameters, ) pdcs = pd.Series([135, 1232, 1170, 420, 551]) with pytest.raises(ValueError, match="The adr inverter function cannot be used"): system.get_ac(model='adr', p_dc=pdcs) def test_PVSystem_get_ac_invalid(cec_inverter_parameters): system = pvsystem.PVSystem( inverter_parameters=cec_inverter_parameters, ) pdcs = pd.Series(np.linspace(0, 50, 3)) with pytest.raises(ValueError, match="is not a valid AC power model"): system.get_ac(model='not_a_model', p_dc=pdcs) def test_PVSystem_creation(): pv_system = pvsystem.PVSystem(module='blah', inverter='blarg') # ensure that parameter attributes are dict-like. GH 294 pv_system.module_parameters['pdc0'] = 1 pv_system.inverter_parameters['Paco'] = 1 def test_PVSystem_multiple_array_creation(): array_one = pvsystem.Array(surface_tilt=32) array_two = pvsystem.Array(surface_tilt=15, module_parameters={'pdc0': 1}) pv_system = pvsystem.PVSystem(arrays=[array_one, array_two]) assert pv_system.surface_tilt == (32, 15) assert pv_system.surface_azimuth == (180, 180) assert pv_system.module_parameters == ({}, {'pdc0': 1}) assert pv_system.arrays == (array_one, array_two) with pytest.raises(TypeError): pvsystem.PVSystem(arrays=array_one) def test_PVSystem_get_aoi(): system = pvsystem.PVSystem(surface_tilt=32, surface_azimuth=135) aoi = system.get_aoi(30, 225) assert np.round(aoi, 4) == 42.7408 def test_PVSystem_multiple_array_get_aoi(): system = pvsystem.PVSystem( arrays=[pvsystem.Array(surface_tilt=15, surface_azimuth=135), pvsystem.Array(surface_tilt=32, surface_azimuth=135)] ) aoi_one, aoi_two = system.get_aoi(30, 225) assert np.round(aoi_two, 4) == 42.7408 assert aoi_two != aoi_one assert aoi_one > 0 def test_PVSystem_get_irradiance(): system = pvsystem.PVSystem(surface_tilt=32, surface_azimuth=135) times = pd.date_range(start='20160101 1200-0700', end='20160101 1800-0700', freq='6H') location = Location(latitude=32, longitude=-111) solar_position = location.get_solarposition(times) irrads = pd.DataFrame({'dni':[900,0], 'ghi':[600,0], 'dhi':[100,0]}, index=times) irradiance = system.get_irradiance(solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dni'], irrads['ghi'], irrads['dhi']) expected = pd.DataFrame(data=np.array( [[ 883.65494055, 745.86141676, 137.79352379, 126.397131 , 11.39639279], [ 0. , -0. , 0. , 0. , 0. ]]), columns=['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'], index=times) assert_frame_equal(irradiance, expected, check_less_precise=2) def test_PVSystem_get_irradiance_model(mocker): spy_perez = mocker.spy(irradiance, 'perez') spy_haydavies = mocker.spy(irradiance, 'haydavies') system = pvsystem.PVSystem(surface_tilt=32, surface_azimuth=135) times = pd.date_range(start='20160101 1200-0700', end='20160101 1800-0700', freq='6H') location = Location(latitude=32, longitude=-111) solar_position = location.get_solarposition(times) irrads = pd.DataFrame({'dni': [900, 0], 'ghi': [600, 0], 'dhi': [100, 0]}, index=times) system.get_irradiance(solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dni'], irrads['ghi'], irrads['dhi']) spy_haydavies.assert_called_once() system.get_irradiance(solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dni'], irrads['ghi'], irrads['dhi'], model='perez') spy_perez.assert_called_once() def test_PVSystem_multi_array_get_irradiance(): array_one = pvsystem.Array(surface_tilt=32, surface_azimuth=135) array_two = pvsystem.Array(surface_tilt=5, surface_azimuth=150) system = pvsystem.PVSystem(arrays=[array_one, array_two]) location = Location(latitude=32, longitude=-111) times = pd.date_range(start='20160101 1200-0700', end='20160101 1800-0700', freq='6H') solar_position = location.get_solarposition(times) irrads = pd.DataFrame({'dni': [900, 0], 'ghi': [600, 0], 'dhi': [100, 0]}, index=times) array_one_expected = array_one.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dni'], irrads['ghi'], irrads['dhi'] ) array_two_expected = array_two.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dni'], irrads['ghi'], irrads['dhi'] ) array_one_irrad, array_two_irrad = system.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dni'], irrads['ghi'], irrads['dhi'] ) assert_frame_equal( array_one_irrad, array_one_expected, check_less_precise=2 ) assert_frame_equal( array_two_irrad, array_two_expected, check_less_precise=2 ) def test_PVSystem_multi_array_get_irradiance_multi_irrad(): """Test a system with two identical arrays but different irradiance. Because only the irradiance is different we expect the same output when only one GHI/DHI/DNI input is given, but different output for each array when different GHI/DHI/DNI input is given. For the later case we verify that the correct irradiance data is passed to each array. """ array_one = pvsystem.Array() array_two = pvsystem.Array() system = pvsystem.PVSystem(arrays=[array_one, array_two]) location = Location(latitude=32, longitude=-111) times = pd.date_range(start='20160101 1200-0700', end='20160101 1800-0700', freq='6H') solar_position = location.get_solarposition(times) irrads = pd.DataFrame({'dni': [900, 0], 'ghi': [600, 0], 'dhi': [100, 0]}, index=times) irrads_two = pd.DataFrame( {'dni': [0, 900], 'ghi': [0, 600], 'dhi': [0, 100]}, index=times ) array_irrad = system.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], (irrads['dhi'], irrads['dhi']), (irrads['ghi'], irrads['ghi']), (irrads['dni'], irrads['dni']) ) assert_frame_equal(array_irrad[0], array_irrad[1]) array_irrad = system.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], (irrads['dhi'], irrads_two['dhi']), (irrads['ghi'], irrads_two['ghi']), (irrads['dni'], irrads_two['dni']) ) array_one_expected = array_one.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], irrads['dhi'], irrads['ghi'], irrads['dni'] ) array_two_expected = array_two.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], irrads_two['dhi'], irrads_two['ghi'], irrads_two['dni'] ) assert not array_irrad[0].equals(array_irrad[1]) assert_frame_equal(array_irrad[0], array_one_expected) assert_frame_equal(array_irrad[1], array_two_expected) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], (irrads['dhi'], irrads_two['dhi'], irrads['dhi']), (irrads['ghi'], irrads_two['ghi']), irrads['dni'] ) array_irrad = system.get_irradiance( solar_position['apparent_zenith'], solar_position['azimuth'], (irrads['dhi'], irrads_two['dhi']), irrads['ghi'], irrads['dni'] ) assert_frame_equal(array_irrad[0], array_one_expected) assert not array_irrad[0].equals(array_irrad[1]) def test_PVSystem_change_surface_azimuth(): system = pvsystem.PVSystem(surface_azimuth=180) assert system.surface_azimuth == 180 system.surface_azimuth = 90 assert system.surface_azimuth == 90 def test_PVSystem_get_albedo(two_array_system): system = pvsystem.PVSystem( arrays=[pvsystem.Array(albedo=0.5)] ) assert system.albedo == 0.5 assert two_array_system.albedo == (0.25, 0.25) def test_PVSystem_modules_per_string(): system = pvsystem.PVSystem( arrays=[pvsystem.Array(modules_per_string=1), pvsystem.Array(modules_per_string=2)] ) assert system.modules_per_string == (1, 2) system = pvsystem.PVSystem( arrays=[pvsystem.Array(modules_per_string=5)] ) assert system.modules_per_string == 5 def test_PVSystem_strings_per_inverter(): system = pvsystem.PVSystem( arrays=[pvsystem.Array(strings=2), pvsystem.Array(strings=1)] ) assert system.strings_per_inverter == (2, 1) system = pvsystem.PVSystem( arrays=[pvsystem.Array(strings=5)] ) assert system.strings_per_inverter == 5 def test_PVSystem___repr__(): system = pvsystem.PVSystem( module='blah', inverter='blarg', name='pv ftw', temperature_model_parameters={'a': -3.56}) expected = """PVSystem: name: pv ftw Array: name: None surface_tilt: 0 surface_azimuth: 180 module: blah albedo: 0.25 racking_model: None module_type: None temperature_model_parameters: {'a': -3.56} strings: 1 modules_per_string: 1 inverter: blarg""" assert system.__repr__() == expected def test_PVSystem_multi_array___repr__(): system = pvsystem.PVSystem( arrays=[pvsystem.Array(surface_tilt=30, surface_azimuth=100), pvsystem.Array(surface_tilt=20, surface_azimuth=220, name='foo')], inverter='blarg', ) expected = """PVSystem: name: None Array: name: None surface_tilt: 30 surface_azimuth: 100 module: None albedo: 0.25 racking_model: None module_type: None temperature_model_parameters: {} strings: 1 modules_per_string: 1 Array: name: foo surface_tilt: 20 surface_azimuth: 220 module: None albedo: 0.25 racking_model: None module_type: None temperature_model_parameters: {} strings: 1 modules_per_string: 1 inverter: blarg""" assert expected == system.__repr__() def test_Array___repr__(): array = pvsystem.Array( surface_tilt=10, surface_azimuth=100, albedo=0.15, module_type='glass_glass', temperature_model_parameters={'a': -3.56}, racking_model='close_mount', module_parameters={'foo': 'bar'}, modules_per_string=100, strings=10, module='baz', name='biz' ) expected = """Array: name: biz surface_tilt: 10 surface_azimuth: 100 module: baz albedo: 0.15 racking_model: close_mount module_type: glass_glass temperature_model_parameters: {'a': -3.56} strings: 10 modules_per_string: 100""" assert array.__repr__() == expected def test_pvwatts_dc_scalars(): expected = 88.65 out = pvsystem.pvwatts_dc(900, 30, 100, -0.003) assert_allclose(out, expected) def test_pvwatts_dc_arrays(): irrad_trans = np.array([np.nan, 900, 900]) temp_cell = np.array([30, np.nan, 30]) irrad_trans, temp_cell = np.meshgrid(irrad_trans, temp_cell) expected = np.array([[nan, 88.65, 88.65], [nan, nan, nan], [nan, 88.65, 88.65]]) out = pvsystem.pvwatts_dc(irrad_trans, temp_cell, 100, -0.003) assert_allclose(out, expected, equal_nan=True) def test_pvwatts_dc_series(): irrad_trans = pd.Series([np.nan, 900, 900]) temp_cell = pd.Series([30, np.nan, 30]) expected = pd.Series(np.array([ nan, nan, 88.65])) out = pvsystem.pvwatts_dc(irrad_trans, temp_cell, 100, -0.003) assert_series_equal(expected, out) def test_pvwatts_losses_default(): expected = 14.075660688264469 out = pvsystem.pvwatts_losses() assert_allclose(out, expected) def test_pvwatts_losses_arrays(): expected = np.array([nan, 14.934904]) age = np.array([nan, 1]) out = pvsystem.pvwatts_losses(age=age) assert_allclose(out, expected) def test_pvwatts_losses_series(): expected = pd.Series([nan, 14.934904]) age = pd.Series([nan, 1]) out = pvsystem.pvwatts_losses(age=age) assert_series_equal(expected, out) @pytest.fixture def pvwatts_system_defaults(): module_parameters = {'pdc0': 100, 'gamma_pdc': -0.003} inverter_parameters = {'pdc0': 90} system = pvsystem.PVSystem(module_parameters=module_parameters, inverter_parameters=inverter_parameters) return system @pytest.fixture def pvwatts_system_kwargs(): module_parameters = {'pdc0': 100, 'gamma_pdc': -0.003, 'temp_ref': 20} inverter_parameters = {'pdc0': 90, 'eta_inv_nom': 0.95, 'eta_inv_ref': 1.0} system = pvsystem.PVSystem(module_parameters=module_parameters, inverter_parameters=inverter_parameters) return system def test_PVSystem_pvwatts_dc(pvwatts_system_defaults, mocker): mocker.spy(pvsystem, 'pvwatts_dc') irrad = 900 temp_cell = 30 expected = 90 out = pvwatts_system_defaults.pvwatts_dc(irrad, temp_cell) pvsystem.pvwatts_dc.assert_called_once_with( irrad, temp_cell, **pvwatts_system_defaults.module_parameters) assert_allclose(expected, out, atol=10) def test_PVSystem_pvwatts_dc_kwargs(pvwatts_system_kwargs, mocker): mocker.spy(pvsystem, 'pvwatts_dc') irrad = 900 temp_cell = 30 expected = 90 out = pvwatts_system_kwargs.pvwatts_dc(irrad, temp_cell) pvsystem.pvwatts_dc.assert_called_once_with( irrad, temp_cell, **pvwatts_system_kwargs.module_parameters) assert_allclose(expected, out, atol=10) def test_PVSystem_multiple_array_pvwatts_dc(): array_one_module_parameters = { 'pdc0': 100, 'gamma_pdc': -0.003, 'temp_ref': 20 } array_one = pvsystem.Array( module_parameters=array_one_module_parameters ) array_two_module_parameters = { 'pdc0': 150, 'gamma_pdc': -0.002, 'temp_ref': 25 } array_two = pvsystem.Array( module_parameters=array_two_module_parameters ) system = pvsystem.PVSystem(arrays=[array_one, array_two]) irrad_one = 900 irrad_two = 500 temp_cell_one = 30 temp_cell_two = 20 expected_one = pvsystem.pvwatts_dc(irrad_one, temp_cell_one, **array_one_module_parameters) expected_two = pvsystem.pvwatts_dc(irrad_two, temp_cell_two, **array_two_module_parameters) dc_one, dc_two = system.pvwatts_dc((irrad_one, irrad_two), (temp_cell_one, temp_cell_two)) assert dc_one == expected_one assert dc_two == expected_two def test_PVSystem_multiple_array_pvwatts_dc_value_error(): system = pvsystem.PVSystem( arrays=[pvsystem.Array(), pvsystem.Array(), pvsystem.Array()] ) error_message = 'Length mismatch for per-array parameter' with pytest.raises(ValueError, match=error_message): system.pvwatts_dc(10, (1, 1, 1)) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc((10, 10), (1, 1, 1)) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc((10, 10, 10, 10), (1, 1, 1)) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc((1, 1, 1), 1) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc((1, 1, 1), (1,)) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc((1,), 1) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc((1, 1, 1, 1), (1, 1)) with pytest.raises(ValueError, match=error_message): system.pvwatts_dc(2, 3) with pytest.raises(ValueError, match=error_message): # ValueError is raised for non-tuple iterable with correct length system.pvwatts_dc((1, 1, 1), pd.Series([1, 2, 3])) def test_PVSystem_pvwatts_losses(pvwatts_system_defaults, mocker): mocker.spy(pvsystem, 'pvwatts_losses') age = 1 pvwatts_system_defaults.losses_parameters = dict(age=age) expected = 15 out = pvwatts_system_defaults.pvwatts_losses() pvsystem.pvwatts_losses.assert_called_once_with(age=age) assert out < expected @fail_on_pvlib_version('0.10') def test_PVSystem_pvwatts_ac(pvwatts_system_defaults, mocker): mocker.spy(inverter, 'pvwatts') pdc = 50 with pytest.warns(pvlibDeprecationWarning): out = pvwatts_system_defaults.pvwatts_ac(pdc) inverter.pvwatts.assert_called_once_with( pdc, **pvwatts_system_defaults.inverter_parameters) assert out < pdc @fail_on_pvlib_version('0.10') def test_PVSystem_pvwatts_ac_kwargs(pvwatts_system_kwargs, mocker): mocker.spy(inverter, 'pvwatts') pdc = 50 with pytest.warns(pvlibDeprecationWarning): out = pvwatts_system_kwargs.pvwatts_ac(pdc) inverter.pvwatts.assert_called_once_with( pdc, **pvwatts_system_kwargs.inverter_parameters) assert out < pdc def test_PVSystem_num_arrays(): system_one = pvsystem.PVSystem() system_two = pvsystem.PVSystem(arrays=[pvsystem.Array(), pvsystem.Array()]) assert system_one.num_arrays == 1 assert system_two.num_arrays == 2 def test_combine_loss_factors(): test_index =
pd.date_range(start='1990/01/01T12:00', periods=365, freq='D')
pandas.date_range
import pandas as pd import numpy as np from datetime import datetime ############### # SELECT DATA # ############### print("Selecting attributes...") # GIT_COMMITS gitCommits = pd.read_csv("../../data/raw/GIT_COMMITS.csv") attributes = ['projectID', 'commitHash', 'author', 'committer', 'committerDate'] gitCommits = gitCommits[attributes] gitCommits.to_csv('../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv', header=True) # GIT_COMMITS_CHANGES gitCommitsChanges = pd.read_csv("../../data/raw/GIT_COMMITS_CHANGES.csv") attributes = ['projectID', 'commitHash', 'changeType', 'linesAdded', 'linesRemoved'] gitCommitsChanges = gitCommitsChanges[attributes] gitCommitsChanges.to_csv('../../data/interim/DataPreparation/SelectData/GIT_COMMITS_CHANGES_select.csv', header=True) # JIRA_ISSUES jiraIssues = pd.read_csv("../../data/raw/JIRA_ISSUES.csv") attributes = ['projectID', 'key', 'creationDate', 'resolutionDate', 'type', 'priority', 'assignee', 'reporter'] jiraIssues = jiraIssues[attributes] jiraIssues.to_csv('../../data/interim/DataPreparation/SelectData/JIRA_ISSUES_select.csv', header=True) # REFACTORING_MINER refactoringMiner = pd.read_csv("../../data/raw/REFACTORING_MINER.csv") attributes = ['projectID', 'commitHash', 'refactoringType'] refactoringMiner = refactoringMiner[attributes] refactoringMiner.to_csv('../../data/interim/DataPreparation/SelectData/REFACTORING_MINER_select.csv', header=True) # SONAR_ISSUES sonarIssues = pd.read_csv("../../data/raw/SONAR_ISSUES.csv") attributes = ['projectID', 'creationDate', 'closeDate', 'creationCommitHash', 'closeCommitHash', 'type', 'severity', 'debt', 'author'] sonarIssues = sonarIssues[attributes] sonarIssues.to_csv('../../data/interim/DataPreparation/SelectData/SONAR_ISSUES_select.csv', header=True) # SONAR_MEASURES sonarMeasures = pd.read_csv("../../data/raw/SONAR_MEASURES.csv") attributes = ['commitHash', 'projectID', 'functions', 'commentLinesDensity', 'complexity', 'functionComplexity', 'duplicatedLinesDensity', 'violations', 'blockerViolations', 'criticalViolations', 'infoViolations', 'majorViolations', 'minorViolations', 'codeSmells', 'bugs', 'vulnerabilities', 'cognitiveComplexity', 'ncloc', 'sqaleIndex', 'sqaleDebtRatio', 'reliabilityRemediationEffort', 'securityRemediationEffort'] sonarMeasures = sonarMeasures[attributes] sonarMeasures.to_csv('../../data/interim/DataPreparation/SelectData/SONAR_MEASURES_select.csv', header=True) # SZZ_FAULT_INDUCING_COMMITS szzFaultInducingCommits = pd.read_csv("../../data/raw/SZZ_FAULT_INDUCING_COMMITS.csv") attributes = ['projectID', 'faultFixingCommitHash', 'faultInducingCommitHash', 'key'] szzFaultInducingCommits = szzFaultInducingCommits[attributes] szzFaultInducingCommits.to_csv('../../data/interim/DataPreparation/SelectData/SZZ_FAULT_INDUCING_COMMITS_select.csv', header=True) print("Attributes selected.") ############## # CLEAN DATA # ############## print("Cleaning data...") def intersection(l1, l2): temp = set(l2) l3 = [value for value in l1 if value in temp] return l3 def difference(li1, li2): return (list(list(set(li1)-set(li2)) + list(set(li2)-set(li1)))) # GIT_COMMITS gitCommits = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv") authorNan = list(np.where(gitCommits.author.isna()))[0] committerNan = list(np.where(gitCommits.committer.isna()))[0] inters = intersection(authorNan, committerNan) gitCommits = gitCommits.drop(inters) gitCommits.to_csv('../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv', header=True) # GIT_COMMITS_CHANGES gitCommitsChanges = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_CHANGES_select.csv").iloc[:,1:] gitCommitsChanges.to_csv('../../data/interim/DataPreparation/CleanData/GIT_COMMITS_CHANGES_clean.csv', header=True) # JIRA_ISSUES jiraIssues = pd.read_csv("../../data/interim/DataPreparation/SelectData/JIRA_ISSUES_select.csv").iloc[:,1:] resolutionDate_nan = list(np.where(jiraIssues.resolutionDate.isna()))[0] jiraIssues_notresolved = jiraIssues.iloc[resolutionDate_nan,:] gitCommits = pd.read_csv("../../data/interim/DataPreparation/SelectData/GIT_COMMITS_select.csv").iloc[:,[1,-1]] lastTimestamp = gitCommits.groupby(['projectID']).max() jiraIssues_notresolved = pd.merge(jiraIssues_notresolved, lastTimestamp, how='left', on='projectID') jiraIssues_notresolved = jiraIssues_notresolved.iloc[:,[0,1,2,4,5,6,7,8]].rename(columns={'committerDate': 'resolutionDate'}) jiraIssues_resolved = jiraIssues.drop(resolutionDate_nan) jiraIssues = pd.concat([jiraIssues_resolved, jiraIssues_notresolved], sort=False).sort_index().reset_index().iloc[:,1:] priority_nan = list(np.where(jiraIssues.priority.isna()))[0] jiraIssues = jiraIssues.drop(priority_nan) assignee_nan = list(np.where(jiraIssues.assignee.isna()))[0] jiraIssues.assignee = jiraIssues.assignee.fillna('not-assigned') jiraIssues.to_csv('../../data/interim/DataPreparation/CleanData/JIRA_ISSUES_clean.csv', header=True) # REFACTORING_MINER refactoringMiner = pd.read_csv("../../data/interim/DataPreparation/SelectData/REFACTORING_MINER_select.csv") commitHashNan = list(np.where(refactoringMiner.commitHash.isna()))[0] refactoringTypeNan = list(np.where(refactoringMiner.refactoringType.isna()))[0] inters = intersection(commitHashNan, refactoringTypeNan) refactoringMiner = refactoringMiner.drop(inters) refactoringMiner.to_csv('../../data/interim/DataPreparation/CleanData/REFACTORING_MINER_clean.csv', header=True) # SONAR_ISSUES sonarIssues = pd.read_csv("../../data/interim/DataPreparation/SelectData/SONAR_ISSUES_select.csv").iloc[:,1:] closeDateNan = list(np.where(sonarIssues.closeDate.isna()))[0] closeCommitHashNan = list(np.where(sonarIssues.closeCommitHash.isna()))[0] debtNan = list(np.where(sonarIssues.debt.isna()))[0] authorNan = list(np.where(sonarIssues.author.isna()))[0] inter = intersection(closeDateNan, closeCommitHashNan) diff = difference(closeCommitHashNan, closeDateNan) debtNan = list(np.where(sonarIssues.debt.isna())[0]) sonarIssues = sonarIssues.drop(debtNan).reset_index() sonarIssues = sonarIssues.fillna({'closeCommitHash': 'not-resolved'}) gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv").iloc[:,1:] lastTimestamp = gitCommits.loc[:,['projectID', 'committerDate']].groupby(['projectID']).max() closeDateNan = list(np.where(sonarIssues.closeDate.isna()))[0] sonarIssues_notresolved = sonarIssues.iloc[closeDateNan,:] sonarIssues_notresolved = pd.merge(sonarIssues_notresolved, lastTimestamp, how='left', on='projectID') sonarIssues_notresolved = sonarIssues_notresolved.loc[:,['projectID', 'creationDate', 'creationCommitHash', 'closeCommitHash', 'type', 'severity', 'debt', 'author', 'committerDate']].rename(columns={'committerDate': 'closeDate'}) sonarIssues_resolved = sonarIssues.drop(closeDateNan) sonarIssues = pd.concat([sonarIssues_resolved, sonarIssues_notresolved], sort=False).sort_index().reset_index().iloc[:,1:] sonarIssues.groupby(['author']).size().reset_index().rename(columns={0:'count'}) df1 = gitCommits[['commitHash', 'committer']] df2 = (sonarIssues[['creationCommitHash', 'author']]).rename(columns={'creationCommitHash': 'commitHash'}) merge = pd.merge(df1, df2, on='commitHash', how='inner').drop_duplicates() pairs = merge.groupby(['committer', 'author']).size().reset_index().rename(columns={0:'count'}) index1 = list(np.where(pairs.committer.value_counts()==1))[0] committer_1 = (pairs.committer.value_counts())[index1].index index2 = list(np.where(pairs.author.value_counts()==1))[0] author_1 = (pairs.author.value_counts())[index2].index index_author_1 = pairs.loc[pairs['author'].isin(author_1)].index index_committer_1 = pairs.loc[pairs['committer'].isin(committer_1)].index inter_pairs = intersection(index_author_1, index_committer_1) pairs_unique = pairs.loc[inter_pairs] commiters = list(pairs_unique.committer) authors = list(pairs_unique.author) merge2 = pd.merge(merge, pairs_unique, on='committer', how='inner') merge2 = merge2[['commitHash', 'committer', 'author_y']].rename(columns={'author_y': 'author', 'commitHash': 'creationCommitHash'}) merge2 = merge2.drop_duplicates() prova2 = merge2[['creationCommitHash', 'author']] dictionary = prova2.set_index('creationCommitHash').T.to_dict('records')[0] sonarIssues.author = sonarIssues.author.fillna(sonarIssues.creationCommitHash.map(dictionary)) sonarIssues = sonarIssues.dropna(subset=['author']) sonarIssues = sonarIssues.iloc[:,1:] sonarIssues.to_csv('../../data/interim/DataPreparation/CleanData/SONAR_ISSUES_clean.csv', header=True) # SONAR_MEASURES sonarMeasures = pd.read_csv("../../data/interim/DataPreparation/SelectData/SONAR_MEASURES_select.csv") sonarMeasures.to_csv('../../data/interim/DataPreparation/CleanData/SONAR_MEASURES_clean.csv', header=True) # SZZ_FAULT_INDUCING_COMMITS szzFaultInducingCommits = pd.read_csv("../../data/interim/DataPreparation/SelectData/SZZ_FAULT_INDUCING_COMMITS_select.csv").iloc[:,1:] szzFaultInducingCommits.to_csv('../../data/interim/DataPreparation/CleanData/SZZ_FAULT_INDUCING_COMMITS_clean.csv', header=True) print("Data cleaned.") ################## # CONSTRUCT DATA # ################## print("Constructing data...") def produce_bug(x): if pd.isna(x.faultFixingCommitHash): return False return True # COMMITS_FREQUENCY gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv") gitCommits = gitCommits[['committer', 'committerDate']] newDFsorted = gitCommits.sort_values(by=['committer', 'committerDate']).reset_index()[['committer', 'committerDate']] newDFsortedCopy = [] committer = newDFsorted.iloc[0,0] for index, row in newDFsorted.iterrows(): if index != 0: if committer == newDFsorted.iloc[index,0]: r = (pd.to_datetime(newDFsorted.iloc[index,1])-pd.to_datetime(newDFsorted.iloc[index-1,1])) newDFsortedCopy.append([committer, r]) else: committer = newDFsorted.iloc[index,0] time_between_commits = pd.DataFrame(newDFsortedCopy) time_between_commits[1] = time_between_commits[1].dt.total_seconds() time_between_commits_commiter = time_between_commits.groupby([0]).mean() time_between_commits_commiter = pd.DataFrame(time_between_commits_commiter).rename(columns={0:'committer', 1:'time_between_commits'}) time_between_commits_commiter.to_csv('../../data/interim/DataPreparation/ConstructData/COMMITS_FREQUENCY.csv', header=True) # FIXED_ISSUES gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv") SZZcommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/SZZ_FAULT_INDUCING_COMMITS_clean.csv") sonarIssues = pd.read_csv("../../data/interim/DataPreparation/CleanData/SONAR_ISSUES_clean.csv") jiraIssues = pd.read_csv("../../data/interim/DataPreparation/CleanData/JIRA_ISSUES_clean.csv") SZZcommits = SZZcommits['faultFixingCommitHash'] gitCommits = gitCommits[['commitHash', 'committer']] sonarIssues = sonarIssues['closeCommitHash'] jiraIssues = jiraIssues['assignee'] SZZ_issues = (pd.merge(SZZcommits, gitCommits, how='inner', left_on='faultFixingCommitHash', right_on='commitHash').drop_duplicates())[['commitHash', 'committer']] SSZ_issue_committer = SZZ_issues.committer.value_counts().rename_axis('committer').reset_index(name='SZZIssues') Sonar_issues = pd.merge(sonarIssues, gitCommits, how='inner', left_on='closeCommitHash', right_on='commitHash').drop_duplicates()[['commitHash', 'committer']] Sonar_issues_committer = Sonar_issues.committer.value_counts().rename_axis('committer').reset_index(name='SonarIssues') Jira_issues_committer = jiraIssues[jiraIssues != 'not-assigned'].value_counts().rename_axis('committer').reset_index(name='JiraIssues') issues = pd.merge(SSZ_issue_committer, Sonar_issues_committer, on='committer', how='outer') issues = pd.merge(issues, Jira_issues_committer, on='committer', how='outer') issues = issues.fillna(0) issues.to_csv('../../data/interim/DataPreparation/ConstructData/FIXED_ISSUES.csv', header=True) # INDUCED_ISSUES gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv") SZZcommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/SZZ_FAULT_INDUCING_COMMITS_clean.csv") sonarIssues = pd.read_csv("../../data/interim/DataPreparation/CleanData/SONAR_ISSUES_clean.csv") SZZcommits = SZZcommits['faultInducingCommitHash'] gitCommits = gitCommits[['commitHash', 'committer']] sonarIssues = sonarIssues['creationCommitHash'] SZZ_issues = (pd.merge(SZZcommits, gitCommits, how='inner', left_on='faultInducingCommitHash', right_on='commitHash').drop_duplicates())[['commitHash', 'committer']] SSZ_issue_committer = SZZ_issues.committer.value_counts().rename_axis('committer').reset_index(name='SZZIssues') Sonar_issues = pd.merge(sonarIssues, gitCommits, how='inner', left_on='creationCommitHash', right_on='commitHash').drop_duplicates()[['commitHash', 'committer']] Sonar_issues_committer = Sonar_issues.committer.value_counts().rename_axis('committer').reset_index(name='SonarIssues') issues = pd.merge(SSZ_issue_committer, Sonar_issues_committer, on='committer', how='outer') issues = issues.fillna(0) issues.to_csv('../../data/interim/DataPreparation/ConstructData/INDUCED_ISSUES.csv', header=True) # JIRA_ISSUES_time jiraIssues = pd.read_csv("../../data/interim/DataPreparation/CleanData/JIRA_ISSUES_clean.csv").iloc[:,1:] jiraIssues['creationDate'] = pd.to_datetime(jiraIssues['creationDate'], format="%Y-%m-%dT%H:%M:%S.%f") jiraIssues['resolutionDate'] = pd.to_datetime(jiraIssues['resolutionDate'], format="%Y-%m-%dT%H:%M:%S.%f") jiraIssues["resolutionTime"] = jiraIssues["resolutionDate"] seconds = (jiraIssues.loc[:,"resolutionDate"] - jiraIssues.loc[:,"creationDate"]).dt.total_seconds() jiraIssues.loc[:,"resolutionTime"] = seconds/3600 jiraIssues.to_csv('../../data/interim/DataPreparation/ConstructData/JIRA_ISSUES_time.csv', header=True) # NUMBER_COMMITS gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv").iloc[:,2:] number_commits = gitCommits.groupby(['committer']).count().iloc[1:,1] number_commits = pd.DataFrame(number_commits).rename(columns={'commitHash': 'numberCommits'}) number_commits.to_csv('../../data/interim/DataPreparation/ConstructData/NUMBER_COMMITS.csv', header=True) # REFACTORING_MINER_bug refactoringMiner = pd.read_csv("../../data/interim/DataPreparation/CleanData/REFACTORING_MINER_clean.csv")[['projectID', 'commitHash', 'refactoringType']] szzFaultInducingCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/SZZ_FAULT_INDUCING_COMMITS_clean.csv")[['projectID', 'faultFixingCommitHash', 'faultInducingCommitHash']] induced_bug = pd.merge(refactoringMiner, szzFaultInducingCommits, how='left', left_on='commitHash', right_on='faultInducingCommitHash').drop_duplicates().reset_index() induced_bug['bug'] = induced_bug.apply(lambda x: produce_bug(x), axis=1) induced_bug = induced_bug[['projectID_x', 'commitHash', 'refactoringType', 'bug']].rename(columns={'projectID_x': 'projectID'}) induced_bug.to_csv('../../data/interim/DataPreparation/ConstructData/REFACTORING_MINER_bug.csv', header=True) # SONAR_ISSUES_time sonarIssues = pd.read_csv("../../data/interim/DataPreparation/CleanData/SONAR_ISSUES_clean.csv").iloc[:,1:] sonarIssues['creationDate'] = pd.to_datetime(sonarIssues['creationDate'], format='%Y-%m-%dT%H:%M:%SZ') sonarIssues["closeDate"] = pd.to_datetime(sonarIssues["closeDate"], format="%Y-%m-%dT%H:%M:%SZ") sonarIssues["closeTime"] = sonarIssues["closeDate"] seconds = (sonarIssues.loc[:,"closeDate"] - sonarIssues.loc[:,"creationDate"]).dt.total_seconds() sonarIssues.loc[:,"closeTime"] = seconds/3600 sonarIssues.to_csv('../../data/interim/DataPreparation/ConstructData/SONAR_ISSUES_time.csv', header=True) # SONAR_MEASURES_difference sonarMeasures = pd.read_csv("../../data/interim/DataPreparation/CleanData/SONAR_MEASURES_clean.csv").iloc[:, 2:] gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv").iloc[:, 2:] gitCommits['committerDate'] = pd.to_datetime(gitCommits['committerDate'], format='%Y-%m-%dT%H:%M:%SZ') newDF = pd.merge(sonarMeasures, gitCommits, how='left', left_on=['commitHash','projectID'], right_on = ['commitHash','projectID']) newDFNaN = list(np.where(newDF.committerDate.isna()))[0] newDF = newDF.drop(newDFNaN) projectID = newDF.projectID.unique() newDFsorted = newDF.sort_values(by=['projectID', 'committerDate']) newDFsortedCopy = newDFsorted.copy() project = newDFsorted.iloc[0,1] for index, row in newDFsorted.iterrows(): if index < 55625: if project == newDFsorted.iloc[index,1]: r = newDFsortedCopy.iloc[index-1:index+1,2:22].diff().iloc[1,:] newDFsorted.iloc[index:index+1,2:22] = np.array(r) else: project = newDFsorted.iloc[index,1] sonarMeasuresDifference = newDFsorted.iloc[:,:22] sonarMeasuresDifference.to_csv('../../data/interim/DataPreparation/ConstructData/SONAR_MEASURES_difference.csv', header=True) # TIME_IN_EACH_PROJECT gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv") time_in_project = gitCommits.groupby(['projectID', 'committer'])['committerDate'].agg(['min', 'max']).reset_index() time = (pd.to_datetime(time_in_project['max'])-pd.to_datetime(time_in_project['min'])) time_in_project['time'] = time.dt.total_seconds() time_in_project = time_in_project[['projectID', 'committer', 'time']] time_in_project.to_csv('../../data/interim/DataPreparation/ConstructData/TIME_IN_PROJECT.csv', header=True) print("Data constructed.") ################## # INTEGRATE DATA # ################## print("Integarting data...") numberCommits = pd.read_csv("../../data/interim/DataPreparation/ConstructData/NUMBER_COMMITS.csv") fixedIssues = pd.read_csv("../../data/interim/DataPreparation/ConstructData/FIXED_ISSUES.csv").iloc[:,1:] fixedIssues = fixedIssues.rename(columns={'SZZIssues':'fixedSZZIssues','SonarIssues':'fixedSonarIssues','JiraIssues':'fixedJiraIssues'}) inducedIssues = pd.read_csv("../../data/interim/DataPreparation/ConstructData/INDUCED_ISSUES.csv").iloc[:,1:] inducedIssues = inducedIssues.rename(columns={'SZZIssues':'inducedSZZIssues','SonarIssues':'inducedSonarIssues'}) dataFrame = pd.merge(numberCommits, fixedIssues, how='outer', left_on=['committer'], right_on = ['committer']) dataFrame = dataFrame.fillna(0.0) dataFrame = pd.merge(dataFrame, inducedIssues, how='outer', left_on=['committer'], right_on = ['committer']) dataFrame = dataFrame.fillna(0) timeInProject = pd.read_csv("../../data/interim/DataPreparation/ConstructData/TIME_IN_PROJECT.csv").iloc[:,1:] timeInProject = timeInProject.rename(columns={'time':'timeInProject'}) timeInProject = timeInProject.groupby(['committer']).mean().iloc[1:,:] dataFrame = pd.merge(dataFrame, timeInProject, how='outer', left_on=['committer'], right_on = ['committer']) dataFrame = dataFrame.fillna(0) jiraIssues = pd.read_csv("../../data/interim/DataPreparation/ConstructData/JIRA_ISSUES_time.csv").iloc[:,1:] dum = pd.get_dummies(jiraIssues[["type", 'priority']], prefix=['type', 'priority']) TypePriority = jiraIssues[['assignee']].join(dum) TypePriority = TypePriority[TypePriority.assignee!='not-assigned'].reset_index().iloc[:,1:] TypePriority = TypePriority.groupby(["assignee"]).sum() resolutionTime = jiraIssues.loc[:,['assignee','resolutionTime']] resolutionTime = resolutionTime.groupby(["assignee"]).mean() jiraIssues = resolutionTime.join(TypePriority) jiraIssues = jiraIssues.reset_index().rename(columns={'assignee':'committer'}) dataFrame = pd.merge(dataFrame, jiraIssues, how='left', left_on=['committer'], right_on = ['committer']) dataFrame = dataFrame.fillna(0.0) gitCommitsChanges = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_CHANGES_clean.csv").iloc[:,2:] dum = pd.get_dummies(gitCommitsChanges[["changeType"]]) dum = dum.rename(columns={'changeType_ModificationType.ADD':'ADD', 'changeType_ModificationType.DELETE':'DELETE', 'changeType_ModificationType.MODIFY':'MODIFY', 'changeType_ModificationType.RENAME':'RENAME', 'changeType_ModificationType.UNKNOWN':'UNKNOWN'}) Lines = gitCommitsChanges[["commitHash",'linesAdded','linesRemoved']] gitCommitsChanges = pd.concat([Lines,dum], axis=1) gitCommitsChanges = gitCommitsChanges.groupby(['commitHash']).agg({'ADD':'sum', 'DELETE':'sum', 'MODIFY':'sum', 'RENAME':'sum', 'UNKNOWN':'sum', 'linesAdded':'mean', 'linesRemoved':'mean'}) gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv") gitCommitsChanges = pd.merge(gitCommits, gitCommitsChanges, how='left', left_on=['commitHash'], right_on = ['commitHash']) gitCommitsChanges = gitCommitsChanges[['committer','ADD','DELETE','MODIFY','RENAME','UNKNOWN','linesAdded','linesRemoved']] gitCommitsChanges = gitCommitsChanges.groupby(['committer']).mean() dataFrame = pd.merge(dataFrame, gitCommitsChanges, how='left', left_on=['committer'], right_on = ['committer']) dataFrame = dataFrame.fillna(0.0) refactoringMinerBug = pd.read_csv("../../data/interim/DataPreparation/ConstructData/REFACTORING_MINER_bug.csv").iloc[:,1:] dum = pd.get_dummies(refactoringMinerBug[['refactoringType', 'bug']]) commitHash = refactoringMinerBug[["commitHash"]] refactoringMinerBug = pd.concat([commitHash,dum], axis=1) refactoringMinerBug = refactoringMinerBug.groupby(['commitHash']).sum() refactoringMinerBug = pd.merge(refactoringMinerBug, gitCommits, how='left', left_on=['commitHash'], right_on = ['commitHash']) refactoringMinerBug = pd.concat([refactoringMinerBug[['committer']], refactoringMinerBug.iloc[:,:-4]], axis=1) refactoringMinerBug = refactoringMinerBug.groupby(['committer']).sum() dataFrame = pd.merge(dataFrame, refactoringMinerBug, how='left', left_on=['committer'], right_on = ['committer']) dataFrame = dataFrame.fillna(0.0) sonarMeasures = pd.read_csv("../../data/interim/DataPreparation/ConstructData/SONAR_MEASURES_difference.csv").iloc[:,1:] gitCommits = pd.read_csv("../../data/interim/DataPreparation/CleanData/GIT_COMMITS_clean.csv")[['commitHash', 'committer']] sonarMeasures = pd.merge(sonarMeasures, gitCommits, how='left', on='commitHash').iloc[:,2:] sonarMeasures_committer = sonarMeasures.groupby(['committer']).agg({'functions':'sum', 'commentLinesDensity':'mean', 'complexity':'sum', 'functionComplexity':'sum', 'duplicatedLinesDensity':'mean', 'violations':'sum', 'blockerViolations':'sum', 'criticalViolations':'sum','infoViolations':'sum','majorViolations':'sum','minorViolations':'sum','codeSmells':'sum', 'bugs':'sum','vulnerabilities':'sum','cognitiveComplexity':'sum','ncloc':'sum','sqaleIndex':'sum', 'sqaleDebtRatio':'sum','reliabilityRemediationEffort':'sum','securityRemediationEffort':'sum'}).reset_index() dataFrame = pd.merge(dataFrame, sonarMeasures_committer, how='left', on='committer') dataFrame = dataFrame.fillna(0) sonarIssues = pd.read_csv("../../data/interim/DataPreparation/ConstructData/SONAR_ISSUES_time.csv").iloc[:,4:] sonarIssues = pd.concat([sonarIssues[['creationCommitHash']], sonarIssues.iloc[:,2:-2], sonarIssues[['closeTime']]], axis=1) debtSec = sonarIssues.debt.apply(pd.Timedelta) debtHour = debtSec.apply(lambda x: x.seconds/3600 + x.days*24) sonarIssues[['debt']] = debtHour.to_frame() dum = pd.get_dummies(sonarIssues[['type','severity']]) sonarIssues = pd.concat([sonarIssues[['creationCommitHash','debt','closeTime']], dum], axis=1) closeTime = sonarIssues.loc[:,['creationCommitHash','closeTime']] closeTime = closeTime.groupby(["creationCommitHash"]).mean() Debt = sonarIssues[['creationCommitHash','debt']] Debt = Debt.groupby(['creationCommitHash']).sum() TypesSeverities = pd.concat([sonarIssues[['creationCommitHash']], sonarIssues.iloc[:,3:]], axis=1) TypesSeverities = TypesSeverities.groupby(['creationCommitHash']).sum() sonarIssues = pd.concat([Debt, closeTime, TypesSeverities], axis=1) sonarIssues2 = pd.merge(sonarIssues, gitCommits, how='left', left_on=['creationCommitHash'], right_on=['commitHash']) closeTime = sonarIssues2.loc[:,['committer','closeTime']] closeTime = closeTime.groupby(["committer"]).mean() Debt = sonarIssues2[['committer','debt']] Debt = Debt.groupby(['committer']).sum() TypesSeverities =
pd.concat([sonarIssues2[['committer']], sonarIssues2.iloc[:,2:-3]], axis=1)
pandas.concat
import mysql.connector import pandas as pd mydb = mysql.connector.connect( host="172.16.17.32", user="admin", password="<PASSWORD>", database="rod_input", port=3306, ) mycursor1 = mydb.cursor() #mycursor.execute("SHOW GLOBAL VARIABLES LIKE 'innodb_rollback_on_timeout';") liste1=[] mycursor1.execute("SELECT * FROM `data_input` WHERE 1") liste1=[] myresult1 = mycursor1.fetchall() #mydb.commit() for x in myresult1: liste1.append(x) df1=pd.DataFrame(liste1,columns=['Nom','Prénom','Telephone','Adresse','Ville','Code postal','Statut','agent','Campagne','Liste d\'appel','Date d\'appel','forme_juridique','nace_code','nace_description','contact_position','numero_entreprise','province','website','sexe','mail_direct','mail_general','gsm','tel_direct','commentaire_appel','First Name','Last Name']) #----------------------------------------------------------------- import mysql.connector import pandas as pd mydb = mysql.connector.connect( host="172.16.17.32", user="admin", password="<PASSWORD>", database="rod_input", port=3306, ) liste2=[] mycursor2 = mydb.cursor() mycursor2.execute("SELECT * FROM `code_postaux` WHERE 1") myresult2 = mycursor2.fetchall() for x in myresult2: liste2.append(x) df2=pd.DataFrame(liste2,columns=['PAYS','CONCATENATED','CODE POSTAL','LOCALITE','COMMUNE','CODE POSTAL2','LANGUE Officielle','PROVINCE','REGION','PROVINCE EN','Commune riche']) #------------------------------------------------------------------------------ import mysql.connector import pandas as pd mydb = mysql.connector.connect( host="172.16.17.32", user="admin", password="<PASSWORD>", database="rod_input", port=3306, ) liste3=[] mycursor3 = mydb.cursor() mycursor3.execute("SELECT * FROM `preferred_language` WHERE 1") myresult3 = mycursor3.fetchall() mydb.commit() for x in myresult3: liste3.append(x) df3=pd.DataFrame(liste3,columns=['NomAgent','Prefered Language']) #------------------------------------------------------------------------- #pd.merge(df1,df2,on=df1['Code postal'],how=df2['CODE POSTAL2']) df4=pd.merge(df1,df2,left_on='Code postal',right_on='CODE POSTAL2') df5=
pd.merge(df4,df3,left_on='agent',right_on='NomAgent')
pandas.merge
import numpy as np import pandas as pd def autocorr_single_tp(a: np.array, t: int) -> float: """Do autocorrelation for a single time point. Parameters ---------- a : np.array The array to correlate (complex or real number) t : int The distance (in the index) Returns ------- float The autocorrelation as a real number. """ return np.real(np.sum(a[0] * np.conj(a[t]))) def autocorr(df: pd.DataFrame) -> pd.DataFrame: """Do autocorrelation for all possible time steps over all columns. Parameters ---------- df : pd.DataFrame The data frame to correlate Returns ------- pd.DataFrame The resulting dataframe with timestep as index and one column named autocorr """ df_result =
pd.DataFrame()
pandas.DataFrame
import requests import pandas as pd import numpy as np import os import unidecode as udc def get_points(place): """ Transfers one given place to points by following rules: 1st place = 200p 2nd place = 190p 3rd place = 182p 4th place = 176p 5th place = 172p 6th place = 170p 7th place = 169p 8th place = 168p ... 175th place = 1p """ if place == "1.": return 200 if place == "2.": return 190 if place == "3.": return 182 if place == "4.": return 176 if place == "5.": return 172 if place == 'DISK' or place == 'MS' or int(place[:-1]) > 175: return 0 else: return 176 - int(place[:-1]) def clean_race_dataframe(df): """ Replaces all empty strings, strings containing only whitespaces and None values by NaN. Replaces empty plaes with 'DISK'. Replaces NaN registrations with 'nereg.'. Replaces empty UserIDs (ORIS) with NaN. """ df.replace(r'^\s*$', np.nan, regex=True, inplace=True) df.fillna(value=np.nan, inplace=True) df['Place'] = df['Place'].fillna(value="DISK") df['RegNo'] = df['RegNo'].fillna(value="nereg.") df['UserID'] = df['UserID'].fillna(value=np.nan) return df def assign_points(df): """ Iterates through given dataframe and assigns points to every runner based on his or her place in category. """ for i, runner in df.iterrows(): df.at[i, 'Points'] = get_points(runner['Place']) df = df.astype({'Points': 'int32'}) return df def export_race_to_csv(df, race_id): """ Exports race dataframe with assigned points to a .csv file with name in format: 'points_<race_id>.csv'. """ if 'Points' in df.columns: df.to_csv("points_{}.csv".format(race_id), sep=',', index=False) def export_class_overall_to_csv(df, class_desc): """ Exports overall results dataframe to a .csv file with name in format: 'overall_<class_desc>.csv'. """ df.to_csv("overall_{}.csv".format(class_desc), sep=',') def race_mode(race_id): """ Single race mode. Reads race's ORIS id from user's input, loads the race from ORIS, assigns points and exports the result into a .csv file. """ # Select race by it's ORIS-id try: race_id = int(race_id) except ValueError: print("'{}' není celé číslo.".format(race_id)) return # First, load name and date of selected race. Then load its results. url = "https://oris.orientacnisporty.cz/API/?format=json&method=getEvent&id={}".format(race_id) try: response = requests.get(url) data = response.json() if data['Status'] == 'OK': name = data['Data']['Name'] date = data['Data']['Date'] print("Jméno závodu:", name) print("Datum závodu:", date) # Load results of selected race url = "https://oris.orientacnisporty.cz/API/?format=json&method=getEventResults&eventid={}".format(race_id) response = requests.get(url) data = response.json() columns_to_keep = ['ClassDesc', 'Place', 'Name', 'RegNo', 'UserID', 'Time'] # Clean dataset try: results = clean_race_dataframe( pd.DataFrame.from_dict(data['Data'], orient='index').set_index('ID')[columns_to_keep] ) except KeyError: print("CHYBA: Závod je ve špatném formátu (chybí mu ID výsledku). Určitě jsi zadal správné id závodu?") return # Assign points results_with_points = assign_points(results) # Export to .csv export_race_to_csv(results_with_points, race_id) print("Závod úspěšně vyhodnocen a uložen do: points_{}.csv".format(race_id)) else: print("Nepodařilo se stáhnout závod z ORISu. (ORIS status: {})".format(data['Status'])) except requests.exceptions.ConnectionError: print("Nepodařilo se připojit se k ORISU. Zkontroluj prosím své připojení k internetu.") def list_races(): """ Lists all races with already assigned points in current folder. With their names and dates. """ filenames = sorted([f for f in os.listdir("./") if os.path.isfile(os.path.join("./", f))]) race_filenames = [f for f in filenames if f[:7] == "points_" and f[-4:] == ".csv"] race_ids = [int(f[7:-4]) for f in race_filenames] for filename, race_id in zip(race_filenames, race_ids): url = "https://oris.orientacnisporty.cz/API/?format=json&method=getEvent&id={}".format(race_id) try: response = requests.get(url) data = response.json() if data['Status'] == 'OK': name = data['Data']['Name'] date = data['Data']['Date'] print("'{}' - '{}' - {}".format(filename, name, date)) else: print("Nepodařilo se stáhnout závod z ORISu. (ORIS status: {})".format(data['Status'])) except requests.exceptions.ConnectionError: print("Nepodařilo se připojit se k ORISU. Zkontroluj prosím své připojení k internetu.") def get_overall_results(): """ Goes through all 'points_<id>.csv' files in current directory and creates overall results from points. """ # Get filenames and ids of races with assigned points filenames = sorted([f for f in os.listdir("./") if os.path.isfile(os.path.join("./", f))]) race_filenames = [f for f in filenames if f[:7] == "points_" and f[-4:] == ".csv"] race_ids = [int(f[7:-4]) for f in race_filenames] if len(race_filenames) > 0: races = {} columns_list = ['Name', 'RegNo'] # For each race add <id>-Place and <id>-Points column for r_id, r_filename in zip(race_ids, race_filenames): races[r_id] = pd.read_csv(r_filename, index_col=False) columns_list.append("{}-Place".format(r_id)) columns_list.append("{}-Points".format(r_id)) # Create overall results - dataframe for every category ovr_results = {'H': pd.DataFrame(columns=columns_list), 'D': pd.DataFrame(columns=columns_list), 'ZV': pd.DataFrame(columns=columns_list), 'HDD': pd.DataFrame(columns=columns_list)} # Iterate through races and runners and add them to overall results for r_id in race_ids: race = races[r_id] # Create a data structure for adding new runners (have no evidence in already processed races) new_runners = {} for class_desc in ['H', 'D', 'ZV', 'HDD']: new_runners[class_desc] = {'Name': [], 'RegNo': [], '{}-Place'.format(r_id): [], '{}-Points'.format(r_id): []} # Iterate through runners for _, race_result in race.iterrows(): reg_no = race_result['RegNo'] class_desc = race_result['ClassDesc'] # Registered runners if len(reg_no) == 7 and 64 < ord(reg_no[0]) < 91: # Runner with this RegNo already has some results in this category in overall results if reg_no in ovr_results[class_desc]['RegNo'].values: reg_no_mask = ovr_results[class_desc]['RegNo'] == reg_no ovr_results[class_desc].loc[reg_no_mask, '{}-Place'.format(r_id)] = race_result['Place'] ovr_results[class_desc].loc[reg_no_mask, '{}-Points'.format(r_id)] = race_result['Points'] # Runner with this RegNo has no results in this category in overall results so far else: new_runners[class_desc]['Name'].append(race_result['Name']) new_runners[class_desc]['RegNo'].append(reg_no) new_runners[class_desc]['{}-Place'.format(r_id)].append(race_result['Place']) new_runners[class_desc]['{}-Points'.format(r_id)].append(race_result['Points']) # Not registered runners ('nereg.') else: name = race_result['Name'] # Runner with this Name already has some results in this category in overall results if name in ovr_results[class_desc]['Name'].values: # Runner with this Name was already added into `new_runners`. It means two # not registered runners with same name in results of one race in same class. if name in new_runners[class_desc]['Name']: print("POZOR: Závodník bez registračky jménem '{}' již v závodě '{}' v kategorii '{}' existuje." .format(race_result['Name'], r_id, class_desc)) else: name_mask = ovr_results[class_desc]['Name'] == name ovr_results[class_desc].loc[name_mask, '{}-Place'.format(r_id)] = race_result['Place'] ovr_results[class_desc].loc[name_mask, '{}-Points'.format(r_id)] = race_result['Points'] # Runner with this Name has no results in this category in overall results so far else: # Runner with this Name was already added into `new_runners`. It means two # not registered runners with same name in results of one race in same class. if name in new_runners[class_desc]['Name']: print("POZOR: Závodník bez registračky jménem '{}' již v závodě '{}' v kategorii '{}' existuje." .format(race_result['Name'], r_id, class_desc)) else: new_runners[class_desc]['Name'].append(name) new_runners[class_desc]['RegNo'].append(reg_no) new_runners[class_desc]['{}-Place'.format(r_id)].append(race_result['Place']) new_runners[class_desc]['{}-Points'.format(r_id)].append(race_result['Points']) # Add all new runners to overall results of particular category for class_desc in ['H', 'D', 'ZV', 'HDD']: ovr_results[class_desc] = pd.concat( [ovr_results[class_desc], pd.DataFrame.from_dict(new_runners[class_desc])], ignore_index=True, sort=False) return ovr_results else: print("Žádné závody ve složce nenalezeny.") return None def solve_duplicities(input_results): output_results = {} for class_desc in ['H', 'D', 'ZV', 'HDD']: columns = input_results[class_desc].columns output_results[class_desc] = {} for column in columns: output_results[class_desc][column] = [] # Iterate through all categories and try to merge probable duplicities deleted_ids = [] # list of all runners that were merged into another ones for class_desc in ['H', 'D', 'ZV', 'HDD']: for i_actual, runner in input_results[class_desc].iterrows(): # i_actual runner wasn't merged with a previous one yet if i_actual not in deleted_ids: duplicity_solved = False # Iterate through all other runners that could possible be duplicates of this one for i_other in range(i_actual+1, input_results[class_desc].shape[0]): # Lowercase names without diacritics matches => duplicity to solve if udc.unidecode(runner['Name']).lower() == udc.unidecode(input_results[class_desc].loc[i_other, 'Name']).lower(): print(70*"=") print("DUPLICITY\t|\tLeft:\t\t\t|\tRight:") print(70*"-") print("Name:\t\t|\t{}\t|\t{}".format(runner['Name'], input_results[class_desc].loc[i_other, 'Name'])) print("RegNo:\t\t|\t{}\t\t\t|\t{}".format(runner['RegNo'], input_results[class_desc].loc[i_other, 'RegNo'])) for descriptor in runner.index[2:]: print("{}:\t|\t{}\t\t\t|\t{}".format(descriptor, runner[descriptor], input_results[class_desc].loc[i_other, descriptor])) merge = input("Merge and keep left (l) / Merge and keep right (r) / Keep separate (s)? ") while merge not in ['l', 'r', 's']: merge = input("Merge and keep left (l) / Merge and keep right (r) / Keep separate (s)? ") # Merge and keep left values primarily if merge == 'l': for descriptor in columns: if runner[descriptor] is not np.nan: output_results[class_desc][descriptor].append(runner[descriptor]) elif input_results[class_desc].loc[i_other, descriptor] is not np.nan: output_results[class_desc][descriptor].append(input_results[class_desc].loc[i_other, descriptor]) else: output_results[class_desc][descriptor].append(np.nan) deleted_ids.append(i_other) duplicity_solved = True # Merge and keep right values primarily elif merge == 'r': for descriptor in columns: if input_results[class_desc].loc[i_other, descriptor] is not np.nan: output_results[class_desc][descriptor].append(input_results[class_desc].loc[i_other, descriptor]) elif runner[descriptor] is not np.nan: output_results[class_desc][descriptor].append(runner[descriptor]) else: output_results[class_desc][descriptor].append(np.nan) deleted_ids.append(i_other) duplicity_solved = True # Keep both runners separately elif merge == 's': pass # This runner was not written to the output_results during duplicity solving (writing standard cases) if not duplicity_solved: for descriptor in columns: output_results[class_desc][descriptor].append(runner[descriptor]) for class_desc in ['H', 'D', 'ZV', 'HDD']: output_results[class_desc] = pd.DataFrame.from_dict(output_results[class_desc]) return output_results def best_n_races(results): for class_desc in ['H', 'D', 'ZV', 'HDD']: num_of_all_races = len(results[class_desc].columns[2:]) // 2 num_of_races_to_count = (num_of_all_races // 2) + 1 total_points = [] columns = results[class_desc].columns[2:] for _, runner in results[class_desc].iterrows(): points = [] total_points.append(0) for descriptor in columns: if 'Points' in descriptor: if not np.isnan(runner[descriptor]): points.append(int(runner[descriptor])) else: points.append(0) for race_points in sorted(points, reverse=True)[:num_of_races_to_count]: total_points[-1] += race_points results[class_desc]['Best{}-Points'.format(num_of_races_to_count)] =
pd.Series(total_points)
pandas.Series
# Authors: <EMAIL> """ This module provide a databse data pull test for all tables """ import os import pandas as pd import psycopg2 from user_similarity_model.config.core import SQL_DIR, config def test_course_tag_pull(sample_local_data): """Test if the data that is pulled from database is consistent with local version""" # establish a connection to the Azure PostgreSql conn = psycopg2.connect(**config.app_config.database_specs) cur = conn.cursor() # Open the test sql file and load the query with open(os.path.join(SQL_DIR, "test-sql-fetch.sql")) as file: query = file.read().split(";") # run the query and fetch the results in a pandas DF cur.execute(query[0]) rows = cur.fetchall() courses_remote = pd.DataFrame(rows, columns=["count"]).loc[0, "count"] local_df_course_tag = sample_local_data["course_tags"] courses_local = local_df_course_tag[ local_df_course_tag.course_id == "2d-racing-games-unity-volume-2-1286" ].shape[0] # are local and remote consistent? assert courses_remote == courses_local # test a score between two databases cur.execute(query[1]) rows = cur.fetchall() assessments_remote =
pd.DataFrame(rows, columns=["score"])
pandas.DataFrame
#........................................................................................................ # Title: Wikidata claims (statements) to natural language (a part of Triple2Text/Ontology2Text task) # Author: <NAME> # Email: <EMAIL> # Lab: https://www.cic.ipn.mx # Date: 12/2019 #........................................................................................................ from base import * #from cluster_methods import * from wiki_core import * from read_write_file import * from word2vec import * from wiki2vec import * from itertools import cycle from collections import Counter from sklearn.cluster import DBSCAN, OPTICS, MeanShift, AffinityPropagation, AgglomerativeClustering, SpectralClustering, Birch from sklearn.mixture import GaussianMixture from sklearn.decomposition import TruncatedSVD, PCA, NMF, SparsePCA, FastICA from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import LocalOutlierFactor from sklearn.linear_model import LinearRegression from sklearn import metrics from sklearn.manifold import TSNE from sklearn.neighbors import NearestNeighbors import numpy as np import math import re import time import matplotlib.pyplot as plt from collections import Counter import pandas as pd from nltk import ngrams import string import spacy from spacy.lang.en.stop_words import STOP_WORDS nlp = spacy.load("en_core_web_md") definition_properties = { 'P26': ['spouse', 'wife', 'married', 'marry', 'marriage', 'partner', 'wedded', 'wed', 'wives', 'husbands', 'spouses', 'husband'], 'P39': ['position', 'political', 'object', 'seat', 'public', 'office', 'subject', 'formerly', 'holds', 'currently', 'held', 'occupied'], 'P54': ['sports', 'teams', 'clubs', 'member', 'team', 'played', 'plays', 'club', 'player'], 'P69': ['educated', 'educational', 'institution', 'attended', 'subject', 'alma', 'mater', 'education', 'alumni', 'alumnus', 'alumna', 'college', 'university', 'school', 'studied', 'graduate', 'graduated', 'faculty'], 'P108': ['employer', 'person', 'organization', 'subject', 'works', 'worked', 'workplace', 'employed', 'working', 'place'], 'P166': ['work', 'awarded', 'won', 'medals', 'creative', 'person', 'awards', 'win', 'winner', 'honors', 'received', 'award', 'prize', 'title', 'recognition', 'honorary', 'honours', 'organisation'], 'P6': ['first', 'chancellor', 'prime', 'minister', 'government', 'mayor', 'state', 'executive', 'town', 'national', 'other', 'power', 'head', 'municipality', 'country', 'premier', 'body', 'governor', 'heading', 'city', 'headed', 'governmental', 'president'], 'P17': ['human', 'host', 'used', 'beings', 'item', 'sovereign', 'country', 'nation', 'land', 'state'], 'P22': ['daughter', 'daddy', 'subject', 'dad', 'male', 'stepfather', 'stepparent', 'son', 'father', 'child', 'parent'], 'P27': ['national', 'subject', 'nationality', 'country', 'citizenship', 'object', 'citizen', 'recognizes'], 'P31': ['example', 'main', 'member', 'class', 'individual', 'unsubclassable', 'subject', 'instance', 'occurrence', 'unsubtypable', 'distinct', 'uninstantiable', 'non', 'specific', 'unique', 'rdf', 'unsubclassifiable', 'element', 'unitary', 'type', 'particular'], 'P35': ['highest', 'king', 'authority', 'governor', 'queen', 'chief', 'monarch', 'head', 'official', 'country', 'headed', 'emperor', 'leader', 'formal', 'state', 'president'], 'P101': ['specialism', 'specialization', 'speciality', 'studies', 'FOW', 'organization', 'field', 'researcher', 'area', 'work', 'fields', 'person', 'academic', 'research', 'occupation', 'activity', 'subject', 'domain', 'scientific', 'discipline', 'responsible', 'conduct', 'see', 'study'], 'P103': ['languages', 'mother', 'person', 'language', 'native', 'learned', 'first', 'L1', 'speaker', 'tongue', 'birth'], 'P106': ['work', 'position', 'held', 'person', 'employment', 'craft', 'occupation', 'profession', 'career', 'field', 'job'], 'P108': ['person', 'employed', 'workplace', 'employer', 'working', 'works', 'subject', 'worked', 'place', 'organization'], 'P131': ['district', 'administrative', 'arrondissement', 'rural', 'territorial', 'entity', 'happens', 'village', 'region', 'following', 'territory', 'item', 'Indian', 'local', 'shire', 'government', 'area', 'based', 'borough', 'department', 'state', 'reservation', 'town', 'commune', 'unit', 'places', 'province', 'reserve', 'municipality', 'settlement', 'ward', 'county', 'prefecture', 'non', 'locations', 'parish', 'items', 'principal', 'location', 'voivodeship', 'locality', 'specifying', 'city', 'events', 'located'], 'P155': ['comes', 'offices', 'prequel', 'preceding', 'prior', 'replaces', 'split', 'sequel', 'item', 'successor', 'immediately', 'follows', 'before', 'series', 'subject', 'replaced', 'political', 'use', 'preceded', 'part', 'succeeds', 'previous', 'predecessor'], 'P156': ['comes', 'offices', 'prequel', 'part', 'sequel', 'following', 'item', 'successor', 'succeeded', 'immediately', 'followed', 'before', 'preceeds', 'series', 'subject', 'precedes', 'replaced', 'political', 'next', 'use', 'succeded'], 'P184': ['PhD', 'supervisor', 'doctorate', 'thesis', 'promotor', 'advisor', 'subject', 'doctoral', 'supervised'], 'P276': ['administrative', 'case', 'entity', 'region', 'physical', 'venue', 'event', 'item', 'place', 'area', 'based', 'object', 'held', 'feature', 'neighborhood', 'distinct', 'origin', 'terrain', 'location', 'use', 'located', 'moveable'], 'P407': ['broadcasting', 'audio', 'signed', 'URL', 'written', 'languages', 'associated', 'used', 'such', 'name', 'language', 'native', 'available', 'text', 'website', 'work', 'creative', 'named', 'reference', 'spoken', 'websites', 'songs', 'persons', 'use', 'shows', 'books'], 'P413': ['specialism', 'position', 'played', 'player', 'speciality', 'team', 'fielding'], 'P453': ['filled', 'specific', 'played', 'cast', 'subject', 'role', 'use', 'plays', 'acting', 'qualifier', 'character', 'member', 'actor', 'only', 'voice'], 'P512': ['person', 'academic', 'degree', 'holds', 'diploma'], 'P570': ['date', 'died', 'dead', 'subject', 'deathdate', 'year', 'death', 'end', 'DOD'], 'P571': ['introduced', 'commenced', 'defined', 'commencement', 'existence', 'point', 'came', 'time', 'creation', 'formation', 'first', 'inception', 'founded', 'written', 'founding', 'built', 'created', 'constructed', 'foundation', 'when', 'inititated', 'date', 'dedication', 'subject', 'establishment', 'issue', 'start', 'inaugurated', 'launch', 'introduction', 'launched', 'formed', 'construction', 'year', 'incorporated', 'incorporation', 'completed', 'established'], 'P577': ['work', 'date', 'airdate', 'dop', 'released', 'point', 'air', 'initial', 'pubdate', 'time', 'publication', 'first', 'year', 'published', 'release', 'when'], 'P580': ['start', 'starting', 'began', 'statement', 'date', 'introduced', 'introduction', 'begins', 'item', 'started', 'beginning', 'exist', 'time', 'valid', 'starttime', 'starts', 'building'], 'P582': ['ending', 'ceases', 'indicates', 'divorced', 'cease', 'left', 'time', 'closed', 'end', 'endtime', 'operation', 'item', 'date', 'stop', 'statement', 'office', 'dissolved', 'ends', 'stops', 'valid', 'being', 'exist', 'fall', 'completed'], 'P585': ['date', 'statement', 'event', 'existed', 'point', 'something', 'place', 'true', 'time', 'year', 'took', 'when'], 'P642': ['stating', 'statement', 'item', 'scope', 'qualifier', 'applies', 'particular'], 'P669': ['road', 'add', 'street', 'square', 'item', 'number', 'where', 'use', 'address', 'qualifier', 'there', 'property', 'located'], 'P708': ['church', 'types', 'archdiocese', 'division', 'administrative', 'other', 'diocese', 'ecclesiastical', 'use', 'entities', 'bishopric', 'belongs', 'element', 'territorial', 'archbishopric'], 'P735': ['forename', 'family', 'Christian', 'person', 'used', 'names', 'middle', 'values', 'name', 'should', 'link', 'first', 'disambiguations', 'property', 'given', 'personal'], 'P748': ['person', 'appointed', 'used', 'can', 'office', 'qualifier'], 'P768': ['district', 'seat', 'electoral', 'area', 'candidacy', 'representing', 'held', 'Use', 'election', 'riding', 'person', 'office', 'ward', 'position', 'being', 'contested', 'qualifier', 'constituency', 'electorate'], 'P805': ['dedicated', 'identified', 'statement', 'qualifying', 'item', 'describes', 'subject', 'artfor', 'article', 'relation', 'claim'], 'P811': ['college', 'someone', 'studied', 'academic', 'minor', 'university'], 'P812': ['college', 'someone', 'studied', 'academic', 'major', 'subject', 'university', 'field', 'study'], 'P828': ['due', 'causes', 'has', 'result', 'ultimate', 'had', 'why', 'ultimately', 'implied', 'thing', 'reason', 'effect', 'underlying', 'outcome', 'resulted', 'originated', 'caused', 'cause', 'initial'], 'P937': ['work', 'workplace', 'persons', 'working', 'activity', 'where', 'location', 'place', 'active'], 'P1001': ['value', 'institution', 'has', 'territorial', 'jurisdiction', 'item', 'linked', 'law', 'applied', 'state', 'statement', 'office', 'power', 'country', 'municipality', 'valid', 'belongs', 'applies', 'public'], 'P1013': ['respect', 'basis', 'used', 'according', 'made', 'criterion', 'reference', 'criteria', 'respectively', 'property', 'distinction', 'based', 'classification', 'by'], 'P1066': ['pupil', 'master', 'person', 'academic', 'disciple', 'supervisor', 'teacher', 'professor', 'studied', 'has', 'mentor', 'advisor', 'taught', 'student', 'tutor'], 'P1264': ['applicability', 'statement', 'validity', 'period', 'time', 'valid', 'applies', 'when'], 'P1268': ['represents', 'entity', 'organization', 'organisation', 'individual'], 'P1350': ['pitched', 'number', 'played', 'races', 'games', 'matches', 'team', 'appearances', 'caps', 'starts', 'gp', 'sports', 'mp'], 'P1351': ['scored', 'used', 'event', 'number', 'league', 'participant', 'points', 'goals', 'qualifier', 'GF', 'score', 'set', 'match', 'use'], 'P1365': ['replaces', 'structures', 'identical', 'item', 'successor', 'continues', 'forefather', 'follows', 'holder', 'person', 'job', 'replaced', 'structure', 'preceded', 'supersedes', 'succeeds', 'previous', 'predecessor'], 'P1366': ['adds', 'role', 'identical', 'item', 'heir', 'successor', 'succeeded', 'continues', 'superseded', 'followed', 'dropping', 'holder', 'person', 'other', 'series', 'job', 'replaced', 'next', 'replacing', 'continued', 'mediatised', 'books'], 'P1534': ['date', 'ending', 'specify', 'together', 'use', 'qualifier', 'cause', 'ended', 'end', 'reason'], 'P1642': ['status', 'transaction', 'player', 'acquisition', 'acquired', 'team', 'how', 'qualifier', 'member', 'loan', 'contract', 'sports'], 'P1686': ['work', 'awarded', 'nominated', 'received', 'award', 'qualifier', 'citation', 'creator', 'given'], 'P1706': ['item', 'together', 'award', 'tied', 'feat', 'qualifier', 'featuring', 'property', 'shared', 'accompanied', 'specify'], 'P2389': ['leads', 'person', 'directed', 'office', 'head', 'heads', 'directs', 'leader', 'organization', 'runs', 'organisation', 'led'], 'P2578': ['learning', 'research', 'academic', 'item', 'working', 'study', 'subject', 'studies', 'researches', 'property', 'object', 'field', 'studying', 'scholarly'], 'P2715': ['election', 'position', 'reelection', 'confirmed', 'person', 'statements', 'gained', 'qualifier', 'link', 'elected', 'held'], 'P2842': ['wedding', 'location', 'where', 'place', 'spouse', 'celebrated', 'marriage', 'property', 'married'], 'P2868': ['value', 'duty', 'function', 'context', 'has', 'role', 'title', 'purpose', 'generic', 'item', 'acting', 'identity', 'character', 'object', 'statement', 'subject', 'roles', 'job', 'use'], 'P3831': ['value', 'generic', 'statement', 'context', 'specifically', 'circumstances', 'item', 'employment', 'subject', 'role', 'identity', 'use', 'qualifier', 'object'], 'P4100': ['parliament', 'group', 'faction', 'belongs', 'parliamentary', 'member', 'party'], 'P1319': ['date', 'earliest'] } # load corpus from property name def load_corpus(file_name, word2vec_file_name, property_name, delimiter='#', dtype=dtypes, trained=False, idf_dict_status=False): df = pd.read_csv(file_name, delimiter='#', dtype=dtype, usecols=list(dtype)) best_sentences, best_rows = get_best_sentences(df, show=False) labeled_sen_list = df['labeled_sentence_2'] counter = create_ngram(labeled_sen_list, 1) # unigram idf_dict = {} if (idf_dict_status == True): idf_dict = create_idf_dict(labeled_sen_list) word_corpus = create_true_distribution_corpus2(labeled_sen_list, 0) if (trained == True): word2vec_train(word2vec_file_name, property_name, word_corpus) # load models local_model = load_word2vec(word2vec_file_name) global_model = load_wiki2vec('D:\wiki-news-300d-1M.vec', 200000) result_dict = {} result_dict['file_name'] = file_name result_dict['sen_list'] = df result_dict['best_sentences'] = best_sentences result_dict['labeled_sen_list'] = labeled_sen_list result_dict['counter'] = counter result_dict['idf_dict'] = idf_dict result_dict['word_corpus'] = word_corpus result_dict['local_model'] = local_model result_dict['global_model'] = global_model print('Loading corpus was done!!!') return result_dict # some basic statistics def basic_statistics(file_name, delimiter='#', dtype=dtypes, best_sentence = False): print('file_name: ', file_name) #sen_list = read_from_csv_file(file_name, '#', 'all')[1:] # remove headers df = pd.read_csv(file_name, delimiter=delimiter, dtype=dtype, usecols=list(dtype)) average_sentence_length(df) average_word(df) average_token(df) average_token_labeled_sentence(df) ratio_token_per_quad(df) ratio_token_per_quad_item(df) if (best_sentence == True): print('++ Best sentences statistics') labeled_list, df2 = get_best_sentences(df) #print(len(labeled_list)) average_sentence_length(df2) average_word(df2) average_token(df2) average_token_labeled_sentence(df2) ratio_token_per_quad(df2) ratio_token_per_quad_item(df2) print('.............................') print('.............................') # cumulative rate by property def cumulative_rate_by_property(property_name, df): length_list = [] for index, row in df.iterrows(): #print(property_name, row['length']) if (row['predicate'].lower() == property_name.lower()): length_list.append(int(row['length'])) elif (property_name == 'common'): # count all properties length_list.append(int(row['length'])) #file_name, sen_list, best_sentences, labeled_sen_list, counter, idf_dict, word_corpus, local_model, global_model = load_corpus(property_name) #sentences, number_redundant_word_list, redundant_word_list = get_corpus_redundant_words(sen_list) #print('length_list: ', length_list) rank_list = rank_sentence_by_redundant_words(length_list) cumulative_list = cumulative_rate(rank_list) #print('rank_list: ', rank_list) return cumulative_list def treat_labeled_items2(): prefixes = list(nlp.Defaults.prefixes) prefixes.remove('\\[') prefix_regex = spacy.util.compile_prefix_regex(prefixes) nlp.tokenizer.prefix_search = prefix_regex.search suffixes = list(nlp.Defaults.suffixes) suffixes.remove('\\]') suffix_regex = spacy.util.compile_suffix_regex(suffixes) nlp.tokenizer.suffix_search = suffix_regex.search infixes = list(nlp.Defaults.prefixes) infixes.remove('\\[') infixes.remove('\\]') try: infixes.remove('\\-') except Exception as e: pass try: infixes.remove(':') except Exception as e: pass try: infixes.remove('_') except Exception as e: pass infix_regex = spacy.util.compile_infix_regex(infixes) nlp.tokenizer = Tokenizer(nlp.vocab, infix_finditer=infix_regex.finditer) # create n-gram from text def ngram(text, n): # make n-gram and also count the frequency of each item by Counter treat_labeled_items2() doc = nlp(text) temp = [token.text for token in doc if token.text != ''] return list(ngrams(temp, n)) # create n-gram from list def create_ngram(sentence_list, n): temp = [] for sentence in sentence_list: sentence = "[start] " + sentence + " [end]" temp += (ngram(sentence, n)) return Counter(temp) # filter by property name def filter_by_property(property_name, sen_list): #property_list = ['P26','P39','P54','P69','P108','P166'] result_list = [] for p in sen_list[1:]: # start with data in line 1 (not headers) if (p[2] == property_name): result_list.append(p) result_list = sorted(result_list, key = lambda x: (int(x[2][1:]), x[4])) # sort by qualifier return result_list # write file from list def write_file_from_list(file_name, sen_list): with open(file_name,'w', newline='', encoding='utf-8') as f: wr = csv.writer(f, delimiter='#', quoting=csv.QUOTE_MINIMAL) for p in sen_list: print(p) wr.writerow(p) # average length per raw sentence def average_sentence_length(df): al = 0 for index, row in df.iterrows(): #print('row: ', row) al += len(row['raw_sentence']) print('average_sentence_length: ', al/len(df)) return al/len(df) # average word per raw sentence def average_word(df): al = 0 for index, row in df.iterrows(): doc = nlp(row['raw_sentence']) # words = [token.text for token in doc if token.is_punct != True] al += len(row['raw_sentence'].split()) print('average_word: ', al/len(df)) return al/len(df) # average token per raw sentence def average_token(df): al = 0 for index, row in df.iterrows(): doc = nlp(row['raw_sentence']) al += doc.__len__() print('average_token: ', al/len(df)) return al/len(df) # average token per labeled sentence def average_token_labeled_sentence(df): al = 0 treat_labeled_items() # treat a labeled item as a token for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) al += doc.__len__() print('average_token_labeled_sentence: ', al/len(df)) return al/len(df) # ratio of token per quad (labeled sentence) def ratio_token_per_quad(df): treat_labeled_items() # treat a labeled item as a token tokens = 0 quads = len(df) # 1 quad in 1 sentence for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) tokens += doc.__len__() print('ratio_token_per_quad: ', tokens/quads) return tokens/quads # ratio of token per quad item (labeled sentence) def ratio_token_per_quad_item(df): treat_labeled_items() # treat a labeled item as a token tokens = 0 quad_items = 0 for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) temp_quads = len(row['order_2'].split(',')) tokens += doc.__len__() - temp_quads quad_items += temp_quads print('ratio_token_per_quad_item: ', tokens/quad_items) return tokens/quad_items # get the best sentences: no redundant words (except stop words & a verb as ROOT) def get_best_sentences(df, show=False): treat_labeled_items2() # treat a labeled item as a token best_sentence_list = [] best_row_list = [] columns = [] if (len(df) != 0): columns = [index for index, val in df.iloc[0].iteritems()] for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) redudant_list = [] temp_quads = [x.strip() for x in row['order_2'].split(',')] for token in doc: if (token.pos_ == "X"): continue if (token.pos_ == "PUNCT"): continue if (token.pos_ == "CCONJ"): continue if (token.pos_ == "ADP"): continue if (token.pos_ == "PRON"): continue if (token.pos_ == "PART"): continue if (token.pos_ == "DET"): continue if (token.dep_ == "punct"): continue if (token.text not in temp_quads): redudant_list.append([token.text, token.pos_, token.dep_]) #print(token.text, token.pos_, token.dep_) if (len(redudant_list) == 1): if (redudant_list[0][2] == "ROOT"): # token.pos_ if (row['labeled_sentence_2'] not in best_sentence_list): best_sentence_list.append(row['labeled_sentence_2']) # add the labeled sentence only best_row_list.append([val for index, val in row.iteritems()]) # add a whole row if (show != False): print('..............................') print('..............................') print('Best sentences:') for s in best_sentence_list: print(s) print('-----------') print('..............................') print('..............................') # convert to dataframe df = pd.DataFrame(best_row_list, columns=columns) #print('df: ', df) return best_sentence_list, df # get redundant words in labeled sentences def get_redundant_words(sen_row): redudant_list = [] treat_labeled_items2() doc = nlp(sen_row['labeled_sentence_2']) quad_items = get_quad_items(sen_row) for token in doc: if (token.pos_ == "X"): continue if (token.pos_ == "PUNCT"): continue if (token.pos_ == "CCONJ"): continue if (token.pos_ == "ADP"): continue if (token.pos_ == "PRON"): continue if (token.pos_ == "PART"): continue if (token.pos_ == "DET"): continue if (token.dep_ == "punct"): continue if (token.text not in quad_items and token.text.strip() != ''): #redudant_list.append([token.text, token.pos_, token.dep_]) redudant_list.append(token.text) return redudant_list # train corpus using CBOW def word2vec_train(word2vec_file, property_name, corpus): # save_word2vec(corpus, min_count, size, window, sorted_vocab, sg, workers, iters, file_name) if (property_name == 'p26'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 10, word2vec_file) if (property_name == 'p108'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 30, word2vec_file) if (property_name == 'p69'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 20, word2vec_file) if (property_name == 'p166'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 20, word2vec_file) if (property_name == 'p54'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 5, word2vec_file) if (property_name == 'p39'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 25, word2vec_file) if (property_name == 'common'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 3, word2vec_file) if (property_name == 'common2'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 3, word2vec_file) # get quad items in a sentence def get_quad_items(sen_row): quad_items = [] quad_items = [x.strip() for x in sen_row['order_2'].split(',')] return quad_items # get important quad items in a sentence def get_important_quad_items(sen_row): quad_items = [] quad_items = [x.strip() for x in sen_row['order_2'].split(',')] quad_items = list(set(quad_items) - set(['[det:the]','[det:a-an]','[s:poss]'])) # remove unimportant terms return quad_items # get qualifier quad items in a sentence def get_qualifier_items(sen_row): quad_items = [] quad_items = [x.strip() for x in sen_row['order_2'].split(',')] qualifier_list = [] for q in quad_items: if ('qualifier' in q and 'o0' in q): # get qualifiers of o0 (main object or first object) qualifier_list.append(q) #print('qualifier_list: ', qualifier_list) return qualifier_list # convert sentence to measures (tf, idf, local_distance, global_distance, vector, etc) & write to a result file def convert_sentence_to_measures(output_file_name, sen_row, best_sentences, local_model, global_model, counter, idf_dict): #print('sen_row: ', sen_row) # redundant words redundant_words = get_redundant_words(sen_row) length = len(redundant_words) sentence = redundant_words # check redundant words only # best sentence label = '' if (sen_row['labeled_sentence_2'] in best_sentences): label = 'x' # sum & product tf1, tf2 = convert_sentence_to_tf(sentence, local_model, counter) idf1, idf2 = convert_sentence_to_idf(sentence, idf_dict) local1, local2 = convert_sentence_to_local_distance(sen_row, sentence, local_model, counter) global1, global2 = convert_sentence_to_global_distance(sen_row, sentence, global_model) # combination tf_idf1, tf_idf2 = convert_sentence_to_tf_idf(sentence, local_model, counter, idf_dict) local_tf1, local_tf2 = convert_sentence_to_local_tf_distance(sen_row, sentence, local_model, counter) local_idf1, local_idf2 = convert_sentence_to_local_idf_distance(sen_row, sentence, local_model, counter, idf_dict) local_tf_idf1, local_tf_idf2 = convert_sentence_to_local_tf_idf_distance(sen_row, sentence, local_model, counter, idf_dict) global_tf1, global_tf2 = convert_sentence_to_global_tf_distance(sen_row, sentence, global_model, counter, qualifier=False) global_idf1, global_idf2 = convert_sentence_to_global_idf_distance(sen_row, sentence, global_model, idf_dict, qualifier=False) global_tf_idf1, global_tf_idf2 = convert_sentence_to_global_tf_idf_distance(sen_row, sentence, global_model, counter, idf_dict, qualifier=False) # global with qualifier global_qualifier1, global_qualifier2 = convert_sentence_to_global_distance(sen_row, sentence, global_model, qualifier=True) global_qualifier_tf1, global_qualifier_tf2 = convert_sentence_to_global_tf_distance(sen_row, sentence, global_model, counter, qualifier=True) global_qualifier_idf1, global_qualifier_idf2 = convert_sentence_to_global_idf_distance(sen_row, sentence, global_model, idf_dict, qualifier=True) global_qualifier_tf_idf1, global_qualifier_tf_idf2 = convert_sentence_to_global_tf_idf_distance(sen_row, sentence, global_model, counter, idf_dict, qualifier=True) # vector vector_sum, vector_product = convert_sentence_to_vector(sentence, local_model) # base on local_model # add results to sen_row temp_list = [label, redundant_words, length, tf1, tf2, idf1, idf2, local1, local2, global1, global2, tf_idf1, tf_idf2, local_tf1, local_tf2, local_idf1, local_idf2, local_tf_idf1, local_tf_idf2, global_tf1, global_tf2, global_idf1, global_idf2, global_tf_idf1, global_tf_idf2, global_qualifier1, global_qualifier2, global_qualifier_tf1, global_qualifier_tf2, global_qualifier_idf1, global_qualifier_idf2, global_qualifier_tf_idf1, global_qualifier_tf_idf2] sen_row = sen_row.values.tolist() sen_row.extend(temp_list) write_to_csv_file(output_file_name, '#', sen_row) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_distance(sen_row, sentence, global_model, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' sum_dist += temp_sum/def_length product_dist *= -math.log(temp_sum/def_length) # return sum_dist, math.log(product_dist + 1) return sum_dist, -math.log(product_dist) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_tf_idf_distance(sen_row, sentence, global_model, counter, idf_dict, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' idf = get_idf(idf_dict, w) # inverse topic frequency tf = get_tf(counter, w) # term frequency sum_dist += (temp_sum*idf*tf)/def_length product_dist *= math.log(1 + (temp_sum*idf*tf)/def_length) # return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_idf_distance(sen_row, sentence, global_model, idf_dict, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' idf = get_idf(idf_dict, w) # inverse topic frequency sum_dist += (temp_sum*idf)/def_length product_dist *= math.log(1 + (temp_sum*idf)/def_length) # return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_tf_distance(sen_row, sentence, global_model, counter, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' tf = get_tf(counter, w) # term frequency sum_dist += (temp_sum*tf)/def_length product_dist *= math.log(1 + (temp_sum*tf)/def_length) #print('---', (temp_sum*tf)/def_length, math.log((temp_sum*tf)/def_length)) #print('product_dist: ', product_dist) # return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # convert sentence to a vector distance (similarity) def convert_sentence_to_local_distance(sen_row, sentence, local_model, counter): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue sum_dist += temp_sum/quad_length product_dist *= -math.log(temp_sum/quad_length) #return sum_dist, math.log(product_dist + 1) return sum_dist, -math.log(product_dist) # convert sentence to local-tf def convert_sentence_to_local_tf_distance(sen_row, sentence, local_model, counter): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue tf = get_tf(counter, w) # term frequency sum_dist += (temp_sum*tf)/quad_length product_dist *= math.log(1 + (temp_sum*tf)/quad_length) #print('---', (temp_sum*tf)/quad_length, math.log((temp_sum*tf)/quad_length)) #return sum_dist, math.log(product_dist + 1) #print('product_dist: ', product_dist) return sum_dist, math.log(product_dist + 1) # convert sentence to local-idf def convert_sentence_to_local_idf_distance(sen_row, sentence, local_model, counter, idf_dict): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue idf = get_idf(idf_dict, w) # inverse topic frequency sum_dist += (temp_sum*idf)/quad_length product_dist *= math.log(1 + (temp_sum*idf)/quad_length) #return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # convert sentence to local-tf-idf def convert_sentence_to_local_tf_idf_distance(sen_row, sentence, local_model, counter, idf_dict): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue tf = get_tf(counter, w) # term frequency idf = get_idf(idf_dict, w) # inverse topic frequency sum_dist += (temp_sum*tf*idf)/quad_length product_dist *= math.log(1 + (temp_sum*tf*idf)/quad_length) #return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # convert sentence to tf-idf def convert_sentence_to_tf_idf(sentence, model, counter, idf_dict): length = len(sentence) sum_score = 0 product_score = 1 for w in sentence: try: tf = get_tf(counter, w) idf = get_idf(idf_dict, w) sum_score += tf*idf product_score *= tf*idf except: pass return sum_score, math.log(product_score + 1) # convert sentence to term frequency def convert_sentence_to_tf(sentence, model, counter): #length = len(sentence) sum_score = 0 product_score = 1 for w in sentence: try: score = get_tf(counter, w) #print('---', score) sum_score += score product_score *= score except: pass #print('product_score: ', product_score) return sum_score, math.log(product_score) # convert sentence to term frequency def convert_sentence_to_idf(sentence, idf_dict): length = len(sentence) sum_score = 0 product_score = 1 for w in sentence: try: score = get_idf(idf_dict, w) sum_score += score product_score *= score except: pass return sum_score, math.log(product_score + 1) # convert sentence to vector def convert_sentence_to_vector(sentence, model): length = len(sentence) sum_vec = 1 product_vec = 1 for w in sentence: try: w_vec = model.get_vector(w) sum_vec += w_vec product_vec *= w_vec except: pass return sum_vec, product_vec # convert corpus to vector def convert_corpus_to_vector(corpus, best_sentences, model, counter): label_list = [] vector_list = [] i = 0 # note that a sentence is a list of words for sentence in corpus: # convert back to a string sentence temp = ' '.join(e for e in sentence[1:-1]) # remove [start], [end] if (temp in best_sentences): label_list.append('x') else: label_list.append('') sum_vector, product_vector = convert_sentence_to_vector(sentence, model, counter) vector_list.append([sum_vector, product_vector]) i = i + 1 return label_list, vector_list # get redundant words and their length for all sentences def get_corpus_redundant_words(sen_list): sentence_list, number_redundant_word_list, redundant_word_list = [], [], [] for p in sen_list: redundant_words = get_redundant_words(p) length = len(redundant_words) number_redundant_word_list.append(length) redundant_word_list.append(redundant_words) sentence_list.append(p['labeled_sentence_2']) return sentence_list, number_redundant_word_list, redundant_word_list # convert corpus to measures and write to file def convert_corpus_to_measures(output_file_name, sen_list, best_sentences, local_model, global_model, counter, idf_dict): #label_list, metric_list, number_redundant_word_list, redundant_word_list, sentence_list = [], [], [], [], [] #i = 0 # note that sentence is a list of words for index, sen_row in sen_list.iterrows(): convert_sentence_to_measures(output_file_name, sen_row, best_sentences, local_model, global_model, counter, idf_dict) #metric_list.append(temp_dict) #i = i + 1 #return label_list, metric_list, number_redundant_word_list, redundant_word_list, sentence_list #........................... #........................... # rank a predicate frequency by property (P26, P39, P54, etc) def rank_predicate_by_property(count_list, property_name): # group and calculate average values temp_list = [] for i in count_list: if (i['term'].split('-')[0] == property_name): temp_list.append([i['term'], i['local_average'], i['local_max_dist'], i['global_average'], i['global_max_dist'], i['subject_dist'], i['object_dist'], i['redundant_words']]) df = pd.DataFrame(temp_list) df = df.groupby([0]).agg('mean') df = {x[0]: x[1:] for x in df.itertuples(index=True)} # calculate term frequency and add it & average values to freq_dict freq_list = [t[0] for t in temp_list] #print('freq_list: ', freq_list) length = len(freq_list) # size of corpus freq_dict = Counter(freq_list) #print('freq_dict: ', freq_dict) for k, v in freq_dict.items(): freq_dict[k] = {'tf':v/length, 'local_average':df[k][0], 'local_max_dist':df[k][1], 'global_average': df[k][2], 'global_max_dist':df[k][3], 'subject_dist': df[k][4], 'object_dist':df[k][5], 'redundant_words':df[k][6]} #print('freq_dict: ', freq_dict) return freq_dict # count the average distance of a word to other words (important words/terms only) in the same sentence def word_distance_to_sentence(quad_items, word, local_model, global_model): local_length = len(quad_items) # the numbers of quad items global_length = 0 local_sum = 0 global_sum = 0 local_max_dist = 0 global_max_dist = 0 subject_dist = object_dist = 0 try: subject_dist = local_model.similarity(word, '[s]') # subject distance object_dist = local_model.similarity(word, '[o0]') # object distance except: pass # local model for term in quad_items: # can be qualifiers or all items in quad (subject, object, qualifiers) try: dist = local_model.similarity(word, term) #print('dist, word, term: ', dist, word, term) if (dist > local_max_dist): local_max_dist = dist local_sum += dist #print('local_sum: ', local_sum) except: local_length = local_length - 1 # word is not in model pass # global model #print('quad_items: +++', quad_items) for term in quad_items: value = term[term.index(':')+1:term.index('-')] temp_list = [] try: temp_list = definition_properties[value] except: pass temp_length = len(temp_list) #print('term, value, temp_list, temp_length: ', term, value, temp_list, temp_length) for t in temp_list: try: dist = global_model.similarity(word, t) #print('dist: ', dist, word, t) if (dist > global_max_dist): global_max_dist = dist global_sum += dist except: temp_length = temp_length - 1 # word is not in model pass global_length += temp_length local_average = global_average = 0 if (local_length == 0): local_average = 0 else: local_average = local_sum/local_length if (global_length == 0): global_average = 0 else: global_average = global_sum/global_length result_dict = {'local_average':local_average, 'local_max_dist': local_max_dist, 'global_average': global_average, 'global_max_dist': global_max_dist, 'subject_dist': subject_dist, 'object_dist': object_dist} #print('result_dict: ', result_dict) return result_dict # count average distance of a word to other words in a sentence (use important terms) def word_distance_to_property_definition(prop_items, word, global_model): length = len(prop_items) temp_sum = 0 max_dist = 0 for term in prop_items: try: dist = global_model.similarity(word, term) if (dist > max_dist): max_dist = dist temp_sum += dist except: length = length - 1 # word is not in model pass if (length == 0): return temp_sum, max_dist return temp_sum/length, max_dist # rank predicate (Wikidata properties) by term frequency def rank_predicate(sen_df, best_sentences, counter, local_model, global_model, by_qualifier=False): result_dict = Counter() predicate_criteria_list = [] # list of criteria of each predicate property_name_list = [] redundant_list = [] for index, sen_row in sen_df.iterrows(): predicate = sen_row['predicate'].strip() # Wikidata property qualifiers = sen_row['qualifiers'].strip().split('-') #prepositional_verb = sen_row['prepositional_verb'].split(',')[0].strip("'") root = sen_row['root'].split(',') root_value = root[0].strip("'") # value of root (verb) root_pos = root[1] # position of root quad_items = get_qualifier_items(sen_row) distance_dict = word_distance_to_sentence(quad_items, root_value, local_model, global_model) if (by_qualifier == True): term = predicate + '-' + root_value + '-' + '-'.join(qualifiers) else: term = predicate + '-' + root_value property_name_list.append(predicate) distance_dict['term'] = term redundant_words = get_redundant_words(sen_row) distance_dict['redundant_words'] = len(redundant_words) predicate_criteria_list.append(distance_dict) property_names = list(set(property_name_list)) # join dictionaries by property for pn in property_names: result_dict = {**result_dict, **rank_predicate_by_property(predicate_criteria_list, pn)} # join two dictionaries normalized_values = [] normalized_labels = [] for k, v in result_dict.items(): temp = k.split('-') property_name = temp[0] predicate = temp[1] tf = get_tf(counter, predicate) '''average_def_dist, max_def_dist = word_distance_to_property_definition(definition_properties[property_name], predicate, global_model)''' #print('---', average_def_dist, v['local_average'], v['global_average'], v['tf']) temp_list = [v['local_average'], v['global_average'], v['tf']] temp_score = (np.prod(temp_list)*len(temp_list))/sum(temp_list) try: temp_score = 1/-math.log(temp_score) except: temp_score = 0 result_dict[k] = (temp_score, temp_score, v['tf']) normalized_values.append((temp_score, temp_score, v['tf'])) normalized_labels.append(k) #{'local_average':local_average, 'local_max_dist': local_max_dist, 'global_average': global_average, # 'global_max_dist': global_max_dist, 'subject_dist': subject_dist, 'object_dist': object_dist} # normalize values normalized_values = MinMaxScaler().fit(normalized_values).transform(normalized_values) for k, v in zip(normalized_labels, normalized_values): result_dict[k] = v.tolist() #print('result_dict: ', result_dict) result_dict = dict(sorted(result_dict.items(), key = lambda v: v[1], reverse = True)) return result_dict def group_predicate(predicate_dict, top=10, show=False): group_dict = {} for k, v in predicate_dict.items(): temp_list = k.split('-') key = temp_list[0] + '-' + '-'.join(temp_list[2:]) key = key.strip('-') predicate = temp_list[1] temp_list = [*v] temp_list.insert(0, predicate) if (key not in group_dict): group_dict[key] = [temp_list] else: group_dict[key].append(temp_list) #group_dict = sorted(group_dict.items(), key = lambda v: (v[0]), reverse = True)) if (show==False): return group_dict i = 1 for k, v in group_dict.items(): print('+', k) for x in v: if (i > top): break print('---', x) i = i + 1 i = 1 return group_dict #........................... #........................... # get idf of a word def create_idf_word(sentences, word): n = len(sentences) freq = 0 # raw frequency for s in sentences: freq += sum(1 for _ in re.finditer(r'\b%s\b' % re.escape(word), s)) return freq # create idf dictionary def create_idf_dict(sentences): n = len(sentences) result_dict = {} result_dict['%%SIZE%%'] = n # number of documents (sentences) for s in sentences: doc = nlp(s) for token in doc: if (str(token.text) not in result_dict): result_dict[str(token.text)] = create_idf_word(sentences, str(token.text)) return result_dict # get inverse document frequency, a sentence as a document def get_idf(idf_dict, word): n = idf_dict['%%SIZE%%'] freq = 0 if (word in idf_dict): freq = idf_dict[word] # return -math.log((freq + 1)/n) return -math.log((freq+1)/n) + 1 # get frequency of a term in corpus, corpus as a document def get_tf(counter, word): temp = (word,) # create key freq = 0 freq = counter[temp] # raw frequency #n = len(counter) return math.log(freq+1) + 1 # count and rank the number of sentence by its redudant words def rank_sentence_by_redundant_words(redundants): count_dict = {} for r in redundants: if (r not in count_dict): count_dict[r] = 1 else: count_dict[r] += 1 count_dict = sorted(count_dict.items(), key=lambda x: x[0]) return count_dict # show sentences by distance def show_sentence_distance(labels, scores, redundants, sentences, redundant_word_list): i = 0 for value in scores: print('#' + str(i) + ': ', value, labels[i], redundants[i], redundant_word_list[i], '---', sentences[i]) i = i + 1 # show plot of sentences def show_sentence_plot(labels, scores, redundants, sentences, redundant_word_list): #labels = [] #scores = [] #redundants = [] #sentences = [] #redundant_word_list = [] #labels, scores, redundants, sentences, redundant_word_list = convert_corpus_to_distance(sen_list, best_sentences, model, counter) #labels, tokens = convert_corpus_to_vector1(word_corpus, best_sentences, model, counter) #tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=23) #new_values = tsne_model.fit_transform(tokens) plt.figure(figsize=(20, 20)) for i in range(len(scores)): # s: size, color: color if (labels[i] == 'x'): plt.scatter(scores[i], redundants[i], s=20, color='blue') # marker = 's' plt.annotate('', xy=(scores[i], redundants[i]), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') else: plt.scatter(scores[i], redundants[i], s=2) plt.annotate('', xy=(scores[i], redundants[i]), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.xlabel("Number of redundant words") plt.ylabel("Score") plt.title('Sentences in corpus') plt.savefig('show_sentence_plot.pdf') plt.show() # show plot of predicates (Wikidata properties) def show_predicate_plot(predicate_list, axis_labels): plt.figure(figsize=(12, 4)) for index, predicate_dict in enumerate(predicate_list): labels = [] values = [] for k, v in predicate_dict.items(): labels.append(k) values.append(v) #tsne_model = TSNE(perplexity=100, n_components=1, init='pca', n_iter=5000) #values = tsne_model.fit_transform(values) #values = decomposition(values, 'pca', dimension = 2) #values = MinMaxScaler().fit(values).transform(values) x = [] y = [] sizes = [] i = 0 for v in values: a = v[0] b = v[1] #print('+++', labels[i], a, b, int(v[2]*300)+1) x.append(a) y.append(b) sizes.append(int(v[2]*300)+1) i = i + 1 plt.rcParams.update({'font.size':10}) for i in range(len(x)): # s: size, color: color plt.scatter(1, 1, s=1, alpha=0.0) plt.scatter(index + 2, y[i], s=sizes[i], alpha=0.6) # marker = 's' if (i < 5): temp_label = labels[i][labels[i].index('-')+1:] #print('temp_label: ', temp_label) plt.annotate(temp_label, xy=(index + 2, y[i]), xytext=(2, 2), textcoords='offset points', ha='right', va='bottom', alpha=0.9, fontsize=8) #fontsize=int(sizes[i]/10)+1 plt.grid(color = 'grey', linestyle = 'dotted', linewidth = 1) #plt.gca().axes.get_xaxis().set_visible(False) # axis labels plt.xticks(range(2, len(axis_labels)+2), axis_labels) plt.show() # get all qualifiers by Wikidata properties def get_all_qualifiers(sen_df): result_list = [] result_dict = {} for index, sen_row in sen_df.iterrow(): temp_list = get_qualifier_items(sen_row) for t in temp_list: value = t[t.index(':') + 1:t.index('-')] result_list.append(value) result_list = list(set(result_list)) result_list = sorted(result_list, key = lambda x: int(x[1:])) for r in result_list: root = get_wikidata_root(r) label = get_label(root) description = get_description(root) aliases = ' '.join(e for e in get_alias(root)) def_string = label + ' ' + description + ' ' + aliases def_list = [] doc = nlp(def_string) for token in doc: if (token.pos_ == "X"): continue if (token.pos_ == "PUNCT"): continue if (token.pos_ == "CCONJ"): continue if (token.pos_ == "ADP"): continue if (token.pos_ == "PRON"): continue if (token.pos_ == "PART"): continue if (token.pos_ == "DET"): continue if (token.dep_ == "punct"): continue def_list.append(token.text) def_list = list(set(def_list)) #print('def_list:', r, def_list) result_dict[r] = def_list print('result_dict qualifiers: ', result_dict) return result_dict # sentence plot by redundant words def sentence_plot_by_redundant_words(total_cumulative_list, labels, plot_title, x_axis_label, y_axis_label): #cmap = plt.get_cmap('plasma') #colors = cmap(np.linspace(0, 1, len(labels))) colors = ['green', 'blue', 'red', 'coral', 'orchid', 'gray', 'gold'] colorcyler = cycle(colors) lines = ['+', '*', '>', 'x', 'o', ':', '--'] linecycler = cycle(lines) plt.rcParams.update({'font.size':10}) plt.ylabel(y_axis_label) plt.xlabel(x_axis_label) #plt.title(plot_title) #plt.figure(figsize=(1,30)) #plt.figure(figsize=(1, 1), dpi=1000) scale_factor = 30 xmin, xmax = plt.xlim() plt.xlim(xmin * scale_factor, xmax * scale_factor) for cumulative_list, name, color in zip(total_cumulative_list, labels, colors): x, y = [], [] i = 0 for r in cumulative_list: x.append(r[0]) y.append(r[1]) i = i + 1 plt.plot(x, y, next(linecycler), label=name, c=next(colorcyler)) plt.legend() '''for i in range(len(y)): plt.scatter(x[i], y[i], s=2, color=color)''' #ymin, ymax = plt.ylim() #plt.ylim(ymin * scale_factor, ymax * scale_factor) plt.grid(color = 'grey', linestyle = 'dotted', linewidth = 0.5) plt.savefig('sentence_plot_by_redundant_words.pdf') plt.savefig('sentence_plot_by_redundant_words.svg') plt.show() plt.style.use('default') # reset style to default # accumulative rate [0-1] def cumulative_rate(rank_list): result_list = [] total = sum([r[1] for r in rank_list]) temp = 0 for r in rank_list: temp += r[1]/total #print(temp) result_list.append([r[0], temp]) #print(result_list) return result_list # minimums by redundant words def minimums_by_redundant_words(scores, redundants): result_dict = {} for s, r in zip(scores, redundants): if (r not in result_dict): result_dict[r] = s else: # get min if s < result_dict[r]: result_dict[r] = s result_dict = sorted(result_dict.items(), key=lambda x: x[0]) #print(result_dict) return result_dict # linear regression def linear_regression(x, y): print('x: ', x) print('y: ', y) x = np.array(x).reshape((-1, 1)) y = np.array(y) model = '' try: model = LinearRegression().fit(x, y) except: model = LinearRegression().fit(x, y) r_sq = model.score(x, y) print('coefficient of determination:', r_sq) print('intercept:', model.intercept_) print('slope:', model.coef_) y_pred = model.predict(x) print('predicted response:', y_pred, sep='\n') mae = metrics.mean_absolute_error(y, y_pred) print('Mean Absolute Error:', mae) mse = metrics.mean_squared_error(y, y_pred) print('Mean Squared Error:', mse) rmse = np.sqrt(metrics.mean_squared_error(y, y_pred)) print('Root Mean Squared Error:', rmse) result_dict = {} result_dict['y_pred'] = y_pred result_dict['intercept'] = model.intercept_ result_dict['coef'] = model.coef_ result_dict['r_sq'] = r_sq result_dict['mae'] = mae result_dict['mse'] = mse result_dict['rmse'] = rmse return result_dict # linear regression plot def linear_regression_plot(x, y, dict1, dict2, plot_title, x_axis_label, y_axis_label): plt.figure(figsize=(20, 20)) for i, j in zip(x, y): plt.scatter(i, j, s=10, alpha=0.5) plt.annotate('', xy=(i, j), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') axes1 = plt.gca() x_vals1 = np.array(axes1.get_xlim()) y_vals1 = dict1['intercept'] + dict1['coef']*x_vals1 print('x_vals1, y_vals1: ', x_vals1, y_vals1) plt.plot(x_vals1, y_vals1, '--') axes2 = plt.gca() x_vals2 = np.array(axes2.get_xlim()) y_vals2 = dict2['intercept'] + dict2['coef']*x_vals2 print('x_vals2, y_vals2: ', x_vals2, y_vals2) plt.plot(x_vals2, y_vals2) plt.grid(color = 'grey', linestyle = 'dotted', linewidth = 0.5) plt.savefig('linear_regression_plot.pdf') plt.show() #plt.style.use('default') # reset style to default # filter noise by cumulative rate def filter_noise_by_cumulative_rate(sentences, redundant_word_list, number_redundant_word_list, cumulative_list, rate = 0, top_words = 0): sentences_, redundant_word_list_, number_redundant_word_list_ = [], [], [] if (rate == 0 and top_words == 0): return sentences, redundant_word_list, number_redundant_word_list bound = 0 # number of words used to filter # filter by rate only if (rate != 0 and top_words == 0): for c in cumulative_list: bound = c[0] if (c[1] > rate): break elif(rate == 0 and top_words != 0): bound = top_words if (bound == 0): return sentences, redundant_word_list, number_redundant_word_list for a, b, c in zip(sentences, redundant_word_list, number_redundant_word_list): if (c <= bound): sentences_.append(a) redundant_word_list_.append(b) number_redundant_word_list_.append(c) return sentences_, redundant_word_list_, number_redundant_word_list_ # filter noise by metrics def filter_noise_by_metrics(df, field, frac=1, ascending=True): # convert to numeric df['local_tf_idf2'] = pd.to_numeric(df['local_tf_idf2'], errors='coerce') # standard df[field] = pd.to_numeric(df[field], errors='coerce') # metric df['length'] = pd.to_numeric(df['length'], errors='coerce') # number of redundant words # sort df sorted_df = df.sort_values(field, ascending=ascending) # get fraction df_len = len(sorted_df.index) n = int(df_len*frac) df_frac = sorted_df.head(n) # linear regression length_list = df_frac['length'].tolist() field_list = df_frac['local_tf_idf2'].tolist() #field_list = df_frac[field].tolist() linear_regression(length_list, field_list) '''for index, row in df_frac.iterrows(): labeled_sentence_2 = row['labeled_sentence_2'] length = row['length'] label = row['label'] score = row[field] print('--------------') print(label, length, score) print(labeled_sentence_2)''' def filter_noise_by_clustering_method(df, field, compared_field, method, frac=1, ascending=True): """ Not used --- # filter noise by DBSCAN (not use) # https://blog.dominodatalab.com/topology-and-density-based-clustering/ """ # convert to numeric df[compared_field] = pd.to_numeric(df[compared_field], errors='coerce') # standard df[field] = pd.to_numeric(df[field], errors='coerce') # metric df['length'] =
pd.to_numeric(df['length'], errors='coerce')
pandas.to_numeric
import datetime import logging import math import os import warnings from collections import namedtuple from pprint import pprint from time import sleep from zipfile import ZipFile import pandas as pd import pytz from oemof import solph from oemof.tools import logger from deflex import analyses from deflex import config as cfg from deflex import geometries from deflex import main from deflex import results from deflex import tools try: from lmfit.models import LinearModel except ModuleNotFoundError: LinearModel = None try: from oemof_visio.plot import io_plot from oemof_visio.plot import set_datetime_ticks except ModuleNotFoundError: io_plot = None try: from matplotlib import patches from matplotlib import patheffects from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.dates import DateFormatter from matplotlib.dates import HourLocator except ModuleNotFoundError: plt = None MISSING_MODULES = [] OPSD_URL = ( "https://data.open-power-system-data.org/index.php?package=" "time_series&version=2019-06-05&action=customDownload&resource=3" "&filter%5B_contentfilter_cet_cest_timestamp%5D%5Bfrom%5D=" "2005-01-01&filter%5B_contentfilter_cet_cest_timestamp%5D%5Bto%5D" "=2019-05-01&filter%5BRegion%5D%5B%5D=DE&filter%5BVariable%5D%5B" "%5D=price_day_ahead&downloadCSV=Download+CSV" ) EXAMPLE_URL = ( "https://files.de-1.osf.io/v1/resources/a5xrj/providers/" "osfstorage/5fdc7e0bf0df5405452ef6f0/?zip=" ) GITHUB_BASE_URL = "https://raw.githubusercontent.com/reegis/deflex/master/{0}" BASEPATH = os.path.join(os.path.expanduser("~"), "deflex_examples") IMAGETYPE = "png" # svg, pdf, png, eps def download_example_scenarios(path): """Download example data from OSF and other files.""" # Examples from OSF os.makedirs(path, exist_ok=True) fn_zip = os.path.join(path, "software_x_scenario_examples.zip") tools.download(fn_zip, EXAMPLE_URL) # plot.ini from github url = GITHUB_BASE_URL.format("examples/plot.ini") fn_ini = os.path.join(path, "plot.ini") tools.download(fn_ini, url) with ZipFile(fn_zip, "r") as zip_ref: zip_ref.extractall(path) logging.info("All SoftwareX scenarios extracted to {}".format(path)) def get_price_from_opsd(path): """Get day ahead prices from opsd time series.""" fn = os.path.join(path, "opsd_day_ahead_prices.csv") tools.download(fn, OPSD_URL) de_ts = pd.read_csv( fn, index_col="utc_timestamp", parse_dates=True, date_parser=lambda col: pd.to_datetime(col, utc=True), ) de_ts.index = de_ts.index.tz_convert("Europe/Berlin") de_ts.index.rename("cet_timestamp", inplace=True) berlin = pytz.timezone("Europe/Berlin") start_date = berlin.localize(datetime.datetime(2014, 1, 1, 0, 0, 0)) end_date = berlin.localize(datetime.datetime(2014, 12, 31, 23, 0, 0)) return de_ts.loc[start_date:end_date, "DE_price_day_ahead"] def get_scenario(path): """ Search for result files in the given directory and return them as a list (ls) or a numbered dictionary (dc). """ d = namedtuple("sc", ("ls", "dc")) s = results.search_results(path) sc_dict = {k: v for v, k in zip(sorted(s), range(len(s)))} pprint(sc_dict) return d(ls=sorted(s), dc=sc_dict) def get_key_values_from_results(result): """ Extract key values from a list of solph results dictionaries. emissions_average: The average emissions per time step emissions_mcp: The emissions of the most expensive running power plant mcp: Market Clearing Price (MCP), the costs of the most expensive running power plant. Parameters ---------- result : list A list of solph results dictionaries. Returns ------- pandas.DataFrame : Key values for each result dictionary. """ kv = pd.DataFrame(columns=pd.MultiIndex(levels=[[], []], codes=[[], []])) for r in result: name = r["meta"]["name"] flow_res = analyses.get_flow_results(r) if "chp" in flow_res["cost", "specific", "trsf"].columns: kv["mcp", name] = flow_res.drop( ("cost", "specific", "trsf", "chp"), axis=1 )["cost", "specific"].max(axis=1) else: kv["mcp", name] = flow_res["cost", "specific"].max(axis=1) mcp_id = flow_res["cost", "specific"].idxmax(axis=1) emissions = flow_res["emission", "specific"] kv["emissions_average", name] = ( flow_res["emission", "absolute"] .sum(axis=1) .div(flow_res["values", "absolute"].sum(axis=1)) ) kv["emissions_mcp", name] = pd.Series( emissions.lookup(*zip(*pd.DataFrame(data=mcp_id).to_records())) ) return kv def plot_power_lines( data, key, cmap_lines=None, cmap_bg=None, direction=True, vmax=None, label_min=None, label_max=None, unit="GWh", size=None, ax=None, legend=True, unit_to_label=False, divide=1, decimal=0, exist=None, ): """ Parameters ---------- data key cmap_lines cmap_bg direction vmax label_min label_max unit size ax legend unit_to_label divide decimal exist Returns ------- """ if size is None and ax is None: ax = plt.figure(figsize=(5, 5)).add_subplot(1, 1, 1) elif size is not None and ax is None: ax = plt.figure(figsize=size).add_subplot(1, 1, 1) if unit_to_label is True: label_unit = unit else: label_unit = "" lines = geometries.deflex_power_lines("de21") polygons = geometries.deflex_regions("de21") if lines is None: msg = ( "\nTo plot a map you need to install 'geopandas', 'descartes' and " "'pygeos'\n\n pip install geopandas descartes pygeos\n" ) raise ModuleNotFoundError(msg) lines = lines.merge(data.div(divide), left_index=True, right_index=True) lines["centroid"] = lines.to_crs(epsg=25832).centroid.to_crs(epsg="4326") if cmap_bg is None: cmap_bg = LinearSegmentedColormap.from_list( "mycmap", [(0, "#aed8b4"), (1, "#bddce5")] ) if cmap_lines is None: cmap_lines = LinearSegmentedColormap.from_list( "mycmap", [(0, "#aaaaaa"), (0.0001, "green"), (0.5, "yellow"), (1, "red")], ) offshore = geometries.divide_off_and_onshore(polygons).offshore polygons["color"] = 0 polygons.loc[offshore, "color"] = 1 lines["reverse"] = lines[key] < 0 # if direction is False: lines.loc[lines["reverse"], key] = lines.loc[lines["reverse"], key] * -1 if vmax is None: vmax = lines[key].max() if label_min is None: label_min = vmax * 0.5 if label_max is None: label_max = float("inf") ax = polygons.plot( edgecolor="#9aa1a9", cmap=cmap_bg, column="color", ax=ax, aspect="equal", ) if exist is not None: lines = lines.loc[lines[exist] == 1] ax = lines.plot( cmap=cmap_lines, legend=legend, ax=ax, column=key, vmin=0, vmax=vmax, aspect="equal", ) for i, v in lines.iterrows(): x1 = v["geometry"].coords[0][0] y1 = v["geometry"].coords[0][1] x2 = v["geometry"].coords[1][0] y2 = v["geometry"].coords[1][1] value_relative = v[key] / vmax mc = cmap_lines(value_relative) orient = math.atan(abs(x1 - x2) / abs(y1 - y2)) if (y1 > y2) & (x1 > x2) or (y1 < y2) & (x1 < x2): orient *= -1 if v["reverse"]: orient += math.pi if v[key] == 0 or not direction: polygon = patches.RegularPolygon( (v["centroid"].x, v["centroid"].y), 4, 0.15, orientation=orient, color=(0, 0, 0, 0), zorder=10, ) else: polygon = patches.RegularPolygon( (v["centroid"].x, v["centroid"].y), 3, 0.15, orientation=orient, color=mc, zorder=10, ) ax.add_patch(polygon) if decimal == 0: value = int(round(v[key])) else: value = round(v[key], decimal) if label_min <= value <= label_max: if v["reverse"] is True and direction is False: value *= -1 ax.text( v["centroid"].x, v["centroid"].y, "{0} {1}".format(value, label_unit), color="#000000", fontsize=11, zorder=15, path_effects=[ patheffects.withStroke(linewidth=3, foreground="w") ], ) for spine in plt.gca().spines.values(): spine.set_visible(False) ax.axis("off") polygons.apply( lambda x: ax.annotate( x.name, xy=x.geometry.centroid.coords[0], ha="center" ), axis=1, ) return ax def show_transmission(path, name=None, number=0): """ Parameters ---------- path name number Returns ------- """ global MISSING_MODULES if name is not None: sc = [s for s in get_scenario(path).ls if name in s][0] else: sc = get_scenario(path).dc[number] res = results.restore_results(sc) r = res["Main"] p = res["Param"] flows = [ k for k in r.keys() if k[1] is not None and k[0].label.cat == "line" ] transmission = pd.DataFrame() trk = pd.DataFrame() lines = geometries.deflex_power_lines("de21") if lines is None: lines = pd.DataFrame(index=["DE13-DE15", "DE08-DE09"]) for flow in flows: name = "-".join([flow[0].label.subtag, flow[1].label.region]) if name in lines.index: try: capacity = p[flow]["scalars"].nominal_value except AttributeError: capacity = -1 back_flow = [ x for x in flows if x[0].label.subtag == flow[1].label.region and x[1].label.region == flow[0].label.subtag ][0] transmission[name] = ( r[flow]["sequences"]["flow"] - r[back_flow]["sequences"]["flow"] ) if capacity > 0: trk.loc[name, "exist"] = True trk.loc[name, "max_fraction"] = ( transmission[name].abs().max() / capacity * 100 ) trk.loc[name, "hours_90_prz"] = ( transmission[name] .loc[transmission[name].abs().div(capacity) > 0.9] .count() ) trk.loc[name, "hours_90_prz_frac"] = ( trk.loc[name, "hours_90_prz"] / len(transmission) * 100 ) trk.loc[name, "avg_fraction"] = ( transmission[name].abs().sum() / (capacity * len(transmission)) * 100 ) elif capacity == 0 and transmission[name].max() > 0: raise ValueError("Something odd happend") else: trk.loc[name, "exist"] = False trk.loc[name, "max_fraction"] = -1 trk.loc[name, "avg_fraction"] = -1 trk.loc[name, "hours_90_prz_frac"] = 0 trk.loc[name, "hours_90_prz"] = -1 trk.loc[name, "max"] = transmission[name].abs().max() trk.loc[name, "avg"] = transmission[name].abs().mean() trk.loc[name, "sum"] = transmission[name].abs().sum() if plt is not None: f, ax = plt.subplots(1, 1, sharex=True, figsize=(8, 5)) plt.rcParams.update({"font.size": 11}) try: plot_power_lines( trk, "hours_90_prz_frac", direction=False, vmax=25, label_min=1, unit_to_label=True, unit="%", ax=ax, exist="exist", ) except ModuleNotFoundError: MISSING_MODULES.extend(["geopandas", "descartes", "pygeos"]) msg = ( "'geopandas', 'descartes' and 'pygeos' are missing. To show " "the plot use:\n pip install geopandas descartes pygeos" ) ax.text(0.2, 0.5, msg, fontsize=12) plt.subplots_adjust(right=1, left=0, bottom=0.02, top=0.98) figure_path = os.path.join(BASEPATH, "figures") os.makedirs(figure_path, exist_ok=True) plt.savefig( os.path.join(figure_path, "transmission.{}".format(IMAGETYPE)) ) plt.show() else: print( "Fraction of time [%] in which the use of the line is greater " "than 90%" ) print(trk["hours_90_prz_frac"].round(1).sort_values()) sleep(1) MISSING_MODULES.extend( ["matplotlib", "geopandas", "descartes", "pygeos"] ) msg = ( "\nTo see the mcp plot you need to install 'matplotlib' " "\n\n pip install matplotlib\n" ) warnings.warn(msg, UserWarning) def show_relation(mcp, name="deflex_2014_de02"): """Show relation between OPSD price and scenario prices.""" if LinearModel is not None and plt is not None: mean = mcp["opsd"].mean() mcp = mcp.groupby("opsd").mean().loc[0:90] model = LinearModel() result = model.fit(mcp[name], x=mcp.index) ax = result.plot_fit() ax.set_xlabel("price from opsd data") ax.set_ylabel("price from {0} data".format(name)) # line x=y to get an orientation x = pd.Series([0, 40, 100]) ax.plot(x, x) # mean price of opsd data g1 = pd.Series([mean, mean]) g2 =
pd.Series([0, 100])
pandas.Series
import datetime import gc import glob import numpy as np import os import pandas as pd os.environ['KMP_DUPLICATE_LIB_OK']='True' # MacOS fix for libomp issues (https://github.com/dmlc/xgboost/issues/1715) import lightgbm as lgb from sklearn.metrics import log_loss, roc_auc_score, mean_squared_error from sklearn.model_selection import KFold, RepeatedKFold, GroupKFold, StratifiedKFold from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder from sklearn.svm import NuSVC from tqdm import tqdm as tqdm from kinoa import kinoa from scipy.stats import ttest_ind, ks_2samp def dprint(*args, **kwargs): print("[{}] ".format(datetime.datetime.now().strftime("%Y-%m-%d %H:%M")) + \ " ".join(map(str,args)), **kwargs) dprint('PID: {}'.format(os.getpid())) script_id = 0 data_path = '../input/' train = pd.read_csv(os.path.join(data_path, 'training_v2.csv')) id_col = 'encounter_id' fd = pd.read_csv(os.path.join(data_path, 'WiDS Datathon 2020 Dictionary.csv')) fd = fd[(fd['Data Type'] == 'string') | (fd['Data Type'] == 'binary')] cat_features = list(fd['Variable Name'].values) for c in cat_features: if c not in train.columns or c == 'hospital_death': cat_features.remove(c) print(f'cat_features: {cat_features} ({len(cat_features)})') extracted_files = glob.glob('./*.csv') extracted_files = [f[2:-8] for f in extracted_files] print(extracted_files) # error target_cols = [] for c in train.columns: if c != id_col and c != 'hospital_death' and train[c].isnull().mean() > 0 and c not in extracted_files and c not in cat_features: target_cols.append({'fname': c, 'type': 'regression'}) print(target_cols) def preprocess(df, min_max_cols): for c in min_max_cols: vals = df[[c, c.replace('_min', '_max')]].values.copy() df[c] = np.nanmin(vals, axis=1) df[c.replace('_min', '_max')] = np.nanmax(vals, axis=1) for t_i, target_data in enumerate(target_cols): target_col = target_data['fname'] dprint(f'********************************* {target_col} ({t_i+1}/{len(target_cols)}) *********************************') train = pd.read_csv(os.path.join(data_path, 'training_v2.csv')) test = pd.read_csv(os.path.join(data_path, 'unlabeled.csv')) min_max_cols = [] for c in train.columns: if '_min' in c and c.replace('min', 'max') in train.columns: min_max_cols.append(c) print(f'min_max_cols: {min_max_cols} ({len(min_max_cols)})') preprocess(train, min_max_cols) preprocess(test, min_max_cols) print(f'Number of missing values in train: {train[target_col].isnull().mean()}') print(f'Number of missing values in test: {test[target_col].isnull().mean()}') train['is_test'] = 0 test['is_test'] = 1 df_all = pd.concat([train, test], axis=0) dprint('Label Encoder...') cols = [f_ for f_ in df_all.columns if df_all[f_].dtype == 'object'] print(cols) cnt = 0 for c in tqdm(cols): if c != id_col and c != target_col: # print(c) le = LabelEncoder() df_all[c] = le.fit_transform(df_all[c].astype(str)) cnt += 1 del le dprint('len(cols) = {}'.format(cnt)) train = df_all.loc[df_all['is_test'] == 0].drop(['is_test'], axis=1) test = df_all.loc[df_all['is_test'] == 1].drop(['is_test'], axis=1) # del df_all # gc.collect() # Rearrange train and test train = df_all[np.logical_not(df_all[target_col].isnull())].drop(['is_test'], axis=1) test = df_all[df_all[target_col].isnull()].drop(['is_test'], axis=1) dprint(train.shape, test.shape) if target_data['type'] == 'classification': tle = LabelEncoder() train[target_col] = tle.fit_transform(train[target_col].astype(str)) empty_cols = [] for c in test.columns: n = (~test[c].isnull()).sum() if n == 0: empty_cols.append(c) print(f'empty_cols: {empty_cols}') # error features = list(train.columns.values) features.remove(id_col) features.remove(target_col) # Build the model cnt = 0 p_buf = [] n_splits = 4 n_repeats = 1 kf1 = RepeatedKFold( n_splits=n_splits, n_repeats=n_repeats, random_state=0) kf2 = RepeatedKFold( n_splits=n_splits, n_repeats=n_repeats, random_state=1) err_buf = [] undersampling = 0 if target_data['type'] == 'regression': lgb_params = { 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': 'mse', 'max_depth': 8, 'learning_rate': 0.05, 'feature_fraction': 0.85, 'bagging_fraction': 0.85, 'bagging_freq': 5, 'lambda_l1': 1.0, 'lambda_l2': 1.0, 'verbose': -1, 'num_threads': -1, } elif target_data['type'] == 'classification': dprint(f'Num classes: {train[target_col].nunique()} ({train[target_col].unique()})') if train[target_col].nunique() == 2: lgb_params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'binary_logloss', 'max_depth': 8, 'learning_rate': 0.05, 'feature_fraction': 0.85, 'bagging_fraction': 0.85, 'bagging_freq': 5, 'lambda_l1': 1.0, 'lambda_l2': 1.0, 'verbose': -1, 'num_threads': -1, } else: lgb_params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'metric': 'multi_logloss', 'max_depth': 8, 'learning_rate': 0.05, 'feature_fraction': 0.85, 'bagging_fraction': 0.85, 'bagging_freq': 5, 'lambda_l1': 1.0, 'lambda_l2': 1.0, 'verbose': -1, 'num_threads': -1, 'num_class': train[target_col].nunique() } cols_to_drop = [ id_col, target_col, 'hospital_death', # 'bmi', ] + empty_cols # cols_to_use = features X = train.drop(cols_to_drop, axis=1, errors='ignore') y = train[target_col].values id_train = train[id_col].values X_test = test.drop(cols_to_drop, axis=1, errors='ignore') id_test = test[id_col].values feature_names = list(X.columns) n_features = X.shape[1] dprint(f'n_features: {n_features}') p_test = [] dfs_train = [] dfs_test = [] for fold_i_oof, (train_index_oof, valid_index_oof) in enumerate(kf1.split(X, y)): x_train_oof = X.iloc[train_index_oof] x_valid_oof = X.iloc[valid_index_oof] y_train_oof = y[train_index_oof] y_valid_oof = y[valid_index_oof] id_train_oof = id_train[valid_index_oof] for fold_i, (train_index, valid_index) in enumerate(kf2.split(x_train_oof, y_train_oof)): params = lgb_params.copy() x_train = x_train_oof.iloc[train_index] x_valid = x_train_oof.iloc[valid_index] lgb_train = lgb.Dataset( x_train, y_train_oof[train_index], feature_name=feature_names, ) lgb_train.raw_data = None lgb_valid = lgb.Dataset( x_valid, y_train_oof[valid_index], ) lgb_valid.raw_data = None model = lgb.train( params, lgb_train, num_boost_round=5000, valid_sets=[lgb_valid], early_stopping_rounds=100, verbose_eval=100, ) if fold_i_oof == 0: importance = model.feature_importance() model_fnames = model.feature_name() tuples = sorted(zip(model_fnames, importance), key=lambda x: x[1])[::-1] tuples = [x for x in tuples if x[1] > 0] print('Important features:') for i in range(20): if i < len(tuples): print(tuples[i]) else: break del importance, model_fnames, tuples p_lgbm = model.predict(x_valid, num_iteration=model.best_iteration) if target_data['type'] == 'regression': err = mean_squared_error(y_train_oof[valid_index], p_lgbm) err_buf.append(err) dprint('{} LGBM MSE: {:.4f}'.format(fold_i, err)) elif target_data['type'] == 'classification': if train[target_col].nunique() == 2: err = roc_auc_score(y_train_oof[valid_index], p_lgbm) dprint('{} LGBM AUC: {:.6f}'.format(fold_i, err)) err = log_loss(y_train_oof[valid_index], p_lgbm) err_buf.append(err) dprint('{} LGBM LOSS: {:.4f}'.format(fold_i, err)) p_lgbm_train = model.predict(x_valid_oof, num_iteration=model.best_iteration) p_lgbm_test = model.predict(X_test[feature_names], num_iteration=model.best_iteration) df_train = pd.DataFrame() df_train[id_col] = id_train_oof if target_data['type'] == 'regression': df_train[target_col] = p_lgbm_train elif target_data['type'] == 'classification': if train[target_col].nunique() == 2: df_train[target_col] = p_lgbm_train else: for i, t in enumerate(np.sort(train[target_col].unique())): df_train[str(t)] = p_lgbm_train[:, i] dfs_train.append(df_train) df_test = pd.DataFrame() df_test[id_col] = id_test if target_data['type'] == 'regression': df_test[target_col] = p_lgbm_test elif target_data['type'] == 'classification': if train[target_col].nunique() == 2: df_test[target_col] = p_lgbm_test else: for i, t in enumerate(np.sort(train[target_col].unique())): df_test[str(t)] = p_lgbm_test[:, i] dfs_test.append(df_test) # p_test.append(p_lgbm_test) del model, lgb_train, lgb_valid gc.collect # break err_mean = np.mean(err_buf) err_std = np.std(err_buf) dprint('ERR: {:.4f} +/- {:.4f}'.format(err_mean, err_std)) dfs_train = pd.concat(dfs_train, axis=0) if target_data['type'] == 'regression': dfs_train = dfs_train.groupby(id_col)[target_col].mean().reset_index().rename({target_col: target_col + '_est'}, axis=1) elif target_data['type'] == 'classification': if train[target_col].nunique() == 2: dfs_train = dfs_train.groupby(id_col)[target_col].mean().reset_index() dfs_train[target_col] = tle.inverse_transform(np.round(dfs_train[target_col].values).astype(int)) dfs_train.rename({target_col: target_col + '_est'}, inplace=True, axis=1) else: dfs_train = dfs_train.groupby(id_col).mean().reset_index() cols = np.sort(train[target_col].unique()).astype(str) dfs_train[target_col + '_est'] = tle.inverse_transform(np.argmax(dfs_train[cols].values, axis=1)) print(dfs_train.head()) dfs_test = pd.concat(dfs_test, axis=0) if target_data['type'] == 'regression': dfs_test = dfs_test.groupby(id_col)[target_col].mean().reset_index().rename({target_col: target_col + '_est'}, axis=1) elif target_data['type'] == 'classification': if train[target_col].nunique() == 2: dfs_test = dfs_test.groupby(id_col)[target_col].mean().reset_index() dfs_test[target_col] = tle.inverse_transform(np.round(dfs_test[target_col].values).astype(int)) dfs_test.rename({target_col: target_col + '_est'}, inplace=True, axis=1) else: dfs_test = dfs_test.groupby(id_col).mean().reset_index() cols = np.sort(train[target_col].unique()).astype(str) dfs_test[target_col + '_est'] = tle.inverse_transform(np.argmax(dfs_test[cols].values, axis=1)) print(dfs_test.head()) out =
pd.concat([dfs_train, dfs_test], axis=0)
pandas.concat
import os import numpy as np import pandas as pd import logging import array_analyzer.extract.constants as constants def antigen2D_to_df1D(xlsx_path, sheet, data_col): """ Convert old 2D output format (per antigen) to 1D dataframe :param str xlsx_path: path to the xlsx file :param str sheet: sheet name to load :param str data_col: new column name of the linearized values :return dataframe df: linearized dataframe """ df = pd.read_excel(xlsx_path, sheet_name=sheet, index_col=0) df = df.unstack().reset_index(name=data_col) # linearize the table df.rename(columns={'level_1': 'antigen_row', 'level_0': 'antigen_col'}, inplace=True) df[['antigen_row', 'antigen_col']] = df[['antigen_row', 'antigen_col']].applymap(int) df = df[['antigen_row', 'antigen_col', data_col]] df.dropna(inplace=True) return df def well2D_to_df1D(xlsx_path, sheet, data_col): """ Convert new 2D output format (per well) to 1D dataframe :param str xlsx_path: path to the xlsx file :param str sheet: sheet name to load :param str data_col: new column name of the linearized values :return dataframe df: linearized dataframe """ df = pd.read_excel(xlsx_path, sheet_name=sheet, index_col=0) df = df.unstack().reset_index(name=data_col) # unpivot (linearize) the table df.rename(columns={'level_1': 'row_id', 'level_0': 'col_id'}, inplace=True) df['well_id'] = df.row_id + df.col_id.map(str) df = df[['well_id', data_col]] return df def read_plate_info(metadata_xlsx): """read plate info from the metadata""" print('Reading the plate info...') sheet_names = ['serum ID', 'serum dilution', 'serum type', 'serum cat', 'secondary ID', 'secondary dilution', 'sample type'] plate_info_df = pd.DataFrame() # get sheet names that are available in metadata sheet_names = list(set(metadata_xlsx.sheet_names).intersection(sheet_names)) for sheet_name in sheet_names: sheet_df = pd.read_excel(metadata_xlsx, sheet_name=sheet_name, index_col=0) sheet_df = sheet_df.unstack().reset_index(name=sheet_name) # unpivot (linearize) the table sheet_df.rename(columns={'level_1': 'row_id', 'level_0': 'col_id'}, inplace=True) if plate_info_df.empty: plate_info_df = sheet_df else: plate_info_df = pd.merge(plate_info_df, sheet_df, how='left', on=['row_id', 'col_id']) plate_info_df['well_id'] = plate_info_df.row_id + plate_info_df.col_id.map(str) sheet_names.append('well_id') # convert to number and non-numeric to NaN plate_info_df['serum dilution'] = \ plate_info_df['serum dilution'].apply(pd.to_numeric, errors='coerce') logger = logging.getLogger(constants.LOG_NAME) nan_cols = plate_info_df.columns[plate_info_df.isnull().any()].tolist() if nan_cols: logger.warning("Parsing metadata failed for some wells in tab {}. " "Please check info in these tabs are all filled out and in the right format " "(e.g. dilutions should not contain strings)".format(nan_cols)) plate_info_df.dropna(inplace=True) plate_info_df.drop(['row_id', 'col_id'], axis=1, inplace=True) if 'sample type' not in sheet_names: plate_info_df['sample type'] = 'Serum' return plate_info_df def read_antigen_info(metadata_path): """read antigen info from the metadata""" print('Reading antigen information...') antigen_df = antigen2D_to_df1D(xlsx_path=metadata_path, sheet='antigen_array', data_col='antigen') antigen_type_df = antigen2D_to_df1D(xlsx_path=metadata_path, sheet='antigen_type', data_col='antigen type') antigen_df = pd.merge(antigen_df, antigen_type_df, how='left', on=['antigen_row', 'antigen_col']) return antigen_df def read_pysero_output(file_path, antigen_df, file_type='od'): """ read and re-format pysero spot fitting output :param str file_path: path to the pysero output xlsx file :param dataframe antigen_df: :param str file_type: output file type. 'od', 'int', or 'bg' :return: linearized dataframe """ print('Reading {}...'.format(file_type)) data_col = {'od': 'OD', 'int': 'intensity', 'bg': 'background'} data_df = pd.DataFrame() with pd.ExcelFile(file_path) as file: sheet_names = file.sheet_names for _, row in antigen_df.iterrows(): if sheet_names[0][0].isnumeric(): # new format sheet_name = '{}_{}_{}'.format(row['antigen_row'], row['antigen_col'], row['antigen']) else: sheet_name = '{}_{}_{}_{}'.format(file_type, row['antigen_row'], row['antigen_col'], row['antigen']) data_1_antiten_df = well2D_to_df1D(xlsx_path=file, sheet=sheet_name, data_col=data_col[file_type]) data_1_antiten_df['antigen_row'] = row['antigen_row'] data_1_antiten_df['antigen_col'] = row['antigen_col'] data_1_antiten_df['antigen'] = row['antigen'] data_df = data_df.append(data_1_antiten_df, ignore_index=True) return data_df def read_scn_output(file_path, plate_info_df): """ Read scienion intensity output and convert it to OD :param str file_path: path to the scienion output xlsx file :param dataframe plate_info_df: plate info dataframe :return dataframe: scienion OD dataframe """ # Read analysis output from Scienion scienion_df = pd.DataFrame() with pd.ExcelFile(file_path) as scienion_xlsx: for well_id in plate_info_df['well_id']: OD_1_antiten_df = pd.read_excel(scienion_xlsx, sheet_name=well_id) OD_1_antiten_df['well_id'] = well_id scienion_df = scienion_df.append(OD_1_antiten_df, ignore_index=True) # parse spot ids spot_id_df = scienion_df['ID'].str.extract(r'spot-(\d)-(\d)') spot_id_df = spot_id_df.astype(int) - 1 # index starting from 0 spot_id_df.rename(columns={0: 'antigen_row', 1: 'antigen_col'}, inplace=True) scienion_df = pd.concat([spot_id_df, scienion_df], axis=1) scienion_df.drop('ID', axis=1, inplace=True) # invert the intensity and compute ODs df_scn = scienion_df.loc[:, ['antigen_row', 'antigen_col', 'well_id']] df_scn['intensity'] = 1 - scienion_df['Median'] / 255 df_scn['background'] = 1 - scienion_df['Background Median'] / 255 df_scn['OD'] = np.log10(df_scn['background'] / df_scn['intensity']) return df_scn def slice_df(df, slice_action, column, keys): """ Return sliced dataframe given the colume and keys :param df: dataframe to slice :param slice_action: 'keep' or 'drop' :param column: column to slice based on :param keys: key values to keep or drop :return: """ if column is None or column != column: return df if not isinstance(keys, (list, np.ndarray)): if keys != keys or keys is None: # nan return df keys = [keys] if slice_action is None or slice_action != slice_action: return df elif slice_action == 'keep': df = df.loc[df[column].isin(keys), :] elif slice_action == 'drop': df = df.loc[~df[column].isin(keys), :] else: raise ValueError('slice action has to be "keep" or "drop", not "{}"'.format(slice_action)) return df def normalize_od_helper(norm_antigen): def normalize(df): norm_antigen_df = slice_df(df, 'keep', 'antigen', [norm_antigen]) norm_factor = norm_antigen_df['OD'].mean() df['OD'] = df['OD'] / norm_factor return df return normalize def normalize_od(df, norm_antigen=None, group='plate'): """ Normalize OD by OD of the reference antigen :param dataframe df: dataframe containing serum OD info :param str norm_antigen: reference antigen to normalize by :param str group: unit to normalize. 'plate' or 'well' :return dataframe df: dataframe with normalized serum OD info """ if norm_antigen is None: return df if group == 'plate': groupby_cols = ['plate ID', 'pipeline', 'sample type'] elif group == 'well': groupby_cols = ['plate ID', 'well_id', 'pipeline', 'sample type'] else: ValueError('normalization group has to be plate or well, not {}'.format(group)) for pipeline in df['pipeline'].unique(): for sample_type in df['sample type'].unique(): norm_antigen_df = slice_df(df, 'keep', 'pipeline', [pipeline]) norm_antigen_df = slice_df(norm_antigen_df, 'keep', 'sample type', [sample_type]) norm_antigen_df = slice_df(norm_antigen_df, 'keep', 'antigen', [norm_antigen]) df.loc[(df['antigen'] == norm_antigen) & (df['pipeline'] == pipeline) & (df['sample type'] == sample_type), 'OD'] = \ norm_antigen_df['OD'] / norm_antigen_df['OD'].mean() norm_fn = normalize_od_helper(norm_antigen) df = df.groupby(groupby_cols).apply(norm_fn) return df def offset_od_helper(norm_antigen): def offset(df): norm_antigen_df = slice_df(df, 'keep', 'antigen', [norm_antigen]) norm_factor = norm_antigen_df['OD'].mean() df['OD'] = df['OD'] - norm_factor df.loc[df['OD'] < 0, 'OD'] = 0 return df return offset def offset_od(df, norm_antigen=None, group='plate'): """offset OD by OD of the reference antigen """ if norm_antigen is None: return df if group == 'plate': groupby_cols = ['plate ID'] elif group == 'well': groupby_cols = ['plate ID', 'well_id'] else: ValueError('normalization group has to be plate or well, not {}'.format(group)) norm_fn = offset_od_helper(norm_antigen) df = df.groupby(groupby_cols).apply(norm_fn) return df def read_scn_output_batch(scn_dirs_df): """ batch read scienion outputs :param dataframe scn_dirs_df: dataframe loaded from the analysis config containing directories of scienion output xlsx file, assuming the file name always ends with '_analysis.xlsx' :return dataframe scn_df: combined scienion OD dataframe from multiple outputs """ scn_df =
pd.DataFrame()
pandas.DataFrame
import logging import unittest import os import pandas as pd import numpy as np import h5py import pandas.util.testing as pandas_testing import cmapPy.pandasGEXpress.setup_GCToo_logger as setup_logger import cmapPy.pandasGEXpress.GCToo as GCToo import cmapPy.pandasGEXpress.parse_gctx as parse_gctx import cmapPy.pandasGEXpress.mini_gctoo_for_testing as mini_gctoo_for_testing import cmapPy.pandasGEXpress.subset_gctoo as subset_gctoo import cmapPy.pandasGEXpress.write_gctx as write_gctx __author__ = "<NAME>" __email__ = "<EMAIL>" FUNCTIONAL_TESTS_PATH = "../functional_tests" logger = logging.getLogger(setup_logger.LOGGER_NAME) version_node = "version" rid_node = "/0/META/ROW/id" cid_node = "/0/META/COL/id" data_node = "/0/DATA/0/matrix" row_meta_group_node = "/0/META/ROW" col_meta_group_node = "/0/META/COL" class MockHdf5Dset(object): def __init__(self, data_list, dtype): self.data_list = data_list self.shape = (len(data_list),) self.dtype = dtype def read_direct(self, dest): for i in range(len(dest)): dest[i] = self.data_list[i] class TestParseGctx(unittest.TestCase): def test_parse(self): # parse whole thing mg1 = mini_gctoo_for_testing.make() mg2 = parse_gctx.parse("../functional_tests/mini_gctoo_for_testing.gctx") pandas_testing.assert_frame_equal(mg1.data_df, mg2.data_df) pandas_testing.assert_frame_equal(mg1.row_metadata_df, mg2.row_metadata_df) pandas_testing.assert_frame_equal(mg1.col_metadata_df, mg2.col_metadata_df) # test with string rid/cid test_rids = ['LJP007_MCF10A_24H:TRT_CP:BRD-K93918653:3.33', 'LJP007_MCF7_24H:CTL_VEHICLE:DMSO:-666'] test_cids = ['LJP007_MCF7_24H:TRT_POSCON:BRD-A61304759:10'] mg3 = subset_gctoo.subset_gctoo(mg1, rid=test_rids, cid=test_cids) mg4 = parse_gctx.parse("../functional_tests/mini_gctoo_for_testing.gctx", rid=test_rids, cid=test_cids) pandas_testing.assert_frame_equal(mg3.data_df, mg4.data_df) pandas_testing.assert_frame_equal(mg3.row_metadata_df, mg4.row_metadata_df) pandas_testing.assert_frame_equal(mg3.col_metadata_df, mg4.col_metadata_df) # first, make & write out temp version of mini_gctoo with int rids/cids new_mg = mini_gctoo_for_testing.make(convert_neg_666=False) int_indexed_data_df = new_mg.data_df.copy() int_indexed_data_df.index = [str(i) for i in range(0, 6)] int_indexed_data_df.columns = [str(i) for i in range(10, 16)] int_indexed_row_meta = new_mg.row_metadata_df.copy() int_indexed_row_meta.index = int_indexed_data_df.index int_indexed_col_meta = new_mg.col_metadata_df.copy() int_indexed_col_meta.index = int_indexed_data_df.columns int_indexed_gctoo = GCToo.GCToo(data_df=int_indexed_data_df, row_metadata_df=int_indexed_row_meta, col_metadata_df=int_indexed_col_meta) write_gctx.write(int_indexed_gctoo, "int_indexed_mini_gctoo.gctx") # test with numeric (repr as string) rid/cid mg5 = GCToo.GCToo(data_df=int_indexed_data_df, row_metadata_df=int_indexed_row_meta, col_metadata_df=int_indexed_col_meta) mg5 = subset_gctoo.subset_gctoo(mg5, row_bool=[True, False, True, False, True, False], col_bool=[True, False, False, True, True, True]) mg5.data_df.index.name = "rid" mg5.data_df.columns.name = "cid" mg5.row_metadata_df.index.name = "rid" mg5.row_metadata_df.columns.name = "rhd" mg5.col_metadata_df.index.name = "cid" mg5.col_metadata_df.columns.name = "chd" mg6 = parse_gctx.parse("int_indexed_mini_gctoo.gctx", rid=["0", "2", "4"], cid=["10", "13", "14", "15"], convert_neg_666=False) os.remove("int_indexed_mini_gctoo.gctx") pandas_testing.assert_frame_equal(mg5.data_df, mg6.data_df) pandas_testing.assert_frame_equal(mg5.row_metadata_df, mg6.row_metadata_df) pandas_testing.assert_frame_equal(mg5.col_metadata_df, mg6.col_metadata_df) # test with ridx/cidx mg7 = subset_gctoo.subset_gctoo(mg1, rid=['LJP007_MCF7_24H:CTL_VEHICLE:DMSO:-666'], cid=['LJP007_MCF7_24H:CTL_VEHICLE:DMSO:-666']) mg8 = parse_gctx.parse("../functional_tests/mini_gctoo_for_testing.gctx", ridx=[4], cidx=[4]) pandas_testing.assert_frame_equal(mg7.data_df, mg8.data_df) pandas_testing.assert_frame_equal(mg7.row_metadata_df, mg8.row_metadata_df) pandas_testing.assert_frame_equal(mg7.col_metadata_df, mg8.col_metadata_df) # test with rid/cidx mg9 = parse_gctx.parse("../functional_tests/mini_gctoo_for_testing.gctx", rid=['LJP007_MCF7_24H:CTL_VEHICLE:DMSO:-666'], cidx=[4]) pandas_testing.assert_frame_equal(mg7.data_df, mg9.data_df) pandas_testing.assert_frame_equal(mg7.row_metadata_df, mg9.row_metadata_df) pandas_testing.assert_frame_equal(mg7.col_metadata_df, mg9.col_metadata_df) # test with ridx/cid mg10 = parse_gctx.parse("../functional_tests/mini_gctoo_for_testing.gctx", ridx=[4], cid=['LJP007_MCF7_24H:CTL_VEHICLE:DMSO:-666']) pandas_testing.assert_frame_equal(mg7.data_df, mg10.data_df) pandas_testing.assert_frame_equal(mg7.row_metadata_df, mg10.row_metadata_df)
pandas_testing.assert_frame_equal(mg7.col_metadata_df, mg10.col_metadata_df)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # =========================================================================== # # Project : ML Studio # # Version : 0.1.0 # # File : benchmark.py # # Python : 3.8.3 # # -------------------------------------------------------------------------- # # Author : <NAME> # # Company : DecisionScients # # Email : <EMAIL> # # URL : https://github.com/decisionscients/MLStudio # # -------------------------------------------------------------------------- # # Created : Sunday, May 24th 2020, 11:06:10 am # # Last Modified : Sunday, June 14th 2020, 9:48:14 pm # # Modified By : <NAME> (<EMAIL>) # # -------------------------------------------------------------------------- # # License : BSD # # Copyright (c) 2020 DecisionScients # # =========================================================================== # #%% from collections import OrderedDict from datetime import datetime import os from pathlib import Path import sys import pandas as pd import numpy as np homedir = str(Path(__file__).parents[3]) demodir = str(Path(__file__).parents[1]) sys.path.append(homedir) from mlstudio.supervised.machine_learning.gradient_descent import GDPureOptimizer from mlstudio.supervised.visual.animations import animate_optimization from mlstudio.supervised.algorithms.optimization.services.benchmarks import Adjiman, StyblinskiTank, Wikipedia from mlstudio.supervised.algorithms.optimization.services.benchmarks import ThreeHumpCamel, Ursem01, Branin02 from mlstudio.supervised.algorithms.optimization.services.optimizers import GradientDescentOptimizer, Momentum, Nesterov from mlstudio.supervised.algorithms.optimization.services.optimizers import Adagrad, Adadelta, RMSprop from mlstudio.supervised.algorithms.optimization.services.optimizers import Adam, AdaMax, AdamW from mlstudio.supervised.algorithms.optimization.services.optimizers import Nadam, AMSGrad, QHAdam from mlstudio.supervised.algorithms.optimization.services.optimizers import QuasiHyperbolicMomentum from mlstudio.supervised.algorithms.optimization.services.optimizers import AggMo from mlstudio.utils.data_analyzer import cosine from mlstudio.utils.file_manager import save_df # -------------------------------------------------------------------------- # # Designate file locations figures = os.path.join(demodir, "figures") # -------------------------------------------------------------------------- # # Package up the objective functions optimizers = [Momentum(), Nesterov(), Adagrad(), Adadelta(), RMSprop(), Adam(), AdaMax(), Nadam(), AMSGrad(), AdamW(), QHAdam(), QuasiHyperbolicMomentum()] objectives = [Adjiman(), Branin02(), Ursem01(), StyblinskiTank(), ThreeHumpCamel(), Wikipedia()] # -------------------------------------------------------------------------- # # Train models solutions = OrderedDict() results = [] for objective in objectives: estimators = OrderedDict() for optimizer in optimizers: estimators[optimizer.name] = {} model = GDPureOptimizer(learning_rate=0.01, theta_init=objective.start, epochs=500, objective=objective, optimizer=optimizer) model.fit() sim = cosine(objective.minimum, model.theta_) d = {} d['DateTime'] = datetime.now().strftime("%Y/%m/%d %H:%M:%S") d['Objective'] = model.objective.name d['Optimizer'] = optimizer.name d['Epochs'] = model.epochs d['Starting Learning Rate'] = model.learning_rate d['Final Learning Rate'] = model.eta if model.schedule: d['Schedule'] = model.schedule.name else: d['Schedule'] = None d['gradient_min'] = np.min(model.get_blackbox().epoch_log.get('gradient_norm')) d['gradient_max'] = np.max(model.get_blackbox().epoch_log.get('gradient_norm')) d['gradient_mean'] = np.mean(model.get_blackbox().epoch_log.get('gradient_norm')) d['True'] = objective.minimum d['est'] = model.theta_ d['sim'] = sim results.append(d) estimators[optimizer.name]['model'] = model estimators[optimizer.name]['results'] = d solutions[objective.name] = estimators df =
pd.DataFrame(results)
pandas.DataFrame
# experiment tracker import sys import os import numpy as np import pandas as pd from dask import compute, delayed sys.path.append('../../') sys.path.append('../') sys.path.append('../../experiment-impact-tracker/') from experiment_impact_tracker.data_interface import DataInterface from experiment_impact_tracker.data_utils import * from experiment_impact_tracker.data_utils import (load_data_into_frame, load_initial_info, zip_data_and_info) def compute_aggregate_power(df, info, PUE, task_epoch_df,use_cuda): ''' Aggregates and partitions power consumption based on task interval timpestamps. Allows to see breakdown of power consumptions for different subtasks. ''' # time calcs exp_end_timestamp = datetime.timestamp(info["experiment_end"]) exp_len = exp_end_timestamp - datetime.timestamp(info["experiment_start"]) exp_len_hours = exp_len / 3600.0 time_differences = df["timestamp_orig"].diff() time_differences[0] = df["timestamp_orig"][0] - datetime.timestamp( info["experiment_start"] ) # Add final timestamp and extrapolate last row of power estimates time_differences.loc[len(time_differences)] = ( exp_end_timestamp - df["timestamp_orig"][len(df["timestamp_orig"]) - 1] ) time_differences_in_hours = time_differences / 3600.0 # rapl calcs power_draw_rapl_kw = df["rapl_estimated_attributable_power_draw"] / 1000.0 power_draw_rapl_kw.loc[len(power_draw_rapl_kw)] = power_draw_rapl_kw.loc[ len(power_draw_rapl_kw) - 1 ] kw_hr_rapl = ( np.multiply(time_differences_in_hours, power_draw_rapl_kw) if power_draw_rapl_kw is not None else None ) # nvidia calcs if use_cuda: num_gpus = len(info["gpu_info"]) nvidia_power_draw_kw = df["nvidia_estimated_attributable_power_draw"] / 1000.0 nvidia_power_draw_kw.loc[len(nvidia_power_draw_kw)] = nvidia_power_draw_kw.loc[ len(nvidia_power_draw_kw) - 1 ] # elementwise multiplication and sum kw_hr_nvidia = np.multiply(time_differences_in_hours, nvidia_power_draw_kw) # apply PUE if use_cuda and (kw_hr_rapl is not None): total_power_per_timestep = PUE * (kw_hr_nvidia + kw_hr_rapl) elif kw_hr_rapl is not None: total_power_per_timestep = PUE * (kw_hr_rapl) elif use_cuda: total_power_per_timestep = PUE * (kw_hr_nvidia) else: raise ValueError("Unable to get either GPU or CPU metric.") # interpolate power based on timesteps # Append last row which implies power draw from last sample extrapolated till the end of experiment df.loc[len(df)] = df.loc[len(df) - 1] ## Duplicating last row to match length of total_power_per_timestep df.loc[len(df)-1,'timestamp'] = task_epoch_df.loc[len(task_epoch_df)-1,'epoch_timestamp'] #update the timestamp to match end of experiment df['total_power_per_timestep'] = total_power_per_timestep.copy() task_power_df = pd.DataFrame(columns=['task','power']) if total_power_per_timestep is not None: # end-to-end power consumption task_power_df.loc[0] = ['Experiment', total_power_per_timestep.sum()] prev_epoch_power = 0 print('number of timestamps: {}'.format(len(total_power_per_timestep))) # power consumption per task for i in range(len(task_epoch_df)): task = task_epoch_df.loc[i,'task'] epoch = task_epoch_df.loc[i,'epoch_timestamp'] epoch_idx = len(df[df['timestamp'] <= epoch]) current_epoch_power = total_power_per_timestep[:epoch_idx].sum() task_power_df.loc[i+1] = [task, current_epoch_power - prev_epoch_power ] prev_epoch_power = current_epoch_power return df, task_power_df def get_EIT_tracker_data(logdir, use_cuda, read_flops): ''' Fetches experiment impact tracker data from data_interface and separates it into 1) end-to-end experiment df 2) power consumption per sampling epoch df and 3) flops and power consumption per task df ''' # try: info = load_initial_info(logdir) # Get total values from default data interface for the entire experiment data_interface = DataInterface([logdir]) total_power = data_interface.total_power total_carbon = data_interface.kg_carbon PUE = data_interface.PUE exp_len_hours = data_interface.exp_len_hours # Calculate your own sepeartely for each subtask in the experiment # impact tracker log tracker_df = load_data_into_frame(logdir) if use_cuda: power_df = tracker_df[0][['timestamp','rapl_power_draw_absolute','rapl_estimated_attributable_power_draw','nvidia_draw_absolute','nvidia_estimated_attributable_power_draw']].copy() power_df.loc[:,'total_attributable_power_draw'] = power_df['rapl_estimated_attributable_power_draw'] + power_df['nvidia_estimated_attributable_power_draw'] else: power_df = tracker_df[0][['timestamp','rapl_power_draw_absolute','rapl_estimated_attributable_power_draw']].copy() power_df.loc[:,'total_attributable_power_draw'] = power_df['rapl_estimated_attributable_power_draw'] # start time from 0 power_df.loc[:,'timestamp_orig'] = power_df['timestamp'] power_df.loc[:,'timestamp'] = power_df['timestamp'] - power_df['timestamp'][0] # papi log flops_df = None total_duration = 0 if read_flops: compute_flops_csv = logdir + 'compute_costs_flop.csv' flops_df = pd.read_csv(compute_flops_csv) flops_df.loc[:,'start_time'] = flops_df['start_time'] - flops_df['start_time'][0] # Aggregate power draws per epoch for each papi context calculation (i.e. setup, axial, aggr etc)) epoch_power_draw_list = [] epoch_timestamps = list(flops_df['start_time'].values[1:]) + [flops_df['start_time'].values[-1] + flops_df['duration'].values[-1]] task_epoch_df = pd.DataFrame() task_epoch_df.loc[:,'task'] = flops_df['task'].values task_epoch_df.loc[:,'epoch_timestamp'] = epoch_timestamps power_df, task_power_df = compute_aggregate_power(power_df, info, PUE, task_epoch_df, use_cuda) flops_df = pd.merge(flops_df,task_power_df,on='task',how='left') print('total_power sanity check: default: {:6.5f}, calculated: {:6.5f}, {:6.5f}'.format(total_power, task_power_df.loc[0,'power'],power_df['total_power_per_timestep'].sum())) total_duration_papi = (power_df['timestamp'].values[-1]-power_df['timestamp'].values[0])/3600 tracker_summary_df = pd.DataFrame(columns=['total_power','total_carbon','PUE','total_duration_papi','total_duration_impact_tracker']) tracker_summary_df.loc[0] = [total_power,total_carbon,PUE,total_duration_papi,exp_len_hours] return power_df, flops_df, tracker_summary_df # except: # print(f'No valid experiment impact tracker log found at {logdir}') # return None def collate_EIT_tracker_data(tracker_log_dir_list, use_cuda, read_flops): ''' Collates EIT tracker data from a set of experiments e.g. FastSurfer results for all subjects ''' power_df_concat = pd.DataFrame() flops_df_concat = pd.DataFrame() tracker_summary_df_concat = pd.DataFrame() values = [delayed(get_EIT_tracker_data)(tracker_log_dir, use_cuda, read_flops) for tracker_log_dir in tracker_log_dir_list] tracker_data_list = compute(*values, scheduler='threads',num_workers=4) i = 0 for td in tracker_data_list: if td is not None: power_df, flops_df, tracker_summary_df = td power_df_concat = power_df_concat.append(power_df) flops_df_concat = flops_df_concat.append(flops_df) tracker_summary_df_concat = tracker_summary_df_concat.append(tracker_summary_df) return tracker_summary_df_concat, flops_df_concat, power_df_concat def collate_CC_tracker_data(log_dirs): ''' Collates CodeCarbon tracker data from a set of experiments e.g. FastSurfer results for all subjects ''' CC_df = pd.DataFrame() for log_dir in log_dirs: df =
pd.read_csv(f'{log_dir}/emissions.csv')
pandas.read_csv
'''This file holds all relevant functions necessary for starting the data analysis. An object class for all account data is established, which will hold the raw data after import, the processed data and all subdata configuration necessary for plotting. The account data is provided through the account identification process in account_ident.py Necessary functions for holiday extraction, roundies calculation as well as merging and cashbook linkage are provided in the Accounts class Excel file is exported at the end exported.''' import datetime import locale import os import platform import numpy as np import pandas as pd from basefunctions import account_ident if platform.system() == 'Windows': locale.setlocale(locale.LC_ALL, 'German') FOLDER_SEP = '\\' elif platform.system() == 'Darwin': locale.setlocale(locale.LC_ALL, 'de_DE.utf-8') FOLDER_SEP = '/' else: locale.setlocale(locale.LC_ALL, 'de_DE.utf8') FOLDER_SEP = '/' #_______________________________________ read in longterm data for training machine learning algorithm _______________ def longtermdata_import(path, decrypt_success): if decrypt_success: longterm_data = pd.read_csv(path, sep=';', parse_dates=[0, 1]) else: empty_dataframe = {'time1':np.datetime64, 'time2':np.datetime64, 'act':str, 'text':str, 'val':float, 'month':str, 'cat':str, 'main cat':str, 'acc_name':str} longterm_data = pd.DataFrame(columns=empty_dataframe.keys()).astype(empty_dataframe) #extract saved account names in longterm_data saved_accnames = list(longterm_data['acc_name'].unique()) saved_dataframe = {} #stored dataframes from import for account_name in saved_accnames: #iterate through list with indices saved_dataframe[account_name] = longterm_data.loc[longterm_data['acc_name'] == account_name] #get saved dataframes return saved_dataframe def longterm_export(path, saved_dataframe):#needs to be outside class in case program is closed before data integration longterm_data = pd.DataFrame(columns=['time1', 'time2', 'act', 'text', 'val', 'month', 'cat', 'main cat', 'acc_name']) for account_name in saved_dataframe.keys(): account_name_concat = saved_dataframe[account_name] account_name_concat['acc_name'] = account_name #set account name in dataframe to be saved longterm_data = pd.concat([longterm_data, account_name_concat]) #concatinated data longterm_data.to_csv(path, index=False, sep=';') #export data class AccountsData: def __init__(self, dir_result, classifier_class, langdict, saved_dataframe): self.langdict = langdict ## set language variable if self.langdict['result_pathvars'][0] == 'Ergebnisse_': self.lang_choice = 'deu' else: self.lang_choice = 'eng' #change locale to English if platform.system() == 'Windows': locale.setlocale(locale.LC_ALL, 'English') elif platform.system() == 'Darwin': locale.setlocale(locale.LC_ALL, 'en_US.utf-8') else: locale.setlocale(locale.LC_ALL, 'en_US.utf8') self.current_date = datetime.datetime.now().strftime("%b'%y") self.acc_names_rec = {} #longterm excel, excel and csv files self.folder_sep = FOLDER_SEP self.dir_result = dir_result+FOLDER_SEP+self.langdict['result_pathvars'][0]+self.current_date+FOLDER_SEP #adjusted complete path self.folder_res = {} self.raw_data = {} self.raw_data_header = {} self.basis_data = {} self.month_data = {} self.cat_data = {} self.plotting_list = {} self.error_codes = {} self.classifier = classifier_class self.saved_dataframe = saved_dataframe def process_data(self, raw_fileinfo, import_type): #unpack tuple with fileinformation filename, filepath = raw_fileinfo ##read in csv-files from different account_types ##start functions for getting csv account type info and data input & adjustment if import_type == 'csv_analyse': #get account information while True: try: acctypename_importedfile, raw_data, account_infos = account_ident.account_info_identifier(filepath) except: self.error_codes[filename] = 'Err01' break ##unpack account read-in info tuple header_columns, column_join, column_drop, acc_subtype, plot_info = account_infos #acc_subtype ('giro' or 'credit') currently not used, but kept in tuple list for possible later use self.raw_data[filename] = raw_data self.raw_data_header[filename] = header_columns #data preprocess try: #select Euro entrys if "Währung" in header_columns: self.basis_data[filename] = self.raw_data[filename][self.raw_data[filename]["Währung"] == "EUR"].copy() elif "currency" in header_columns: self.basis_data[filename] = self.raw_data[filename][self.raw_data[filename]["currency"] == "EUR"].copy() else: self.basis_data[filename] = self.raw_data[filename].copy() ##do adjustment to transactions info (join columns to get more info) for categorization. Output is forced to be string datype if column_join[0] == 'yes': self.basis_data[filename]['text'] = self.basis_data[filename][self.basis_data[filename].columns[column_join[1]]].apply(lambda x: str(' || '.join(x.dropna())), axis=1) else: pass ##drop columns if necessary and reaarange columns if column_drop[0] == 'yes': self.basis_data[filename].drop(self.basis_data[filename].columns[column_drop[1]], axis=1, inplace=True) self.basis_data[filename] = self.basis_data[filename].reindex(columns=self.basis_data[filename].columns[column_drop[2]]) else: pass ##insert "act" column if necessary (currently only dkb_credit) if len(self.basis_data[filename].columns) == 4: self.basis_data[filename].insert(2, 'act', self.langdict['act_value'][0]) else: pass self.basis_data[filename].columns = ["time1", "time2", "act", "text", "val"] #delete row with time1&time2 empty self.basis_data[filename] = self.basis_data[filename].drop(self.basis_data[filename][(self.basis_data[filename]['time1'].isna())&(self.basis_data[filename]['time2'].isna())].index) #adjust for missing time values in "time1"-columns self.basis_data[filename]['time1'].mask(self.basis_data[filename]['time1'].isna(), self.basis_data[filename]['time2'], inplace=True) ##new #make month-column and categorize self.basis_data[filename]['month'] = self.basis_data[filename]['time1'].apply(lambda dates: dates.strftime('%b %Y')) except: self.error_codes[filename] = 'Err02' break #check if all transaction values is Null. If yes, abort and give errorcode '03' if self.basis_data[filename]['val'].isna().all(): self.error_codes[filename] = 'Err03' break else: pass #try categorization else give error code '04' try: self.basis_data[filename] = self.classifier.categorize_rawdata(self.basis_data[filename], 'csvdata') except: self.error_codes[filename] = 'Err04' break #add account name to dictionary with imported data files and their respective account names (for cashbook, savecent and long term data saving) self.acc_names_rec[filename] = acctypename_importedfile #add variables for subsequent handling and plotting self.plotting_list[filename] = plot_info self.folder_res[filename] = self.dir_result+filename break #Plot manually manipulated excel files elif import_type == 'xls_analyse': #read excel try: raw_data = pd.read_excel(filepath, sheet_name=self.langdict['sheetname_basis'][0], engine='openpyxl') #main category is not read-in but separately assigned) try: testname = raw_data[raw_data.columns[8]][0] #get account name if existing #check if testname is nan-value (as nan are not identical it can be checked with !=) if testname != testname: #if imported account name field is Nan-value use "not assigned" acctypename_importedfile = self.langdict['accname_labels'][1] #set acctypename to not assigned else: acctypename_importedfile = testname #take name which was read in except: # if bank name is not existing set it to not assigned# acctypename_importedfile = self.langdict['accname_labels'][1] raw_data = raw_data[raw_data.columns[range(0, 7)]].copy() raw_data.dropna(subset=raw_data.columns[[0, 4]], inplace=True) #delete rows where value in time1 or val column is empty #check if raw data is in the right data format and contains at least one row if (raw_data.columns.tolist() == self.langdict['sheetname_basis'][1][:-2]) and (len(raw_data) != 0): #headers must be identical to those outputted via excel raw_data.columns = ["time1", "time2", "act", "text", "val", 'month', 'cat'] #save histo data to saved file histo_data = raw_data[['act', 'text', 'cat']].copy() #get a copy of relevant data for categorization self.classifier.machineclassifier.adjust_histo_data(histo_data) # add data to existing history dataset del histo_data self.basis_data[filename] = raw_data.copy() self.basis_data[filename] = self.classifier.assign_maincats(self.basis_data[filename]) #assign main categories self.acc_names_rec[filename] = acctypename_importedfile #add account name to dictionary with imported data files and their respective account names (for cashbook, savecent and long term data saving) self.plotting_list[filename] = 'normal' self.folder_res[filename] = self.dir_result+filename else: self.error_codes[filename] = 'Err01' del raw_data except: self.error_codes[filename] = 'Err01' # Excel file for concatenation elif import_type == 'xls_longterm': #Longterm analysis: Read-in excel to concat csvs try: raw_data = pd.read_excel(filepath, sheet_name=self.langdict['sheetname_basis'][0], engine='openpyxl') #main category is not read-in but separately assigned) #variabel "assigned_accname" does not need to be checked, as it is always 'use_acctype' for longterm excel concat try:#try to get the account name from excel testname = raw_data[raw_data.columns[8]][0] #get account name if existing #check if testname is nan-value (as nan are not identical it can be checked with !=) if testname != testname: #if imported account name field is Nan-value use "not assigned" acctypename_importedfile = self.langdict['accname_labels'][1] #set acctypename to not assigned else: acctypename_importedfile = testname #take name which was read in except: # if bank name is not existing set it to not assigned# acctypename_importedfile = self.langdict['accname_labels'][1] raw_data = raw_data[raw_data.columns[range(0, 7)]].copy() raw_data.dropna(subset=raw_data.columns[[0, 4]], inplace=True) #delete rows where value in time1 or val column is empty #check if raw data is in the right data format and contains at least one row if (raw_data.columns.tolist() == self.langdict['sheetname_basis'][1][:-2]) and (len(raw_data) != 0): #headers must be identical to those outputted via excel raw_data.columns = ["time1", "time2", "act", "text", "val", 'month', 'cat'] #save histo data to saved file histo_data = raw_data[['act', 'text', 'cat']].copy() #get a copy of relevant data for categorization self.classifier.machineclassifier.adjust_histo_data(histo_data) # add data to existing history dataset del histo_data self.basis_data[filename] = raw_data.copy() self.basis_data[filename] = self.classifier.assign_maincats(self.basis_data[filename]) #assign main categories #account names for excel-extraimport only needed because of concatination function searching for identical "acc-name" values self.basis_data[filename]['acc_name'] = None #create acctype column and set values to Nan self.basis_data[filename].at[0, 'acc_name'] = acctypename_importedfile #set account name to basis dataframe for possible concatination else: self.error_codes[filename] = 'Err01' del raw_data except: self.error_codes[filename] = 'Err01' # Excel file for concatenation elif import_type == 'xls_cashbook': #cashbok analysis: Read-in to append info to csvs try: raw_data = pd.read_excel(filepath, sheet_name=self.langdict['cashbookvars_name'][0], usecols=[0, 1, 2, 3, 4, 5], engine='openpyxl') raw_data.columns = ["time1", "text", "val", "cat", "acc_name", "cashcat"] raw_data = raw_data[raw_data['time1'].isna() == False] #adjust categories if no value is set if raw_data[['time1', 'text', 'val']].isnull().values.any() == False:#reject cashbook if there are empty values in date, value or text raw_data['val'] = -raw_data['val'] raw_data["time2"] = raw_data["time1"] raw_data['month'] = raw_data['time1'].apply(lambda dates: dates.strftime('%b %Y')) raw_data['act'] = self.langdict['cashbookvars_name'][1] #do categorization for empty values in cashbook, get main cats and reorder dataframe raw_data = self.classifier.categorize_rawdata(raw_data, 'cashbook') raw_data = raw_data.reindex(columns=raw_data.columns[[0, 6, 8, 1, 2, 7, 3, 9, 4, 5]]) self.basis_data[self.langdict['cashbookvars_name'][0]] = raw_data.copy() else: self.error_codes[filename] = 'Err01' del raw_data except: self.error_codes[filename] = 'Err01' else:#no action needed pass def assign_fileaccnames(self, assign_list): for entry in assign_list: #entry[0] equals filename / entry[1] account name #set account name to dictionary holding all account names (needed for cashbook, longterm and savecent) self.acc_names_rec[entry[0]] = entry[1] #create account name column for excel export self.basis_data[entry[0]]['acc_name'] = None #create account name column and set values to Nan self.basis_data[entry[0]].at[0, 'acc_name'] = entry[1] #set account name to basis dataframe (will be exported to excel) def sorting_processor(self, element_name, balance_row_name, group_name, value_name): basis_data_subset = self.basis_data[element_name].copy() #create subset #make month data self.month_data[element_name] = basis_data_subset.groupby('month', sort=False)[value_name].sum().reset_index() ##get monthly overview if element_name == self.langdict['dataname_savecent'][0]: #do sorting of month data differently for savecents self.month_data[element_name] = self.month_data[element_name].sort_values([value_name], ascending=False) self.month_data[element_name].columns = ['month', 'val'] else: #sort monthly data for all other dataframes starting with first month up respective left in monthplot self.month_data[element_name] = self.month_data[element_name][::-1] month_number = self.month_data[element_name]['month'].nunique() #process data and aggregate based on sorting type(category/main category) grouped_data = basis_data_subset.groupby(group_name, sort=False)[value_name].sum().reset_index() balance_row = pd.DataFrame([[balance_row_name, sum(basis_data_subset[value_name])]], columns=list(grouped_data.columns)) grouped_data = grouped_data.sort_values([value_name], ascending=False).reset_index(drop=True) #sort by values to have all positive values at top (necessary to get indices income_data = grouped_data.loc[(grouped_data[value_name] > 0)].copy() #get positive valued entries #get negative valued entries based on length of positive valued dataframe if len(income_data.index) > 0: cost_data = grouped_data[income_data.index[-1]+1:].copy() else: cost_data = grouped_data[0:].copy() cost_data = cost_data.sort_values([value_name]) # sort negative valued dataframe, with most negative at top result_data = income_data.append(cost_data, ignore_index=True) #append negative dataframe to positive dataframe result_data = result_data.append(balance_row, ignore_index=True) # add balance row result_data['val_month'] = result_data[value_name]/(month_number) #create value per month return result_data def month_cat_maker(self): ##categorize data and sort ascending. Same goes for monthly data for element_name in list(self.folder_res.keys()): if element_name == self.langdict['dataname_savecent'][0]: main_cats = "empty" subcats = self.sorting_processor(element_name, self.langdict['balance_savecent'][0], 'acc_origin', 'savecent') subcats.columns = ['cat', 'val', 'val_month'] elif element_name == self.langdict['cashbookvars_name'][0]: subcats = self.sorting_processor(element_name, self.langdict['balance_cashbook'][1], 'cat', 'val') main_cats = self.sorting_processor(element_name, self.langdict['balance_cashbook'][1], 'acc_name', 'val') #main cats equals account name sorting #rename columns maincat cashbook from 'acc_name' to 'cat' main_cats.columns = ['cat', 'val', 'val_month'] elif element_name == self.langdict['holidayvars_name'][0]: main_cats = "empty" subcats = self.sorting_processor(element_name, self.langdict['balance_holiday'][0], 'cat', 'val') else: #make cat data and month data for all other dataframes main_cats = self.sorting_processor(element_name, self.langdict['balance_normal'][0], 'main cat', 'val') # create sorted dataframe for main categories subcats = self.sorting_processor(element_name, self.langdict['balance_normal'][0], 'cat', 'val') # create sorted dataframe for categories subcats = self.classifier.assign_maincats(subcats) #add main category column to cat data for later use subcats.loc[subcats['cat'] == self.langdict['balance_normal'][0], 'main cat'] = self.langdict['balance_normal'][0] #adjust main category for balance category subcats = subcats.reindex(columns=['main cat', 'cat', 'val', 'val_month'])#reorder columns self.cat_data[element_name] = (subcats, main_cats) #take saved long term data into data evaluation process def longterm_evaluate(self): #this function is only called, when user opts for long term data evaluation for account_name in self.saved_dataframe.keys(): account_dataframe = self.saved_dataframe[account_name].copy() account_dataframe.reset_index(drop=True, inplace=True) #reset index to be able to place acc_name on index 0 account_dataframe['acc_name'] = None # clear account name account_dataframe.at[0, 'acc_name'] = account_name#set new account type for this subframe longterm_data_name = self.langdict['longterm_name'][0]+account_name # "Longterm_"+account fullname self.basis_data[longterm_data_name] = account_dataframe #add longterm basis data to be analysed self.acc_names_rec[longterm_data_name] = account_name #add longterm data name to recorded account names list--> makes cashbook evaluation possible self.plotting_list[longterm_data_name] = 'normal' #set plotting info self.folder_res[longterm_data_name] = self.dir_result+longterm_data_name # create export folder # add newly added data to longterm data def longterm_savedata(self): #update saved longterm data, evaluate and output if user opted for it #convert saved dataframes in dict entries into lists for saved_element in self.saved_dataframe.keys(): self.saved_dataframe[saved_element] = [self.saved_dataframe[saved_element]] #get basis dataframe for every assigned account name for element_name in self.acc_names_rec.keys(): if self.acc_names_rec[element_name] != self.langdict['accname_labels'][1]: #check if the name is 'not assigned'. If yes skip, else import basis data try: #if list with account name already exists, add dataframe self.saved_dataframe[self.acc_names_rec[element_name]].append(self.basis_data[element_name]) except: #create list for account name with dataframe self.saved_dataframe[self.acc_names_rec[element_name]] = [self.basis_data[element_name]] else: pass #nothing to do #generate new dataframes longterm_data_prep = {} for account_name in self.saved_dataframe.keys(): account_name_concat = pd.concat(self.saved_dataframe[account_name]) #concat data for every account and list it account_name_concat.drop_duplicates(subset=['time1', 'text', 'val'], inplace=True, ignore_index=True) #get rid of doubled entry rows with respect to time1,text and value account_name_concat = account_name_concat.sort_values(['time1'], ascending=False).reset_index(drop=True) #sort values by booking date and reset index longterm_data_prep[account_name] = account_name_concat #save concatted datframe to dict to be able to concat all data frames and store it as csv in longterm export return longterm_data_prep def concatter(self, concat_list): #create list to find concat choice in datasets for item in concat_list: #tuple unpack concat choice values framename, concat_choice = item #get names for new datasets concat_dataframes = [] accountnames = []# determine wether all dataframe have same account type or not for choicename in concat_choice: concat_dataframes.append(self.basis_data[choicename]) accountnames.append(self.basis_data[choicename][self.basis_data[choicename].columns[8]][0])#read account name of dataframes to be concatinated and save it to list #concat and add to data-object self.basis_data[framename] = pd.concat(concat_dataframes) self.basis_data[framename].drop_duplicates(subset=['time1', 'text', 'val'], inplace=True, ignore_index=True) #get rid of doubled entry rows with respect to time1, text and value self.basis_data[framename] = self.basis_data[framename].sort_values(['time1'], ascending=False).reset_index(drop=True)#sort values by booking date and reset index #add account name self.basis_data[framename]['acc_name'] = None #clear account name column if all(elem == accountnames[0] for elem in accountnames): #if all entries in accountnames are identical, take first value of list else write unclear self.basis_data[framename].at[0, 'acc_name'] = accountnames[0] #set account name else: self.basis_data[framename].at[0, 'acc_name'] = self.langdict['accname_labels'][1] #set account name to not assigned self.folder_res[framename] = self.dir_result+framename self.plotting_list[framename] = 'normal' def bundle_holiday(self): #concat holiday data from different csv-files holidayvar_name = self.langdict['holidayvars_name'][0] self.basis_data[holidayvar_name] = pd.DataFrame(columns=["time1", "time2", "act", "text", "val", "month", "cat", "main cat", "acc_name"]) for element_name in list(self.folder_res.keys()): if not element_name in (self.langdict['dataname_savecent'][0], self.langdict['cashbookvars_name'][0]): #cashbook and savecentnames data_hol = self.basis_data[element_name].loc[self.basis_data[element_name]['main cat'] == self.langdict['holiday_searchwords'][0]].copy() self.basis_data[holidayvar_name] = self.basis_data[holidayvar_name].append(data_hol, ignore_index=True) self.basis_data[holidayvar_name].drop_duplicates(subset=['time1', 'time2', 'text', 'val'], inplace=True, ignore_index=True) #drop dubplicates if existing if len(self.basis_data[holidayvar_name].index) > 0: self.basis_data[holidayvar_name] = self.basis_data[holidayvar_name].sort_values(['time1'], ascending=False) self.basis_data[holidayvar_name]['acc_name'] = None #set all account name values from imports to NaN self.basis_data[holidayvar_name].at[0, 'acc_name'] = self.langdict['accname_labels'][1] #set account type to not assigned self.folder_res[holidayvar_name] = self.dir_result+self.langdict['holidayvars_name'][1] self.plotting_list[holidayvar_name] = 'basic' else: del self.basis_data[holidayvar_name] def savecent_calculation(self): #account for difference between actucal cost value and full amount (rounding). Gives a number which can be invested every month. Since the data structure will be different, the results will be saved and plotted separately. savecentvar_name = self.langdict['dataname_savecent'][0] self.basis_data[savecentvar_name] =
pd.DataFrame(columns=["time1", "time2", "act", "text", "val", "month", "cat", "main cat", "savecent", "acc_origin"])
pandas.DataFrame
import logging import os import pickle import random from pathlib import Path import itertools import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from src.data.make_dataset import DATE_COLUMNS, CAT_COLUMNS import utm project_dir = Path(__file__).resolve().parents[2] def rule(row): lat, long,_,_= utm.from_latlon(row["Surf_Latitude"], row["Surf_Longitude"], 45, 'K') return
pd.Series({"lat": lat, "long": long})
pandas.Series
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import unittest import warnings import pandas as pd import numpy as np from qiime2 import Artifact from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn) from qiime2.core.testing.util import get_dummy_plugin, ReallyEqualMixin class TestInvalidMetadataConstruction(unittest.TestCase): def test_non_dataframe(self): with self.assertRaisesRegex( TypeError, 'Metadata constructor.*DataFrame.*not.*Series'): Metadata(pd.Series([1, 2, 3], name='col', index=pd.Index(['a', 'b', 'c'], name='id'))) def test_no_ids(self): with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({}, index=pd.Index([], name='id'))) with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({'column': []}, index=pd.Index([], name='id'))) def test_invalid_id_header(self): # default index name with self.assertRaisesRegex(ValueError, r'Index\.name.*None'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c']))) with self.assertRaisesRegex(ValueError, r'Index\.name.*my-id-header'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name='my-id-header'))) def test_non_str_id(self): with self.assertRaisesRegex( TypeError, 'non-string metadata ID.*type.*float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', np.nan, 'c'], name='id'))) def test_non_str_column_name(self): with self.assertRaisesRegex( TypeError, 'non-string metadata column name.*type.*' 'float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3], np.nan: [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_empty_id(self): with self.assertRaisesRegex( ValueError, 'empty metadata ID.*at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '', 'c'], name='id'))) def test_empty_column_name(self): with self.assertRaisesRegex( ValueError, 'empty metadata column name.*' 'at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3], '': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_pound_sign_id(self): with self.assertRaisesRegex( ValueError, "metadata ID.*begins with a pound sign.*'#b'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '#b', 'c'], name='id'))) def test_id_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata ID 'sample-id'.*conflicts.*reserved.*" "ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'sample-id', 'c'], name='id'))) def test_column_name_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata column name 'featureid'.*conflicts.*" "reserved.*ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3], 'featureid': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_duplicate_ids(self): with self.assertRaisesRegex(ValueError, "Metadata IDs.*unique.*'a'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'a'], name='id'))) def test_duplicate_column_names(self): data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] with self.assertRaisesRegex(ValueError, "Metadata column names.*unique.*'col1'"): Metadata(pd.DataFrame(data, columns=['col1', 'col2', 'col1'], index=pd.Index(['a', 'b', 'c'], name='id'))) def test_unsupported_column_dtype(self): with self.assertRaisesRegex( TypeError, "Metadata column 'col2'.*unsupported.*dtype.*bool"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [True, False, True]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_unsupported_type(self): with self.assertRaisesRegex( TypeError, "CategoricalMetadataColumn.*strings or missing " r"values.*42\.5.*float.*'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 42.5]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_empty_str(self): with self.assertRaisesRegex( ValueError, "CategoricalMetadataColumn.*empty strings.*" "column 'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', '', 'bar']}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_numeric_column_infinity(self): with self.assertRaisesRegex( ValueError, "NumericMetadataColumn.*positive or negative " "infinity.*column 'col2'"): Metadata(pd.DataFrame( {'col1': ['foo', 'bar', 'baz'], 'col2': [42, float('+inf'), 4.3]}, index=pd.Index(['a', 'b', 'c'], name='id'))) class TestMetadataConstructionAndProperties(unittest.TestCase): def assertEqualColumns(self, obs_columns, exp): obs = [(name, props.type) for name, props in obs_columns.items()] self.assertEqual(obs, exp) def test_minimal(self): md = Metadata(pd.DataFrame({}, index=pd.Index(['a'], name='id'))) self.assertEqual(md.id_count, 1) self.assertEqual(md.column_count, 0) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('a',)) self.assertEqualColumns(md.columns, []) def test_single_id(self): index = pd.Index(['id1'], name='id') df = pd.DataFrame({'col1': [1.0], 'col2': ['a'], 'col3': ['foo']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 1) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1',)) self.assertEqualColumns(md.columns, [('col1', 'numeric'), ('col2', 'categorical'), ('col3', 'categorical')]) def test_no_columns(self): index = pd.Index(['id1', 'id2', 'foo'], name='id') df = pd.DataFrame({}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 0) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'foo')) self.assertEqualColumns(md.columns, []) def test_single_column(self): index = pd.Index(['id1', 'a', 'my-id'], name='id') df = pd.DataFrame({'column': ['foo', 'bar', 'baz']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 1) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'a', 'my-id')) self.assertEqualColumns(md.columns, [('column', 'categorical')]) def test_retains_column_order(self): # Supply DataFrame constructor with explicit column ordering instead of # a dict. index = pd.Index(['id1', 'id2', 'id3'], name='id') columns = ['z', 'a', 'ch'] data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'], [3.0, 'c', '42'] ] df =
pd.DataFrame(data, index=index, columns=columns)
pandas.DataFrame
import os import random from itertools import cycle import tsfel as ts import tensorflow as tf import numpy as np from sklearn import metrics import sensormotion as sm import matplotlib.pyplot as plt import math from shutil import copy2 import seaborn as sns import pandas as pd from imblearn.metrics import sensitivity_specificity_support from imblearn.over_sampling import SMOTE, ADASYN, KMeansSMOTE, RandomOverSampler from imblearn.under_sampling import RandomUnderSampler, NearMiss, EditedNearestNeighbours from scipy import stats from sklearn import preprocessing from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import VarianceThreshold, SelectFromModel, RFE from sklearn.metrics import precision_recall_fscore_support, accuracy_score, classification_report, confusion_matrix from sklearn.model_selection import GridSearchCV, train_test_split, KFold from pathlib import Path from datetime import datetime from sklearn.svm import LinearSVC, SVR from b_har.utility.configurator import Configurator, PrivateConfigurator from b_har.models import Models, MlModels import logging import progressbar from timeit import default_timer as timer class B_HAR: _data_delimiters = { 'tdc': (1, -1), 'tdcp': (1, -2), 'dc': (0, -1), 'dcp': (0, -2) } # --- Public Methods --- def __init__(self, config_file_path) -> None: super().__init__() self.__cfg_path = config_file_path def stats(self): """ Prints out the statistics of a given dataset :return: None """ self._init_log() df = self._decode_csv(ds_dir=Configurator(self.__cfg_path).get('dataset', 'path'), separator=Configurator(self.__cfg_path).get('dataset', 'separator', fallback=' '), header_type=Configurator(self.__cfg_path).get('dataset', 'header_type'), has_header=Configurator(self.__cfg_path).getboolean('dataset', 'has_header') ) header_type = Configurator(self.__cfg_path).get('dataset', 'header_type') group_by = Configurator(self.__cfg_path).get('settings', 'group_by') # Create stats directory stats_dir = os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'stats') Path(stats_dir).mkdir(parents=True, exist_ok=True) # Plot settings prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] values = df[group_by].value_counts() # Bar Plot Class plt.title('Class Distribution') df[group_by].value_counts().plot(kind='bar', color=colors) i = 0 offset = 1000 for value in values: plt.text(i, value + offset, str(np.round(value / np.sum(df[group_by].value_counts()) * 100)) + '%') i += 1 plt.xlabel('Classes') plt.ylabel('Instances') plt.savefig(os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'stats/class_barplot.png')) plt.show() plt.close() # Bar Plot Patients if 'p' in header_type: plt.title('Data per Patient') df['P_ID'].value_counts().plot(kind='bar', color=colors) plt.xlabel('Patients') plt.ylabel('Instances') plt.savefig( os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'stats/patients_barplot.png')) plt.show() plt.close() # Boxplot Data df.boxplot( column=list(df.columns[self._data_delimiters[header_type][0]: self._data_delimiters[header_type][1]])) plt.savefig(os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'stats/data_boxplot.png')) plt.show() plt.close() # Boxplot Class df.boxplot( column=list(df.columns[self._data_delimiters[header_type][0]: self._data_delimiters[header_type][1]]), by='CLASS') plt.savefig(os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'stats/class_boxplot.png')) plt.show() plt.close() def get_baseline(self, ml_models, dl_models, discard_class: list = None, discard_patients: list = None, ids_test: list = None): """ Evaluates the input dataset with different machine learning and deep learning models in order to get a baseline for future analysis and comparisons. :param ids_test: list of patient id used as testing set :param ml_models: list of machine learning models :param dl_models: list of cnn models :param discard_class: list of class useless for analysis :param discard_patients: list of patient id useless for analysis :return: """ self._init_log() # Evaluate number of sample per time window time_window_size = int(Configurator(self.__cfg_path).getint('settings', 'sampling_frequency') * Configurator(self.__cfg_path).getfloat('settings', 'time')) # --- Load Data --- try: dataset = self._decode_csv(ds_dir=Configurator(self.__cfg_path).get('dataset', 'path'), separator=Configurator(self.__cfg_path).get('dataset', 'separator', fallback=' '), header_type=Configurator(self.__cfg_path).get('dataset', 'header_type'), has_header=Configurator(self.__cfg_path).getboolean('dataset', 'has_header') ) except Exception as e: print('Failed to load data.') print(e.args) exit(10) # ----------------- # --- Data Cleaning --- try: dataset = self._clean_data(df=dataset, sampling_frequency=Configurator(self.__cfg_path).getint('settings', 'sampling_frequency'), high_cutoff=Configurator(self.__cfg_path).getint('cleaning', 'high_cut', fallback=None), low_cutoff=Configurator(self.__cfg_path).getint('cleaning', 'low_cut', fallback=None), sub_method=Configurator(self.__cfg_path).get('cleaning', 'sub_method'), header_type=Configurator(self.__cfg_path).get('dataset', 'header_type') ) except Exception as e: print('Failed to clean data.') print(e.args) exit(20) # ----------------- # --- Data Treatment --- data_treatment_type = Configurator(self.__cfg_path).get('settings', 'data_treatment') if data_treatment_type == 'features_extraction': try: dt_dataset = self._features_extraction(df=dataset, sampling_frequency=Configurator(self.__cfg_path).getint('settings', 'sampling_frequency'), time_window=time_window_size, overlap=Configurator(self.__cfg_path).getfloat('settings', 'overlap'), header_type=Configurator(self.__cfg_path).get('dataset', 'header_type')) except Exception as e: print('Failed to extract features.') print(e.args) exit(30) elif data_treatment_type == 'segmentation': try: dt_dataset = self._apply_segmentation(df=dataset, sampling_frequency=Configurator(self.__cfg_path).getint('settings', 'sampling_frequency'), time_window_size=time_window_size, overlap=Configurator(self.__cfg_path).getfloat('settings', 'overlap')) except Exception as e: print('Failed during data segmentation.') print(e.args) exit(40) elif data_treatment_type == 'raw': dt_dataset = dataset else: print('*** Fallback: not recognised %s, using Raw instead ***' % data_treatment_type) logging.info('*** Fallback: not recognised %s, using Raw instead ***' % data_treatment_type) dt_dataset = dataset # ---------------------- del dataset # --- Preprocessing --- try: X_train_set, X_validation_set, Y_train_set, Y_validation_set, class_labels = self._data_preprocessing( df=dt_dataset, drop_class=discard_class, drop_patient=discard_patients, split_method=Configurator(self.__cfg_path).get('preprocessing', 'split_method'), normalisation_method=Configurator(self.__cfg_path).get('preprocessing', 'normalisation_method'), selection_method=Configurator(self.__cfg_path).get('preprocessing', 'selection_method'), balancing_method=Configurator(self.__cfg_path).get('preprocessing', 'balancing_method'), ids_test_set=ids_test ) except Exception as e: print('Failed during data preprocessing.') print(e.args) exit(50) # --------------------- del dt_dataset # --- Start ML Evaluation --- if Configurator(self.__cfg_path).getboolean('settings', 'use_ml'): self._start_ml_evaluation(X_train_set, Y_train_set, X_validation_set, Y_validation_set, ml_models) # --------------------------- # --- Start DL Evaluation --- if Configurator(self.__cfg_path).getboolean('settings', 'use_dl'): self._dl_evaluation(X_train_set, Y_train_set, X_validation_set, Y_validation_set, dl_models, time_window_size) # --------------------------- # --- Shut down logging --- logging.shutdown() # --------------------------- # --- Private Methods --- def _get_cfg_path(self): return self.__cfg_path def _apply_segmentation(self, df, sampling_frequency, time_window_size, overlap): has_patient = 'p' in Configurator(self.__cfg_path).get('dataset', 'header_type') if has_patient: x, y, p = self._get_window(df, sampling_frequency, time_window_size, overlap) else: x, y = self._get_window(df, sampling_frequency, time_window_size, overlap) p = None x_df = pd.DataFrame(x.reshape(-1, x.shape[1] * x.shape[2])) x_df['CLASS'] = y if has_patient and p is not None: x_df['P_ID'] = p return x_df def _dl_evaluation(self, x_train, y_train, x_val, y_val, dl_models, time_window_size): # --- Use Also Features --- if Configurator(self.__cfg_path).getboolean('training', 'use_features') and \ Configurator(self.__cfg_path).get('settings', 'data_treatment') == 'features_extraction': logging.info('--- Features as input of CNN ---') # Set CNN input size n_features = x_train.shape[1] PrivateConfigurator().set('cnn', 'input_shape_x', '1') PrivateConfigurator().set('cnn', 'input_shape_y', str(n_features)) # Set CNN kernel sizes PrivateConfigurator().set('m1_acc', 'conv-kernel', '1') PrivateConfigurator().set('m1_acc', 'pool-size', '1') # Reshape to feed CNN X_training_features = x_train.reshape((-1, 1, n_features)) X_testing_features = x_val.reshape((-1, 1, n_features)) y_training_features = np.asarray(y_train).reshape(-1) y_testing_features = np.asarray(y_val).reshape(-1) # Evaluation self._start_cnn_evaluation(X_training_features, y_training_features, X_testing_features, y_testing_features, dl_models, Configurator(self.__cfg_path).getint('training', 'epochs'), Configurator(self.__cfg_path).getint('training', 'k_fold'), Configurator(self.__cfg_path).getfloat('training', 'loss_threshold'), np.unique(y_train), 'Features-as-input') # ------------------------ # --- Use accelerometer data as input to the CNN --- logging.info('--- Accelerometer data as input of CNN ---') if Configurator(self.__cfg_path).get('settings', 'data_treatment') == 'segmentation': # Get windowed data n_features = int(x_train.shape[1] / time_window_size) x_train = x_train.reshape((-1, time_window_size, n_features)) x_val = x_val.reshape((-1, time_window_size, n_features)) # Set CNN input size PrivateConfigurator().set('cnn', 'input_shape_x', str(x_train.shape[1])) PrivateConfigurator().set('cnn', 'input_shape_y', str(x_train.shape[2])) # Set CNN kernel sizes if n_features <= 3: PrivateConfigurator().set('m1_acc', 'conv-kernel', '1') PrivateConfigurator().set('m1_acc', 'pool-size', '1') else: PrivateConfigurator().set('m1_acc', 'conv-kernel', '3') PrivateConfigurator().set('m1_acc', 'pool-size', '2') # Evaluation logging.info('--> Training set shape: %s' % str(x_train.shape)) logging.info('--> Validation set shape: %s' % str(x_val.shape)) self._start_cnn_evaluation(x_train, y_train, x_val, y_val, dl_models, Configurator(self.__cfg_path).getint('training', 'epochs'), Configurator(self.__cfg_path).getint('training', 'k_fold'), Configurator(self.__cfg_path).getfloat('training', 'loss_threshold'), np.unique(y_train), 'Accelerometer-data') # --------------------------- if Configurator(self.__cfg_path).get('settings', 'data_treatment') == 'raw': # Set CNN input size n_features = x_train.shape[1] PrivateConfigurator().set('cnn', 'input_shape_x', '1') PrivateConfigurator().set('cnn', 'input_shape_y', str(n_features)) # Set CNN kernel sizes PrivateConfigurator().set('m1_acc', 'conv-kernel', '1') PrivateConfigurator().set('m1_acc', 'pool-size', '1') # Reshape to feed CNN X_training_features = x_train.reshape((-1, 1, n_features)) X_testing_features = x_val.reshape((-1, 1, n_features)) y_training_features = np.asarray(y_train).reshape(-1) y_testing_features = np.asarray(y_val).reshape(-1) logging.info('--> Training set shape: %s' % str(x_train.shape)) logging.info('--> Validation set shape: %s' % str(x_val.shape)) # Evaluation self._start_cnn_evaluation(X_training_features, y_training_features, X_testing_features, y_testing_features, dl_models, Configurator(self.__cfg_path).getint('training', 'epochs'), Configurator(self.__cfg_path).getint('training', 'k_fold'), Configurator(self.__cfg_path).getfloat('training', 'loss_threshold'), np.unique(y_train), 'Raw') def _apply_filter(self, df, filter_name, sample_rate, frequency_cutoff, order): b, a = sm.signal.build_filter(frequency=frequency_cutoff, sample_rate=sample_rate, filter_type=filter_name, filter_order=order) header_type = Configurator(self.__cfg_path).get('dataset', 'header_type') for column in list(df.columns)[self._data_delimiters[header_type][0]: self._data_delimiters[header_type][1]]: df[column] = sm.signal.filter_signal(b, a, signal=df[column].values) return df def _init_log(self): now = datetime.now() timestamp = datetime.fromtimestamp(datetime.timestamp(now)) log_dir_name = '%s - log' % str(timestamp).split('.')[0] new_log_dir_path = os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), log_dir_name) try: # Create run log directory Path(new_log_dir_path).mkdir(parents=True, exist_ok=True) # Copy run settings copy2(self._get_cfg_path(), new_log_dir_path) # Update log dir path for future usage Configurator(self._get_cfg_path()).set('settings', 'log_dir', new_log_dir_path) # Configure logging logging.basicConfig(filename=os.path.join(new_log_dir_path, 'log.rtf'), format='', level=logging.INFO) except Exception as e: print(e.args) logging.info(e.args) exit(1) else: logging.log(msg="Successfully created the directory %s " % new_log_dir_path, level=logging.INFO) def _print_val_train_stats(self, history, title, save_to_dl_dir: False): # Create training stats directory if save_to_dl_dir: dl_dir = os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'deep_learning') training_stats_dir = os.path.join(dl_dir, 'training') Path(training_stats_dir).mkdir(parents=True, exist_ok=True) save_to = training_stats_dir else: Path(os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'training')).mkdir(parents=True, exist_ok=True) save_to = os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'training') fig, axis = plt.subplots(2) fig.suptitle('%s' % title) axis[0].set_title('Accuracy') axis[0].plot(history['accuracy'], label='acc', c='g') axis[0].plot(history['val_accuracy'], label='val-acc', c='b') axis[0].legend() axis[1].set_title('Loss') axis[1].plot(history['loss'], label='loss', c='r') axis[1].plot(history['val_loss'], label='val-loss', c='m') axis[1].legend() plt.savefig(os.path.join(save_to, 'training_stats_%s.png' % title)) plt.show() plt.close() def _do_k_fold(self, x, y, kf, model, model_name, epochs, x_unseen=None, y_unseen=None): # Define supporting variables fold = 0 trained_models = dict() initial_weights = model.get_weights() accuracy_per_fold = list() loss_per_fold = list() # Do K-Fold # Each fold is used once as a validation while the k - 1 remaining folds form the training set. for train, test in kf.split(x): fold += 1 # Define training set x_train = x[train] y_train = tf.keras.utils.to_categorical(y[train]) # Define testing set x_test = x[test] y_test = tf.keras.utils.to_categorical(y[test]) logging.info('------------------------------------------------------------------------') logging.info('Training for fold %s ...' % str(fold)) # Training and Validation history = model.fit(x_train, y_train, validation_data=(x_test, y_test), verbose=0, epochs=epochs) # Check if the gap between train and validation is constant self._print_val_train_stats(history.history, '%s fold %s' % (model_name, fold), Configurator(self.__cfg_path).getboolean('settings', 'use_dl')) # Predict values of validation pred = model.predict(x_test) # Evaluate model score (Loss and Accuracy) scores = model.evaluate(x_test, y_test, verbose=0) logging.info('\nStats for fold %s: %s of %s; %s of %s' % (str(fold), str(model.metrics_names[0]), str(scores[0]), str(model.metrics_names[1]), str(scores[1] * 100)) ) accuracy_per_fold.append(scores[1] * 100) loss_per_fold.append(scores[0]) # Test on unseen data if x_unseen is not None and y_unseen is not None: y_unseen_predicted = model.predict(x_unseen) trained_models.update({fold: (model.get_weights(), y_test, pred, y_unseen_predicted, scores[0])}) else: y_unseen_predicted = None # Measure this fold's RMSE mse = np.sqrt(metrics.mean_squared_error(y_test.argmax(1), pred.argmax(1))) # lower is better # Save trained model with its predictions and ground truth trained_models.update( {fold: (model.get_weights(), y_test, pred, None, scores[0])}) # None instead of y_unseen_pred logging.info( 'Classification Report on Test Fold\n%s' % str(classification_report(y_test.argmax(1), pred.argmax(1)))) if x_unseen is not None and y_unseen is not None: logging.info('Classification Report on Unseen Data\n%s' % str(classification_report(y_unseen, y_unseen_predicted.argmax(1)))) logging.info("\nMean Squared Error on Unseen Data: %s" % str(np.sqrt(metrics.mean_squared_error(y_unseen, y_unseen_predicted.argmax(1))))) logging.info("\nFold %s score: %s\n" % (str(fold), str(mse))) logging.info('------------------------------------------------------------------------') # Reset model weights for the next train session model.set_weights(initial_weights) # Print a final summary logging.info('------------------------------------------------------------------------') logging.info('Score per fold') for i in range(0, len(accuracy_per_fold)): logging.info('------------------------------------------------------------------------') logging.info('> Fold %s - Loss: %s - Accuracy: %s' % (str(i + 1), loss_per_fold[i], accuracy_per_fold[i])) logging.info('------------------------------------------------------------------------') logging.info('Average scores for all folds:') logging.info('> Accuracy: %s (+- %s)' % (str(np.mean(accuracy_per_fold)), str(np.std(accuracy_per_fold)))) logging.info('> Loss: %s' % (str(np.mean(loss_per_fold)))) logging.info('------------------------------------------------------------------------') return np.mean(accuracy_per_fold), trained_models # Accuracy, models def _model_ensembles(self, trained_models, model, x_test_unseen, y_test, model_name, class_values, threshold=.40): predictions = list() for key in trained_models: # Use only models with a mean squared error under the threshold for prediction if trained_models[key][4] <= threshold: model.set_weights(trained_models[key][0]) y_pred = model.predict(x_test_unseen).argmax(1) predictions.append(y_pred) if not predictions: logging.info('There are no predictions, models were too bad.') else: n_used_models = len(predictions) predictions = stats.mode(np.asarray(predictions))[0][0] # Metrics metrics1 = sensitivity_specificity_support(y_test, predictions, average='weighted') metrics2 = precision_recall_fscore_support(y_test, predictions, average='weighted') metrics3 = accuracy_score(y_test, predictions, normalize=True) logging.log(msg='--> clf: %s\n' ' • specificity: %s\n' ' • sensitivity: %s\n' ' • precision: %s\n' ' • accuracy: %s\n' ' • recall: %s\n' ' • f1-score: %s\n' % ( model_name, metrics1[1], metrics1[0], metrics2[0], metrics3, metrics2[1], metrics2[0]), level=logging.INFO) self._cm_analysis(y_test, predictions, class_values, model_name, '%s Model Ensembles (used %s)' % (model_name, str(n_used_models)), 'deep_learning') def _cm_analysis(self, y_true, y_pred, labels, model_name, title, path, ymap=None): """ Generate matrix plot of confusion matrix with pretty annotations. The plot image is saved to disk. args: y_true: true label of the data, with shape (n_samples,) y_pred: prediction of the data, with shape (n_samples,) filename: filename of figure file to save labels: string array, name the order of class labels in the confusion matrix. use `clf.classes_` if using scikit-learn models. with shape (nclass,). ymap: dict: any -> string, length == nclass. if not None, map the labels & ys to more understandable strings. Caution: original y_true, y_pred and labels must align. figsize: the size of the figure plotted. """ # Calc figure size based on number of class, for better visualisation tail_size = 2 n_class = len(np.unique(y_true)) figsize = (tail_size * n_class, int(tail_size * n_class * 1.2)) if ymap is not None: y_pred = [ymap[yi] for yi in y_pred] y_true = [ymap[yi] for yi in y_true] labels = [ymap[yi] for yi in labels] cm = confusion_matrix(y_true, y_pred, labels=labels) cm_sum = np.sum(cm, axis=1, keepdims=True) cm_perc = cm / cm_sum.astype(float) * 100 annot = np.empty_like(cm).astype(str) nrows, ncols = cm.shape for i in range(nrows): for j in range(ncols): c = cm[i, j] p = cm_perc[i, j] if i == j: s = cm_sum[i] annot[i, j] = '%.1f%%\n%d/%d' % (p, c, s) elif c == 0: annot[i, j] = '' else: annot[i, j] = '%.1f%%\n%d' % (p, c) cm = pd.DataFrame(cm, index=labels, columns=labels) cm.index.name = 'Actual' cm.columns.name = 'Predicted' fig, ax = plt.subplots(figsize=figsize) plt.title('Confusion Matrix %s' % title) sns.heatmap(cm, annot=annot, fmt='', ax=ax) plt.savefig( os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), '%s/CM %s %s.png' % (path, model_name, title))) plt.show() plt.close(fig) plt.close() def _select_patients_training_test(self, ds, p_ids: list = None): patient_ids = ds['P_ID'].unique() total_patients = len(patient_ids) n_patient_validation = int( np.floor(total_patients * Configurator(self.__cfg_path).getfloat('training', 'test_size'))) test_patients = list() if p_ids is not None: test_patients = p_ids patient_ids = list(patient_ids) patient_ids.remove(test_patients) else: # Select patient for validation for _ in range(n_patient_validation): # Select random patient pos = random.randint(0, len(patient_ids) - 1) random_p_id = patient_ids[pos] patient_ids = np.delete(patient_ids, pos) # Keep track of selected patients test_patients.append(random_p_id) logging.info('--> Training subjects: %s' % str(patient_ids)) logging.info('--> Testing subjects: %s' % str(test_patients)) # Define intra patient training and validation datasets training_dataset = ds.loc[ds['P_ID'].isin(patient_ids)].sort_values(by=['P_ID', 'time']) validation_dataset = ds.loc[ds['P_ID'].isin(test_patients)].sort_values(by=['P_ID', 'time']) return training_dataset, validation_dataset def _get_pbp_window_train_and_test(self, ds, training_dataset, validation_dataset, tw_size): cnn_training_data = list() cnn_training_labels = list() cnn_validation_data = list() cnn_validation_labels = list() for p_id in training_dataset['P_ID'].unique(): data_i, label_i, _ = self._get_window(ds.loc[ds[(ds['P_ID'] == p_id)].index], Configurator(self.__cfg_path).getint('settings', 'sampling_frequency'), tw_size, Configurator(self.__cfg_path).getfloat('settings', 'overlap')) cnn_training_data.append(data_i) cnn_training_labels.append(label_i) for val_p_id in validation_dataset['P_ID'].unique(): data_i, label_i, _ = self._get_window(ds.loc[ds[(ds['P_ID'] == val_p_id)].index], Configurator(self.__cfg_path).getint('settings', 'sampling_frequency'), tw_size, Configurator(self.__cfg_path).getfloat('settings', 'overlap')) cnn_validation_data.append(data_i) cnn_validation_labels.append(label_i) # Create CNN format training dataset and labels cnn_training_data = np.concatenate(cnn_training_data) cnn_training_labels = np.concatenate(cnn_training_labels) # Create CNN format training dataset and labels cnn_validation_data = np.concatenate(cnn_validation_data) cnn_validation_labels = np.concatenate(cnn_validation_labels) return cnn_training_data, cnn_validation_data, cnn_training_labels, cnn_validation_labels def _data_preprocessing(self, df, drop_class, drop_patient, split_method, normalisation_method, selection_method, balancing_method, ids_test_set: list = None): widgets = [ 'Data Preprocessing', ' [', progressbar.Timer(), '] ', progressbar.Bar(), ' (', progressbar.ETA(), ') ', ] logging.info('--- Data Preprocessing ---') with progressbar.ProgressBar(widgets=widgets, max_value=8) as bar: # Drop unnecessary classes if drop_class is not None: for class_name in drop_class: indexes = df[(df['CLASS'] == class_name)].index df.drop(indexes, inplace=True) # Drop unnecessary patients if drop_patient is not None: for patient_id in drop_patient: indexes = df[(df['P_ID'] == patient_id)].index df.drop(indexes, inplace=True) bar.update() # Class renaming if df['CLASS'].unique().dtype == int: old_labels = sorted(df['CLASS'].unique()) else: old_labels = df['CLASS'].unique() original_name_labels = list() logging.info('--> New labels:') for new, old in zip(range(len(old_labels)), old_labels): logging.info('• %s --> %s' % (str(old), str(new))) original_name_labels.append(str(old)) df['CLASS'] = df['CLASS'].replace({old: new}) bar.update() # Train/Test split header_type = Configurator(self.__cfg_path).get('dataset', 'header_type') if split_method == 'inter' and 'p' in header_type: # Define inter patient training and validation datasets training_dataset, validation_dataset = self._select_patients_training_test(df, ids_test_set) elif split_method == 'intra' and 'p' in header_type or split_method == 'holdout': training_dataset, validation_dataset = train_test_split(df, shuffle=True, test_size=Configurator(self.__cfg_path).getfloat( 'training', 'test_size'), random_state=28) else: training_dataset = None validation_dataset = None logging.info('*** Error: %s not a valid train/test split method ***' % split_method) print('*** Error: %s not a valid train/test split method ***' % split_method) exit(12) bar.update() # Get training data and labels if 'P_ID' in training_dataset.columns: # Drop P_ID if exists training_data = training_dataset.drop(['CLASS', 'P_ID'], axis=1) validation_data = validation_dataset.drop(['CLASS', 'P_ID'], axis=1) else: training_data = training_dataset.drop(['CLASS'], axis=1) validation_data = validation_dataset.drop(['CLASS'], axis=1) training_labels = training_dataset['CLASS'] validation_labels = validation_dataset['CLASS'] del training_dataset, validation_dataset bar.update() # Normalisation if normalisation_method == 'minmax': scaler = preprocessing.MinMaxScaler() elif normalisation_method == 'robust': scaler = preprocessing.RobustScaler() else: scaler = preprocessing.StandardScaler() training_data = scaler.fit_transform(training_data) validation_data = scaler.transform(validation_data) bar.update() if Configurator(self.__cfg_path).get('settings', 'data_treatment') == 'features_extraction': # Create a directory in order to save extracted features names features_path = os.path.join(Configurator(self.__cfg_path).get('settings', 'log_dir'), 'features') Path(features_path).mkdir(parents=True, exist_ok=True) with open(os.path.join(features_path, 'extracted_features.rtf'), 'a+') as exf: exf.write('%s' % '\n'.join(list(df.columns))) else: features_path = None bar.update() if Configurator(self.__cfg_path).getboolean('settings', 'features_selection') and Configurator( self.__cfg_path).get('settings', 'data_treatment') == 'features_extraction': # Highly correlated features are removed # corr_features = ts.correlated_features(training_data) # training_data.drop(corr_features, axis=1, inplace=True) # validation_data.drop(corr_features, axis=1, inplace=True) if selection_method == 'variance': # Remove low variance features selector = VarianceThreshold() training_data = selector.fit_transform(training_data) validation_data = selector.transform(validation_data) elif selection_method == 'l1': lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(training_data, training_labels) model = SelectFromModel(lsvc, prefit=True) training_data = model.fit_transform(training_data) validation_data = model.transform(validation_data) elif selection_method == 'tree-based': clf = ExtraTreesClassifier(n_estimators=50) clf = clf.fit(training_data, training_labels) model = SelectFromModel(clf, prefit=True) training_data = model.fit_transform(training_data) validation_data = model.transform(validation_data) elif selection_method == 'recursive': estimator = SVR(kernel="linear") selector = RFE(estimator, n_features_to_select=5, step=1) training_data = selector.fit_transform(training_data, training_labels) validation_data = selector.transform(validation_data) else: logging.info('*** Error: %s not implemented features selection technique ***' % str(selection_method)) print('*** Error: %s not implemented features selection technique ***' % str(selection_method)) exit(5) logging.info('--> Features selected: %s' % str(validation_data.shape[1])) bar.update() # Balancing resampling_technique = Configurator(self.__cfg_path).get('settings', 'resampling') if resampling_technique == 'under': if balancing_method == 'random_under': sampler = RandomUnderSampler() elif balancing_method == 'near_miss': sampler = NearMiss() elif balancing_method == 'edited_nn': sampler = EditedNearestNeighbours() else: logging.info( '*** Fallback: not recognised %s, using RandomUnderSampler instead ***' % balancing_method) sampler = RandomUnderSampler() elif resampling_technique == 'over': if balancing_method == 'smote': sampler = SMOTE() elif balancing_method == 'adasyn': sampler = ADASYN() elif balancing_method == 'kmeans_smote': sampler = KMeansSMOTE(k_neighbors=3) elif balancing_method == 'random_over': sampler = RandomOverSampler() else: logging.info( '*** Fallback: not recognised %s, using RandomOverSampler instead ***' % balancing_method) sampler = RandomOverSampler() else: balancing_method = '' sampler = None if sampler is not None: training_data, training_labels = sampler.fit_resample(training_data, training_labels) else: training_data, training_labels = training_data, training_labels bar.update() logging.info('--> Applied %s %s' % (resampling_technique, balancing_method)) logging.info('--> Train test shape: %s' % str(training_data.shape)) logging.info('--> Validation test shape: %s' % str(validation_data.shape)) return training_data, validation_data, training_labels.values, validation_labels.values, original_name_labels def _pbp_features_extraction(self, df, tw_size): patient_ids = df['P_ID'].unique() features = list() for p_id in patient_ids: features_dataset_i = self._features_extraction(df.drop(df[(df['P_ID'] != p_id)].index), Configurator(self.__cfg_path).getint('settings', 'sampling_frequency'), tw_size, Configurator(self.__cfg_path).getfloat('settings', 'overlap'), Configurator(self.__cfg_path).getfloat('dataset', 'header_type')) features.append(features_dataset_i) # Features dataset of all patients features_dataset =
pd.concat(features, ignore_index=True)
pandas.concat
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_union(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = Int64Index(np.arange(10, 30, 2)) result = i1.union(i2) expected = Int64Index(np.arange(0, 30, 2)) self.assert_numpy_array_equal(result, expected) def test_union_with_DatetimeIndex(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = DatetimeIndex(start='2012-01-03 00:00:00', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_time(self): rng = pd.date_range('1/1/2000', freq='12min', periods=10) result = pd.Index(rng).time expected = [t.time() for t in rng] self.assertTrue((result == expected).all()) def test_date(self): rng = pd.date_range('1/1/2000', freq='12H', periods=10) result = pd.Index(rng).date expected = [t.date() for t in rng] self.assertTrue((result == expected).all()) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='dt') cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) assert_array_equal(cols.values, joined.values) def test_slice_keeps_name(self): # GH4226 st = pd.Timestamp('2013-07-01 00:00:00', tz='America/Los_Angeles') et = pd.Timestamp('2013-07-02 00:00:00', tz='America/Los_Angeles') dr = pd.date_range(st, et, freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = date_range('1/1/2000', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def assert_index_parameters(self, index): assert index.freq == '40960N' assert index.inferred_freq == '40960N' def test_ns_index(self): if _np_version_under1p7: raise nose.SkipTest nsamples = 400 ns = int(1e9 / 24414) dtstart = np.datetime64('2012-09-20T00:00:00') dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns') freq = ns * pd.datetools.Nano() index = pd.DatetimeIndex(dt, freq=freq, name='time') self.assert_index_parameters(index) new_index = pd.DatetimeIndex(start=index[0], end=index[-1], freq=index.freq) self.assert_index_parameters(new_index) def test_join_with_period_index(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:5, 0] joins = 'left', 'right', 'inner', 'outer' for join in joins: with tm.assertRaisesRegexp(ValueError, 'can only call with other ' 'PeriodIndex-ed objects'): df.columns.join(s.index, how=join) def test_factorize(self): idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # tz must be preserved idx1 = idx1.tz_localize('Asia/Tokyo') exp_idx = exp_idx.tz_localize('Asia/Tokyo') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01']) exp_arr = np.array([2, 2, 1, 0, 2, 0]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01']) arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestDatetime64(tm.TestCase): """ Also test support for datetime64[ns] in Series / DataFrame """ def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(rand(len(dti)), dti) def test_datetimeindex_accessors(self): dti = DatetimeIndex( freq='D', start=datetime(1998, 1, 1), periods=365) self.assertEqual(dti.year[0], 1998) self.assertEqual(dti.month[0], 1) self.assertEqual(dti.day[0], 1) self.assertEqual(dti.hour[0], 0) self.assertEqual(dti.minute[0], 0) self.assertEqual(dti.second[0], 0) self.assertEqual(dti.microsecond[0], 0) self.assertEqual(dti.dayofweek[0], 3) self.assertEqual(dti.dayofyear[0], 1) self.assertEqual(dti.dayofyear[120], 121) self.assertEqual(dti.weekofyear[0], 1) self.assertEqual(dti.weekofyear[120], 18) self.assertEqual(dti.quarter[0], 1) self.assertEqual(dti.quarter[120], 2) self.assertEqual(dti.is_month_start[0], True) self.assertEqual(dti.is_month_start[1], False) self.assertEqual(dti.is_month_start[31], True) self.assertEqual(dti.is_quarter_start[0], True) self.assertEqual(dti.is_quarter_start[90], True) self.assertEqual(dti.is_year_start[0], True) self.assertEqual(dti.is_year_start[364], False) self.assertEqual(dti.is_month_end[0], False) self.assertEqual(dti.is_month_end[30], True) self.assertEqual(dti.is_month_end[31], False) self.assertEqual(dti.is_month_end[364], True) self.assertEqual(dti.is_quarter_end[0], False) self.assertEqual(dti.is_quarter_end[30], False) self.assertEqual(dti.is_quarter_end[89], True) self.assertEqual(dti.is_quarter_end[364], True) self.assertEqual(dti.is_year_end[0], False) self.assertEqual(dti.is_year_end[364], True) self.assertEqual(len(dti.year), 365) self.assertEqual(len(dti.month), 365) self.assertEqual(len(dti.day), 365) self.assertEqual(len(dti.hour), 365) self.assertEqual(len(dti.minute), 365) self.assertEqual(len(dti.second), 365) self.assertEqual(len(dti.microsecond), 365) self.assertEqual(len(dti.dayofweek), 365) self.assertEqual(len(dti.dayofyear), 365) self.assertEqual(len(dti.weekofyear), 365) self.assertEqual(len(dti.quarter), 365) self.assertEqual(len(dti.is_month_start), 365) self.assertEqual(len(dti.is_month_end), 365) self.assertEqual(len(dti.is_quarter_start), 365) self.assertEqual(len(dti.is_quarter_end), 365) self.assertEqual(len(dti.is_year_start), 365) self.assertEqual(len(dti.is_year_end), 365) dti = DatetimeIndex( freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) self.assertEqual(sum(dti.is_quarter_start), 0) self.assertEqual(sum(dti.is_quarter_end), 4) self.assertEqual(sum(dti.is_year_start), 0) self.assertEqual(sum(dti.is_year_end), 1) # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, CBD requires np >= 1.7 if not _np_version_under1p7: bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) self.assertRaises(ValueError, lambda: dti.is_month_start) dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) self.assertEqual(dti.is_month_start[0], 1) tests = [ (Timestamp('2013-06-01', offset='M').is_month_start, 1), (Timestamp('2013-06-01', offset='BM').is_month_start, 0), (Timestamp('2013-06-03', offset='M').is_month_start, 0), (Timestamp('2013-06-03', offset='BM').is_month_start, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', offset='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', offset='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', offset='BQ').is_month_end, 0), (Timestamp('2013-06-30', offset='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQ').is_year_end, 0), (Timestamp('2013-06-28', offset='BQ').is_month_end, 1), (Timestamp('2013-06-28', offset='BQ').is_quarter_end, 1), (Timestamp('2013-06-28', offset='BQ').is_year_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_month_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_year_end, 0), (Timestamp('2013-06-28', offset='BQS-APR').is_month_end, 1), (Timestamp('2013-06-28', offset='BQS-APR').is_quarter_end, 1), (Timestamp('2013-03-29', offset='BQS-APR').is_year_end, 1), (Timestamp('2013-11-01', offset='AS-NOV').is_year_start, 1), (Timestamp('2013-10-31', offset='AS-NOV').is_year_end, 1)] for ts, value in tests: self.assertEqual(ts, value) def test_nanosecond_field(self): dti = DatetimeIndex(np.arange(10)) self.assert_numpy_array_equal(dti.nanosecond, np.arange(10)) def test_datetimeindex_diff(self): dti1 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=100) dti2 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=98) self.assertEqual(len(dti1.diff(dti2)), 2) def test_fancy_getitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(s[48], 48) self.assertEqual(s['1/2/2009'], 48) self.assertEqual(s['2009-1-2'], 48) self.assertEqual(s[datetime(2009, 1, 2)], 48) self.assertEqual(s[lib.Timestamp(datetime(2009, 1, 2))], 48) self.assertRaises(KeyError, s.__getitem__, '2009-1-3') assert_series_equal(s['3/6/2009':'2009-06-05'], s[datetime(2009, 3, 6):datetime(2009, 6, 5)]) def test_fancy_setitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 self.assertEqual(s[48], -1) s['1/2/2009'] = -2 self.assertEqual(s[48], -2) s['1/2/2009':'2009-06-05'] = -3 self.assertTrue((s[48:54] == -3).all()) def test_datetimeindex_constructor(self): arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04'] self.assertRaises(Exception, DatetimeIndex, arr) arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'] idx1 = DatetimeIndex(arr) arr = [datetime(2005, 1, 1), '1/2/2005', '1/3/2005', '2005-01-04'] idx2 = DatetimeIndex(arr) arr = [lib.Timestamp(datetime(2005, 1, 1)), '1/2/2005', '1/3/2005', '2005-01-04'] idx3 = DatetimeIndex(arr) arr = np.array(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'], dtype='O') idx4 = DatetimeIndex(arr) arr = to_datetime(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04']) idx5 = DatetimeIndex(arr) arr = to_datetime( ['1/1/2005', '1/2/2005', 'Jan 3, 2005', '2005-01-04']) idx6 = DatetimeIndex(arr) idx7 = DatetimeIndex(['12/05/2007', '25/01/2008'], dayfirst=True) idx8 = DatetimeIndex(['2007/05/12', '2008/01/25'], dayfirst=False, yearfirst=True) self.assertTrue(idx7.equals(idx8)) for other in [idx2, idx3, idx4, idx5, idx6]: self.assertTrue((idx1.values == other.values).all()) sdate = datetime(1999, 12, 25) edate = datetime(2000, 1, 1) idx = DatetimeIndex(start=sdate, freq='1B', periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[0], sdate + 0 * dt.bday) self.assertEqual(idx.freq, 'B') idx = DatetimeIndex(end=edate, freq=('D', 5), periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[-1], edate) self.assertEqual(idx.freq, '5D') idx1 = DatetimeIndex(start=sdate, end=edate, freq='W-SUN') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.Week(weekday=6)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='QS') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.QuarterBegin(startingMonth=1)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='BQ') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.BQuarterEnd(startingMonth=12)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) def test_dayfirst(self): # GH 5917 arr = ['10/02/2014', '11/02/2014', '12/02/2014'] expected = DatetimeIndex([datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)]) idx1 =
DatetimeIndex(arr, dayfirst=True)
pandas.DatetimeIndex