prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""Unit tests for the reading functionality in dframeio.parquet""" # pylint: disable=redefined-outer-name from pathlib import Path import pandas as pd import pandera as pa import pandera.typing import pytest from pandas.testing import assert_frame_equal import dframeio class SampleDataSchema(pa.SchemaModel): """pandera schema of the parquet test dataset""" registration_dttm: pa.typing.Series[pa.typing.DateTime] id: pa.typing.Series[pd.Int64Dtype] = pa.Field(nullable=True, coerce=True) first_name: pa.typing.Series[pa.typing.String] last_name: pa.typing.Series[pa.typing.String] email: pa.typing.Series[pa.typing.String] gender: pa.typing.Series[pa.typing.String] = pa.Field(coerce=True) ip_address: pa.typing.Series[pa.typing.String] cc: pa.typing.Series[pa.typing.String] country: pa.typing.Series[pa.typing.String] birthdate: pa.typing.Series[pa.typing.String] salary: pa.typing.Series[pa.typing.Float64] = pa.Field(nullable=True) title: pa.typing.Series[pa.typing.String] comments: pa.typing.Series[pa.typing.String] = pa.Field(nullable=True) @staticmethod def length(): """Known length of the data""" return 5000 @staticmethod def n_salary_over_150000(): """Number of rows with salary > 150000""" return 2384 @pytest.fixture(params=["multifile", "singlefile.parquet", "multifolder"]) def sample_data_path(request): """Path of a parquet dataset for testing""" return Path(__file__).parent / "data" / "parquet" / request.param def read_sample_dataframe(): """Read the sample dataframe to pandas and return a cached copy""" if not hasattr(read_sample_dataframe, "df"): parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) read_sample_dataframe.df = backend.read_to_pandas(parquet_file.name) return read_sample_dataframe.df.copy() @pytest.fixture(scope="function") def sample_dataframe(): """Provide the sample dataframe""" return read_sample_dataframe() @pytest.fixture(scope="function") def sample_dataframe_dict(): """Provide the sample dataframe""" parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) return backend.read_to_dict(parquet_file.name) @pytest.mark.parametrize( "kwargs, exception", [ ({"base_path": "/some/dir", "partitions": -1}, TypeError), ({"base_path": "/some/dir", "partitions": 2.2}, TypeError), ({"base_path": "/some/dir", "partitions": "abc"}, TypeError), ({"base_path": "/some/dir", "partitions": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": 1.1}, TypeError), ({"base_path": "/some/dir", "rows_per_file": -5}, ValueError), ], ) def test_init_argchecks(kwargs, exception): """Challenge the argument validation of the constructor""" with pytest.raises(exception): dframeio.ParquetBackend(**kwargs) def test_read_to_pandas(sample_data_path): """Read a sample dataset into a pandas dataframe""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_columns(sample_data_path): """Read a sample dataset into a pandas dataframe, selecting some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, columns=["id", "first_name"]) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_rows(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, row_filter="salary > 150000") SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_pandas_sample(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, sample=10) SampleDataSchema.to_schema().validate(df) assert len(df) == 10 @pytest.mark.parametrize("limit", [0, 10]) def test_read_to_pandas_limit(sample_data_path, limit): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, limit=limit) SampleDataSchema.to_schema().validate(df) assert len(df) == limit def test_read_to_pandas_base_path_check(sample_data_path): """Try if it isn't possible to read from outside the base path""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) with pytest.raises(ValueError): backend.read_to_pandas("/tmp") def test_read_to_dict(sample_data_path): """Read a sample dataset into a dictionary""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df =
pd.DataFrame(df)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 22 21:28:00 2020 @author: ike """ import sys import numpy as np import pandas as pd import os.path as op from time import time as tt import seaborn as sns import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.utils.data import DataLoader from ..main import tqdm from ..utils.visualization import wait from ..utils.pathutils import makeParent class Trainer(object): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def __init__(self, model, dataset, weight=True): weights = (dataset.weights if weight else ((dataset.weights * 0) + 1)) weights = torch.tensor(weights).double().to(self.device) self.model = model.double().to(self.device) self.dataset = dataset self.optim = torch.optim.Adam(params=self.model.parameters(), lr=0.001) self.decay = torch.optim.lr_scheduler.ExponentialLR( optimizer=self.optim, gamma=0.9) self.criterion = nn.CrossEntropyLoss(weight=weights) self.columns = ["Mode", "Epoch", "Time", "loss", "Total"] + [ "Class {} Accuracy".format(x) for x in range(self.dataset.Cout)] self.dfs =
pd.DataFrame(columns=self.columns)
pandas.DataFrame
import numpy as np import pandas as pd from scipy import interp from scipy.stats import norm from statsmodels.tsa.stattools import adfuller def getWeights(d, size): ''' Returns a list of coefficients to fractionally differentiate a time series. @param d A non-negative real that represents the degree of the differentiation. @param size The number of items . @return A list with the fractionally differentiated coefficients. ''' w = [1.] for k in range(1, size): w_ = -w[-1]/k*(d-k+1) w.append(w_) w = np.array(w[::-1]).reshape(-1, 1) return w def getWeights_FFD(d, thres): ''' Returns a list of coefficients to fractionally differentiate a time series. @param d A non-negative real that represents the degree of the differentiation. @param thres The minimum absolute value that helps the stop adding items to the list of coefficients. @return A list with the fractionally differentiated coefficients. ''' w = [1.] k = 1 while True: w_ = -w[-1]/k*(d-k+1) if abs(w_) < thres: break w.append(w_) k += 1 return np.array(w[::-1]).reshape(-1, 1) def fracDiff(series, d, thres=0.01): ''' Applies fractionally differentiation to time series. Uses threshold to determine the minimum value of coefficients the window will have. @param series A time series to apply the fractionally differentiation. @param d A non-negative real that represents the degree of the differentiation. @param thres A threshold to omit samples below that value. When it is 1, nothing is skipped. @return A DataFrame whose values are fractionally differentiated. ''' # 1) Compute weights for the longest series w = getWeights(d, series.shape[0]) # 2) Determine initial calcs to be skipped based on weight-loss threshold w_ = np.cumsum(abs(w)) w_ /= w_[-1] skip = w_[w_ > thres].shape[0] # 3) Apply weights to values df = {} for name in series.columns: seriesF = series[[name]].fillna(method='ffill').dropna() df_ =
pd.Series()
pandas.Series
#!/usr/bin/env python3 # nxG2clusters.py assembly_graph_with_scaffolds.gfa outdir import sys import os import subprocess import time import argparse import networkx as nx import pandas as pd from sklearn.preprocessing import StandardScaler from persona.persona import CreatePersonaGraph from persona.directed_persona import CreateDirectedPersonaGraph from persona.persona import PersonaOverlappingClustering from persona.flags import _CLUSTERING_FN from persona.splitter import do_embedding from gfa_parser import gfa_to_G import graphs import visualising_embedding def parse_args(): parser = argparse.ArgumentParser(description='Clustering on graphs', usage='{} --gfa assembly_graph_with_scaffolds.gfa ' '--friendships_reads reads_alignment.tsv ' '-k 49 --outdir clustering_out'.format(sys.argv[0])) parser.add_argument('--clustering', '-c', dest='c_name', default='best_partition', required=False, type=str, help='Choose the algorithm for local and global clustering', choices=['label_prop', 'modularity', 'connected_components', 'weakly_connected_components', 'best_partition']) parser.add_argument('--weight', '-w', dest='w_name', default='reads_and_db', required=False, type=str, help='Choose the weight for clustering', choices=['cov_diff', 'reads_and_db', 'geometric_mean', 'harmonic_mean']) parser.add_argument('--gfa', '-g', required=True, help='Assembly graph') parser.add_argument('--grp', required=True, help='Readable grseq format. For this use show_saves.py. Helps preserve conjugate names.') parser.add_argument('--friendships_reads', dest='long_reads_readable_mpr', required=False, help='Long reads aligned to assembly graph ' '(or any other confirmation of belonging to one transcript) [tsv]') parser.add_argument('--friendships_db', dest='db_readable_mpr', required=False, help='Reference transcripts aligned to assembly graph ' '(or any other confirmation of belonging to one transcript) [tsv]') parser.add_argument('-k', type=int, required=True, help='k-mer value used in assembly graph construction') parser.add_argument('--outdir', '-o', required=True) parser.add_argument('--filter', default=None, type=float, help='Filter this percent of edges based on their weights') args = parser.parse_args() return args def remove_regular_model(in_path, out_path): fout = open(out_path, 'w') with open(in_path, 'r') as fin: for line in fin: node = line.split()[0] if '+_' in node or '-_' in node: fout.write(line) fout.close() return out_path def get_tst_G(G): # path1 930004-,278546-,36185+,278990+,283130+,352975-,37703+ # path2 930004-,239212-,36185+,365256-,283130+,352975-,37703+ nodes_tst = ['36185+', '37703+', '239212-', '278546-', '278990+', '283130+', '352975-', '365256-', '930004-', '2326645-'] G_tst = G.subgraph(nodes_tst).copy() return G_tst def get_total_emb(p_emb_tsv, features_tsv, persona_to_node_tsv): # concatenate structural features (persona graph embedding) # and node features (len, cov, A, C, G, T) p_emb = pd.read_csv(p_emb_tsv, sep=' ', header=None, index_col=0) features_df = pd.read_csv(features_tsv, sep=' ', header=None, index_col=0, skiprows=1, names=range(p_emb.shape[1], p_emb.shape[1] + 7)) # It will be helpful to convert each feature into z-scores # (number of standard deviations from the mean) for comparability scaled_features = StandardScaler().fit_transform(features_df.values) scaled_features_df =
pd.DataFrame(scaled_features, index=features_df.index, columns=features_df.columns)
pandas.DataFrame
import pylinkedcmd from sqlalchemy import create_engine import pandas as pd from joblib import Parallel, delayed import tqdm import os cmd_wd = pylinkedcmd.pylinkedcmd.Wikidata() pg_user = os.environ["PG_USER"] pg_pass = os.environ["PG_PASS"] pg_host = os.environ["PG_HOST"] pg_port = os.environ["PG_PORT"] pg_db = os.environ["PG_DB"] pg_engine = create_engine(f'postgresql://{pg_user}:{pg_pass}@{pg_host}:{pg_port}/{pg_db}') wikidata_ids = pd.read_sql_query( 'SELECT identifier_wikidata FROM sb_usgs_staff WHERE identifier_wikidata IS NOT NULL', pg_engine ).identifier_wikidata.to_list() wikidata_entities = list() wikidata_claims = list() def accumulator_wikidata(qid): entity_data, entity_claims = cmd_wd.entity_data(qid) if entity_data is not None: wikidata_entities.append(entity_data) if entity_claims is not None: wikidata_claims.extend(entity_claims) Parallel(n_jobs=50, prefer="threads")( delayed(accumulator_wikidata) ( url ) for url in tqdm.tqdm(wikidata_ids) ) with pg_engine.connect() as con: con.execute("DELETE FROM wikidata_entities") con.execute("DELETE FROM wikidata_claims") con.execute("DELETE FROM wikidata_properties") # con.execute("DELETE FROM wikidata_claims_entities") con.close() pd.DataFrame(wikidata_entities).to_sql( "wikidata_entities", pg_engine, index=False, if_exists="append", chunksize=1000 )
pd.DataFrame(wikidata_claims)
pandas.DataFrame
# Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """ This file performs the renaming of all statistical variables present in the Data Commons Knowledge Graph. Human-intelligible StatVar names are useful for end users as they may be pulled from both the Python API or Google Sheets API by name. 1) Base Schema: The basic schema for any human readable statistical variable is mprop_popType_v1_v2_v3... For example, Count_Person_BornInStateOfResidence 2) Optional inclusion of StatType: statType is included when the StatType is not measuredValue or Unknown. For example, instead of Age_Person, we output MedianAge_Person 3) Certain data sets are blacklisted: for example, all bio data sets and a few miscellaneous ones are excluded. This blacklist was created by tjann. 4) Dependent variables are removed. dependent variables are constraints that are inherently included, but not really necessary. For example, a person earning an income of 10k to 15k USD may only be measured by the US Census if they are older than 15 and have an income. For example, "Count_Person_Years15Onwards_IncomeOfUSDollar10000To14999_WithIncome" becomes "Count_Person_IncomeOfUSDollar10000To14999" after accounting for the unnecessary variables. These dependent variables are defined in the textproto stat vars config file. 4) Boolean constraints are replaced by their populations: for example, p1 = isInternetUser and v1=True/False becomes v1=isInternetUser/notInternetUser. 5) Measurement properties are stripped from constraints: for example, p1 = employment and v1 = USC_Unemployed becomes v1=Unemployed 6) NAICS Industry codes are replaced by industry names: we have a combination of NAICS specific and overview codes. In both cases, we replace the industry code (e.g. NAICS/23) with the industry. An example statistical variable is WagesAnnual_Establishment_NAICSConstruction 7) Cause of death properties are renamed: e.g., p1 = causeOfDeath and v1="ICD10/E00-E89" becomes v1="EndocrineNutritionalMetabolicDiseases". These names are generated directly from the ICD10 names stored in BigQuery. Exceptionally long or confusing names were manually renamed. 8) DEA drug names are renamed: e.g., p1="drugPrescribed" and v1="drug/dea/9250" become v1="Methadone". These are manually renamed. Some drug names are intentionally left as their codes. For example, dea/7444 corresponds to "4-Hydroxy-3-methoxy-methamphetamine", which does not have a common name. Both the codes and drug names will be valid constraints. 9) Certain variables have text prepended or appended to their constraints to improve readability: for example p1 = childSchoolEnrollment and v1=EnrolledInPublicSchool is changed to v1="ChildEnrolledInPublicSchool". These mappings are applied to ~15 variables. 10) Miscellaneous changes: a) MeasuredProp InsuredUnemploymentRate changed to Rate_InsuredUnemployment to match the existing formula. """ from absl import app from google.protobuf import text_format from google.cloud import bigquery from google.colab import auth import re import os import pandas as pd import numpy as np import stat_var_renaming_constants as svrc import stat_var_renaming_functions as svrf # Constants # Max total number of constraints of a variable to include (Dependent # variables excluded). _MAX_CONSTRAINTS = 3 _MAX_CONSTRAINTS_WITH_DPV = 6 # If true, no new statistical variables will be introduced. _ONLY_REGENERATE_EXISTING = False def authenticate_bq_client(): """ Authenticates and returns a BigQuery client connection. By default this code assumes it will be run in Google Colab which handles BigQuery authentication. To run this code elsewhere this method needs to be updated to properly authenticate a BigQuery client. Returns: An authenticated SQL client with a function called query that given a SQL query returns a response object that can be converted into a dataframe. """ # Users should update the authentication method if not using Google CoLab. auth.authenticate_user() # Create and return client. project_id = "google.com:datcom-store-dev" return bigquery.Client(project=project_id) def download_stat_vars(client): """ Queries unique list of statistical variables from BigQuery. Creates a join across statistical populations and observations to generate distinct list of statistical variables. Certain datasets like bio are excluded. The original dpvs are preserved in new columns. Args: client: An authenticate BigQuery SQL client. Returns: stat_vars: Pandas dataframe containing unique information for all potential stat vars in the database. Raises: Query failure: If improper authentication is given. """ # Dynamically create query for constraints in SQL query. constraint_string = "" pop_string = "" for num in range(1, _MAX_CONSTRAINTS_WITH_DPV + 1): constraint_string += f"SP.v{num} as v{num},\n" pop_string += f"SP.p{num} as p{num},\n" # Dynamically create list of blacklisted provences, as a string. blacklist = [ '"%s"' % prov_id for prov_id in frozenset().union(*[svrc._MISC_DATASETS, svrc._BIO_DATASETS]) ] blacklist_str = ', '.join(blacklist) if blacklist else '""' # Input information into SQL template and perform the query. query_for_all_stat_vars = (svrc.QUERY_FOR_ALL_STAT_VARS.replace( "{CONSTRAINTS}", constraint_string).replace("{POPULATIONS}", pop_string).replace( "{comma_sep_prov_blacklist}", blacklist_str).replace("{MAX_CONTRAINTS}", str(_MAX_CONSTRAINTS))) stat_vars = client.query(query_for_all_stat_vars).to_dataframe() # Make a pristine copy of constraint names for output MCF. for c in range(1, _MAX_CONSTRAINTS_WITH_DPV + 1): stat_vars[f"orig_p{c}"] = stat_vars[f"p{c}"] stat_vars[f"orig_v{c}"] = stat_vars[f"v{c}"] stat_vars["orig_populationType"] = stat_vars['populationType'] return stat_vars ### Variable renaming scripts def addPropertyRemapping(remapper, prop, function): """ Helper function to add new remapping function to a certain property. Args: remapper: Dictionary with mapping from properties to renaming functions. prop: Property to perform the remapping on. function: Renaming function that takes three arguments (prop, constraint, popType) and returns the new name for the constraint. """ if prop not in remapper: remapper[prop] = [] remapper[prop].append(function) def remap_constraint_from_prop(row, prop_remap): """ Helper which applies property remappings to all constraints in a dataset. Args: row: Pandas row to apply function to. prop_remap: Dictionary of renaming functions for each property. """ for constraint in range(1, min(_MAX_CONSTRAINTS_WITH_DPV, 1 + row['numConstraints'])): prop = row[f"p{constraint}"] if prop in prop_remap: # May need to apply multiple functions for a single property. remapper = prop_remap[prop] for function in remapper: row[f"v{constraint}"] = function(prop, row[f"v{constraint}"], row['populationType']) return row def generate_dependent_constraint_list(): """ Generates a list of dependent variables. Using an OS system call, a protobuf definition is compiled. A definition file is then read in and used to generate a pandas dataframe of dependent variable definitions. Returns: obs_spec_list: Observation for statistical variables in protobuf object format. """ # Generate population observation spec. Creates a new python file. os.system("protoc -I=. --python_out=. pop_obs_spec_common.proto") # Load newly created protobuf class definition. import pop_obs_spec_common_pb2 obs_spec_list = pop_obs_spec_common_pb2.PopObsSpecList() # Load in PV list from spec proto. Note that covid cases was temporarily # added as a DPV for display, but shouldn't truly be one. with open("pop_obs_spec_nocovid.textproto") as f: counts = f.read() text_format.Parse(counts, obs_spec_list) # Create a dataframe that matches the greater stat_vars from DB for merging. dpvs =
pd.DataFrame()
pandas.DataFrame
""" SparseArray data structure """ from __future__ import division import numbers import operator import re from typing import Any, Callable, Union import warnings import numpy as np from pandas._libs import index as libindex, lib import pandas._libs.sparse as splib from pandas._libs.sparse import BlockIndex, IntIndex, SparseIndex from pandas._libs.tslibs import NaT import pandas.compat as compat from pandas.compat.numpy import function as nv from pandas.errors import PerformanceWarning from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.cast import ( astype_nansafe, construct_1d_arraylike_from_scalar, find_common_type, infer_dtype_from_scalar, maybe_convert_platform) from pandas.core.dtypes.common import ( is_array_like, is_bool_dtype, is_datetime64_any_dtype, is_dtype_equal, is_integer, is_list_like, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype) from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.generic import ( ABCIndexClass, ABCSeries, ABCSparseSeries) from pandas.core.dtypes.missing import isna, na_value_for_dtype, notna from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray, ExtensionOpsMixin from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.missing import interpolate_2d import pandas.io.formats.printing as printing # ---------------------------------------------------------------------------- # Dtype @register_extension_dtype class SparseDtype(ExtensionDtype): """ Dtype for data stored in :class:`SparseArray`. This dtype implements the pandas ExtensionDtype interface. .. versionadded:: 0.24.0 Parameters ---------- dtype : str, ExtensionDtype, numpy.dtype, type, default numpy.float64 The dtype of the underlying array storing the non-fill value values. fill_value : scalar, optional The scalar value not stored in the SparseArray. By default, this depends on `dtype`. =========== ========== dtype na_value =========== ========== float ``np.nan`` int ``0`` bool ``False`` datetime64 ``pd.NaT`` timedelta64 ``pd.NaT`` =========== ========== The default value may be overridden by specifying a `fill_value`. """ # We include `_is_na_fill_value` in the metadata to avoid hash collisions # between SparseDtype(float, 0.0) and SparseDtype(float, nan). # Without is_na_fill_value in the comparison, those would be equal since # hash(nan) is (sometimes?) 0. _metadata = ('_dtype', '_fill_value', '_is_na_fill_value') def __init__(self, dtype=np.float64, fill_value=None): # type: (Union[str, np.dtype, 'ExtensionDtype', type], Any) -> None from pandas.core.dtypes.missing import na_value_for_dtype from pandas.core.dtypes.common import ( pandas_dtype, is_string_dtype, is_scalar ) if isinstance(dtype, type(self)): if fill_value is None: fill_value = dtype.fill_value dtype = dtype.subtype dtype = pandas_dtype(dtype) if is_string_dtype(dtype): dtype = np.dtype('object') if fill_value is None: fill_value = na_value_for_dtype(dtype) if not
is_scalar(fill_value)
pandas.core.dtypes.common.is_scalar
"""Crime prediction The data is from: https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2. """ import os import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from scipy.stats import poisson import strat_models from utils import latexify # Download data and preprocess if not os.path.exists('data/crimes.fea'): raw_df = pd.read_csv( 'data/crimes.csv', low_memory=False, parse_dates=["Date"]) raw_df.to_feather('data/crimes.fea') raw_df =
pd.read_feather('data/crimes.fea')
pandas.read_feather
""" This tests whether the Study object was created correctly. No computation or visualization tests yet. """ from __future__ import absolute_import, division, print_function from __future__ import unicode_literals from six import iteritems from collections import Iterable import itertools import json import matplotlib.pyplot as plt import numpy as np import numpy.testing as npt import pandas as pd import pandas.util.testing as pdt import pytest import semantic_version ############################################################################## # FIXTURES @pytest.fixture(params=['expression', 'splicing']) def data_type(request): """data_type fixture""" return request.param @pytest.fixture(params=[None, 'subset1'], ids=['color_samples_by_none', 'color_samples_by_subset1']) def color_samples_by(request, metadata_phenotype_col): """color_samples_by fixture""" if request.param == 'phenotype': return metadata_phenotype_col else: return request.param class TestStudy(object): # @pytest.fixture # def n_groups(self): # return 3 ########################################################################## @pytest.fixture def study(self, metadata_data, metadata_kws, mapping_stats_data, mapping_stats_kws, expression_data, expression_kws, splicing_data, splicing_kws, gene_ontology_data): """study fixture""" from flotilla import Study kwargs = {} metadata = metadata_data.copy() splicing = splicing_data.copy() expression = expression_data.copy() mapping_stats = mapping_stats_data.copy() gene_ontology = gene_ontology_data.copy() kw_pairs = (('metadata', metadata_kws), ('mapping_stats', mapping_stats_kws), ('expression', expression_kws), ('splicing', splicing_kws)) for data_type, kws in kw_pairs: for kw_name, kw_value in iteritems(kws): kwargs['{}_{}'.format(data_type, kw_name)] = kw_value return Study(metadata, mapping_stats_data=mapping_stats, expression_data=expression, splicing_data=splicing, gene_ontology_data=gene_ontology, **kwargs) def test_init(self, metadata_data): from flotilla import Study metadata = metadata_data.copy() study = Study(metadata) metadata['outlier'] = False true_default_sample_subsets = list(sorted(list(set( study.metadata.sample_subsets.keys()).difference( set(study.default_sample_subset))))) true_default_sample_subsets.insert(0, study.default_sample_subset) pdt.assert_frame_equal(study.metadata.data, metadata) pdt.assert_equal(study.version, '0.1.0') pdt.assert_equal(study.pooled, None) pdt.assert_equal(study.technical_outliers, None) pdt.assert_equal(study.phenotype_col, study.metadata.phenotype_col) pdt.assert_equal(study.phenotype_order, study.metadata.phenotype_order) pdt.assert_equal(study.phenotype_to_color, study.metadata.phenotype_to_color) pdt.assert_equal(study.phenotype_to_marker, study.metadata.phenotype_to_marker) pdt.assert_series_equal(study.sample_id_to_phenotype, study.metadata.sample_id_to_phenotype) pdt.assert_series_equal(study.sample_id_to_color, study.metadata.sample_id_to_color) pdt.assert_numpy_array_equal(study.phenotype_transitions, study.metadata.phenotype_transitions) pdt.assert_numpy_array_equal(study.phenotype_color_ordered, study.metadata.phenotype_color_order) pdt.assert_equal(study.default_sample_subset, 'all_samples') pdt.assert_equal(study.default_feature_subset, 'variant') pdt.assert_numpy_array_equal(study.default_sample_subsets, true_default_sample_subsets) pdt.assert_dict_equal(study.default_feature_subsets, {}) ######################################################################### @pytest.mark.xfail def test_setattr(self, metadata_data): # warnings.simplefilter("error") from flotilla import Study study = Study(metadata_data.copy()) study.pooled = 'asdf' # warnings.simplefilter('default') ######################################################################### def test_init_metdadata_kws(self, metadata_data, metadata_kws): # Also need to check for when these are NAs from flotilla import Study kws = dict(('metadata_'+k, v) for k, v in metadata_kws.items()) study = Study(metadata_data, **kws) pdt.assert_frame_equal(study.metadata.data, metadata_data) pdt.assert_equal(study.version, '0.1.0') npt.assert_equal(study.pooled, None) # npt.assert_equal(study.outliers, None) def test_init_pooled(self, metadata_data, metadata_kws, pooled): from flotilla import Study metadata = metadata_data.copy() kws = dict(('metadata_'+k, v) for k, v in metadata_kws.items()) metadata['pooled'] = metadata.index.isin(pooled) study = Study(metadata, **kws) npt.assert_array_equal(sorted(study.pooled), sorted(pooled)) def test_init_bad_pooled(self, metadata_data, metadata_kws, pooled): from flotilla import Study metadata = metadata_data.copy() kws = dict(('metadata_' + k, v) for k, v in metadata_kws.items()) metadata['pooled_asdf'] = metadata.index.isin(pooled) study = Study(metadata, **kws) true_pooled = None if study.metadata.pooled_col is not None: if study.metadata.pooled_col in study.metadata.data: try: true_pooled = study.metadata.data.index[ study.metadata.data[ study.metadata.pooled_col].astype(bool)] except KeyError: true_pooled = None npt.assert_equal(study.pooled, true_pooled) def test_init_outlier(self, metadata_data, metadata_kws, outliers): from flotilla import Study metadata = metadata_data.copy() kws = dict(('metadata_' + k, v) for k, v in metadata_kws.items()) metadata['outlier'] = metadata.index.isin(outliers) study = Study(metadata, **kws) npt.assert_array_equal(study.metadata.data, metadata) def test_init_technical_outlier(self, metadata_data, metadata_kws, technical_outliers, mapping_stats_data, mapping_stats_kws): from flotilla import Study metadata = metadata_data.copy() kw_pairs = (('metadata', metadata_kws), ('mapping_stats', mapping_stats_kws)) kwargs = {} for name, kws in kw_pairs: for k, v in kws.items(): kwargs['{}_{}'.format(name, k)] = v study = Study(metadata, mapping_stats_data=mapping_stats_data, **kwargs) pdt.assert_numpy_array_equal(sorted(study.technical_outliers), sorted(technical_outliers)) def test_init_expression(self, metadata_data, metadata_kws, expression_data, expression_kws): from flotilla import Study metadata = metadata_data.copy() expression = expression_data.copy() kw_pairs = (('metadata', metadata_kws), ('expression', expression_kws)) kwargs = {} for name, kws in kw_pairs: for k, v in kws.items(): kwargs['{}_{}'.format(name, k)] = v study = Study(metadata, expression_data=expression, **kwargs) pdt.assert_numpy_array_equal(study.expression.data_original, expression_data) def test_init_splicing(self, metadata_data, metadata_kws, splicing_data, splicing_kws): from flotilla import Study metadata = metadata_data.copy() splicing = splicing_data.copy() kw_pairs = (('metadata', metadata_kws), ('splicing', splicing_kws)) kwargs = {} for name, kws in kw_pairs: for k, v in kws.items(): kwargs['{}_{}'.format(name, k)] = v study = Study(metadata, splicing_data=splicing, **kwargs) pdt.assert_numpy_array_equal(study.splicing.data_original, splicing_data) def test_feature_subset_to_feature_ids(self, study, data_type, feature_subset): test_feature_subset = study.feature_subset_to_feature_ids( data_type, feature_subset) if 'expression'.startswith(data_type): true_feature_subset = \ study.expression.feature_subset_to_feature_ids(feature_subset, rename=False) elif 'splicing'.startswith(data_type): true_feature_subset = \ study.splicing.feature_subset_to_feature_ids(feature_subset, rename=False) pdt.assert_numpy_array_equal(test_feature_subset, true_feature_subset) def test_sample_subset_to_sample_ids(self, study, sample_subset): test_sample_subset = study.sample_subset_to_sample_ids(sample_subset) try: true_sample_subset = study.metadata.sample_subsets[sample_subset] except (KeyError, TypeError): try: ind = study.metadata.sample_id_to_phenotype == sample_subset if ind.sum() > 0: true_sample_subset = \ study.metadata.sample_id_to_phenotype.index[ind] else: if sample_subset is None or 'all_samples'.startswith( sample_subset): sample_ind = np.ones(study.metadata.data.shape[0], dtype=bool) elif sample_subset.startswith("~"): sample_ind = ~pd.Series( study.metadata.data[sample_subset.lstrip("~")], dtype='bool') else: sample_ind = pd.Series( study.metadata.data[sample_subset], dtype='bool') true_sample_subset = study.metadata.data.index[sample_ind] except (AttributeError, ValueError): true_sample_subset = sample_subset pdt.assert_numpy_array_equal(true_sample_subset, test_sample_subset) ########################################################################## @pytest.fixture(params=[True, False]) def multiple_genes_per_event(self, request): """multiple_genes_per_event fixture""" return request.param def test_tidy_splicing_with_expression(self, study, monkeypatch, multiple_genes_per_event): if multiple_genes_per_event: df = study.splicing.feature_data.copy() events = df.index[:5] column = study.splicing.feature_expression_id_col # fixed for unicode issue # when multiple_genes_per_event == True, # was getting this kind of value in gene_name column: # "b'gene_1',b'gene_2'" # df.ix[events, column] = '{},{}'.format( # *study.expression.data.columns[:2]) df.ix[events, column] = u','.join( study.expression.data.columns[:2]) monkeypatch.setattr(study.splicing, 'feature_data', df) test = study.tidy_splicing_with_expression splicing_common_id = study.splicing.feature_data[ study.splicing.feature_expression_id_col] # Tidify splicing splicing = study.splicing.data splicing_index_name = study._maybe_get_axis_name(splicing, axis=0) splicing_columns_name = study._maybe_get_axis_name(splicing, axis=1) splicing_tidy = pd.melt(splicing.reset_index(), id_vars=splicing_index_name, value_name='psi', var_name=splicing_columns_name) s = splicing_common_id.dropna() event_name_to_ensembl_ids = list( itertools.chain(*[zip([k] * len(v.split(u',')), v.split(u',')) for k, v in iteritems(s)]) ) index, data = zip(*event_name_to_ensembl_ids) event_name_to_ensembl_ids = pd.Series(data, index=index, name=study._common_id) rename_columns = {} if splicing_index_name == 'index': rename_columns[splicing_index_name] = study._sample_id if splicing_columns_name == 'columns': rename_columns[splicing_columns_name] = study._event_name splicing_columns_name = study._event_name splicing_tidy = splicing_tidy.rename(columns=rename_columns) splicing_tidy = splicing_tidy.set_index(splicing_columns_name) splicing_tidy = splicing_tidy.ix[event_name_to_ensembl_ids.index] splicing_tidy = splicing_tidy.join(event_name_to_ensembl_ids) splicing_tidy = splicing_tidy.dropna().reset_index() splicing_tidy = splicing_tidy.rename( columns={'index': study._event_name}) # Tidify expression expression = study.expression.data_original expression_index_name = study._maybe_get_axis_name(expression, axis=0) expression_tidy = pd.melt(expression.reset_index(), id_vars=expression_index_name, value_name='expression', var_name=study._common_id) # This will only do anything if there is a column named "index" so # no need to check anything expression_tidy = expression_tidy.rename( columns={'index': study._sample_id}) expression_tidy = expression_tidy.dropna() true = splicing_tidy.merge( expression_tidy, left_on=[study._sample_id, study._common_id], right_on=[study._sample_id, study._common_id]) pdt.assert_frame_equal(test, true) assert 'event_name' in test assert 'event_name' in true assert 'common_id' in true assert 'common_id' in test def test_filter_splicing_on_expression(self, study): expression_thresh = 5 sample_subset = None test_filtered_splicing = study.filter_splicing_on_expression( expression_thresh) columns = study._maybe_get_axis_name(study.splicing.data, axis=1, alt_name=study._event_name) index = study._maybe_get_axis_name(study.splicing.data, axis=0, alt_name=study._sample_id) sample_ids = study.sample_subset_to_sample_ids(sample_subset) splicing_with_expression = \ study.tidy_splicing_with_expression.ix[ study.tidy_splicing_with_expression.sample_id.isin( sample_ids)] ind = splicing_with_expression.expression >= expression_thresh splicing_high_expression = splicing_with_expression.ix[ind] splicing_high_expression = \ splicing_high_expression.reset_index().dropna() if isinstance(columns, list) or isinstance(index, list): true_filtered_splicing = splicing_high_expression.pivot_table( columns=columns, index=index, values='psi') else: true_filtered_splicing = splicing_high_expression.pivot( columns=columns, index=index, values='psi') pdt.assert_frame_equal(true_filtered_splicing, test_filtered_splicing) def test_plot_gene(self, study): feature_id = study.expression.data.columns[0] study.plot_gene(feature_id) fig = plt.gcf() test_figsize = fig.get_size_inches() feature_ids = [feature_id] groupby = study.sample_id_to_phenotype grouped = groupby.groupby(groupby) single_violin_width = 0.5 ax_width = max(4, single_violin_width*grouped.size().shape[0]) nrows = len(feature_ids) ncols = 1 true_figsize = ax_width * ncols, 4 * nrows npt.assert_array_equal(true_figsize, test_figsize) def test_plot_event(self, study): feature_id = study.splicing.data.columns[0] col_wrap = 4 study.plot_event(feature_id, col_wrap=col_wrap) fig = plt.gcf() test_figsize = fig.get_size_inches() feature_ids = [feature_id] groupby = study.sample_id_to_phenotype grouped = groupby.groupby(groupby) single_violin_width = 0.5 ax_width = max(4, single_violin_width*grouped.size().shape[0]) nrows = 1 ncols = 1 while nrows * ncols < len(feature_ids): if ncols > col_wrap: nrows += 1 else: ncols += 1 true_figsize = ax_width * ncols, 4 * nrows npt.assert_array_equal(true_figsize, test_figsize) def test_plot_event_multiple_events_per_id(self, study): grouped = study.splicing.feature_data.groupby( study.splicing.feature_rename_col) ids_with_multiple_genes = grouped.filter(lambda x: len(x) > 1) feature_id = ids_with_multiple_genes[ study.splicing.feature_rename_col].values[0] col_wrap = 4 study.plot_event(feature_id, col_wrap=col_wrap) fig = plt.gcf() test_figsize = fig.get_size_inches() feature_ids = study.splicing.maybe_renamed_to_feature_id(feature_id) groupby = study.sample_id_to_phenotype grouped = groupby.groupby(groupby) single_violin_width = 0.5 ax_width = max(4, single_violin_width*grouped.size().shape[0]) nrows = 1 ncols = 1 while nrows * ncols < len(feature_ids): if ncols > col_wrap: nrows += 1 else: ncols += 1 true_figsize = ax_width * ncols, 4 * nrows npt.assert_array_equal(true_figsize, test_figsize) ########################################################################## @pytest.fixture(params=[True, False]) def plot_violins(self, request): """plot_violins fixture""" return request.param def test_plot_pca(self, study, data_type, plot_violins): study.plot_pca(feature_subset='all', data_type=data_type, plot_violins=plot_violins) plt.close('all') def test_plot_clustermap(self, study, data_type): study.plot_clustermap(feature_subset='all', data_type=data_type) plt.close('all') def test_plot_correlations(self, study, featurewise, data_type): study.plot_correlations(feature_subset='all', featurewise=featurewise, data_type=data_type) plt.close('all') def test_plot_lavalamps(self, study): study.plot_lavalamps() plt.close('all') def test_plot_two_samples(self, study, data_type): sample1 = study.expression.data.index[0] sample2 = study.expression.data.index[-1] study.plot_two_samples(sample1, sample2, data_type=data_type) def test_plot_two_features(self, study, data_type): if data_type == 'expression': feature1 = study.expression.data.columns[0] feature2 = study.expression.data.columns[-1] elif data_type == 'splicing': feature1 = study.splicing.data.columns[0] feature2 = study.splicing.data.columns[-1] study.plot_two_features(feature1, feature2, data_type=data_type) ########################################################################## @pytest.fixture(params=[None, 'gene']) def gene_of_interest(self, request, genes): """gene_of_interest feature""" if request is not None: return genes[0] else: return request.param @staticmethod def get_data_eval_command(data_type, attribute): if 'feature' in data_type: # Feature data doesn't have "data_original", only "data" if attribute == 'data_original': attribute = 'data' command = 'study.{}.feature_{}'.format( data_type.split('_feature')[0], attribute) else: command = 'study.{}.{}'.format(data_type, attribute) print("command :", command) return command def test_save(self, study, tmpdir): from flotilla.datapackage import name_to_resource study_name = 'test_save' study.supplemental.expression_corr = study.expression.data.corr() ########################################### study.save(study_name, flotilla_dir=tmpdir) ########################################### assert len(tmpdir.listdir()) == 1 save_dir = tmpdir.listdir()[0] with open('{}/datapackage.json'.format(save_dir)) as f: test_datapackage = json.load(f) assert study_name == save_dir.purebasename # resource_keys_to_ignore = ('compression', 'format', 'path', 'url') keys_from_study = {'splicing': [], 'expression': ['thresh', 'log_base', 'plus_one'], 'metadata': ['phenotype_order', 'phenotype_to_color', 'phenotype_col', 'phenotype_to_marker', 'pooled_col', 'minimum_samples'], 'mapping_stats': ['number_mapped_col', 'min_reads'], 'expression_feature': ['rename_col', 'ignore_subset_cols'], 'splicing_feature': ['rename_col', 'ignore_subset_cols', 'expression_id_col'], 'gene_ontology': []} resource_names = keys_from_study.keys() # Add auto-generated attributes into the true datapackage for name, keys in iteritems(keys_from_study): resource = name_to_resource(test_datapackage, name) for key in keys: command = self.get_data_eval_command(name, key) test_value = resource[key] true_value = eval(command) if isinstance(test_value, dict): ############################################# pdt.assert_dict_equal(test_value, true_value) elif isinstance(test_value, Iterable): #################################################### pdt.assert_numpy_array_equal(test_value, true_value) for name in resource_names: resource = name_to_resource(test_datapackage, name) # TODO compression # path = '{}.csv.gz'.format(name) path = '{}.csv'.format(name) ############################### assert resource['path'] == path test_df = pd.read_csv( '{}/{}/{}'.format(tmpdir, study_name, path), index_col=0 # TODO compressiom # , compression='gzip' ) command = self.get_data_eval_command(name, 'data_original') true_df = eval(command)
pdt.assert_frame_equal(test_df, true_df)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python3 # # author: <NAME> <<EMAIL>> # latest version: https://github.com/swo/dbotu3 from __future__ import print_function import argparse, sys import pandas as pd, numpy as np import Levenshtein from Bio import SeqIO import scipy.stats class OTU: ''' Object for keeping track of an OTU's distribution and computing genetic distances ''' def __init__(self, name, sequence, counts): ''' name: str OTU ID sequence: str OTU's nucleotide sequence counts: numpy.Array length of sequence should be the number of samples ''' # make this assertion so that lists of counts don't get concatenated self.name = name self.sequence = sequence self.counts = np.array(counts) self.abundance = sum(self.counts) def __eq__(self, other): return self.name == other.name and self.sequence == other.sequence and all(self.counts == other.counts) def __repr__(self): return "OTU(name={}, sequence={}, counts={})".format(repr(self.name), repr(self.sequence), repr(self.counts)) def absorb(self, other): ''' Add another OTU's counts to this one other: OTU returns: nothing ''' self.counts += other.counts self.abundance += other.abundance def distance_to(self, other): ''' Length-adjusted Levenshtein "distance" to other OTU other: OTU distance to this OTU returns: float ''' return Levenshtein.distance(self.sequence, other.sequence) / (0.5 * (len(self.sequence) + len(other.sequence))) @staticmethod def _D_helper(x): '''A helper function for the _D method''' x = np.array(x) x = x[x > 0] return np.sum(x * np.log(x)) - (np.sum(x) * np.log(np.sum(x))) @classmethod def _D(cls, x, y): ''' Statistic for the likelihood ratio test. See docs for mathematical derivation. ''' x = np.array(x) y = np.array(y) return -2.0 * (cls._D_helper(x + y) - cls._D_helper(x) - cls._D_helper(y)) @classmethod def _distribution_test_pval(cls, x, y): ''' P-value from the likelihood ratio test comparing the distribution of the abundances of two taxa (x and y). See docs for explanation of the test. ''' assert len(x) == len(y) df = len(x) - 1 return scipy.stats.chi2.sf(cls._D(x, y), df=df) def distribution_pval(self, other): ''' P-value from the likelihood ratio test comparing the distribution of the abundances of two OTU objects. See docs for explanation of the test. other: OTU returns: float ''' return self._distribution_test_pval(self.counts, other.counts) class DBCaller: ''' Object for processing the sequence table and distance matrix into an OTU table. ''' def __init__(self, seq_table, records, max_dist, min_fold, threshold_pval, log=None): ''' seq_table: pandas.DataFrame Samples on the columns; sequences on the rows records: index of Bio.Seq Indexed, unaligned input sequences. This could come from BioPython's SeqIO.to_dict or SeqIO.index. max_dist: float genetic distance cutoff above which a sequence will not be merged into an OTU min_fold: float Multiply the sequence's abundance by this fold to get the minimum abundance of an OTU for merging threshold_pval: float P-value below which a sequence will not be merged into an OTU log: filehandle Log file reporting the abundance, genetic, and distribution checks. ''' self.seq_table = seq_table self.records = records self.max_dist = max_dist self.min_fold = min_fold self.threshold_pval = threshold_pval self.log = log # get a list of the names of the sequences in order of their (decreasing) abundance self.seq_abunds = self.seq_table.sum(axis=1).sort_values(ascending=False) # check that all sequence IDs in the table are in the fasta missing_ids = [seq_id for seq_id in self.seq_abunds.index if seq_id not in self.records] if len(missing_ids) > 0: raise RuntimeError("{} sequence IDs found in the sequence table but not in the fasta: {}".format(len(missing_ids), missing_ids)) # initialize OTU information self.membership = {} self.otus = [] def ga_matches(self, candidate): ''' OTUs that meet the genetic and abundance criteria candidate: OTU sequence to evaluate ''' # find abundance matches min_abundance = self.min_fold * candidate.abundance abundance_matches = [otu for otu in self.otus if otu.abundance > min_abundance] if self.log is not None: print(candidate.name, 'abundance_check', *[otu.name for otu in abundance_matches], sep='\t', file=self.log) if len(abundance_matches) == 0: return [] else: # find genetic matches (in order of decreasing genetic distance) matches_distances = [(otu.distance_to(candidate), otu) for otu in abundance_matches] matches_distances.sort(key=lambda x: (x[0], -x[1].abundance, x[1].name)) matches = [otu for dist, otu in matches_distances if dist < self.max_dist] if self.log is not None: print(candidate.name, 'genetic_check', *[otu.name for otu in matches], sep='\t', file=self.log) return matches def _process_record(self, record_id): ''' Process the next sequence: run the genetic, abundance, and distribution checks, either merging the sequence into an existing OTU or creating a new OTU. ''' assert record_id in self.seq_table.index record = self.records[record_id] candidate = OTU(record.id, str(record.seq), self.seq_table.loc[record.id]) if self.log is not None: print('seq', candidate.name, sep='\t', file=self.log) merged = False for otu in self.ga_matches(candidate): test_pval = candidate.distribution_pval(otu) if self.log is not None: print(candidate.name, 'distribution_check', otu.name, test_pval, sep='\t', file=self.log) if test_pval > self.threshold_pval: otu.absorb(candidate) self.membership[otu.name].append(candidate.name) merged = True break if not merged: # form own otu self.otus.append(candidate) self.membership[candidate.name] = [candidate.name] def generate_otu_table(self): ''' Process all the input sequences to make an OTU table. returns: pandas.DataFrame OTU table (which can also be found at instance.otu_table) ''' for record_id in self.seq_abunds.index: self._process_record(record_id) self.otus.sort(key=lambda otu: otu.abundance, reverse=True) self.otu_table = pd.DataFrame([otu.counts for otu in self.otus], index=[otu.name for otu in self.otus]) self.otu_table.columns = self.seq_table.columns return self.otu_table def write_otu_table(self, output): ''' Write the QIIME-style OTU table to a file. output: filehandle ''' self.otu_table.to_csv(output, sep='\t') def write_membership(self, output): ''' Write the QIIME-style OTU mapping information to a file. output: filehandle ''' for otu in self.otus: print(otu.name, *self.membership[otu.name], sep='\t', file=output) def read_sequence_table(fn): ''' Read in a table of sequences. Expect a header and the sequence IDs in the first column. Samples are on the columns. fn: filename (or handle) returns: pandas.DataFrame ''' df =
pd.read_table(fn, dtype={0: str}, header=0)
pandas.read_table
# module model import pandas as pd from fbprophet import Prophet import matplotlib.pyplot as plt from sklearn import metrics, ensemble, model_selection from sklearn.preprocessing import MinMaxScaler from math import sqrt import numpy as np import datetime from dateutil import relativedelta import os import io import json import base64 from xgboost import XGBRegressor import tensorflow as tf from tensorflow import keras from statsmodels.tsa.ar_model import AutoReg np.random.seed(42) tf.random.set_seed(42) def buildProphet(train_data_path, test_data_path): print("\nBuilding Prophet model ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) y = df['RENEWABLES_PCT'] daily = y.resample('24H').mean() dd = pd.DataFrame(daily) dd.reset_index(inplace=True) dd.columns = ['ds','y'] mR = Prophet(daily_seasonality=False) mR.fit(dd) futureR=mR.make_future_dataframe(periods=365*5) forecastR=mR.predict(futureR) rmse = -1.0 if len(test_data_path) > 0: dft = pd.read_csv(test_data_path) dft['TIMESTAMP'] = dft['TIMESTAMP'].astype('datetime64') dft.set_index('TIMESTAMP',inplace=True) dft_start_datetime = min(dft.index) dft_end_datetime = max(dft.index) actual_mean = dft['RENEWABLES_PCT'].resample('24H').mean() predicted_mean = forecastR.loc[(forecastR['ds'] >= dft_start_datetime) & (forecastR['ds'] <= dft_end_datetime)] predicted_mean.set_index('ds', inplace=True) actual_mean = actual_mean[min(predicted_mean.index):] mse = metrics.mean_squared_error(actual_mean, predicted_mean.yhat) rmse = sqrt(mse) print(str.format("Prophet RMSE: {:.2f}", rmse)) return rmse def predictProphet(data_path,periods): print("\nTraining prophet model with full dataset ...") df = pd.read_csv(data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) y = df['RENEWABLES_PCT'] daily = y.resample('24H').mean() dd = pd.DataFrame(daily) dd.reset_index(inplace=True) dd.columns = ['ds','y'] m = Prophet(daily_seasonality=False) m.fit(dd) future=m.make_future_dataframe(periods=periods) print(str.format("\nPredicting with prophet model for {0} days ({1} years) ...",periods, int(periods/365))) plt.subplot(1,1,1) forecast=m.predict(future) fig = m.plot(forecast,ylabel='Renewable Power Production %', xlabel='Date') plt.suptitle('\nCA Predicted Renewable Power Production %') #plt.title('\nCA Predicted Renewable Power Production %') axes = plt.gca() wd = os.path.dirname(data_path) + '/../images' os.makedirs(wd, exist_ok=True) fig.savefig(wd + '/prediction-prophet.png') forecast.rename(columns={'ds':'TIMESTAMP'}, inplace=True) forecast.set_index('TIMESTAMP',inplace=True) prediction = pd.DataFrame({'RENEWABLES_PCT_MEAN':forecast['yhat'].resample('1Y').mean(),'RENEWABLES_PCT_LOWER':forecast['yhat_lower'].resample('1Y').mean(),'RENEWABLES_PCT_UPPER':forecast['yhat_upper'].resample('1Y').mean()}) return prediction def rmse_calc(actual,predict): predict = np.array(predict) actual = np.array(actual) distance = predict - actual square_distance = distance ** 2 mean_square_distance = square_distance.mean() score = np.sqrt(mean_square_distance) return score def transformDataset(df): # Add pct from one and two days ago as well as difference in yesterday-1 and yesterday-1 df['YESTERDAY'] = df['RENEWABLES_PCT'].shift() df['YESTERDAY_DIFF'] = df['YESTERDAY'].diff() df['YESTERDAY-1']=df['YESTERDAY'].shift() df['YESTERDAY-1_DIFF'] = df['YESTERDAY-1'].diff() df=df.dropna() x_train=pd.DataFrame({'YESTERDAY':df['YESTERDAY'],'YESTERDAY_DIFF':df['YESTERDAY_DIFF'],'YESTERDAY-1':df['YESTERDAY-1'],'YESTERDAY-1_DIFF':df['YESTERDAY-1_DIFF']}) y_train = df['RENEWABLES_PCT'] return x_train,y_train def buildRandomForestRegression(train_data_path,test_data_path): print("\nBuilding Random Forest Regression Model ...") print("Preparing training dataset ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) df = df.resample('1M').mean() x_train, y_train = transformDataset(df) print("Preparing testing dataset ...") dt = pd.read_csv(test_data_path) dt['TIMESTAMP'] = dt['TIMESTAMP'].astype('datetime64') dt.set_index('TIMESTAMP',inplace=True) x_test, y_test = transformDataset(dt) print("Searching for best regressor ...") model = ensemble.RandomForestRegressor() param_search = { 'n_estimators': [100], 'max_features': ['auto'], 'max_depth': [10] } tscv = model_selection.TimeSeriesSplit(n_splits=2) rmse_score = metrics.make_scorer(rmse_calc, greater_is_better = False) gsearch = model_selection.GridSearchCV(estimator=model, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch.fit(x_train, y_train) best_score = gsearch.best_score_ best_model = gsearch.best_estimator_ y_true = y_test.values print("Predicting with best regressor ...") y_pred = best_model.predict(x_test) mse = metrics.mean_squared_error(y_true, y_pred) rmse = sqrt(mse) print(str.format("Random Forest Regression RMSE: {:.2f}", rmse)) return rmse def predictRandomForestRegression(data_path,periods): print("\nTraining Random Forest Regression model with full dataset ...") df = pd.read_csv(data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) dfmean = df.resample('1M').mean() dfmin = df.resample('1M').min() dfmax = df.resample('1M').max() x_train,y_train = transformDataset(dfmean) xmin_train, ymin_train = transformDataset(dfmin) xmax_train, ymax_train = transformDataset(dfmax) model = ensemble.RandomForestRegressor() model_min = ensemble.RandomForestRegressor() model_max = ensemble.RandomForestRegressor() param_search = { 'n_estimators': [100], 'max_features': ['auto'], 'max_depth': [10] } tscv = model_selection.TimeSeriesSplit(n_splits=2) rmse_score = metrics.make_scorer(rmse_calc, greater_is_better = False) gsearch = model_selection.GridSearchCV(estimator=model, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch_min = model_selection.GridSearchCV(estimator=model_min, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch_max = model_selection.GridSearchCV(estimator=model_max, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch.fit(x_train, y_train) gsearch_min.fit(xmin_train, ymin_train) gsearch_max.fit(xmax_train, ymax_train) best_score = gsearch.best_score_ best_model = gsearch.best_estimator_ best_model_min = gsearch_min.best_estimator_ best_model_max = gsearch_max.best_estimator_ print("\nPredicting with Random Forest regressor ...") prediction = pd.DataFrame(columns=['TIMESTAMP','RENEWABLES_PCT']) l = len(x_train) x_pred = x_train.iloc[[l-1]] y_pred = best_model.predict(x_pred) xmin_pred = xmin_train.iloc[[l-1]] ymin_pred = best_model_min.predict(xmin_pred) xmax_pred = xmax_train.iloc[[l-1]] ymax_pred = best_model_max.predict(xmax_pred) prediction = prediction.append({'TIMESTAMP':x_pred.index[0],'RENEWABLES_PCT_MEAN':y_pred[0],'RENEWABLES_PCT_LOWER':ymin_pred[0],'RENEWABLES_PCT_UPPER':ymax_pred[0]}, ignore_index=True) for i in range(1,periods): ti = prediction.iloc[i-1]['TIMESTAMP'] + pd.offsets.DateOffset(months=1) xi_pred = pd.DataFrame({'YESTERDAY':y_pred,'YESTERDAY_DIFF':y_pred-x_pred['YESTERDAY'],'YESTERDAY-1':x_pred['YESTERDAY'],'YESTERDAY-1_DIFF':x_pred['YESTERDAY_DIFF']}) yi_pred = best_model.predict(xi_pred) xmini_pred = pd.DataFrame({'YESTERDAY':ymin_pred,'YESTERDAY_DIFF':ymin_pred-xmin_pred['YESTERDAY'],'YESTERDAY-1':xmin_pred['YESTERDAY'],'YESTERDAY-1_DIFF':xmin_pred['YESTERDAY_DIFF']}) ymini_pred = best_model.predict(xmini_pred) xmaxi_pred = pd.DataFrame({'YESTERDAY':ymax_pred,'YESTERDAY_DIFF':ymax_pred-xmax_pred['YESTERDAY'],'YESTERDAY-1':xmax_pred['YESTERDAY'],'YESTERDAY-1_DIFF':xmax_pred['YESTERDAY_DIFF']}) ymaxi_pred = best_model.predict(xmaxi_pred) prediction = prediction.append({'TIMESTAMP':ti,'RENEWABLES_PCT_MEAN':yi_pred[0],'RENEWABLES_PCT_LOWER':ymini_pred[0],'RENEWABLES_PCT_UPPER':ymaxi_pred[0]}, ignore_index=True) x_pred = xi_pred y_pred = yi_pred xmin_pred = xmini_pred ymin_pred = ymini_pred xmax_pred = xmaxi_pred ymax_pred = ymaxi_pred prediction.set_index('TIMESTAMP',inplace=True) prediction = prediction.resample('1Y').mean() p = prediction.plot() p.set_title('CA Predicted Renewables % by Random Forest Regression') p.set_ylabel('Renewables %') wd = os.path.dirname(data_path) + '/../images' os.makedirs(wd, exist_ok=True) plt.savefig(wd + '/prediction-randomforest.png') return prediction # transform a time series dataset into a supervised learning dataset def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols = list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) # put it all together agg = pd.concat(cols, axis=1) # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg.values # walk-forward validation for univariate data def walk_forward_validation(data, n_test): predictions = list() # split dataset train, test = train_test_split(data, n_test) # seed history with training dataset history = [x for x in train] # step over each time-step in the test set for i in range(len(test)): # split test row into input and output columns testX, testy = test[i, :-1], test[i, -1] # fit model on history and make a prediction yhat = xgboost_forecast(history, testX) # store forecast in list of predictions predictions.append(yhat) # add actual observation to history for the next loop history.append(test[i]) # summarize progress print('>expected=%.1f, predicted=%.1f' % (testy, yhat)) # estimate prediction error error = model_selection.mean_absolute_error(test[:, -1], predictions) return error, test[:, 1], predictions # split a univariate dataset into train/test sets def train_test_split(data, n_test): return data[:-n_test, :], data[-n_test:, :] # fit an xgboost model and make a one step prediction def xgboost_forecast(train, testX): # transform list into array train = np.asarray(train) # split into input and output columns trainX, trainy = train[:, :-1], train[:, -1] # fit model model = XGBRegressor(objective='reg:squarederror', n_estimators=1000) model.fit(trainX, trainy) # make a one-step prediction yhat = model.predict(np.asarray([testX])) return yhat[0] # walk-forward validation for univariate data def walk_forward_validation(data, n_test): predictions = list() # split dataset train, test = train_test_split(data, n_test) # seed history with training dataset history = [x for x in train] # step over each time-step in the test set for i in range(len(test)): # split test row into input and output columns testX, testy = test[i, :-1], test[i, -1] # fit model on history and make a prediction yhat = xgboost_forecast(history, testX) # store forecast in list of predictions predictions.append(yhat) # add actual observation to history for the next loop history.append(test[i]) # summarize progress print('>expected=%.1f, predicted=%.1f' % (testy, yhat)) # estimate prediction error error = metrics.mean_squared_error(test[:, -1], predictions) return error, test[:, -1], predictions def buildXGBoostRegression(train_data_path,test_data_path): print("\nBuilding XGBoost Regression model ...") df = pd.read_csv(train_data_path) dt = pd.read_csv(test_data_path) df = df.append(dt) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) dfmean = df.resample('1Y').mean() dmean = series_to_supervised(dfmean[['RENEWABLES_PCT']], n_in=2, n_out=1, dropnan=True) # transform list into array mse, y, yhat = walk_forward_validation(dmean, 8) rmse = sqrt(mse) print(str.format("XGBoostRegression RMSE: {:.2f}", rmse)) return rmse def buildLSTM(train_data_path,test_data_path): print("\nBuilding LSTM Model ...") time_steps = 3 print("Preparing training dataset ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) df = df[['RENEWABLES_PCT']] df = df.resample('1M').mean() scaler = MinMaxScaler() df = scaler.fit_transform(df) scaling_model = scaler.fit(df) df = scaling_model.transform(df) daily_train =
pd.DataFrame(df, columns=['RENEWABLES_PCT'])
pandas.DataFrame
#!/usr/bin/env python3 # combineNunlComments.py: combine comments of nu.nl stored in csv files # usage: combineNunlComments.py file1 file2 [file3 ...] # note: news article comments volume can both grow and shrink over time: # this comments extracts all the comments on one article from # different files (nontrivial because the ids are different) # 20200915 erikt(at)xs4all.nl import csv import pandas as pd import sys ID,NAME,DATE,TEXT,PARENT = "id name date text parent".split() def readFiles(inFileNameList): ids = {} commentsByKey = {} for inFileName in inFileNameList: try: df = pd.read_csv(inFileName) for i in range(0,len(df)): thisId,name,date,text,parent = df.iloc[i] key = " ".join([name,date,text]) if not key in commentsByKey: commentsByKey[key] = {ID:thisId,NAME:name,DATE:date,TEXT:text,PARENT:parent} else: if thisId in ids and ids[thisId] != commentsByKey[key][ID]: print(f"cannot happen! ids {thisId}",file=sys.stderr) if parent in ids and ids[parent] != commentsByKey[key][PARENT]: print(f"cannot happen! ids {parent}",file=sys.stderr) ids[thisId] = commentsByKey[key][ID] ids[parent] = commentsByKey[key][PARENT] except: print(f"read error for file {inFileName} (empty file?)",file=sys.stderr) return(commentsByKey,ids) def updateCommentIds(commentsByKey,ids): commentsById = {} for key in commentsByKey: if commentsByKey[key][ID] in ids: commentsByKey[key][ID] = ids[commentsByKey[key][ID]] if commentsByKey[key][PARENT] in ids: commentsByKey[key][PARENT] = ids[commentsByKey[key][PARENT]] commentsById[commentsByKey[key][ID]] = commentsByKey[key] return(commentsById) def showComments(commentsById): if len(commentsById) > 0:
pd.DataFrame(commentsById)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Mar 17 09:27:27 2021 @author: <NAME> """ import numpy as np import pandas as pd from warnings import simplefilter from collections import Counter from aif360.datasets import BinaryLabelDataset from aif360.datasets import AdultDataset, GermanDataset, CompasDataset from aif360.metrics import BinaryLabelDatasetMetric from aif360.metrics import ClassificationMetric from aif360.algorithms.preprocessing.optim_preproc_helpers.data_preproc_functions\ import load_preproc_data_adult, load_preproc_data_german, load_preproc_data_compas from kmodes.kprototypes import * from kmodes.kmodes import * from kmodes.util.dissim import matching_dissim, ng_dissim, euclidean_dissim from deepcopy import * from imblearn.over_sampling import SMOTENC from imblearn.over_sampling import SMOTE from imblearn.over_sampling import ADASYN from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier import matplotlib.pyplot as plt #Function to call the desired dataset with chosen features '''dataset_used = "adult", "german", "compas" protected_attribute_used = 1,2 (check the aif360 docs for the correct sens. attr.) preprocessed_dataset = True, original_dataset = False''' def aif_data(dataset_used, preprocessed): if dataset_used == "adult": if preprocessed == True: dataset_orig = load_preproc_data_adult() privileged_groups = [{'sex': 1,'race': 1}] unprivileged_groups = [{'sex': 0,'race': 0}] else: dataset_orig = AdultDataset() privileged_groups = [{'sex': 1,'race': 1}] unprivileged_groups = [{'sex': 0,'race': 0}] elif dataset_used == "german": if preprocessed == True: dataset_orig = load_preproc_data_german() privileged_groups = [{'sex': 1,'age': 1}] unprivileged_groups = [{'sex': 0,'age': 0}] for i in range(1000): if (dataset_orig.labels[i] == 2.0): dataset_orig.labels[i] = 0 else: dataset_orig.labels[i] = 1 dataset_orig.favorable_label = 1 dataset_orig.unfavorable_label = 0 else: dataset_orig = GermanDataset() privileged_groups = [{'sex': 1,'age': 1}] unprivileged_groups = [{'sex': 0,'age': 0}] for i in range(1000): if (dataset_orig.labels[i] == 2.0): dataset_orig.labels[i] = 0 else: dataset_orig.labels[i] = 1 dataset_orig.favorable_label = 1 dataset_orig.unfavorable_label = 0 elif dataset_used == "compas": if preprocessed == True: dataset_orig = load_preproc_data_compas() privileged_groups = [{'sex': 1,'race': 1}] unprivileged_groups = [{'sex': 0,'race': 0}] else: dataset_orig = CompasDataset() privileged_groups = [{'sex': 1,'race': 1}] unprivileged_groups = [{'sex': 0,'race': 0}] return dataset_orig, privileged_groups, unprivileged_groups '----------------------------------------------------------------------------' #Function to create sublabel for the datasets def sublabel(dataset_df, sens_attr, decision_label): sub_labels = pd.Series(dtype='object') #sensitive attribute(s) must be given as a list if len(sens_attr) == 2: for i in range(len(dataset_df)): if ((dataset_df[sens_attr[0]].iloc[i] == 0) & (dataset_df[sens_attr[1]].iloc[i]==0) & (dataset_df[decision_label].iloc[i]==0)): sub_labels = sub_labels.append(pd.Series([0], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 0) & (dataset_df[sens_attr[1]].iloc[i]==0) & (dataset_df[decision_label].iloc[i]==1)): sub_labels = sub_labels.append(pd.Series([1], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 1) & (dataset_df[sens_attr[1]].iloc[i]==0) & (dataset_df[decision_label].iloc[i]==0)): sub_labels = sub_labels.append(pd.Series([2], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 1) & (dataset_df[sens_attr[1]].iloc[i]==0) & (dataset_df[decision_label].iloc[i]==1)): sub_labels = sub_labels.append(pd.Series([3], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 0) & (dataset_df[sens_attr[1]].iloc[i]==1) & (dataset_df[decision_label].iloc[i]==0)): sub_labels = sub_labels.append(pd.Series([4], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 0) & (dataset_df[sens_attr[1]].iloc[i]==1) & (dataset_df[decision_label].iloc[i]==1)): sub_labels = sub_labels.append(pd.Series([5], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 1) & (dataset_df[sens_attr[1]].iloc[i]==1) & (dataset_df[decision_label].iloc[i]==0)): sub_labels = sub_labels.append(pd.Series([6], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 1) & (dataset_df[sens_attr[1]].iloc[i]==1) & (dataset_df[decision_label].iloc[i]==1)): sub_labels = sub_labels.append(pd.Series([7], index=[i])) #if there is a single binary attribute elif len(sens_attr) == 1: for i in range(len(dataset_df)): if ((dataset_df[sens_attr[0]].iloc[i] == 0) & (dataset_df[decision_label].iloc[i]==0)): sub_labels = sub_labels.append(pd.Series([0], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 0) & (dataset_df[decision_label].iloc[i]==1)): sub_labels = sub_labels.append(pd.Series([1], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 1) & (dataset_df[decision_label].iloc[i]==0)): sub_labels = sub_labels.append(pd.Series([2], index=[i])) elif ((dataset_df[sens_attr[0]].iloc[i] == 1) & (dataset_df[decision_label].iloc[i]==1)): sub_labels = sub_labels.append(
pd.Series([3], index=[i])
pandas.Series
#!/usr/bin/env python3 import sys from rdkit import Chem from rdkit.Chem.Descriptors import MolWt, MolLogP, NumHDonors, NumHAcceptors, TPSA from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds import multiprocessing as mp from multiprocessing import Pool import time import pandas as pd import os import json from docopt import docopt import pkg_resources cmd_str = """Usage: rd_filters filter --in INPUT_FILE --prefix PREFIX [--rules RULES_FILE_NAME] [--alerts ALERT_FILE_NAME][--np NUM_CORES] rd_filters template --out TEMPLATE_FILE [--rules RULES_FILE_NAME] Options: --in INPUT_FILE input file name --prefix PREFIX prefix for output file names --rules RULES_FILE_NAME name of the rules JSON file --alerts ALERTS_FILE_NAME name of the structural alerts file --np NUM_CORES the number of cpu cores to use (default is all) --out TEMPLATE_FILE parameter template file name """ def read_rules(rules_file_name): """ Read rules from a JSON file :param rules_file_name: JSON file name :return: dictionary corresponding to the contents of the JSON file """ with open(rules_file_name) as json_file: try: rules_dict = json.load(json_file) return rules_dict except json.JSONDecodeError: print(f"Error parsing JSON file {rules_file_name}") sys.exit(1) def write_rules(rule_dict, file_name): """ Write configuration to a JSON file :param rule_dict: dictionary with rules :param file_name: JSON file name :return: None """ ofs = open(file_name, "w") ofs.write(json.dumps(rule_dict, indent=4, sort_keys=True)) print(f"Wrote rules to {file_name}") ofs.close() def default_rule_template(alert_list, file_name): """ Build a default rules template :param alert_list: list of alert set names :param file_name: output file name :return: None """ default_rule_dict = { "MW": [0, 500], "LogP": [-5, 5], "HBD": [0, 5], "HBA": [0, 10], "TPSA": [0, 200], "Rot": [0, 10] } for rule_name in alert_list: if rule_name == "Inpharmatica": default_rule_dict["Rule_" + rule_name] = True else: default_rule_dict["Rule_" + rule_name] = False write_rules(default_rule_dict, file_name) def get_config_file(file_name, environment_variable): """ Read a configuration file, first look for the file, if you can't find it there, look in the directory pointed to by environment_variable :param file_name: the configuration file :param environment_variable: the environment variable :return: the file name or file_path if it exists otherwise exit """ if os.path.exists(file_name): return file_name else: config_dir = os.environ.get(environment_variable) if config_dir: config_file_path = os.path.join(os.path.sep, config_dir, file_name) if os.path.exists(config_file_path): return config_file_path error_list = [f"Could not file {file_name}"] if config_dir: err_str = f"Could not find {config_file_path} based on the {environment_variable}" + \ "environment variable" error_list.append(err_str) error_list.append(f"Please check {file_name} exists") error_list.append(f"Or in the directory pointed to by the {environment_variable} environment variable") print("\n".join(error_list)) sys.exit(1) class RDFilters: def __init__(self, rules_file_name): good_name = get_config_file(rules_file_name, "FILTER_RULES_DIR") self.rule_df =
pd.read_csv(good_name)
pandas.read_csv
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import warnings warnings.filterwarnings("ignore") import yfinance as yf yf.pdr_override() import datetime as dt symbol = 'AMD' market = 'SPY' num_of_years = 1 start = dt.date.today() - dt.timedelta(days=365*num_of_years) end = dt.date.today() dataset = yf.download(symbol,start,end) benchmark = yf.download(market,start,end) dataset['Returns'] = dataset['Adj Close'].pct_change().dropna() PP = pd.Series((dataset['High'] + dataset['Low'] + dataset['Close']) / 3) R1 = pd.Series(2 * PP - dataset['Low']) S1 = pd.Series(2 * PP - dataset['High']) R2 = pd.Series(PP + dataset['High'] - dataset['Low']) S2 = pd.Series(PP - dataset['High'] + dataset['Low']) R3 = pd.Series(dataset['High'] + 2 * (PP - dataset['Low'])) S3 = pd.Series(dataset['Low'] - 2 * (dataset['High'] - PP)) R4 = pd.Series(dataset['High'] + 3 * (PP - dataset['Low'])) S4 = pd.Series(dataset['Low'] - 3 * (dataset['High'] - PP)) R5 = pd.Series(dataset['High'] + 4 * (PP - dataset['Low'])) S5 = pd.Series(dataset['Low'] - 4 * (dataset['High'] - PP)) P = pd.Series((dataset['Open'] + (dataset['High'] + dataset['Low'] + dataset['Close'])) / 4) # Opening Price Formula psr = {'P':P, 'R1':R1, 'S1':S1, 'R2':R2, 'S2':S2, 'R3':R3, 'S3':S3,'R4':R4, 'S4':S4,'R5':R5, 'S5':S5} PSR = pd.DataFrame(psr) dataset = dataset.join(PSR) print(dataset.head()) pivot_point = pd.concat([dataset['Adj Close'],P,R1,S1,R2,S2,R3,S3],axis=1).plot(figsize=(18,12),grid=True) plt.title('Stock Pivot Point') plt.legend(['Price','P','R1','S1','R2','S2','R3','S3'], loc=0) plt.show() dataset['Adj Close']['2018-05-01':'2018-06-01'] date_range = dataset[['Adj Close','P','R1','S1','R2','S2','R3','S3']]['2018-05-01':'2018-06-01']# Pick Date Ranges P = pd.Series((dataset['High'] + dataset['Low'] + 2*dataset['Close']) / 4) R1 = pd.Series(2 * P - dataset['Low']) S1 = pd.Series(2 * P - dataset['High']) R2 = pd.Series(P + dataset['High'] - dataset['Low']) S2 = pd.Series(P - dataset['High'] + dataset['Low']) wpp = {'P':P, 'R1':R1, 'S1':S1, 'R2':R2, 'S2':S2} WPP = pd.DataFrame(wpp) print(WPP.head()) R1 = pd.Series((dataset['High'] - dataset['Low']) * 1.1 / (2+dataset['Close'])) R2 = pd.Series((dataset['High'] - dataset['Low']) * 1.1 / (4+dataset['Close'])) R3 =
pd.Series((dataset['High'] - dataset['Low']) * 1.1 / (6+dataset['Close']))
pandas.Series
#!/usr/bin/env python # coding: utf-8 """ Modelling: build reviewers clusters with K-means method """ #################################### Dependencies ############################## import pandas as pd import ast import numpy as np from sklearn.cluster import KMeans from matplotlib.pyplot import cm # import Elbow method visualizer from yellowbrick.cluster import KElbowVisualizer #from kmodes.kmodes import KModes from sklearn.metrics import pairwise_distances_argmin_min import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt from collections import Counter import pickle import seaborn as sns ##################################### Functions ############################## def get_unique_elements(column_name:str) -> list: """ Extract unique elements from a column as a list """ c=data_to_cluster[column_name].values.tolist() cuisines_list=[] for i in range(len(c)): item=ast.literal_eval(c[i]) for j in range(len(item)): cuisines_list.append(item[j][0]) c_s=set(cuisines_list) cuisines=list(c_s) return cuisines def map_count_list(x,element) -> int: """ Counts the number of occurence of a specific element within the list of cuisines""" x_list=ast.literal_eval(str(x)) value_count=0 for item in x_list: if item[0]==element: value_count=item[1] return value_count def total_tags(x) -> int: """Sum the total number of tags within a list of cuisines""" x_list=ast.literal_eval(str(x)) total_tags=0 for el in x_list: total_tags=total_tags+el[1] return total_tags def kmeans(points,n_clusters): """ Cluster observations with K-means method returns labels and fitted model """ # create kmeans object kmeans = KMeans(n_clusters=n_clusters) # fit kmeans object to data kmeans.fit(points) # print location of clusters learned by kmeans object print(kmeans.cluster_centers_) # save new clusters for chart y_km = kmeans.fit_predict(points) print('Clusters partition: ', Counter(y_km)) return y_km, kmeans def plot_clusters_cuisines(i,cuisine_countries_clusters): """ Visual analysis of the clusters with types of cuisine """ df=
pd.DataFrame(group_by_cluster.iloc[i,:])
pandas.DataFrame
from probatus.metric_volatility import BaseVolatilityEstimator, TrainTestVolatility, SplitSeedVolatility,\ BootstrappedVolatility, get_metric, sample_data, check_sampling_input from sklearn.tree import DecisionTreeClassifier import pytest import numpy as np import pandas as pd from unittest.mock import patch from probatus.stat_tests.distribution_statistics import DistributionStatistics from probatus.utils import Scorer, NotFittedError import os import matplotlib.pyplot as plt import matplotlib # Turn off interactive mode in plots plt.ioff() matplotlib.use('Agg') @pytest.fixture(scope='function') def X_array(): return np.array([[2, 1], [3, 2], [4, 3], [1, 2], [1, 1]]) @pytest.fixture(scope='function') def y_list(): return [1, 0, 0, 1, 1] @pytest.fixture(scope='function') def y_array(y_list): return np.array(y_list) @pytest.fixture(scope='function') def X_df(X_array): return pd.DataFrame(X_array, columns=['c1', 'c2']) @pytest.fixture(scope='function') def y_series(y_list): return pd.Series(y_list) @pytest.fixture(scope='function') def iteration_results(): iterations_cols = ['metric_name', 'train_score', 'test_score', 'delta_score'] return pd.DataFrame([['roc_auc', 0.8, 0.7, 0.1], ['roc_auc', 0.7, 0.6, 0.1], ['roc_auc', 0.9, 0.8, 0.1], ['accuracy', 1, 0.9, 0.1], ['accuracy', 0.8, 0.7, 0.1], ['accuracy', 0.9, 0.8, 0.1]], columns=iterations_cols) @pytest.fixture(scope='function') def report(): report_cols = ['train_mean', 'train_std', 'test_mean', 'test_std', 'delta_mean', 'delta_std'] report_index = ['roc_auc', 'accuracy'] return pd.DataFrame([[0.8, 0.08164, 0.7, 0.08164, 0.1, 0], [0.9, 0.08164, 0.8, 0.08164, 0.1, 0]], columns=report_cols, index=report_index).astype(float) @pytest.fixture(scope='function') def iterations_train(): return pd.Series([0.8, 0.7, 0.9], name='train_score') @pytest.fixture(scope='function') def iterations_test(): return pd.Series([0.7, 0.6, 0.8], name='test_score') @pytest.fixture(scope='function') def iterations_delta(): return pd.Series([0.1, 0.1, 0.1], name='delta_score') def test_inits(mock_model): vol1 = SplitSeedVolatility(mock_model, scoring=['accuracy', 'roc_auc'], test_prc=0.3, n_jobs=2, stats_tests_to_apply=['ES', 'KS'], random_state=1, iterations=20) assert id(vol1.clf) == id(mock_model) assert vol1.test_prc == 0.3 assert vol1.n_jobs == 2 assert vol1.stats_tests_to_apply == ['ES', 'KS'] assert vol1.random_state == 1 assert vol1.iterations == 20 assert len(vol1.stats_tests_objects) == 2 assert len(vol1.scorers) == 2 assert vol1.sample_train_test_split_seed is True vol2 = BootstrappedVolatility(mock_model, scoring='roc_auc', stats_tests_to_apply='KS', test_sampling_fraction=0.8) assert id(vol2.clf) == id(mock_model) assert vol2.stats_tests_to_apply == ['KS'] assert len(vol2.stats_tests_objects) == 1 assert len(vol2.scorers) == 1 assert vol2.sample_train_test_split_seed is False assert vol2.test_sampling_fraction == 0.8 assert vol2.fitted is False assert vol2.iterations_results is None assert vol2.report is None def test_base_fit(mock_model, X_df, y_series): vol = BaseVolatilityEstimator(mock_model, random_state=1) with patch('numpy.random.seed') as mock_seed: vol.fit(X_df, y_series) mock_seed.assert_called_with(1) assert vol.iterations_results is None assert vol.report is None assert vol.fitted is True def test_compute(report, mock_model): vol = BaseVolatilityEstimator(mock_model) with pytest.raises(NotFittedError): vol.compute() vol.fit() with pytest.raises(ValueError): vol.compute() vol.report = report pd.testing.assert_frame_equal(vol.compute(), report) pd.testing.assert_frame_equal(vol.compute(metrics=['roc_auc']), report.loc[['roc_auc']]) pd.testing.assert_frame_equal(vol.compute(metrics='roc_auc'), report.loc[['roc_auc']]) def test_plot(report, mock_model, iterations_train, iterations_test, iterations_delta): with patch.object(BaseVolatilityEstimator, 'compute', return_value=report.loc[['roc_auc']]) as mock_compute: with patch.object(BaseVolatilityEstimator, '_get_samples_to_plot', return_value=(iterations_train, iterations_test, iterations_delta)) as mock_get_samples: vol = BaseVolatilityEstimator(mock_model) vol.fitted = True vol.plot(metrics='roc_auc') mock_compute.assert_called_with(metrics='roc_auc') mock_get_samples.assert_called_with(metric_name='roc_auc') def test_get_samples_to_plot(mock_model, iteration_results, iterations_train, iterations_test, iterations_delta): vol = BaseVolatilityEstimator(mock_model) vol.fitted = True vol.iterations_results=iteration_results train, test, delta = vol._get_samples_to_plot(metric_name='roc_auc') pd.testing.assert_series_equal(train, iterations_train) pd.testing.assert_series_equal(test, iterations_test) pd.testing.assert_series_equal(delta, iterations_delta) def test_create_report(mock_model, iteration_results, report): vol = BaseVolatilityEstimator(mock_model) vol.fitted = True vol.iterations_results = iteration_results vol._create_report() pd.testing.assert_frame_equal(vol.report, report, check_less_precise=3) def test_compute_mean_std_from_runs(mock_model, iteration_results): vol = BaseVolatilityEstimator(mock_model) results = vol._compute_mean_std_from_runs(iteration_results[iteration_results['metric_name'] == 'roc_auc']) expected_results = [0.8, 0.08164, 0.7, 0.08164, 0.1, 0] for idx, item in enumerate(results): assert pytest.approx(item, 0.01) == expected_results[idx] def test_compute_stats_tests_values(mock_model, iteration_results): vol = BaseVolatilityEstimator(mock_model, stats_tests_to_apply=['KS']) with patch.object(DistributionStatistics, 'compute', return_value=(0.1, 0.05)): stats = vol._compute_stats_tests_values(iteration_results) assert stats[0] == 0.1 assert stats[1] == 0.05 def test_fit_compute(mock_model, report, X_df, y_series): vol = BaseVolatilityEstimator(mock_model) with patch.object(BaseVolatilityEstimator, 'fit') as mock_fit: with patch.object(BaseVolatilityEstimator, 'compute', return_value=report) as mock_compute: result = vol.fit_compute(X_df, y_series) mock_fit.assert_called_with(X_df, y_series) mock_compute.assert_called_with() pd.testing.assert_frame_equal(result, report) def test_fit_train_test_sample_seed(mock_model, X_df, y_series, iteration_results): vol = TrainTestVolatility(mock_model, scoring='roc_auc', iterations=3, sample_train_test_split_seed=True) with patch.object(BaseVolatilityEstimator, 'fit') as mock_base_fit: with patch.object(TrainTestVolatility, '_create_report') as mock_create_report: with patch('probatus.metric_volatility.volatility.get_metric', side_effect=[iteration_results.iloc[[0]], iteration_results.iloc[[1]], iteration_results.iloc[[2]]]): vol.fit(X_df, y_series) mock_base_fit.assert_called_once() mock_create_report.assert_called_once() pd.testing.assert_frame_equal(vol.iterations_results, iteration_results.iloc[[0, 1, 2]]) def test_get_metric(mock_model, X_df, y_series): split_seed = 1 test_prc = 0.6 with patch('probatus.metric_volatility.metric.train_test_split', return_value=(X_df.iloc[[0, 1, 2]], X_df.iloc[[3, 4]], y_series.iloc[[0, 1, 2]], y_series.iloc[[3, 4]])) as mock_split: with patch('probatus.metric_volatility.metric.sample_data', side_effect=[(X_df.iloc[[0, 1, 1]], y_series.iloc[[0, 1, 1]]), (X_df.iloc[[3, 3]], y_series.iloc[[3, 3]])]) as mock_sample: with patch.object(Scorer, 'score', side_effect=[0.8, 0.7]): output = get_metric(X_df, y_series, mock_model, test_size=test_prc, split_seed=split_seed, scorers=[Scorer('roc_auc')], train_sampling_type='bootstrap', test_sampling_type='bootstrap', train_sampling_fraction=1, test_sampling_fraction=1) mock_split.assert_called_once() mock_sample.assert_called() mock_model.fit.assert_called() expected_output = pd.DataFrame([['roc_auc', 0.8, 0.7, 0.1]], columns=['metric_name', 'train_score', 'test_score', 'delta_score']) pd.testing.assert_frame_equal(expected_output, output) def test_sample_data_no_sampling(X_df, y_series): with patch('probatus.metric_volatility.utils.check_sampling_input') as mock_sampling_input: X_out, y_out = sample_data(X_df, y_series, sampling_type=None, sampling_fraction=1) mock_sampling_input.assert_called_once() pd.testing.assert_frame_equal(X_out, X_df) pd.testing.assert_series_equal(y_out, y_series) def test_sample_data_bootstrap(X_df, y_series): with patch('probatus.metric_volatility.utils.check_sampling_input') as mock_sampling_input: X_out, y_out = sample_data(X_df, y_series, sampling_type='bootstrap', sampling_fraction=0.8) mock_sampling_input.assert_called_once() assert X_out.shape == (4, 2) assert y_out.shape == (4, ) def test_sample_data_sample(X_df, y_series): with patch('probatus.metric_volatility.utils.check_sampling_input') as mock_sampling_input: X_out, y_out = sample_data(X_df, y_series, sampling_type='subsample', sampling_fraction=1) mock_sampling_input.assert_called_once() pd.testing.assert_frame_equal(X_out, X_df)
pd.testing.assert_series_equal(y_out, y_series)
pandas.testing.assert_series_equal
import os import wget import yfinance as yf from sqlalchemy import create_engine import pandas_market_calendars as cal import pandas as pd from tqdm import tqdm from arctic import Arctic def chunks(l, n): """ Yield successive n-sized chunks from a list l. https://stackoverflow.com/a/312464/4549682 """ for i in range(0, len(l), n): yield l[i:i + n] class downloader(): def __init__(self, stocks=['QQQ', 'TQQQ', 'SQQQ'], db='sqlite', storage_dir=None, db_file='stock_data.sqlite'): self.db = db if storage_dir is None: home_dir = os.path.expanduser("~") self.storage_dir = os.path.join(home_dir, '.yfinance_data') if not os.path.exists(self.storage_dir): os.makedirs(self.storage_dir) else: self.storage_dir = storage_dir if db == 'sqlite': self.db_file = db_file # 4 slashes for absolute path: https://docs.sqlalchemy.org/en/13/core/engines.html#sqlite self.e = create_engine('sqlite:///{}/{}'.format(self.storage_dir, self.db_file)) self.con = self.e.connect() else: self.e = None self.con = None if db == 'arctic': self.store = Arctic('localhost') self.store.initialize_library('yfinance_stockdata') self.library = self.store['yfinance_stockdata'] self.stocks = stocks def get_stock_groups(self): """ gets latest downloaded dates for all stocks in list; groups stocks by start date for multithreaded download """ print('getting start dates for existing data...') start_dates = {} if self.db == 'sqlite': if self.e.dialect.has_table(self.e, 'data'): for s in tqdm(self.stocks): res = self.con.execute('select max(Date) from data where ticker = "{}"'.format(s)) date = pd.to_datetime(res.fetchone()[0]) start_dates[s] = pd.NaT if date is not None: start_dates[s] = date else: for s in self.stocks: start_dates[s] = pd.NaT elif self.db == 'arctic': symbols_in_lib = set(self.library.list_symbols()) for s in self.stocks: if s in symbols_in_lib: item = self.library.read(s) df = item.data if df.shape[0] == 0: start_dates[s] = pd.NaT else: start_dates[s] = df.index.max() else: start_dates[s] = pd.NaT # group by start dates so we can multithread download start_date_df = pd.DataFrame(data={'ticker': list(start_dates.keys()), 'start_date': list(start_dates.values())}) unique_dates = start_date_df['start_date'].dt.date.unique() groups = [] for udate in unique_dates: if pd.isnull(udate): tickers = start_date_df[pd.isnull(start_date_df['start_date'])]['ticker'].tolist() else: tickers = start_date_df[start_date_df['start_date'] == pd.Timestamp(udate)]['ticker'].tolist() groups.append(tickers) return unique_dates, groups def download_stock_data(self): unique_dates, groups = self.get_stock_groups() today = pd.to_datetime(pd.datetime.utcnow()).tz_localize('UTC') ndq = cal.get_calendar('NASDAQ') sched = ndq.schedule(start_date='01-01-1900', end_date=today) end_date = today # if before the close today, use yesterday as last day if today < sched.iloc[-1]['market_close']: end_date = sched.iloc[-2]['market_close'] for start, grp in zip(unique_dates, groups): if pd.isnull(start) or start < today.date() and start != end_date.date(): # start is non-inclusive, end is inclusive if pd.isnull(start): start = None data = yf.download(grp, auto_adjust=True, rounding=False, start=start, end=end_date) dfs = [] for s in grp: try: df = data.xs(s, level=1, axis=1).copy() except AttributeError: df = data.copy() if 'Adj Close' in df.columns: df.drop(columns='Adj Close', inplace=True) # on error some dfs have 0 rows, but adj close column...ignore these if df.shape[0] == 0: continue df.dropna(inplace=True) if self.db in ['sqlite']: df['ticker'] = s dfs.append(df) elif self.db == 'arctic': if start is None: self.library.write(s, df) else: self.library.append(s, df) # store data in sql if self.db in ['sqlite']: print('writing data to sql db...') # write to db in chunks to avoid crashing on full memory # only seem to be able to write about 30k rows at once with sqlite3 for c in tqdm(chunks(dfs, 100)): full_df = pd.concat(dfs, axis=0) full_df.to_sql(name='data', con=self.con, if_exists='append', index_label='date', method='multi', chunksize=30000) else: print('Stock group up to date, not downloading.') def get_stocklists(self): link = 'ftp://ftp.nasdaqtrader.com/symboldirectory/{}.txt' for l in ['nasdaqlisted', 'otherlisted']: filename = '{}.txt'.format(l) if os.path.exists(filename): os.remove(filename) wget.download(link.format(l)) ndq =
pd.read_csv('nasdaqlisted.txt', sep='|')
pandas.read_csv
import numpy as np from sklearn import linear_model import pandas as pd import logging from scipy import signal reg = linear_model.LinearRegression(fit_intercept=True) import numpy as np from sklearn import linear_model reg = linear_model.LinearRegression(fit_intercept=True) import pandas as pd from scipy import signal def make_relatinoal_data_struture(): path_save = '/mnt/368AE7F88AE7B313/Files_Programming/Git/ads_covid-19-sem/data/processed/COVID_relational_confirmed.csv' data_path = '/mnt/368AE7F88AE7B313/Files_Programming/Git/ads_covid-19-sem/data/raw/COVID-19/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' pd_raw = pd.read_csv(data_path).copy() pd_data_base = pd_raw.rename(columns={'Country/Region': 'country', 'Province/State': 'state'}) pd_data_base = pd_data_base.drop(['Lat', 'Long'], axis=1) test_pd = pd_data_base.set_index(['state', 'country']).T pd_relational_model = test_pd.stack(level=[0, 1]).reset_index().rename(columns={'level_0': 'date', 0: 'confirmed'}) pd_relational_model['date'] = pd_relational_model.date.astype('datetime64[ns]') logging.info("The dates are {}".format(pd_relational_model.date)) pd_relational_model.to_csv(path_save, sep=';') def get_doubling_time_via_regression(in_array): ''' Use a linear regression to approximate the doubling rate Parameters: ---------- in_array : pandas.series Returns: ---------- Doubling rate: double ''' y = np.array(in_array) X = np.arange(-1, 2).reshape(-1, 1) assert len(in_array) == 3 reg.fit(X, y) intercept = reg.intercept_ slope = reg.coef_ return intercept / slope def rolling_reg(df_input, col='confirmed'): ''' Rolling Regression to approximate the doubling time' Parameters: ---------- df_input: pd.DataFrame col: str defines the used column Returns: ---------- result: pd.DataFrame ''' days_back = 3 result = df_input[col].rolling( window=days_back, min_periods=days_back).apply(get_doubling_time_via_regression, raw=False) return result def calc_doubling_rate(df_input, filter_on='confirmed'): ''' Calculate approximated doubling rate and return merged data frame Parameters: ---------- df_input: pd.DataFrame filter_on: str defines the used column Returns: ---------- df_output: pd.DataFrame the result will be joined as a new column on the input data frame ''' must_contain = set(['state', 'country', filter_on]) assert must_contain.issubset(set(df_input.columns)), ' Erro in calc_filtered_data not all columns in data frame' pd_DR_result = df_input[['state','country',filter_on]].groupby(['state', 'country']).apply(rolling_reg, filter_on).reset_index() pd_DR_result = pd_DR_result.rename(columns={filter_on: filter_on +'_doubling_rate', 'level_2': 'index'}) df_input = df_input.reset_index() df_output = pd.merge(df_input, pd_DR_result[['index', filter_on + '_doubling_rate']], on=['index'], how='left') logging.warning("Doubling rate for {} calculated".format(filter_on)) return df_output def savgol_filter(df_input, column='confirmed', window=5): ''' Savgol Filter which can be used in groupby apply function (data structure kept) parameters: ---------- df_input : pandas.series column : str window : int used data points to calculate the filter result Returns: ---------- df_result: pd.DataFrame the index of the df_input has to be preserved in result ''' degree = 1 df_result = df_input filter_in = df_input[column].fillna(0) # attention with the neutral element here result = signal.savgol_filter(np.array(filter_in), window, # window size used for filtering 1) df_result[column + '_filtered'] = result return df_result def calc_filtered_data(df_input, filter_on='confirmed'): ''' Calculate savgol filter and return merged data frame Parameters: ---------- df_input: pd.DataFrame filter_on: str defines the used column Returns: ---------- df_output: pd.DataFrame the result will be joined as a new column on the input data frame ''' must_contain = set(['state', 'country', filter_on]) assert must_contain.issubset(set(df_input.columns)), ' Erro in calc_filtered_data not all columns in data frame' pd_filtered_result = df_input[['state', 'country', filter_on]].groupby(['state', 'country']).apply( savgol_filter).reset_index() df_output = pd.merge(df_input, pd_filtered_result[['index', filter_on + '_filtered']], on=['index'], how='left') logging.warning("Doubling rate for {} calculated".format(filter_on)) return df_output def main(): path_main = '/mnt/368AE7F88AE7B313/Files_Programming/Git/ads_covid-19-sem/data/processed/COVID_relational_confirmed.csv' make_relatinoal_data_struture() pd_JH_data =
pd.read_csv(path_main, sep=';', parse_dates=[0])
pandas.read_csv
import streamlit as st import plotly.figure_factory as ff import numpy as np import pandas as pd import plotly.express as px #in this one I'm letting people see all of the items for a portal. So they pic that, the data is filtered #and then you get a chart with all of the items def comparebar(): # Add histogram data df = pd.read_csv("https://raw.githubusercontent.com/tyrin/info-topo-dash/master/data/freshdata.csv") #define variables that the customer will input portal="" sdf=df.sort_values(by='Portal') site= sdf['Portal'].unique() portal = st.sidebar.multiselect( 'Portal:', site) message = st.empty() if len(portal) == 0: message.text("Select a portal") #filter the data by the selected portal if len(portal) > 0: dff = df.loc[df['Portal'].isin(portal)] dfs = dff.sort_values(by='Group') #group = dfs['Group'].unique() # convert the 'Date' column to datetime format dfs['Date']=
pd.to_datetime(df['Date'])
pandas.to_datetime
import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn import svm import math from sklearn.metrics import f1_score from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import log_loss #get the training dataset get_ipython().system('wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv') #Some visualisation code #df['loan_status'].value_counts() #df.groupby(['Gender'])['loan_status'].value_counts(normalize=True) #df.groupby(['education'])['loan_status'].value_counts(normalize=True) #load the training dataset df = pd.read_csv('loan_train.csv') #pre-process the data df['due_date'] = pd.to_datetime(df['due_date']) df['effective_date'] = pd.to_datetime(df['effective_date']) df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True) #define Feature set Feature = df[['Principal','terms','age','Gender']] Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1) Feature.drop(['Master or Above'], axis = 1,inplace=True) #create feature set and labels x = Feature x[0:5] y = df['loan_status'].values y[0:5] #create two dictionaries to hold the evaluation metrics trainscores={} testscores={} #split the given training dataset from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test=train_test_split(x,y) #normalize the data x= preprocessing.StandardScaler().fit(x).transform(x.astype(float)) #start training and testing on the dataset #KNN #run the loop to find the best k Ks = int(math.sqrt(x.shape[0])) j_acc = np.zeros((Ks-1)) f_acc = np.zeros((Ks-1)) #ConfustionMx = []; for n in range(1,Ks): #Train Model and Predict neigh = KNeighborsClassifier(n_neighbors = k).fit(x_train,y_train) #predict y_hat=neigh.predict(x_test) #jaccard similarity score j_acc[n-1] = jaccard_similarity_score(y_test, y_hat) #f1score f_acc[n-1]=f1_score(y_test, y_hat, average='weighted',labels=np.unique(y_hat)) trainscores['KNN-jaccard']=f_acc.max() trainscores['KNN-F1']=j_acc.max() #Decision Tree drugTree = DecisionTreeClassifier(criterion="entropy", max_depth = 4) drugTree.fit(x_train,y_train) y__hat = drugTree.predict(x_test) trainscores['Decision tree-Jaccard']= jaccard_similarity_score(y_test, y__hat) trainscores['Decision tree- f1 score']=f1_score(y_test, y__hat, average='weighted', labels=np.unique(y__hat)) #Support Vector Machine clf = svm.SVC(kernel='rbf', gamma="auto") clf.fit(x_train, y_train) y___hat = clf.predict(x_test) trainscores['svm -jaccard']=jaccard_similarity_score(y_test, y___hat) trainscores['svm-f1 score']=f1_score(y_test, y___hat, average='weighted', labels=np.unique(y___hat)) #Logistic Regression LR = LogisticRegression(C=0.000001, solver='saga').fit(x_train,y_train) y____hat = LR.predict(x_test) yhat_prob = LR.predict_proba(x_test) trainscores['logistic regr- jaccard']=jaccard_similarity_score(y_test, y_hat) trainscores['logistic regr- f1 score']=f1_score(y_test, y_hat, average='weighted', labels=np.unique(y_hat)) trainscores['logistic regr- log loss']=log_loss(y_test, yhat_prob) ##################################################### #Out-of-sample prediction and model evaluation ##################################################### #get the test dataset for prediction and evaluation of the models previously trained get_ipython().system('wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv') #Prepare Test set for evaluation test_df = pd.read_csv('loan_test.csv') test_df.head() test_df['due_date']=pd.to_datetime(test_df['due_date']) test_df['effective_date']=
pd.to_datetime(test_df['effective_date'])
pandas.to_datetime
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : Mike # @Contact : <EMAIL> # @Time : 2020/1/6 22:46 # @File : cross_feature.py """ top100的特征强制相除交叉 """ import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import lightgbm as lgb import numpy as np cross_feature_num = 100 def LGB_test(train_x, train_y, test_x, test_y, cate_col=None): if cate_col: data = pd.concat([train_x, test_x]) for fea in cate_col: data[fea] = data[fea].fillna('-1') data[fea] = LabelEncoder().fit_transform(data[fea].apply(str)) train_x = data[:len(train_x)] test_x = data[len(train_x):] print("LGB test") clf = lgb.LGBMClassifier( boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1, max_depth=-1, n_estimators=3000, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=1, # colsample_bylevel=0.7, learning_rate=0.01, min_child_weight=25, random_state=2018, n_jobs=50 ) clf.fit(train_x, train_y, eval_set=[(train_x, train_y), (test_x, test_y)], early_stopping_rounds=100) feature_importances = sorted(zip(train_x.columns, clf.feature_importances_), key=lambda x: x[1]) return clf.best_score_['valid_1']['binary_logloss'], feature_importances def off_test_split(org, cate_col=None): data = org[org.is_trade > -1] data = data.drop( ['hour48', 'hour', 'user_id', 'query1', 'query', 'instance_id', 'item_property_list', 'context_id', 'context_timestamp', 'predict_category_property'], axis=1) data['item_category_list'] = LabelEncoder().fit_transform(data['item_category_list']) y = data.pop('is_trade') train_x, test_x, train_y, test_y = train_test_split(data, y, test_size=0.15, random_state=2018) train_x.drop('day', axis=1, inplace=True) test_x.drop('day', axis=1, inplace=True) score = LGB_test(train_x, train_y, test_x, test_y, cate_col) return score[1] def LGB_predict(data, file): data = data.drop(['hour48', 'hour', 'user_id', 'shop_id', 'query1', 'query', 'item_property_list', 'context_id', 'context_timestamp', 'predict_category_property'], axis=1) data['item_category_list'] = LabelEncoder().fit_transform(data['item_category_list']) train = data[data['is_trade'] > -1] predict = data[data['is_trade'] == -2] res = predict[['instance_id']] train_y = train.pop('is_trade') train_x = train.drop(['day', 'instance_id'], axis=1) test_x = predict.drop(['day', 'instance_id', 'is_trade'], axis=1) clf = lgb.LGBMClassifier( boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1, max_depth=-1, n_estimators=3000, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=1, # colsample_bylevel=0.7, learning_rate=0.01, min_child_weight=25, random_state=2018, n_jobs=50 ) clf.fit(train_x, train_y, eval_set=[(train_x, train_y)]) res['predicted_score'] = clf.predict_proba(test_x)[:, 1] testb = pd.read_csv('../data/round2_ijcai_18_test_b_20180510.txt', sep=' ')[['instance_id']] res = pd.merge(testb, res, on='instance_id', how='left') res[['instance_id', 'predicted_score']].to_csv('../submit/' + file + '.txt', sep=' ', index=False) def add(f1, f2): for i in f2: f1 = pd.merge(f1, i, on='instance_id', how='left') return f1 if __name__ == '__main__': org = pd.read_csv('../data/origion_concat.csv') train = org[org.day == 7] query = pd.read_csv('../data/query_all.csv') leak = pd.read_csv('../data/leak_all.csv') comp = pd.read_csv('../data/compare_all.csv') day6_cvr = pd.read_csv('../data/6day_cvr_feature.csv') days7_cvr = pd.read_csv('../data/7days_cvr_feature.csv') day6_rank = pd.read_csv('../data/rank_feature_6day.csv') days7_rank = pd.read_csv('../data/rank_feature_7days.csv') nobuy = pd.read_csv('../data/nobuy_feature.csv') trend = pd.read_csv('../data/trend_feature.csv') trend = trend[[i for i in trend.columns if 'cnt6' not in i]] var = pd.read_csv('../data/item_shop_var_feature.csv') user_buy_click = pd.read_csv('../data/user_buy_click_feature.csv') # need proc caterory feature property =
pd.read_csv('../data/property_feature.csv')
pandas.read_csv
import sys import numpy as np import pandas as pd from pandas.plotting import register_matplotlib_converters import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.font_manager import FontProperties from statsmodels.tsa import stattools from statsmodels.graphics import tsaplots from statsmodels.tsa.arima_model import ARIMA import arch.unitroot as unitroot class Aqt001(object): def __init__(self): self.name = 'Aqt001' # 数据文件格式:编号 日期 星期几 开盘价 最高价 # 最低价 收益价 收益 # Indexcd Trddt Daywk Opnindex Hiindex # Loindex Clsindex Retindex self.data_file = 'data/pqb/aqt001_001.txt' def startup(self): print('ARMA模型...') #self.simulate_ar2() #self.simulate_arima_p_d_q() self.arima_demo() #self.adf_demo() def simulate_ar2(self): print('模拟AR(2)') alpha1 = 0.666 alpha2 = -0.333 wt = np.random.standard_normal(size=1000) x = wt for t in range(2, len(wt)): x[t] = alpha1 * x[t-1] + alpha2 * x[t-2] + wt[t] plt.plot(x, c='b') plt.show() ar2 = stattools.ARMA(x, (2, 0)).fit(disp=False) print('p={0} **** {1}; q={2}***{3}; {4} - {5} - {6}'.format( ar2.k_ar, ar2.arparams, ar2.k_ma, ar2.maparams, ar2.aic, ar2.bic, ar2.hqic) ) arima2_0_0 = ARIMA(x, order=(2, 0, 0)).fit(disp=False) print('ARIMA: p={0} **** {1}; q={2}***{3}; {4} - {5} - {6}'. \ format(arima2_0_0.k_ar, arima2_0_0.arparams, arima2_0_0.k_ma, arima2_0_0.maparams, arima2_0_0.aic, arima2_0_0.bic, arima2_0_0.hqic) ) resid = arima2_0_0.resid # 绘制ACF acfs = stattools.acf(resid) print(acfs) tsaplots.plot_acf(resid, use_vlines=True, lags=30) plt.title('ACF figure') plt.show() pacfs = stattools.pacf(resid) print(pacfs) tsaplots.plot_pacf(resid, use_vlines=True, lags=30) plt.title('PACF figure') plt.show() def simulate_arima_p_d_q(self): print('模拟ARIMA(p,d,q)过程') np.random.seed(8) alpha1 = 1.2 alpha2 = -0.7 beta1 = -0.06 beta2 = -0.02 w = np.random.standard_normal(size=1000) x = w for t in range(2, len(w)): x[t] = alpha1 * x[t-1] + alpha2*x[t-2] + w[t] + beta1 * w[t-1] + beta2*w[t-2] plt.plot(x, c='b') plt.title('ARIMA(p, d, q) Figure') plt.show() # 查看ACF acfs = stattools.acf(x) print('ARIMA(q,d,q) ACFS:\r\n{0}'.format(acfs)) tsaplots.plot_acf(x, use_vlines=True, lags=30) plt.title('ARIMA(p,d,q) ACF') plt.show() # ARIMA拟合 min_ABQIC = sys.float_info.max arima_model = None break_loop = False ''' for p in range(0, 5): if break_loop: break for q in range(0, 5): print('try {0}, d, {1}...'.format(p, q)) try: arima_p_d_q = ARIMA(x, order=(p, 0, q)).fit(disp=False) print('..... fit ok') if arima_p_d_q.aic < min_ABQIC: print('..... record good model') min_ABQIC = arima_p_d_q.aic arima_model = arima_p_d_q #if 1==p and 1==q: # break_loop = True except Exception as ex: print('.....!!!!!! Exception') print('ARIMA: p={0} **** {1}; q={2}***{3}; {4} - {5} - {6}'. \ format(arima_model.k_ar, arima_model.arparams, arima_model.k_ma, arima_model.maparams, arima_model.aic, arima_model.bic, arima_model.hqic) ) ''' arima_model = ARIMA(x, order=(2, 0, 2)).fit(disp=False) print('God_View:ARIMA: p={0} **** {1}; q={2}***{3}; {4} - {5} - {6}'. \ format(arima_model.k_ar, arima_model.arparams, arima_model.k_ma, arima_model.maparams, arima_model.aic, arima_model.bic, arima_model.hqic) ) resid = arima_model.resid # 绘制ACF acfs = stattools.acf(resid) print(acfs) tsaplots.plot_acf(resid, use_vlines=True, lags=30) plt.title('ARIMA(p,d,q) ACF figure') plt.show() pacfs = stattools.pacf(resid) print(pacfs) tsaplots.plot_pacf(resid, use_vlines=True, lags=30) plt.title('ARIMA(p,d,q) PACF figure') plt.show() def arima_demo(self): register_matplotlib_converters() data =
pd.read_csv(self.data_file, sep='\t', index_col='Trddt')
pandas.read_csv
# -*- coding: utf-8 -*- """ Using kmeans to create a bag of visual words for SVM to predict object recognition in images. By: <NAME>, <NAME>, and <NAME>. MLDM Master's Year 2 Fall Semester 2017 """ import pymysql import pymysql.cursors import json from sklearn.cluster import KMeans from sklearn import metrics from scipy.spatial.distance import cdist from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np import time import pandas as pd import os #%% def load_objects_desc(n_objects): # Connect to the database. conn = pymysql.connect(db='images_db', user='mldm_gangster', passwd='<PASSWORD>', port=3306, host='mldm-cv-project.cnpjv4qug6jj.us-east-2.rds.amazonaws.com') #conn = pymysql.connect(db='images_db', user='root', passwd='', host='localhost') # Query sql_get_descriptors = "SELECT * FROM desc_obj d INNER JOIN objects o \ ON d.id_obj = o.ID_object;" #specify number of objects to load #n_objects = 100000 #Load data with conn.cursor() as cursor: # Execute sql reques- cursor.execute(sql_get_descriptors) conn.commit() #iterators and stoarge lists it = 0 list_conca=[] obj_name=[] obj_id=[] #Read data from query for row in cursor: if it < n_objects: json_desc = json.loads(row[2]) list_conca = list_conca + json_desc['sift'] print('check1') obj_name = obj_name + np.repeat(row[5],len( json_desc['sift'])).tolist() print('check2') obj_id = obj_id + np.repeat([json_desc['obj']],len( json_desc['sift'])).tolist() print("Passage n°",it) it+=1 else: break #Combine into df #df_conca = pd.concat([pd.Series(list_conca),pd.Series(obj_name), # pd.Series(obj_id)],axis=1) return list_conca, obj_id, obj_name #%% #Find optimal number of principle components def pca_test(pca_conca): #Create table to store PCA values pca_results = pd.DataFrame(columns=['evr','n_comp']) #load pca and run for n in range(64): pca = PCA(n_components=n) pca.fit(pca_conca) df = pd.DataFrame.from_dict({"evr":[pca.explained_variance_ratio_.sum()], "n_comp":[n]}) pca_results = pd.concat([pca_results,df]) print(n) print(pca.explained_variance_ratio_.sum()) return pca_results #%% def kmeans_test(pca_conca, low_k, high_k, step_k): #Table to store kmean reults kmeans_results = pd.DataFrame(columns=['k','obj_name','distortion','run_time']) #distortions = [] centroids = {} #Run kmeans for each object for obj in pca_conca.obj_name.unique(): #Only cluster descriptors from this object df = pca_conca[pca_conca.obj_name==obj].drop(['obj_name'],axis=1) print("subset taken") #iterate through number of k for k in range(low_k,high_k,step_k): #for k in [50]: #Track run time start=time.time() kmeans = KMeans(n_clusters=k).fit(df) end=time.time() print(obj + ':complete') print(end-start) results_df = pd.DataFrame.from_dict({"k":[k],"run_time":[(end-start)], "distortion":[sum(np.min(cdist(df, kmeans.cluster_centers_, 'euclidean'),axis=1))/pca_conca.shape[1]],"obj_name":[obj]}) kmeans_results = pd.concat([kmeans_results,results_df]) centroids[obj] = kmeans.cluster_centers_ #Total time print('Total run time:') print(kmeans_results.run_time.sum()) return kmeans_results, centroids '''' #Write results files to csv's pca_results.to_csv('pca_results.csv') kmeans_results.to_csv('kmeans_results.csv') #Centroids for keys, values in centroids.items(): file = 'kmeans_centroids' + str(keys)+'.csv' df = pd.DataFrame(values) df.to_csv(file) kmeans_results = pd.read_csv('kmeans_results.csv') ''' def plot_kmeans_results(kmeans_results): # Plot the elbow for i in kmeans_results.obj_name.unique(): k = kmeans_results[kmeans_results.obj_name == i].k distortions = kmeans_results[kmeans_results.obj_name == i].distortion plt.plot(k, distortions, 'bx-') plt.xlabel('k') plt.ylabel('Distortion') plt.title(i) plt.show() #run kmeans for each object def kmeans_per_object(pca_conca,k): #Table to store kmean reults kmeans_results = pd.DataFrame(columns=['k','obj_name','distortion','run_time']) #distortions = [] centroids = {} #Run kmeans for each object for obj in pca_conca.obj_name.unique(): #Only cluster descriptors from this object df = pca_conca[pca_conca.obj_name==obj].drop(['obj_name'],axis=1) print("subset taken") #Track run time start=time.time() #create and fit kmeans kmeans = KMeans(n_clusters=k).fit(df) end=time.time() print(obj + ':complete') print(end-start) results_df = pd.DataFrame.from_dict({"k":[k],"run_time":[(end-start)], "distortion":[sum(np.min(cdist(df, kmeans.cluster_centers_, 'euclidean'),axis=1))/pca_conca.shape[1]],"obj_name":[obj]}) #save results kmeans_results = pd.concat([kmeans_results,results_df]) centroids[obj] = kmeans.cluster_centers_ return kmeans_results, centroids #%% #Load centroid results for each object def load_clusters(folder): #folder="C:/Users/schwi/Google Drive/MLDM/Computer Vision Project/results" centroids = {} for filename in os.listdir(folder): if filename != 'desktop.ini': #Import image cent = pd.DataFrame.from_csv(filename) obj = filename[16:].replace('.csv','') centroids[obj] = cent return centroids #%% def combine_clusters(centroids): #Combine all object centroids into one df centroid_total = pd.DataFrame(columns=list(range(len(centroids['aeroplane'])))) for keys, values in centroids.items(): centroid_total = pd.concat([centroid_total,
pd.DataFrame(values)
pandas.DataFrame
# -*- coding: utf-8 -*- import json, time import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import timedelta from scipy.signal import find_peaks from scipy.special import expit def mergeData(rssi, velo, disr): rssi = rssi.loc[:, ['DateTime', 'PositionNoLeap', 'Latitude', 'Longitude', 'A1_ValidTel', 'A2_ValidTel', 'A2_RSSI']] rssi.rename(columns={'PositionNoLeap':'Position'}, inplace=True) # deltas rssi['RSSI'] = rssi.A2_RSSI rssi['deltaValidTel'] = (rssi.A1_ValidTel + rssi.A2_ValidTel).diff() rssi.loc[0, 'deltaValidTel'] = 0 rssi.loc[rssi.deltaValidTel > 11, 'deltaValidTel'] = 5 rssi.loc[rssi.deltaValidTel < 0, 'deltaValidTel'] = 0 rssi.drop(['A2_RSSI', 'A1_ValidTel', 'A2_ValidTel'], axis='columns', inplace=True) # import velocities velo = velo.drop(['EmergencyStopLimit', 'ID'], axis='columns') velo.rename(columns={'CurrentVelocity': 'Velocity'}, inplace=True) velo = velo.loc[velo.Velocity!=0] # disruptions disr.loc[disr["DisruptionCode"]==960862267, ["Description"]] = "Zwangsbremse wurde aktiviert" disr.loc[disr["DisruptionCode"]==960862258, ["Description"]] = "Keine Linienleitertelegramme empfangen" disr["disr_connection"] = False disr.loc[disr.DisruptionCode == 960862258, "disr_connection"] = True # merge datasets df = pd.merge(rssi, velo, on='DateTime', how='inner') df = pd.merge(df, disr.loc[disr.disr_connection==True,['DateTime', 'disr_connection']].drop_duplicates(), on='DateTime', how='outer', sort=True) df.loc[df.disr_connection.isna(), 'disr_connection'] = False df.fillna(method='pad', inplace=True) df.fillna(0, inplace=True) # create path chunks nChunks = 300 chunkSize =(df.Position.max()-df.Position.min()) // 300 df["posChunk"] = (df.Position-df.Position.min())+1 df.posChunk = (df.posChunk//chunkSize).astype(int) # create time chunks # get signed speed df["deltaS"] = pd.to_datetime(df.DateTime).diff().dt.total_seconds() df.loc[df.deltaS.isna(), 'deltaS']=0 df["Position_D"] = df.Position.diff()/10000 / df.deltaS * 3600 df["Position_D"] = df.Position_D.rolling(window=300).mean() # get direction df["Direction"] = 0 df.loc[df.Position_D > 0, 'Direction'] = 1 df.loc[df.Position_D < 0, 'Direction'] = -1 df['TimeChunk'] = np.nan df.loc[df.Direction.diff() != 0, 'TimeChunk'] = np.arange((df.Direction.diff() != 0).sum()) df.TimeChunk.fillna(method='pad', inplace=True) df.TimeChunk.fillna(0, inplace=True) # print("Number of time chunks: ", (df.Direction.diff() != 0).sum()) return df # %% deltaDays = 2 rssi = pd.read_csv("data/rssi.csv") rssi_dt = pd.to_datetime(rssi.DateTime) finalTime = rssi_dt.iloc[-1] rssi_dt = finalTime - rssi_dt velo = pd.read_csv("data/velocities.csv") velo_dt =
pd.to_datetime(velo.DateTime)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Mon Jun 4 20:48:26 2018 @author: elcok """ import os import sys import numpy as np import pandas as pd import geopandas as gpd import subprocess import rasterio as rio from rasterio.mask import mask from shapely.geometry import mapping from osgeo import ogr from shapely.wkb import loads from rasterstats import point_query from itertools import product sys.path.append(os.path.join( '..')) from scripts.utils import load_config,get_num,int2date from sklearn import metrics from tqdm import tqdm import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) pd.set_option('chained_assignment',None) def region_exposure(region,include_storms=True,event_set=False,sens_analysis_storms=[],save=True): """Create a GeoDataframe with exposure and hazard information for each building in the specified region. Arguments: *region* (string) -- NUTS3 code of region to consider. *include_storms* (bool) -- if set to False, it will only return a list of buildings and their characteristics (default: **True**) *event_set* (bool) -- if set to True, we will calculate the exposure for the event set instead of the historical storms (default: **True**) *sens_analysis_storms* (list) -- if empty, it will fill with default list *save* (bool) -- boolean to decide whether you want to save the output to a csv file (default: **True**) Returns: *GeoDataFrame* with all **hazard** and **exposure** values. """ country = region[:2] data_path = load_config()['paths']['data'] osm_path = os.path.join(data_path,'OSM','{}.osm.pbf'.format(country)) area_poly = os.path.join(data_path,country,'NUTS3_POLY','{}.poly'.format(region)) area_pbf = os.path.join(data_path,country,'NUTS3_OSM','{}.osm.pbf'.format(region)) if (region == 'UKN01') | (region == 'UKN02') | (region == 'UKN03') | (region == 'UKN04') | (region == 'UKN05'): osm_path = os.path.join(data_path,'OSM','IE.osm.pbf') clip_osm(data_path,osm_path,area_poly,area_pbf) gdf_table = fetch_buildings(data_path,country,region,regional=True) print ('Fetched all buildings from osm data for {}'.format(region)) # convert to european coordinate system for overlap gdf_table = gdf_table.to_crs(epsg=3035) print(len(gdf_table)) # Specify Country gdf_table["COUNTRY"] = country # give unique_id gdf_table['ID_'] = [str(x)+'_'+region for x in gdf_table.index] # Calculate area gdf_table["AREA_m2"] = gdf_table.geometry.area # Determine centroid gdf_table["centroid"] = gdf_table.geometry.centroid nuts_eu = gpd.read_file(os.path.join(data_path,'input_data','NUTS3_ETRS.shp')) nuts_eu.loc[nuts_eu['NUTS_ID']==region].to_file(os.path.join(data_path, country,'NUTS3_SHAPE','{}.shp'.format(region))) # create geometry envelope outline for rasterstats. Use a buffer to make sure all buildings are in there. geoms = [mapping(nuts_eu.loc[nuts_eu['NUTS_ID']==region].geometry.envelope.buffer(10000).values[0])] # Get land use values with rio.open(os.path.join(data_path,'input_data','g100_clc12_V18_5.tif')) as src: out_image, out_transform = mask(src, geoms, crop=True) out_image = out_image[0,:,:] tqdm.pandas(desc='CLC_2012_'+region) gdf_table['CLC_2012'] = gdf_table.centroid.progress_apply(lambda x: get_raster_value(x,out_image,out_transform)) # Obtain storm values for sensitivity analysis storms if len(sens_analysis_storms) > 0: storm_list = load_sens_analysis_storms(sens_analysis_storms) for outrast_storm in storm_list: storm_name = str(int2date(get_num(outrast_storm[-23:].split('_')[0][:-2]))) tqdm.pandas(desc=storm_name+'_'+region) with rio.open(outrast_storm) as src: out_image, out_transform = mask(src, geoms, crop=True) out_image = out_image[0,:,:] gdf_table[storm_name] = gdf_table.centroid.progress_apply(lambda x: get_raster_value(x,out_image,out_transform)) # Obtain storm values for historical storms elif (include_storms == True) & (event_set == False): storm_list = get_storm_list(data_path) for outrast_storm in storm_list: storm_name = str(int2date(get_num(outrast_storm[-23:].split('_')[0][:-2]))) tqdm.pandas(desc=storm_name+'_'+region) with rio.open(outrast_storm) as src: out_image, out_transform = mask(src, geoms, crop=True) out_image = out_image[0,:,:] gdf_table[storm_name] = gdf_table.centroid.progress_apply(lambda x: get_raster_value(x,out_image,out_transform)) gdf_table[storm_name].loc[gdf_table[storm_name] < 0] = 0 gdf_table[storm_name].loc[gdf_table[storm_name] > 500] = 0 # Obtain storm values for event set storms elif (include_storms == True) & (event_set == True): #geoms = [mapping(nuts_eu.loc[nuts_eu['NUTS_ID']==region].to_crs({'init': 'epsg:4326'}).geometry.envelope.buffer(0.1).values[0])] storm_list = get_event_storm_list(data_path)[:10] for outrast_storm in tqdm(storm_list,total=len(storm_list),desc=region): storm_name = str(int2date(get_num(outrast_storm[-24:].split('_')[0][:-4]))) with rio.open(outrast_storm) as src: out_image = src.read(1) out_transform = src.transform gdf_table[storm_name] = gdf_table.centroid.apply(lambda x: get_raster_value(x,out_image,out_transform)) if save == True: df_exposure = pd.DataFrame(gdf_table) df_exposure.to_csv(os.path.join(data_path,'output_exposure',country,'{}_exposure.csv'.format(region))) print ('Obtained all storm information for {}'.format(region)) return gdf_table def region_losses(region,storm_event_set=False,sample=(5, 0,95,20,80)): """Estimation of the losses for all buildings in a region for a pre-defined list of storms. Arguments: *region* (string) -- nuts code of region to consider. *storm_event_set* (bool) -- calculates all regions within a country parallel. Set to **False** if you have little capacity on the machine (default: **True**). *sample* (tuple) -- tuple of parameter values. This is a dummy placeholder, should be filled with either **load_sample(country)** values or **sens_analysis_param_list**. Returns: *pandas Dataframe* -- pandas dataframe with all buildings of the region and their **losses** for each wind storm. """ data_path = load_config()['paths']['data'] country = region[:2] #load storms if storm_event_set == False: storm_list = get_storm_list(data_path) storm_name_list = [str(int2date(get_num(x[-23:].split('_')[0][:-2]))) for x in storm_list] else: storm_list = get_event_storm_list(data_path) storm_name_list = [str(int2date(get_num(x[-24:].split('_')[0][:-4]))) for x in storm_list] #load max dam max_dam = load_max_dam(data_path) #load curves curves = load_curves(data_path) output_table = region_exposure(region,include_storms=True,event_set=storm_event_set) no_storm_columns = list(set(output_table.columns).difference(list(storm_name_list))) write_output = pd.DataFrame(output_table[no_storm_columns]) ## Calculate losses for buildings in this NUTS region for storm in storm_name_list: write_output[storm] = loss_calculation(storm,country,output_table,max_dam,curves,sample) df_losses = pd.DataFrame(write_output) ## save this regional file if storm_event_set == False: df_losses.to_csv(os.path.join(data_path,'output_losses',country,'{}_losses.csv'.format(region))) print ('Finished with loss calculation for {}'.format(region)) return(gpd.GeoDataFrame(write_output)) else: #Numpify data pdZ = np.array(df_losses[storm_name_list],dtype=int) write_output.drop(storm_name_list, axis=1, inplace=True) output_ =[] for row in pdZ: H,X1 = np.histogram(row, bins = 100, normed = True ) dx = X1[1] - X1[0] F1 = np.cumsum(np.append(0,H))*dx output_.append(metrics.auc(X1, F1)) df_losses['Risk'] = output_ df_losses.to_csv(os.path.join(data_path,'output_risk',country,'{}_risk.csv'.format(region))) print ('Finished with risk calculation for {}'.format(region)) return(gpd.GeoDataFrame(write_output)) def region_sens_analysis(region,samples,sens_analysis_storms=[],save=True): """Perform a sensitivity analysis for the specified region, based on a predefined list of storms. Arguments: *region* (string) -- nuts code of region to consider. *samples* (list) -- list o tuples, where each tuple is a **unique** set of parameter values. *sens_analysis_storms* (list) -- if empty, it will fill with default list *save* (bool) -- boolean to decide whether you want to save the output to a csv file (default: **True**) Returns: *list* -- list with the total losses per storm for all parameter combinations """ data_path = load_config()['paths']['data'] country = region[:2] # select storms to assess if len(sens_analysis_storms) == 0: sens_analysis_storms = ['19991203','19900125','20090124','20070118','19991226'] storm_list = sens_analysis_storms all_combis = list(product(samples,storm_list)) #load max dam max_dam = load_max_dam(data_path) #load curves curves = load_curves(data_path) # get exposure table output_table = region_exposure(region,include_storms=True,event_set=False,sens_analysis_storms=storm_list,save=True) # calculate losses for all combinations output_file = pd.DataFrame(index=list(range(len(samples))),columns=sens_analysis_storms) for iter_,(sample,storm) in enumerate(all_combis): output_file.loc[iter_,storm] = list(loss_calculation(storm,country,output_table,max_dam,curves,sample).sum())[0] if save == True: output_file.to_csv(os.path.join(data_path,'output_sens','{}_sens_analysis'.format(region))) return(output_file) def loss_calculation(storm,country,output_table,max_dam,curves,sample): """Calculate the losses per storm. Arguments: *storm* (string) -- date of the storm. *region* (string) -- NUTS3 code of region to consider. *output_table* (GeoDataFrame) -- GeoDataFrame with all buildings and the wind speed values for each storm. *max_dam* (numpy array) -- table with maximum damages per building type/land-use class. *curves* (pandas dataframe) -- fragility curves for the different building types. *sample* (list) -- ratios of different curves used in this study. See the **Sensitivity analysis documentation** for an explanation. Returns: *pandas Series* -- losses to all buildings for the specified storm """ max_dam_country = np.asarray(max_dam[max_dam['CODE'].str.contains(country)].iloc[:,1:],dtype='int16') df_C2 = pd.DataFrame(output_table[['AREA_m2','CLC_2012',storm]]) df_C3 =
pd.DataFrame(output_table[['AREA_m2','CLC_2012',storm]])
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels)
assert_copy(actual.labels, expected.labels)
pandas.util.testing.assert_copy
import json import os import glob import random from typing import Union try: import xarray as xr except ModuleNotFoundError: xr = None import numpy as np import pandas as pd from .datasets import Datasets from .utils import check_attributes, download, sanity_check from ai4water.utils.utils import dateandtime_now try: # shapely may not be installed, as it may be difficult to isntall and is only needed for plotting data. from ai4water.pre_processing.spatial_utils import plot_shapefile except ModuleNotFoundError: plot_shapefile = None # directory separator SEP = os.sep def gb_message(): link = "https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9" raise ValueError(f"Dwonlaoad the data from {link} and provide the directory " f"path as dataset=Camels(data=data)") class Camels(Datasets): """ Get CAMELS dataset. This class first downloads the CAMELS dataset if it is not already downloaded. Then the selected attribute for a selected id are fetched and provided to the user using the method `fetch`. Attributes ----------- - ds_dir str/path: diretory of the dataset - dynamic_features list: tells which dynamic attributes are available in this dataset - static_features list: a list of static attributes. - static_attribute_categories list: tells which kinds of static attributes are present in this category. Methods --------- - stations : returns name/id of stations for which the data (dynamic attributes) exists as list of strings. - fetch : fetches all attributes (both static and dynamic type) of all station/gauge_ids or a speficified station. It can also be used to fetch all attributes of a number of stations ids either by providing their guage_id or by just saying that we need data of 20 stations which will then be chosen randomly. - fetch_dynamic_features : fetches speficied dynamic attributes of one specified station. If the dynamic attribute is not specified, all dynamic attributes will be fetched for the specified station. If station is not specified, the specified dynamic attributes will be fetched for all stations. - fetch_static_features : works same as `fetch_dynamic_features` but for `static` attributes. Here if the `category` is not specified then static attributes of the specified station for all categories are returned. stations : returns list of stations """ DATASETS = { 'CAMELS-BR': {'url': "https://zenodo.org/record/3964745#.YA6rUxZS-Uk", }, 'CAMELS-GB': {'url': gb_message}, } def stations(self): raise NotImplementedError def _read_dynamic_from_csv(self, stations, dynamic_features, st=None, en=None): raise NotImplementedError def fetch_static_features(self, station, features): raise NotImplementedError @property def start(self): # start of data raise NotImplementedError @property def end(self): # end of data raise NotImplementedError @property def dynamic_features(self)->list: raise NotImplementedError def _check_length(self, st, en): if st is None: st = self.start if en is None: en = self.end return st, en def to_ts(self, static, st, en, as_ts=False, freq='D'): st, en = self._check_length(st, en) if as_ts: idx = pd.date_range(st, en, freq=freq) static = pd.DataFrame(np.repeat(static.values, len(idx), axis=0), index=idx, columns=static.columns) return static else: return static @property def camels_dir(self): """Directory where all camels datasets will be saved. This will under datasets directory""" return os.path.join(self.base_ds_dir, "CAMELS") @property def ds_dir(self): """Directory where a particular dataset will be saved. """ return self._ds_dir @ds_dir.setter def ds_dir(self, x): if x is None: x = os.path.join(self.camels_dir, self.__class__.__name__) if not os.path.exists(x): os.makedirs(x) # sanity_check(self.name, x) self._ds_dir = x def fetch(self, stations: Union[str, list, int, float, None] = None, dynamic_features: Union[list, str, None] = 'all', static_features: Union[str, list, None] = None, st: Union[None, str] = None, en: Union[None, str] = None, as_dataframe:bool = False, **kwargs ) -> Union[dict, pd.DataFrame]: """ Fetches the attributes of one or more stations. Arguments: stations : if string, it is supposed to be a station name/gauge_id. If list, it will be a list of station/gauge_ids. If int, it will be supposed that the user want data for this number of stations/gauge_ids. If None (default), then attributes of all available stations. If float, it will be supposed that the user wants data of this fraction of stations. dynamic_features : If not None, then it is the attributes to be fetched. If None, then all available attributes are fetched static_features : list of static attributes to be fetches. None means no static attribute will be fetched. st : starting date of data to be returned. If None, the data will be returned from where it is available. en : end date of data to be returned. If None, then the data will be returned till the date data is available. as_dataframe : whether to return dynamic attributes as pandas dataframe or as xarray dataset. kwargs : keyword arguments to read the files returns: If both static and dynamic features are obtained then it returns a dictionary whose keys are station/gauge_ids and values are the attributes and dataframes. Otherwise either dynamic or static features are returned. """ if isinstance(stations, int): # the user has asked to randomly provide data for some specified number of stations stations = random.sample(self.stations(), stations) elif isinstance(stations, list): pass elif isinstance(stations, str): stations = [stations] elif isinstance(stations, float): num_stations = int(len(self.stations()) * stations) stations = random.sample(self.stations(), num_stations) elif stations is None: # fetch for all stations stations = self.stations() else: raise TypeError(f"Unknown value provided for stations {stations}") if xr is None: raise ModuleNotFoundError("modeule xarray must be installed to use `datasets` module") return self.fetch_stations_attributes(stations, dynamic_features, static_features, st=st, en=en, as_dataframe=as_dataframe, **kwargs) def _maybe_to_netcdf(self, fname:str): self.dyn_fname = os.path.join(self.ds_dir, f'{fname}.nc') if not os.path.exists(self.dyn_fname): # saving all the data in netCDF file using xarray print(f'converting data to netcdf format for faster io operations') data = self.fetch(static_features=None) data_vars = {} coords = {} for k, v in data.items(): data_vars[k] = (['time', 'dynamic_features'], v) index = v.index index.name = 'time' coords = { 'dynamic_features': list(v.columns), 'time': index } xds = xr.Dataset( data_vars=data_vars, coords=coords, attrs={'date': f"create on {dateandtime_now()}"} ) xds.to_netcdf(self.dyn_fname) def fetch_stations_attributes(self, stations: list, dynamic_features='all', static_features=None, st=None, en=None, as_dataframe:bool = False, **kwargs): """Reads attributes of more than one stations. Arguments: stations : list of stations for which data is to be fetched. dynamic_features : list of dynamic attributes to be fetched. if 'all', then all dynamic attributes will be fetched. static_features : list of static attributes to be fetched. If `all`, then all static attributes will be fetched. If None, then no static attribute will be fetched. st : start of data to be fetched. en : end of data to be fetched. as_dataframe : whether to return the data as pandas dataframe. default is xr.dataset object kwargs dict: additional keyword arguments Returns: Dynamic and static features of multiple stations. Dynamic features are by default returned as xr.Dataset unless `as_dataframe` is True, in such a case, it is a pandas dataframe with multiindex. If xr.Dataset, it consists of `data_vars` equal to number of stations and for each station, the `DataArray` is of dimensions (time, dynamic_features). where `time` is defined by `st` and `en` i.e length of `DataArray`. In case, when the returned object is pandas DataFrame, the first index is `time` and second index is `dyanamic_features`. Static attributes are always returned as pandas DataFrame and have following shape `(stations, static_features). If `dynamic_features` is None, then they are not returned and the returned value only consists of static features. Same holds true for `static_features`. If both are not None, then the returned type is a dictionary with `static` and `dynamic` keys. Raises: ValueError, if both dynamic_features and static_features are None """ st, en = self._check_length(st, en) if dynamic_features is not None: dynamic_features = check_attributes(dynamic_features, self.dynamic_features) if not os.path.exists(self.dyn_fname): # read from csv files # following code will run only once when fetch is called inside init method dyn = self._read_dynamic_from_csv(stations, dynamic_features, st=st, en=en) else: dyn = xr.load_dataset(self.dyn_fname) # daataset dyn = dyn[stations].sel(dynamic_features=dynamic_features, time=slice(st, en)) if as_dataframe: dyn = dyn.to_dataframe(['time', 'dynamic_features']) if static_features is not None: static = self.fetch_static_features(stations, static_features) stns = {'dynamic': dyn, 'static': static} else: stns = dyn elif static_features is not None: return self.fetch_static_features(stations, static_features) else: raise ValueError return stns def fetch_dynamic_features(self, stn_id, attributes='all', st=None, en=None, as_dataframe=False): """Fetches all or selected dynamic attributes of one station.""" assert isinstance(stn_id, str) station = [stn_id] return self.fetch_stations_attributes(station, attributes, None, st=st, en=en, as_dataframe=as_dataframe) def fetch_station_attributes(self, station: str, dynamic_features: Union[str, list, None] = 'all', static_features: Union[str, list, None] = None, as_ts: bool = False, st: Union[str, None] = None, en: Union[str, None] = None, **kwargs) -> pd.DataFrame: """ Fetches attributes for one station. Arguments: station : station id/gauge id for which the data is to be fetched. dynamic_features static_features as_ts : whether static attributes are to be converted into a time series or not. If yes then the returned time series will be of same length as that of dynamic attribtues. st : starting point from which the data to be fetched. By default the data will be fetched from where it is available. en : end point of data to be fetched. By default the dat will be fetched Return: dataframe if as_ts is True else it returns a dictionary of static and dynamic attributes for a station/gauge_id """ st, en = self._check_length(st, en) station_df =
pd.DataFrame()
pandas.DataFrame
import argparse import csv import json import pandas as pd import os import re def get_example_split_set_from_id(question_id): return question_id.split('_')[1] def preprocess_input_file(input_file, lexicon_file=None, model=None): if lexicon_file: lexicon = [ json.loads(line) for line in open(lexicon_file, "r").readlines() ] else: lexicon = None examples = [] with open(input_file, encoding='utf-8') as f: lines = csv.reader(f) header = next(lines, None) num_fields = len(header) assert num_fields == 5 for i, line in enumerate(lines): assert len(line) == num_fields, "read {} fields, and not {}".format(len(line), num_fields) question_id, source, target, _, split = line split = get_example_split_set_from_id(question_id) target = process_target(target) example = {'annotation_id': '', 'question_id': question_id, 'source': source, 'target': target, 'split': split} if model: parsed = model(source) example['source_parsed'] = parsed if lexicon: assert example['source'] == lexicon[i]['source'] example['allowed_tokens'] = lexicon[i]['allowed_tokens'] examples.append(example) return examples def fix_references(string): return re.sub(r'#([1-9][0-9]?)', '@@\g<1>@@', string) def process_target(target): # replace multiple whitespaces with a single whitespace. target_new = ' '.join(target.split()) # replace semi-colons with @@SEP@@ token, remove 'return' statements. parts = target_new.split(';') new_parts = [re.sub(r'return', '', part.strip()) for part in parts] target_new = ' @@SEP@@ '.join([part.strip() for part in new_parts]) # replacing references with special tokens, for example replacing #2 with @@2@@. target_new = fix_references(target_new) return target_new.strip() def write_output_files(base_path, examples, dynamic_vocab): # Output file is suitable for the allennlp seq2seq reader and predictor. with open(base_path + '.tsv', 'w', encoding='utf-8') as fd: for example in examples: if dynamic_vocab: output = example['source'] + '\t' + example['allowed_tokens'] + '\t' + example['target'] + '\n' else: output = example['source'] + '\t' + example['target'] + '\n' fd.write(output) with open(base_path + '.json', 'w', encoding='utf-8') as fd: for example in examples: output_dict = {'source': example['source']} if dynamic_vocab: output_dict['allowed_tokens'] = example['allowed_tokens'] fd.write(json.dumps(output_dict) + '\n') print(base_path + '.tsv') print(base_path + '.json') def sample_examples(examples, configuration): df =
pd.DataFrame(examples)
pandas.DataFrame
""" This module tests high level dataset API functions which require entire datasets, indices, etc """ from collections import OrderedDict import pandas as pd import pandas.testing as pdt from kartothek.core.dataset import DatasetMetadata from kartothek.core.index import ExplicitSecondaryIndex def test_dataset_get_indices_as_dataframe_partition_keys_only( dataset_with_index, store_session ): expected = pd.DataFrame( OrderedDict([("P", [1, 2])]), index=pd.Index(["P=1/cluster_1", "P=2/cluster_2"], name="partition"), ) ds = dataset_with_index.load_partition_indices() result = ds.get_indices_as_dataframe(columns=dataset_with_index.partition_keys) pdt.assert_frame_equal(result, expected) def test_dataset_get_indices_as_dataframe(dataset_with_index, store_session): expected = pd.DataFrame( OrderedDict([("L", [1, 2]), ("P", [1, 2])]), index=pd.Index(["P=1/cluster_1", "P=2/cluster_2"], name="partition"), ) ds = dataset_with_index.load_partition_indices() ds = ds.load_index("L", store_session) result = ds.get_indices_as_dataframe() pdt.assert_frame_equal(result, expected) def test_dataset_get_indices_as_dataframe_duplicates(): ds = DatasetMetadata( "some_uuid", indices={ "l_external_code": ExplicitSecondaryIndex( "l_external_code", {"1": ["part1", "part2"], "2": ["part1", "part2"]} ), "p_external_code": ExplicitSecondaryIndex( "p_external_code", {"1": ["part1"], "2": ["part2"]} ), }, ) expected = pd.DataFrame( OrderedDict( [ ("p_external_code", ["1", "1", "2", "2"]), ("l_external_code", ["1", "2", "1", "2"]), ] ), index=pd.Index(["part1", "part1", "part2", "part2"], name="partition"), ) result = ds.get_indices_as_dataframe() pdt.assert_frame_equal(result, expected) def test_dataset_get_indices_as_dataframe_predicates(): ds = DatasetMetadata( "some_uuid", indices={ "l_external_code": ExplicitSecondaryIndex( "l_external_code", {"1": ["part1", "part2"], "2": ["part1", "part2"]} ), "p_external_code": ExplicitSecondaryIndex( "p_external_code", {"1": ["part1"], "2": ["part2"]} ), }, ) expected = pd.DataFrame( OrderedDict([("p_external_code", ["1"])]), index=pd.Index(["part1"], name="partition"), ) result = ds.get_indices_as_dataframe( columns=["p_external_code"], predicates=[[("p_external_code", "==", "1")]] ) pdt.assert_frame_equal(result, expected) result = ds.get_indices_as_dataframe( columns=["l_external_code"], predicates=[[("l_external_code", "==", "1")]] ) expected = pd.DataFrame( OrderedDict([("l_external_code", "1")]), index=pd.Index(["part1", "part2"], name="partition"), ) pdt.assert_frame_equal(result, expected) result = ds.get_indices_as_dataframe( columns=["l_external_code"], predicates=[[("l_external_code", "==", "1"), ("p_external_code", "==", "1")]], ) expected = pd.DataFrame( OrderedDict([("l_external_code", "1")]), index=
pd.Index(["part1"], name="partition")
pandas.Index
import pandas as pd def merge_train_test(train_file, test_file, output_file): train_set = pd.read_csv(train_file, encoding='gb18030') print("train_set rows :", train_set.Idx.count()) test_set = pd.read_csv(test_file, encoding='gb18030') print("test_set rows :", test_set.Idx.count()) train_set = train_set.append(test_set, ignore_index=True) train_set.fillna({"target":-1}, inplace=True) print("total rows :", train_set.Idx.count()) train_set.to_csv(output_file, index=False, encoding='utf-8') def FeatureSplit(feature_type, data_file, categorical_output_file, numerical_output_file): data =
pd.read_csv(data_file)
pandas.read_csv
"""Alpha Vantage Model""" __docformat__ = "numpy" import logging from typing import Dict, List, Tuple import numpy as np import pandas as pd import requests from alpha_vantage.fundamentaldata import FundamentalData from gamestonk_terminal import config_terminal as cfg from gamestonk_terminal.decorators import log_start_end from gamestonk_terminal.helper_funcs import long_number_format from gamestonk_terminal.rich_config import console from gamestonk_terminal.stocks.fundamental_analysis.fa_helper import clean_df_index logger = logging.getLogger(__name__) @log_start_end(log=logger) def get_overview(ticker: str) -> pd.DataFrame: """Get alpha vantage company overview Parameters ---------- ticker : str Stock ticker Returns ------- pd.DataFrame Dataframe of fundamentals """ # Request OVERVIEW data from Alpha Vantage API s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" result = requests.get(s_req, stream=True) # If the returned data was successful if result.status_code == 200: # Parse json data to dataframe if "Note" in result.json(): console.print(result.json()["Note"], "\n") return pd.DataFrame() df_fa = pd.json_normalize(result.json()) # Keep json data sorting in dataframe df_fa = df_fa[list(result.json().keys())].T df_fa.iloc[5:] = df_fa.iloc[5:].applymap(lambda x: long_number_format(x)) clean_df_index(df_fa) df_fa = df_fa.rename( index={ "E b i t d a": "EBITDA", "P e ratio": "PE ratio", "P e g ratio": "PEG ratio", "E p s": "EPS", "Revenue per share t t m": "Revenue per share TTM", "Operating margin t t m": "Operating margin TTM", "Return on assets t t m": "Return on assets TTM", "Return on equity t t m": "Return on equity TTM", "Revenue t t m": "Revenue TTM", "Gross profit t t m": "Gross profit TTM", "Diluted e p s t t m": "Diluted EPS TTM", "Quarterly earnings growth y o y": "Quarterly earnings growth YOY", "Quarterly revenue growth y o y": "Quarterly revenue growth YOY", "Trailing p e": "Trailing PE", "Forward p e": "Forward PE", "Price to sales ratio t t m": "Price to sales ratio TTM", "E v to revenue": "EV to revenue", "E v to e b i t d a": "EV to EBITDA", } ) return df_fa return pd.DataFrame() @log_start_end(log=logger) def get_key_metrics(ticker: str) -> pd.DataFrame: """Get key metrics from overview Parameters ---------- ticker : str Stock ticker Returns ------- pd.DataFrame Dataframe of key metrics """ # Request OVERVIEW data s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" result = requests.get(s_req, stream=True) # If the returned data was successful if result.status_code == 200: df_fa = pd.json_normalize(result.json()) df_fa = df_fa[list(result.json().keys())].T df_fa = df_fa.applymap(lambda x: long_number_format(x)) clean_df_index(df_fa) df_fa = df_fa.rename( index={ "E b i t d a": "EBITDA", "P e ratio": "PE ratio", "P e g ratio": "PEG ratio", "E p s": "EPS", "Return on equity t t m": "Return on equity TTM", "Price to sales ratio t t m": "Price to sales ratio TTM", } ) as_key_metrics = [ "Market capitalization", "EBITDA", "EPS", "PE ratio", "PEG ratio", "Price to book ratio", "Return on equity TTM", "Price to sales ratio TTM", "Dividend yield", "50 day moving average", "Analyst target price", "Beta", ] return df_fa.loc[as_key_metrics] return pd.DataFrame() @log_start_end(log=logger) def get_income_statements( ticker: str, number: int, quarterly: bool = False ) -> pd.DataFrame: """Get income statements for company Parameters ---------- ticker : str Stock ticker number : int Number of past to get quarterly : bool, optional Flag to get quarterly instead of annual, by default False Returns ------- pd.DataFrame Dataframe of income statements """ url = f"https://www.alphavantage.co/query?function=INCOME_STATEMENT&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" r = requests.get(url) if r.status_code == 200: statements = r.json() df_fa = pd.DataFrame() if quarterly: if "quarterlyReports" in statements: df_fa = pd.DataFrame(statements["quarterlyReports"]) else: if "annualReports" in statements: df_fa = pd.DataFrame(statements["annualReports"]) if df_fa.empty: return pd.DataFrame() df_fa = df_fa.set_index("fiscalDateEnding") df_fa = df_fa.head(number) df_fa = df_fa.applymap(lambda x: long_number_format(x)) return df_fa[::-1].T return pd.DataFrame() @log_start_end(log=logger) def get_balance_sheet( ticker: str, number: int, quarterly: bool = False ) -> pd.DataFrame: """Get balance sheets for company Parameters ---------- ticker : str Stock ticker number : int Number of past to get quarterly : bool, optional Flag to get quarterly instead of annual, by default False Returns ------- pd.DataFrame Dataframe of income statements """ url = f"https://www.alphavantage.co/query?function=BALANCE_SHEET&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" r = requests.get(url) if r.status_code == 200: statements = r.json() df_fa = pd.DataFrame() if quarterly: if "quarterlyReports" in statements: df_fa = pd.DataFrame(statements["quarterlyReports"]) else: if "annualReports" in statements: df_fa = pd.DataFrame(statements["annualReports"]) if df_fa.empty: return pd.DataFrame() df_fa = df_fa.set_index("fiscalDateEnding") df_fa = df_fa.head(number) df_fa = df_fa.applymap(lambda x: long_number_format(x)) return df_fa[::-1].T return pd.DataFrame() @log_start_end(log=logger) def get_cash_flow(ticker: str, number: int, quarterly: bool = False) -> pd.DataFrame: """Get cash flows for company Parameters ---------- ticker : str Stock ticker number : int Number of past to get quarterly : bool, optional Flag to get quarterly instead of annual, by default False Returns ------- pd.DataFrame Dataframe of income statements """ url = f"https://www.alphavantage.co/query?function=CASH_FLOW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" r = requests.get(url) if r.status_code == 200: statements = r.json() df_fa = pd.DataFrame() if quarterly: if "quarterlyReports" in statements: df_fa = pd.DataFrame(statements["quarterlyReports"]) else: if "annualReports" in statements: df_fa =
pd.DataFrame(statements["annualReports"])
pandas.DataFrame
# =============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import logging import os import subprocess from pathlib import Path from typing import Any import numpy as np import pandas as pd from sklearn.datasets import fetch_openml, load_svmlight_file from sklearn.model_selection import train_test_split from .loader_utils import retrieve def a_nine_a(dataset_dir: Path) -> bool: """ Author: <NAME>","<NAME> libSVM","AAD group Source: original - Date unknown Site: http://archive.ics.uci.edu/ml/datasets/Adult Classification task. n_classes = 2. a9a X train dataset (39073, 123) a9a y train dataset (39073, 1) a9a X test dataset (9769, 123) a9a y test dataset (9769, 1) """ dataset_name = 'a9a' os.makedirs(dataset_dir, exist_ok=True) X, y = fetch_openml(name='a9a', return_X_y=True, as_frame=False, data_home=dataset_dir) X = pd.DataFrame(X.todense()) y = pd.DataFrame(y) y[y == -1] = 0 logging.info(f'{dataset_name} is loaded, started parsing...') x_train, x_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=11) for data, name in zip((x_train, x_test, y_train, y_test), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) logging.info(f'dataset {dataset_name} is ready.') return True def airline(dataset_dir: Path) -> bool: """ Airline dataset http://kt.ijs.si/elena_ikonomovska/data.html TaskType:binclass NumberOfFeatures:13 NumberOfInstances:115M """ dataset_name = 'airline' os.makedirs(dataset_dir, exist_ok=True) url = 'http://kt.ijs.si/elena_ikonomovska/datasets/airline/airline_14col.data.bz2' local_url = os.path.join(dataset_dir, os.path.basename(url)) if not os.path.isfile(local_url): logging.info(f'Started loading {dataset_name}') retrieve(url, local_url) logging.info(f'{dataset_name} is loaded, started parsing...') cols = [ "Year", "Month", "DayofMonth", "DayofWeek", "CRSDepTime", "CRSArrTime", "UniqueCarrier", "FlightNum", "ActualElapsedTime", "Origin", "Dest", "Distance", "Diverted", "ArrDelay" ] # load the data as int16 dtype = np.int16 dtype_columns = { "Year": dtype, "Month": dtype, "DayofMonth": dtype, "DayofWeek": dtype, "CRSDepTime": dtype, "CRSArrTime": dtype, "FlightNum": dtype, "ActualElapsedTime": dtype, "Distance": dtype, "Diverted": dtype, "ArrDelay": dtype, } df: Any = pd.read_csv(local_url, names=cols, dtype=dtype_columns) # Encode categoricals as numeric for col in df.select_dtypes(['object']).columns: df[col] = df[col].astype("category").cat.codes # Turn into binary classification problem df["ArrDelayBinary"] = 1 * (df["ArrDelay"] > 0) X = df[df.columns.difference(["ArrDelay", "ArrDelayBinary"]) ].to_numpy(dtype=np.float32) y = df["ArrDelayBinary"].to_numpy(dtype=np.float32) del df X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=77, test_size=0.2, ) for data, name in zip((X_train, X_test, y_train, y_test), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) logging.info(f'dataset {dataset_name} is ready.') return True def airline_ohe(dataset_dir: Path) -> bool: """ Dataset from szilard benchmarks: https://github.com/szilard/GBM-perf TaskType:binclass NumberOfFeatures:700 NumberOfInstances:10100000 """ dataset_name = 'airline-ohe' os.makedirs(dataset_dir, exist_ok=True) url_train = 'https://s3.amazonaws.com/benchm-ml--main/train-10m.csv' url_test = 'https://s3.amazonaws.com/benchm-ml--main/test.csv' local_url_train = os.path.join(dataset_dir, os.path.basename(url_train)) local_url_test = os.path.join(dataset_dir, os.path.basename(url_test)) if not os.path.isfile(local_url_train): logging.info(f'Started loading {dataset_name} train') retrieve(url_train, local_url_train) if not os.path.isfile(local_url_test): logging.info(f'Started loading {dataset_name} test') retrieve(url_test, local_url_test) logging.info(f'{dataset_name} is loaded, started parsing...') sets = [] labels = [] categorical_names = ["Month", "DayofMonth", "DayOfWeek", "UniqueCarrier", "Origin", "Dest"] for local_url in [local_url_train, local_url_test]: df = pd.read_csv(local_url, nrows=1000000 if local_url.endswith('train-10m.csv') else None) X = df.drop('dep_delayed_15min', 1) y: Any = df["dep_delayed_15min"] y_num = np.where(y == "Y", 1, 0) sets.append(X) labels.append(y_num) n_samples_train = sets[0].shape[0] X_final: Any = pd.concat(sets) X_final = pd.get_dummies(X_final, columns=categorical_names) sets = [X_final[:n_samples_train], X_final[n_samples_train:]] for data, name in zip((sets[0], sets[1], labels[0], labels[1]), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) # type: ignore logging.info(f'dataset {dataset_name} is ready.') return True def bosch(dataset_dir: Path) -> bool: """ Bosch Production Line Performance data set https://www.kaggle.com/c/bosch-production-line-performance Requires Kaggle API and API token (https://github.com/Kaggle/kaggle-api) Contains missing values as NaN. TaskType:binclass NumberOfFeatures:968 NumberOfInstances:1.184M """ dataset_name = 'bosch' os.makedirs(dataset_dir, exist_ok=True) filename = "train_numeric.csv.zip" local_url = os.path.join(dataset_dir, filename) if not os.path.isfile(local_url): logging.info(f'Started loading {dataset_name}') args = ["kaggle", "competitions", "download", "-c", "bosch-production-line-performance", "-f", filename, "-p", str(dataset_dir)] _ = subprocess.check_output(args) logging.info(f'{dataset_name} is loaded, started parsing...') X = pd.read_csv(local_url, index_col=0, compression='zip', dtype=np.float32) y = X.iloc[:, -1].to_numpy(dtype=np.float32) X.drop(X.columns[-1], axis=1, inplace=True) X_np = X.to_numpy(dtype=np.float32) X_train, X_test, y_train, y_test = train_test_split(X_np, y, random_state=77, test_size=0.2, ) for data, name in zip((X_train, X_test, y_train, y_test), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) logging.info(f'dataset {dataset_name} is ready.') return True def census(dataset_dir: Path) -> bool: """ # TODO: add an loading instruction """ return False def codrnanorm(dataset_dir: Path) -> bool: """ Abstract: Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. Author: <NAME>,<NAME>,<NAME>. Source: [original](http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets) Classification task. n_classes = 2. codrnanorm X train dataset (390852, 8) codrnanorm y train dataset (390852, 1) codrnanorm X test dataset (97713, 8) codrnanorm y test dataset (97713, 1) """ dataset_name = 'codrnanorm' os.makedirs(dataset_dir, exist_ok=True) X, y = fetch_openml(name='codrnaNorm', return_X_y=True, as_frame=False, data_home=dataset_dir) X = pd.DataFrame(X.todense()) y = pd.DataFrame(y) logging.info(f'{dataset_name} is loaded, started parsing...') x_train, x_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42) for data, name in zip((x_train, x_test, y_train, y_test), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) logging.info(f'dataset {dataset_name} is ready.') return True def epsilon(dataset_dir: Path) -> bool: """ Epsilon dataset https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html TaskType:binclass NumberOfFeatures:2000 NumberOfInstances:500K """ dataset_name = 'epsilon' os.makedirs(dataset_dir, exist_ok=True) url_train = 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary' \ '/epsilon_normalized.bz2' url_test = 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary' \ '/epsilon_normalized.t.bz2' local_url_train = os.path.join(dataset_dir, os.path.basename(url_train)) local_url_test = os.path.join(dataset_dir, os.path.basename(url_test)) if not os.path.isfile(local_url_train): logging.info(f'Started loading {dataset_name}, train') retrieve(url_train, local_url_train) if not os.path.isfile(local_url_test): logging.info(f'Started loading {dataset_name}, test') retrieve(url_test, local_url_test) logging.info(f'{dataset_name} is loaded, started parsing...') X_train, y_train = load_svmlight_file(local_url_train, dtype=np.float32) X_test, y_test = load_svmlight_file(local_url_test, dtype=np.float32) X_train = X_train.toarray() X_test = X_test.toarray() y_train[y_train <= 0] = 0 y_test[y_test <= 0] = 0 for data, name in zip((X_train, X_test, y_train, y_test), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) logging.info(f'dataset {dataset_name} is ready.') return True def fraud(dataset_dir: Path) -> bool: """ Credit Card Fraud Detection contest https://www.kaggle.com/mlg-ulb/creditcardfraud Requires Kaggle API and API token (https://github.com/Kaggle/kaggle-api) Contains missing values as NaN. TaskType:binclass NumberOfFeatures:28 NumberOfInstances:285K """ dataset_name = 'fraud' os.makedirs(dataset_dir, exist_ok=True) filename = "creditcard.csv" local_url = os.path.join(dataset_dir, filename) if not os.path.isfile(local_url): logging.info(f'Started loading {dataset_name}') args = ["kaggle", "datasets", "download", "mlg-ulb/creditcardfraud", "-f", filename, "-p", str(dataset_dir)] _ = subprocess.check_output(args) logging.info(f'{dataset_name} is loaded, started parsing...') df = pd.read_csv(local_url + ".zip", dtype=np.float32) X = df[[col for col in df.columns if col.startswith('V')]].to_numpy(dtype=np.float32) y = df['Class'].to_numpy(dtype=np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=77, test_size=0.2, ) for data, name in zip((X_train, X_test, y_train, y_test), ('x_train', 'x_test', 'y_train', 'y_test')): filename = f'{dataset_name}_{name}.npy' np.save(os.path.join(dataset_dir, filename), data) logging.info(f'dataset {dataset_name} is ready.') return True def gisette(dataset_dir: Path) -> bool: """ GISETTE is a handwritten digit recognition problem. The problem is to separate the highly confusable digits '4' and '9'. This dataset is one of five datasets of the NIPS 2003 feature selection challenge. Classification task. n_classes = 2. gisette X train dataset (6000, 5000) gisette y train dataset (6000, 1) gisette X test dataset (1000, 5000) gisette y test dataset (1000, 1) """ dataset_name = 'gisette' os.makedirs(dataset_dir, exist_ok=True) cache_dir = os.path.join(dataset_dir, '_gisette') os.makedirs(cache_dir, exist_ok=True) domen_hhtp = 'http://archive.ics.uci.edu/ml/machine-learning-databases/' gisette_train_data_url = domen_hhtp + '/gisette/GISETTE/gisette_train.data' filename_train_data = os.path.join(cache_dir, 'gisette_train.data') if not os.path.exists(filename_train_data): retrieve(gisette_train_data_url, filename_train_data) gisette_train_labels_url = domen_hhtp + '/gisette/GISETTE/gisette_train.labels' filename_train_labels = os.path.join(cache_dir, 'gisette_train.labels') if not os.path.exists(filename_train_labels): retrieve(gisette_train_labels_url, filename_train_labels) gisette_test_data_url = domen_hhtp + '/gisette/GISETTE/gisette_valid.data' filename_test_data = os.path.join(cache_dir, 'gisette_valid.data') if not os.path.exists(filename_test_data): retrieve(gisette_test_data_url, filename_test_data) gisette_test_labels_url = domen_hhtp + '/gisette/gisette_valid.labels' filename_test_labels = os.path.join(cache_dir, 'gisette_valid.labels') if not os.path.exists(filename_test_labels): retrieve(gisette_test_labels_url, filename_test_labels) logging.info(f'{dataset_name} is loaded, started parsing...') num_cols = 5000 df_train =
pd.read_csv(filename_train_data, header=None)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu May 6 21:26:21 2021 @author: Gary """ import pandas as pd import numpy as np large_perc_value = 50 lower_perc_tolerance = 95 upper_perc_tolerance = 105 massComp_upper_limit = 0.1 # def rec_has_it(rec,place): # if 'within_total_tolerance' in list(rec.columns): # print(f'rec_df has "wi_tot_tol" at <{place}>') def calc_overall_percentages(rec_df,disc_df): # valid CAS here must include proprietary and carriers because they should be included in valid # percentages. rec_df['is_valid_cas'] = rec_df.bgCAS.str[0].isin(['0','1','2','3','4', '5','6','7','8','9']) rec_df.is_valid_cas = np.where(rec_df.bgCAS.isin(['proprietary','conflictingID']), True,rec_df.is_valid_cas) valid = rec_df[rec_df.is_valid_cas|rec_df.is_water_carrier]\ .groupby('UploadKey',as_index=False)['PercentHFJob'].sum() valid.columns = ['UploadKey','total_percent_of_valid'] c1 = valid.total_percent_of_valid>lower_perc_tolerance c2 = valid.total_percent_of_valid<upper_perc_tolerance valid['within_total_tolerance'] =c2&c1 if 'within_total_tolerance' in disc_df.columns: disc_df = disc_df.drop(['within_total_tolerance'],axis=1) allrecs = rec_df.groupby('UploadKey',as_index=False)['PercentHFJob'].sum() allrecs.columns = ['UploadKey','total_percent_all_records'] disc_df = pd.merge(disc_df,valid,on='UploadKey',how='left') disc_df =
pd.merge(disc_df,allrecs,on='UploadKey',how='left')
pandas.merge
import pandas as pd import json from jsonschema import validate from os import path import sys import PySimpleGUI as sg raw_data = None class_list = None DayInfo = None delta_max = None UUID_to_email = None def set_data_vars(data_path, json_path): """ Sets global data variables to be used in ``ElementCollection.py`` and ``Main.py``, including * raw_data: the dataframe read from the raw data's csv * class_list: list of unique emails from raw_data (we assume this is acceptable as a list of everyone in the class) * DayInfo: the JSON data imported into the program, if the user uses a JSON input :param data_path: path to the raw_data csv :param json_path: path to the JSON file, or -1 if the user isn't using a JSON file to provide H5P IDs """ global raw_data global class_list global DayInfo global delta_max global UUID_to_email raw_data =
pd.read_csv(data_path)
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt import ast from IPython.display import display from matplotlib.patches import Ellipse import math # path imports from astropy.coordinates import SkyCoord from astropath import path from astropath import localization from astropath import chance from astropath import bayesian def get_candidates(frb_loc, r, true_gal=-1, gal_cat=None): '''Helper function for single_path, grabs all galaxies withing a certain radius from a central loc''' radius = r/3600 dec = gal_cat[np.logical_and(gal_cat['dec'] < frb_loc[1]+radius, gal_cat['dec'] > frb_loc[1]-radius)] candidates = dec[np.logical_and(dec['ra'] < frb_loc[0]+radius, dec['ra'] > frb_loc[0]-radius)] return candidates def single_path(frb, cand_info, offset_info, search_rad=15, plot=False, gal_cat=None): ''' Runs PATH for a single frb given assumed priors, p_u, and search radius. Plotting returns all the candidates colored by their association probability. The orange ring is the frb ellipse, green ring means there was a correct association if there is an incorrect association the guessed galaxy will be red and the true will be cyan Parameters: frb (arr) containing the values of a single row from the output of sim_frbs cand_info (tuple) (unknown probability (float), keyword for Aggarwal cand_priors) offset_info (tuple) (maximum size (int), keyword for Aggarwal off_priors (str)) search_rad (int) radius to search around frb in arcsec plot (boolean) True plots Returns: dataframe of candidates, and thier association probabilities Example: candidates = single_path(frbs.iloc[22], (0., 'inverse'), (6, 'exp'), search_rad=7, plot=True) ''' Path = path.PATH() # init frb frb_coord = SkyCoord(frb[0], frb[1], unit='deg') eellipse = dict(a=frb[2], b=frb[2], theta=0.) Path.init_localization('eellipse', center_coord=frb_coord, eellipse=eellipse) # init candidates candidates = get_candidates((frb_coord.ra.value, frb_coord.dec.value), search_rad, gal_cat=gal_cat) Path.init_candidates(candidates.ra.values, candidates.dec.values, candidates.diskSize.values, mag=candidates.Rc.values, sfr=candidates.sfr.values) # init priors P_u, cand_pdf = cand_info mx, off_pdf = offset_info Path.init_cand_prior(cand_pdf, P_U=P_u) Path.init_theta_prior(off_pdf, mx) # calculating Path.calc_priors() P_Ox, P_Ux = Path.calc_posteriors('fixed', box_hwidth=30., max_radius=30) # adding true galaxy index to results df Path.candidates['gal_Index'] = candidates.index # adding probabilities to candidates for easier plotting candidates['pOx'] = Path.candidates['P_Ox'].values if plot: figure, axes = plt.subplots(figsize=(10, 10)) display(candidates[candidates['pOx']>.05]) # plotting galaxies based on probability for i in candidates.sort_values('diskSize', ascending=False).values: axes.add_patch(plt.Circle((i[0], i[1]), i[3]/3600, facecolor=plt.cm.Blues(i[-1]), alpha=1, edgecolor='k')) # circle outlines for frbs, true_gal, guessed_gal axes.add_patch(plt.Circle((frb[0], frb[1]), frb[2]/3600, fill=False, color='tab:orange', linewidth=2)) tru = gal_cat[gal_cat.index == frb[-1]].values[0] # getting tru_gal variables axes.add_patch(plt.Circle((tru[0], tru[1]), tru[3]/3600, fill=False, edgecolor='tab:cyan', linewidth=2)) best_index = Path.candidates[Path.candidates.P_Ox == Path.candidates.P_Ox.max()]['gal_Index'].values[0] best = gal_cat[gal_cat.index == best_index].values[0] # getting best_gal variables if frb[-1]==best_index: axes.add_patch(plt.Circle((best[0], best[1]), best[3]/3600, fill=False, edgecolor='tab:green', linewidth=2)) else: axes.add_patch(plt.Circle((best[0], best[1]), best[3]/3600, fill=False, edgecolor='tab:red', linewidth=2)) # making color map colors = candidates.pOx.values colors[-1] = 1. plt.scatter(candidates.ra.values, candidates.dec.values, c=colors, alpha=1) plt.gca().set_aspect('equal', adjustable='box') plt.colorbar() return Path.candidates def multiple_path(frbs, cand_info, offset_info, search_rad=15, save=None, plot=False, gal_cat=None): ''' Runs path for an entire catalog of frbs, saves in csv Parameters: frbs (arr) output of sim_frbs cand_info (tuple) (unknown probability (float), keyword for Aggarwal cand_priors) offset_info (tuple) (maximum size (int), keyword for Aggarwal off_priors (str)) search_rad (int) radius to search around frb in arcsec save (str) filename which will be appended with the length of the input frb cat plot (boolean) True plots Returns: dataframe of important statistics for analysis Example: multiple_path(frbs, (0.05, 'inverse'), (6, 'exp'), search_rad=7, save='inverse', gal_cat=galaxies) ''' stats = [] count = 0 for i, r in frbs.iterrows(): results = single_path(r, cand_info, offset_info, search_rad=search_rad, plot=False, gal_cat=gal_cat) pox = results.P_Ox.values true_gal = r[-1] best_gal = results[results.P_Ox == results.P_Ox.max()]['gal_Index'].values[0] stats.append([pox[pox > .01], max(pox), best_gal==true_gal, true_gal, len(results)]) count += 1 if count%500==0: print('{} '.format(count), end='') stat =
pd.DataFrame(stats, columns=['all_pOx', 'max_pOx', 'correct', 'gal_Index', 'num_cand'])
pandas.DataFrame
import pandas as pd import datetime import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from pandas.plotting import scatter_matrix import yfinance as yf #import talib #%matplotlib inline start = '2017-02-19' end = '2022-2-19' sp500 = yf.download('^GSPC', start, end) # Moving Averages https://www.analyticsvidhya.com/blog/2021/07/stock-prices-analysis-with-python/#h2_5 def MA(data_frame, days): name = 'MA'+str(days) data_frame[name] = data_frame['close'].rolling(days).mean() return data_frame # RSI https://wire.insiderfinance.io/calculate-rsi-with-python-and-yahoo-finance-c8fb78b1c199 def RSI(data, window = 14, adjust = False): delta = data['Close'].diff(1).dropna() loss = delta.copy() gains = delta.copy() gains[gains < 0] = 0 loss[loss > 0] = 0 gain_ewm = gains.ewm(com = window - 1, adjust = adjust).mean() loss_ewm = abs(loss.ewm(com = window - 1, adjust = adjust).mean()) RS = gain_ewm / loss_ewm RSI = 100 - 100/ (1 + RS) return RSI reversed_df = sp500.iloc[::-1] #sp500['RSI'] = talib.RSI(reversed_df['Close'], 14) locator = mdates.MonthLocator(interval = 3) fmt = mdates.DateFormatter('%b') #KDJ https://github.com/Abhay64/KDJ-Indicator array_close = np.array(sp500['Close']) array_high = np.array(sp500['High']) array_low = np.array(sp500['Low']) z = 0 y = 0 highest = 0 lowest = 0 kperiods = 13 #kperiods are 14 array start from 0 index array_highest = [] array_lowest = [] for i in range(0, array_high.size - kperiods): highest = array_high[y] for j in range(0, kperiods): if(highest < array_high[y + 1]): highest = array_high[y + 1] y = y + 1 # creating list highest of k periods array_highest.append(highest) y = y - (kperiods - 1) for i in range(0, array_low.size - kperiods): lowest = array_low[z] for j in range(0, kperiods): if(lowest > array_low[z + 1]): lowest = array_low[z + 1] z = z + 1 # creating list lowest of k periods array_lowest.append(lowest) # skip one from starting after each iteration z = z - (kperiods - 1) #KDJ (K line, D line, J line) # K line Kvalue = [] for i in range(kperiods,array_close.size): k = ((array_close[i] - array_lowest[i - kperiods]) * 100 / (array_highest[i - kperiods] - array_lowest[i - kperiods])) Kvalue.append(k) sp500['K'] = pd.Series(Kvalue) # D line x = 0 # dperiods for calculate d values dperiods = 3 Dvalue = [None, None] mean = 0 for i in range(0, len(Kvalue) - dperiods + 1): sum = 0 for j in range(0, dperiods): sum = Kvalue[x] + sum x = x + 1 mean = sum / dperiods # d values for %d line adding in the list Dvalue Dvalue.append(mean) # skip one from starting after each iteration x = x - (dperiods - 1) sp500['D'] = pd.Series(Dvalue) # J line Jvalue = [None, None] for i in range(0, len(Dvalue) - dperiods + 1): j = (Dvalue[i + 2] * 3) - (Kvalue[i + 2] * 2) # j values for %j line Jvalue.append(j) sp500['J'] =
pd.Series(Jvalue)
pandas.Series
""" Prepare training and testing datasets as CSV dictionaries 2.0 Created on 04/26/2019; modified on 11/06/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np import re # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store', 'dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 def tile_ids_in(inp): ids = [] try: for id in os.listdir(inp['path']): if '_{}.png'.format(str(inp['sldnum'])) in id: ids.append([inp['slide'], inp['level'], inp['path']+'/'+id, inp['BMI'], inp['age'], inp['label']]) except FileNotFoundError: print('Ignore:', inp['path']) return ids # pair tiles of 10x, 5x, 2.5x of the same area def paired_tile_ids_in(patient, slide, tumor, label, root_dir): dira = os.path.isdir(root_dir + 'level1') dirb = os.path.isdir(root_dir + 'level2') dirc = os.path.isdir(root_dir + 'level3') if dira and dirb and dirc: fac = 1000 ids = [] for level in range(1, 4): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('.p', id.split('y-', 1)[1])[0]) / fac) ids.append([patient, slide, tumor, label, level, dirr + '/' + id, x, y]) ids = pd.DataFrame(ids, columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'level', 'path', 'x', 'y']) idsa = ids.loc[ids['level'] == 1] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L1path"}) idsb = ids.loc[ids['level'] == 2] idsb = idsb.drop(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L2path"}) idsc = ids.loc[ids['level'] == 3] idsc = idsc.drop(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L3path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) else: print('Pass: ', root_dir) idsa = pd.DataFrame(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'L1path', 'L2path', 'L3path']) return idsa # Prepare label at per patient level def big_image_sum(label_col, path, ref_file, pdmd='tumor', exclude=None): ref = pd.read_csv(ref_file, header=0) big_images = [] ref = ref.loc[ref[label_col].notna()] for idx, row in ref.iterrows(): big_images.append([row['Patient_ID'], row['Slide_ID'], row['Tumor'], path + "/{}/{}/{}/".format(str(row['Tumor']), str(row['Patient_ID']), row['Slide_ID'].split('-')[-1]), row[label_col]]) datapd = pd.DataFrame(big_images, columns=['Patient_ID', 'Slide_ID', 'Tumor', 'path', 'label']) datapd = datapd.dropna() if exclude: datapd = datapd[~datapd['Tumor'].isin(exclude)] if pdmd != 'origin': rm = [] for tu in list(datapd.Tumor.unique()): for lb in list(datapd.label.unique()): if datapd.loc[(datapd['Tumor'] == tu) & (datapd['label'] == lb)].shape[0] < 3: rm.append(tu) datapd = datapd[~datapd['Tumor'].isin(rm)] print('Remove rare case cancer types if any: ', rm, flush=True) return datapd # seperate into training and testing; each type is the same separation ratio on big images # test and train csv files contain tiles' path. def set_sep(alll, path, cut=0.3): trlist = [] telist = [] valist = [] for tm in list(alll.Tumor.unique()): sub = alll[alll['Tumor'] == tm] unq = list(sub.Patient_ID.unique()) np.random.shuffle(unq) validation = unq[:np.max([int(len(unq) * cut / 2), 1])] valist.append(sub[sub['Patient_ID'].isin(validation)]) test = unq[np.max([int(len(unq) * cut / 2), 1]):np.max([int(len(unq) * cut), 2])] telist.append(sub[sub['Patient_ID'].isin(test)]) train = unq[np.max([int(len(unq) * cut), 2]):] trlist.append(sub[sub['Patient_ID'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test.to_csv(path + '/te_sample_raw.csv', header=True, index=False) train.to_csv(path + '/tr_sample_raw.csv', header=True, index=False) validation.to_csv(path + '/va_sample_raw.csv', header=True, index=False) test_tiles = pd.DataFrame(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'L1path', 'L2path', 'L3path']) train_tiles = pd.DataFrame(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'L1path', 'L2path', 'L3path']) validation_tiles = pd.DataFrame(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'L1path', 'L2path', 'L3path']) for idx, row in test.iterrows(): tile_ids = paired_tile_ids_in(row['Patient_ID'], row['Slide_ID'], row['Tumor'], row['label'], row['path']) test_tiles = pd.concat([test_tiles, tile_ids]) for idx, row in train.iterrows(): tile_ids = paired_tile_ids_in(row['Patient_ID'], row['Slide_ID'], row['Tumor'], row['label'], row['path']) train_tiles = pd.concat([train_tiles, tile_ids]) for idx, row in validation.iterrows(): tile_ids = paired_tile_ids_in(row['Patient_ID'], row['Slide_ID'], row['Tumor'], row['label'], row['path']) validation_tiles = pd.concat([validation_tiles, tile_ids]) # No shuffle on test set train_tiles = sku.shuffle(train_tiles) validation_tiles = sku.shuffle(validation_tiles) test_tiles = test_tiles.sort_values(by=['Tumor', 'Slide_ID'], ascending=True) test_tiles.to_csv(path+'/te_sample_full.csv', header=True, index=False) train_tiles.to_csv(path+'/tr_sample_full.csv', header=True, index=False) validation_tiles.to_csv(path+'/va_sample_full.csv', header=True, index=False) # TO KEEP SPLIT SAME AS BASELINES. seperate into training and testing; each type is the same separation # ratio on big images test and train csv files contain tiles' path. def set_sep_secondary(path, label_col, splitfile, exclude=None): split = pd.read_csv(splitfile, header=0) test = split[split['set'] == 'test'] test = test.drop(columns=['set']) train = split[split['set'] == 'train'] train = train.drop(columns=['set']) validation = split[split['set'] == 'validation'] validation = validation.drop(columns=['set']) test.to_csv(path + '/te_sample_raw.csv', header=True, index=False) train.to_csv(path + '/tr_sample_raw.csv', header=True, index=False) validation.to_csv(path + '/va_sample_raw.csv', header=True, index=False) test_tiles =
pd.DataFrame(columns=['Patient_ID', 'Slide_ID', 'Tumor', 'label', 'L1path', 'L2path', 'L3path'])
pandas.DataFrame
from numpy.ma import add import pandas as pd import numpy as np np.seterr(divide='ignore') import scipy.signal as signal import scipy.stats as stats import matplotlib.pyplot as plt import statsmodels import statsmodels.api as sm import statsmodels.formula.api as smf import statsmodels.stats.multitest as multi from scipy.optimize import curve_fit from statsmodels.sandbox.regression.predstd import wls_prediction_std from scipy.stats import percentileofscore from scipy.stats import circstd, circmean import copy import itertools from matplotlib.lines import Line2D from random import sample import os from skopt.space import Space from skopt.sampler import Lhs def periodogram_df(df, folder = '', **kwargs): names = list(df.test.unique()) names.sort() for name in names: x, y = np.array(df[df.test == name].x), np.array(df[df.test == name].y) if folder: save_to = os.path.join(folder, "per_" + name) else: save_to = "" periodogram(x,y, save_to = save_to, name=name, **kwargs) def periodogram(X, Y, per_type='per', sampling_f = '', logscale = False, name = '', save_to = '', prominent = False, max_per = 240): if per_type == 'per' or per_type == 'welch': X_u = np.unique(X) Y_u = [] for x_u in X_u: #y_u.append(np.mean(y[t == x])) Y_u.append(np.median(Y[x_u == X])) if not sampling_f: sampling_f = 1/(X[1]-X[0]) Y = Y_u if per_type == 'per': # Fourier f, Pxx_den = signal.periodogram(Y,sampling_f) elif per_type =='welch': # Welch f, Pxx_den = signal.welch(Y,sampling_f) elif per_type == 'lombscargle': # Lomb-Scargle min_per = 2 #max_per = 50 f = np.linspace(1/max_per, 1/min_per, 10) Pxx_den = signal.lombscargle(X, Y, f) else: print("Invalid option") return # significance # Refinetti et al. 2007 p_t = 0.05 N = len(Y) T = (1 - (p_t/N)**(1/(N-1))) * sum(Pxx_den) # threshold for significance if f[0] == 0: per = 1/f[1:] Pxx = Pxx_den[1:] else: per = 1/f Pxx = Pxx_den Pxx = Pxx[per <= max_per] per = per[per <= max_per] try: if logscale: plt.semilogx(per, Pxx, 'ko') plt.semilogx(per, Pxx, 'k--', linewidth=0.5) plt.semilogx([min(per), max(per)], [T, T], 'k--', linewidth=1) else: plt.plot(per, Pxx, 'ko') plt.plot(per, Pxx, 'k--', linewidth=0.5) plt.plot([min(per), max(per)], [T, T], 'k--', linewidth=1) except: print("Could not plot!") return peak_label = '' if prominent: locs, heights = signal.find_peaks(Pxx, height = T) if any(locs): heights = heights['peak_heights'] s = list(zip(heights, locs)) s.sort(reverse=True) heights, locs = zip(*s) heights = np.array(heights) locs = np.array(locs) peak_label = ', max peak=' + str(per[locs[0]]) else: locs = Pxx >= T if any(locs): heights, locs = Pxx[locs], per[locs] HL = list(zip(heights, locs)) HL.sort(reverse = True) heights, locs = zip(*HL) peak_label = ', peaks=\n' locs = locs[:11] for loc in locs[:-1]: peak_label += "{:.2f}".format(loc) + ',' peak_label += "{:.2f}".format(locs[-1]) plt.xlabel('period [hours]') plt.ylabel('PSD') plt.title(name + peak_label) if save_to: plt.savefig(save_to+'.pdf') plt.savefig(save_to+'.png') plt.close() else: plt.show() def remove_lin_comp_df(df, n_components = 0, period = 24, summary_file=""): df2 = pd.DataFrame(columns=df.columns) if summary_file: df_fit = pd.DataFrame(columns=['test', 'k', 'CI', 'p', 'q']) for test in df.test.unique(): x,y = df[df['test']==test].x,df[df['test']==test].y x,y,fit = remove_lin_comp(x,y,n_components=n_components, period=period, return_fit=True) df_tmp = pd.DataFrame(columns=df.columns) df_tmp['x'] = x df_tmp['y'] = y df_tmp['test'] = test df2 = df2.append(df_tmp, ignore_index=True) if summary_file: fit['test'] = test df_fit=df_fit.append(fit, ignore_index=True) if summary_file: df_fit.q = multi.multipletests(df_fit.p, method = 'fdr_bh')[1] if summary_file.endswith("csv"): df_fit.to_csv(summary_file, index=False) elif summary_file.endswith("xlsx"): df_fit.to_excel(summary_file, index=False) return df2 def remove_lin_comp(X, Y, n_components = 0, period = 24, return_fit=False): X = np.array(X) Y = np.array(Y) X_fit = generate_independents(X, n_components = n_components, period = period, lin_comp = True) model = sm.OLS(Y, X_fit) results = model.fit() CIs = results.conf_int() if type(CIs) != np.ndarray: CIs = CIs.values CI = CIs[1] #A = results.params[0] k = results.params[1] """ X_lin = np.zeros(X_fit.shape) X_lin[:,1] = X_fit[:,1] Y_lin = results.predict(X_lin) Y = Y-Y_lin """ #Y_fit = results.predict(X_fir) #Y = Y - Y_fit #Y = Y - A - k*X if CI[0] * CI[1] > 0: # if both CIs hve the same sign Y = Y - k*X if return_fit: fit = {} fit['k'] = results.params[1] fit['CI'] = CI fit['p'] = results.pvalues[1] return X,Y,fit """ X_fit = generate_independents(X, n_components = n_components, period = period, lin_comp = False) model = sm.OLS(Y, X_fit) results = model.fit() plt.plot(X, results.fittedvalues, color="black") """ return X, Y # prepare the independent variables def generate_independents(X, n_components = 3, period = 24, lin_comp = False, remove_lin_comp = False): if n_components == 0: X_fit = X lin_comp = True else: for i in np.arange(n_components): n = i+1 A = np.sin((X/(period/n))*np.pi*2) B = np.cos((X/(period/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if lin_comp and n_components: X_fit = np.column_stack((X, X_fit)) if remove_lin_comp: X_fit[:,0] = 0 X_fit = sm.add_constant(X_fit, has_constant='add') return X_fit # prepare the independent variables for limorhyde def generate_independents_compare(X1, X2, n_components1 = 3, period1 = 24, n_components2 = 3, period2 = 24, lin_comp = False, non_rhythmic=False, remove_lin_comp=False): H1 = np.zeros(X1.size) H2 = np.ones(X2.size) X = np.concatenate((X1, X2)) H_i = np.concatenate((H1, H2)) X_i = H_i * X for i in np.arange(n_components1): n = i+1 A = np.sin((X/(period1/n))*np.pi*2) B = np.cos((X/(period1/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if non_rhythmic: X_fit = np.column_stack((X_fit, H_i)) else: for i in np.arange(n_components2): n = i+1 A_i = H_i * np.sin((X/(period2/n))*np.pi*2) B_i = H_i * np.cos((X/(period2/n))*np.pi*2) X_fit = np.column_stack((X_fit, np.column_stack((A_i, B_i)))) X_fit = np.column_stack((X_fit, H_i)) if lin_comp: X_fit = np.column_stack((X_i, X_fit)) X_fit = np.column_stack((X, X_fit)) if remove_lin_comp: X_fit[:,0] = 0 X_fit[:,1] = 0 X_fit = sm.add_constant(X_fit, has_constant='add') return X_fit """ ***************************** * start of finding the best * ***************************** """ def get_best_fits(df_results, criterium = 'R2_adj', reverse = False, n_components = []): df_best = pd.DataFrame(columns = df_results.columns, dtype=float) names = np.unique(df_results.test) for name in names: if n_components: for n_comp in n_components: if reverse: M = df_results[(df_results.test == name) & (df_results.n_components == n_comp)][criterium].min() else: M = df_results[(df_results.test == name) & (df_results.n_components == n_comp)][criterium].max() df_best = df_best.append(df_results[(df_results.test == name) & (df_results.n_components == n_comp) & (df_results[criterium] == M)], ignore_index = True) else: M = df_results[df_results.test == name][criterium].max() df_best = df_best.append(df_results[(df_results.test == name) & (df_results[criterium] == M)], ignore_index = True) return df_best def get_best_models_population(df, df_models, n_components = [1,2,3], lin_comp = False, criterium = 'RSS', reverse = True): names = np.unique(df_models.test) df_best = pd.DataFrame(columns = df_models.columns, dtype=float) df_models = get_best_fits(df_models, criterium = criterium, reverse = reverse, n_components=n_components) for test in names: n_points = df[df.test.str.startswith(test)].x.shape[0] # razlika med get_best_models in get_best_models_population df_test_models = df_models[df_models.test == test] df_test_models = df_test_models.sort_values(by=['n_components']) i = 0 for new_row in df_test_models.iterrows(): if i == 0: best_row = new_row i = 1 else: RSS_reduced = best_row[1].RSS RSS_full = new_row[1].RSS DF_reduced = n_points - (best_row[1].n_components * 2 + 1) DF_full = n_points - (new_row[1].n_components * 2 + 1) if lin_comp: DF_reduced -= 1 DF_full -= 1 #print (test, old_row[1].n_components, new_row[1].n_components) if compare_models(RSS_reduced, RSS_full, DF_reduced, DF_full) < 0.05: best_row = new_row df_best = df_best.append(best_row[1], ignore_index=True) return df_best # compare two models according to the F-test # http://people.reed.edu/~jones/Courses/P24.pdf # https://www.graphpad.com/guides/prism/7/curve-fitting/index.htm?reg_howtheftestworks.htm def get_best_models(df, df_models, n_components = [1,2,3], lin_comp = False, criterium='p', reverse = True): names = np.unique(df_models.test) df_best = pd.DataFrame(columns = df_models.columns, dtype=float) df_models = get_best_fits(df_models, n_components = n_components, criterium=criterium, reverse = reverse) for test in names: n_points = df[df.test == test].x.shape[0] df_test_models = df_models[df_models.test == test] df_test_models = df_test_models.sort_values(by=['n_components']) i = 0 for new_row in df_test_models.iterrows(): if i == 0: best_row = new_row i = 1 else: RSS_reduced = best_row[1].RSS RSS_full = new_row[1].RSS DF_reduced = n_points - (best_row[1].n_components * 2 + 1) DF_full = n_points - (new_row[1].n_components * 2 + 1) if lin_comp: DF_reduced -= 1 DF_full -= 1 #print (test, old_row[1].n_components, new_row[1].n_components) if compare_models(RSS_reduced, RSS_full, DF_reduced, DF_full) < 0.05: best_row = new_row df_best = df_best.append(best_row[1], ignore_index=True) return df_best """ *************************** * end of finding the best * *************************** """ """ ************ * plotting * ************ """ def plot_data(df, names = [], folder = '', prefix = '', color='black'): if not names: names = np.unique(df.test) for test in names: X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) plt.plot(X,Y,'o', markersize=1, color=color) plt.title(test) #test = test.replace("$","") #fig = plt.gcf() #fig.set_size_inches(11,8) if folder: plt.savefig(os.path.join(folder, prefix+test+'.png')) plt.savefig(os.path.join(folder, prefix+test+'.pdf')) plt.close() else: plt.show() def plot_data_pairs(df, names, folder = '', prefix ='', color1='black', color2='red'): for test1, test2 in names: X1, Y1 = np.array(df[df.test == test1].x), np.array(df[df.test == test1].y) X2, Y2 = np.array(df[df.test == test2].x), np.array(df[df.test == test2].y) plt.plot(X1,Y1,'o', color=color1, markersize=1, label=test1) plt.plot(X2,Y2,'o', color=color2, markersize=1, label=test2) plt.legend() plt.title(test1 + ' vs. ' + test2) if folder: plt.savefig(os.path.join(folder,prefix+test1+'_'+test2+'.png')) plt.savefig(os.path.join(folder,prefix+test1+'_'+test2+'.pdf')) plt.close() else: plt.show() def plot_components(X, Y, n_components = 3, period = 24, name = '', save_to = ''): A = np.sin((X/period)*np.pi*2) B = np.cos((X/period)*np.pi*2) C = np.sin((X/(period/2))*np.pi*2) D = np.cos((X/(period/2))*np.pi*2) E = np.sin((X/(period/3))*np.pi*2) F = np.cos((X/(period/3))*np.pi*2) #G = np.sin((X/(period/4))*np.pi*2) #H = np.cos((X/(period/4))*np.pi*2) fig, axs = plt.subplots(n_components, 2, constrained_layout=True) fig.suptitle(name, fontsize=16) axs[0,0].plot(A, Y,'.') axs[0,0].set(xlabel = 'sin((x/'+str(period)+') * 2$\pi$)') axs[0,1].plot(B, Y,'.') axs[0,1].set(xlabel = 'cos((x/'+str(period)+') * 2$\pi$)') if n_components >= 2: axs[1,0].plot(C, Y,'.') axs[1,0].set(xlabel = 'sin((x/'+str(period/2)+') * 2$\pi$)') axs[1,1].plot(D, Y,'.') axs[1,1].set(xlabel = 'cos((x/'+str(period/2)+') * 2$\pi$)') if n_components == 3: axs[2,0].plot(E, Y,'.') axs[2,0].set(xlabel = 'sin((x/'+str(period/3)+') * 2$\pi$)') axs[2,1].plot(F, Y,'.') axs[2,1].set(xlabel = 'cos((x/'+str(period/3)+') * 2$\pi$)') if n_components == 4: axs[3,0].plot(E, Y,'.') axs[3,0].set(xlabel = 'sin((x/'+str(period/4)+') * 2$\pi$)') axs[3,1].plot(F, Y,'.') axs[3,1].set(xlabel = 'cos((x/'+str(period/4)+') * 2$\pi$)') for ax in axs.flat: ax.set(ylabel = 'y') if save_to: plt.savefig(save_to+'.pdf') plt.savefig(save_to+'.png') plt.close() else: plt.show() def plot_phases(acrs, amps, tests, period=24, colors = ("black", "red", "green", "blue"), folder = "", prefix="", legend=True, CI_acrs = [], CI_amps = [], linestyles = [], title = "", labels = []):#, plot_measurements = False, measurements=None): acrs = np.array(acrs, dtype = float) amps = np.array(amps, dtype = float) if colors and len(colors) < len(tests): colors += ("black",) * (len(tests)-len(colors)) x = np.arange(0, 2*np.pi, np.pi/4) x_labels = list(map(lambda i: 'CT ' + str(i) + " ", list((x/(2*np.pi) * period).astype(int)))) x_labels[1::2] = [""]*len(x_labels[1::2]) ampM = np.max(amps) amps /= ampM acrs = -acrs fig = plt.figure() ax = fig.add_subplot(projection='polar') ax.set_theta_offset(0.5*np.pi) ax.set_theta_direction(-1) lines = [] for i, (acr, amp, test, color) in enumerate(zip(acrs, amps, tests, colors)): """ if "LDL" in test: color = "#FF0000" elif "HDL" in test: color = "#0000FF" elif "CHOL" in test: color = "#00FF00" elif "control" in test.lower(): color = "#000000" else: color = "#0000FF" """ if linestyles: #ax.plot([acr, acr], [0, amp], label=test, color=color, linestyle = linestyles[i]) ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, alpha = 0.75, linewidth=2, linestyle = linestyles[i]) ) lines.append(Line2D([0], [0], color=color, linewidth=2, linestyle=linestyles[i])) else: #ax.plot([acr, acr], [0, amp], label=test, color=color) ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, alpha = 0.75, linewidth=2) ) lines.append(Line2D([0], [0], color=color, linewidth=2)) #ax.plot([acr, acr], [0, amp], label=test, color=color) #ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, linewidth=2) ) if CI_acrs and CI_amps: amp_l, amp_u = np.array(CI_amps[i])/ampM amp_l = max(0, amp_l) amp_u = min(1, amp_u) acr_l, acr_u = -np.array(CI_acrs[i]) if acr_l - acr_u > 2*np.pi: plt.fill_between(np.linspace(0, np.pi*2, 1000), amp_l, amp_u, color=color, alpha=0.1) elif acr_u < acr_l: acr_l, acr_u = acr_u, acr_l plt.fill_between(np.linspace(acr_l, acr_u, 1000), amp_l, amp_u, color=color, alpha=0.1) ax.set_rmax(1) ax.set_rticks([0.5]) # Less radial ticks ax.set_yticklabels([""]) ax.set_xticks(x) ax.set_xticklabels(x_labels) ax.grid(True) ax.set_facecolor('#f0f0f0') """ for i, (acr, amp, test, color) in enumerate(zip(acrs, amps, tests, colors)): if plot_measurements: try: x,y = measurements except: df = measurements x,y=df[df.test == test].x, df[df.test == test].y plt.plot(x,y,'o',markersize=1, alpha = 0.75, color=color) """ name = "_".join(tests) #ax.set_title(name, va='bottom') if title: ax.set_title(title, va='bottom') else: ax.set_title(name, va='bottom') if legend: if labels: plt.legend(lines, labels, bbox_to_anchor=(1.0, 1), loc='upper left', borderaxespad=0., frameon=False) else: plt.legend(lines, tests, bbox_to_anchor=(1.0, 1), loc='upper left', borderaxespad=0., frameon=False) #ax.legend() if folder: plt.savefig(os.path.join(folder,prefix+name+"_phase.pdf")) plt.savefig(os.path.join(folder,prefix+name+"_phase.png")) plt.close() else: plt.show() """ ******************* * end of plotting * ******************* """ """ ***************************** * start of fitting wrappers * ***************************** """ def fit_group(df, n_components = 2, period = 24, names = "", folder = '', prefix='', **kwargs): df_results = pd.DataFrame(columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'RSS', 'R2', 'R2_adj', 'log-likelihood', 'amplitude', 'acrophase', 'mesor', 'peaks', 'heights', 'troughs', 'heights2'], dtype=float) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] if not any(names): names = np.unique(df.test) for test in names: for n_comps in n_components: for per in period: if n_comps == 0: per = 100000 X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) if folder: save_to = os.path.join(folder,prefix+test+'_compnts='+str(n_comps) +'_per=' + str(per)) else: save_to = '' results, statistics, rhythm_param, _, _ = fit_me(X, Y, n_components = n_comps, period = per, name = test, save_to = save_to, **kwargs) try: R2, R2_adj = results.rsquared,results.rsquared_adj except: R2, R2_adj = np.nan, np.nan df_results = df_results.append({'test': test, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'p_reject': statistics['p_reject'], 'RSS': statistics['RSS'], 'R2': R2, 'R2_adj': R2_adj, 'ME': statistics['ME'], 'resid_SE': statistics['resid_SE'], 'log-likelihood': results.llf, 'amplitude': rhythm_param['amplitude'], 'acrophase': rhythm_param['acrophase'], 'mesor': rhythm_param['mesor'], 'peaks': rhythm_param['peaks'], 'heights': rhythm_param['heights'], 'troughs': rhythm_param['troughs'], 'heights2': rhythm_param['heights2'] }, ignore_index=True) if n_comps == 0: break df_results.q = multi.multipletests(df_results.p, method = 'fdr_bh')[1] df_results.q_reject = multi.multipletests(df_results.p_reject, method = 'fdr_bh')[1] return df_results def population_fit_group(df, n_components = 2, period = 24, folder = '', prefix='', names = [], **kwargs): df_results = pd.DataFrame(columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'RSS', 'amplitude', 'acrophase', 'mesor'], dtype=float) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] if not any(names): names = np.unique(df.test) names = list(set(list(map(lambda x:x.split('_rep')[0], names)))) names.sort() for name in set(names): for n_comps in n_components: for per in period: if n_comps == 0: per = 100000 df_pop = df[df.test.str.startswith(name)] if folder: save_to=os.path.join(folder,prefix+name+'_compnts='+str(n_comps) +'_per=' + str(per)) _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, save_to = save_to, **kwargs) else: _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, **kwargs) df_results = df_results.append({'test': name, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'p_reject': statistics['p_reject'], 'RSS': statistics['RSS'], 'ME': statistics['ME'], 'resid_SE': statistics['resid_SE'], 'amplitude': rhythm_params['amplitude'], 'acrophase': rhythm_params['acrophase'], 'mesor': rhythm_params['mesor']}, ignore_index=True) if n_comps == 0: break df_results.q = multi.multipletests(df_results.p, method = 'fdr_bh')[1] df_results.q_reject = multi.multipletests(df_results.p_reject, method = 'fdr_bh')[1] return df_results """ *************************** * end of fitting wrappers * *************************** """ """ ****************************** * start of fitting functions * ****************************** """ def population_fit(df_pop, n_components = 2, period = 24, lin_comp= False, model_type = 'lin', plot = True, plot_measurements=True, plot_individuals=True, plot_margins=True, hold = False, save_to = '', x_label='', y_label='', return_individual_params = False, params_CI = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type = "LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], color="black", **kwargs): if return_individual_params: ind_params = {} for param in parameters_to_analyse: ind_params[param] = [] params = -1 tests = df_pop.test.unique() k = len(tests) #X_test = np.linspace(0, 2*period, 1000) #X_fit_eval_params = generate_independents(X_test, n_components = n_components, period = period, lin_comp = lin_comp) #if lin_comp: # X_fit_eval_params[:,1] = 0 min_X = np.min(df_pop.x.values) max_X = np.max(df_pop.x.values) min_Y = np.min(df_pop.y.values) max_Y = np.max(df_pop.y.values) if plot: if plot_measurements: X_plot = np.linspace(min(min_X,0), 1.1*max(max_X,period), 1000) else: X_plot = np.linspace(0, 1.1*period, 1000) X_plot_fits = generate_independents(X_plot, n_components = n_components, period = period, lin_comp = lin_comp) #if lin_comp: # X_plot_fits[:,1] = 0 """ min_X = 1000 max_X = 0 min_Y = 1000 max_Y = 0 min_X_test = np.min(X_test) """ min_Y_test = 1000 max_Y_test = 0 for test in tests: x,y = np.array(df_pop[df_pop.test == test].x), np.array(df_pop[df_pop.test == test].y) """ min_X = min(min_X, np.min(x)) max_X = max(max_X, np.max(x)) min_Y = min(min_Y, np.min(y)) max_Y = max(max_Y, np.max(y)) """ results, statistics, rhythm_params, X_test, Y_test, model = fit_me(x, y, n_components = n_components, period = period, plot = False, return_model = True, lin_comp=lin_comp, **kwargs) X_fit_eval_params = generate_independents(X_test, n_components = n_components, period = period, lin_comp = lin_comp, remove_lin_comp=True) if lin_comp: X_fit_eval_params[:,1] = 0 if return_individual_params: Y_eval_params = results.predict(X_fit_eval_params) rhythm_ind_params = evaluate_rhythm_params(X_test, Y_eval_params, period=period) for param in parameters_to_analyse: ind_params[param].append(rhythm_ind_params[param]) if (plot and plot_individuals): #Y_eval_params = results.predict(X_fit_eval_params) Y_plot_fits = results.predict(X_plot_fits) if (plot and plot_individuals): if not hold: plt.plot(X_plot,Y_plot_fits,color=color, alpha=0.25, label=test) else: plt.plot(X_plot,Y_plot_fits,color=color, alpha=0.25) min_Y_test = min(min_Y_test, np.min(Y_plot_fits)) max_Y_test = max(max_Y_test, np.max(Y_plot_fits)) if plot and plot_measurements: plt.plot(x,y,'o', color=color, markersize=1) if type(params) == int: params = results.params if plot and plot_margins: #_, lowers, uppers = wls_prediction_std(results, exog=X_fit_eval_params, alpha=0.05) Y_plot_fits_all = Y_plot_fits else: params = np.vstack([params, results.params]) if plot and plot_margins: #_, l, u = wls_prediction_std(results, exog=X_fit_eval_params, alpha=0.05) #lowers = np.vstack([lowers, l]) #uppers = np.vstack([uppers, u]) Y_plot_fits_all = np.vstack([Y_plot_fits_all, Y_plot_fits]) # parameter statistics: means, variances, stadndard deviations, confidence intervals, p-values #http://reliawiki.com/index.php/Multiple_Linear_Regression_Analysis if k > 1: means = np.mean(params, axis=0) variances = np.sum((params-np.mean(params, axis=0))**2, axis = 0)/(k-1) # np.var(params, axis=0) # isto kot var z ddof=k-1 sd = variances**0.5 se = sd/((k-1)**0.5) T0 = means/se p_values = 2 * (1 - stats.t.cdf(abs(T0), k-1)) t = abs(stats.t.ppf(0.05/2,df=k-1)) lower_CI = means - ((t*sd)/((k-1)**0.5)) upper_CI = means + ((t*sd)/((k-1)**0.5)) results.initialize(model, means) else: means = params sd = np.zeros(len(params)) sd[:] = np.nan se = np.zeros(len(params)) se[:] = np.nan lower_CI = means upper_CI = means p_values = np.zeros(len(params)) p_values[:] = np.nan x,y = df_pop.x, df_pop.y xy = list(zip(x,y)) xy.sort() x,y = zip(*xy) x,y = np.array(x), np.array(y) X_fit = generate_independents(x, n_components = n_components, period = period, lin_comp = lin_comp) Y_fit = results.predict(X_fit) Y_eval_params = results.predict(X_fit_eval_params) rhythm_params = evaluate_rhythm_params(X_test, Y_eval_params, period=period) if plot: pop_name = "_".join(test.split("_")[:-1]) Y_plot_fits = results.predict(X_plot_fits) if not hold: plt.plot(X_plot,Y_plot_fits, color=color, label="population fit") else: plt.plot(X_plot,Y_plot_fits, color=color, label=pop_name) plt.legend() if x_label: plt.xlabel(x_label) else: plt.xlabel('time [h]') if y_label: plt.ylabel(y_label) else: plt.ylabel('measurements') min_Y_test = min(min_Y_test, np.min(Y_eval_params)) max_Y_test = max(max_Y_test, np.max(Y_eval_params)) if plot and plot_margins: if k == 1: _, lower, upper = wls_prediction_std(results, exog=X_plot_fits, alpha=0.05) else: #lower = np.mean(lowers, axis=0) #upper = np.mean(uppers, axis=0) var_Y = np.var(Y_plot_fits_all, axis=0, ddof = k-1) sd_Y = var_Y**0.5 lower = Y_plot_fits - ((t*sd_Y)/((k-1)**0.5)) upper = Y_plot_fits + ((t*sd_Y)/((k-1)**0.5)) plt.fill_between(X_plot, lower, upper, color=color, alpha=0.1) if plot: if plot_measurements: if model_type == 'lin': plt.axis([min(min_X,0), 1.1*max(max_X,period), 0.9*min(min_Y, min_Y_test), 1.1*max(max_Y, max_Y_test)]) else: plt.axis([min(min_X,0), max_X, 0.9*min(min_Y, min_Y_test), 1.1*max(max_Y, max_Y_test)]) else: plt.axis([0, period, min_Y_test*0.9, max_Y_test*1.1]) if plot: #pop_name = "_".join(test.split("_")[:-1]) if not hold: plt.title(pop_name + ', p-value=' + "{0:.5f}".format(statistics['p'])) if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() statistics = calculate_statistics(x, y, Y_fit, n_components, period, lin_comp) statistics_params = {'values': means, 'SE': se, 'CI': (lower_CI, upper_CI), 'p-values': p_values} if params_CI: population_eval_params_CI(X_test, X_fit_eval_params, results, statistics_params, rhythm_params, samples_per_param=samples_per_param_CI, max_samples = max_samples_CI, k=k, sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if return_individual_params: return params, statistics, statistics_params, rhythm_params, results, ind_params else: return params, statistics, statistics_params, rhythm_params, results def fit_me(X, Y, n_components = 2, period = 24, lin_comp = False, model_type = 'lin', alpha = 0, name = '', save_to = '', plot=True, plot_residuals=False, plot_measurements=True, plot_margins=True, return_model = False, color = False, plot_phase = True, hold=False, x_label = "", y_label = "", rescale_to_period=False, bootstrap=False, bootstrap_size=1000, bootstrap_type="std", params_CI = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type="LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase']): #print(lin_comp) """ ### # prepare the independent variables ### """ """ if n_components == 0: X_fit = X X_fit_test = X_test lin_comp = True else: for i in np.arange(n_components): n = i+1 A = np.sin((X/(period/n))*np.pi*2) B = np.cos((X/(period/n))*np.pi*2) A_test = np.sin((X_test/(period/n))*np.pi*2) B_test = np.cos((X_test/(period/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) X_fit_test = np.column_stack((A_test, B_test)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) X_fit_test = np.column_stack((X_fit_test, np.column_stack((A_test, B_test)))) """ X_fit = generate_independents(X, n_components=n_components, period=period, lin_comp=lin_comp) #X_fit_eval_params = X_fit_test #if lin_comp and n_components: # X_fit = np.column_stack((X, X_fit)) # X_fit_eval_params = np.column_stack((np.zeros(len(X_test)), X_fit_test)) # X_fit_test = np.column_stack((X_test, X_fit_test)) #X_fit = sm.add_constant(X_fit, has_constant='add') #X_fit_test = sm.add_constant(X_fit_test, has_constant='add') #X_fit_eval_params = sm.add_constant(X_fit_eval_params, has_constant='add') """ ### # fit ### """ if model_type == 'lin': model = sm.OLS(Y, X_fit) results = model.fit() elif model_type == 'poisson': #model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) model = statsmodels.discrete.discrete_model.Poisson(Y, X_fit) results = model.fit(disp=0) elif model_type =='gen_poisson': #model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit) model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit, p=1) results = model.fit(disp=0) elif model_type == 'nb': # https://towardsdatascience.com/negative-binomial-regression-f99031bb25b4 # https://dius.com.au/2017/08/03/using-statsmodels-glms-to-model-beverage-consumption/#cameron # if not alpha: # train_model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) # train_results = train_model.fit() # df_train = pd.DataFrame() # df_train['Y'] = Y # df_train['mu'] = train_results.mu # df_train['AUX_OLS_DEP'] = df_train.apply(lambda x: ((x['Y'] - x['mu'])**2 - x['Y']) / x['mu'], axis=1) # ols_expr = """AUX_OLS_DEP ~ mu - 1""" # aux_olsr_results = smf.ols(ols_expr, df_train).fit() # alpha=aux_olsr_results.params[0] #model = sm.GLM(Y, X_fit, family=sm.families.NegativeBinomial(alpha=alpha)) model = statsmodels.discrete.discrete_model.NegativeBinomialP(Y, X_fit, p=1) results = model.fit(disp=0) else: print("Invalid option") return if model_type =='lin': Y_fit = results.fittedvalues else: Y_fit = results.predict(X_fit) if model_type in ['lin', 'poisson', 'nb']: statistics = calculate_statistics(X, Y, Y_fit, n_components, period, lin_comp) if model_type in ['poisson', 'nb']: statistics['count'] = np.sum(Y) else: RSS = sum((Y - Y_fit)**2) p = results.llr_pvalue statistics = {'p':p, 'RSS':RSS, 'count': np.sum(Y)} #Y_test = results.predict(X_fit_test) X_test = np.linspace(0, 2*period, 1000) X_fit_test = generate_independents(X_test, n_components=n_components, period=period, lin_comp=lin_comp, remove_lin_comp = True) Y_fit_test = results.predict(X_fit_test) rhythm_params = evaluate_rhythm_params(X_test, Y_fit_test, period=period) if lin_comp: rhythm_params['lin_comp'] = results.params[1] CIs = results.conf_int() if type(CIs) != np.ndarray: rhythm_params['CI(lin_comp)'] = CIs.values[1] else: rhythm_params['CI(lin_comp)'] = CIs[1] rhythm_params['p(lin_comp)'] = results.pvalues[1] #print(rhythm_params['p(lin_comp)']) """ ### # plot ### """ if plot: if plot_measurements: min_X = np.min(X) max_X = np.max(X) else: min_X = 0 max_X = period X_plot = np.linspace(min_X, max_X, 1000) X_plot_fits = generate_independents(X_plot, n_components=n_components, period=period, lin_comp=lin_comp) Y_plot = results.predict(X_plot_fits) ### if not color: color = 'black' if plot_measurements: if not hold: plt.plot(X,Y, 'ko', markersize=1, label = 'data', color=color) else: plt.plot(X,Y, 'ko', markersize=1, color=color) if not hold: plt.plot(X_plot, Y_plot, 'k', label = 'fit', color=color) else: plt.plot(X_plot, Y_plot, 'k', label = name, color=color) # plot measurements if plot_measurements: if rescale_to_period: X = X % period if model_type == 'lin': plt.axis([min_X, max_X, 0.9*min(min(Y), min(Y_plot)), 1.1*max(max(Y), max(Y_plot))]) else: plt.axis([min_X, max_X, 0.9*min(min(Y), min(Y_plot)), 1.1*max(max(Y), max(Y_plot))]) else: plt.axis([min_X, max_X, min(Y_plot)*0.9, max(Y_plot)*1.1]) if name: plt.title(name) """ if model_type == 'lin': if name: plt.title(name + ', p-value=' + "{0:.5f}".format(statistics['p'])) else: plt.title('p-value=' + "{0:.5f}".format(statistics['p'])) else: if name: plt.title(name + ', p-value=' + '{0:.3f}'.format(statistics['p']) + ' (n='+str(statistics['count'])+ ')') else: plt.title('p-value=' + '{0:.3f}'.format(statistics['p']) + ' (n='+str(statistics['count'])+ ')') """ if x_label: plt.xlabel(x_label) else: plt.xlabel('Time [h]') if y_label: plt.ylabel(y_label) elif model_type == 'lin': plt.ylabel('Measurements') else: plt.ylabel('Count') # plot confidence intervals if plot_margins: if model_type == 'lin': _, lower, upper = wls_prediction_std(results, exog=X_plot_fits, alpha=0.05) if color: plt.fill_between(X_plot, lower, upper, color=color, alpha=0.1) else: plt.fill_between(X_plot, lower, upper, color='#888888', alpha=0.1) else: # calculate and draw plots from the combinations of parameters from the 95 % confidence intervals of assessed parameters res2 = copy.deepcopy(results) params = res2.params CIs = results.conf_int() if type(CIs) != np.ndarray: CIs = CIs.values #N = 512 N = 1024 if n_components == 1: N2 = 10 elif n_components == 2: N2 = 8 else: N2 = 10 - n_components P = np.zeros((len(params), N2)) for i, CI in enumerate(CIs): P[i,:] = np.linspace(CI[0], CI[1], N2) n_param_samples = P.shape[1]**P.shape[0] N = n_param_samples #min(max_samples_CI, n_param_samples) if n_param_samples < 10**6: params_samples = np.random.choice(n_param_samples, size=N, replace=False) else: params_samples = my_random_choice(max_val=n_param_samples, size=N) for i,idx in enumerate(params_samples): p = lazy_prod(idx, P) res2.initialize(results.model, p) Y_test_CI = res2.predict(X_plot_fits) if plot and plot_margins: if color and color != '#000000': plt.plot(X_plot, Y_test_CI, color=color, alpha=0.05) else: plt.plot(X_plot, Y_test_CI, color='#888888', alpha=0.05) if not hold: if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() if plot_residuals: resid = results.resid sm.qqplot(resid) plt.title(name) if save_to: plt.savefig(save_to+'_resid.pdf', bbox_inches='tight') plt.savefig(save_to+'_resid.png') plt.close() else: plt.show() if plot_phase: per = rhythm_params['period'] amp = rhythm_params['amplitude'] phase = rhythm_params['acrophase'] if save_to: folder = os.path.join(*os.path.split(save_to)[:-1]) plot_phases([phase], [amp], [name], period=per, folder=folder) else: plot_phases([phase], [amp], [name], period=per)#, plot_measurements=True, measurements=[X,Y]) if bootstrap: eval_params_bootstrap(X, X_fit, X_test, X_fit_test, Y, model_type = model_type, rhythm_params=rhythm_params, bootstrap_size=bootstrap_size, bootstrap_type=bootstrap_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if params_CI: eval_params_CI(X_test, X_fit_test, results, rhythm_params, samples_per_param = samples_per_param_CI, max_samples = max_samples_CI, k=len(X), sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if return_model: return results, statistics, rhythm_params, X_test, Y_fit_test, model else: return results, statistics, rhythm_params, X_test, Y_fit_test """ **************************** * end of fitting functions * **************************** """ """ *********************** * start of assessment * *********************** """ # rhythm params def evaluate_rhythm_params(X,Y, project_acrophase=True, period=0): #plt.plot(X,Y) #plt.show() m = min(Y) M = max(Y) A = M - m MESOR = m + A/2 AMPLITUDE = abs(A/2) PHASE = 0 PHASE_LOC = 0 H = M - 0.01*M if M >= 0 else M + 0.01*M locs, heights = signal.find_peaks(Y, height = H) heights = heights['peak_heights'] if len(locs) >= 2: period2 = X[locs[1]] - X[locs[0]] period2 = int(round(period2)) else: period2 = np.nan if not period: period = period2 if len(locs) >= 1: PHASE = X[locs[0]] PHASE_LOC = locs[0] if period: ACROPHASE = phase_to_radians(PHASE, period) if project_acrophase: ACROPHASE = project_acr(ACROPHASE) else: ACROPHASE = np.nan # peaks and heights #Y = Y[X < 24] #X = X[X < 24] locs, heights = signal.find_peaks(Y, height = MESOR) heights = heights['peak_heights'] peaks = X[locs] heights = Y[locs] idxs1 = peaks <= period peaks = peaks[idxs1] heights = heights[idxs1] Y2 = M - Y locs2, heights2 = signal.find_peaks(Y2, height = MESOR-m) heights2 = heights2['peak_heights'] troughs = X[locs2] heights2 = Y[locs2] idxs2 = troughs <= period troughs = troughs[idxs2] heights2 = heights2[idxs2] # rhythm_params return {'period':period, 'amplitude':AMPLITUDE, 'acrophase':ACROPHASE, 'mesor':MESOR, 'peaks': peaks, 'heights': heights, 'troughs': troughs, 'heights2': heights2, 'max_loc': PHASE_LOC, 'period2':period2} def calculate_statistics(X, Y, Y_fit, n_components, period, lin_comp = False): # statistics according to Cornelissen (eqs (8) - (9)) MSS = sum((Y_fit - Y.mean())**2) RSS = sum((Y - Y_fit)**2) n_params = n_components * 2 + 1 if lin_comp: n_params += 1 N = Y.size F = (MSS/(n_params - 1)) / (RSS/(N - n_params)) p = 1 - stats.f.cdf(F, n_params - 1, N - n_params) #print("p-value(Cornelissen): {}".format(p)) # statistics of GOF according to Cornelissen (eqs (14) - (15)) # TODO: ali bi bilo potrebno popraviti za lumicycle - ko je več zaporednih meritev v eni časovni točki? #X_periodic = (X % period).astype(int) X_periodic = np.round_(X % period,2) X_unique = np.unique(X_periodic) n_T = len(X_unique) SSPE = 0 for x in X_unique: Y_i_avg = np.mean(Y[X_periodic == x]) SSPE += sum((Y[X_periodic == x] - Y_i_avg)**2) SSLOF = RSS-SSPE #print('RSS: ', RSS) #print('SSPE: ', SSPE) #print('SSLOF: ', SSLOF) if lin_comp: try: F = (SSLOF/(n_T-1-(2*n_components + 1)))/(SSPE/(N-n_T)) p_reject = 1 - stats.f.cdf(F, n_T-1-(2*n_components + 1), N-n_T) except: F = np.nan p_reject = np.nan else: try: F = (SSLOF/(n_T-1-2*n_components))/(SSPE/(N-n_T)) p_reject = 1 - stats.f.cdf(F, n_T-1-2*n_components, N-n_T) except: F = np.nan p_reject = np.nan # Another measure that describes goodnes of fit # How well does the curve describe the data? # signal to noise ratio # fitted curve: signal # noise: stdev_data = np.std(Y, ddof = 1) stdev_fit = np.std(Y_fit, ddof = 1) SNR = stdev_fit / stdev_data # Standard Error of residuals, margin of error # https://stats.stackexchange.com/questions/57746/what-is-residual-standard-error DoF = N - n_params resid_SE = np.sqrt(RSS/DoF) # https://scientificallysound.org/2017/05/16/independent-t-test-python/ # https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/margin-of-error/ critical_value = stats.t.ppf(1-0.025, DoF) ME = critical_value * resid_SE return {'p':p, 'p_reject':p_reject, 'SNR':SNR, 'RSS': RSS, 'resid_SE': resid_SE, 'ME': ME} """ ********************* * end of assessment * ********************* """ """ ***************************** * start of compare wrappers * ***************************** """ # compare pairs using a given number of components and period # analysis - options (from best to worst) (ADDITIONAL ANALYSIS) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pairs_limo(df, pairs, n_components = 3, period = 24, folder = "", prefix = "", analysis = "", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if analysis not in ("", "CI1", "bootstrap1", "CI2", "bootstrap2"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p', 'q', 'p params', 'q params', 'p(F test)', 'q(F test)'] if analysis: for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: if folder: save_to = os.path.join(folder,prefix + test1 + '-' + test2 + '_per=' + str(per) + '_comps=' + str(n_comps)) else: save_to = '' #pvalues, params, results = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, lin_comp = lin_comp, model_type = model_type, alpha=alpha, save_to = save_to, plot_measurements=plot_measurements) #p_overall, pvalues, params, _ = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, save_to = save_to, **kwargs) p_overall, p_params, p_F, _, _, rhythm_params = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, save_to = save_to, additional_analysis = analysis, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, **kwargs) d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps d['d_amplitude'] = rhythm_params['d_amplitude'] d['d_acrophase'] = rhythm_params['d_acrophase'] d['p'] = p_overall d['p params'] = p_params d['p(F test)'] = p_F if analysis: for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) df_results['q'] = multi.multipletests(df_results['p'], method = 'fdr_bh')[1] df_results['q params'] = multi.multipletests(df_results['p params'], method = 'fdr_bh')[1] df_results['q(F test)'] = multi.multipletests(df_results['p(F test)'], method = 'fdr_bh')[1] if analysis: for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in df_best_models # Basic analysis: fist analysis according to LymoRhyde (Singer:2019). Extended with the extra sum-of-squares F test that compares two nested models # compare pairs with the presumption that the same model is used in both cases # the same model: the same period and the same number of cosinor components # # analysis - options (from best to worst) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pairs_best_models_limo(df, df_best_models, pairs, folder = "", prefix = "", analysis = "", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if analysis not in ("", "CI1", "bootstrap1", "CI2", "bootstrap2"): print("Invalid option") return columns = ['test', 'period1', 'n_components1', 'period2', 'n_components2', 'p', 'q', 'p params', 'q params', 'p(F test)', 'q(F test)'] if analysis: for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) for test1, test2 in pairs: model1 = df_best_models[df_best_models["test"] == test1].iloc[0] model2 = df_best_models[df_best_models["test"] == test2].iloc[0] n_components1 = model1.n_components n_components2 = model2.n_components period1 = model1.period period2 = model2.period # if models have different number of components always start with the simpler model # model is simpler if number of components is smaller if n_components1 > n_components2: test1, test2 = test2, test1 n_components1, n_components2 = n_components2, n_components1 period1, period2 = period2, period1 if folder: save_to = os.path.join(folder, prefix + test1 + '-' + test2 + '_per1=' + str(period1) + '_comps1=' + str(n_components1) + '_per1=' + str(period2) + '_comps1=' + str(n_components2)) else: save_to = '' p_overall, p_params, p_F, params, _, rhythm_params = compare_pair_df_extended(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, save_to = save_to, additional_analysis = analysis, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, **kwargs) d = {} d['test'] = test1 + ' vs. ' + test2 d['period1'] = period1 d['n_components1'] = n_components1 d['period2'] = period2 d['n_components2'] = n_components2 d['d_amplitude'] = rhythm_params['d_amplitude'] d['d_acrophase'] = rhythm_params['d_acrophase'] d['p'] = p_overall d['p params'] = p_params d['p(F test)'] = p_F if analysis: for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) #d['CI(d_amplitude)'] = rhythm_params['CI(d_amplitude)'] #d['p(d_amplitude)'] = rhythm_params['p(d_amplitude)'] #d['CI(d_acrophase)'] = rhythm_params['CI(d_acrophase)'] #d['p(d_acrophase)'] = rhythm_params['p(d_acrophase)'] df_results = df_results.append(d, ignore_index=True) df_results['q'] = multi.multipletests(df_results['p'], method = 'fdr_bh')[1] df_results['q params'] = multi.multipletests(df_results['p params'], method = 'fdr_bh')[1] df_results['q(F test)'] = multi.multipletests(df_results['p(F test)'], method = 'fdr_bh')[1] if analysis: for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using a given number of components and period # analysis - options (from best to worst) # - bootstrap: independent bootstrap analysis # - CI: independent analysis of confidence intervals of two models # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_models def diff_p_t_test_from_CI(X1, X2, CI1, CI2, DoF, angular = False): dX = X2 - X1 if angular: dX = project_acr(dX) t = abs(stats.t.ppf(0.05/2,df=DoF)) dev1 = (CI1[1] - CI1[0])/2 dev2 = (CI2[1] - CI2[0])/2 if angular: dev1 = abs(project_acr(dev1)) dev2 = abs(project_acr(dev2)) else: dev1 = abs(dev1) dev2 = abs(dev2) dev = dev1+dev2 se = (dev1 + dev2)/t CI = [dX-dev, dX+dev] T0 = dX/se p_val = 2 * (1 - stats.t.cdf(abs(T0), DoF)) return dX, p_val, CI def compare_pairs(df, pairs, n_components = 3, period = 24, analysis = "bootstrap", df_results_extended =
pd.DataFrame(columns=["test"])
pandas.DataFrame
import unittest import pandas as pd from ira.utils.utils import mstruct
pd.set_option('display.width', 1000)
pandas.set_option
import pandas as pd from sklearn.preprocessing import MinMaxScaler def perform_fit_scaling(x): """ Scales all the values between [0,1]. \ It often speeds up the learning process. :param x: the feature values :return: x, scaled """ scaler = MinMaxScaler() # Default behavior is to scale to [0,1] columns = x.columns index = x.index x = scaler.fit_transform(x) # keeping the column names x = pd.DataFrame(x, columns=columns, index=index) return x, scaler def perform_scaling(x, scaler): """ Scales all the values between [0,1].\ It often speeds up the learning process. :param x: the feature values :param scaler: a predefined and fitted scaler, e.g. a MinMaxScaler :return: x, scaled """ columns = x.columns index = x.index x = scaler.transform(x) # keeping the column names x =
pd.DataFrame(x, columns=columns, index=index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Sep 18 17:32:59 2020 @author: ashu0 """ import pandas as pd from glob import glob filenames = glob(r'C:\Users\ashu0\OneDrive\Desktop\Ok\Modeling\Three Way Match\*.csv') dataframes = [
pd.read_csv(f)
pandas.read_csv
""" Python tools and algorithms gathered through out the development projects and tutorials. Sections: 1. File Read/Write/Convert/Save Operations 2. Pandas Utils 3. Path Operations for File/Folder/System 4. Algorithms for Hierarchical Structures 5. Utility functions for xlrd library and read_spir function """ import collections import os import re import warnings # xlsx writer warning is eliminated from tkinter import Tk, filedialog, messagebox import pandas as pd import xlrd as xl import xlsxwriter from six import string_types from advanced_tools.IO_path_utils import checkfile, get_filepaths ############################################################################################## ### Pandas Utils & Excel Utils ############################################################################################## def combine_multiple_csv_into_excel(full_path_to_folder=None, sep='\t', encoding='latin1'): r""" Combine csv files that can be converted to Dataframe and have same exact structure. :param full_path_to_folder: :param sep: Text separator, default is '\t' :param encoding: Text encoding, default is 'latin1' :return: excel file with one extra column showing the name of the file. """ csv_files = sorted(get_filepaths(full_path_to_folder)) folder_name = os.path.split(full_path_to_folder)[1] # For folder location and folder name df_base = pd.read_csv(csv_files[0], sep=sep, encoding=encoding, low_memory=False) df_base['File_Name'] = os.path.splitext(os.path.split(csv_files[0])[1])[0] for i in csv_files[1:]: df_temp = pd.read_csv(i, sep=sep, encoding=encoding, low_memory=False) file_name = os.path.splitext(os.path.split(i)[1])[0] df_temp['File_Name'] = file_name df_base = df_base.append(df_temp) df_base.to_excel('{}\\{}.xlsx'.format(full_path_to_folder, folder_name)) def split_worksheets(file): """ :param file: Excel file to be split by its worksheets. :return: """ dfs_to_split = pd.read_excel(file, None, encoding='latin1') # 'None' used as worksheet kwarg thus it could be read as Dataframe dict. dfs_to_split = collections.OrderedDict(sorted(dfs_to_split.items())) for k, v in dfs_to_split.items(): export_file_name = os.path.join(os.path.split(file)[0], "{}.xlsx".format(k)) writer = pd.ExcelWriter(export_file_name, engine='xlsxwriter') v.to_excel(excel_writer=writer, sheet_name=k, index=False) writer.save() writer.close() def dataframe_diff(df1, df2): """ Give difference between two pandas dataframe. Date Fruit Num Color 9 2013-11-25 Orange 8.6 Orange 8 2013-11-25 Apple 22.1 Red """ df =
pd.concat([df1, df2])
pandas.concat
# coding: utf-8 # # SF Crime # ## W207 Final Project # ### Basic Modeling # # # ### Environment and Data # In[1]: # Import relevant libraries: import time import numpy as np import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import GaussianNB from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn import svm from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier # Set random seed and format print output: np.random.seed(0) np.set_printoptions(precision=3) # #### DDL to construct table for SQL transformations: # # ```sql # CREATE TABLE kaggle_sf_crime ( # dates TIMESTAMP, # category VARCHAR, # descript VARCHAR, # dayofweek VARCHAR, # pd_district VARCHAR, # resolution VARCHAR, # addr VARCHAR, # X FLOAT, # Y FLOAT); # ``` # #### Getting training data into a locally hosted PostgreSQL database: # ```sql # \copy kaggle_sf_crime FROM '/Users/Goodgame/Desktop/MIDS/207/final/sf_crime_train.csv' DELIMITER ',' CSV HEADER; # ``` # # #### SQL Query used for transformations: # # ```sql # SELECT # category, # date_part('hour', dates) AS hour_of_day, # CASE # WHEN dayofweek = 'Monday' then 1 # WHEN dayofweek = 'Tuesday' THEN 2 # WHEN dayofweek = 'Wednesday' THEN 3 # WHEN dayofweek = 'Thursday' THEN 4 # WHEN dayofweek = 'Friday' THEN 5 # WHEN dayofweek = 'Saturday' THEN 6 # WHEN dayofweek = 'Sunday' THEN 7 # END AS dayofweek_numeric, # X, # Y, # CASE # WHEN pd_district = 'BAYVIEW' THEN 1 # ELSE 0 # END AS bayview_binary, # CASE # WHEN pd_district = 'INGLESIDE' THEN 1 # ELSE 0 # END AS ingleside_binary, # CASE # WHEN pd_district = 'NORTHERN' THEN 1 # ELSE 0 # END AS northern_binary, # CASE # WHEN pd_district = 'CENTRAL' THEN 1 # ELSE 0 # END AS central_binary, # CASE # WHEN pd_district = 'BAYVIEW' THEN 1 # ELSE 0 # END AS pd_bayview_binary, # CASE # WHEN pd_district = 'MISSION' THEN 1 # ELSE 0 # END AS mission_binary, # CASE # WHEN pd_district = 'SOUTHERN' THEN 1 # ELSE 0 # END AS southern_binary, # CASE # WHEN pd_district = 'TENDERLOIN' THEN 1 # ELSE 0 # END AS tenderloin_binary, # CASE # WHEN pd_district = 'PARK' THEN 1 # ELSE 0 # END AS park_binary, # CASE # WHEN pd_district = 'RICHMOND' THEN 1 # ELSE 0 # END AS richmond_binary, # CASE # WHEN pd_district = 'TARAVAL' THEN 1 # ELSE 0 # END AS taraval_binary # FROM kaggle_sf_crime; # ``` # #### Load the data into training, development, and test: # In[2]: data_path = "./data/train_transformed.csv" df = pd.read_csv(data_path, header=0) x_data = df.drop('category', 1) y = df.category.as_matrix() # Impute missing values with mean values: x_complete = x_data.fillna(x_data.mean()) X_raw = x_complete.as_matrix() # Scale the data between 0 and 1: X = MinMaxScaler().fit_transform(X_raw) # Shuffle data to remove any underlying pattern that may exist: shuffle = np.random.permutation(np.arange(X.shape[0])) X, y = X[shuffle], y[shuffle] # Separate training, dev, and test data: test_data, test_labels = X[800000:], y[800000:] dev_data, dev_labels = X[700000:800000], y[700000:800000] train_data, train_labels = X[:700000], y[:700000] mini_train_data, mini_train_labels = X[:75000], y[:75000] mini_dev_data, mini_dev_labels = X[75000:100000], y[75000:100000] # In[3]: #the submission format requires that we list the ID of each example? #this is to remember the order of the IDs after shuffling #(not used for anything right now) allIDs = np.array(list(df.axes[0])) allIDs = allIDs[shuffle] testIDs = allIDs[800000:] devIDs = allIDs[700000:800000] trainIDs = allIDs[:700000] #this is for extracting the column names for the required submission format sampleSubmission_path = "./data/sampleSubmission.csv" sampleDF = pd.read_csv(sampleSubmission_path) allColumns = list(sampleDF.columns) featureColumns = allColumns[1:] #this is for extracting the test data for our baseline submission real_test_path = "./data/test_transformed.csv" testDF = pd.read_csv(real_test_path, header=0) real_test_data = testDF test_complete = real_test_data.fillna(real_test_data.mean()) Test_raw = test_complete.as_matrix() TestData = MinMaxScaler().fit_transform(Test_raw) #here we remember the ID of each test data point #(in case we ever decide to shuffle the test data for some reason) testIDs = list(testDF.axes[0]) # In[4]: #copied the baseline classifier from below, #but made it return prediction probabilities for the actual test data def MNB(): mnb = MultinomialNB(alpha = 0.0000001) mnb.fit(train_data, train_labels) #print("\n\nMultinomialNB accuracy on dev data:", mnb.score(dev_data, dev_labels)) return mnb.predict_proba(real_test_data) MNB() baselinePredictionProbabilities = MNB() #here is my rough attempt at putting the results (prediction probabilities) #in a .csv in the required format #first we turn the prediction probabilties into a data frame resultDF =
pd.DataFrame(baselinePredictionProbabilities,columns=featureColumns)
pandas.DataFrame
from operator import index from jinja2 import Environment, FileSystemLoader from bokeh.plotting import curdoc from dotenv import load_dotenv import pandas as pd import panel as pn import holoviews as hv import numpy as np import urllib import urllib.parse as p from tabulate import tabulate import requests import codecs import sys import os from tech.tech import read_impact_hour_data, read_cstk_data, TECH from tech.tech import ImpactHoursData, ImpactHoursFormula, Hatch, DandelionVoting from template.config_tooltips import tooltips #import tech.config_bounds as config_bounds import data load_dotenv() env = Environment(loader=FileSystemLoader('.')) template = env.get_template('template/index.html') # API settings HCTI_API_ENDPOINT = "https://hcti.io/v1/image" HCTI_API_USER_ID = os.environ.get('HCTI_API_USER_ID') HCTI_API_KEY = os.environ.get('HCTI_API_KEY') def load_app(config_file): pn.config.sizing_mode = 'stretch_both' impact_hour_data = read_impact_hour_data() # ImpactHoursData i = ImpactHoursData() # TECH t = TECH(total_impact_hours = impact_hour_data['Assumed IH'].sum(), impact_hour_data=impact_hour_data, total_cstk_tokens=1000000, config=config_file['tech']) # ImpactHoursFormula #impact_hours_rewards = ImpactHoursFormula(i.total_impact_hours, impact_hour_data_1) #impact_rewards_view = pn.Column(impact_hours_rewards.impact_hours_rewards, # impact_hours_rewards.redeemable, # impact_hours_rewards.cultural_build_tribute) # Hatch cstk_data = read_cstk_data() #hatch = Hatch(cstk_data, impact_hours_rewards.target_raise, # i.total_impact_hours, # impact_hours_rewards.target_impact_hour_rate) # DandelionVoting dandelion = DandelionVoting(17e6,config=config_file['dandelion_voting']) # Import Params Button import_params_button = pn.widgets.Button(name='Import params', button_type = 'primary') import_description = pn.pane.Markdown('<h4>To import the parameters, click on the button below:</h4>') # Share Button comments = pn.widgets.TextAreaInput(name='Comments', max_length=1024, placeholder='Explain your thoughts on why you choose the params...') share_button = pn.widgets.Button(name='Share your results on GitHub!', button_type = 'primary') url = pn.widgets.TextInput(name='URL', value = '') share_button.js_on_click(args={'target': url}, code='window.open(target.value)') results_button = pn.widgets.Button(name='See your results', button_type = 'success') def update_params_by_url_query(): queries = curdoc().session_context.request.arguments queries = { i: j[0] for i, j in queries.items() } if queries: if 'ihminr' in queries: t.min_raise = int(queries['ihminr']) if 'ihmaxr' in queries: t.max_raise = int(queries['ihmaxr']) if 'hs' in queries: t.impact_hour_slope = float(queries['hs']) if 'maxihr' in queries: t.maximum_impact_hour_rate = float(queries['maxihr']) if 'ihtr' in queries: t.target_raise = int(queries['ihtr']) if 'hor' in queries: t.hatch_oracle_ratio = float(queries['hor']) if 'hpd' in queries: t.hatch_period_days = int(queries['hpd']) if 'her' in queries: t.hatch_exchange_rate = float(queries['her']) if 'ht' in queries: t.hatch_tribute_percentage = int(queries['ht']) if 'sr' in queries: dandelion.support_required_percentage = int(queries['sr']) if 'maq' in queries: dandelion.minimum_accepted_quorum_percentage = int(queries['maq']) if 'vdd' in queries: dandelion.vote_duration_days = int(queries['vdd']) if 'vbh' in queries: dandelion.vote_buffer_hours = int(queries['vbh']) if 'rqh' in queries: dandelion.rage_quit_hours = int(queries['rqh']) if 'tfx' in queries: dandelion.tollgate_fee_xdai = float(queries['tfx']) t.param.trigger('action') # Update dashboard dandelion.param.trigger('action') @pn.depends(results_button) def update_input_output_pane(results_button_on): if results_button_on: input_output_pane = pn.pane.GIF('media/inputs_outputs.gif') else: input_output_pane = pn.pane.Markdown('') return input_output_pane @pn.depends(results_button) def update_result_score(results_button_on): if results_button_on: t.param.trigger('action') # Update dashboard dandelion.param.trigger('action') data_table = {'Parameters': ["Target raise (wxDai)", "Maximum raise (wxDai)", "Minimum raise (wxDai)", "Impact hour slope (wxDai/IH)", "Maximum impact hour rate (wxDai/IH)", "Hatch oracle ratio (wxDai/CSTK)", "Hatch period (days)", "Hatch exchange rate (TECH/wxDai)", "Hatch tribute (%)", "Support required (%)", "Minimum accepted quorum (%)", "Vote duration (days)", "Vote buffer (hours)", "Rage quit (hours)", "Tollgate fee (wxDai)"], 'Values': [int(t.target_raise), int(t.max_raise), int(t.min_raise), t.impact_hour_slope, t.maximum_impact_hour_rate, t.hatch_oracle_ratio, t.hatch_period_days, t.hatch_exchange_rate, t.hatch_tribute_percentage, dandelion.support_required_percentage, dandelion.minimum_accepted_quorum_percentage, dandelion.vote_duration_days, dandelion.vote_buffer_hours, dandelion.rage_quit_hours, dandelion.tollgate_fee_xdai]} df =
pd.DataFrame(data=data_table)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jul 7 14:24:09 2020 @author: hsauro @author: joseph-hellerstein """ from SBstoat.namedTimeseries import NamedTimeseries, mkNamedTimeseries, TIME import SBstoat.namedTimeseries as namedTimeseries from SBstoat import _plotOptions as po from SBstoat.timeseriesPlotter import TimeseriesPlotter from SBstoat import timeseriesPlotter as tp import numpy as np import os import pandas as pd import unittest import matplotlib import matplotlib.pyplot as plt IGNORE_TEST = False IS_PLOT = False DIR = os.path.dirname(os.path.abspath(__file__)) TEST_DATA_PATH = os.path.join(DIR, "tst_data.txt") DEFAULT_NUM_ROW = 2 DEFAULT_NUM_COL = 3 DEFAULT_NUM_PLOT = 5 class TestTimeseriesPlotter(unittest.TestCase): def setUp(self): self.timeseries = NamedTimeseries(csvPath=TEST_DATA_PATH) self.plotter = TimeseriesPlotter(isPlot=IS_PLOT) def testConstructor1(self): if IGNORE_TEST: return self.assertTrue(isinstance(self.plotter.isPlot, bool)) def testInitializeRowColumn(self): if IGNORE_TEST: return def test(maxCol, **kwargs): options = self.plotter._mkPlotOptionsMatrix(self.timeseries, maxCol=maxCol, **kwargs) if po.NUM_ROW in kwargs: self.assertGreaterEqual(options.numRow, kwargs[po.NUM_ROW]) if po.NUM_COL in kwargs: self.assertEqual(options.numCol, kwargs[po.NUM_COL]) # test(3, **{}) test(3, **{po.NUM_COL: 3}) test(4, **{po.NUM_ROW: 2}) test(5, **{po.NUM_ROW: 2}) def testPlotSingle1(self): if IGNORE_TEST: return self.plotter.plotTimeSingle(self.timeseries, timeseries2=self.timeseries, numCol=4, marker=[None, '*'], alpha=[0.1, 0.8], color=["red", "g"], titlePosition=[0.8, 0.5], titleFontsize=10) self.plotter.plotTimeSingle(self.timeseries, numCol=4, marker=[None, '*']) self.plotter.plotTimeSingle(self.timeseries, numCol=4, subplotWidthSpace=0.2, yticklabels=[]) self.plotter.plotTimeSingle(self.timeseries, columns=["S1", "S2", "S3"], numRow=2) self.plotter.plotTimeSingle(self.timeseries, numCol=4) self.plotter.plotTimeSingle(self.timeseries, numCol=2) self.plotter.plotTimeSingle(self.timeseries, numRow=2, numCol=3, ylabel="xxx") self.plotter.plotTimeSingle(self.timeseries, columns=["S1", "S2"]) def testPlotSingle5(self): if IGNORE_TEST: return timeseries = self.timeseries.subsetColumns(["S1"]) dct = {} indices = [i for i in range(len(timeseries)) if i % 4 == 0] for col in timeseries.allColnames: dct[col] = timeseries[col][indices] df =
pd.DataFrame(dct)
pandas.DataFrame
from itertools import cycle from typing import List import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.base import RegressorMixin from sklearn.linear_model import ElasticNet, LinearRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from statsmodels.stats.outliers_influence import variance_inflation_factor from statsmodels.tools import add_constant from tqdm import tqdm __all__ = ['obtain_independent_variables', 'obtain_independent_variables_vif', 'obtain_important_variables_loo', 'obtain_uncorrelated_variables', 'predictor_importance_loo', 'elasticnet_plot'] def _print_if_verbose(message, verbose): if verbose: print(message) def obtain_independent_variables(data, method='variance_inflation_factor', threshold=None, **kwargs): """Obtains independent variables recursively Recursively selects features from the dataset so that the resulting dataset does only consist of independent features. Independence is defined by method which is passed as a parameter. Note that reasonable values for threshold parameter strongly depend on the method used. Args: data: Dataframe method: Method used to measure independence. Currently, supports computing "variance_inflation_factor", "leave_one_out", "recursive_inclusion" or "correlation" threshold: Threshold used to flag features as dependent (in some way) if value of method exceeds this value. Default: 0.5 for "correlation", 1 for "leave_one_out", 0.1 for "recursive_inclusion" and 5 for "variance_inflation_factor" kwargs: Only used for "leave_one_out" and "recursive_inclusion". In that case please specify the dependent variable "y=..." as well as the model to use "model=..." Returns: List of all independent variables """ if method in ['variance_inflation_factor', 'vif']: threshold = threshold or 5 return obtain_independent_variables_vif(data, threshold) if method == 'correlation': threshold = threshold or 0.5 return obtain_uncorrelated_variables(data, correlation_threshold=threshold) if method in ['leave_one_out', 'loo']: threshold = threshold or 1 return obtain_important_variables_loo(X=data, threshold=threshold, **kwargs) if method in ['recursive_inclusion', 'ri']: threshold = threshold or 0.1 return obtain_important_variables_ri(X=data, threshold=threshold, **kwargs) raise ValueError("""Method not understood. Please specify either 'variance_inflation_factor', 'leave_one_out', 'recursive_inclusion' or 'correlation'.""") def obtain_independent_variables_vif(data, threshold=5): """Obtains non-multicollinear variables by recursively computing variance_inflation_factors Recursively selects features from the dataset so that the resulting dataset does not have features with variance inflation factor larger than specified threshold. Note that VIF(x) = \frac{1}{1 - R(x)^2}, where R(x)^2 is the coefficient of determination computed by regressing the feature x onto the other features. Args: data: Dataframe threshold: Features will be excluded if VIF exceeds this value Returns: List of all independent variables """ indep_variables = list() for column_name in data.select_dtypes('number').columns: variables = [column_name] + indep_variables exog = add_constant(data[variables]).values vif = variance_inflation_factor(exog, 1) if vif <= threshold: indep_variables.append(column_name) return indep_variables def obtain_uncorrelated_variables(data, correlation_threshold=0.5): """Computes pairwise correlation coefficients and determines uncorrelated variables Recursively selects features from the dataset so that the resulting dataset does not have features with pairwise correlation larger than specified correlation_threshold. Args: data: Dataframe correlation_threshold: Features will be excluded if pairwise correlation exceeds this value Returns: List of all uncorrelated variables """ indep_variables = list() for column_name in data.select_dtypes('number').columns: variables = indep_variables + [column_name] corrs = data[variables].corr()[column_name] if (abs(corrs) > correlation_threshold).sum() <= 1: indep_variables.append(column_name) return indep_variables def obtain_important_variables_loo(X: pd.DataFrame, y: np.ndarray, threshold: float = 1, model: RegressorMixin = LinearRegression(), verbose=False) -> List[str]: """Performs a leave-one-out ("loo") analysis to determine important features Recursively drops features which the model supplied deems as irrelevant (to be precise, the score loss in percent must be less than threshold) until no feature is irrelevant enough to be omitted. Args: X: Data frame containing independent features. y: Array containing the dependent feature threshold: Minimum percentage that a feature must contribute to model score to be contained in the final set model: Model to use for the analysis. Note that the results may heavily depend on the model chosen. verbose: Print progress Returns: """ _print_if_verbose(f"CV score start: {cross_val_score(model, X, y).mean()}.", verbose) while True: loo_scores = predictor_importance_loo(X, y, model, verbose=verbose) lowest_score = loo_scores.loo_score.iat[-1] least_important_feature = loo_scores.feature.iat[-1] if lowest_score > threshold: _print_if_verbose(f"Not removing feature {least_important_feature} with score {lowest_score}.", verbose) break _print_if_verbose(f"Removed feature {least_important_feature} with score {lowest_score}.", verbose) X = X.drop(columns=least_important_feature) _print_if_verbose(f"CV score end: {cross_val_score(model, X, y).mean()}.", verbose) return list(X.columns) def predictor_importance_loo(X: pd.DataFrame, y: np.ndarray, model: RegressorMixin, verbose: bool = True) -> pd.DataFrame: """Performs a leave-one-out ("loo") analysis to determine important features Iterates over all features (column names in X) and determines the scores (R^2-values) of the model fitted on the data without the feature. Features will then be ranked according to the score loss that removing this feature implied, relative to the score of the model on the full dataset. Scores are computed using k-fold cross-validation The result dataset contains values equal to the percentage decrease in score, i.e. 100*(<score of model with feature> / <score of model without feature> -1) (bigger is better). Args: X: Data frame containing independent features. y: Array containing the dependent feature model: Model to use for the analysis. Note that the results may heavily depend on the model chosen. verbose: print progress bar Returns: Data frame containing features and score quotients for both train and test set """ results = { "feature": [], "loo_score": [], } score_with_feature = cross_val_score(model, X, y).mean() iter_set = tqdm(X.columns) if verbose else X.columns for feature_name in iter_set: X_wo_feature = X.drop(columns=[feature_name]) score_without_feature = cross_val_score(model, X_wo_feature, y).mean() if score_without_feature > 0: loo_score = 100 * (score_with_feature / score_without_feature - 1) else: loo_score = np.inf results["feature"].append(feature_name) results["loo_score"].append(loo_score) return
pd.DataFrame(data=results)
pandas.DataFrame
from collections import Counter from mypymatch.Matcher import Matcher import numpy as np import pandas as pd from datetime import date, timedelta import datetime from tqdm import tqdm from joblib import Parallel, delayed import multiprocessing as mp from collections import defaultdict import os import re import sys import scipy.stats as stats import sys sys.path.append(sys.argv[0]) sys.setrecursionlimit(1000000) from statsmodels.tools.sm_exceptions import ConvergenceWarning import warnings warnings.filterwarnings( "error", message='Maximum number of iterations has been exceeded', category=ConvergenceWarning) ####################### def turnover_class(Y): """ Y: Rank_Turn / DayOut generate rules converting y to y' ; nominal out come value converted into sub classes: heavy sell (100,000 dollar sell) ; sell ; zero ; buy ; heavy buy return a array of y' in accordance of y, and a dictionary of outcome and its classification rule in a dictionary """ col = Y.name Y = pd.DataFrame(Y) Y = Y.reset_index().sort_values(by=col) # to fast the speed if col == 'Rank_Turn' or col =='ref': turnover_threshold = 0.1 mask_z = (Y[col] == 1.0) # rank 1.0 means turnover = 0 mask_b = (Y[col] < 1.0) & (Y[col] >= turnover_threshold) mask_hb = Y[col] < turnover_threshold Y = Y.assign(cls='') Y.cls = Y.cls.mask(mask_z, 'Zero') Y.cls = Y.cls.mask(mask_b, 'Norm') Y.cls = Y.cls.mask(mask_hb, 'Popular') elif col == 'PopRef': mask_p = (Y[col] == 1.0) # value=1 means Poppular mask_n = (Y[col] == 0.0) Y = Y.assign(cls='') Y.cls = Y.cls.mask(mask_n, 'NonPopular') Y.cls = Y.cls.mask(mask_p, 'Popular') elif col == 'DayOut': turnover_threshold = 50 mask_hs = Y[col] < -1 * turnover_threshold mask_s = (Y[col] < 0) & (Y[col] >= (-1 * turnover_threshold)) mask_z = Y[col] == 0 mask_b = (Y[col] > 0) & (Y[col] <= turnover_threshold) mask_hb = Y[col] > turnover_threshold Y = Y.assign(cls='') Y.cls = Y.cls.mask(mask_hs, 'HeavySell') Y.cls = Y.cls.mask(mask_s, 'Sell') Y.cls = Y.cls.mask(mask_z, 'Zero') Y.cls = Y.cls.mask(mask_b, 'Buy') Y.cls = Y.cls.mask(mask_hb, 'HeavyBuy') return Y class MyRows: def __init__(self, rows, outcome_col): self.value = rows self.dependent_name = outcome_col self.dependent = rows[self.dependent_name] self.dep_val = self.dependent self.ref_name = None global args dep = args.dep if dep =='mix': self.ref_name = 'ref' self.dep_val = rows['ref'] self.corr_data = self.value def get_correlated_features(self, alpha=np.nan): """ Get un-correlated feature rows out from the data sample Parameters: df: pd.Dataframe, features columns + outcome columns outcome_col: object, the column name of outcome alpha: float, choice of significant level for t-test to keep the correlated variables. ---- return: df : pd.DataFrame ; correlated features + outcome col """ if np.isnan(alpha): global args alpha = args.alpha df = self.value outcome_col = self.dependent_name #df = pd.get_dummies(df) if pd.DataFrame.isna(df).any().any(): raise ValueError('Input feature dataframe contains NaN.') if len(df) < 3: return df # change '-' in the column names into '_' df.columns = df.columns.str.strip().str.replace('-', '_') # only get numerical columns to check if no_col = df.select_dtypes( include=['int', 'float', 'int64', 'float64']).columns if outcome_col in no_col: no_col = no_col.drop(outcome_col) if 'ref' in no_col: no_col = no_col.drop('ref') for col in no_col: arr = df[col] outcome = df[outcome_col] corr, pvalue = stats.pearsonr(arr, outcome) if pvalue > alpha: # if fail to reject the null hypothesis that the correlation # coefficient IS NOT significantly different from 0. df = df.drop(col, axis=1) # remove the column df = df.reset_index(drop=True) self.corr_data = df return df def find_best_question(Rows, question_excluded): """Find the best question to ask by iterating over every feature / value and calculating the information gain. para: question_excluded, questions already asked during building the tree""" Rows.get_correlated_features() rows, outcome_col = Rows.corr_data, Rows.dependent_name best_ceffect = 0 # keep track of the best information gain best_question = None # keep train of the feature / value that produced it question_list = rows.columns.drop(Rows.dependent_name) if Rows.ref_name: question_list = question_list.drop(Rows.ref_name) qkeys, qcount = np.unique(question_excluded, return_counts=True) qdict = defaultdict(list) maxAskCount = 2 # delete the cols(questions) that are asked twice for (c, k) in zip(qcount, qkeys): qdict[c].append(k) if maxAskCount in qdict.keys(): # if the col is used more than maxAskCount, # remove from the questionlist for item in qdict[maxAskCount]: if item in question_list: question_list = question_list.drop(item) if len(question_list) == 0: import warnings warnings.warn('Find Best Question: Rows is empty') return best_ceffect, best_question # get the question list for processing testQlist = [] for col in question_list: # for each feature values = list(set(rows[col])) # unique values in the column if is_numeric( values[0]): # if too many numeric value in ValueSet,deduct some global args SplitCount = args.sp if len(values) > SplitCount: values = np.linspace(min(rows[col]), max( rows[col]), SplitCount)[1:-1] else: if len(values) == 2: values = values[:-1] # if not a numeric question set and with unique set number of 2, # it means one is the complimentary of the other, so cancel one # here. for val in values: # for each value testQlist += [Question(col, val)] # Start multiprocessing cpu_cores = mp.cpu_count() if cpu_cores > 10: num_cores = int(np.floor(mp.cpu_count() / 4)) else: num_cores = 1 # for q in tqdm(testQlist, desc='calculating p_value and gini for {} rows'.format(len(Rows.value))): # q.cal_pvalue_gain(Rows) def para_run(Q): # Q is a Question Instance global args alpha = args.alpha Q.cal_causal_effect_gain(Rows, alpha) return Q resQlist = Parallel(n_jobs=num_cores)(delayed(para_run)(q)for q in tqdm( testQlist, desc='calculating p_value and gini for {} rows'.format(len(Rows.value)))) res_df = pd.DataFrame(columns=['col', 'val', 'ceffect', 'gain']) for q in resQlist: res_df.loc[len(res_df), ['col', 'val', 'ceffect', 'gain']] = [ q.column, q.value, q.ceffect, q.gain] #weights = [0.15, 0.85] weights = [0.8, 0.2] # pvalue the smaller the better; gain the bigger the better,here the # q.gain is the 1-gain # weighted rank over Causal Effect (bigger the better) and gini info gain res_df['ranks'] = res_df[['ceffect', 'gain']].mul(weights).sum(1) res_df = res_df.sort_values( by=['ranks'], ascending=False).reset_index( drop=True) best_question = Question( res_df.col[0], res_df.val[0]) best_ceffect = res_df.ceffect[0] return best_ceffect, best_question def is_numeric(value): """Test if a value is numeric.""" return isinstance(value, int) or isinstance(value, float) class Question: """A Question is used to partition a dataset. This class just records a 'column number' (e.g., 0 for Color) and a 'column value' (e.g., Green). The 'match' method is used to compare the feature value in an example to the feature value stored in the question. See the demo below. """ def __init__(self, column, value): self.column = column self.value = value def match(self, example): # Compare the feature value in an example to the # feature value in this question. val = example[self.column] if is_numeric(val): return val < self.value else: return val == self.value def cal_causal_effect_gain(self, Rows, alpha): Rows.get_correlated_features() rows, outcome_col = Rows.corr_data, Rows.dependent_name # try splitting the dataset true_rows, false_rows = partition(rows, self) TrRows = MyRows(true_rows, Rows.dependent_name) FlRows = MyRows(false_rows, Rows.dependent_name) # Skip this split if it doesn't divide the # dataset. if len(true_rows) == 0 or len(false_rows) == 0: self.gain = 0 self.ceffect = 0 return try: # Get Prospensity_matched dataset matchdf = prospensity_match(rows, self, outcome_col) except BaseException: # if failed match, then use the original dataset Yvar = self.column Yvar_new = varnameQuestion(self) true_rows, false_rows = partition(rows, self) true_rows = true_rows.rename(columns={Yvar: Yvar_new}) false_rows = false_rows.rename(columns={Yvar: Yvar_new}) true_rows[Yvar_new] = 1 false_rows[Yvar_new] = 0 matchdf = true_rows.append(false_rows) try: # Calculate the p-value from this split cau_effect, pvalue = match_ttest(matchdf, self, outcome_col) except BaseException: pvalue = 1.0 cau_effect = 0 # Calculate the information gain from this split current_uncertainty = gini_r(Rows) gain = info_gain(TrRows, FlRows, current_uncertainty) self.gain = gain # if pass the significant test ( two groups are significantly # different) if pvalue <= alpha: self.ceffect = cau_effect else: self.ceffect = 0 def __repr__(self): # This is just a helper method to print # the question in a readable format. condition = "==" if is_numeric(self.value): condition = "<" return "{0} {1} {2:.2f}" .format( self.column, condition, self.value) return "%s %s %s" % ( self.column, condition, str(self.value)) def partition(rows, question): """Partitions a dataset. For each row in the dataset, check if it matches the question. If so, add it to 'true rows', otherwise, add it to 'false rows'. """ true_rows =
pd.DataFrame(columns=rows.columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Analyzing Student's Behavior and Model suggestion for classification levels # ### <NAME> # > #### This Data Science project was made under Capstone Data Science IBM Certification Program. # ## Table of contents # * [Introduction: Business Problem](#introduction) # * [Data](#data) # * [Methodology](#methodology) # * [Analysis](#analysis) # * [Results and Discussion](#results) # * [Conclusion](#conclusion) # # 1. Introduction <a name="introduction"></a> # A description of the problem and a discussion of the background # # The Internet revolution brought more than social medias and faster information exchanges. It brought also a generation of people who studies through the digital environments. Under this context, the online education evolved quickly and the transformation of the societies really started. Nowadays, people in distant places, poor countries can benefit from technology to achieve information and in this case, the Massive Open Online Courses, MOOCs had a major role. # MOOCs can join people all around the world to achieve understand in a wide range of areas, delivering science and culture. # # It is known, also, that online learning suffers massive unenrollment. The logical border and the lack of motivation can make the students leave. Under this context, what are the related features which causes it? How understand the student scenario and predict his churn or low grades? # I think that is a relevant point. If MOOCs platforms achieve student understanding and predicting, I think it's possible to menage the student's churn and find a way to give them the needed motivation. # # With this set in mind, I started a search for MOOCs generated Students Data to investigate and prepare some conclusions about the theme. # # # 2. Data # A description of the data and how it will be used to solve the problem # # To guide my investigation, I was looking for a Set to help to understand the student's behavior, motivation and correlated characteristics in order to better understand why or how is the result of an enrollment. So, it is important to find a dataset with some key features like grade, gender, enrollment levels, and so on. Location data is also important to understand cultural marks, which will be explored by locations APIs. # Guided by the analysis exploration, I'll be able to build a model to predict student's behavior or results. # After querying correlated datasets in order to find those with better columns, I found a nice DataSet from Kaggle called "Students' Academic Performance Dataset". You can check it here https://www.kaggle.com/aljarah/xAPI-Edu-Data. # <p> The data compounds 16 columns with aggregated informations about over 480 students of a Learning Platform called Kalboard360. The datails will be shown next section. # # ## 2.1 Data Structure # As previously mentioned, this dataset includes 16 columns: # # 1. Gender - student's gender (nominal: 'Male' or 'Female’) # # 2. Nationality- student's nationality (nominal:’ Kuwait’,’ Lebanon’,’ Egypt’,’ SaudiArabia’,’ USA’,’ Jordan’,’ Venezuela’,’ Iran’,’ Tunis’,’ Morocco’,’ Syria’,’ Palestine’,’ Iraq’,’ Lybia’) # # 3. Place of birth- student's Place of birth (nominal:’ Kuwait’,’ Lebanon’,’ Egypt’,’ SaudiArabia’,’ USA’,’ Jordan’,’ Venezuela’,’ Iran’,’ Tunis’,’ Morocco’,’ Syria’,’ Palestine’,’ Iraq’,’ Lybia’) # # 4. Educational Stages- educational level student belongs (nominal: ‘lowerlevel’,’MiddleSchool’,’HighSchool’) # # 5. Grade Levels- grade student belongs (nominal: ‘G-01’, ‘G-02’, ‘G-03’, ‘G-04’, ‘G-05’, ‘G-06’, ‘G-07’, ‘G-08’, ‘G-09’, ‘G-10’, ‘G-11’, ‘G-12 ‘) # # 6. Section ID- classroom student belongs (nominal:’A’,’B’,’C’) # # 7. Topic- course topic (nominal:’ English’,’ Spanish’, ‘French’,’ Arabic’,’ IT’,’ Math’,’ Chemistry’, ‘Biology’, ‘Science’,’ History’,’ Quran’,’ Geology’) # # 8. Semester- school year semester (nominal:’ First’,’ Second’) # # 9. Parent responsible for student (nominal:’mom’,’father’) # # 10. Raised hand- how many times the student raises his/her hand on classroom (numeric:0-100) # # 11. Visited resources- how many times the student visits a course content(numeric:0-100) # # 12. Viewing announcements-how many times the student checks the new announcements(numeric:0-100) # # 13. Discussion groups- how many times the student participate on discussion groups (numeric:0-100) # # 14. Parent Answering Survey- parent answered the surveys which are provided from school or not (nominal:’Yes’,’No’) # # 15. Parent School Satisfaction- the Degree of parent satisfaction from school(nominal:’Yes’,’No’) # # 16. Student Absence Days-the number of absence days for each student (nominal: above-7, under-7) # # The most important characteristic of this dataset is that it has included the parent's data, which is a nice approach to understand the student. # # 3. Methodology # # The first steps are the data exploration and insight-taking approach in order to better understand the data and the columns. The purpose of this exploratory analysis is to identify hidden features and understand the relations between the features. # Next, I'll do a descritive analysis by building a dataset for a clustering algorithm. This way, the data understanding will become a more powerfull decision making, focused on student's behaviors. # Finally, I'll create a my predictive analysis by building a dataset with the best features for a supervised learning algorithm to predict the student's beahvior under certain conditions, which will achieve my final objective. # # 4. Analysis # As mentioned, this section will understand the data in order to compose the clustering dataset. # ### 4.1 Exploratory Analysis # In[110]: import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt # In[111]: dataset = pd.read_csv("../../../input/aljarah_xAPI-Edu-Data/xAPI-Edu-Data.csv") dataset.head(5) # In the context to understand the student and his results, setting up a dataframe with certain columns # In[112]: df = dataset[['gender','PlaceofBirth','StageID','Topic','raisedhands','VisITedResources','AnnouncementsView','Discussion', 'ParentAnsweringSurvey','ParentschoolSatisfaction','StudentAbsenceDays', 'Class']] df.head() # Try to understand the results from countries # In[113]: df.groupby(['ParentschoolSatisfaction'])['Class'].value_counts(normalize=True) # In[114]: df.groupby(['ParentAnsweringSurvey'])['ParentschoolSatisfaction'].value_counts(normalize=True) # It seems that parents which aren't envolved in answering the scholar's surveys are likely to become unsatisfied with the School. This can mean that well informed parents can better understand the student's enrollment and reality and are better satisfied. # ### Question: What is the relation between active parents and student's classification? # In[115]: df.groupby(['ParentAnsweringSurvey'])['Class'].value_counts(normalize=True) # So, definitively parent's active behavior has an important role on student's growth. # ## Understanding student's behavior # Next, it is important to know what characteristics are linked to students sucess. So, we're going to test the features related. # In[116]: df2 = dataset[['gender','raisedhands','VisITedResources','AnnouncementsView','Discussion','StudentAbsenceDays', 'Class']] df2.head() # ### Question: What's the relation between raising hands and classification? # In[117]: df2['raisedhands'] = pd.cut(df2.raisedhands, bins=3, labels=np.arange(3), right=False) df2.groupby(['raisedhands'])['Class'].value_counts(normalize=True) # So, it seems that students which has low levels of raising hands are most likely to have Low classification. In the otherside, high frequency of raising hands are linked to higher classification. # Next, we're going to check the act of visiting the course resources. # In[118]: df2['VisITedResources'] = pd.cut(df2.VisITedResources, bins=3, labels=np.arange(3), right=False) df2.groupby(['VisITedResources'])['Class'].value_counts(normalize=True) # Low levels of resource exploring means lower levels of classification. High levels of visiting resources are linked to higher classification. # In[119]: df2['AnnouncementsView'] = pd.cut(df2.AnnouncementsView, bins=3, labels=np.arange(3), right=False) df2.groupby(['AnnouncementsView'])['Class'].value_counts(normalize=True) # The act of visualizing the announcements makes the students more prepared for the tasks and they are most likely to plan the assessments of the week. High visualization frequency is lined, indeed, to better classifications. # In[120]: df2['Discussion'] = pd.cut(df2.Discussion, bins=3, labels=np.arange(3), right=False) df2.groupby(['Discussion'])['Class'].value_counts(normalize=True) # Suprisingly, discussion frequency is weakly linked to higher results, at least, directly. Of course, there are higher interactions levels ocrring with Higher graded students but the data shows that discussion is a secondary act. # Concluding this step on analysis, we're going to understand the absence rate with the grade level # In[121]: df2.groupby(['StudentAbsenceDays'])['Class'].value_counts(normalize=True) # As expected, the lower the absence of the student, the higher tends to become their classification. Let's keep this feature. # ### 4.1.1 Clustering DataSet # Now that we know what are the important features to understand the student's behavior and classification, we're going to build a dataset for a K-Means algorithm, which will show the student's cluster. # To make the construction process easiest to understand, we're going to reimplement the dataset building phases. # In[122]: df2 = dataset[['gender','raisedhands','VisITedResources','AnnouncementsView','Discussion','StudentAbsenceDays', 'Class']] df2.tail() # Let's identify the correlations between the student's actions # In[123]: correlation = df2[['raisedhands','VisITedResources','AnnouncementsView','Discussion']].corr(method='pearson') correlation # This made clear that our best correlated features are raisedHands and visitedResources, which will compose our model dataset further. # So, we need an <b>one hot encoding</b> on columns gender,absence and class # In[124]: df2 = pd.concat([df2,pd.get_dummies(df2['gender'], prefix='gender_')], axis=1) df2 = pd.concat([df2,pd.get_dummies(df2['StudentAbsenceDays'], prefix='absence_')], axis=1) df2 = pd.concat([df2,pd.get_dummies(df2['Class'], prefix='class_')], axis=1) df2.drop(['gender'], axis = 1,inplace=True) df2.drop(['StudentAbsenceDays'], axis = 1,inplace=True) df2.drop(['Class'], axis = 1,inplace=True) df2.head() # In[125]: from sklearn.cluster import KMeans from sklearn import preprocessing # So, based on previous exploratory analysis, was possible to identify that raised hands and announcements visualization brings most results respect high classification. So, both features will compound our X axis # In[126]: X = df2[['raisedhands', 'VisITedResources']].values #NORMALIZE OUR ARRAY min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(X) #GET X AXIS X =
pd.DataFrame(x_scaled)
pandas.DataFrame
import mcradar as mcr import xarray as xr import numpy as np import pandas as pd import os from IPython.core.debugger import Tracer ; debug=Tracer() #insert this line somewhere to debug def getApectRatio(radii): # imput radii [mm] # auer et all 1970 (The Dimension of Ice Crystals in Natural Clouds) diameter = 2 * radii *1e3 # calculating the diameter in [mu m] h = 2.020 * (diameter)**0.449 as_ratio = h / diameter return as_ratio #reading the data file dataPath = "data" fileName = "mass2fr_0300-0600min_avtstep_5.ncdf" filePath = os.path.join(dataPath, fileName) data = xr.open_dataset(filePath) #fake time time = np.ones_like(data.dim_SP_all_av150) #calculating the aspec ratio sPhi = np.ones_like(data.dim_SP_all_av150)*np.nan sPhi = getApectRatio(data.diam * 1e3) sPhi[data.mm.values > 1]=0.6 #converting to pandas dataframe dataTable = data.to_dataframe() dataTable = dataTable.rename(columns={'m_tot':'mTot', 'height':'sHeight', 'vt':'vel', 'diam':'dia','xi':'sMult'}) #settings dicSettings = mcr.loadSettings(dataPath='_', freq=np.array([9.6e9]), maxHeight=3000, minHeight=2500, heightRes=5) #adding required variables dataTable['radii'] = dataTable['dia'] / 2.# particle radius in m dataTable['time']=time PSD_method="bin" #"bin": count SP and their multiplicity in height and size bins; "1D_KDE": #DOES NOT WORK YET!! 1-dimensional kernel density estimate, "discrete_SP": calculate scattering properties of each SP individually if PSD_method in ["bin","1D_KDE"]: #some definitions nbins = 100 #number of used bins n_heights = 50 model_top = 3850 #[m] #TODO: read this from output minR =-4 #minimum R considered (log10-space) maxR = 0 #maximum R considered (log10-space) area_box = 5 #[m2] #TODO: read this from output Rgrid=np.logspace(minR,maxR,nbins) Rgrid_log=np.linspace(minR,maxR,nbins) Rgrid_logdiff=Rgrid_log[1]-Rgrid_log[0] heightvec_bound = np.linspace(0,model_top,n_heights) #heightvec_bound = np.linspace(2900,3000,5) #TODO: remove (only for debugging) Vbox = area_box*heightvec_bound[1]-heightvec_bound[0] #[m3] reducedDataTable = pd.DataFrame() for i_height in range(len(heightvec_bound)-1): print("calculate h=",heightvec_bound[i_height]) #initialize as many dataFrame as categories #one category must have the same particle properties (mass, velocity) at the same size dataBINmono = pd.DataFrame(data={"Rgrid": Rgrid}) #initialize dataFrame dataBINagg =
pd.DataFrame(data={"Rgrid": Rgrid})
pandas.DataFrame
""" test_subcomp_b.py Contains tests for subcomp_b_process_emissions_factors, which averages emissions factors for DR days and all days. """ import unittest import pandas as pd import pandas.testing as pdt from subcomp_b_process_emissions_factors import seasonal_ave, annual_ave, \ get_hour_ave, alldays_oneyear_seasonal_ave, get_oneyear_hour_ave, subcomp_b_runall from emissions_parameters import DIR_TESTDATA_IN df_emissions_data = pd.read_excel(DIR_TESTDATA_IN+'subcomp_b_test_data/emissions_data.xlsx') df_dr_hours_winter = pd.read_excel(DIR_TESTDATA_IN+'subcomp_b_test_data/dr_hours_winter.xlsx') df_dr_hours_spring = pd.read_excel(DIR_TESTDATA_IN+'subcomp_b_test_data/dr_hours_spring.xlsx') df_dr_hours_summer = pd.read_excel(DIR_TESTDATA_IN+'subcomp_b_test_data/dr_hours_summer.xlsx') df_dr_hours_fall = pd.read_excel(DIR_TESTDATA_IN+'subcomp_b_test_data/dr_hours_fall.xlsx') df_dr_hours_data =
pd.read_excel(DIR_TESTDATA_IN+'subcomp_b_test_data/dr_hours_data.xlsx')
pandas.read_excel
"""Utility function relevant to the graphnet.data package.""" from ast import Is from glob import glob import os import numpy as np import pandas as pd from pathlib import Path import re from typing import List, Tuple, Union import sqlite3 import sqlalchemy def run_sql_code(database: str, code: str): """executes SQLite coded Args: database (str): path to databases code (str): SQLite code """ conn = sqlite3.connect(database) c = conn.cursor() c.executescript(code) c.close() return def save_to_sql(df, table_name, database): """saves a dataframe df to a table table_name in SQLite database database. Table must exist already. Args: df (pandas.DataFrame): dataframe with data to be stored in sqlite table table_name (str): name of table. Must exist already database (SQLite database): path to SQLite database """ engine = sqlalchemy.create_engine("sqlite:///" + database) df.to_sql(table_name, con=engine, index=False, if_exists="append") engine.dispose() return def get_desired_event_numbers( db_path, desired_size, fraction_noise=0, fraction_nu_e=0, fraction_muon=0, fraction_nu_mu=0, fraction_nu_tau=0, seed=0, ): assert ( fraction_nu_e + fraction_muon + fraction_nu_mu + fraction_nu_tau + fraction_noise == 1.0 ), "Sum of fractions not equal to one." rng = np.random.RandomState(seed=seed) fracs = [ fraction_noise, fraction_muon, fraction_nu_e, fraction_nu_mu, fraction_nu_tau, ] numbers_desired = [int(x * desired_size) for x in fracs] pids = [1, 13, 12, 14, 16] with sqlite3.connect(db_path) as con: total_query = "SELECT event_no FROM truth WHERE abs(pid) IN {}".format( tuple(pids) ) tot_event_nos =
pd.read_sql(total_query, con)
pandas.read_sql
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from copy import deepcopy import torch from torch.nn import Linear, MSELoss, CrossEntropyLoss, LogSoftmax, NLLLoss, functional as F from torch.optim import SGD, Adam, RMSprop from sklearn.model_selection import KFold df = pd.read_excel("Supplementary file 2-2. Clinical data.xlsx", 'Sheet1') df_train = df.iloc[:, 2:7] df_train = pd.get_dummies(df_train) label_columns = ['Histology_' + i for i in ['Normal', 'Inflammation', 'LGIN', 'HGIN', 'SM1', 'MM', 'SM2 or deeper']] labels = df_train.loc[:, label_columns] labels_gt = np.argmax(np.array(labels), 1) data = df_train.drop(label_columns, axis=1) data = np.array(data) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.20, random_state=10000, shuffle=True) df_IPCLsNet =
pd.read_excel(p + "\\Clinical_results.xlsx", 'Sheet1')
pandas.read_excel
#%% import numpy as np import pandas as pd import skimage.io import skimage.filters import matplotlib.pyplot as plt import sys sys.path.insert(0, '../../') import act.viz import act.image import glob colors = act.viz.pub_style() # %% files = glob.glob('../../../data/images/20200226_xap_distal_testing/*/pos*/') dfs = [] for i, f in enumerate(files): # Parse the identifiers. strain, atc, xan = f.split('/')[-3].split('_') atc = float(atc.split('ngml')[0]) xan = float(xan.split('mgml')[0]) if strain == 'xd': strain='distal' # Load the images. yfp = skimage.io.imread(glob.glob(f'{f}/*c2.tif')[0]) mch = skimage.io.imread(glob.glob(f'{f}/*c3.tif')[0]) seg = act.image.log_segmentation(yfp, thresh=0.0001) # Remove small objects seg = skimage.morphology.remove_small_objects(seg) # label label = skimage.measure.label(seg) # Compute the fluorescence region properties. yfp_props = skimage.measure.regionprops(label, yfp) mch_props = skimage.measure.regionprops(label, mch) mean_yfp = [] mean_mch = [] area = [] for i, _ in enumerate(yfp_props): mean_yfp.append(yfp_props[i]['mean_intensity']) mean_mch.append(mch_props[i]['mean_intensity']) area.append(yfp_props[i]['area']) # Assemble the data frame. df = pd.DataFrame(np.array([mean_yfp, mean_mch, area]).T, columns=['mean_yfp', 'mean_mch', 'area_pix']) df['strain'] = strain df['atc_ngml'] = atc df['xan_mgml'] = xan dfs.append(df) df =
pd.concat(dfs)
pandas.concat
import itertools import logging import math from datetime import datetime, timedelta, timezone import boto3 import numpy as np import pandas as pd import pyarrow as pa import pytest import awswrangler as wr from ._utils import ensure_data_types, get_df_list logging.getLogger("awswrangler").setLevel(logging.DEBUG) @pytest.mark.parametrize("partition_cols", [None, ["c2"], ["c1", "c2"]]) def test_parquet_metadata_partitions_dataset(path, partition_cols): df = pd.DataFrame({"c0": [0, 1, 2], "c1": [3, 4, 5], "c2": [6, 7, 8]}) wr.s3.to_parquet(df=df, path=path, dataset=True, partition_cols=partition_cols) columns_types, partitions_types = wr.s3.read_parquet_metadata(path=path, dataset=True) partitions_types = partitions_types if partitions_types is not None else {} assert len(columns_types) + len(partitions_types) == len(df.columns) assert columns_types.get("c0") == "bigint" assert (columns_types.get("c1") == "bigint") or (partitions_types.get("c1") == "string") assert (columns_types.get("c1") == "bigint") or (partitions_types.get("c1") == "string") @pytest.mark.parametrize("partition_cols", [None, ["c2"], ["value", "c2"]]) def test_parquet_cast_string_dataset(path, partition_cols): df = pd.DataFrame({"id": [1, 2, 3], "value": ["foo", "boo", "bar"], "c2": [4, 5, 6], "c3": [7.0, 8.0, 9.0]}) wr.s3.to_parquet(df, path, dataset=True, partition_cols=partition_cols, dtype={"id": "string", "c3": "string"}) df2 = wr.s3.read_parquet(path, dataset=True).sort_values("id", ignore_index=True) assert str(df2.id.dtypes) == "string" assert str(df2.c3.dtypes) == "string" assert df.shape == df2.shape for col, row in tuple(itertools.product(df.columns, range(3))): assert str(df[col].iloc[row]) == str(df2[col].iloc[row]) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_read_parquet_filter_partitions(path, use_threads): df = pd.DataFrame({"c0": [0, 1, 2], "c1": [0, 1, 2], "c2": [0, 0, 1]}) wr.s3.to_parquet(df, path, dataset=True, partition_cols=["c1", "c2"], use_threads=use_threads) df2 = wr.s3.read_parquet( path, dataset=True, partition_filter=lambda x: True if x["c1"] == "0" else False, use_threads=use_threads ) assert df2.shape == (1, 3) assert df2.c0.iloc[0] == 0 assert df2.c1.astype(int).iloc[0] == 0 assert df2.c2.astype(int).iloc[0] == 0 df2 = wr.s3.read_parquet( path, dataset=True, partition_filter=lambda x: True if x["c1"] == "1" and x["c2"] == "0" else False, use_threads=use_threads, ) assert df2.shape == (1, 3) assert df2.c0.iloc[0] == 1 assert df2.c1.astype(int).iloc[0] == 1 assert df2.c2.astype(int).iloc[0] == 0 df2 = wr.s3.read_parquet( path, dataset=True, partition_filter=lambda x: True if x["c2"] == "0" else False, use_threads=use_threads ) assert df2.shape == (2, 3) assert df2.c0.astype(int).sum() == 1 assert df2.c1.astype(int).sum() == 1 assert df2.c2.astype(int).sum() == 0 def test_parquet(path): df_file = pd.DataFrame({"id": [1, 2, 3]}) path_file = f"{path}test_parquet_file.parquet" df_dataset = pd.DataFrame({"id": [1, 2, 3], "partition": ["A", "A", "B"]}) df_dataset["partition"] = df_dataset["partition"].astype("category") path_dataset = f"{path}test_parquet_dataset" with pytest.raises(wr.exceptions.InvalidArgumentCombination): wr.s3.to_parquet(df=df_file, path=path_file, mode="append") with pytest.raises(wr.exceptions.InvalidCompression): wr.s3.to_parquet(df=df_file, path=path_file, compression="WRONG") with pytest.raises(wr.exceptions.InvalidArgumentCombination): wr.s3.to_parquet(df=df_dataset, path=path_dataset, partition_cols=["col2"]) with pytest.raises(wr.exceptions.InvalidArgumentCombination): wr.s3.to_parquet(df=df_dataset, path=path_dataset, description="foo") with pytest.raises(wr.exceptions.InvalidArgumentValue): wr.s3.to_parquet(df=df_dataset, path=path_dataset, partition_cols=["col2"], dataset=True, mode="WRONG") wr.s3.to_parquet(df=df_file, path=path_file) assert len(wr.s3.read_parquet(path=path_file, use_threads=True, boto3_session=None).index) == 3 assert len(wr.s3.read_parquet(path=[path_file], use_threads=False, boto3_session=boto3.DEFAULT_SESSION).index) == 3 paths = wr.s3.to_parquet(df=df_dataset, path=path_dataset, dataset=True)["paths"] with pytest.raises(wr.exceptions.InvalidArgument): assert wr.s3.read_parquet(path=paths, dataset=True) assert len(wr.s3.read_parquet(path=path_dataset, use_threads=True, boto3_session=boto3.DEFAULT_SESSION).index) == 3 dataset_paths = wr.s3.to_parquet( df=df_dataset, path=path_dataset, dataset=True, partition_cols=["partition"], mode="overwrite" )["paths"] assert len(wr.s3.read_parquet(path=path_dataset, use_threads=True, boto3_session=None).index) == 3 assert len(wr.s3.read_parquet(path=dataset_paths, use_threads=True).index) == 3 assert len(wr.s3.read_parquet(path=path_dataset, dataset=True, use_threads=True).index) == 3 wr.s3.to_parquet(df=df_dataset, path=path_dataset, dataset=True, partition_cols=["partition"], mode="overwrite") wr.s3.to_parquet( df=df_dataset, path=path_dataset, dataset=True, partition_cols=["partition"], mode="overwrite_partitions" ) def test_parquet_validate_schema(path): df = pd.DataFrame({"id": [1, 2, 3]}) path_file = f"{path}0.parquet" wr.s3.to_parquet(df=df, path=path_file) df2 = pd.DataFrame({"id2": [1, 2, 3], "val": ["foo", "boo", "bar"]}) path_file2 = f"{path}1.parquet" wr.s3.to_parquet(df=df2, path=path_file2) df3 = wr.s3.read_parquet(path=path, validate_schema=False) assert len(df3.index) == 6 assert len(df3.columns) == 3 with pytest.raises(wr.exceptions.InvalidSchemaConvergence): wr.s3.read_parquet(path=path, validate_schema=True) def test_parquet_uint64(path): wr.s3.delete_objects(path=path) df = pd.DataFrame( { "c0": [0, 0, (2 ** 8) - 1], "c1": [0, 0, (2 ** 16) - 1], "c2": [0, 0, (2 ** 32) - 1], "c3": [0, 0, (2 ** 64) - 1], "c4": [0, 1, 2], } ) df["c0"] = df.c0.astype("uint8") df["c1"] = df.c1.astype("uint16") df["c2"] = df.c2.astype("uint32") df["c3"] = df.c3.astype("uint64") wr.s3.to_parquet(df=df, path=path, dataset=True, mode="overwrite", partition_cols=["c4"]) df = wr.s3.read_parquet(path=path, dataset=True) assert len(df.index) == 3 assert len(df.columns) == 5 assert df.c0.max() == (2 ** 8) - 1 assert df.c1.max() == (2 ** 16) - 1 assert df.c2.max() == (2 ** 32) - 1 assert df.c3.max() == (2 ** 64) - 1 assert df.c4.astype("uint8").sum() == 3 wr.s3.delete_objects(path=path) def test_parquet_metadata_partitions(path): path = f"{path}0.parquet" df = pd.DataFrame({"c0": [0, 1, 2], "c1": ["3", "4", "5"], "c2": [6.0, 7.0, 8.0]}) wr.s3.to_parquet(df=df, path=path, dataset=False) columns_types, _ = wr.s3.read_parquet_metadata(path=path, dataset=False) assert len(columns_types) == len(df.columns) assert columns_types.get("c0") == "bigint" assert columns_types.get("c1") == "string" assert columns_types.get("c2") == "double" def test_parquet_cast_string(path): df = pd.DataFrame({"id": [1, 2, 3], "value": ["foo", "boo", "bar"]}) path_file = f"{path}0.parquet" wr.s3.to_parquet(df, path_file, dtype={"id": "string"}, sanitize_columns=False) df2 = wr.s3.read_parquet(path_file) assert str(df2.id.dtypes) == "string" assert df.shape == df2.shape for col, row in tuple(itertools.product(df.columns, range(3))): assert df[col].iloc[row] == df2[col].iloc[row] def test_to_parquet_file_sanitize(path): df = pd.DataFrame({"C0": [0, 1], "camelCase": [2, 3], "c**--2": [4, 5]}) path_file = f"{path}0.parquet" wr.s3.to_parquet(df, path_file, sanitize_columns=True) df2 = wr.s3.read_parquet(path_file) assert df.shape == df2.shape assert list(df2.columns) == ["c0", "camel_case", "c_2"] assert df2.c0.sum() == 1 assert df2.camel_case.sum() == 5 assert df2.c_2.sum() == 9 @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_to_parquet_file_dtype(path, use_threads): df = pd.DataFrame({"c0": [1.0, None, 2.0], "c1": [pd.NA, pd.NA, pd.NA]}) file_path = f"{path}0.parquet" wr.s3.to_parquet(df, file_path, dtype={"c0": "bigint", "c1": "string"}, use_threads=use_threads) df2 = wr.s3.read_parquet(file_path, use_threads=use_threads) assert df2.shape == df.shape assert df2.c0.sum() == 3 assert str(df2.c0.dtype) == "Int64" assert str(df2.c1.dtype) == "string" @pytest.mark.parametrize("filename_prefix", [None, "my_prefix"]) @pytest.mark.parametrize("use_threads", [True, False]) def test_to_parquet_filename_prefix(compare_filename_prefix, path, filename_prefix, use_threads): test_prefix = "my_prefix" df = pd.DataFrame({"col": [1, 2, 3], "col2": ["A", "A", "B"]}) file_path = f"{path}0.parquet" # If Dataset is False, parquet file should never start with prefix filename = wr.s3.to_parquet( df=df, path=file_path, dataset=False, filename_prefix=filename_prefix, use_threads=use_threads )["paths"][0].split("/")[-1] assert not filename.startswith(test_prefix) # If Dataset is True, parquet file starts with prefix if one is supplied filename = wr.s3.to_parquet( df=df, path=path, dataset=True, filename_prefix=filename_prefix, use_threads=use_threads )["paths"][0].split("/")[-1] compare_filename_prefix(filename, filename_prefix, test_prefix) # Partitioned filename = wr.s3.to_parquet( df=df, path=path, dataset=True, filename_prefix=filename_prefix, partition_cols=["col2"], use_threads=use_threads, )["paths"][0].split("/")[-1] compare_filename_prefix(filename, filename_prefix, test_prefix) # Bucketing filename = wr.s3.to_parquet( df=df, path=path, dataset=True, filename_prefix=filename_prefix, bucketing_info=(["col2"], 2), use_threads=use_threads, )["paths"][0].split("/")[-1] compare_filename_prefix(filename, filename_prefix, test_prefix) assert filename.endswith("bucket-00000.snappy.parquet") def test_read_parquet_map_types(path): df = pd.DataFrame({"c0": [0, 1, 1, 2]}, dtype=np.int8) file_path = f"{path}0.parquet" wr.s3.to_parquet(df, file_path) df2 = wr.s3.read_parquet(file_path) assert str(df2.c0.dtype) == "Int8" df3 = wr.s3.read_parquet(file_path, map_types=False) assert str(df3.c0.dtype) == "int8" @pytest.mark.parametrize("use_threads", [True, False, 2]) @pytest.mark.parametrize("max_rows_by_file", [None, 0, 40, 250, 1000]) def test_parquet_with_size(path, use_threads, max_rows_by_file): df = get_df_list() df = pd.concat([df for _ in range(100)]) paths = wr.s3.to_parquet( df=df, path=path + "x.parquet", index=False, dataset=False, max_rows_by_file=max_rows_by_file, use_threads=use_threads, )["paths"] if max_rows_by_file is not None and max_rows_by_file > 0: assert len(paths) >= math.floor(300 / max_rows_by_file) assert len(paths) <= math.ceil(300 / max_rows_by_file) df2 = wr.s3.read_parquet(path=path, dataset=False, use_threads=use_threads) ensure_data_types(df2, has_list=True) assert df2.shape == (300, 19) assert df.iint8.sum() == df2.iint8.sum() @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_index_and_timezone(path, use_threads): df = pd.DataFrame({"c0": [datetime.utcnow(), datetime.utcnow()], "par": ["a", "b"]}, index=["foo", "boo"]) df["c1"] = pd.DatetimeIndex(df.c0).tz_localize(tz="US/Eastern") wr.s3.to_parquet(df, path, index=True, use_threads=use_threads, dataset=True, partition_cols=["par"]) df2 = wr.s3.read_parquet(path, use_threads=use_threads, dataset=True) assert df[["c0", "c1"]].equals(df2[["c0", "c1"]]) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_index_recovery_simple_int(path, use_threads): df = pd.DataFrame({"c0": np.arange(10, 1_010, 1)}, dtype="Int64") paths = wr.s3.to_parquet(df, path, index=True, use_threads=use_threads, dataset=True, max_rows_by_file=300)["paths"] assert len(paths) == 4 df2 = wr.s3.read_parquet(f"{path}*.parquet", use_threads=use_threads) assert df.equals(df2) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_index_recovery_simple_str(path, use_threads): df = pd.DataFrame({"c0": [0, 1, 2, 3, 4]}, index=["a", "b", "c", "d", "e"], dtype="Int64") paths = wr.s3.to_parquet(df, path, index=True, use_threads=use_threads, dataset=True, max_rows_by_file=1)["paths"] assert len(paths) == 5 df2 = wr.s3.read_parquet(f"{path}*.parquet", use_threads=use_threads) assert df.equals(df2) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_index_recovery_partitioned_str(path, use_threads): df = pd.DataFrame( {"c0": [0, 1, 2, 3, 4], "par": ["foo", "boo", "bar", "foo", "boo"]}, index=["a", "b", "c", "d", "e"] ) df["c0"] = df["c0"].astype("Int64") df["par"] = df["c0"].astype("category") paths = wr.s3.to_parquet( df, path, index=True, use_threads=use_threads, dataset=True, partition_cols=["par"], max_rows_by_file=1 )["paths"] assert len(paths) == 5 df2 = wr.s3.read_parquet(f"{path}*.parquet", use_threads=use_threads, dataset=True) assert df.shape == df2.shape assert df.c0.equals(df2.c0) assert df.dtypes.equals(df2.dtypes) assert df.index.equals(df2.index) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_range_index_recovery_simple(path, use_threads): df = pd.DataFrame({"c0": np.arange(10, 15, 1)}, dtype="Int64", index=pd.RangeIndex(start=5, stop=30, step=5)) paths = wr.s3.to_parquet(df, path, index=True, use_threads=use_threads, dataset=True, max_rows_by_file=3)["paths"] assert len(paths) == 2 df2 = wr.s3.read_parquet(f"{path}*.parquet", use_threads=use_threads) assert df.reset_index(level=0).equals(df2.reset_index(level=0)) @pytest.mark.parametrize("use_threads", [True, False, 2]) @pytest.mark.parametrize("name", [None, "foo"]) def test_range_index_recovery_pandas(path, use_threads, name): df = pd.DataFrame({"c0": np.arange(10, 15, 1)}, dtype="Int64", index=pd.RangeIndex(start=5, stop=30, step=5)) df.index.name = name path_file = f"{path}0.parquet" df.to_parquet(path_file) df2 = wr.s3.read_parquet([path_file], use_threads=use_threads) assert df.reset_index(level=0).equals(df2.reset_index(level=0)) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_multi_index_recovery_simple(path, use_threads): df =
pd.DataFrame({"c0": [0, 1, 2], "c1": ["a", "b", "c"], "c2": [True, False, True], "c3": [0, 1, 2]})
pandas.DataFrame
""" Functions to connect to and process data from SolarForecastArbiter API """ import datetime as dt import json import logging import requests from urllib3 import Retry import numpy as np import pandas as pd from solarforecastarbiter import datamodel from solarforecastarbiter.utils import merge_ranges from solarforecastarbiter.io.utils import ( json_payload_to_observation_df, json_payload_to_forecast_series, observation_df_to_json_payload, forecast_object_to_json, adjust_timeseries_for_interval_label, serialize_timeseries, HiddenToken, ensure_timestamps, load_report_values) BASE_URL = 'https://api.solarforecastarbiter.org' logger = logging.getLogger(__name__) # Limit used to limit the amount of retrieved with a single request. Used # to break up large requests into smaller requests to avoid timeout. GET_VALUES_LIMIT = '365D' def request_cli_access_token(user, password, **kwargs): """Request an API access token from Auth0. Parameters ---------- user : str Username password : str Password kwargs Passed to requests.post. Useful for handling SSL certificates, navigating proxies, or other network complications. See requests documentation for details. Returns ------- access_token : str """ req = requests.post( 'https://solarforecastarbiter.auth0.com/oauth/token', data={'grant_type': 'password', 'username': user, 'audience': BASE_URL, 'password': password, 'client_id': 'c16EJo48lbTCQEhqSztGGlmxxxmZ4zX7'}, **kwargs) req.raise_for_status() return req.json()['access_token'] class APISession(requests.Session): """ Subclass of requests.Session to handle requets to the SolarForecastArbiter API. The Session provides connection pooling, automatic retries for certain types of requets, default timeouts, and a default base url. Responses are converted into the appropriate class from datamodel.py or a pandas object. Parameters ---------- access_token : string or HiddenToken The base64 encoded Bearer token to authenticate with the API default_timeout : float or tuple, optional A default timeout to add to all requests. If a tuple, the first element is the connection timeout and the second is the read timeout. Default is 10 seconds for connection and 60 seconds to read from the server. base_url : string URL to use as the base for endpoints to APISession Notes ----- To pass the API calls through a proxy server, set either the HTTP_PROXY or HTTPS_PROXY environment variable. If necessary, you can also specify a SSL certificate using the REQUESTS_CA_BUNDLE environment variable. For example, on a Linux machine: >>> export HTTPS_PROXY=https://some_corporate_proxy.com:8080 >>> export REQUESTS_CA_BUNDLE=/path/to/certificates/cert.crt >>> python script_that_calls_api.py For more information, see the "Advanced Usage" documentation for the requests package: https://requests.readthedocs.io/en/master/user/advanced/ """ def __init__(self, access_token, default_timeout=(10, 60), base_url=None): super().__init__() if isinstance(access_token, HiddenToken): access_token = access_token.token self.headers = {'Authorization': f'Bearer {access_token}', 'Accept': 'application/json', 'Accept-Encoding': 'gzip,deflate'} self.default_timeout = default_timeout self.base_url = base_url or BASE_URL # set requests to automatically retry retries = Retry(total=10, connect=3, read=3, status=3, status_forcelist=[408, 423, 444, 500, 501, 502, 503, 504, 507, 508, 511, 599], backoff_factor=0.5, raise_on_status=False, remove_headers_on_redirect=[]) adapter = requests.adapters.HTTPAdapter(max_retries=retries) self.mount(self.base_url, adapter) def request(self, method, url, *args, **kwargs): """ Modify the default Session.request to add in the default timeout and make requests relative to the base_url. Users will likely use the standard get and post methods instead of calling this directly. Raises ------ requests.exceptions.HTTPError When an error is encountered in when making the request to the API """ if url.startswith('/'): url = f'{self.base_url}{url}' else: url = f'{self.base_url}/{url}' # set a defautl timeout so we never hang indefinitely if 'timeout' not in kwargs: kwargs['timeout'] = self.default_timeout result = super().request(method, url, *args, **kwargs) if result.status_code >= 400: raise requests.exceptions.HTTPError( f'{result.status_code} API Request Error: {result.reason} for ' f'url: {result.url} and text: {result.text}', response=result) return result def _process_site_dict(self, site_dict): if ( site_dict.get('modeling_parameters', {}).get( 'tracking_type', '') in ('fixed', 'single_axis') ): return datamodel.SolarPowerPlant.from_dict(site_dict) else: return datamodel.Site.from_dict(site_dict) def get_site(self, site_id): """ Retrieve site metadata for site_id from the API and process into the proper model. Parameters ---------- site_id : string UUID of the site to retrieve metadata for Returns ------- datamodel.Site or datamodel.SolarPowerPlant Dataclass with all the metadata for the site depending on if the Site is a power plant with modeling parameters or not. """ req = self.get(f'/sites/{site_id}') site_dict = req.json() return self._process_site_dict(site_dict) def list_sites(self): """ List all the sites available to a user. Returns ------- list of datamodel.Sites and datamodel.SolarPowerPlants """ req = self.get('/sites/') return [self._process_site_dict(site_dict) for site_dict in req.json()] def list_sites_in_zone(self, zone): """ List all the sites available to a user in the given climate zone. Parameters ---------- zone : str Returns ------- list of datamodel.Sites and datamodel.SolarPowerPlants """ req = self.get(f'/sites/in/{zone}') return [self._process_site_dict(site_dict) for site_dict in req.json()] def search_climatezones(self, latitude, longitude): """ Find all climate zones that the location is in. Parameters ---------- latitude : float, degrees North longitude : float, degrees East of the Prime Meridian Returns ------- list A list of the climate zones the location is in """ req = self.get('/climatezones/search', params={'latitude': latitude, 'longitude': longitude}) return [r['name'] for r in req.json()] def create_site(self, site): """ Create a new site in the API with the given Site model Parameters ---------- site : datamodel.Site or datamodel.SolarPowerPlant Site to create in the API Returns ------- datamodel.Site or datamodel.SolarPowerPlant With the appropriate parameters such as site_id set by the API """ site_dict = site.to_dict() for k in ('site_id', 'provider', 'climate_zones'): site_dict.pop(k, None) site_json = json.dumps(site_dict) req = self.post('/sites/', data=site_json, headers={'Content-Type': 'application/json'}) new_id = req.text return self.get_site(new_id) def get_observation(self, observation_id): """ Get the metadata from the API for the a given observation_id in an Observation object. Parameters ---------- observation_id : string UUID of the observation to retrieve Returns ------- datamodel.Observation """ req = self.get(f'/observations/{observation_id}/metadata') obs_dict = req.json() site = self.get_site(obs_dict['site_id']) obs_dict['site'] = site return datamodel.Observation.from_dict(obs_dict) def list_observations(self): """ List the observations a user has access to. Returns ------- list of datamodel.Observation """ req = self.get('/observations/') obs_dicts = req.json() if isinstance(obs_dicts, dict): obs_dicts = [obs_dicts] if len(obs_dicts) == 0: return [] sites = {site.site_id: site for site in self.list_sites()} out = [] for obs_dict in obs_dicts: obs_dict['site'] = sites.get(obs_dict['site_id']) out.append(datamodel.Observation.from_dict(obs_dict)) return out def create_observation(self, observation): """ Create a new observation in the API with the given Observation model Parameters ---------- observation : datamodel.Observation Observation to create in the API Returns ------- datamodel.Observation With the appropriate parameters such as observation_id set by the API """ obs_dict = observation.to_dict() obs_dict.pop('observation_id') obs_dict.pop('provider') site = obs_dict.pop('site') obs_dict['site_id'] = site['site_id'] obs_json = json.dumps(obs_dict) req = self.post('/observations/', data=obs_json, headers={'Content-Type': 'application/json'}) new_id = req.text return self.get_observation(new_id) def _process_fx(self, fx_dict, sites={}): if fx_dict['site_id'] is not None: if fx_dict['site_id'] in sites: fx_dict['site'] = sites[fx_dict['site_id']] else: fx_dict['site'] = self.get_site(fx_dict['site_id']) elif fx_dict['aggregate_id'] is not None: fx_dict['aggregate'] = self.get_aggregate(fx_dict['aggregate_id']) if fx_dict['variable'] == "event": return datamodel.EventForecast.from_dict(fx_dict) else: return datamodel.Forecast.from_dict(fx_dict) def get_forecast(self, forecast_id): """ Get Forecast metadata from the API for the given forecast_id Parameters ---------- forecast_id : string UUID of the forecast to get metadata for Returns ------- datamodel.Forecast """ req = self.get(f'/forecasts/single/{forecast_id}/metadata') fx_dict = req.json() return self._process_fx(fx_dict) def list_forecasts(self): """ List all Forecasts a user has access to. Returns ------- list of datamodel.Forecast """ req = self.get('/forecasts/single/') fx_dicts = req.json() if isinstance(fx_dicts, dict): fx_dicts = [fx_dicts] if len(fx_dicts) == 0: return [] sites = {site.site_id: site for site in self.list_sites()} out = [] for fx_dict in fx_dicts: out.append(self._process_fx(fx_dict, sites=sites)) return out def create_forecast(self, forecast): """ Create a new forecast in the API with the given Forecast model Parameters ---------- forecast : datamodel.Forecast Forecast to create in the API Returns ------- datamodel.Forecast With the appropriate parameters such as forecast_id set by the API """ fx_dict = forecast.to_dict() fx_dict.pop('forecast_id') fx_dict.pop('provider') site = fx_dict.pop('site') agg = fx_dict.pop('aggregate') if site is None and agg is not None: fx_dict['aggregate_id'] = agg['aggregate_id'] else: fx_dict['site_id'] = site['site_id'] fx_json = json.dumps(fx_dict) req = self.post('/forecasts/single/', data=fx_json, headers={'Content-Type': 'application/json'}) new_id = req.text return self.get_forecast(new_id) def _process_prob_forecast(self, fx_dict, sites={}): if fx_dict['site_id'] is not None: if fx_dict['site_id'] in sites: fx_dict['site'] = sites[fx_dict['site_id']] else: fx_dict['site'] = self.get_site(fx_dict['site_id']) elif fx_dict['aggregate_id'] is not None: fx_dict['aggregate'] = self.get_aggregate(fx_dict['aggregate_id']) cvs = [] for constant_value_dict in fx_dict['constant_values']: # the API just gets the groups attributes for the # single constant value forecasts, so avoid # those excess calls cv_dict = fx_dict.copy() cv_dict.update(constant_value_dict) cvs.append( datamodel.ProbabilisticForecastConstantValue.from_dict( cv_dict)) fx_dict['constant_values'] = cvs return datamodel.ProbabilisticForecast.from_dict(fx_dict) def list_probabilistic_forecasts(self): """ List all ProbabilisticForecasts a user has access to. Returns ------- list of datamodel.ProbabilisticForecast """ req = self.get('/forecasts/cdf/') fx_dicts = req.json() if isinstance(fx_dicts, dict): fx_dicts = [fx_dicts] if len(fx_dicts) == 0: return [] sites = {site.site_id: site for site in self.list_sites()} out = [] for fx_dict in fx_dicts: out.append(self._process_prob_forecast(fx_dict, sites)) return out def get_probabilistic_forecast(self, forecast_id): """ Get ProbabilisticForecast metadata from the API for the given forecast_id. Parameters ---------- forecast_id : string UUID of the forecast to get metadata for Returns ------- datamodel.ProbabilisticForecast """ # add /metadata after # https://github.com/SolarArbiter/solarforecastarbiter-api/issues/158 req = self.get(f'/forecasts/cdf/{forecast_id}') fx_dict = req.json() return self._process_prob_forecast(fx_dict) def get_probabilistic_forecast_constant_value(self, forecast_id, site=None, aggregate=None): """ Get ProbabilisticForecastConstantValue metadata from the API for the given forecast_id. Parameters ---------- forecast_id : string UUID of the forecast to get metadata for site : datamodel.Site or None If provided, the object will be attached to the returned value (faster). If None, object will be created from site metadata obtained from the database (slower). aggregate : datamodel.Aggregate or None If provided and the forecast is of an aggregate, the object will be attached to the return value. Returns ------- datamodel.ProbabilisticForecastConstantValue Raises ------ ValueError If provided site.site_id does not match database record of forecast object's linked site_id. """ # add /metadata after # https://github.com/SolarArbiter/solarforecastarbiter-api/issues/158 req = self.get(f'/forecasts/cdf/single/{forecast_id}') fx_dict = req.json() agg_id = fx_dict['aggregate_id'] site_id = fx_dict['site_id'] if site_id is not None: if site is None: site = self.get_site(site_id) elif site.site_id != site_id: raise ValueError('Supplied site.site_id does not match site_id' f'from database. site.site_id: {site.site_id}' f' database site_id: {site_id}') fx_dict['site'] = site elif agg_id is not None: if aggregate is None: aggregate = self.get_aggregate(agg_id) elif aggregate.aggregate_id != agg_id: raise ValueError( 'Supplied aggregate.aggregate_id does not match ' 'aggregate from database. aggregate.aggregate_id: ' f'{aggregate.aggregate_id}' f' database aggregate_id: {agg_id}') fx_dict['aggregate'] = aggregate return datamodel.ProbabilisticForecastConstantValue.from_dict(fx_dict) def create_probabilistic_forecast(self, forecast): """ Create a new forecast in the API with the given ProbabilisticForecast model Parameters ---------- forecast : datamodel.ProbabilisticForecast Probabilistic forecast to create in the API Returns ------- datamodel.ProbabilisticForecast With the appropriate parameters such as forecast_id set by the API """ fx_dict = forecast.to_dict() fx_dict.pop('forecast_id') fx_dict.pop('provider') site = fx_dict.pop('site') agg = fx_dict.pop('aggregate') if site is None and agg is not None: fx_dict['aggregate_id'] = agg['aggregate_id'] else: fx_dict['site_id'] = site['site_id'] # fx_dict['constant_values'] is tuple of dict representations of # all ProbabilisticForecastConstantValue objects in the # ProbabilisticForecast. We need to extract just the numeric # values from these dicts and put them into a list for the API. constant_values_fxs = fx_dict.pop('constant_values') constant_values = [fx['constant_value'] for fx in constant_values_fxs] fx_dict['constant_values'] = constant_values fx_json = json.dumps(fx_dict) req = self.post('/forecasts/cdf/', data=fx_json, headers={'Content-Type': 'application/json'}) new_id = req.text return self.get_probabilistic_forecast(new_id) def get_observation_time_range(self, observation_id): """ Get the minimum and maximum timestamps for observation values. Parameters ---------- observation_id : string UUID of the observation object. Returns ------- tuple of (pandas.Timestamp, pandas.Timestamp) The minimum and maximum timestamps for values of the observation. Values without an explicit timezone from the API are assumed to be UTC. """ req = self.get(f'/observations/{observation_id}/values/timerange') data = req.json() mint = pd.Timestamp(data['min_timestamp']) if mint.tzinfo is None and pd.notna(mint): mint = mint.tz_localize('UTC') maxt = pd.Timestamp(data['max_timestamp']) if maxt.tzinfo is None and pd.notna(maxt): maxt = maxt.tz_localize('UTC') return mint, maxt def _process_gaps(self, url, start, end): req = self.get(url, params={'start': start, 'end': end}) gaps = req.json() out = [] for g in gaps['gaps']: tstamp = pd.Timestamp(g['timestamp']) nextstamp = pd.Timestamp(g['next_timestamp']) # results should never be null, but skip anyway if pd.isna(tstamp) or pd.isna(nextstamp): continue # pragma: no cover if tstamp.tzinfo is None: tstamp = tstamp.tz_localize('UTC') if nextstamp.tzinfo is None: nextstamp = nextstamp.tz_localize('UTC') out.append((tstamp, nextstamp)) return out def _fixup_gaps(self, timerange, gaps, start, end): out = [] if pd.isna(timerange[0]) or pd.isna(timerange[1]): return [(start, end)] else: if timerange[0] > start: if end < timerange[0]: return [(start, end)] else: out.append((start, timerange[0])) if timerange[1] < end: if start > timerange[1]: return [(start, end)] else: out.append((timerange[1], end)) if len(gaps) != 0: if gaps[0][0] < start: gaps[0] = (start, gaps[0][1]) if gaps[-1][1] > end: gaps[-1] = (gaps[-1][0], end) out.extend(gaps) return list(merge_ranges(out)) @ensure_timestamps('start', 'end') def get_observation_value_gaps(self, observation_id, start, end): """Get any gaps in observation data from start to end. In addition to querying the /observations/{observation_id}/values/gaps endpoint, this function also queries the observation timerange to return all gaps from start to end. Parameters ---------- observation_id : string UUID of the observation object. start : timelike object Start time in interval to retrieve values for end : timelike object End time of the interval Returns ------- list of (pd.Timestamp, pd.Timestamp) Of (start, end) gaps in the observations from the last timestamp of a valid observation to the next valid observation timestamp. Interval label is not accounted for. """ gaps = self._process_gaps( f'/observations/{observation_id}/values/gaps', start, end) trange = self.get_observation_time_range(observation_id) return self._fixup_gaps(trange, gaps, start, end) @ensure_timestamps('start', 'end') def get_observation_values_not_flagged( self, observation_id, start, end, flag, timezone='UTC'): """ Get the dates where the observation series is NOT flagged with the given flag/bitmask. Parameters ---------- observation_id : string UUID of the observation object. start : timelike object Start time in interval to retrieve values for end : timelike object End time of the interval flag : int Days that are not flagged with this flag are returned. This can be a compound flag/bitmask of the flags found in :py:mod:`solarforecastarbiter.validation.quality_mapping`, in which case days that do not have all flags present are returned. timezone : str, default "UTC" The timezone to localize the data before computing the date Returns ------- dates : numpy.array of type datetime64[D] """ req = self.get(f'/observations/{observation_id}/values/unflagged', params={'start': start, 'end': end, 'timezone': timezone, 'flag': flag}) data = req.json() dates = data['dates'] return np.array([dt.date.fromisoformat(d) for d in dates], dtype='datetime64[D]') @ensure_timestamps('start', 'end') def get_observation_values( self, observation_id, start, end, interval_label=None, request_limit=GET_VALUES_LIMIT): """ Get observation values from start to end for observation_id from the API Parameters ---------- observation_id : string UUID of the observation object. start : timelike object Start time in interval to retrieve values for end : timelike object End time of the interval interval_label : str or None If beginning, ending, adjust the data to return only data that is valid between start and end. If None or instant, return any data between start and end inclusive of the endpoints. request_limit : string Timedelta string describing maximum request length. Defaults to 365 days. Returns ------- pandas.DataFrame With a datetime index and (value, quality_flag) columns Raises ------ ValueError If start or end cannot be converted into a Pandas Timestamp """ out = self.chunk_value_requests( f'/observations/{observation_id}/values', start, end, parse_fn=json_payload_to_observation_df, request_limit=request_limit, ) return adjust_timeseries_for_interval_label( out, interval_label, start, end) def get_forecast_time_range(self, forecast_id): """ Get the miniumum and maximum timestamps for forecast values. Parameters ---------- forecast_id : string UUID of the forecast object. Returns ------- tuple of (pandas.Timestamp, pandas.Timestamp) The minimum and maximum timestamps for values of the forecast. Values without an explicit timezone from the API are assumed to be UTC. """ req = self.get(f'/forecasts/single/{forecast_id}/values/timerange') data = req.json() mint =
pd.Timestamp(data['min_timestamp'])
pandas.Timestamp
""" The functions in this file are used to extract data and download images of the human brain ISH data set from the Allen Brain Atlas. Link: http://human.brain-map.org/ish/search """ import urllib.request import xml.etree.ElementTree as et import os import glob import time import sys import pandas as pd from human_ISH_config import * if (not os.path.exists(os.path.join(DATA_DIR , STUDY))): os.mkdir(os.path.join(DATA_DIR , STUDY)) XML_DIR = os.path.join(DATA_DIR , STUDY , "xml_files") if (os.path.exists(XML_DIR)): print ("xml_files folder already exists.") else: os.mkdir(XML_DIR) IMAGES_DIR = os.path.join(DATA_DIR, STUDY, "images") if (os.path.exists(IMAGES_DIR)): print ("images folder already exists.") else: os.mkdir(IMAGES_DIR) def progressbar(it, prefix="", size=60, file=sys.stdout): count = len(it) def show(j): x = int(size*j/count) file.write("%s[%s%s] %i/%i\r" % (prefix, "#"*x, "."*(size-x), j, count)) file.flush() show(0) for i, item in enumerate(it): yield item show(i+1) file.write("\n") file.flush() def get_study_xml_file(): """ :return: the path to the xml file of the chosen study if the xml files exists. If not, it will return None. """ study_xml_file = os.path.join(DATA_DIR, STUDY, STUDY.lower()+".xml") if (not os.path.exists(study_xml_file)): return None return study_xml_file def get_specimen_id_list(study_xml_file): """ The study xml files contains the list of specimen IDs corresponding to that study. This functions returns a list of the specimen IDs. :param study_xml_file: the xml file corresponding to the study :return: list of strings. Each string is a specimen ID. """ print ("getting the list of specimen IDs within this study ...") list_of_specimen_ids = [] tree = et.parse(study_xml_file) root = tree.getroot() specimens = root.find('specimens') all_specimen = specimens.findall('specimen') for item in all_specimen: list_of_specimen_ids.append(item.find('id').text) return list_of_specimen_ids def construct_xml_file_per_specimen_id(specimen_id): """ This function constructs the Allen Brain website's url of the xml pages of the given specimen ID. It stores the xml data into a file and returns the path to that file. The xml file contains info of the experiments that have been performed on this specimen. :param specimen_id: the specimen ID for which we want to make a xml file :return: the path to the xml file of this specimen ID """ print ("processing specimen " + specimen_id + " ...") url_to_xml = "http://human.brain-map.org/api/v2/data/query.xml?criteria=model::Specimen%5Bid$in" + specimen_id + "%5D," \ "rma::include,donor(age),structure,data_sets(genes),rma::options%5Bnum_rows$eq%27all%27%5D" if (os.path.exists(os.path.join(XML_DIR , specimen_id ))): print ("(the folder for specimen "+ specimen_id +" already exists)") else: os.mkdir(os.path.join(XML_DIR , specimen_id )) specimen_id_xml_file = os.path.join(XML_DIR , specimen_id , specimen_id + ".xml") response = urllib.request.urlopen(url_to_xml) """ with open(specimen_id_xml_file, 'w') as f: f.write(response.read().decode('utf-8')) """ return response #specimen_id_xml_file def get_experiment_id_list(specimen_xml_file, specimen_id): """ For the given specimen xml file, this function goes through the file and retrieves the list of experiments on this specimen ID. Each experiment corresponds to a certain gene. In each experiment more than one slice may have been evaluated. :param specimen_xml_file: the path to the specimen xml file. :return: a list of strings. Each string is an experiment ID. """ print("getting the list of experiment IDs within " + specimen_id +" ...") list_of_experiment_ids = [] tree = et.parse(specimen_xml_file) root = tree.getroot() specimens = root.find('specimens') specimen = specimens.find('specimen') datasets = specimen.find('data-sets') all_datasets = datasets.findall('data-set') for item in all_datasets: list_of_experiment_ids.append(item.find('id').text) return list_of_experiment_ids def construct_xml_file_per_experiment_id(experiment_id, specimen_id): """ This function constructs the Allen Brain website's url of the xml pages of the given experiment ID. It stores the xml data into a file and returns the path to that file. This experiment corresponds to a certain gene. More than one slice may have been evaluated in this experiment. :param experiment_id: the experiment ID for which we want to make a xml file :param specimen_id: the specimen ID of the specimen that this experiment belongs to :return: the path to the xml file of this experiment ID """ url_to_xml = "http://human.brain-map.org/api/v2/data/query.xml?criteria=model::SectionDataSet%5Bid$in" + experiment_id \ + "%5D,rma::include,genes,plane_of_section,section_images(associates,alternate_images),treatments," \ "specimen(donor(age,organism,conditions),structure),probes(orientation,predicted_sequence," \ "forward_primer_sequence,reverse_primer_sequence,products),rma::options%5Bnum_rows$eq%27all%27%5D" experiment_id_xml_file = os.path.join(XML_DIR, specimen_id , experiment_id + ".xml") response = urllib.request.urlopen(url_to_xml) """ with open(experiment_id_xml_file, 'w') as f: f.write(response.read().decode('utf-8')) """ return response #experiment_id_xml_file def get_image_id_list(experiment_xml_file, experiment_id): """ Each experiment corresponds to a certain gene. In each experiment more than one slice may have been evaluated. This function returns a list of image IDs that correspond to a cerain experiment. :param experiment_xml_file: the xml file of the experiment :return: list of strings. Each string is an image ID. """ #print("getting the list of image IDs within experiment " + experiment_id + " ...") list_of_image_ids = [] tree = et.parse(experiment_xml_file) root = tree.getroot() section_data_sets = root.find('section-data-sets') section_data_set = section_data_sets.find('section-data-set') section_images = section_data_set.find('section-images') all_section_images = section_images.findall('section-image') for item in all_section_images: list_of_image_ids.append(item.find('id').text) return list_of_image_ids def redownload_small_images(threshold = 6, downsample_rate=2.5): """ this function checks the size of the downloaded images and re-downloads images that are smaller than some threshold. This is to make sure there are no corrupted images in the dataset. Corrupted images could be a result of connection error while downloading the images. :param downsample_rate: default is 2.5 :param threshold: a threshold to define small images :return: None """ images_list = os.listdir(IMAGES_DIR) print ("there are " + str(len(images_list)) + " existing images") threshold = threshold * 1000000 for image_item in images_list: image_path = os.path.join(IMAGES_DIR, image_item) if os.path.getsize(image_path) < threshold: #print (image_item + " is less than 10 MB. Redownloading...") print ("Redownloading...") image_id = image_item.split(".")[0] default_url = "http://api.brain-map.org/api/v2/image_download/" + image_id + "?downsample=" + str(downsample_rate) urllib.request.urlretrieve(default_url, os.path.join(IMAGES_DIR, image_id + ".jpg")) def download_images(image_list_to_download, downsample_rate=2.5, skip=True): """ Gets a list if image IDs to download. if skip==True, skips downloading the image IDs that already exist in the directory. :param image_list_to_download: list of image IDs to download :param downsample_rate: downsampling rate to determine the final size of downloaded images. Default is 2.5 :return: None """ total_num_of_images = len(image_list_to_download) print(str(total_num_of_images) + " images to download.") existing_images_list = [f for f in glob.glob(os.path.join(IMAGES_DIR, "*.jpg"))] num_of_existing_images = len(existing_images_list) for i in range(num_of_existing_images): existing_images_list[i] = existing_images_list[i].split("/")[-1].split(".")[0] print(str(num_of_existing_images) + " images already exist.") if skip: remaining_images_list = list(set(image_list_to_download) - set(existing_images_list)) else: remaining_images_list = image_list_to_download num_of_remaining_images = len(remaining_images_list) print("downloading " + str(num_of_remaining_images) + " images...") # draw progess bar for i in progressbar(range(num_of_remaining_images), "Downloading: ", 100): time.sleep(0.1) image_id = remaining_images_list[i] default_url = "http://api.brain-map.org/api/v2/image_download/" + image_id + "?downsample=" + str( downsample_rate) urllib.request.urlretrieve(default_url, os.path.join(IMAGES_DIR, image_id + ".jpg")) def add_experiment_images_to_image_info_csv(image_info_df, experiment_xml_file): """ Goes through the xml file of the experiment and adds the info of its images to the image info dataframe. If the gene name is missing in the experiment, then this experiment is considered invalid. :param image_info_df: the image info dataframe to append the new images :param experiment_xml_file: the xml file of the experiment that we want to add its images :return: the image info dataframe and also a boolean which determines whether this experiment is invalid. """ invalid = False tree = et.parse(experiment_xml_file) root = tree.getroot() section_data_sets = root.find('section-data-sets') section_data_set = section_data_sets.find('section-data-set') experiment_id = section_data_set.find('id').text specimen_id = section_data_set.find('specimen-id').text section_images = section_data_set.find('section-images') genes = section_data_set.find('genes') specimen = section_data_set.find('specimen') donor = specimen.find('donor') structure = specimen.find('structure') donor_id = donor.find('name').text donor_sex = donor.find('sex').text donor_age = donor.find('age-id').text pmi = donor.find('pmi').text donor_race = donor.find('race-only').text smoker = donor.find('smoker').text chemotherapy = donor.find('chemotherapy').text radiation_therapy = donor.find('radiation-therapy').text tumor_status = donor.find('tumor-status').text conditions = donor.find('conditions') condition = conditions.find('condition') description = condition.find('description').text region_name = structure.find('name').text region_acronym = structure.find('acronym').text tissue_ph = specimen.find('tissue-ph').text gene = genes.find('gene') if gene == None: print ("experiment " + experiment_id + " is invalid") invalid = True else: gene_symbol = gene.find('acronym').text gene_alias_tags = gene.find('alias-tags').text entrez_id = gene.find('entrez-id').text gene_original_name = gene.find('original-name').text gene_original_symbol = gene.find('original-symbol').text all_section_images = section_images.findall('section-image') image_id_list = [] for item in all_section_images: image_id_list.append(item.find('id').text) for image_id in image_id_list: new_row = pd.Series({'image_id': image_id, 'gene_symbol': gene_symbol, 'entrez_id': entrez_id, 'alias_tags': gene_alias_tags, 'original_name': gene_original_name, 'original_symbol': gene_original_symbol, 'experiment_id':experiment_id,'specimen_id': specimen_id, 'description': description, 'donor_id': donor_id, 'donor_sex': donor_sex, 'donor_age':donor_age, 'donor_race':donor_race, 'smoker' : smoker, 'chemotherapy': chemotherapy, 'radiation_therapy': radiation_therapy, 'tumor_status' : tumor_status, 'region':region_name, 'region_acronym': region_acronym, 'tissue_ph': tissue_ph, 'pmi': pmi }) image_info_df = image_info_df.append(new_row, ignore_index=True) return image_info_df, invalid def run(): print("STUDY: ", STUDY) image_list_to_download = [] study_xml_file = get_study_xml_file() if study_xml_file == None: print("--- The study xml file does not exist. Make sure you download it from the Allen Brain website.") else: columns = ["image_id", "gene_symbol", "entrez_id", "experiment_id", "specimen_id"] image_info_df =
pd.DataFrame(columns=columns)
pandas.DataFrame
import pickle import os import pandas as pd import numpy as np import pyarrow.parquet as pq import joblib import datetime import shap import math import xgboost as xgb import matplotlib.pyplot as plt from azureml.core.run import Run from azureml.core import Dataset, Datastore, Model from azureml.data.datapath import DataPath from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold from sklearn import datasets, linear_model from scipy import stats from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import levy_train_sql_functions as levy_train_functions import generic_sql_functions as generic_train_functions # Set up config of workspace and datastore aml_workspace = Run.get_context().experiment.workspace datastore = Datastore.get(aml_workspace, datastore_name='datamgmtdb') run = Run.get_context() run.log('levy_model_train','levy_model_train') #prevent SettingWithCopyWarning message from appearing pd.options.mode.chained_assignment = None try: # Create model build data into dataframe # Create df with all accounts and early adopter flag levy_model_accounts=levy_train_functions.levy_train_01_accounts(2) run.log('Success 01','Accounts Success') #except Exception: run.log('EXCEPTION 01','Accounts Exception') #try: # select account_ids into list account_list = levy_model_accounts['A3'].tolist() #Remove brackets from list sql_account_list=str(account_list)[1:-1] #print(sql_account_list) # Select all accounts data for three time periods in model build levy_model_accounts_2020 = levy_model_accounts[(levy_model_accounts.A2 <'2020-04-01')] levy_model_accounts_2020['cohort']='2020' # months since apprenticeship account sign-up levy_model_accounts_2020["months_since_sign_up"] = (pd.Timestamp(2020,4,1) - pd.to_datetime(levy_model_accounts_2020["A2"]))/ np.timedelta64(1, "M") levy_model_accounts_2019 = levy_model_accounts[(levy_model_accounts.A2 <'2019-04-01')] levy_model_accounts_2019['cohort']='2019' levy_model_accounts_2019["months_since_sign_up"] = (pd.Timestamp(2019,4,1) - pd.to_datetime(levy_model_accounts_2019["A2"]))/ np.timedelta64(1, "M") levy_model_accounts_2022 = levy_model_accounts[(levy_model_accounts.A2 <'2022-01-01')] levy_model_accounts_2022['cohort']='2022' levy_model_accounts_2022["months_since_sign_up"] = (pd.Timestamp(2022,1,1) - pd.to_datetime(levy_model_accounts_2022["A2"]))/ np.timedelta64(1, "M") # Add all sets of accounts data into one levy_model_set=pd.concat([levy_model_accounts_2022,levy_model_accounts_2020,levy_model_accounts_2019]) # make the months since sign-up discrete for analysis purposes levy_model_set["months_since_sign_up2"] =levy_model_set["months_since_sign_up"].apply(np.floor) run.log('Success 01a','Accounts Success') #except Exception: run.log('EXCEPTION 01a','Accounts Exception') #try: # 2018/2019 cohort Part 1 levy_model_set_2018_2019_part1=levy_train_functions.levy_train_02_levy_model_set_2018_2019_part1(sql_account_list) run.log('Success 02','Commitments 2018/19 Part 1 Success') #except Exception: run.log('EXCEPTION 02','Commitments 2018/19 Part 1 Exception') #try: # 2018/2019 cohort Part 2 levy_model_set_2018_2019_part2=levy_train_functions.levy_train_03_levy_model_set_2018_2019_part2(sql_account_list) run.log('Success 03','Commitments 2018/19 Part 2 Success') #except Exception: run.log('EXCEPTION 03','Commitments 2018/19 Part 2 Exception') #try: # 2019/2020 cohort Part 1 levy_model_set_2019_2020_part1=levy_train_functions.levy_train_04_levy_model_set_2019_2020_part1(sql_account_list) run.log('Success 04','Commitments 2019/20 Part 1 Success') #except Exception: run.log('EXCEPTION 04','Commitments 2019/20 Part 1 Exception') #try: # 2018/2019 cohort Part 2 levy_model_set_2019_2020_part2=levy_train_functions.levy_train_05_levy_model_set_2019_2020_part2(sql_account_list) run.log('Success 05','Commitments 2019/20 Part 2 Success') #except Exception: run.log('EXCEPTION 05','Commitments 2019/20 Part 2 Exception') #try: # 2022 cohort Part 1 levy_model_set_2022_part1=levy_train_functions.levy_train_06_levy_model_set_2022_part1(sql_account_list) run.log('Success 06','Commitments 2022 Part 1 Success') #except Exception: run.log('EXCEPTION 06','Commitments 2022 Part 1 Exception') # 2022 cohort Part 2 levy_model_set_2022_part2=levy_train_functions.levy_train_07_levy_model_set_2022_part2(sql_account_list) #run.log('Success 07','Commitments 2022 Part 2 Success') #except Exception: #run.log('EXCEPTION 07','Commitments 2022 Part 2 Exception') #try: # join both parts together for all time periods universe_commitments_2019 = pd.merge(levy_model_set_2018_2019_part1, \ levy_model_set_2018_2019_part2, \ left_on=['A3'], \ right_on=['A3'], \ how='left') universe_commitments_2020 = pd.merge(levy_model_set_2019_2020_part1, \ levy_model_set_2019_2020_part2, \ left_on=['A3'], \ right_on=['A3'], \ how='left') universe_commitments_2022 = pd.merge(levy_model_set_2022_part1, \ levy_model_set_2022_part2, \ left_on=['A3'], \ right_on=['A3'], \ how='left') # Add all sets of accounts data into one universe_commitments_all=
pd.concat([universe_commitments_2022,universe_commitments_2020,universe_commitments_2019])
pandas.concat
import csv import gymenvironment import numpy as np import pandas as pd import matplotlib.pyplot as plt import os CLEAN_ACTION = gymenvironment.Actions.CodeClean SLOPPY_ACTION = gymenvironment.Actions.CodeSloppy IN_PROGRESS_ACTION = 2 FIX_READY_REWARD = +10 IN_PROGRESS_REWARD = -0.1 PENDING_TIME_INDEX = 0 PENDING_ITEMS_INDEX = 1 def last_minute_patcher(agent, system_state): action = CLEAN_ACTION pending_time = system_state[PENDING_TIME_INDEX] if pending_time <= agent.panic_threshold: action = SLOPPY_ACTION return action def stressed_patcher(agent, system_state): action = CLEAN_ACTION pending_items = system_state[PENDING_ITEMS_INDEX] if pending_items > agent.panic_threshold: action = SLOPPY_ACTION return action class BaseDeveloper(object): def __init__(self, logger, name, panic_threshold, action_selector): self.name = name self.logger = logger self.panic_threshold = panic_threshold self.metric_catalogue = [] self.actions = [CLEAN_ACTION, SLOPPY_ACTION] self.action_selector = action_selector def record_metric(self, metric_value): self.metric_catalogue.append(metric_value) def clear_metrics(self): self.metric_catalogue = [] def select_action(self, system_state, global_counter=None, session=None): return self.action_selector(self, system_state) def new_episode(self): pass class PerformanceMetrics: def __init__(self, developer): self.sloppy_counter = developer.sloppy_counter self.action_counter = developer.action_counter self.attempted_deliveries = developer.attempted_deliveries self.issues_delivered = developer.issues_delivered def get_sloppy_ratio(self): return float(self.sloppy_counter) / self.action_counter if self.action_counter > 0 else 0.0 class DevelopmentIssue(object): def __init__(self, avg_resolution_time, prob_rework, code_impact): self.avg_resolution_time = avg_resolution_time self.prob_rework = prob_rework self.code_impact = code_impact class CodingApproach(object): def __init__(self, resolution_factor, rework_factor, code_impact): self.resolution_factor = resolution_factor self.rework_factor = rework_factor self.code_impact = code_impact def get_development_issue(self, simulation_environment): avg_resolution_time = min(1.0, simulation_environment.avg_resolution_time * self.resolution_factor) prob_rework = min(1.0, simulation_environment.prob_rework * self.rework_factor) return DevelopmentIssue( avg_resolution_time=avg_resolution_time, prob_rework=prob_rework, code_impact=self.code_impact) class Developer(object): def __init__(self, agent, approach_map): self.current_issue = None self.approach_map = approach_map self.agent = agent self.name = agent.name self.issues_delivered = None self.sloppy_counter = None self.action_counter = None self.attempted_deliveries = None self.agent.clear_metrics() self.reset() def get_reward(self): return self.issues_delivered def reset(self): self.current_issue = None self.issues_delivered = 0 self.sloppy_counter = 0 self.action_counter = 0 self.attempted_deliveries = 0 self.agent.new_episode() def start_coding(self, simulation_environment, global_counter, session): system_state = simulation_environment.get_system_state() action = self.agent.select_action(system_state=system_state, global_counter=global_counter, session=session) self.carry_out_action(action, simulation_environment) self.action_counter += 1 return action def carry_out_action(self, action, simulation_environment): coding_approach = self.approach_map[action] if coding_approach is not None: # TODO Hacky but temporary solution if action == SLOPPY_ACTION: self.sloppy_counter += 1 self.current_issue = coding_approach.get_development_issue(simulation_environment) else: raise Exception("The action " + str(action) + " is not supported.") def log_progress(self, training_step=None, global_counter=None): performance_metrics = PerformanceMetrics(developer=self) current_epsilon = None if hasattr(self.agent, 'get_current_epsilon'): current_epsilon = self.agent.get_current_epsilon(global_counter) csv_filename = "training_log_" + self.name + ".csv" if not os.path.isfile(csv_filename): with open(csv_filename, 'w', newline="") as file: csv_writer = csv.writer(file) csv_writer.writerow( ['training_step', 'sloppy_counter', 'action_counter', 'attempted_deliveries', 'issues_delivered', 'sloppy_ratio', 'current_epsilon']) with open(csv_filename, 'a', newline="") as f: csv_writer = csv.writer(f) csv_writer.writerow([training_step, self.sloppy_counter, self.action_counter, self.attempted_deliveries, self.issues_delivered, performance_metrics.get_sloppy_ratio(), current_epsilon]) self.agent.record_metric(performance_metrics) class SimulationEnvironment(object): def __init__(self, time_units, avg_resolution_time, prob_new_issue, prob_rework, logger): self.time_units = time_units self.logger = logger self.init_avg_resolution_time = avg_resolution_time self.init_prob_new_issue = prob_new_issue self.init_prob_rework = prob_rework self.avg_resolution_time = None self.prob_new_issue = None self.prob_rework = None self.to_do_issues = None self.doing_issues = None self.done_issues = None self.current_time = None self.reset() def reset(self, agent_wrappers=None): self.avg_resolution_time = self.init_avg_resolution_time self.prob_new_issue = self.init_prob_new_issue self.prob_rework = self.init_prob_rework self.to_do_issues = 0 self.doing_issues = 0 self.done_issues = 0 self.current_time = 0 if agent_wrappers is not None: for wrapper in agent_wrappers: wrapper.reset() def add_to_backlog(self): self.to_do_issues += 1 def move_to_in_progress(self, developer, global_counter, session): action_performed = developer.start_coding(self, global_counter, session) self.to_do_issues -= 1 self.doing_issues += 1 return action_performed def move_to_done(self, developer): self.doing_issues -= 1 self.done_issues += 1 developer.issues_delivered += 1 developer.current_issue = None def code_submitted(self, developer): self.avg_resolution_time = min(1.0, self.avg_resolution_time * developer.current_issue.code_impact) developer.attempted_deliveries += 1 def get_system_state(self): return self.time_units - self.current_time, self.to_do_issues, self.doing_issues, self.done_issues def step(self, developers, session, global_counter=None): self.current_time += 1 actions_performed = {} rewards = {} for developer in developers: actions_performed[developer.name] = IN_PROGRESS_ACTION rewards[developer.name] = IN_PROGRESS_REWARD if developer.current_issue is None: action_performed = self.move_to_in_progress(developer, global_counter, session) actions_performed[developer.name] = action_performed else: random_output = np.random.random() if random_output < developer.current_issue.avg_resolution_time: # Deliver issue, but verify rework first self.code_submitted(developer) random_output = np.random.random() if random_output >= developer.current_issue.prob_rework: # No rework needed self.move_to_done(developer) rewards[developer.name] = FIX_READY_REWARD if np.random.random() < self.prob_new_issue: self.add_to_backlog() episode_finished = self.current_time == self.time_units return actions_performed, self.get_system_state(), episode_finished, rewards def run_simulation(): pending_issues = [] simulation_env = SimulationEnvironment(time_units=60, avg_resolution_time=1 / 5.0, prob_new_issue=0.1, prob_rework=0.05) developer = Developer(agent=StubbornAgent(only_action="SLOPPY")) for time_step in range(simulation_env.time_units): simulation_env.step(developer, time_step=time_step, global_counter=time_step) pending_issues.append(simulation_env.pending_issues) return
pd.Series(pending_issues)
pandas.Series
import os import pandas as pd from tqdm import tqdm import get_fitbit sleep_logs = [] data_type = 'sleep' datetimes = pd.date_range('2016-11-09', '2017-08-10') sleep_list = [] for datetime in tqdm(datetimes): fitbit_data = get_fitbit.FitbitData(datetime, data_type) sleep_log = fitbit_data.load_from_disk() for sleep_event in sleep_log['sleep']: trim_dict = {} key_list = sleep_event.keys() for this_key in key_list: if this_key != 'minuteData': trim_dict[this_key] = sleep_event[this_key] sleep_list.append(trim_dict) df_sleep = pd.DataFrame(sleep_list) start_sleep =
pd.to_datetime(df_sleep['startTime'])
pandas.to_datetime
import os import pandas as pd pd.options.mode.chained_assignment = None import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.colors as mcolors import numpy as np import folium import difflib import geopandas as gpd import unicodedata #function to remove accents from states and municipios def remove_accents(input_str): nfkd_form = unicodedata.normalize('NFKD', input_str) return u"".join([c for c in nfkd_form if not unicodedata.combining(c)]) #PROCESS SUI INPUT DATA, SAVE AS CSVs def load_sui_data(): folder = 'sui_database_in' files = os.listdir(folder) u_codes =
pd.read_excel('Listado de Agentes.xls')
pandas.read_excel
import time import json import numpy as np import pandas as pd data = np.random.rand(5000, 50) df =
pd.DataFrame(data)
pandas.DataFrame
""" Base Model Base structure for creation of new models Methods: calc_error: Estimates error according to SciKit's regression metrics filter_ts: Returns model's residuals """ import sys sys.path.append('../') from skfore.skfore import series_viewer from skfore.datasets import * import pandas import numpy import scipy import sklearn import matplotlib import random import math from skfore.extras import add_next_date from sklearn import preprocessing class BaseModel(): def __init__(self): self.residuals = None self.scaler = None self.test() def test(self): """ Raises error if there are not any of the necessary methods defined """ if (not "fit" in dir(self)): raise ValueError('Method "fit" has not been defined') if (not "forecast" in dir(self)): raise ValueError('Method "forecast" has not been defined') def calc_error(self, ts, error_function = None, ignore_first = None): """ Estimates error according to SciKit's regression metrics Args: ts: Time series to estimate the model error_function (None or error function): Error function whose parameters are real time series and estimated time series. If None, error_function is Sci-Kit learn's mean squared error """ if ignore_first != None: ignore = ignore_first else: try: ignore = self.q except: try: ignore = self.p except: ignore = 0 y_estimated = self.simulate(ts)[ignore:] y_real = ts[ignore:] if (error_function == None): error = sklearn.metrics.mean_squared_error(y_real, y_estimated) else: error = error_function(y_real, y_estimated) return error def filter_ts(self, ts, ignore_first = None): """ Returns model's residuals Args: ts: Time series to estimate residuals """ if ignore_first != None: ignore = ignore_first else: try: ignore = self.q except: try: ignore = self.p except: ignore = 0 prediction = self.simulate(ts)[ignore:] residuals = ts[ignore:].subtract(prediction) return residuals def set_residuals(self, residuals): self.residuals = series_viewer(residuals) """ Residuals analysis """ def time_plot(self): self.residuals.time_plot() def ACF_plot(self): self.residuals.ACF_plot() def PACF_plot(self): self.residuals.PACF_plot() def qq_plot(self): self.residuals.qq_plot() def density_plot(self): self.residuals.density_plot() def histogram(self): self.residuals.histogram() def normality(self): self.residuals.normality() def update(self, kwargs): for key in kwargs.keys(): setattr(self, key, kwargs[key]) return self def predict(self, ts, periods, tsp = None, blind = True, confidence_interval = None, iterations = 300, error_sample = 'bootstrap', ignore_first = None, random_state = 100): """ Predicts future values in a given period Args: ts (pandas.Series): Time series to predict periods (int): Number of periods ahead to predict tsp (pandas.Series): Predicted time series to compare future values blind (boolean): True to forecast without using predicted time series or False to use it in forecasting confidence_interval (double): Confidence interval level iterations (int): Number of iterations error_sample (str): Use 'bootstrap' to forecast using sample errors of filtered time series or 'normal' to forecast using errors from a gaussian distribution with known variance random_state (int): Determines random number generation for seed Returns: Dataframe of confidence intervals and time series of predicted values: (ci_inf, ci_sup, series) """ random.seed(random_state) if blind == False: if tsp is None: raise ValueError('Predicted time series not defined for no blind forecast') else: if error_sample == 'bootstrap': if confidence_interval is None: c_i = 0.95 else: c_i = confidence_interval for i in range(len(tsp)): if i == 0: tse = ts simul_step = self.bootstrap(tse, 1, confidence_interval = c_i, iterations = iterations) simul_result = simul_step.transpose() y = ts else: tse = ts.append(tsp[0:i]) simul_step = self.bootstrap(tse, 1, confidence_interval = c_i, iterations = iterations) simul_result = simul_result.append(simul_step.transpose()) value = self.forecast(y) y = add_next_date(y, value) prediction = y[-len(tsp):] prediction.name = 'series' ci = pandas.DataFrame([prediction], index = ['series']) result = ci.append(simul_result.transpose()) elif error_sample == 'normal': if confidence_interval is None: for i in range(len(tsp)): if i == 0: tse = ts simul_step = self.normal_error(1, tse, ignore_first) simul_result = simul_step y = ts else: tse = ts.append(tsp[0:i]) simul_step = self.normal_error(1, tse, ignore_first) simul_result = simul_result.append(simul_step) value = self.forecast(y) y = add_next_date(y, value) prediction = y[-len(tsp):] prediction.name = 'series' ci = pandas.DataFrame([prediction], index = ['series']) result = ci.append(simul_result.transpose()) else: for i in range(len(tsp)): if i == 0: tse = ts simul_step = self.normal_error(1, tse, ignore_first) simul_step_b = self.bootstrap(tse, 1, confidence_interval = confidence_interval, iterations = iterations) simul_result = simul_step simul_result_b = simul_step_b.transpose() y = ts else: tse = ts.append(tsp[0:i]) simul_step = self.normal_error(1, tse, ignore_first) simul_step_b = self.bootstrap(tse, 1, confidence_interval = confidence_interval, iterations = iterations) simul_result = simul_result.append(simul_step) simul_result_b = simul_result_b.append(simul_step_b.transpose()) value = self.forecast(y) y = add_next_date(y, value) prediction = y[-len(tsp):] prediction.name = 'series' ci = pandas.DataFrame([prediction], index = ['series']) result = ci.append(simul_result.transpose()) result = result.append(simul_result_b.transpose()) else: raise ValueError('Error sample has not been defined correctly') else: for i in range(periods): if i == 0: y = ts value = self.forecast(y) y = add_next_date(y, value) if error_sample == 'bootstrap': if confidence_interval is None: c_i = 0.95 else: c_i = confidence_interval ci = self.bootstrap(ts, periods, c_i, iterations) prediction = y[-periods:] prediction.name = 'series' result = ci.append(prediction) elif error_sample == 'normal': prediction = y[-periods:] prediction.name = 'series' ci = pandas.DataFrame([prediction], index = ['series']) if confidence_interval is None: simulation = self.normal_error(periods, ts, ignore_first) result = ci.append(simulation.transpose()) else: simulation = self.normal_error(periods, ts, ignore_first) simulation_b = self.bootstrap(ts, periods, confidence_interval, iterations) result = ci.append(simulation.transpose()) result = result.append(simulation_b) else: raise ValueError('Error sample has not been defined correctly') result = result.transpose() if error_sample == 'bootstrap': result['forecast'] = result.bootstrap elif error_sample == 'normal': result['forecast'] = result.normal result['real'] = tsp return result def bootstrap(self, ts, periods = 5,confidence_interval = 0.95, iterations = 500): try: ignore = self.q except: try: ignore = self.p except: ignore = 0 values = self.filter_ts(ts, ignore).values results = list() for i in range(iterations): for j in range(periods): train = sklearn.utils.resample(values, n_samples = 1) if j == 0: y = ts else: y = add_next_date(y, next_value_bootstrap) next_value = self.forecast(y) next_value_bootstrap = next_value + train[0] result_complete = add_next_date(y, next_value_bootstrap) result = result_complete[-periods:] results.append(result) results = pandas.DataFrame(results) ci_inf = results.quantile(1-confidence_interval) ci_sup = results.quantile(confidence_interval) mean = results.mean() ci =
pandas.DataFrame([ci_inf, ci_sup, mean], index = ['ci_inf', 'ci_sup', 'bootstrap'])
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os from datetime import date, datetime from functools import lru_cache import pandas as pd import panel as pn from jinja2 import Template @lru_cache() def load_data(data_filepath): df = pd.read_hdf(data_filepath, "df") return df @lru_cache() def get_data( start_date, end_date, topic_name, data_filepath="data/dashboard_data.h5" ): df_new = load_data(data_filepath) # print(df_new[["date", "topic"]]) start_date_str = datetime.strptime(str(start_date), "%Y-%m-%d") end_date_str = datetime.strptime(str(end_date), "%Y-%m-%d") gt_mask = df_new["date"] >= start_date_str lt_mask = df_new["date"] <= end_date_str df_new_filtered = df_new.loc[(gt_mask) & (lt_mask)] # print(df_new[["date", "topic"]]) df_topic_filtered = df_new[df_new["topic"].isin([topic_name])] # print(df_topic_filtered.shape[0]) # print(df_topic_filtered) return [df_new_filtered, df_topic_filtered] def generate_tooltip( data_list=[["term", "Term", 14], ["term_weight", "Term Weight", 14]], imgs=[], tool_title_fontsize=16, tool_title="My Title", jinja2_templates_dir="templates", hover_template="hover.j2", ): jinja2_templates_filepath = os.path.join( jinja2_templates_dir, hover_template ) with open(jinja2_templates_filepath) as f: hover_tool_str = Template(f.read()) if imgs: return hover_tool_str.render( data_list=data_list, tool_title_fontsize=tool_title_fontsize, tool_title=tool_title, ) else: return hover_tool_str.render( data_list=data_list, tool_title_fontsize=tool_title_fontsize, tool_title=tool_title, imgs=imgs, ) def create_dashboard_sidebar_text(): nlp_wiki_link = "https://en.wikipedia.org/wiki/Natural_language_processing" guardian_wiki_link = "https://en.wikipedia.org/wiki/The_Guardian" usl_url = ( "https://en.wikipedia.org/wiki/Machine_learning#Unsupervised_learning" ) nmfurl = "https://en.wikipedia.org/wiki/Non-negative_matrix_factorization" tm_link = "https://en.wikipedia.org/wiki/Topic_model" dash_title = f""" <h1><a href='{nlp_wiki_link}'>NLP</a> <a href='{tm_link}'>Topic Predictor</a></h1>""" text = f"""{dash_title} This dashboard visualizes the learned topic of news articles from the Science section of the <a href='{guardian_wiki_link}'>Guardian Online publication</a></h1> using the search term <b>Space</b>. An <a href='{usl_url}'>unsupervised Machine Learning</a></h1> <a href='{nmfurl}'>Machine Learning</a></h1> model was trained on the article text of approximately 4,000 news articles from the result of such a search on the <a href='https://www.theguardian.com/science'>guardian.com</a></h1> website covering the years 1957-late 2019. The trained ML model was used to generate predictions on 48 news articles from November 2019 to the end of February 2020 that were not seen during training. This dashboard summarizes select characteristics of the trained model and the learned topics for all of these unseen news articles. <h3>Notes</h3> <ul style='padding-left:1.2em;'> <li>Of the 35 learned topics, news articles in topics 0 and 33 were not manually read.</li> <li>These two topics were not assigned a name and so are listed as <i>Topic 0</i> and <i>Topic 33</i> respectively.</li> <li>If the vertical axis text is cut off on the plots, then click the menu icon (three horizontal bars at the top left) twice.</li> <li>This dashboard must be viewed in landscape mode.</li> <li>Term Weights are taken from ML model training.</li> <li>Topic-wise organization (frequency) and residual spreads come from news article text not seen during ML model training.</li> </ul> """ return text def update_progress( start_date, end_date, min_date, max_date, date_range_progress_bar ): selected_days = (end_date - start_date).days max_days = (max_date - min_date).days date_range_progress_bar.value = int((selected_days / max_days) * 100) def generate_sidebar_html(): return pn.pane.HTML( create_dashboard_sidebar_text(), width=450, style={ "background-color": "#F6F6F6", # text background color "border": "2px solid lightgrey", "border-radius": "3px", # >0px produces curved corners "padding": "5px", # text-to-border whitespace }, ) def perform_updates( start_date, end_date, daterange_progress_bar, topic_selected, data_filepath, term_weights_bar_chart, entity_counts_bar_chart, topic_freq_bar_chart, source, source_weights, source_ner, source_month, source_topics, beginning_date, ending_date, topic_selector, ): df_new_filtered, df_topic_filtered = get_data( start_date, end_date, topic_selected, data_filepath ) t_dates =
pd.to_datetime(df_topic_filtered["date"])
pandas.to_datetime
import argparse import os from itertools import combinations, product from multiprocessing import Pool import networkx as nx import pandas as pd from custom_utils import get_jaccard, get_structures_added, load_json from statics import STRUCTURE_TYPES def get_product_graph(g1, g2, graphicspath, resultspath): o1 = f"{graphicspath}/structure_overlap_matrix-{g1}.csv" o2 = f"{graphicspath}/structure_overlap_matrix-{g2}.csv" j1 = f"{resultspath}/{g1}.json" j2 = f"{resultspath}/{g2}.json" json1 = load_json(j1) json2 = load_json(j2) s1 = { idx: (s["n_nodes_total"], s["structure_type"], s) for idx, s in enumerate(get_structures_added(json1)) } s2 = { idx: (s["n_nodes_total"], s["structure_type"], s) for idx, s in enumerate(get_structures_added(json2)) } df1 = pd.read_csv(o1, index_col=0).fillna(0) df1.columns = df1.columns.astype(int) df2 = pd.read_csv(o2, index_col=0).fillna(0) df2.columns = df2.columns.astype(int) G1 = nx.Graph(df1) G2 = nx.Graph(df2) nodes = [(x, y) for x, y in product(s1.keys(), s2.keys()) if s1[x][1] == s2[y][1]] edges = [ ( tup[0], tup[1], G1.edges[tup[0][0], tup[1][0]]["weight"] * G2.edges[tup[0][-1], tup[1][-1]]["weight"], ) for tup in filter( lambda tup: tup[0][0] != tup[1][0] and tup[0][-1] != tup[1][-1] and G1.edges.get([tup[0][0], tup[1][0]]) and G2.edges.get([tup[0][-1], tup[1][-1]]), combinations(nodes, 2), ) ] G12 = nx.Graph() G12.add_nodes_from(nodes) G12.add_weighted_edges_from(edges) return s1, s2, G1, G2, G12 def get_overlap_alignment_edges(G12): selected_edges = [] while True: if nx.number_of_edges(G12) == 0: break new_edge = max( G12.edges(data="weight"), key=lambda tup: ( tup[-1], -abs(tup[0][0] - tup[0][1]), -abs(tup[1][0] - tup[1][1]), ), ) selected_edges.append(new_edge) nodes_to_remove = list( filter( lambda x: (x[0] == new_edge[0][0] and x[1] != new_edge[0][1]) or (x[1] == new_edge[0][1] and x[0] != new_edge[0][0]) or (x[0] == new_edge[1][0] and x[1] != new_edge[1][1]) or (x[1] == new_edge[1][1] and x[0] != new_edge[1][0]), G12.nodes(), ) ) G12.remove_edge(*new_edge[:-1]) G12.remove_nodes_from(nodes_to_remove) print( "Constructed G12 with", "n =", nx.number_of_nodes(G12), "and m =", nx.number_of_edges(G12), end="\r", ) return selected_edges def get_common_model_graph(G12): selected_edges = get_overlap_alignment_edges(G12) common_graph = nx.Graph() common_graph.add_weighted_edges_from(selected_edges) return common_graph def complete_with_greedy(common_graph, G12): leftover_candidates = set(G12.nodes()) - set(common_graph.nodes()) while leftover_candidates: x, y = min(leftover_candidates) common_graph.add_node((x, y)) leftover_candidates -= { (u, v) for (u, v) in leftover_candidates if u == x or v == y } return common_graph def get_overlap(g1, g2, structures1, structures2, structure_type): s1 = list(filter(lambda x: x["structure_type"] == structure_type, structures1)) s2 = list(filter(lambda x: x["structure_type"] == structure_type, structures2)) overlap = pd.DataFrame( index=list(map(lambda x: x["position"], s1)), columns=list(map(lambda x: x["position"], s2)), ) for idx1, structure1 in enumerate(s1): for idx2, structure2 in enumerate(s2): overlap.iat[idx1, idx2] = get_jaccard( structure1, structure2, structure_type ) return overlap def match_structures_by_overlap(overlap): matched = set() pairs = [] found_match = True while found_match: found_match = False remaining = ( overlap.query("index not in @matched").T.query("index not in @matched").T ) if min(remaining.shape) > 0: max_u = remaining.max().idxmax() other = ( overlap.query("index not in @matched") .T.query("index not in @matched") .T[[max_u]] .T ) if min(other.shape) > 0: max_v = other.max().idxmax() pairs.append((max_v, max_u, overlap.at[max_v, max_u])) found_match = True matched = matched | {max_u, max_v} return pairs def get_matches_with_node_alignment(g1, g2, structures1, structures2): clique_overlap = get_overlap(g1, g2, structures1, structures2, "clique") clique_pairs = match_structures_by_overlap(clique_overlap) assert len(clique_pairs) == min(clique_overlap.shape), "Clique alignment problem" star_overlap = get_overlap(g1, g2, structures1, structures2, "star") star_pairs = match_structures_by_overlap(star_overlap) assert len(star_pairs) == min(star_overlap.shape), "Star alignment problem" biclique_overlap = get_overlap(g1, g2, structures1, structures2, "biclique") biclique_pairs = match_structures_by_overlap(biclique_overlap) assert len(biclique_pairs) == min( biclique_overlap.shape ), "Biclique alignment problem" starclique_overlap = get_overlap(g1, g2, structures1, structures2, "starclique") starclique_pairs = match_structures_by_overlap(starclique_overlap) assert len(starclique_pairs) == min( starclique_overlap.shape ), "Starclique alignment problem" matched = sorted( clique_pairs + star_pairs + biclique_pairs + starclique_pairs, key=lambda x: x[-1], reverse=True, ) unmatched1 = ( sorted(set(clique_overlap.index) - set(map(lambda x: x[0], matched))) + sorted(set(star_overlap.index) - set(map(lambda x: x[0], matched))) + sorted(set(biclique_overlap.index) - set(map(lambda x: x[0], matched))) + sorted(set(starclique_overlap.index) - set(map(lambda x: x[0], matched))) ) unmatched2 = ( sorted(set(clique_overlap.columns) - set(map(lambda x: x[1], matched))) + sorted(set(star_overlap.columns) - set(map(lambda x: x[1], matched))) + sorted(set(biclique_overlap.columns) - set(map(lambda x: x[1], matched))) + sorted(set(starclique_overlap.columns) - set(map(lambda x: x[1], matched))) ) return matched, unmatched1, unmatched2 def get_structures_for_type(structures, structure_type): selected = list(filter(lambda x: x["structure_type"] == structure_type, structures)) return list(map(lambda x: x["position"], selected)) def get_matches_greedy(structures1, structures2): matched = [] unmatched1 = [] unmatched2 = [] for structure_type in STRUCTURE_TYPES: s1 = get_structures_for_type(structures1, structure_type) s2 = get_structures_for_type(structures2, structure_type) matched.extend(list(zip(s1, s2))) if len(s1) > len(s2): unmatched1.extend(s1[len(s2) :]) elif len(s1) < len(s2): unmatched2.extend(s2[len(s1) :]) return matched, unmatched1, unmatched2 def get_graph_names(path): return sorted( [ x.split(".json")[0] for x in [f for f in os.listdir(path) if f.endswith("json")] ] ) def save_jaccard_alignments(g1, idx, columns, graph_names, mapped_path, alignmentpath): print( f"Starting alignments for graph {idx + 1}/{len(graph_names)} ({g1})...", end="\r", ) large_df = pd.DataFrame(columns=columns) for g2 in graph_names[idx:]: alignment = f"{g1}_-_{g2}" json1 = load_json(f"{mapped_path}/{g1}.json") json2 = load_json(f"{mapped_path}/{g2}.json") structures1 = get_structures_added(json1) structures2 = get_structures_added(json2) matched, unmatched1, unmatched2 = get_matches_with_node_alignment( g1, g2, structures1, structures2 ) df = pd.concat( [ pd.DataFrame( matched, columns=["g1_structure", "g2_structure", "jaccard"] ), pd.DataFrame([unmatched1], index=["g1_structure"]).T,
pd.DataFrame([unmatched2], index=["g2_structure"])
pandas.DataFrame
from __future__ import division import os # import cv2 import fnmatch import sys import glob import numpy as np import pandas as pd import scipy.stats as sps import matplotlib as mpl import matplotlib.pyplot as plt import astropy.units as u import sunpy.map as smap from PIL import Image, ImageDraw from datetime import datetime, timedelta import hi_processing as hip import misc import data2df from data_cme_complexity import CMEComplexity from plotting_stereo import STEREOPlot from data_stereo_hi import STEREOHI from data_helcats import HELCATS data_loc = r'C:\\Users\\shann\\OneDrive\\Documents\\Research\\Workspace\\Data' fig_loc = r"C:\\Users\\shann\\OneDrive\\Documents\\Research\\Workspace\\Plots" hi_data = STEREOHI(data_loc) def brightness_equalise_images(tag, img_type): root = "C:\\Users\\shann\\OneDrive\\Documents\\Research\\Workspace\\Data\\STEREO_HI\\Images" for craft in ['sta', 'stb']: img_path = os.path.join(root, tag, img_type, craft) be_path = os.path.join(root, tag, img_type + '_be', craft) if not os.path.exists(be_path): os.mkdir(be_path) for filename in os.listdir(img_path): if filename.endswith(".jpg"): img = cv2.imread(os.path.join(img_path, filename),0) be = cv2.equalizeHist(img) cv2.imwrite(os.path.join(be_path, filename), be) ############################################################################### # add a crude CME mask def find_cme_mask_bounds(helcats_name): """finds coords of box of CME area. """ # get the upper and lower PAs, and elongation of the CME in the image helcats = HELCATS(data_loc) craft, time = helcats.get_cme_details(helcats_name) pa_n = helcats.get_col_data('PA-N [deg]', [helcats_name])[0] pa_s = helcats.get_col_data('PA-S [deg]', [helcats_name])[0] start, mid, end, mid_el = helcats.get_te_track_times(helcats_name) hi_data = STEREOHI(data_loc) hi_map = hi_data.get_hi_map(craft, mid) # convert these points into pixel coordinates coord1 = hip.convert_hpr_to_pix(4 * u.deg, pa_n * u.deg, hi_map) coord2 = hip.convert_hpr_to_pix(mid_el * u.deg, pa_n * u.deg, hi_map) coord4 = hip.convert_hpr_to_pix(mid_el * u.deg, pa_s * u.deg, hi_map) coord5 = hip.convert_hpr_to_pix(4 * u.deg, pa_s * u.deg, hi_map) coord3_list = [] if pa_n < pa_s: # CME goes right to left (STA pre 2016) # Loop over each position angle between PA_N and PA_S pa = int(pa_n) + 1 while pa < pa_s: coord = hip.convert_hpr_to_pix(mid_el * u.deg, pa * u.deg, hi_map) coord3_list.append(coord) pa = pa + 1 else: # CME goes left to right (STB & STA post 2016) pa = pa_n - 1 while pa > pa_s: coord = hip.convert_hpr_to_pix(mid_el * u.deg, pa * u.deg, hi_map) coord3_list.append(coord) pa = pa - 1 # append coords in order polygon = [(coord1[0].value, coord1[1].value), (coord2[0].value, coord2[1].value)] for j in range(len(coord3_list)): polygon.append((coord3_list[j][0].value, coord3_list[j][1].value)) polygon.append((coord4[0].value, coord4[1].value)) polygon.append((coord5[0].value, coord5[1].value)) return polygon def add_cme_mask(helcats_name, img): polygon = find_cme_mask_bounds(helcats_name) # Crop image to required area # Code adapted from https://stackoverflow.com/questions/22588074/polygon-crop-clip-using-python-pil img_array = np.asarray(img) if len(np.shape(img)) > 2: img_array = img_array[:,:,0] # only needed if 3 dimensions # create mask mask_img = Image.new('L', (img_array.shape[1], img_array.shape[0]), 0) ImageDraw.Draw(mask_img).polygon(polygon, outline=1, fill=1) mask = np.array(mask_img) # assemble new image (uint8: 0-255) new_img_array = np.empty(img_array.shape, dtype='uint8') new_img_array[:,:] = mask * img_array[:,:] new_img = Image.fromarray(new_img_array) return new_img ############################################################################### # plots to demonstrate def plot_img_with_mask(helcats_name, tag, img_type): """Makes a plot showing the CME image and CME masked image side-by-side. """ hi_data = STEREOHI(data_loc) helcats = HELCATS(data_loc) craft, time = helcats.get_cme_details(helcats_name) img = hi_data.load_img(helcats_name, craft, tag, img_type) masked_img = add_cme_mask(helcats_name, img) # Plot to compare original and cropped images f, (ax1, ax2) = plt.subplots(1, 2, figsize=[9, 6]) ax1.imshow(img) ax2.imshow(masked_img) ax1.set_title('Differenced Image') ax2.set_title('CME Area') ax1.set_xticks([]) ax1.set_yticks([]) ax2.set_xticks([]) ax2.set_yticks([]) f.savefig(os.path.join(fig_loc, 'CME Area ' + helcats_name + '.png')) def plot_img_hist(helcats_name, tag, img_type): """Makes plot showing image on left and histogram of pixel values on the right. """ hi_data = STEREOHI(data_loc) helcats = HELCATS(data_loc) craft, time = helcats.get_cme_details(helcats_name) img = hi_data.load_img_from_file(tag, img_type, craft, name=helcats_name) # Plot f, (ax1, ax2) = plt.subplots(1, 2, figsize=[9, 6]) ax1.imshow(img, cmap='gray') a = list(img.getdata(band=0)) ax2.hist(a, bins=np.arange(0, 255, 1), color='orange') # Make pretty ax1.set_xticks([]) ax1.set_yticks([]) ax2.set_ylim((0, 50000)) asp = np.diff(ax2.get_xlim())[0] / np.diff(ax2.get_ylim())[0] ax2.set_aspect(asp) ax2.set_xlabel('Pixel Value') ax2.set_ylabel('Count') plt.tight_layout() f.savefig(os.path.join(fig_loc, helcats_name + ' hist ' + img_type + '.png')) def image_summary(df, helcats_name, tag, img_type, mask=False): """Does all the image processing stuff for one image, and prints the values. :param: df: pandas df :param: helcats_name: str, HELCATS id of CME :param: mask: bool, should the rest of the image be masked out, leaving only the CME? :param: tag: suffix for images folder """ # get data hi_data = STEREOHI(data_loc) helcats = HELCATS(data_loc) craft, time = helcats.get_cme_details(helcats_name) img = hi_data.load_img_from_file(tag, img_type, craft, name=helcats_name) if mask == True: masked_img = add_cme_mask('helcats_name', img) data = list(masked_img.getdata(0)) # Remove masked values data[:] = [value for value in data if value != 0] elif mask == False: data = list(img.getdata(0)) # plot the CME image f, (ax1, ax2) = plt.subplots(1, 2, figsize=[9, 6]) ax1.imshow(img) ax1.set_xticks([]) ax1.set_yticks([]) ax1.set_xticks([]) ax1.set_yticks([]) ax2.hist(data, bins=np.arange(0, 255, 1)) ax2.set_ylim((0, 50000)) asp = np.diff(ax2.get_xlim())[0] / np.diff(ax2.get_ylim())[0] ax2.set_aspect(asp) ax2.set_xlabel('Pixel Value') ax2.set_ylabel('Count') plt.tight_layout() # Print the summary print("Summary of CME: %s" %(helcats_name)) print("Image type: %s" %(img_type)) print("CME mask: %s" %(str(mask))) # first use the hi_map # print("NaNs count: %s" %(np.isnan(hi_map.data).sum())) # then look at the image print("Fraction of saturated pixels: %s" %(data.count(255)/len(data))) print("Mean pixel value: %s" %(np.mean(data))) print("Standard deviation: %s" %(np.std(data))) print("Absolute mean pixel value: %s" %(np.mean(abs(np.array(data))))) print("Standard dev of abs mean pixel value: %s" %(np.std(abs(np.array(data))))) ############################################################################### # Code to apply image processing above to all CMEs in a df def save_img_stats(df, tag, img_type): """Loops over all the images, does stuff, and saves it as a .csv file. :param: df: pandas df :param: tag: str """ df = data2df.add_width_to_df(df) df = data2df.add_te_track_times_to_df(df) hi_data = STEREOHI(data_loc) nan_count = [] bright_pix = [] for i in df.index: print('processing image %s of %s'%(i, len(df))) img = hi_data.load_img_from_file(tag, img_type, df['craft'][i], name=df['helcats_name'][i]) hi_map = hi_data.get_hi_map(df['craft'][i], df['time'][i]) if hi_map != False: # Stats from complete image nan_count.append(np.isnan(hi_map.data).sum()) # sat_pix_image.append(list(img.getdata(0)).count(255)) # stats from cropped image new_img = add_cme_mask(df['helcats_name'][i], img) cme = list(new_img.getdata(0)) # cme.count(0) is number of masked out pixels # len(cme) is total pixels in the image # cme_pix = len(cme) - cme.count(0) # so this is pixels in cme bright = [value for value in cme if value > 222] bright_pix.append(len(bright)) else: print('error: hi_map not found for cme', df['helcats_name'][i]) nan_count.append(np.NaN) bright_pix.append(np.NaN) df['nan_count'] = pd.Series(nan_count, index=df.index) df['bright_pix'] =
pd.Series(bright_pix, index=df.index)
pandas.Series
''' Created on Jan 15, 2020 @author: bsana ''' from os.path import join import sys,datetime import pandas as pd OUT_SEP = ' ' COUNTY_FIPS = [37,59] if __name__ == '__main__': if len(sys.argv)<2: print('Please provide a control file which contains all the required input parameters as an argument!') else: print('Reformat survey program started: {}'.format(datetime.datetime.now())) #Initiate log file logfilename = 'reformat_survey.log' logfile = open(logfilename,'w') logfile.write('Reformat survey program started: ' + str(datetime.datetime.now()) + '\n') inputctlfile = sys.argv[1] ctlfile = open(inputctlfile) for ctlfileline in ctlfile: logfile.write(ctlfileline) if len(str.split(ctlfileline))>1: param = (str.split(ctlfileline)[0]).upper() value = str.split(ctlfileline)[1] if param == 'INDIR': inputdir = value elif param == 'INHHFILE': inhhfilename = value elif param == 'INPERFILE': inperfilename = value elif param == 'INTRIPFILE': intripfilename = value elif param == 'OUTDIR': outputdir = value elif param == 'OUTHHFILE': outhhfilename = value elif param == 'OUTPERFILE': outperfilename = value elif param == 'OUTTRIPFILE': outtripfilename = value inhhfilename = join(inputdir, inhhfilename) inperfilename = join(inputdir, inperfilename) intripfilename = join(inputdir, intripfilename) outhhfilename = join(outputdir, outhhfilename) outperfilename = join(outputdir, outperfilename) outtripfilename = join(outputdir, outtripfilename) ###### Household file processing print('Household file processing started: {}'.format(datetime.datetime.now())) logfile.write('\n') logfile.write('Household file processing started: ' + str(datetime.datetime.now()) + '\n') hh = pd.read_csv(inhhfilename, sep='\t') hh['hhno'] = hh['hh_id'] hh['hhsize'] = hh['num_people'] hh.loc[hh['hhsize']>900, 'hhsize'] = -1 hh['hhvehs'] = hh['num_vehicles'] hh.loc[hh['hhvehs']>900, 'hhvehs'] = -1 INC1_DICT = {999:-1, 1:7500, 2:20000, 3:30000, 4:42500, 5:62500, 6:87500, 7:125000, 8:175000, 9:225000, 10:350000} hh['hhincome'] = hh['income_detailed'].map(INC1_DICT) INC2_DICT = {999:-1, 1:12500, 2:37500, 3:62500, 4:87500, 5:175000, 6:350000} hh['hhinc2'] = hh['income_followup'].map(INC2_DICT) hh.loc[(hh['hhincome']<0) & (hh['hhinc2']>0), 'hhincome'] = hh.loc[(hh['hhincome']<0) & (hh['hhinc2']>0), 'hhinc2'] hh['hownrent'] = hh['rent_own'] hh.loc[hh['hownrent']==997, 'hownrent'] = 3 #Other hh.loc[hh['hownrent']==999, 'hownrent'] = 9 #Prefer not to answer -> Missing hh.loc[hh['hownrent']<0, 'hownrent'] = -1 RESTYPE_DICT = {1:1, 2:2, 3:3, 4:3, 5:3, 6:5, 7:4, 997:6} hh['hrestype'] = hh['res_type'].map(RESTYPE_DICT) hh.loc[pd.isnull(hh['hrestype']), 'hrestype'] = -1 hh['hxcord'] = hh['reported_home_lon'] hh['hycord'] = hh['reported_home_lat'] hh['hhtaz'] = hh['home_taz'] hh['hhparcel'] = hh['home_bg_geoid'] int_cols = ['hhparcel','hhtaz','hhincome','hrestype'] hh[int_cols] = hh[int_cols].astype('int64') out_colnames = ['hhno','hhsize','hhvehs','hhincome','hownrent','hrestype','hhparcel','hhtaz','hxcord','hycord','wt_alladult_wkday','wt_alladult_7day'] hh = hh[out_colnames] hh = hh.sort_values('hhno') hh.to_csv(outhhfilename, sep=OUT_SEP, index=False) print('Household file processing finished: {}'.format(datetime.datetime.now())) logfile.write('Household file processing finished: ' + str(datetime.datetime.now()) + '\n') ###### Person file processing print('Person file processing started: {}'.format(datetime.datetime.now())) logfile.write('\n') logfile.write('Person file processing started: ' + str(datetime.datetime.now()) + '\n') per = pd.read_csv(inperfilename, sep='\t') per['person_id'] = per['person_id'].round() per['hhno'] = per['hh_id'] per['pno'] = per['person_num'] AGE_DICT = {1:3, 2:10, 3:16, 4:21, 5:30, 6:40, 7:50, 8:60, 9:70, 10:80} per['pagey'] = per['age'].map(AGE_DICT) GEND_DICT = {1:2, 2:1, 3:3, 4:3, 997:3, 995:9, 999:9} per['pgend'] = per['gender'].map(GEND_DICT) per.loc[per['pgend']<0, 'pgend'] = -1 per.loc[pd.isna(per['pgend']), 'pgend'] = -1 per['pptyp'] = 0 per['pwtyp'] = 0 per['pstyp'] = 0 per.loc[(per['pagey']>=0) & (per['pagey']<5), 'pptyp'] = 8 per.loc[(per['pagey']>=0) & (per['pagey']<16) & (per['pptyp']==0), 'pptyp'] = 7 per.loc[(per['employment']==1) & (per['hours_work'].isin([1,2,3])) & (per['pptyp']==0), 'pptyp'] = 1 per.loc[(per['pagey']>=16) & (per['pagey']<18) & (per['pptyp']==0), 'pptyp'] = 6 per.loc[(per['pagey']>=16) & (per['pagey']<25) & (per['school_type'].isin([4,7])) & (per['student']==1) & (per['pptyp']==0), 'pptyp'] = 6 per.loc[(per['student'].isin([1,2])) & (per['pptyp']==0), 'pptyp'] = 5 per.loc[(per['employment'].isin([1,2,3])) & (per['pptyp']==0), 'pptyp'] = 2 # Remaining workers are part-time per.loc[(per['pagey']>65) & (per['pptyp']==0), 'pptyp'] = 3 per.loc[per['pptyp']==0, 'pptyp'] = 4 per.loc[per['pptyp']==1, 'pwtyp'] = 1 per.loc[per['pptyp']==2, 'pwtyp'] = 2 # student workers are also part-time workers per.loc[(per['pptyp']==5) & (per['employment'].isin([1,2,3])), 'pwtyp'] = 2 per.loc[(per['pptyp']==6) & (per['employment'].isin([1,2,3])), 'pwtyp'] = 2 per.loc[per['student']==1, 'pstyp'] = 1 per.loc[per['student']==2, 'pstyp'] = 2 per['pwxcord'] = per['work_lon'] per['pwycord'] = per['work_lat'] per['psxcord'] = per['school_lon'] per['psycord'] = per['school_lat'] per['ppaidprk'] = 1 per.loc[per['work_park']==1, 'ppaidprk'] = 0 per = per.rename(columns={'work_taz':'pwtaz_tmp', 'school_taz':'pstaz_tmp', 'work_bg_geo_id':'pwpcl_tmp', 'school_bg_geo_id':'pspcl_tmp'}) per.loc[per['work_county_fips'].isin(COUNTY_FIPS), 'pwtaz'] = per.loc[per['work_county_fips'].isin(COUNTY_FIPS), 'pwtaz_tmp'] per.loc[per['work_county_fips'].isin(COUNTY_FIPS), 'pwpcl'] = per.loc[per['work_county_fips'].isin(COUNTY_FIPS), 'pwpcl_tmp'] per.loc[per['school_county_fips'].isin(COUNTY_FIPS), 'pstaz'] = per.loc[per['school_county_fips'].isin(COUNTY_FIPS), 'pstaz_tmp'] per.loc[per['school_county_fips'].isin(COUNTY_FIPS), 'pspcl'] = per.loc[per['school_county_fips'].isin(COUNTY_FIPS), 'pspcl_tmp'] per.loc[pd.isnull(per['pwtaz']), 'pwtaz'] = -1 per.loc[pd.isnull(per['pstaz']), 'pstaz'] = -1 per.loc[pd.isnull(per['pwpcl']), 'pwpcl'] = -1 per.loc[pd.isnull(per['pspcl']), 'pspcl'] = -1 per.loc[pd.isnull(per['pwxcord']), 'pwxcord'] = -1.0 per.loc[pd.isnull(per['pwycord']), 'pwycord'] = -1.0 per.loc[pd.isnull(per['psxcord']), 'psxcord'] = -1.0 per.loc[pd.isnull(per['psycord']), 'psycord'] = -1.0 # there appear to be some person records who are not students but have school loc Ex. hhid 181005890 # account for that by setting school loc to null/missing per.loc[per['pstyp']==0, 'pstaz'] = -1 per.loc[per['pstyp']==0, 'pspcl'] = -1 per.loc[per['pstyp']==0, 'psxcord'] = -1.0 per.loc[per['pstyp']==0, 'psycord'] = -1.0 # there appear to be some person records who are not workers but have work loc Ex. hhid 181007697 # account for that by setting work loc to null/missing per.loc[per['pwtyp']==0, 'pwtaz'] = -1 per.loc[per['pwtyp']==0, 'pwpcl'] = -1 per.loc[per['pwtyp']==0, 'pwxcord'] = -1.0 per.loc[per['pwtyp']==0, 'pwycord'] = -1.0 int_cols = ['pwtaz','pstaz','pwpcl','pspcl','pgend'] per[int_cols] = per[int_cols].astype('int64') out_colnames = ['hhno','pno','pptyp','pagey','pgend','pwtyp','pwpcl','pwtaz','pstyp','pspcl','pstaz','ppaidprk','pwxcord','pwycord','psxcord','psycord'] out_colnames = out_colnames + ['wt_alladult_wkday','wt_alladult_7day'] out_colnames = out_colnames + ['mon_complete','tue_complete','wed_complete','thu_complete','fri_complete', 'sat_complete','sun_complete','nwkdaywts_complete','n7daywts_complete'] per = per[out_colnames] per = per.sort_values(['hhno','pno']) per.to_csv(outperfilename, sep=OUT_SEP, index=False) print('Person file processing finished: {}'.format(datetime.datetime.now())) logfile.write('Person file processing finished: ' + str(datetime.datetime.now()) + '\n') ###### Trip processing print('Trip file processing started: {}'.format(datetime.datetime.now())) logfile.write('\n') logfile.write('Trip file processing started: ' + str(datetime.datetime.now()) + '\n') trip =
pd.read_csv(intripfilename, sep='\t')
pandas.read_csv
import pandas as pd import os import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib import style #changing local directory to csv file location os.chdir('E:\\auto') #reading prices of BSE Auto companies on 26/nov/2019 interval 1min df=pd.read_csv('26novprice.csv') #df #getting % change in price with respect to initial value of day and adding data #to new dataframe df_percentage=pd.DataFrame() for i in df.columns[1:]: df_percentage[i]=(df[i]-df[i][0])/df[i][0]*100 #plt.show() df_percentage.describe() #removing motherson, bosch as they are outliers in BSE Auto df1=df_percentage.drop(['Motherson_Sumi','Bosch'],axis=1) #getting the correlation of %change in price with other companies sns.heatmap(df1.corr()) df1.describe() style.use('fivethirtyeight') plt.figure(figsize=(12,12)) df1.plot(lw=2) plt.xlabel('time from 9:15am(step=1min)') plt.ylabel('%change in price') plt.legend(bbox_to_anchor=(1,1)) plt.savefig('%price change over the day.jpeg') #df1['Apollo_Tyres'].plot() #reading volume of BSE Auto companies on 26/nov/2019 df2=
pd.read_csv('26novvolume.csv')
pandas.read_csv
# Primary Packages import pandas as pd import numpy as np import streamlit as st # Package to Load Model from sklearn.externals import joblib @st.cache def load_data(): return pd.read_csv('data/Sell-Out Data.csv') data = load_data() data = data[data['COMPANY']!='Competitors'] ### Set Title st.title("Cortex Sales Predictor") st.write("""From the AC metadata, we built a machine learning-based forecasting model to predict ac unit sales.""") # Show data st.subheader('AC Metadata') if st.checkbox('Show Raw Data'): st.write(data.head(20)) st.sidebar.title('Parameters') # Unit Level unit_values = pd.Series(data['UNIT'].unique()).str.strip() unit_dummies = pd.get_dummies(unit_values) unit_sample = st.sidebar.selectbox("AC Unit", unit_values.values.tolist()) unit_sample_dummies = (unit_dummies.loc[np.where(unit_values.values == unit_sample)[0]] .values.tolist()[0]) # Dealer Level dealer_values = pd.Series(data['DEALER'].unique()).str.strip() dealer_dummies = pd.get_dummies(dealer_values) dealer_sample = st.sidebar.selectbox("Dealer", dealer_values.values.tolist()) dealer_sample_dummies = (dealer_dummies.loc[np.where(dealer_values.values == dealer_sample)[0]] .values.tolist()[0]) # Channel Level channel_values = pd.Series(data['CHANNEL'].unique()).str.strip() channel_dummies = pd.get_dummies(channel_values) channel_sample = st.sidebar.selectbox("Channel", channel_values.values.tolist()) channel_sample_dummies = (channel_dummies.loc[np.where(channel_values.values == channel_sample)[0]] .values.tolist()[0]) # Sales Channel Level sales_channel_values = pd.Series(data['SALES CHANNEL'].unique()).str.strip() sales_channel_dummies = pd.get_dummies(sales_channel_values) sales_channel_sample = st.sidebar.selectbox("Sales Channel", sales_channel_values.values.tolist()) sales_channel_sample_dummies = (sales_channel_dummies.loc[np.where(sales_channel_values.values == sales_channel_sample)[0]] .values.tolist()[0]) # Region Level region_values = pd.Series(data['REGION'].unique()).str.strip() region_dummies = pd.get_dummies(region_values) region_sample = st.sidebar.selectbox("Region", region_values.values.tolist()) region_sample_dummies = (region_dummies.loc[np.where(region_values.values == region_sample)[0]] .values.tolist()[0]) # Brand Level brand_values = pd.Series(data['BRAND'].unique()).str.strip() brand_dummies = pd.get_dummies(brand_values) brand_sample = st.sidebar.selectbox("Brand", brand_values.values.tolist()) brand_sample_dummies = (brand_dummies.loc[np.where(brand_values.values == brand_sample)[0]] .values.tolist()[0]) # Capacity Level cap_values = pd.Series(data['CAPACITY'].unique()).str.strip() cap_dummies =
pd.get_dummies(cap_values)
pandas.get_dummies
import numpy as np import pandas as pd import scipy as sp import matplotlib.pyplot as plt import seaborn as sns; sns.set_context('notebook') from collections import OrderedDict import pickle from pystan import StanModel """Multilevel Modeling with Poststratification (MRP)""" # Use multilevel regression to model individual survey responses as a function of demographic and geographic # predictors, partially pooling respondents across states/regions to an extent determined by the data. # The final step is post-stratification. # Read the data & define variables # Data are from http://www.stat.columbia.edu/~gelman/arm/examples/election88 """Step 1: gather national opinion polls (they need to include respondent information down to the level of disaggregation the analysis is targetting) """ # Load in data from the CBS polls with the following covariates (individual level): # - org: organisation which collected the poll # - year: year id # - survey: survey id # - bush: indicator (=1) for support of bush # - state: state id # - edu: categorical variable indicating level of education # - age: categorical variable indicating age # - female: indicator (=1) for female # - black: indicator (=1) for black # - weight: sample weight polls = pd.read_csv('./data/polls.csv') polls = polls.drop(polls.columns[[0]], axis=1) """Step 2: create a separate dataset of state-level predictors """ # Load in data for region indicators (state level). The variables are: # - state_abbr: abbreviations of state names # - regions: 1=northeast, 2=south, 3=north central, 4=west, 5=d.c. # - not_dc: indicator variable which is 1 for non_dc states state_info = pd.read_csv('./data/state.csv') state_info = state_info.rename(columns={'Unnamed: 0': 'state'}) # Include a measure of previous vote as a state-level predictor. The variables are: # - g76_84pr: state average in previous election # - stnum2: state id presvote = pd.read_csv("./data/presvote.csv") presvote = presvote.drop(presvote.columns[[0]], axis=1) presvote = presvote.rename(columns={'g76_84pr': 'v_prev', 'stnum2': 'state'}) # Include a measure of candidate effects as a state-level predictor and add empty row for DC. candidate_effects =
pd.read_csv("./data/candidate_effects.csv")
pandas.read_csv
import pytest from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm @pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)]) def test_groupby_sample_balanced_groups_shape(n, frac): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=n, frac=frac) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=n, frac=frac) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_unbalanced_groups_shape(): values = [1] * 10 + [2] * 20 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=5) values = [1] * 5 + [2] * 5 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=5) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_index_value_spans_groups(): values = [1] * 3 + [2] * 3 df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2]) result = df.groupby("a").sample(n=2) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=2) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_n_and_frac_raises(): df = DataFrame({"a": [1, 2], "b": [1, 2]}) msg = "Please enter a value for `frac` OR `n`, not both" with pytest.raises(ValueError, match=msg): df.groupby("a").sample(n=1, frac=1.0) with pytest.raises(ValueError, match=msg): df.groupby("a")["b"].sample(n=1, frac=1.0) def test_groupby_sample_frac_gt_one_without_replacement_raises(): df = DataFrame({"a": [1, 2], "b": [1, 2]}) msg = "Replace has to be set to `True` when upsampling the population `frac` > 1." with pytest.raises(ValueError, match=msg): df.groupby("a").sample(frac=1.5, replace=False) with pytest.raises(ValueError, match=msg): df.groupby("a")["b"].sample(frac=1.5, replace=False) @pytest.mark.parametrize("n", [-1, 1.5]) def test_groupby_sample_invalid_n_raises(n): df = DataFrame({"a": [1, 2], "b": [1, 2]}) if n < 0: msg = "Please provide positive value" else: msg = "Only integers accepted as `n` values" with pytest.raises(ValueError, match=msg): df.groupby("a").sample(n=n) with pytest.raises(ValueError, match=msg): df.groupby("a")["b"].sample(n=n) def test_groupby_sample_oversample(): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(frac=2.0, replace=True) values = [1] * 20 + [2] * 20 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(frac=2.0, replace=True) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_without_n_or_frac(): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=None, frac=None) expected = DataFrame({"a": [1, 2], "b": [1, 2]}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=None, frac=None) expected = Series([1, 2], name="b", index=result.index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index, expected_index", [(["w", "x", "y", "z"], ["w", "w", "y", "y"]), ([3, 4, 5, 6], [3, 3, 5, 5])], ) def test_groupby_sample_with_weights(index, expected_index): # GH 39927 - tests for integer index needed values = [1] * 2 + [2] * 2 df = DataFrame({"a": values, "b": values}, index=Index(index)) result = df.groupby("a").sample(n=2, replace=True, weights=[1, 0, 1, 0]) expected = DataFrame({"a": values, "b": values}, index=Index(expected_index)) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=2, replace=True, weights=[1, 0, 1, 0]) expected = Series(values, name="b", index=
Index(expected_index)
pandas.Index
# -*- coding: utf-8 -*- """ Created on Wed Oct 9 18:16:34 2019 """ import requests import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt #league year and ID for data download url = "https://fantasy.espn.com/apis/v3/games/ffl/seasons/2019/segments/0/leagues/298982" #for historical #url = "https://fantasy.espn.com/apis/v3/games/ffl/leagueHistory/" + str(league_id) + "?seasonId=" + str(year) #if using historical year and not current year, change to r.json()[0] #weekly matchups r = requests.get(url, params = {"view": "mMatchup"}) d = r.json() #figuring out how many weeks of material to pull, so no empty json maximum = max(pd.DataFrame(d["schedule"]).index.tolist()) #how many obs? length_df = pd.DataFrame([[d["schedule"][i]["winner"]] for i in range(maximum)]) #remove "undecided" game winners - weeks that have yet to be played length_df = length_df[length_df[0] != "UNDECIDED"] length = range(len(length_df)) #range for future loops for all games #Selecting weeks, points, data source = pd.DataFrame([[d["schedule"][i]["matchupPeriodId"], d["schedule"][i]["home"]["teamId"], d["schedule"][i]["home"]["totalPoints"], d["schedule"][i]["away"]["teamId"], d["schedule"][i]["away"]["totalPoints"]] for i in length], columns = ["Week", "Team1", "Score1", "Team2", "Score2"]) #Create a list of each teams' margin of defeat/victory for each game margins = source.assign(Margin1 = source["Score1"] - source["Score2"], Margin2 = source["Score2"] - source["Score1"]) #team number to name Dictionary mapping = {1: "Mount", 2: "Alec", 3: "Sirpi", 4: "Oatman", 5: "Babcock", 9: "Jordan", 11: "Casey", 12: "Badillo", 13: "Naki", 14: "Kooper"} #transpose from wide to long margins_long = (margins[["Week", "Team1", "Margin1", "Score1"]] .rename(columns = {"Team1": "Team", "Margin1": "Margin", "Score1": "Score"}) .append(margins[["Week", "Team2", "Margin2", "Score2"]] .rename(columns = {"Team2": "Team", "Margin2": "Margin", "Score2": "Score"}))) #add team name to the margins_long data frame margins_long = (margins_long.assign(teamname = margins_long.Team) .replace({"teamname": mapping})) #creating record from values team_ids = margins_long.Team.unique() def team_win_loss(dataset, i): """ Adding the win-loss record dataset: which dataset to use? i: iterator """ team = dataset[dataset["Team"] == team_ids[i]] team_wins = sum(n > 0 for n in team["Margin"]) team_ties = sum(n == 0 for n in team["Margin"]) team_loss = sum(n < 0 for n in team["Margin"]) points = np.sum(team.Score) wl_info = pd.DataFrame([[team_ids[i], team_wins, team_loss, team_ties, points]], columns = ["Team", "Wins", "Losses", "Ties", "Points"]) return wl_info #initialize an empty dataframe to append to win_loss = [] #loop through all the teams and have the rows append for j in range(len(team_ids)): row = team_win_loss(margins_long, j) win_loss.append(row) win_loss = (pd.concat(win_loss) .sort_values(by = ["Wins", "Ties", "Points"], ascending = False) .assign(Standing = np.arange(1, 11)) .reset_index(drop = True)) win_loss = (win_loss.assign(teamname = win_loss.Team, Record = win_loss.Wins.map(str) + "-" + win_loss.Losses.map(str) + "-" + win_loss.Ties.map(str)) .replace({"teamname": mapping})) ########################## QED: Record and W/L ################################ ##### Plot the Win/Loss Margins fig, ax = plt.subplots(1, 1, figsize = (16, 6)) order = win_loss.teamname sns.boxplot(x = "teamname", y = "Margin", data = margins_long, order = order) ax.axhline(0, ls = "--") ax.set_xlabel("") ax.set_title("Win/Loss Margins") plt.show() ##################################### Luck #################################### #get the average of each week averages = (margins.filter(["Week", "Score1", "Score2"]) .melt(id_vars = ["Week"], value_name = "Score") .groupby("Week") .mean() .reset_index()) #initialize empty list margin_average = [] for i in range(len(team_ids)): #select the team and corresponding owner name team = team_ids[i] team_owner = mapping[team] #create a dataframe for the score margin against team average per week df2 = (margins.query("Team1 == @team | Team2 == @team") .reset_index(drop = True)) #move df2 to have all team of interest into one column team_loc = list(df2["Team2"] == team) df2.loc[team_loc, ["Team1", "Score1", "Team2", "Score2"]] = df2.loc[team_loc, ["Team2", "Score2", "Team1", "Score1"]].values #Add new score and win columns df2 = (df2.assign(change1 = df2["Score1"] - averages["Score"], change2 = df2["Score2"] - averages["Score"], Win = df2["Score1"] > df2["Score2"])) #Append it to the end margin_average.append(df2) #remove the useless initiator row margin_average =
pd.concat(margin_average)
pandas.concat
import sys import os from PyQt5 import QtCore, QtWidgets from qtmodern.styles import dark from qtmodern.windows import ModernWindow from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * import pyqtgraph as pg import numpy as np import pandas import random import time import pickle from pyqtgraph.Qt import QtCore, QtGui from decimal import Decimal, ROUND_DOWN import cProfile import pstats from PyQt5.QtGui import QPixmap from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QLabel, QLineEdit, QTabWidget, \ QGridLayout, QVBoxLayout, QHBoxLayout, QGroupBox, QDialog from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot # import pyqtgraph.console from collections import namedtuple from itertools import chain import glob from pathlib import Path from ms2analyte.file_handling import data_import from ms2analyte.file_handling import file_load from ms2analyte.visualizations import file_open_model from pyteomics import mgf, auxiliary import numpy from matchms import Spectrum from matchms.exporting import save_as_mgf from zipfile import ZipFile import ms2analyte.file_open_dialogue from threading import * from PyQt5.QtWidgets import * from ms2analyte.file_open_dialogue import MainWindowUIClass from PyQt5 import uic from PyQt5.QtWidgets import QMessageBox from PyQt5.QtCore import * from PIL import Image global open_state open_state = 1 # Handle high resolution displays: if hasattr(QtCore.Qt, 'AA_EnableHighDpiScaling'): QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling, True) if hasattr(QtCore.Qt, 'AA_UseHighDpiPixmaps'): QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps, True) ########### Data Import ################# lastClicked = [] clickedPen = pg.mkPen('s', width=5) clickedPen_legend = pg.mkPen('s', width=3) lastClicked_legend = [] def fetch_sample_list(input_structure, input_type): if open_state ==2: sample_list = data_import.name_extract(input_structure, input_type) else: sample_list = [] return sample_list ####################################################################################### def import_dataframe(input_structure, input_type, sample_name): print('TEST importdataframe 1') if open_state == 2: with open((os.path.join(output_path, experiment_name + "_experiment_import_parameters.pickle")), 'rb') as f: experiment_info = pickle.load(f) print(experiment_info.blanks_exist) print('TEST importdataframe 2') print(input_structure) print(sample_name) print(input_type) if experiment_info.blanks_exist == True: with open((os.path.join(input_structure, input_type, sample_name + "_all_replicates_blanked_dataframe.pickle")), 'rb') as f: print('TEST importdataframe 3') df = pickle.load(f) # df = pandas.read_pickle(f) else: with open((os.path.join(input_structure, input_type, sample_name + "_all_replicates_dataframe.pickle")), 'rb') as f: print('TEST importdataframe 3') df = pickle.load(f) print('TEST importdataframe 4') print('TEST importdataframe 5') print(df) else: df = [] print('TEST importdataframe 6') return df ####################################################################################### def import_experiment_dataframe(input_structure): if open_state == 2: with open((os.path.join(input_structure, experiment_name + "_experiment_analyte_overview_tableau_output.csv"))) as f: df = pandas.read_csv(f) else: df = [] return df ####################################################################################### def import_ms1_dataframe(input_structure, input_type, sample_name): if open_state == 2: print('test1') with open((os.path.join(input_structure, input_type, sample_name + '_replicate_analyte_mass_spectra.pickle')), 'rb') as f: inputdata = pickle.load(f) print('test2') print('ms1 inputdata',inputdata) b = 0 replicate_analyte_id = [] average_mass = [] relative_intensity = [] while b < len(inputdata): i = 0 while i <len(inputdata[b].replicate_analyte_ms1_spectrum): replicate_analyte_id.append(inputdata[b].replicate_analyte_id) average_mass.append(inputdata[b].replicate_analyte_ms1_spectrum[i].average_mass) relative_intensity.append(inputdata[b].replicate_analyte_ms1_spectrum[i].relative_intensity) i+=1 b+=1 np.round(average_mass,1) relative_intensity_zeros = [0]*len(relative_intensity) average_mass_lower = [0]*len(average_mass) i=0 while i < len(average_mass): average_mass_lower[i] = average_mass[i] - 0.0001 i+=1 average_mass_upper = [0]*len(average_mass) i=0 while i < len(average_mass): average_mass_upper[i] = average_mass[i] + 0.0001 i+=1 data1 = {'replicate_analyte_id': replicate_analyte_id, 'average_mass': average_mass, 'relative_intensity': relative_intensity } data2 = {'replicate_analyte_id': replicate_analyte_id, 'average_mass': average_mass_upper, 'relative_intensity': relative_intensity_zeros } data3 = {'replicate_analyte_id': replicate_analyte_id, 'average_mass': average_mass_lower, 'relative_intensity': relative_intensity_zeros } df1 = pandas.DataFrame (data1, columns = ['replicate_analyte_id', 'average_mass','relative_intensity']) df2 = pandas.DataFrame (data2, columns = ['replicate_analyte_id', 'average_mass','relative_intensity']) df3 = pandas.DataFrame (data3, columns = ['replicate_analyte_id', 'average_mass','relative_intensity']) df_combine = [df1,df2,df3] df_combine = pandas.concat(df_combine) print('test3') with open((os.path.join(input_structure, input_type, sample_name + '_R1_analytes.pickle')), 'rb') as f: inputdata2 = pickle.load(f) print('test4') b = 0 analyte_id = [] max_peak_intensity_mass = [] max_peak_intensity = [] while b < len(inputdata2): analyte_id.append(inputdata2[b].analyte_id) max_peak_intensity_mass.append(inputdata2[b].max_peak_intensity_mass) max_peak_intensity.append(inputdata2[b].max_peak_intensity) b+=1 max_peak_intensity_zeros = [0]*len(max_peak_intensity) max_peak_intensity_mass_lower = [0]*len(max_peak_intensity_mass) i=0 while i < len(max_peak_intensity_mass): max_peak_intensity_mass_lower[i] = max_peak_intensity_mass[i] - 0.0001 i+=1 max_peak_intensity_zeros = [0]*len(max_peak_intensity) max_peak_intensity_mass_upper = [0]*len(max_peak_intensity_mass) i=0 while i < len(max_peak_intensity_mass): max_peak_intensity_mass_upper[i] = float(max_peak_intensity_mass[i] + 0.0001) i+=1 data4 = {'analyte_id': analyte_id, 'max_peak_intensity_mass': max_peak_intensity_mass, 'max_peak_intensity': max_peak_intensity } data5 = {'analyte_id': analyte_id, 'max_peak_intensity_mass': max_peak_intensity_mass_upper, 'relative_intensity': max_peak_intensity_zeros } data6 = {'analyte_id': analyte_id, 'max_peak_intensity_mass': max_peak_intensity_mass_lower, 'max_peak_intensity': max_peak_intensity_zeros } df4 = pandas.DataFrame (data4, columns = ['analyte_id', 'max_peak_intensity_mass','max_peak_intensity']) df5 = pandas.DataFrame (data5, columns = ['analyte_id', 'max_peak_intensity_mass','max_peak_intensity']) df6 =
pandas.DataFrame (data6, columns = ['analyte_id', 'max_peak_intensity_mass','max_peak_intensity'])
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import matplotlib import assignment2_helper as helper # Look pretty... # matplotlib.style.use('ggplot') plt.style.use('ggplot') # Do * NOT * alter this line, until instructed! scaleFeatures = True # file_path = "/Users/szabolcs/dev/git/DAT210x/Module4/Datasets/" file_name = "kidney_disease.csv" exclude_columns = ['id', 'classification'] #, 'rbc', 'pc', 'pcc', 'ba', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane'] df = pd.read_csv(file_path + file_name) labels = ['red' if i=='ckd' else 'green' for i in df.classification] df.drop(exclude_columns, axis=1, inplace=True) print(df.head()) df = pd.get_dummies(df, columns=["rbc"]) df = pd.get_dummies(df, columns=["pc"]) df = pd.get_dummies(df, columns=["pcc"]) df = pd.get_dummies(df, columns=["ba"]) df = pd.get_dummies(df, columns=["htn"]) df = pd.get_dummies(df, columns=["dm"]) df = pd.get_dummies(df, columns=["cad"]) df = pd.get_dummies(df, columns=["appet"]) df = pd.get_dummies(df, columns=["pe"]) df =
pd.get_dummies(df, columns=["ane"])
pandas.get_dummies
from itertools import combinations_with_replacement as cwr from itertools import product import numpy as np import numpy.ma as ma import pandas as pd from scipy.spatial.distance import cdist from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from helpers import timing class LPA: def __init__(self, dvr: pd.DataFrame, epsilon_frac: int = 2): self.dvr = dvr.sort_values("frequency_in_category", ascending=False) self.epsilon = 1 / (len(dvr) * epsilon_frac) @staticmethod def create_dvr(frequency: pd.DataFrame) -> pd.DataFrame: """Creates the DVR table of the domain""" dvr = ( frequency.groupby("element", as_index=False) .sum() .sort_values(by="frequency_in_category", ascending=False) ) dvr["global_weight"] = dvr["frequency_in_category"] / sum( dvr["frequency_in_category"] ) return dvr.reset_index(drop=True) def create_pvr(self, frequency: pd.DataFrame) -> pd.DataFrame: """Creates a vector for every category in the domain""" frequency["local_weight"] = frequency[ "frequency_in_category" ] / frequency.groupby("category")["frequency_in_category"].transform("sum") return frequency @staticmethod def KLD(P: np.ndarray, Q: np.ndarray) -> np.ndarray: """ Kullback-Leibler distance. P represents the data, the observations, or a measured probability distribution. Q represents instead a theory, a model, a description or an approximation of P. """ return (P - Q) * (ma.log(P) - ma.log(Q)) def normalize_pvr( self, pvr: pd.DataFrame, pvr_lengths: np.array, missing: np.array ) -> pd.DataFrame: """ The extended pvr (with ɛ) is no longer a probability vector - the sum of all coordinates is now larger than 1. We correct this by multiplying all non-ɛ frequencies by a normalization coefficient β. This normalization coefficient is given by the formula β=1-N*ɛ, where N is the number of words missing in one vector compared to the other (variable named `missing`). """ betas = [ item for sublist in [ times * [(1 - missing * self.epsilon)[i]] for i, times in enumerate(pvr_lengths) ] for item in sublist ] pvr["local_weight"] = pvr["local_weight"] * pd.Series(betas) return pvr def betas(self, pvr: pd.DataFrame) -> pd.DataFrame: pvr_lengths = ( pvr["category"].drop_duplicates(keep="last").index - pvr["category"].drop_duplicates(keep="first").index + 1 ).to_numpy() missing = len(self.dvr) - pvr_lengths return self.normalize_pvr(pvr, pvr_lengths, missing) def create_arrays(self, frequency: pd.DataFrame) -> pd.DataFrame: """Prepares the raw data and creates signatures for every category in the domain. `epsilon_frac` defines the size of epsilon, default is 1/(corpus size * 2) `sig_length` defines the length of the signature, default is 500""" pvr = self.create_pvr(frequency) vecs = self.betas(pvr) vecs = vecs.pivot_table( values="local_weight", index="element", columns="category" ) self.dvr_array = ( self.dvr[self.dvr["element"].isin(vecs.index)] .sort_values("element")["global_weight"] .to_numpy() ) self.vecs_array = ( vecs.fillna(self.epsilon).replace(0, self.epsilon).to_numpy().T ) def create_distances(self, frequency: pd.DataFrame) -> pd.DataFrame: frequency = frequency.sort_values("category").reset_index(drop=True) self.create_arrays(frequency) categories = frequency["category"].drop_duplicates() elements = frequency["element"].drop_duplicates().dropna().sort_values() return ( pd.DataFrame( self.KLD(self.dvr_array, self.vecs_array), index=categories, columns=elements, ) .stack() .reset_index() .rename(columns={0: "KL"}) ) def add_underused(self, distances: pd.DataFrame) -> pd.DataFrame: underused = np.greater(self.dvr_array, self.vecs_array) underused = underused.reshape(np.multiply(*underused.shape)) distances["underused"] = underused return distances def cut(self, sigs: pd.DataFrame, sig_length: int = 500) -> pd.DataFrame: # TODO: diminishing return return ( sigs.sort_values(["category", "KL"], ascending=[True, False]) .groupby("category") .head(sig_length) .reset_index(drop=True) ) def create_and_cut( self, frequency: pd.DataFrame, sig_length: int = 500 ) -> pd.DataFrame: distances = self.create_distances(frequency) sigs = self.add_underused(distances) cut = self.cut(sigs, sig_length) return cut def distance_summary(self, frequency: pd.DataFrame) -> pd.DataFrame: sigs = self.create_distances(frequency) return sigs.groupby("category").sum() @timing def sockpuppet_distance( self, signatures1: pd.DataFrame, signatures2: pd.DataFrame ) -> pd.DataFrame: """ Returns size*size df """ # TODO: triu categories1 = signatures1["category"].drop_duplicates() categories2 = signatures2["category"].drop_duplicates() pivot =
pd.concat([signatures1, signatures2])
pandas.concat
import pandas as pd import numpy as np import sklearn.feature_selection import sklearn.preprocessing import sklearn.model_selection import mlr import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import statistics # sorting variables def sort_by_feature_name(df): df =df.T a = [] for i in df.T.columns: a.append(len(i)) df["len"] = a df_sorted = df.sort_values(["len"]) df_sorted = df_sorted.drop(["len"],axis=1) return df_sorted.T # Remove feature correlations, using Pearson correlation, based on the variable threshold def remove_correlation(dataset, threshold): col_corr = set() # Set of all the names of deleted columns corr_matrix = dataset.corr().abs() for i in range(len(corr_matrix.columns)): for j in range(i): if corr_matrix.iloc[i, j] >= threshold: colname = corr_matrix.columns[i] # getting the name of column col_corr.add(colname) if colname in dataset.columns: del dataset[colname] # deleting the column from the dataset return dataset # SEP is the standard error of prediction (test set). SEE is the error for training def sep(yt,yp): return np.sqrt(mean_squared_error(yt, yp)) def run_MLREM(df2, name, dependent_variable, up_to_beta=200, screen_variance=False): df=df2.copy() # Separating independent and dependent variables x and y y = df[dependent_variable].to_numpy().reshape(-1,1) x = df.drop(dependent_variable,axis=1) x_sorted=sort_by_feature_name(x) x_pastvar = x_sorted.copy() if screen_variance: selector = sklearn.feature_selection.VarianceThreshold(threshold=0.01) selector.fit(x_sorted) x_pastvar=x_sorted.T[selector.get_support()].T x_remcorr = remove_correlation(x_pastvar,0.9) y_scaller = sklearn.preprocessing.StandardScaler() x_scaller = sklearn.preprocessing.StandardScaler() ys_scalled = y_scaller.fit_transform(y) xs_scalled = x_scaller.fit_transform(x_remcorr) ind = x_remcorr.columns X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(xs_scalled, ys_scalled, test_size=0.3) df_X_test = pd.DataFrame(X_test, columns=ind) # this is to be able to calculate SEP for each iteration of beta df_X_train = pd.DataFrame(X_train, columns=ind) sepai = [] betai = [] indexai = [] weights = [] pvalues = [] # Beta optimisation for i in range(1,up_to_beta): beta = 0.1 * i betai.append(beta) w, indice, pv = mlr.train(X_train, y_train, ind, beta=beta) indexai.append(indice) weights.append(w) pvalues.append(pv) X_test2 = df_X_test[indice[1:]] X_train2 = df_X_train[indice[1:]] # RMSE calculation - test set yp = np.dot(X_test2,w[1:]) yp = y_scaller.inverse_transform(yp) yt = y_scaller.inverse_transform(y_test) sepai.append(sep(yp,yt)) # RMSE calculation - training set yp = np.dot(X_train2,w[1:]) yp = y_scaller.inverse_transform(yp) yt = y_scaller.inverse_transform(y_train) #print(beta, ';', sep(yp,yt),';', sepai[-1]) # Extracting best results obtained in the previous loop based on the minimum error of prediction best_beta_indx = sepai.index(np.array(sepai).min()) print('Best beta =', betai[best_beta_indx]) # weights for each remaining feature after correlation has been performed df_features = pd.DataFrame(weights[best_beta_indx],index=indexai[best_beta_indx]) df_features.columns = ["weights"] # p value calculation for the regression df_pvalues =
pd.DataFrame(pvalues[best_beta_indx],index=indexai[best_beta_indx])
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import datetime as dt import statsmodels.api as sm from statsmodels.tsa.seasonal import STL import pandas_datareader.data as DataReader stock0='ZARJPY=X' #'USDJPY=X' #'EURJPY=X' #AUDJPY=X JPYAUD=X ZARJPY=X GBPJPY=X JPYUSD=X bunseki = "trend" start = dt.date(2019,4,1) end = dt.date(2020,8,14) df=DataReader.get_data_yahoo("{}".format(stock0),start,end) print(df) series=df['Close'] cycle, trend = sm.tsa.filters.hpfilter(series, 144) df['trend']= trend f_ratio = 0.6180339887498949 def MAX_(x): return pd.Series(x).max() def MIN_(x): return pd.Series(x).min() def M618_(x, n): # 下限値と上限値の間のリトレースメントを求める f = 1 for i in range(0,n,1): f *= f_ratio m618 = pd.Series(x).min() + f*(pd.Series(x).max()-pd.Series(x).min()) return m618 def M618_2(x, n): # 下限値以下のリトレースメントを求める f = 1 for i in range(0,n,1): f *= f_ratio m618 = pd.Series(x).min() - f*(pd.Series(x).max()-pd.Series(x).min()) return m618 def M618_1(x, n): # 上限値近傍のリトレースメントを求める f = 1 for i in range(0,n,1): f *= f_ratio m618 = pd.Series(x).max() - f*(pd.Series(x).max()-pd.Series(x).min()) return m618 def M50_(x, n): # 50%のリトレースメントを求める f = 1 for i in range(0,n,1): f *= 0.5 m618 = pd.Series(x).max() - f*(pd.Series(x).max()-pd.Series(x).min()) return m618 def M50_1(x, n): # 下限値以下のさらに50%のリトレースメントを求める f = 1 for i in range(0,n,1): f *= 0.5 m618 = pd.Series(x).min() - f*(
pd.Series(x)
pandas.Series
import datetime from flask import Flask,redirect, url_for, request import matplotlib.pyplot as plt import pandas as pd import anomalies.config as config def plot_results(): year = request.form["year"] from_month = request.form["from_month"] to_month = request.form["to_month"] currency = request.form["currency"] print('anomalies are detecting...') print('year: ' + str(year)) print('from_month: ' + str(from_month)) print('to_month: ' + str(to_month)) start_date = request.form["year"] + "-" + request.form["from_month"] + "-01" #end_date = request.form["year"] + "-" + str(int(request.form["to_month"]) + 1) + "-01" if (int(request.form["to_month"]) == 12): end_date = str(int(request.form["year"]) + 1) + "-" + str(1) + "-01" else: end_date = request.form["year"] + "-" + str(int(request.form["to_month"]) + 1) + "-01" quotes = pd.read_csv("static/data/"+currency+"/DAT_MT_"+currency+"_M1_" + str(year) + ".csv") quotes['Time'] = quotes[['Date', 'Time']].apply(lambda x: ' '.join(x), axis=1) quotes['Time'] = quotes['Time'].apply(lambda x: pd.to_datetime(x) - datetime.timedelta(hours=2)) quotes.index = quotes.Time print(quotes) # select desired range of dates mask = (quotes.index > start_date) & (quotes.index <= end_date) quotes = quotes.loc[mask] print(quotes) fig, ax = plt.subplots() ax.plot(quotes['Close']) ax.set_title('Black Regions') anormalies = pd.read_csv('static/anomalies/detected_black_regions/'+str(config.ANOMALY_PERCENTAGE) + '_' + str(config.NEAREST_NEIGHBOURS) + '_' + request.form["currency"] + '_' + request.form["year"]+'_all_anomalies.csv') anormalies['Time'] = anormalies['DateHour'].apply(lambda x: pd.to_datetime(x)) anormalies.index = anormalies.Time mask = (anormalies.index > start_date) & (anormalies.index <= end_date) anormalies = anormalies.loc[mask] #xdate = [datetime.datetime.fromtimestamp(i) for i in quotes['Time']] for index, row in anormalies.iterrows(): a_index = row["Time"] b_index = row["Time"]+datetime.timedelta(hours=1) ax.axvspan(a_index, b_index, color='red', alpha=0.5) plt.show() #https://stackoverflow.com/questions/42373104/candlestick-ochl-graph def plot_results_offline(year,month,currency): from_month = month to_month = month print('anomalies are detecting...') print('year: ' + str(year)) print('from_month: ' + str(from_month)) print('to_month: ' + str(to_month)) start_date = year + "-" + from_month + "-01" #end_date = request.form["year"] + "-" + str(int(request.form["to_month"]) + 1) + "-01" if (int(to_month) == 12): end_date = str(int(year) + 1) + "-" + str(1) + "-01" else: end_date = year + "-" + str(int(to_month) + 1) + "-01" quotes = pd.read_csv("D:/coursework/L4S2/GroupProject/repo/TeamFxPortal/static/data/"+currency+"/DAT_MT_"+currency+"_M1_" + str(year) + ".csv") quotes['Time'] = quotes[['Date', 'Time']].apply(lambda x: ' '.join(x), axis=1) quotes['Time'] = quotes['Time'].apply(lambda x: pd.to_datetime(x) - datetime.timedelta(hours=2)) quotes.index = quotes.Time print(quotes) # select desired range of dates mask = (quotes.index > start_date) & (quotes.index <= end_date) quotes = quotes.loc[mask] print(quotes) fig, ax = plt.subplots() ax.plot(quotes['Close']) ax.set_title('Black Regions') anormalies = pd.read_csv(' D:/coursework/L4S2/GroupProject/repo/TeamFxPortal/static/anomalies/detected_black_regions/'+str(config.ANOMALY_PERCENTAGE) + '_' + str(config.NEAREST_NEIGHBOURS) + '_' + currency+ '_' + year+'_all_anomalies.csv') anormalies['Time'] = anormalies['DateHour'].apply(lambda x:
pd.to_datetime(x)
pandas.to_datetime
""" Created on Wed Feb 27 15:12:14 2019 @author: cwhanse """ import numpy as np import pandas as pd from pandas.testing import assert_series_equal from datetime import datetime import pytz import pytest from solarforecastarbiter.validation import validator import pvlib from pvlib.location import Location @pytest.fixture def irradiance_QCRad(): output = pd.DataFrame( columns=['ghi', 'dhi', 'dni', 'solar_zenith', 'dni_extra', 'ghi_limit_flag', 'dhi_limit_flag', 'dni_limit_flag', 'consistent_components', 'diffuse_ratio_limit'], data=np.array([[-100, 100, 100, 30, 1370, 0, 1, 1, 0, 0], [100, -100, 100, 30, 1370, 1, 0, 1, 0, 0], [100, 100, -100, 30, 1370, 1, 1, 0, 0, 1], [1000, 100, 900, 0, 1370, 1, 1, 1, 1, 1], [1000, 200, 800, 15, 1370, 1, 1, 1, 1, 1], [1000, 200, 800, 60, 1370, 0, 1, 1, 0, 1], [1000, 300, 850, 80, 1370, 0, 0, 1, 0, 1], [1000, 500, 800, 90, 1370, 0, 0, 1, 0, 1], [500, 100, 1100, 0, 1370, 1, 1, 1, 0, 1], [1000, 300, 1200, 0, 1370, 1, 1, 1, 0, 1], [500, 600, 100, 60, 1370, 1, 1, 1, 0, 0], [500, 600, 400, 80, 1370, 0, 0, 1, 0, 0], [500, 500, 300, 80, 1370, 0, 0, 1, 1, 1], [0, 0, 0, 93, 1370, 1, 1, 1, 0, 0]])) dtypes = ['float64', 'float64', 'float64', 'float64', 'float64', 'bool', 'bool', 'bool', 'bool', 'bool'] for (col, typ) in zip(output.columns, dtypes): output[col] = output[col].astype(typ) return output def test_check_ghi_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad ghi_out_expected = expected['ghi_limit_flag'] ghi_out = validator.check_ghi_limits_QCRad(expected['ghi'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(ghi_out, ghi_out_expected) def test_check_dhi_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad dhi_out_expected = expected['dhi_limit_flag'] dhi_out = validator.check_dhi_limits_QCRad(expected['dhi'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(dhi_out, dhi_out_expected) def test_check_dni_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad dni_out_expected = expected['dni_limit_flag'] dni_out = validator.check_dni_limits_QCRad(expected['dni'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(dni_out, dni_out_expected) def test_check_irradiance_limits_QCRad(irradiance_QCRad): expected = irradiance_QCRad ghi_out_expected = expected['ghi_limit_flag'] ghi_out, dhi_out, dni_out = validator.check_irradiance_limits_QCRad( expected['solar_zenith'], expected['dni_extra'], ghi=expected['ghi']) assert_series_equal(ghi_out, ghi_out_expected) assert dhi_out is None assert dni_out is None dhi_out_expected = expected['dhi_limit_flag'] ghi_out, dhi_out, dni_out = validator.check_irradiance_limits_QCRad( expected['solar_zenith'], expected['dni_extra'], ghi=expected['ghi'], dhi=expected['dhi']) assert_series_equal(dhi_out, dhi_out_expected) dni_out_expected = expected['dni_limit_flag'] ghi_out, dhi_out, dni_out = validator.check_irradiance_limits_QCRad( expected['solar_zenith'], expected['dni_extra'], dni=expected['dni']) assert_series_equal(dni_out, dni_out_expected) def test_check_irradiance_consistency_QCRad(irradiance_QCRad): expected = irradiance_QCRad cons_comp, diffuse = validator.check_irradiance_consistency_QCRad( expected['ghi'], expected['solar_zenith'], expected['dni_extra'], expected['dhi'], expected['dni']) assert_series_equal(cons_comp, expected['consistent_components']) assert_series_equal(diffuse, expected['diffuse_ratio_limit']) @pytest.fixture def weather(): output = pd.DataFrame(columns=['air_temperature', 'wind_speed', 'relative_humidity', 'extreme_temp_flag', 'extreme_wind_flag', 'extreme_rh_flag'], data=np.array([[-40, -5, -5, 0, 0, 0], [10, 10, 50, 1, 1, 1], [140, 55, 105, 0, 0, 0]])) dtypes = ['float64', 'float64', 'float64', 'bool', 'bool', 'bool'] for (col, typ) in zip(output.columns, dtypes): output[col] = output[col].astype(typ) return output def test_check_temperature_limits(weather): expected = weather result_expected = expected['extreme_temp_flag'] result = validator.check_temperature_limits(expected['air_temperature']) assert_series_equal(result, result_expected) def test_check_wind_limits(weather): expected = weather result_expected = expected['extreme_wind_flag'] result = validator.check_wind_limits(expected['wind_speed']) assert_series_equal(result, result_expected) def test_check_rh_limits(weather): expected = weather data = expected['relative_humidity'] result_expected = expected['extreme_rh_flag'] result = validator.check_rh_limits(data) result.name = 'extreme_rh_flag' assert_series_equal(result, result_expected) def test_check_ac_power_limits(): index = pd.date_range( start='20200401 0700', freq='2h', periods=6, tz='UTC') power = pd.Series([0, -0.1, 0.1, 1, 1.1, -0.1], index=index) day_night = pd.Series([0, 0, 0, 1, 1, 1], index=index, dtype='bool') capacity = 1. expected = pd.Series([1, 0, 0, 1, 0, 0], index=index).astype(bool) out = validator.check_ac_power_limits(power, day_night, capacity) assert_series_equal(out, expected) def test_check_dc_power_limits(): index = pd.date_range( start='20200401 0700', freq='2h', periods=6, tz='UTC') power = pd.Series([0, -0.1, 0.1, 1, 1.3, -0.1], index=index) day_night = pd.Series([0, 0, 0, 1, 1, 1], index=index, dtype='bool') capacity = 1. expected = pd.Series([1, 0, 0, 1, 0, 0], index=index).astype(bool) out = validator.check_dc_power_limits(power, day_night, capacity) assert_series_equal(out, expected) def test_check_limits(): # testing with input type Series expected = pd.Series(data=[True, False]) data = pd.Series(data=[3, 2]) result = validator._check_limits(val=data, lb=2.5) assert_series_equal(expected, result) result = validator._check_limits(val=data, lb=3, lb_ge=True) assert_series_equal(expected, result) data = pd.Series(data=[3, 4]) result = validator._check_limits(val=data, ub=3.5) assert_series_equal(expected, result) result = validator._check_limits(val=data, ub=3, ub_le=True) assert_series_equal(expected, result) result = validator._check_limits(val=data, lb=3, ub=4, lb_ge=True, ub_le=True) assert all(result) result = validator._check_limits(val=data, lb=3, ub=4) assert not any(result) with pytest.raises(ValueError): validator._check_limits(val=data) @pytest.fixture def location(): return Location(latitude=35.05, longitude=-106.5, altitude=1619, name="Albuquerque", tz="MST") @pytest.fixture def times(): MST = pytz.timezone('MST') return pd.date_range(start=datetime(2018, 6, 15, 12, 0, 0, tzinfo=MST), end=datetime(2018, 6, 15, 13, 0, 0, tzinfo=MST), freq='10T') def test_check_ghi_clearsky(mocker, location, times): clearsky = location.get_clearsky(times) # modify to create test conditions ghi = clearsky['ghi'].copy() ghi.iloc[0] *= 0.5 ghi.iloc[-1] *= 2.0 clear_times = np.tile(True, len(times)) clear_times[-1] = False expected = pd.Series(index=times, data=clear_times) result = validator.check_ghi_clearsky(ghi, clearsky['ghi']) assert_series_equal(result, expected) def test_check_poa_clearsky(mocker, times): dt = pd.date_range(start=datetime(2019, 6, 15, 12, 0, 0), freq='15T', periods=5) poa_global = pd.Series(index=dt, data=[800, 1000, 1200, -200, np.nan]) poa_clearsky = pd.Series(index=dt, data=1000) result = validator.check_poa_clearsky(poa_global, poa_clearsky) expected = pd.Series(index=dt, data=[True, True, False, True, False]) assert_series_equal(result, expected) result = validator.check_poa_clearsky(poa_global, poa_clearsky, kt_max=1.2) expected = pd.Series(index=dt, data=[True, True, True, True, False]) assert_series_equal(result, expected) def test_check_day_night(): MST = pytz.timezone('MST') times = [datetime(2018, 6, 15, 12, 0, 0, tzinfo=MST), datetime(2018, 6, 15, 22, 0, 0, tzinfo=MST)] expected = pd.Series(data=[True, False], index=times) solar_zenith = pd.Series(data=[11.8, 114.3], index=times) result = validator.check_day_night(solar_zenith) assert_series_equal(result, expected) @pytest.mark.parametrize('closed,solar_zenith,expected', ( ('left', [89]*11 + [80]*13, pd.Series([False, True], index=pd.DatetimeIndex( ['20200917 0000', '20200917 0100'], freq='1h'))), ('right', [89]*11 + [80]*13, pd.Series([False, True], index=pd.DatetimeIndex( ['20200917 0100', '20200917 0200'], freq='1h'))), ('left', [89]*10 + [80]*14, pd.Series([True, True], index=pd.DatetimeIndex( ['20200917 0000', '20200917 0100'], freq='1h'))), ('right', [89]*10 + [80]*14, pd.Series([True, True], index=pd.DatetimeIndex( ['20200917 0100', '20200917 0200'], freq='1h'))) )) def test_check_day_night_interval(closed, solar_zenith, expected): interval_length = pd.Timedelta('1h') index = pd.date_range( start='20200917 0000', end='20200917 0200', closed=closed, freq='5min') solar_zenith = pd.Series(solar_zenith, index=index) result = validator.check_day_night_interval( solar_zenith, closed, interval_length ) assert_series_equal(result, expected) def test_check_day_night_interval_no_infer(): interval_length = pd.Timedelta('1h') closed = 'left' index = pd.DatetimeIndex( ['20200917 0100', '20200917 0200', '20200917 0400']) solar_zenith = pd.Series([0]*3, index=index) with pytest.raises(ValueError, match='contains gaps'): validator.check_day_night_interval( solar_zenith, closed, interval_length ) def test_check_day_night_interval_irregular(): interval_length = pd.Timedelta('1h') solar_zenith_interval_length = pd.Timedelta('5min') closed = 'left' index1 = pd.date_range( start='20200917 0000', end='20200917 0100', closed=closed, freq=solar_zenith_interval_length) index2 = pd.date_range( start='20200917 0200', end='20200917 0300', closed=closed, freq=solar_zenith_interval_length) index = index1.union(index2) solar_zenith = pd.Series([89]*11 + [80]*13, index=index) result = validator.check_day_night_interval( solar_zenith, closed, interval_length, solar_zenith_interval_length=solar_zenith_interval_length ) expected = pd.Series([False, False, True], index=pd.DatetimeIndex( ['20200917 0000', '20200917 0100', '20200917 0200'], freq='1h')) assert_series_equal(result, expected) def test_check_timestamp_spacing(times): assert_series_equal( validator.check_timestamp_spacing(times, times.freq), pd.Series(True, index=times)) assert_series_equal( validator.check_timestamp_spacing(times[[0]], times.freq), pd.Series(True, index=[times[0]])) assert_series_equal( validator.check_timestamp_spacing(times[[0, 2, 3]], times.freq), pd.Series([True, False, True], index=times[[0, 2, 3]])) assert_series_equal( validator.check_timestamp_spacing(times, '30min'), pd.Series([True] + [False] * (len(times) - 1), index=times)) def test_detect_stale_values(): data = [1.0, 1.001, 1.001, 1.001, 1.001, 1.001001, 1.001, 1.001, 1.2, 1.3] x = pd.Series(data=data) res1 = validator.detect_stale_values(x, window=3) res2 = validator.detect_stale_values(x, rtol=1e-8, window=2) res3 = validator.detect_stale_values(x, window=7) res4 = validator.detect_stale_values(x, window=8) res5 = validator.detect_stale_values(x, rtol=1e-8, window=4) res6 = validator.detect_stale_values(x[1:], window=3) res7 = validator.detect_stale_values(x[1:8], window=3) assert_series_equal(res1, pd.Series([False, False, False, True, True, True, True, True, False, False])) assert_series_equal(res2, pd.Series([False, False, True, True, True, False, False, True, False, False])) assert_series_equal(res3, pd.Series([False, False, False, False, False, False, False, True, False, False])) assert not all(res4) assert_series_equal(res5, pd.Series([False, False, False, False, True, False, False, False, False, False])) assert_series_equal(res6, pd.Series(index=x[1:].index, data=[False, False, True, True, True, True, True, False, False])) assert_series_equal(res7, pd.Series(index=x[1:8].index, data=[False, False, True, True, True, True, True])) data = [0.0, 0.0, 0.0, -0.0, 0.00001, 0.000010001, -0.00000001] y = pd.Series(data=data) res = validator.detect_stale_values(y, window=3) assert_series_equal(res, pd.Series([False, False, True, True, False, False, False])) res = validator.detect_stale_values(y, window=3, atol=1e-3) assert_series_equal(res, pd.Series([False, False, True, True, True, True, True])) res = validator.detect_stale_values(y, window=3, atol=1e-5) assert_series_equal(res, pd.Series([False, False, True, True, True, False, False])) res = validator.detect_stale_values(y, window=3, atol=2e-5) assert_series_equal(res, pd.Series([False, False, True, True, True, True, True])) with pytest.raises(ValueError): validator.detect_stale_values(x, window=1) def test_detect_interpolation(): data = [1.0, 1.001, 1.002001, 1.003, 1.004, 1.001001, 1.001001, 1.001001, 1.2, 1.3, 1.5, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0] x = pd.Series(data=data) res1 = validator.detect_interpolation(x, window=3) assert_series_equal(res1, pd.Series([False, False, False, False, False, False, False, True, False, False, False, False, False, True, True, True, False])) res2 = validator.detect_interpolation(x, window=3, rtol=1e-2) assert_series_equal(res2, pd.Series([False, False, True, True, True, False, False, True, False, False, False, False, False, True, True, True, False])) res3 = validator.detect_interpolation(x, window=5) assert_series_equal(res3, pd.Series([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False])) res4 = validator.detect_interpolation(x, window=3, atol=1e-2) assert_series_equal(res4, pd.Series([False, False, True, True, True, True, True, True, False, False, False, False, False, True, True, True, False])) data = [0.0, 0.0, 0.0, -0.0, 0.00001, 0.000010001, -0.00000001] y = pd.Series(data=data) res = validator.detect_interpolation(y, window=3, atol=1e-5) assert_series_equal(res, pd.Series([False, False, True, True, True, True, False])) res = validator.detect_stale_values(y, window=3, atol=1e-4) assert_series_equal(res, pd.Series([False, False, True, True, True, True, True])) with pytest.raises(ValueError): validator.detect_interpolation(x, window=2) @pytest.fixture def ghi_clearsky(): MST = pytz.timezone('Etc/GMT+7') dt = pd.date_range(start=datetime(2019, 4, 3, 5, 0, 0, tzinfo=MST), periods=60, freq='15T') loc = pvlib.location.Location(latitude=35, longitude=-110, tz=MST) cs = loc.get_clearsky(dt) return cs['ghi'] @pytest.fixture def ghi_clipped(ghi_clearsky): ghi_clipped = ghi_clearsky.copy() ghi_clipped = np.minimum(ghi_clearsky, 800) ghi_clipped.iloc[12:17] = np.minimum(ghi_clearsky.iloc[12:17], 300) ghi_clipped.iloc[18:20] = np.minimum(ghi_clearsky.iloc[18:20], 300) ghi_clipped.iloc[26:28] *= 0.5 ghi_clipped.iloc[36:] = np.minimum(ghi_clearsky.iloc[36:], 400) return ghi_clipped def test_detect_clipping(ghi_clipped): placeholder = pd.Series(index=ghi_clipped.index, data=False) expected = placeholder.copy() # for window=4 and fraction_in_window=0.75 expected.iloc[3:6] = True expected.iloc[14:17] = True expected.iloc[18:20] = True expected.iloc[25] = True expected.iloc[30:36] = True expected.iloc[38:46] = True expected.iloc[56:60] = True flags = validator.detect_clipping(ghi_clipped, window=4, fraction_in_window=0.75, rtol=5e-3, levels=4) assert_series_equal(flags, expected) def test_detect_clipping_some_nans(ghi_clipped): placeholder = pd.Series(index=ghi_clipped.index, data=False) expected = placeholder.copy() # for window=4 and fraction_in_window=0.75 expected.iloc[3:6] = True expected.iloc[14:17] = True expected.iloc[18:20] = True expected.iloc[25] = True expected.iloc[30:36] = True expected.iloc[38:46] = True expected.iloc[56:60] = True inp = ghi_clipped.copy() inp.iloc[48] = np.nan flags = validator.detect_clipping(inp, window=4, fraction_in_window=0.75, rtol=5e-3, levels=4) assert_series_equal(flags, expected) @pytest.mark.filterwarnings('ignore::RuntimeWarning') def test_detect_clearsky_ghi(ghi_clearsky): flags = validator.detect_clearsky_ghi(ghi_clearsky, ghi_clearsky) # first 7 and last 6 values are judged not clear due to night (ghi=0) # and rapid change in ghi with sunrise and sunset assert all(flags[7:-6]) assert not flags[0:7].any() and not flags[-6:].any() ghi_cloud = ghi_clearsky.copy() ghi_cloud[12:15] *= 0.5 flags = validator.detect_clearsky_ghi(ghi_cloud, ghi_clearsky) assert all(flags[7:12]) and all(flags[15:-6]) def test_detect_clearsky_ghi_warn_interval_length(ghi_clearsky): with pytest.warns(RuntimeWarning): flags = validator.detect_clearsky_ghi(ghi_clearsky[::4], ghi_clearsky[::4]) assert (flags == 0).all() def test_detect_clearsky_ghi_warn_regular_interval(ghi_clearsky): with pytest.warns(RuntimeWarning): ser = ghi_clearsky[:-2].append(ghi_clearsky[-1:]) flags = validator.detect_clearsky_ghi(ser, ser) assert (flags == 0).all() def test_detect_clearsky_ghi_one_val(ghi_clearsky): ser = ghi_clearsky[:1] assert len(ser) == 1 with pytest.warns(RuntimeWarning): flags = validator.detect_clearsky_ghi(ser, ser) assert (flags == 0).all() @pytest.mark.parametrize('inp,expected', [ (pd.Timedelta('15min'), 6), (
pd.Timedelta('1h')
pandas.Timedelta
# -*- coding: utf-8 -*- import sys import requests from bs4 import BeautifulSoup,BeautifulStoneSoup from sqlalchemy import * from flask import g import pandas as pd import numpy as np from flask import current_app as app from webapp.services import db,db_service as dbs from webapp.models import Stock,Comment,FinanceBasic import json,random,time import http.cookiejar from pandas.tseries.offsets import * from datetime import datetime import urllib2,re,html5lib group_stockholder_rate = None def getLatestStockHolder(): global group_stockholder_rate if group_stockholder_rate is None: hdf = pd.read_sql_query("select code,report_date,holder_type,holder_name,rate\ from stock_holder order by report_date desc", db.engine) group_stockholder_rate = hdf.groupby(['code']).head(10) #group_stockholder_rate = gdf[gdf['holder_type'] != '自然人股'] return group_stockholder_rate def getRefreshStocks(): start_date = datetime.now().strftime('%Y-%m-%d') #获得所有股票代码列表 stocks = db.session.query(Stock).\ filter(or_(Stock.holder_updated_time == None,Stock.holder_updated_time < start_date)).\ filter_by(flag=0).all() return map(lambda x:x.code, stocks) def refreshStockHolderSum(gdf,code): #gdf = getLatestStockHolder() agdf = gdf[gdf['holder_type'] != '自然人股'] a1gdf = agdf.groupby(['report_date']) t1_gdf = a1gdf['rate'].agg({'size': np.size}) t1_gdf = t1_gdf.reset_index() t2_gdf = a1gdf['rate'].agg({'sum': np.sum}) t2_gdf = t2_gdf.reset_index() t3_gdf = pd.merge(t1_gdf, t2_gdf, on='report_date') t3_gdf = t3_gdf.sort_values(by='report_date', ascending=False).head(1) t3_gdf['code'] = code bdf = pd.read_sql_query("select * from stock_basic where code =%(code)s and flag=0", db.engine, params={'code': code}) t3_df = pd.merge(t3_gdf, bdf, on='code') m2_df = pd.DataFrame({ 'code': t3_df.code, 'name': t3_df['name'], 'report_date': t3_df.report_date, 'count': t3_df['size'], 'sum': t3_df['sum'] }) if not m2_df.empty: for row_index, row in m2_df.iterrows(): sql = text("delete from stock_holder_sum where code =:code") result = db.session.execute(sql,{'code': row.code}) m2_df.to_sql('stock_holder_sum', db.engine, if_exists='append', index=False, chunksize=1000) global group_stockholder_rate group_stockholder_rate = None #获得机构持股比例 def getGroupStockHolderRate(): df = pd.read_sql_query( "select code,count,sum,report_date from stock_holder_sum", db.engine) return df def queryHolderName(hcode): sql = "select holder_name from stock_holder where holder_code=:code limit 1"; resultProxy = db.session.execute(text(sql), {'code': hcode}) return resultProxy.scalar() #获得自然人持股排行榜 def getStockHolderRank(): gdf = getLatestStockHolder() agdf = gdf[gdf['holder_type'] == '自然人股'] a1gdf = agdf.groupby(['code']) t2_gdf = a1gdf['rate'].agg({'sum': np.sum}) #比例 t3_gdf = a1gdf['rate'].agg({'size': np.size}) #个数 t4_df =
pd.concat([t2_gdf, t3_gdf], axis=1, join='inner')
pandas.concat
import pandas as pd def import_sensor_file_mhealth(filepath, verbose=False): df = pd.read_csv(filepath, dtype=str, error_bad_lines=False, warn_bad_lines=False, skip_blank_lines=True, low_memory=True, comment='#') df.iloc[:,0] =
pd.to_datetime(df.iloc[:,0], infer_datetime_format=True, errors='coerce', format='%Y-%m-%d %H:%M:%S.%f', exact=True)
pandas.to_datetime
import pandas as pd import numpy as np from nastran.post.f06.common import extract_tabulated_data, parse_text_value, find_tabular_line_range, parse_label_subcase, F06Page REALIGVAL_SUBCASE_LINE = 2 REALIGVAL_TABULAR_LINE = 7 REALEIGVAL_CHECK_AUGMENTATION_LINE = 5 REALEIGVAL_CHECK_AUGMENTATION_STR = 'AUGMENTATION OF RESIDUAL VECTORS' REALIGVAL_KEYS = { 'MODE': 'Mode No.', 'EXTRACTIONORDER': 'Mode Extraction Order', 'EIGENVALUE': 'Real Eigenvalue', 'RADIANS': 'Frequency in Radians', 'CYCLES': 'Frequency in Hz', 'GENERALIZEDMASS': 'Generalized Mass', 'GENERALIZEDSTIFF': 'Generalized Stiffness', } class RealEigValF06Page(F06Page): def __init__(self, df=None, info=None, raw_lines=None, meta=None): super().__init__(raw_lines, meta) self.df = df self.info = {} if info == None else info def __repr__(self): return self.__str__() def __str__(self): return 'REAL EIGVAL F06\tSUBCASE {}\tPAGE {}'.format(self.info['SUBCASE'], self.meta['page']) def parse_realeigval_page(lines): a, b = find_tabular_line_range(lines, REALIGVAL_TABULAR_LINE) if REALEIGVAL_CHECK_AUGMENTATION_STR in lines[REALEIGVAL_CHECK_AUGMENTATION_LINE]: a += 1 parsed_data = extract_tabulated_data(lines[a:b]) df = pd.DataFrame(parsed_data, columns=list(REALIGVAL_KEYS.keys())) info = {} label, subcase = parse_label_subcase(lines[REALIGVAL_SUBCASE_LINE]) info['LABEL'] = label info['SUBCASE'] = subcase return RealEigValF06Page(df, info, lines) def summarize_real_eigvals(results, key='CYCLES'): vals = list(map(lambda p: (p.info['SUBCASE'], p.df[key]), results.eigval)) df =
pd.DataFrame(vals, columns=('SUBCASE', key))
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Mar 11 13:20:11 2019 @author: strq """ import pytest import viessmann_data_audit as vda import numpy as np import pandas as pd from sklearn.datasets.samples_generator import make_blobs from datetime import datetime strEntityFile = 'tests/resources/entity.gz.pkl' strEntityFastFile = 'tests/resources/entity_fast.gz.pkl' def create_test_data(): # Unique Numbers arrNumbers = np.arange(0,5) # Numbers with Nan arrNanNumbers = np.array([1, np.nan, 2, np.nan, 3]) # Non unique objects arrObj = ["A", "A", "B", "C", "D"] # Categorical # Categorical with Nan serCat = pd.Series(["a", "b", "c", "b", "a"]) serNanCatl = pd.Series(["b", "a", "c", "e", "f"]) cat_type = pd.api.types.CategoricalDtype( categories=["a", "b", "c", "d"], ordered=True) serCategorical = serCat.astype(cat_type) serNanCategorical = serNanCatl.astype(cat_type) serNoCat = pd.Series(["a", "b", "c", "b", "a"]) cat_no_order_type = pd.api.types.CategoricalDtype( categories=["a", "b", "c", "d"], ordered=False) serNoOrderCategorical = serNoCat.astype(cat_no_order_type) # Outlier arrOutlier = np.array([1,1,1,1,10]) dictionary = {"id": arrNumbers, "nanNumbers": arrNanNumbers, "nonUniqueObjects": arrObj, "categorical": serCategorical, "nanCategorical": serNanCategorical, "noOrderCategorical": serNoOrderCategorical, "sigOutlier": arrOutlier} dfData = pd.DataFrame(dictionary) dfData.insert(0,'TimeStamp',pd.datetime.now().replace(microsecond=0)) dfData.loc[0,"TimeStamp"] = pd.Timestamp('2018-12-01 08:00:00.000000', tz=None) dfData.loc[1,"TimeStamp"] = pd.Timestamp('2018-12-01 08:00:01.000000', tz=None) dfData.loc[2,"TimeStamp"] = pd.Timestamp('2019-01-31 08:00:00.000000', tz=None) dfData.loc[3,"TimeStamp"] = pd.Timestamp('2019-01-31 08:01:00.000000', tz=None) dfData.loc[4,"TimeStamp"] =
pd.Timestamp('2021-01-31 09:00:00.000000', tz=None)
pandas.Timestamp
import IMLearn.learners.regressors.linear_regression from IMLearn.learners.regressors import PolynomialFitting from IMLearn.utils import split_train_test import numpy as np import pandas as pd import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str) -> pd.DataFrame: """ Load city daily temperature dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (Temp) """ dff = pd.read_csv(filename, parse_dates=['Date']) # no nans, days & months & years are in range, # remove 99F (-72.77777777777777 C) - missing data indx = dff[dff['Temp'] == -72.77777777777777].index dff.drop(indx, inplace=True) # add dayof year column. dff['DayOfYear'] = dff.apply(lambda row: row.Date.timetuple().tm_yday, axis=1) return dff if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of city temperature dataset df = load_data(r'C:\Users\<NAME>\Documents\GitHub\IML.HUJI\datasets\City_Temperature.csv') df['Year'] = df.loc[:, 'Year'].astype(str) # Question 2 - Exploring data for specific country il_data = df[df['Country'] == 'Israel'] fig2_1 = px.scatter(il_data, x='DayOfYear', y='Temp', color='Year', title='Temp as a function of DayOfYear') fig2_1.write_html('israel_temp_year.html', auto_open=True) sd_func = lambda v: np.sqrt(np.var(list(v))) month_df = il_data.groupby('Month').agg({'Temp': sd_func}) fig2_2 = px.bar(month_df, height=300, labels={'x': 'Month', 'value': 'sd of daily Temp'}, title='bar plot of sd of Temps as a function of month') fig2_2.write_html('bar_plot_months.html', auto_open=True) # Question 3 - Exploring differences between countries avg_func = lambda v: np.mean(v) month_country_df = df.groupby(['Country', 'Month']).Temp.agg([sd_func, avg_func]).rename( columns={'<lambda_0>': 'sd', '<lambda_1>': 'mean'}).reset_index() fig3 = px.line(month_country_df, x='Month', y='mean', color='Country', title='mean temp as a function month', error_y='sd') fig3.write_html('plot_months_country.html', auto_open=True) # Question 4 - Fitting model for different values of `k` temp_label = il_data['Temp'] temp_feature = il_data['DayOfYear'] train_x, train_y, test_x, test_y = split_train_test(temp_feature, temp_label, 0.75) res = [[], []] for i in range(1, 10): pol = PolynomialFitting(i) pol.fit(train_x.to_numpy(), train_y.to_numpy()) res[0].append(i) res[1].append(round(pol.loss(test_x.to_numpy(), test_y.to_numpy()), 2)) k_mse_df = pd.DataFrame({'k': res[0], 'mse': res[1]}) print(k_mse_df) fig4_1 = px.bar(k_mse_df, x='k', y='mse', height=300, labels={'x': 'k', 'value': 'mse'}, title='bar plot of mse as a function of k') fig4_1.write_html('k_mse.html', auto_open=True) # Question 5 - Evaluating fitted model on different countries pol = PolynomialFitting(4) pol.fit(il_data['DayOfYear'].to_numpy(), il_data['Temp'].to_numpy()) indx = df[df['Country'] == 'Israel'].index no_il = df.drop(indx, inplace=False) res = [[], []] for i in no_il.Country.unique(): indx = no_il[df['Country'] != i].index country_df = no_il.drop(indx, inplace=False) res[0].append(i) res[1].append(pol.loss(country_df['DayOfYear'].to_numpy(), country_df['Temp'].to_numpy())) res =
pd.DataFrame({'Country': res[0], 'mse': res[1]})
pandas.DataFrame
import tweepy # # For tweepy documentation go to https://www.tweepy.org/ import pandas as pd # # For pandas documentation go to https://pandas.pydata.org/docs/ from datetime import datetime, timezone import time from collections import Counter # # Authentification client = tweepy.Client(bearer_token="<KEY>", consumer_key="BzjYwEDLCdGI0D45tQiemLPp1", consumer_secret="<KEY>", access_token="<KEY>", access_token_secret="<KEY>", wait_on_rate_limit=True) auth = tweepy.OAuthHandler("BzjYwEDLCdGI0D45tQiemLPp1", "<KEY>") auth.set_access_token("<KEY>", "<KEY>") api = tweepy.API(auth, wait_on_rate_limit=True) tweet_id_list = [] tweets_list = [] retweeters_list = [] tell_tweet_dict = {'tweet_id': [], 'amount_retweets': [], 'retweeters': []} look_up_list = [] tweet_obj_list = [] def scrape_tweets(user_id): for tweet in tweepy.Paginator(client.get_users_tweets, id=user_id, start_time='2021-08-26T00:00:01Z', end_time='2021-09-26T23:59:59Z', max_results=100, exclude="retweets").flatten(250): tweet_id_list.append(tweet.id) tweet_obj_list.append(tweet) print(len(tweet_id_list)) return tweet_id_list def get_retweeters(tweet_id): tell_tweet_dict['tweet_id'].append(tweet_id) tell_retweeters_list = [] for retweeter in tweepy.Paginator(client.get_retweeters, id=tweet_id).flatten(1000): tell_retweeters_list.append(retweeter.id) tell_amount_retweets = len(tell_retweeters_list) if retweeter.id not in retweeters_list: retweeters_list.append(retweeter.id) tell_tweet_dict['amount_retweets'].append(tell_amount_retweets) tell_tweet_dict['retweeters'].append(tell_retweeters_list) return tell_tweet_dict, retweeters_list def clean_alt_list(list_): list_ = list_.replace(', ', '","') list_ = list_.replace('[', '["') list_ = list_.replace(']', '"]') return list_ def to_1d(series): return pd.Series([x for _list in series for x in _list]) def user_lookup(retweeter_id): user = api.get_user(user_id=retweeter_id, include_entities=True) return user def lookup_user_list(user_id_list, api): full_users = [] users_count = len(user_id_list) try: for i in range(int((users_count / 100) + 1)): full_users.extend(api.lookup_users(user_id=user_id_list[i*100:min((i+1)*100, users_count)])) # print 'getting users batch:', i except tweepy.TweepyException as e: print('Something went wrong, quitting...', e) time.sleep(15 * 60) return full_users def add_to_lookup(lookup_item): if lookup_item not in look_up_list: look_up_list.append(lookup_item) def tweets_per_day(user_id): now = datetime.now(timezone.utc) created_date = info.created_at delta = now - created_date # print(delta.days) tweet_count = info.statuses_count # print(tweet_count) # print("Tweets per day: ") tweets_per_day = round((tweet_count / delta.days), 2) # print(tweets_per_day) return tweets_per_day def years_since_created_at(user_id): now = datetime.now(timezone.utc) created_date = info.created_at delta = now - created_date years = round((delta.days/365), 2) return years # # Defining User with ID user_id = 844081278 # # Scrape Tweets of defined User print(scrape_tweets(user_id)) # # Get Retweeters and save to csv for tweet_id in tweet_id_list: get_retweeters(tweet_id) df_checklist = pd.DataFrame(retweeters_list) df_checklist.to_csv('retweeters_list.csv', index=False, header=True) print(tweet_obj_list) df_tell_tweet = pd.DataFrame(tell_tweet_dict) print(df_tell_tweet) df_tell_tweet.to_csv('tell_tweet.csv', index=False, header=True) print("retweeters scraped and dataframe saved") # # Get Content of Tweets data_list = [] for info in tweet_obj_list: tweet_dict = { 'data_id': str(info.id), 'date_time_posted': str(info.created_at), 'tweet': info.text, } tweets_list.append(tweet_dict) print(tweets_list) df_tell_tweet = pd.DataFrame(tweets_list) print(df_tell_tweet) df_tell_tweet.to_csv('tweets.csv') # # Possibility to implement a sample, not used # # Sample retweeters and add to lookup list, write to csv # sample_retweeters = random.sample(retweeters_list, 5) # for sample_item in retweeters_list: # add_to_lookup(sample_item) # print("Retweeters sampled") # # Load CSV File df = pd.read_csv('tell_tweet.csv') # # Count Retweets by User_id df["retweeters"] = df["retweeters"].apply(clean_alt_list) df["retweeters"] = df["retweeters"].apply(eval) retweeters_counted = to_1d(df["retweeters"]).value_counts() retweeters_counted = retweeters_counted.to_frame().reset_index() retweeters_counted = retweeters_counted.rename(columns={0: 'retweets'}) retweeters_counted = retweeters_counted.rename(columns={'index': 'user_id'}) # # Look up Retweeters Info and add to list retweeters_info_list = [] for retweeter in retweeters_counted.user_id: print(retweeter) try: info = user_lookup(retweeter) user_info_dict = { 'user_id': info.id_str, 'screen_name': info.screen_name, 'verified': info.verified, 'followers_count': info.followers_count, 'friends_count': info.friends_count, 'tweets': info.statuses_count, 'age_in_years': years_since_created_at(info), 'tweets_per_day': tweets_per_day(info) } except tweepy.TweepyException: user_info_dict = { 'user_id': retweeter, 'screen_name': "private user", 'verified': "private user", 'followers_count': "private user", 'friends_count': "private user", 'tweets': "private user", 'age_in_years': "private user", 'tweets_per_day': "private user" } retweeters_info_list.append(user_info_dict) df_retweeter_info = pd.DataFrame(retweeters_info_list) print(df_retweeter_info) # # Combine both dataframes and sage to csv df_combined = pd.merge(retweeters_counted, df_retweeter_info, on='user_id') print(df_combined) df_combined.to_csv("retweets_afd.csv") # # Scrape retweeters friends, add to dict_ids, write to retweetersfriendscount.csv dict_ids = {'id': [], 'amount': []} print("Start get_friends_ids") retweeter_friends_object_list = [] retweeter_friends = [] retweeter_friends_objects = {'id': [], 'username': [], 'verified': [], 'followers_count': []} for retweeter_id in retweeters_list: x = retweeter_id for rf in tweepy.Paginator(client.get_users_following, id=x, user_fields=['username','verified','public_metrics'], max_results=1000).flatten(limit=178000): # print(rf.data['id']) retweeter_friends.append(rf.data['id']) if rf.data['id'] not in retweeter_friends_objects['id']: try: retweeter_friends_objects['id'].append(rf.data['id']) retweeter_friends_objects['username'].append(rf.data['username']) retweeter_friends_objects['verified'].append(rf.data['verified']) retweeter_friends_objects['followers_count'].append(rf.public_metrics['followers_count']) except tweepy.TweepyException: retweeter_friends_objects['id'].append(rf.data['id']) retweeter_friends_objects['username'].append("private user") retweeter_friends_objects['verified'].append("private user") retweeter_friends_objects['followers_count'].append("private user") print("get one user: ", (x), "current length retweeter_friends: ", (len(retweeter_friends))) df_friend_info = pd.DataFrame(retweeter_friends_objects) amount_retweeter_friends = len(retweeter_friends) print("amount_retweeter_friends =") print(amount_retweeter_friends) u = Counter(retweeter_friends) for u, count in u.items(): dict_ids['id'].append(u) dict_ids['amount'].append(count) print("get_friends_ids complete") # # change dictionary to DataFrame and print df_dict_ids = pd.DataFrame.from_dict(dict_ids) print("print(df_dict_ids)") print(df_dict_ids) df_dict_ids.to_csv('user_dict_info.csv', index=False, header=True) # # choose how many counts at least as relevant # relevant_friend = df_dict_ids.loc[df_dict_ids['amount'] > 0] # change number if necessary # print("relevant items:") # print(relevant_friend) # relevant_for_lookup_list = relevant_friend['id'] # for relevant_item in relevant_for_lookup_list: # add_to_lookup(relevant_item) # print(look_up_list) # # combining userinfo and relevant users combined =
pd.merge(df_dict_ids, df_friend_info, on='id')
pandas.merge
""" This module contains basic measurement classes for data acquired with the ROACH. """ from __future__ import division import time from collections import OrderedDict import logging import numpy as np import pandas as pd from matplotlib.pyplot import mlab from scipy import signal from memoized_property import memoized_property from kid_readout.measurement import core from kid_readout.analysis.resonator import lmfit_resonator from kid_readout.analysis.timeseries import binning, despike, iqnoise, periodic from kid_readout.roach import calculate logger = logging.getLogger(__name__) class RoachMeasurement(core.Measurement): """ An abstract base class for measurements taken with the ROACH. """ _version = 0 def start_epoch(self): """ Return self.epoch, if it exists, and if not return the earliest epoch of any RoachMeasurement that this measurement contains. Measurements that are not RoachMeasurements are ignored. Returns ------- float The epoch of this Measurement or the earliest epoch of its contents; np.nan if neither is found. """ if hasattr(self, 'epoch'): return self.epoch else: possible_epochs = [] public_nodes = [(k, v) for k, v in self.__dict__.items() if not k.startswith('_') and isinstance(v, core.Node)] for name, node in public_nodes: if isinstance(node, RoachMeasurement): possible_epochs.append(node.start_epoch()) elif isinstance(node, core.MeasurementList): possible_epochs.append(np.min([m.start_epoch() for m in node if isinstance(m, RoachMeasurement)])) if possible_epochs: return np.min(possible_epochs) else: return np.nan def _delete_memoized_property_caches(self): for attr in dir(self): if hasattr(self, '_' + attr) and attr not in core.PRIVATE: delattr(self, '_' + attr) if self._parent is not None: self._parent._delete_memoized_property_caches() @property def cryostat(self): try: return self._io.metadata.cryostat except (AttributeError, KeyError) as e: return None class RoachStream(RoachMeasurement): _version = 1 def __init__(self, tone_bin, tone_amplitude, tone_phase, tone_index, filterbank_bin, epoch, sequence_start_number, s21_raw, data_demodulated, roach_state, state=None, description='', validate=True): """ Return a new RoachStream instance. This class has no dimensions and is intended to be subclassed. Parameters ---------- tone_bin : numpy.ndarray(int) An array of integers representing the frequencies of the tones played during the measurement. tone_amplitude : numpy.ndarray(float) An array of floats representing the amplitudes of the tones played during the measurement. tone_phase : numpy.ndarray(float) An array of floats representing the radian phases of the tones played during the measurement. tone_index : int or numpy.ndarray(int) tone_bin[tone_index] corresponds to the frequency used to produce s21_raw. filterbank_bin : int or numpy.ndarray(int) The filter bank bin(s) containing the tone(s). epoch : float The unix timestamp of the first sample of the time-ordered data. sequence_start_number : int The ROACH sequence number for the first sample of the time-ordered data. s21_raw : numpy.ndarray(complex) The data, demodulated or not. data_demodulated : bool True if the data is demodulated. roach_state : dict State information for the roach; the result of roach.state. state : dict All non-roach state information. description : str A human-readable description of this measurement. validate : bool If True, check that the array shapes match the dimensions OrderedDict. """ self.tone_bin = tone_bin self.tone_amplitude = tone_amplitude self.tone_phase = tone_phase self.tone_index = tone_index self.filterbank_bin = filterbank_bin self.epoch = epoch self.sequence_start_number = sequence_start_number self.s21_raw = s21_raw self.data_demodulated = data_demodulated self.roach_state = core.StateDict(roach_state) super(RoachStream, self).__init__(state=state, description=description, validate=validate) @memoized_property def sample_time(self): """numpy.ndarray(float): The time of each sample relative to the first sample in the stream.""" return (np.arange(self.s21_raw.shape[-1], dtype='float') / self.stream_sample_rate) @memoized_property def frequency(self): return calculate.frequency(self.roach_state, self.tone_bin[self.tone_index]) @property def frequency_MHz(self): return 1e-6 * self.frequency @memoized_property def baseband_frequency(self): return calculate.baseband_frequency(self.roach_state, self.tone_bin[self.tone_index]) @property def baseband_frequency_MHz(self): return 1e-6 * self.baseband_frequency @property def stream_sample_rate(self): return calculate.stream_sample_rate(self.roach_state) @memoized_property def s21_raw_mean(self): """ Return the mean of s21_raw for each channel. NaN samples are excluded from the calculation. Raises ------ RuntimeWarning If all of the samples for a channel are NaN; in this case the return value for that channel will be NaN. Returns ------- numpy.ndarray(complex) The mean of s21_raw for each channel. """ return np.nanmean(self.s21_raw, axis=-1) @memoized_property def s21_raw_mean_error(self): """ Estimate the error in s21_raw_mean for each channel. NaN samples are excluded from the calculation. The method assumes that the samples are independent, which is probably not true. Raises ------ RuntimeWarning If all of the samples for a channel are NaN; in this case the return value for that channel will be NaN. Returns ------- numpy.ndarray(complex) An estimate of the complex standard error of the mean of s21_raw. """ # The float cast allows conversion to NaN. num_good_samples = np.sum(~np.isnan(self.s21_raw), axis=-1).astype(np.float) if isinstance(num_good_samples, np.ndarray): # Avoid a ZeroDivisionError if some of the channels have no good samples. num_good_samples[num_good_samples == 0] = np.nan elif num_good_samples == 0: # num_good_samples is a scalar; avoid a ZeroDivisionError. num_good_samples = np.nan return ((np.nanstd(self.s21_raw.real, axis=-1) + 1j * np.nanstd(self.s21_raw.imag, axis=-1)) / np.sqrt(num_good_samples)) @property def s21_point(self): """ Return one s21 point per stream, calculated using the best available method. The method used to calculate this point may change. """ return self.s21_raw_mean @property def s21_point_error(self): """ Return an estimate of the standard error of the mean for s21_point, calculated using the best available method. The method used to calculate this error may change. """ return self.s21_raw_mean_error def fold(self, array, period_samples=None, reduce=np.mean): if period_samples is None: period_samples = calculate.modulation_period_samples(self.roach_state) return periodic.fold(array, period_samples, reduce=reduce) def epochs(self, start=-np.inf, stop=np.inf): """ Return a StreamArray containing only the data between the given start and stop epochs. The returned StreamArray has the same state. The indexing follows the Python convention that the first value is inclusive and the second is exclusive: start <= epoch < stop Thus, the two slices stream_array.epochs(t0, t1) and stream_array.epochs(t1, t2) will contain all the data occurring at or after t0 and before t2, with no duplication. """ start_index = np.searchsorted(self.epoch + self.sample_time, (start,), side='left')[0] # Need to be ints stop_index = np.searchsorted(self.epoch + self.sample_time, (stop,), side='right')[0] # This index not included return self.__class__(tone_bin=self.tone_bin, tone_amplitude=self.tone_amplitude, tone_phase=self.tone_phase, tone_index=self.tone_index, filterbank_bin=self.filterbank_bin, epoch=self.epoch + self.sample_time[start_index], sequence_start_number=np.nan, # This may no longer be valid for the sliced data. s21_raw=self.s21_raw[..., start_index:stop_index], data_demodulated=self.data_demodulated, roach_state=self.roach_state, state=self.state, description=self.description) class RoachStream0(RoachMeasurement): """ This class is a factory for producing RoachStream version 1 instances from version 0 data. Version 0 did not save the sequence_start_number integer. """ def __new__(cls, *args, **kwargs): kwargs['sequence_start_number'] = None return RoachStream(*args, **kwargs) class StreamArray(RoachStream): """ This class represents simultaneously-sampled data from multiple channels. """ _version = 1 dimensions = OrderedDict([('tone_bin', ('tone_bin',)), ('tone_amplitude', ('tone_bin',)), ('tone_phase', ('tone_bin',)), ('tone_index', ('tone_index',)), ('filterbank_bin', ('tone_index',)), ('s21_raw', ('tone_index', 'sample_time'))]) def __init__(self, tone_bin, tone_amplitude, tone_phase, tone_index, filterbank_bin, epoch, sequence_start_number, s21_raw, data_demodulated, roach_state, state=None, description='', validate=True): """ Return a new StreamArray instance. The integer array tone_index contains the indices of tone_bin, tone_amplitude, and tone_phase for the tones demodulated to produce the time-ordered s21_raw data. The tone_bin, tone_amplitude, tone_phase, tone_index, and filterbank_bin arrays are 1-D, while s21_raw is 2-D: s21_raw.shape == (tone_index.size, sample_time.size) Parameters ---------- tone_bin : numpy.ndarray(int) An array of integers representing the frequencies of the tones played during the measurement. tone_amplitude : numpy.ndarray(float) An array of floats representing the amplitudes of the tones played during the measurement. tone_phase : numpy.ndarray(float) An array of floats representing the radian phases of the tones played during the measurement. tone_index : numpy.ndarray(int) tone_bin[tone_index] corresponds to the frequency used to produce s21_raw. filterbank_bin : numpy.ndarray(int) The filter bank bins in which the tones lie. epoch : float The unix timestamp of the first sample of the time-ordered data. sequence_start_number : int The ROACH sequence number for the first sample of the time-ordered data. s21_raw : numpy.ndarray(complex) The data, demodulated or not. data_demodulated : bool True if the data is demodulated. roach_state : dict State information for the roach; the result of roach.state. state : dict All non-roach state information. description : str A human-readable description of this measurement. validate : bool If True, check that the array shapes match the dimensions OrderedDict. """ super(StreamArray, self).__init__(tone_bin=tone_bin, tone_amplitude=tone_amplitude, tone_phase=tone_phase, tone_index=tone_index, filterbank_bin=filterbank_bin, epoch=epoch, sequence_start_number=sequence_start_number, s21_raw=s21_raw, data_demodulated=data_demodulated, roach_state=roach_state, state=state, description=description, validate=validate) def __getitem__(self, number): """ See stream(). """ number = int(number) # Avoid weird indexing bugs ss = SingleStream(tone_bin=self.tone_bin, tone_amplitude=self.tone_amplitude, tone_phase=self.tone_phase, tone_index=self.tone_index[number], filterbank_bin=self.filterbank_bin[number], epoch=self.epoch, sequence_start_number=self.sequence_start_number, s21_raw=self.s21_raw[number, :], data_demodulated=self.data_demodulated, roach_state=self.roach_state, number=number, state=self.state, description=self.description) ss._io = self._io ss._io_node_path = self._io_node_path return ss def stream(self, number): """ Return a SingleStream object containing the data from the channel corresponding to the given integer. Parameters ---------- number : int The index of the stream to use to create the new single-channel object. Returns ------- SingleStream """ return self[number] def tone_offset_frequency(self, normalized_frequency=True): offset = calculate.tone_offset_frequency(self.tone_bin,self.roach_state.num_tone_samples,self.filterbank_bin, self.roach_state.num_filterbank_channels) if not normalized_frequency: offset = offset * self.stream_sample_rate return offset def to_dataframe(self, add_origin = False): dataframes = [] for number in range(self.tone_bin.shape[0]): dataframes.append(self.stream(number).to_dataframe(add_origin=add_origin)) return pd.concat(dataframes, ignore_index=True) class StreamArray0(RoachStream0): """ This class is a factory for producing StreamArray version 1 instances from version 0 data. Version 0 did not save the sequence_start_number integer. """ def __new__(cls, *args, **kwargs): kwargs['sequence_start_number'] = None return StreamArray(*args, **kwargs) class SingleStream(RoachStream): """ This class contains time-ordered data from a single channel. """ _version = 1 dimensions = OrderedDict([('tone_bin', ('tone_bin',)), ('tone_amplitude', ('tone_bin',)), ('tone_phase', ('tone_bin',)), ('s21_raw', ('sample_time',))]) def __init__(self, tone_bin, tone_amplitude, tone_phase, tone_index, filterbank_bin, epoch, sequence_start_number, s21_raw, data_demodulated, roach_state, number=None, state=None, description='', validate=True): """ Return a new SingleStream instance. The single integer tone_index is the common index of tone_bin, tone_amplitude, and tone_phase for the tone used to produce the time-ordered s21_raw data. The tone_bin, tone_amplitude, tone_phase, tone_index, filterbank_bin, and s21_raw arrays are all 1-D. Parameters ---------- tone_bin : numpy.ndarray(int) An array of integers representing the frequencies of the tones played during the measurement. tone_amplitude : numpy.ndarray(float) An array of floats representing the amplitudes of the tones played during the measurement. tone_phase : numpy.ndarray(float) An array of floats representing the radian phases of the tones played during the measurement. tone_index : int tone_bin[tone_index] corresponds to the frequency used to produce s21_raw. filterbank_bin : int An int that is the filter bank bin in which the tone lies. epoch : float The unix timestamp of the first sample of the time-ordered data. sequence_start_number : int The ROACH sequence number for the first sample of the time-ordered data. s21_raw : numpy.ndarray(complex) The data, demodulated or not. data_demodulated : bool True if the data is demodulated. roach_state : dict State information for the roach; the result of roach.state. number : int or None The number of this instance in some larger structure, such as a StreamArray. state : dict All non-roach state information. description : str A human-readable description of this measurement. validate : bool If True, check that the array shapes match the dimensions OrderedDict. """ self.number = number super(SingleStream, self).__init__(tone_bin=tone_bin, tone_amplitude=tone_amplitude, tone_phase=tone_phase, tone_index=tone_index, filterbank_bin=filterbank_bin, epoch=epoch, sequence_start_number=sequence_start_number, s21_raw=s21_raw, data_demodulated=data_demodulated, roach_state=roach_state, state=state, description=description, validate=validate) # ToDo: use tone_index? def tone_offset_frequency(self, normalized_frequency=True): offset = calculate.tone_offset_frequency(self.tone_bin,self.roach_state.num_tone_samples,self.filterbank_bin, self.roach_state.num_filterbank_channels) if not normalized_frequency: offset = offset * self.stream_sample_rate return offset def to_dataframe(self, add_origin=True): data = {'number': self.number, 'analysis_epoch': time.time(), 'start_epoch': self.start_epoch()} try: for key, value in self.roach_state.items(): data['roach_{}'.format(key)] = value except KeyError: pass data.update(self.state.flatten(wrap_lists=True)) data['s21_point'] = [self.s21_point] data['s21_point_error'] = [self.s21_point_error] data['frequency'] = [self.frequency] data['frequency_MHz'] = [self.frequency_MHz] dataframe = pd.DataFrame(data, index=[0]) if add_origin: self.add_origin(dataframe) return dataframe class SingleStream0(RoachStream0): """ This class is a factory for producing SingleStream version 1 instances from version 0 data. Version 0 did not save the sequence_start_number integer. """ def __new__(cls, *args, **kwargs): kwargs['sequence_start_number'] = None return SingleStream(*args, **kwargs) class SweepArray(RoachMeasurement): """ This class contains a list of StreamArrays. The analysis methods and properties are designed for two modes of operation. For simultaneous sweeps across individual resonators, use the sweep() method (equivalent to __getitem__ access) to return SingleSweep instances containing the data from individual resonators. For scans over many unknown resonators, use the properties to return values in ascending frequency order, and use find_resonators() and resonator() to locate resonance frequencies and extract resonator objects. """ _version = 0 def __init__(self, stream_arrays, state=None, description=''): """ Parameters ---------- stream_arrays : iterable(StreamArray) The streams that make up the sweep. state : dict All non-roach state information. description : str A human-readable description of this measurement. """ if not isinstance(stream_arrays, core.MeasurementList): stream_arrays = core.MeasurementList(stream_arrays) self.stream_arrays = stream_arrays super(SweepArray, self).__init__(state=state, description=description) def __getitem__(self, number): """ See sweep(). """ number = int(number) # Avoid weird indexing bugs ss = SingleSweep(streams=core.MeasurementList(sa.stream(number) for sa in self.stream_arrays), number=number, state=self.state, description=self.description) ss._io = self._io ss._io_node_path = self._io_node_path return ss def sweep(self, number): """ Return a SingleSweep object containing the data from the channel corresponding to the given integer. Parameters ---------- number : int The index of the sweep to use to create the new single-channel object. Returns ------- SingleSweep """ return self[number] @property def num_channels(self): try: if np.any(np.diff([sa.tone_index.size for sa in self.stream_arrays])): raise ValueError("Channel numbers differ between stream arrays.") else: return self.stream_arrays[0].tone_index.size except IndexError: return 0 @memoized_property def ascending_order(self): """numpy.ndarray[int]: Re-arranges values for this SweepArray in ascending frequency order.""" return np.concatenate([sa.frequency for sa in self.stream_arrays]).argsort() @memoized_property def frequency(self): """numpy.ndarray[float]: The frequencies of all data points in ascending order.""" return np.concatenate([sa.frequency for sa in self.stream_arrays])[self.ascending_order] @property def frequency_MHz(self): """numpy.ndarray[float]: The frequencies in MHz of all data points, in ascending order.""" return 1e-6 * self.frequency @memoized_property def s21_point(self): """numpy.ndarray[complex]: The s21_point values of all data points, in ascending frequency order.""" return np.concatenate([sa.s21_point for sa in self.stream_arrays])[self.ascending_order] @memoized_property def s21_point_error(self): """numpy.ndarray[complex]: The s21_point_error values of all data points, in ascending frequency order.""" return np.concatenate([sa.s21_point_error for sa in self.stream_arrays])[self.ascending_order] @memoized_property def s21_raw(self): """numpy.ndarray[complex]: The raw s21 streams of all data points, in ascending frequency order.""" return np.vstack([stream_array.s21_raw for stream_array in self.stream_arrays])[self.ascending_order, :] @property def s21_point_foreground(self): return self.s21_point / self.background @property def s21_point_error_foreground(self): return self.s21_point_error / self.background @property def background(self): return self.fit_background(frequency=self.frequency, s21=self.s21_point) # ToDo: swap this out for a lmfit model def fit_background(self, frequency=None, s21=None, amp_degree=3, phi_degree=3, weights=None, mask=None): if frequency is None: frequency = self.frequency if s21 is None: s21 = self.s21_point if weights is None: # Attempt to down-weight resonances weights = np.abs(s21) ** 2 if mask is None: mask = np.ones(frequency.size, dtype=np.bool) weights *= mask amp_poly = np.polyfit(frequency, np.abs(s21), deg=amp_degree, w=weights) phi_poly = np.polyfit(frequency, np.unwrap(np.angle(s21)), deg=phi_degree, w=weights) return np.polyval(amp_poly, frequency) * np.exp(1j * np.polyval(phi_poly, frequency)) # ToDo: this could be much smarter about identifying large peaks def find_peaks(self, expected_Q=30000, num_widths=100, threshold=1, minimum_linewidth_separation=1, **find_peaks_cwt_kwargs): linewidth = self.frequency.mean() / expected_Q width = linewidth / (self.frequency[1] - self.frequency[0]) # in samples data = 1 / np.abs(self.s21_point_foreground) - 1 widths = np.linspace(width / 10, 10 * width, num_widths) peaks = np.array(signal.find_peaks_cwt(vector=data, widths=widths, **find_peaks_cwt_kwargs)) mask = (width < peaks) & (peaks < data.size - width) & (data[peaks] > threshold * np.std(data)) return peaks[mask] def resonator(self, frequency, width, model=lmfit_resonator.LinearLossResonatorWithCable): mask = (frequency - width / 2 <= self.frequency) & (self.frequency <= frequency + width / 2) return model(frequency=self.frequency[mask], s21=self.s21_point_foreground[mask], errors=self.s21_point_error_foreground[mask]) def to_dataframe(self, add_origin=True, one_sweep_per_row=True): """ Parameters ---------- add_origin one_sweep_per_row: bool, default True If True, return a dataframe with one row per sweep, usually what you want if each sweep corresponds to a resonator. If False, return a single row with frequency and s21_point arrays for VNA style sweep data. Returns ------- pandas.DataFrame """ dataframes = [] if one_sweep_per_row: for number in range(self.num_channels): dataframes.append(self.sweep(number).to_dataframe(add_origin=add_origin)) else: data = {'analysis_epoch': time.time(), 'start_epoch': self.start_epoch()} try: for thermometer, temperature in self.state['temperature'].items(): data['temperature_{}'.format(thermometer)] = temperature except KeyError: pass try: for key, value in self.stream_arrays[0].stream(0).roach_state.items(): data['roach_{}'.format(key)] = value except KeyError: pass flat_state = self.state.flatten(wrap_lists=True) data.update(flat_state) data['frequency'] = [self.frequency] data['s21_point'] = [self.s21_point] data['s21_point_error'] = [self.s21_point_error] dataframe =
pd.DataFrame(data, index=[0])
pandas.DataFrame
import pandas as pd from argparse import ArgumentParser from pathlib import Path from .logger import logger import sqlite3 import random import csv import json from tqdm import tqdm DATA_DIR = Path('data') FOLD = 5 NELA_DIR = DATA_DIR / 'NELA' Path(NELA_DIR).mkdir(parents=True, exist_ok=True) NELA_FNAME = '{mode}_{fold}.tsv' RESAMPLE_LIMIT = 100 def read_constraint_splits(): train_fpath = DATA_DIR / 'train.tsv' val_fpath = DATA_DIR / 'val.tsv' test_fpath = DATA_DIR / 'test.tsv' train = pd.read_csv(train_fpath, quoting=csv.QUOTE_NONE, error_bad_lines=False, sep='\t') val = pd.read_csv(val_fpath, quoting=csv.QUOTE_NONE, error_bad_lines=False, sep='\t') test = pd.read_csv(test_fpath, quoting=csv.QUOTE_NONE, error_bad_lines=False, sep='\t') return { 'train': train, 'val': val, 'test': test } def normalize(domain): domain = domain.strip() domain = domain.replace(' ', '') domain = domain.lower() return domain def read_simplewiki(path: str): wiki =
pd.read_csv(path, sep='\t')
pandas.read_csv
# import pandas import pandas as pd import numpy as np import statsmodels.api as sm pd.set_option('display.width', 200)
pd.set_option('display.max_columns', 15)
pandas.set_option
import zipfile from datetime import timedelta from os import path from time import sleep from unittest import TestCase from django.test import tag from django.utils import timezone import pandas as pd import pyrefinebio import scipy.stats from data_refinery_common.enums import ProcessorEnum from data_refinery_common.models import ( ComputationalResult, ComputedFile, DownloaderJob, Experiment, ExperimentSampleAssociation, Organism, ProcessorJob, Sample, SampleComputedFileAssociation, SampleResultAssociation, ) from data_refinery_foreman.foreman.management.commands.create_compendia import create_compendia from data_refinery_foreman.foreman.management.commands.create_quantpendia import create_quantpendia from data_refinery_foreman.foreman.management.commands.run_tximport import ( run_tximport_for_all_eligible_experiments, ) from data_refinery_foreman.surveyor.management.commands.dispatch_qn_jobs import ( dispatch_qn_job_if_eligible, ) from data_refinery_foreman.surveyor.management.commands.surveyor_dispatcher import ( queue_surveyor_for_accession, ) from data_refinery_foreman.surveyor.management.commands.unsurvey import purge_experiment SMASHER_SAMPLES = ["GSM1487313", "SRR332914"] SMASHER_EXPERIMENTS = ["GSE1487313", "SRP332914"] MICROARRAY_ACCESSION_CODES = [ "E-TABM-496", # 39 samples of SACCHAROMYCES_CEREVISIAE microarray data "GSE94793", # 24 samples of SACCHAROMYCES_CEREVISIAE microarray data "GSE80822", # 12 samples of SACCHAROMYCES_CEREVISIAE microarray data "GSE96849", # 68 samples of SACCHAROMYCES_CEREVISIAE microarray data "GSE41094", # 18 samples of SACCHAROMYCES_CEREVISIAE submitter processed data ] RNA_SEQ_ACCESSION_CODES = [ "SRP047410", # 26 samples of SACCHAROMYCES_CEREVISIAE RNA-Seq data, one will fail. "SRP094706", # 4 samples of SACCHAROMYCES_CEREVISIAE RNA-Seq data ] EXPERIMENT_ACCESSION_CODES = MICROARRAY_ACCESSION_CODES + RNA_SEQ_ACCESSION_CODES TEST_DATA_BUCKET = "data-refinery-test-assets" def wait_for_job(job) -> bool: """Waits for a job and all of its retries.""" job.refresh_from_db() is_done = False while not is_done: if job.end_time is None and job.success is None: print(f"Polling {type(job).__name__}s. Currently waiting for job id: {job.id}") sleep(20) job.refresh_from_db() elif job.retried and job.retried_job: job = job.retried_job elif job.success: return True else: print(f"{type(job).__name__} {job.id} failed!") return False return False def prepare_computed_files(): # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1487313" experiment.num_processed_samples = 1 experiment.save() result = ComputationalResult() result.save() gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS", taxonomy_id=1001) sample = Sample() sample.accession_code = "GSM1487313" sample.title = "GSM1487313" sample.organism = gallus_gallus sample.technology = "MICROARRAY" sample.is_processed = True sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1487313_liver.PCL" computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.s3_key = "GSM1487313_liver.PCL" computed_file.s3_bucket = TEST_DATA_BUCKET computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() # RNASEQ TECH experiment2 = Experiment() experiment2.accession_code = "SRP332914" experiment2.num_processed_samples = 1 experiment2.save() result2 = ComputationalResult() result2.save() sample2 = Sample() sample2.accession_code = "SRR332914" sample2.title = "SRR332914" sample2.organism = gallus_gallus sample2.technology = "RNA-SEQ" sample2.is_processed = True sample2.save() sra2 = SampleResultAssociation() sra2.sample = sample2 sra2.result = result2 sra2.save() esa2 = ExperimentSampleAssociation() esa2.experiment = experiment2 esa2.sample = sample2 esa2.save() computed_file2 = ComputedFile() computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.result = result2 computed_file2.size_in_bytes = 234 computed_file2.is_smashable = True computed_file2.s3_key = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.s3_bucket = TEST_DATA_BUCKET computed_file2.save() assoc2 = SampleComputedFileAssociation() assoc2.sample = sample2 assoc2.computed_file = computed_file2 assoc2.save() # Use unittest TestCase instead of django TestCase to avoid the test # being done in a transaction. class SmasherEndToEndTestCase(TestCase): """Test only the smasher using precomuted samples.""" @tag("end_to_end") def test_smasher_job(self): for accession_code in SMASHER_EXPERIMENTS: purge_experiment(accession_code) prepare_computed_files() # The API sometimes takes a bit to come back up. start_time = timezone.now() while True: try: pyrefinebio.create_token(agree_to_terms=True, save_token=False) break except pyrefinebio.ServerError: if timezone.now() - start_time > timedelta(minutes=15): raise AssertionError("Server not up after 15 minutes") else: sleep(30) dataset_path = "end_to_end_test_dataset" pyrefinebio.download_dataset( dataset_path, "<EMAIL>", dataset_dict={"GSE1487313": ["GSM1487313"], "SRP332914": ["SRR332914"]}, timeout=timedelta(minutes=15), ) self.assertTrue(path.exists(dataset_path)) # Use unittest TestCase instead of django TestCase to avoid the test # being done in a transaction. class FullFlowEndToEndTestCase(TestCase): """In order to parallelize the jobs as much as possible, everything is done in one big ol' function. This includes, in order: * Purging previously surveyed experiments. * Surveying experiments which will trigger: * An array_express downloader job triggering a affymetrix processor job. * 3 GEO downloader job triggering affymetrix processor jobs, for a total greater than 100 samples on a single platform. * A GEO downloader job triggering a NO_OP processor job. * Creating a transcriptome index for SACCHAROMYCES_CEREVISIAE. * Surveying experiments which will trigger: * A SRA downloader job triggering a salmon processor job for 26 samples. (One of which will fail, requiring a run_tximport job.) * A SRA downloader job triggering a salmon processor job for 4 samples. (This should be fully processed without intervention.) * Running tximport to process the experiment that had one bad sample. * Creating a QN Target for SACCHAROMYCES_CEREVISIAE. * Creating a Compendium for SACCHAROMYCES_CEREVISIAE. * Creating a Quantpendium for SACCHAROMYCES_CEREVISIAE. """ @tag("end_to_end") def test_all_the_things(self): for accession_code in EXPERIMENT_ACCESSION_CODES: purge_experiment(accession_code) self.process_experiments() self.check_transcriptome_index() self.create_qn_reference() self.create_compendia() def process_experiments(self): survey_jobs = [] # Kick off microarray jobs first because downloading the # affymetrix image takes a long time. for accession_code in MICROARRAY_ACCESSION_CODES: survey_jobs.append(queue_surveyor_for_accession(accession_code)) # However, before we kick of RNA-Seq jobs, we have to build a transcriptome index for them. transcriptome_survey_job = queue_surveyor_for_accession("SACCHAROMYCES_CEREVISIAE, Ensembl") print( "First, creating transcriptome indices (and starting on Affy jobs while we're at it):" ) self.assertTrue(wait_for_job(transcriptome_survey_job)) transcriptome_downloader_jobs = DownloaderJob.objects.filter( downloader_task="TRANSCRIPTOME_INDEX", created_at__gt=transcriptome_survey_job.created_at, ) for downloader_job in transcriptome_downloader_jobs: self.assertTrue(wait_for_job(downloader_job)) transcriptome_processor_jobs = ProcessorJob.objects.filter( pipeline_applied__startswith="TRANSCRIPTOME_INDEX", created_at__gt=transcriptome_survey_job.created_at, ) for processor_job in transcriptome_processor_jobs: self.assertTrue(wait_for_job(processor_job)) for accession_code in RNA_SEQ_ACCESSION_CODES: survey_jobs.append(queue_surveyor_for_accession(accession_code)) print("Next, processing all the raw data.") for survey_job in survey_jobs: self.assertTrue(wait_for_job(survey_job)) # We need to ignore a lot of samples in staging that aren't # related to these experiments. # sample_id_list = Experiment.objects.filter(accession_code__in=EXPERIMENT_ACCESSION_CODES) sample_id_list = Sample.objects.filter( experiment__accession_code__in=EXPERIMENT_ACCESSION_CODES ).values_list("id") self.assertEqual(Sample.objects.filter(id__in=sample_id_list).count(), 191) samples = [] for accession_code in EXPERIMENT_ACCESSION_CODES: experiment = Experiment.objects.get(accession_code=accession_code) samples.extend(list(experiment.samples.all())) downloader_jobs = [] for sample in samples: greatest_job_id = -1 last_job = None # There should be only one, but if it got retried for some # reason we want the latest one. for job in sample.get_downloader_jobs(): if job.id > greatest_job_id: greatest_job_id = job.id last_job = job downloader_jobs.append(last_job) for downloader_job in downloader_jobs: self.assertTrue(wait_for_job(downloader_job)) processor_jobs = [] for sample in samples: # This sample fails for good reason, so don't expect it to pass. if sample.accession_code == "SRR1583739": continue greatest_job_id = -1 last_job = None for job in sample.get_processor_jobs(): if job.id > greatest_job_id: greatest_job_id = job.id last_job = job processor_jobs.append(last_job) for processor_job in processor_jobs: self.assertTrue(wait_for_job(processor_job)) # Because SRR1583739 fails, the 26 samples from SRP047410 won't be processed self.assertEqual(Sample.processed_objects.filter(id__in=sample_id_list).count(), 165) print("Finally, need to run tximport to finish an experiment with one bad sample.") tximport_jobs = run_tximport_for_all_eligible_experiments(dispatch_jobs=False) self.assertEqual(len(tximport_jobs), 1) self.assertTrue(wait_for_job(tximport_jobs[0])) # This is the full total of jobs minus one. self.assertEqual(Sample.processed_objects.filter(id__in=sample_id_list).count(), 190) def check_transcriptome_index(self): # Make sure that a processed file using our new transcriptome index is # similar enough to a reference file print( "Now we are going to verify that the outputs of salmon look okay with" "the transcriptome index we generated." ) sample = Sample.objects.get(accession_code="SRR5085168") # First, sanity check that the genome build hasn't changed. If it # changes, all bets are off when comparing quant.sf files. self.assertEqual( sample.results.all() .filter(processor__name=ProcessorEnum.SALMON_QUANT.value["name"]) .first() .organism_index.assembly_name, "R64-1-1", ) # We are now going to download the `quant.sf` file by making a # quant-only smasher job. We need to do this because the results bucket # was locked down, so we can't access it without agreeing to the terms # first. pyrefinebio.create_token(agree_to_terms=True, save_token=False) dataset_path = "end_to_end_quant_dataset.zip" pyrefinebio.download_dataset( dataset_path, "<EMAIL>", dataset_dict={"SRP094706": ["SRR5085168"]}, quant_sf_only=True, aggregation="EXPERIMENT", timeout=timedelta(minutes=15), ) self.assertTrue(path.exists(dataset_path)) def squish_duplicates(data: pd.DataFrame) -> pd.DataFrame: return data.groupby(data.index, sort=False).mean() ref_filename = "/home/user/data_store/reference/SRR5085168_quant.sf" ref = pd.read_csv(ref_filename, delimiter="\t", index_col=0) ref_TPM = squish_duplicates(
pd.DataFrame({"reference": ref["TPM"]})
pandas.DataFrame
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, delta, box): # only test adding/sub offsets as + is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + delta tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, delta, box): # only test adding/sub offsets as - is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="Index fails to return " "NotImplemented on " "reverse op", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box_df_fail): # GH#18849 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box_df_fail): # GH#18824, GH#19744 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_df_fail): # GH#18824 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="object dtype Series " "fails to return " "NotImplemented", strict=True, raises=TypeError)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box): # GH#18849 box2 = Series if box is pd.Index else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_df_fail): # GH#18824 box = box_df_fail # DataFrame tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_df_fail): box = box_df_fail # DataFrame op returns object instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, delta, box): if box is pd.DataFrame and not isinstance(delta, pd.DateOffset): pytest.xfail(reason="returns m8[ns] instead of raising") rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng * delta def test_tdi_mul_int_array_zerodim(self, box_df_fail): box = box_df_fail # DataFrame op returns object dtype rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 0.1)) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * Series(rng5f + 0.1) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_df_fail): # RangeIndex fails to return NotImplemented, for others # DataFrame tries to broadcast incorrectly box = box_df_fail tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__ def test_td64arr_div_nat_invalid(self, box_df_fail): # don't allow division by NaT (maybe could in the future) box = box_df_fail # DataFrame returns all-NaT instead of raising rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng / pd.NaT def test_td64arr_div_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx / 1 tm.assert_equal(result, idx) def test_tdi_div_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) def test_tdi_div_tdlike_scalar_with_nat(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly returns " "m8[ns] instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_floordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = td1 // scalar_td tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly casts to f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_rfloordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = scalar_td // td1 tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns m8[ns] dtype " "instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_rfloordiv_tdscalar_explicit(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) def test_td64arr_floordiv_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx // 1 tm.assert_equal(result, idx) def test_td64arr_floordiv_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame returns m8[ns] instead of int64 dtype tdi = timedelta_range('1 days', '10 days', name='foo') expected = pd.Int64Index((np.arange(10) + 1) * 12, name='foo') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi // delta tm.assert_equal(result, expected) # TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar? @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=10, seconds=7), Timedelta('10m7s'), Timedelta('10m7s').to_timedelta64() ], ids=lambda x: type(x).__name__) def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_df_fail): # GH#19125 box = box_df_fail # DataFrame op returns m8[ns] instead of f8 dtype tdi = TimedeltaIndex(['00:05:03', '00:05:03', pd.NaT], freq=None) expected = pd.Index([2.0, 2.0, np.nan]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) res = tdi.__rfloordiv__(scalar_td) tm.assert_equal(res, expected) expected = pd.Index([0.0, 0.0, np.nan]) expected = tm.box_expected(expected, box) res = tdi // (scalar_td) tm.assert_equal(res, expected) # ------------------------------------------------------------------ # Operations with invalid others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="__mul__ op treats " "timedelta other as i8; " "rmul OK", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_mul_tdscalar_invalid(self, box, scalar_td): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = 'operate|unsupported|cannot|not supported' with tm.assert_raises_regex(TypeError, pattern): td1 * scalar_td with tm.assert_raises_regex(TypeError, pattern): scalar_td * td1 def test_td64arr_mul_too_short_raises(self, box): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx * idx[:3] with pytest.raises(ValueError): idx * np.array([1, 2]) def test_td64arr_mul_td64arr_raises(self, box): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx * idx # ------------------------------------------------------------------ # Operations with numeric others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object-dtype", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('one', [1, np.array(1), 1.0, np.array(1.0)]) def test_td64arr_mul_numeric_scalar(self, box, one, tdser): # GH#4521 # divide/multiply by integers expected = Series(['-59 Days', '-59 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) result = tdser * (-one) tm.assert_equal(result, expected) result = (-one) * tdser tm.assert_equal(result, expected) expected = Series(['118 Days', '118 Days', 'NaT'], dtype='timedelta64[ns]') expected = tm.box_expected(expected, box) result = tdser * (2 * one) tm.assert_equal(result, expected) result = (2 * one) * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object-dtype", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('two', [2, 2.0, np.array(2), np.array(2.0)]) def test_td64arr_div_numeric_scalar(self, box, two, tdser): # GH#4521 # divide/multiply by integers expected = Series(['29.5D', '29.5D', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) result = tdser / two tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('op', [operator.mul, ops.rmul]) def test_td64arr_rmul_numeric_array(self, op, box, vector, dtype, tdser): # GH#4521 # divide/multiply by integers vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) # TODO: Make this up-casting more systematic? box = Series if (box is pd.Index and type(vector) is Series) else box expected = tm.box_expected(expected, box) result = op(vector, tdser) tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_div_numeric_array(self, box, vector, dtype, tdser): # GH#4521 # divide/multiply by integers vector = vector.astype(dtype) expected = Series(['2.95D', '1D 23H 12m', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) box = Series if (box is pd.Index and type(vector) is Series) else box expected = tm.box_expected(expected, box) result = tdser / vector tm.assert_equal(result, expected) with pytest.raises(TypeError): vector / tdser # TODO: Should we be parametrizing over types for `ser` too? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_mul_int_series(self, box, names): # GH#19042 test for correct name attachment tdi = TimedeltaIndex(['0days', '1day', '2days', '3days', '4days'], name=names[0]) ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1]) expected = Series(['0days', '1day', '4days', '9days', '16days'], dtype='timedelta64[ns]', name=names[2]) tdi =
tm.box_expected(tdi, box)
pandas.util.testing.box_expected
import pandas as pd class HistOutlier: def __init__(self): return @staticmethod def calc_outlier_degree(rating: pd.DataFrame, clusters: pd.DataFrame) -> pd.DataFrame: """ Params: rating (DataFrame) - pandas DataFrame with columns 'object_id', 'start_time', 'end_time', 'cluster_end_time', 'rating' containing the outlier rating for all subsequences clusters (DataFrame) - pandas DataFrame with columns 'object_id', 'time', 'cluster_id' containing objects, timestamps, cluster belongings, features .. Note: The first three columns can have custom names as long as they represent the object identifier, the timestamp and the cluster identifier in the right order Returns: result (DataFrame) - pandas DataFrame with columns 'object_id', 'start_time', 'end_time', 'cluster_end_time', 'rating', distance containing the outlier rating and distances for all subsequences """ object_column = clusters.columns[0] time_column = clusters.columns[1] cluster_column = clusters.columns[2] result =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # Author : <NAME> # Initial Date: Apr 2, 2020 # About: strymmap class to visualize and analyze GPS data from CSV file recorded using Grey Panda device and libpanda software. # Read associated README for full description # License: MIT License # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject # to the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF # ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED # TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ARIZONA BOARD OF REGENTS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. __author__ = '<NAME>' __email__ = '<EMAIL>' ## General Data processing and visualization Import import time import numpy as np import math import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (16,8) from scipy.interpolate import interp1d from .phasespace import phasespace from .strymread import strymread from logging import Logger from .utils import configure_logworker LOGGER = configure_logworker() from matplotlib import cm import pandas as pd # Note that this is not commai Panda, but Database Pandas import os import sys from subprocess import Popen, PIPE import gmaps from dotenv import load_dotenv load_dotenv() from .config import config import IPython shell_type = IPython.get_ipython().__class__.__name__ if shell_type in ['ZMQInteractiveShell', 'TerminalInteractiveShell']: import ntpath import bokeh.io import bokeh.plotting import bokeh.models import bokeh.transform from bokeh.palettes import Magma256 as palette from bokeh.models import ColorBar from bokeh.io import output_notebook from bokeh.io.export import get_screenshot_as_png from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from .tools import ellipse_fit output_notebook() import plotly.express as px import plotly.io as pio import plotly.offline as pyo # Set notebook mode to work in offline pyo.init_notebook_mode() class strymmap: ''' `strymmap` reads the GPS data from the given CSV file. This class provides several utilities functions to work with GPS Data Parameters ---------------- csvfie: `str` The CSV file to be read Attributes --------------- csvfile:`string` The filepath of CSV Data file dataframe: `pandas.Dataframe` Pandas dataframe that stores content of csvfile as dataframe aq_time: `string` Acquisition Time of GPS Signal with valid Lattitude and Longitude in the form of human-readable date string as per local timezone latitude: `pandas.DataFrame` Latitude Timeseries longitude: `pandas.DataFrame` Longitude Timeseries altitude: `pandas.DataFrame` Altitude Timeseries success: `bool` If file reading was successful, then set to success to True Returns --------------- `strymmap` Returns an object of type `strymmap` Example ---------------- Generating GOOGLE MAP API KEY You will ensure that you have right Google API KEY before you can use `strymmap`. You can generate API KEY at https://console.developers.google.com/projectselector2/apis/dashboard. Put API KEY as an environment variable in the file ~/.env by executing following from the command line `echo "export GOOGLE_MAP_API_KEY=<KEY>" >> ~/.env` Use your own key instead of `abcdefghijklmnopqrstuvwxyz`. A good tutorial on how to perform API setup is given at https://web.archive.org/web/20200404070618/https://pybit.es/persistent-environment-variables.html Generating MAP BOX API KEY Generating MAP BOX API key is easier than generating, Google map API Key Just create an account on mapbox.com and select create token. You can also check tutorials on https://www.youtube.com/watch?v=6iQEhaE1bCY Put API Key as an environment variable in the file ~/.env by executing following from the command line `echo "export MAP_BOX_API=abcdefghijklmnopqrstuvwxyz" >> ~/.env`. Use your own key instead of `abcdefghijklmnopqrstuvwxyz`. >>> import strym >>> from strym import strymmap >>> import matplotlib.pyplot as plt >>> import numpy as np >>> csvdata = '2020-03-20.csv' >>> r0 = strymmap(csvfile=csvdata) ''' def __init__(self, csvfile, **kwargs): self.success = False # if file size is less than 60 bytes, return without processing if os.path.getsize(csvfile) < 60: print("Nothing significant to read in {}. No further analysis is warranted.".format(csvfile)) return if shell_type not in ['ZMQInteractiveShell', 'TerminalInteractiveShell']: raise ValueError("strymmap can only be used within Jupyter Notebook.") # CSV File self.csvfile = csvfile LOGGER.info("Reading GPS file {}".format(csvfile)) # All CAN messages will be saved as pandas dataframe try: status_category = pd.CategoricalDtype(categories=['A', 'V'], ordered=False) is_windows = sys.platform.startswith('win') if not is_windows: word_counts = Popen(['wc', '-l', self.csvfile], stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = word_counts.communicate() output = output.decode("utf-8") output = output.strip() output = output.split(' ') n_lines = int(output[0]) if n_lines < 4: LOGGER.error("Not enough lines to read in {}".format(csvfile)) return self.dataframe = pd.read_csv(self.csvfile, dtype={'Gpstime': np.float64,'Status':status_category, 'Long': np.float32, 'Lat': np.float32, 'Alt': np.float32, 'HDOP': np.float16, 'PDOP': np.float16, 'VDOP': np.float16}, nrows=n_lines - 2) else: self.dataframe = pd.read_csv(self.csvfile, dtype={'Gpstime': np.float64,'Status':status_category, 'Long': np.float32, 'Lat': np.float32, 'Alt': np.float32, 'HDOP': np.float16, 'PDOP': np.float16, 'VDOP': np.float16}, skipfooter=2) except pd.errors.ParserError: print("PraseError: Ill-formated CSV File {}. A properly formatted CSV file must have column names as ['Gpstime', 'Status', 'Long', 'Lat', 'Alt', 'HDOP', 'PDOP', 'VDOP']".format(self.csvfile)) print("Not generating map for the drive route.") return except UnicodeDecodeError: print("Unicode Decode Error: Ill-formated CSV File {}. A properly formatted CSV file must have column names as ['Gpstime', 'Status', 'Long', 'Lat', 'Alt', 'HDOP', 'PDOP', 'VDOP']".format(self.csvfile)) print("Not generating map for the drive route.") return except pd.errors.EmptyDataError: print("CSVfile is empty.") return if self.dataframe.shape[0] == 0: print("No data was present in the csvfile. Not generating map for the drive.") return self.dataframe = self.dataframe.dropna() if not set(['Gpstime' ,'Status' ,'Long', 'Lat' ,'Alt' ,'HDOP' ,'PDOP', 'VDOP']).issubset(set(self.dataframe.columns)): print("Ill-formated CSV File. A properly formatted CSV file must have column names as ['Gpstime', 'Status', 'Long', 'Lat', 'Alt', 'HDOP', 'PDOP', 'VDOP']") print("Column Names found are {}".format(self.dataframe.columns.values)) print("Not generating map for drive route.") return status = self.dataframe['Status'] == 'A' self.dataframe = self.dataframe[status] if self.dataframe.shape[0] == 0: print("GPS failed to acquire satellite signal during this drive. Not generating map for the drive.") return # At this point, GPS data file reading is successful, set `success` to `True` self.success = True self.aq_time = strymread.dateparse(self.dataframe['Gpstime'].values[0]) print('GPS signal first acquired at {}'.format(self.aq_time)) self.dataframe = strymmap.timeindex(self.dataframe, inplace=True) self.latitude = self.dataframe['Lat'] self.longitude = self.dataframe['Long'] self.altitude = self.dataframe['Alt'] centroid_lat, centroid_long = phasespace.centroid( self.latitude,self.longitude) center_coordinates = (centroid_lat, centroid_long) coordinates = pd.DataFrame() coordinates['latitude'] = self.latitude coordinates['longitude'] = self.longitude self.mapfile = self.csvfile[0:-4] + '.html' time_axis = kwargs.get("time_axis", True) if config["map"] == "googlemap": self.API_Key =os.getenv('GOOGLE_MAP_API_KEY') if self.API_Key is None: self.API_Key = input("Enter Google MAP API Key: ") Popen('echo "export GOOGLE_MAP_API_KEY={}" >> ~/.env'.format(self.API_Key), shell= True) gmaps.configure(api_key=self.API_Key) styles=""" [{ "featureType": "all", "elementType": "geometry", "stylers": [ { "color": "#b5d3ff"}]}, { "featureType": "all", "elementType": "labels.text.fill", "stylers": [ { "gamma": 0.01}, {"lightness": 20},{"weight": "1.39"},{"color": "#0d1529"}]}, { "featureType": "all", "elementType": "labels.text.stroke", "stylers": [ { "weight": "0.96"}, { "saturation": "9"}, { "visibility": "on"},{ "color": "#f2f2f2"}] }, { "featureType": "all", "elementType": "labels.icon", "stylers": [ { "visibility": "off"}]}, { "featureType": "landscape", "elementType": "geometry", "stylers": [{ "lightness": 30}, { "saturation": "9"},{ "color": "#fbfffa"}] }, { "featureType": "poi", "elementType": "geometry", "stylers": [ { "saturation": 20 }] }, { "featureType": "poi.park", "elementType": "geometry", "stylers": [ {"lightness": 20 }, { "saturation": -20}]}, { "featureType": "road", "elementType": "geometry", "stylers": [ { "lightness": 10 }, { "saturation": -30 } ]}, { "featureType": "road", "elementType": "geometry.fill", "stylers": [ { "color": "#b1c4cc"}]}, { "featureType": "road", "elementType": "geometry.stroke", "stylers": [ { "saturation": 25}, { "lightness": 25 }, { "weight": "0.01"}]}, { "featureType": "water", "elementType": "all", "stylers": [ { "lightness": -20 }]} ] """ gmap_options = bokeh.models.GMapOptions(lat=centroid_lat, lng=centroid_long, map_type='roadmap', zoom=int(config["mapzoom"]), styles = styles) fig = bokeh.plotting.gmap(self.API_Key, gmap_options, title='Drive Route for ' + ntpath.basename(self.csvfile), width=config["mapwidth"], height=config["mapheight"], tools=['hover', 'reset', 'wheel_zoom', 'pan']) source = bokeh.models.ColumnDataSource(self.dataframe) if time_axis: mapper = bokeh.transform.linear_cmap('Gpstime', palette[:192], np.min(self.dataframe['Gpstime']), np.max(self.dataframe['Gpstime'])) center = fig.circle('Long', 'Lat', size=4, alpha=1.0, color=mapper, source=source, ) color_bar = ColorBar(color_mapper=mapper['transform'], location=(0,0), title='Time') fig.add_layout(color_bar, 'right') else: fig.circle('Long', 'Lat', size=5, alpha=1.0, fill_color='red', line_color = 'red', source=source) bokeh.plotting.output_file(filename= self.mapfile, title='Drive Router for ' + ntpath.basename(self.csvfile)) bokeh.plotting.save(fig, self.mapfile) self.fig = fig driver = webdriver.Chrome(ChromeDriverManager().install()) self.image = get_screenshot_as_png(fig, height=800, width=1800, driver=driver) time.sleep(1) driver.close() driver.quit() # See https://web.archive.org/web/20200404100708/https://sites.google.com/a/chromium.org/chromedriver/getting-started and https://web.archive.org/web/20200404101003/https://www.selenium.dev/selenium/docs/api/py/index.html self.image.save(self.csvfile[0:-4] + '.png',"PNG") elif config["map"] == "mapbox": self.API_Key =os.getenv('MAP_BOX_API') if self.API_Key is None: self.API_Key = input("Enter Mapbox API Key: ") Popen('echo "export MAP_BOX_API={}" >> ~/.env'.format(self.API_Key), shell= True) if time_axis: color = "Gpstime" else: color = None fig = px.scatter_mapbox(self.dataframe, lat="Lat", lon="Long", color=color, color_continuous_scale=["black", "purple", "red" ], size_max=30, zoom=config["mapzoom"], height = config["mapheight"], width = config["mapwidth"], #center = dict(lat = g.center) title='Drive Route for ' + ntpath.basename(self.csvfile), #mapbox_style="open-street-map" ) Index = self.dataframe.index.strftime('%m/%d/%Y, %r') cb_indices = np.linspace(0, self.dataframe.shape[0]-1, 10, dtype=int) cb =Index[cb_indices] cbtime = self.dataframe.Gpstime[cb_indices].values fig.update_layout(font_size=16, title={'xanchor': 'center','yanchor': 'top', 'y':0.9, 'x':0.5,}, title_font_size = 24, mapbox_accesstoken=self.API_Key, mapbox_style = "mapbox://styles/strym/ckhd00st61aum19noz9h8y8kw", coloraxis_colorbar=dict( title="Time", tickvals=cbtime, ticktext=cb, ticks="outside", ticksuffix=" TIME", dtick=50 )) fig.update_traces(marker=dict(size=6)) fig.write_image(self.csvfile[0:-4] + '.png') fig.write_html(self.csvfile[0:-4] + '.html') self.fig = fig def gpsdistance(self): """ Calculate the distance covered based on the Lat, Long coordinates traversed Returns --------- Distance covered in meters """ dist = strymmap._calcgpsdist(self.dataframe) return dist def plotroute(self, interactive=True, returnfig = False): ''' Plot the driving routes on Google Map Note: Only compatble to work with Jupyter Notebook. You must execute `jupyter nbextension enable --py gmaps` before running jupyter notebook in your python environment. Parameters -------------- interactive: `bool` `True`, `False`to specify whether to plot an interactive map or not. `True`: plot interactive map, `False`: plot map as an image Returns --------- `bokeh.plotting.gmap.GMap` Figure object correspond to Google Map figure with waypoints embedded on it ''' if not self.success: print("There is no route to plot as GPS Data was not read successfully.") return None if interactive: if config["map"] == "googlemap": time.sleep(1) try: bokeh.plotting.reset_output() bokeh.plotting.output_notebook() bokeh.plotting.show(self.fig) # angrily yells at me about single ownership except: bokeh.plotting.output_notebook() bokeh.plotting.show(self.fig) elif config["map"] == "mapbox": self.fig.show() else: if config["map"] == "googlemap": display(self.image) elif config["map"] == "mapbox": from PIL import Image im = Image.open(self.csvfile[0:-4] + '.png') display(im) if returnfig: return self.fig @staticmethod def _calcgpsdist(df, sample_time = 0.1): distance = 0.0 for i in range(1,df.shape[0]): lat1 = df.iloc[i-1]['Lat'] long1 = df.iloc[i-1]['Long'] lat2 = df.iloc[i]['Lat'] long2 = df.iloc[i]['Long'] phi_1 = lat1*math.pi/180.0 # in radians phi_2 = lat2*math.pi/180.0 # in radians delta_phi = phi_1 - phi_2 lamda_1 = long1 lamda_2 = long2 delta_lambda = (lamda_1 - lamda_2 )*math.pi/180.0 R = 6371000 # Earth radius in meter a = (math.sin(delta_phi/2))**2 + math.cos(phi_1)*math.cos(phi_2)*math.sin(delta_lambda/2)*math.sin(delta_lambda/2) c = 2*math.atan2(math.sqrt(a), math.sqrt(1-a)) great_circle_distance = R*c # in meters # If distance is too large, then there is a gap between gps data points, I won't include gap distances # Here I assumed that in one sampke time interval car cannot go beyond 100 m/s, i.e. too large of a distance between two points if great_circle_distance >= 100*sample_time: continue distance = distance + great_circle_distance return distance @staticmethod def timeindex(df, inplace=False): if inplace: newdf = df else: newdf =df.copy() newdf['Gpstime'] = df['Gpstime'] newdf['ClockTime'] = newdf['Gpstime'].apply(strymread.dateparse) Time = pd.to_datetime(newdf['Gpstime'], unit='s') newdf['Clock'] =
pd.DatetimeIndex(Time)
pandas.DatetimeIndex
# -*- coding: utf-8; py-indent-offset:4 -*- import datetime as dt import pandas as pd from ..utils import datetime_today from .data_cache import get_all_symbol_name, get_cn_stock_fund_flow_rank, \ get_daily, get_stock_fund_flow_daily, \ get_stock_spot, \ get_index_daily class Market: all_symbol_name = {} watching_symbols = [] symbol_daily = {} symbol_daily_adjusted = {} verbose = False date_start = None date_end = None current_date = None current_time = None biz_time = None biz_hour = (11.5 - 9.5) + (15.0 - 13.0) sell_rule = 'T+1' is_testing = False def __init__(self, start, end): self.all_symbol_name = get_all_symbol_name() self.watching_symbols = [] self.symbol_daily = {} self.symbol_daily_adjusted = {} self.date_start = start self.date_end = end self.current_date = self.current_time = start self.last_spot_time = dt.datetime.now() - dt.timedelta(minutes =10) self.set_business_time(morning= ['9:30', '11:30'], afternoon= ['13:00', '15:00']) self.set_sell_rule(sell_rule= 'T+1') def set_sell_rule(self, sell_rule = 'T+1'): self.sell_rule = sell_rule def set_business_time(self, morning= ['9:30', '11:30'], afternoon= ['13:00', '15:00']): business_time = morning + afternoon biz_time = [] for k in business_time: time_only = dt.datetime.strptime(k, '%H:%M') biz_time.append(time_only.hour + time_only.minute / 60.0) self.biz_time = biz_time morning_start, morning_end, afternoon_start, afternoon_end = self.biz_time self.biz_hour = (morning_end - morning_start) + (afternoon_end - afternoon_start) def set_verbose(self, verbose = True): self.verbose = verbose # for testing purpose def set_date_range(self, start, end): self.date_start = start self.date_end = end self.current_date = self.current_time = start def is_open(self) -> bool: if self.is_testing: return True # business hour: # monday to friday, 9:30 ~ 11:30, 13:00 ~ 15:00 now = dt.datetime.now() wday = now.weekday() +1 if (wday >= 1) and (wday <= 5): hour = now.hour + now.minute / 60.0 morning_start, morning_end, afternoon_start, afternoon_end = self.biz_time if (hour >= morning_start) and (hour < morning_end): return True if (hour >= afternoon_start) and (hour < afternoon_end): return True return False def load_history_price(self, symbol): if symbol.startswith('sh') or symbol.startswith('sz'): df = get_index_daily( symbol ) self.symbol_daily[ symbol ] = df self.symbol_daily_adjusted[ symbol ] = df else: # OHCLV df = get_daily( symbol ) if not symbol.startswith('fund'): # fund flow fund_df = get_stock_fund_flow_daily( symbol ) if fund_df is not None: df['main_fund'] = fund_df['main_fund'] df['main_pct'] = fund_df['main_pct'] df = df.fillna(0) self.symbol_daily[ symbol ] = df if 'factor' in df.columns: df = df.copy() for k in ['open', 'close', 'high', 'low']: df[k] = df[k] * df['factor'] self.symbol_daily_adjusted[ symbol ] = df def watch(self, symbols): for symbol in symbols: if not (symbol in self.watching_symbols): self.watching_symbols.append(symbol) self.load_history_price(symbol) def keep_daily_uptodate(self): for symbol in self.watching_symbols: self.load_history_price( symbol ) def update_fundflow_realtime(self, verbose = False) -> pd.DataFrame: today = pd.to_datetime( datetime_today() ) # merge fund flow data into df fund_df = get_cn_stock_fund_flow_rank() fund_df = fund_df[ fund_df.symbol.isin(self.watching_symbols) ] fund_df = fund_df.sort_values(by='main_pct', ascending=False).reset_index(drop= True) if verbose: print('') print(fund_df) for i, fund_row in fund_df.iterrows(): symbol = fund_row['symbol'] if symbol not in self.watching_symbols: continue df = self.symbol_daily_adjusted[ symbol ] if today in df.index: if 'main_pct' in df.columns: df.loc[ today ]['main_pct'] = fund_row['main_pct'] if 'main_fund' in df.columns: df.loc[ today ]['main_fund'] = fund_row['main_fund'] return fund_df def update_daily_realtime(self, verbose = False) -> bool: now = dt.datetime.now() data_updated = False # if the spot out of date, update for all stocks under watch next_spot_time = self.last_spot_time + dt.timedelta(seconds=10) if now > next_spot_time: spot_df = get_stock_spot(self.watching_symbols, verbose) if verbose: print('') print(spot_df) self.last_spot_time = now today = pd.to_datetime( datetime_today() ) for i, spot_row in spot_df.iterrows(): spot_date = spot_row['date'] if ('date' in spot_row) else today if spot_date >= today: data_updated = True symbol = spot_row['symbol'] new_row = self.symbol_daily[ symbol ].iloc[-1].copy() for k in ['open', 'high', 'low', 'close', 'volume']: if k in spot_row: new_row[ k ] = spot_row[ k ] self.symbol_daily[ symbol ].loc[spot_date] = new_row if 'factor' in new_row: new_row = new_row.copy() adjust_factor = new_row['factor'] for k in ['open', 'high', 'low', 'close']: new_row[ k ] = new_row[ k ] * adjust_factor self.symbol_daily_adjusted[ symbol ].loc[spot_date] = new_row self.update_fundflow_realtime(verbose= verbose) return data_updated def get_index_daily(self, symbol, start = None, end = None, count = None) -> pd.DataFrame: if end is None: end = self.date_end if start is None: start = self.date_start - dt.timedelta(days=90) df = get_index_daily( symbol ) if start: df = df[ pd.to_datetime(start) : ] if end: df = df[ :
pd.to_datetime(end)
pandas.to_datetime
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from brightics.common.repr import BrtcReprBuilder from brightics.common.repr import strip_margin from brightics.common.repr import dict2MD, plt2MD, pandasDF2MD from brightics.common.utils import check_required_parameters from brightics.common.utils import get_default_from_parameters_if_required from brightics.common.validation import validate from brightics.common.validation import from_to from brightics.common.validation import greater_than_or_equal_to from brightics.common.groupby import _function_by_group from brightics.function.utils import _model_dict import numpy as np import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.holtwinters import ExponentialSmoothing import pmdarima as pm def arima_train(table, group_by=None, **params): check_required_parameters(_arima_train, params, ['table']) params = get_default_from_parameters_if_required(params, _arima_train) param_validation_check = [greater_than_or_equal_to(params, 0, 'p'), from_to(params, 0, 2, 'd'), greater_than_or_equal_to(params, 0, 'q')] validate(*param_validation_check) if group_by is not None: return _function_by_group(_arima_train, table, group_by=group_by, **params) else: return _arima_train(table, **params) def _arima_train(table, input_cols, p, d, q, intercept=True): arima = pm.ARIMA(order=(p, d, q), with_intercept=intercept) model = _model_dict('arima_model') rb = BrtcReprBuilder() rb.addMD(strip_margin(""" |## ARIMA Train Result | """.format())) for column in input_cols: arima_fit = arima.fit(table[column]) model['arima_' + str(column)] = arima_fit rb.addMD(strip_margin(""" |### Column : {col} | | - (p,d,q) order : ({p_val}, {d_val}, {q_val}) | - Intercept : {itc} | - Coefficients Array : {ca} | - AIC : {aic} | """.format(col=column, p_val=p, d_val=d, q_val=q, itc=intercept, ca=str(arima_fit.params().tolist()), aic=arima_fit.aic()))) model['coefficients_array_' + str(column)] = arima_fit.params() model['aic_' + str(column)] = arima_fit.aic() model['input_columns'] = input_cols # model['order'] = arima_fit.order() model['intercept'] = intercept model['_repr_brtc_'] = rb.get() return{'model':model} def arima_predict(model, **params): check_required_parameters(_arima_predict, params, ['model']) params = get_default_from_parameters_if_required(params,_arima_predict) param_validation_check = [greater_than_or_equal_to(params, 1, 'prediction_num')] validate(*param_validation_check) if '_grouped_data' in model: return _function_by_group(_arima_predict, model=model, **params) else: return _arima_predict(model, **params) def _arima_predict(model, prediction_num): df1 = pd.DataFrame() df2 =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, to_datetime, ) import pandas._testing as tm import pandas.tseries.offsets as offsets class TestRollingTS: # rolling time-series friendly # xref GH13327 def setup_method(self, method): self.regular = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") self.ragged = DataFrame({"B": range(5)}) self.ragged.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] def test_doc_string(self): df = DataFrame( {"B": [0, 1, 2, np.nan, 4]}, index=[ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ], ) df df.rolling("2s").sum() def test_invalid_window_non_int(self): # not a valid freq msg = "passed window foobar is not compatible with a datetimelike index" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="foobar") # not a datetimelike index msg = "window must be an integer" with pytest.raises(ValueError, match=msg): self.regular.reset_index().rolling(window="foobar") @pytest.mark.parametrize("freq", ["2MS", offsets.MonthBegin(2)]) def test_invalid_window_nonfixed(self, freq): # non-fixed freqs msg = "\\<2 \\* MonthBegins\\> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): self.regular.rolling(window=freq) @pytest.mark.parametrize("freq", ["1D", offsets.Day(2), "2ms"]) def test_valid_window(self, freq): self.regular.rolling(window=freq) @pytest.mark.parametrize("minp", [1.0, "foo", np.array([1, 2, 3])]) def test_invalid_minp(self, minp): # non-integer min_periods msg = ( r"local variable 'minp' referenced before assignment|" "min_periods must be an integer" ) with pytest.raises(ValueError, match=msg): self.regular.rolling(window="1D", min_periods=minp) def test_invalid_center_datetimelike(self): # center is not implemented msg = "center is not implemented for datetimelike and offset based windows" with pytest.raises(NotImplementedError, match=msg): self.regular.rolling(window="1D", center=True) def test_on(self): df = self.regular # not a valid column msg = ( r"invalid on specified as foobar, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling(window="2s", on="foobar") # column is valid df = df.copy() df["C"] = date_range("20130101", periods=len(df)) df.rolling(window="2d", on="C").sum() # invalid columns msg = "window must be an integer" with pytest.raises(ValueError, match=msg): df.rolling(window="2d", on="B") # ok even though on non-selected df.rolling(window="2d", on="C").B.sum() def test_monotonic_on(self): # on/index must be monotonic df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) assert df.A.is_monotonic df.rolling("2s", on="A").sum() df = df.set_index("A") assert df.index.is_monotonic df.rolling("2s").sum() def test_non_monotonic_on(self): # GH 19248 df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) df = df.set_index("A") non_monotonic_index = df.index.to_list() non_monotonic_index[0] = non_monotonic_index[3] df.index = non_monotonic_index assert not df.index.is_monotonic msg = "index must be monotonic" with pytest.raises(ValueError, match=msg): df.rolling("2s").sum() df = df.reset_index() msg = ( r"invalid on specified as A, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling("2s", on="A").sum() def test_frame_on(self): df = DataFrame( {"B": range(5), "C": date_range("20130101 09:00:00", periods=5, freq="3s")} ) df["A"] = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] # we are doing simulating using 'on' expected = df.set_index("A").rolling("2s").B.sum().reset_index(drop=True) result = df.rolling("2s", on="A").B.sum() tm.assert_series_equal(result, expected) # test as a frame # we should be ignoring the 'on' as an aggregation column # note that the expected is setting, computing, and resetting # so the columns need to be switched compared # to the actual result where they are ordered as in the # original expected = ( df.set_index("A").rolling("2s")[["B"]].sum().reset_index()[["B", "A"]] ) result = df.rolling("2s", on="A")[["B"]].sum() tm.assert_frame_equal(result, expected) def test_frame_on2(self): # using multiple aggregation columns df = DataFrame( { "A": [0, 1, 2, 3, 4], "B": [0, 1, 2, np.nan, 4], "C": Index( [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] ), }, columns=["A", "C", "B"], ) expected1 = DataFrame( {"A": [0.0, 1, 3, 3, 7], "B": [0, 1, 3, np.nan, 4], "C": df["C"]}, columns=["A", "C", "B"], ) result = df.rolling("2s", on="C").sum() expected = expected1 tm.assert_frame_equal(result, expected) expected = Series([0, 1, 3, np.nan, 4], name="B") result = df.rolling("2s", on="C").B.sum() tm.assert_series_equal(result, expected) expected = expected1[["A", "B", "C"]] result = df.rolling("2s", on="C")[["A", "B", "C"]].sum() tm.assert_frame_equal(result, expected) def test_basic_regular(self): df = self.regular.copy() df.index = date_range("20130101", periods=5, freq="D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="1D").sum() tm.assert_frame_equal(result, expected) df.index = date_range("20130101", periods=5, freq="2D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1).sum() result = df.rolling(window="2D").sum() tm.assert_frame_equal(result, expected) def test_min_periods(self): # compare for min_periods df = self.regular # these slightly different expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s", min_periods=1).sum() tm.assert_frame_equal(result, expected) def test_closed(self): # xref GH13965 df = DataFrame( {"A": [1] * 5}, index=[ Timestamp("20130101 09:00:01"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:04"), Timestamp("20130101 09:00:06"), ], ) # closed must be 'right', 'left', 'both', 'neither' msg = "closed must be 'right', 'left', 'both' or 'neither'" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="2s", closed="blabla") expected = df.copy() expected["A"] = [1.0, 2, 2, 2, 1] result = df.rolling("2s", closed="right").sum() tm.assert_frame_equal(result, expected) # default should be 'right' result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [1.0, 2, 3, 3, 2] result = df.rolling("2s", closed="both").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 2, 2, 1] result = df.rolling("2s", closed="left").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 1, 1, np.nan] result = df.rolling("2s", closed="neither").sum() tm.assert_frame_equal(result, expected) def test_ragged_sum(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 3, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, np.nan, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s").sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=3).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 10] tm.assert_frame_equal(result, expected) def test_ragged_mean(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_median(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_quantile(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_std(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.5] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.707107, 1.0, 1.0, 1.290994] tm.assert_frame_equal(result, expected) def test_ragged_var(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.25] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.0] tm.assert_frame_equal(result, expected) def test_ragged_skew(self): df = self.ragged result = df.rolling(window="3s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 2 + [0.0, 0.0, 0.0] tm.assert_frame_equal(result, expected) def test_ragged_kurt(self): df = self.ragged result = df.rolling(window="3s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 4 + [-1.2] tm.assert_frame_equal(result, expected) def test_ragged_count(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 1, 1, 1] tm.assert_frame_equal(result, expected) df = self.ragged result = df.rolling(window="1s").count() tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 2, 1, 2] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).count() expected = df.copy() expected["B"] = [np.nan, np.nan, 2, np.nan, 2] tm.assert_frame_equal(result, expected) def test_regular_min(self): df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [0.0, 1, 2, 3, 4]} ).set_index("A") result = df.rolling("1s").min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [5, 4, 3, 4, 5]} ).set_index("A") tm.assert_frame_equal(result, expected) result = df.rolling("2s").min() expected = df.copy() expected["B"] = [5.0, 4, 3, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling("5s").min() expected = df.copy() expected["B"] = [5.0, 4, 3, 3, 3] tm.assert_frame_equal(result, expected) def test_ragged_min(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 1, 1, 3, 3] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 0, 0, 1, 1] tm.assert_frame_equal(result, expected) def test_perf_min(self): N = 10000 dfp = DataFrame( {"B": np.random.randn(N)}, index=date_range("20130101", periods=N, freq="s") ) expected = dfp.rolling(2, min_periods=1).min() result = dfp.rolling("2s").min() assert ((result - expected) < 0.01).all().bool() expected = dfp.rolling(200, min_periods=1).min() result = dfp.rolling("200s").min() assert ((result - expected) < 0.01).all().bool() def test_ragged_max(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "freq, op, result_data", [ ("ms", "min", [0.0] * 10), ("ms", "mean", [0.0] * 9 + [2.0 / 9]), ("ms", "max", [0.0] * 9 + [2.0]), ("s", "min", [0.0] * 10), ("s", "mean", [0.0] * 9 + [2.0 / 9]), ("s", "max", [0.0] * 9 + [2.0]), ("min", "min", [0.0] * 10), ("min", "mean", [0.0] * 9 + [2.0 / 9]), ("min", "max", [0.0] * 9 + [2.0]), ("h", "min", [0.0] * 10), ("h", "mean", [0.0] * 9 + [2.0 / 9]), ("h", "max", [0.0] * 9 + [2.0]), ("D", "min", [0.0] * 10), ("D", "mean", [0.0] * 9 + [2.0 / 9]), ("D", "max", [0.0] * 9 + [2.0]), ], ) def test_freqs_ops(self, freq, op, result_data): # GH 21096 index = date_range(start="2018-1-1 01:00:00", freq=f"1{freq}", periods=10) s = Series(data=0, index=index) s.iloc[1] = np.nan s.iloc[-1] = 2 result = getattr(s.rolling(window=f"10{freq}"), op)() expected = Series(data=result_data, index=index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ "sum", "mean", pytest.param( "count", marks=pytest.mark.filterwarnings("ignore:min_periods:FutureWarning"), ), "median", "std", "var", "kurt", "skew", "min", "max", ], ) def test_all(self, f): # simple comparison of integer vs time-based windowing df = self.regular * 2 er = df.rolling(window=1) r = df.rolling(window="1s") result = getattr(r, f)() expected = getattr(er, f)() tm.assert_frame_equal(result, expected) result = r.quantile(0.5) expected = er.quantile(0.5) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "f", [ "sum", "mean", "count", "median", "std", "var", "kurt", "skew", "min", "max", ], ) def test_all2(self, f): # more sophisticated comparison of integer vs. # time-based windowing df = DataFrame( {"B": np.arange(50)}, index=date_range("20130101", periods=50, freq="H") ) # in-range data dft = df.between_time("09:00", "16:00") r = dft.rolling(window="5H") result = getattr(r, f)() # we need to roll the days separately # to compare with a time-based roll # finally groupby-apply will return a multi-index # so we need to drop the day def agg_by_day(x): x = x.between_time("09:00", "16:00") return getattr(x.rolling(5, min_periods=1), f)() expected = ( df.groupby(df.index.day).apply(agg_by_day).reset_index(level=0, drop=True) ) tm.assert_frame_equal(result, expected) def test_groupby_monotonic(self): # GH 15130 # we don't need to validate monotonicity when grouping data = [ ["David", "1/1/2015", 100], ["David", "1/5/2015", 500], ["David", "5/30/2015", 50], ["David", "7/25/2015", 50], ["Ryan", "1/4/2014", 100], ["Ryan", "1/19/2015", 500], ["Ryan", "3/31/2016", 50], ["Joe", "7/1/2015", 100], ["Joe", "9/9/2015", 500], ["Joe", "10/15/2015", 50], ] df = DataFrame(data=data, columns=["name", "date", "amount"]) df["date"] = to_datetime(df["date"]) expected = ( df.set_index("date") .groupby("name") .apply(lambda x: x.rolling("180D")["amount"].sum()) ) result = df.groupby("name").rolling("180D", on="date")["amount"].sum() tm.assert_series_equal(result, expected) def test_non_monotonic(self): # GH 13966 (similar to #15130, closed by #15175) dates =
date_range(start="2016-01-01 09:30:00", periods=20, freq="s")
pandas.date_range
import random import unittest import numpy as np import pandas as pd from haychecker.chc.metrics import deduplication class TestDeduplication(unittest.TestCase): def test_singlecolumns_empty(self): df = pd.DataFrame() df["c1"] = [] df["c2"] = [] r1, r2 = deduplication(["c1", "c2"], df) self.assertEqual(r1, 100.) self.assertEqual(r2, 100.) def test_wholetable_empty(self): df = pd.DataFrame() df["c1"] = [] df["c2"] = [] r = deduplication(df=df)[0] self.assertEqual(r, 100.) def test_singlecolumns_allsame(self): df = pd.DataFrame() df["c1"] = [chr(0) for _ in range(100)] df["c2"] = [10 for _ in range(100)] df["c3"] = [20 / 0.7 for _ in range(100)] r1, r2, r3 = deduplication(["c1", "c2", "c3"], df) self.assertEqual(r1, 1.0) self.assertEqual(r2, 1.0) self.assertEqual(r3, 1.0) def test_wholetable_allsame(self): df = pd.DataFrame() df["c1"] = [chr(0) for _ in range(100)] df["c2"] = [10 for _ in range(100)] df["c3"] = [20 / 0.7 for _ in range(100)] r = deduplication(df=df)[0] self.assertEqual(r, 1.0) def test_singlecolumns_alldifferent(self): df = pd.DataFrame() df["c1"] = [chr(i) for i in range(100)] df["c2"] = [i for i in range(100)] df["c3"] = [i / 0.7 for i in range(100)] r1, r2, r3 = deduplication(["c1", "c2", "c3"], df) self.assertEqual(r1, 100.0) self.assertEqual(r2, 100.0) self.assertEqual(r3, 100.0) def test_wholetable_alldifferent(self): df = pd.DataFrame() df["c1"] = [chr(i) for i in range(100)] df["c2"] = [i for i in range(100)] df["c3"] = [i / 0.7 for i in range(100)] r = deduplication(df=df)[0] self.assertEqual(r, 100.0) def test_singlecolumns_partial(self): df =
pd.DataFrame()
pandas.DataFrame
"""New style (fast) tag count annos Use these for new projects. """ from mbf_genomics.annotator import Annotator from typing import Dict, List from pypipegraph import Job from mbf_genomics import DelayedDataFrame import numpy as np import pypipegraph as ppg import hashlib import pandas as pd import mbf_r import rpy2.robjects as ro import rpy2.robjects.numpy2ri as numpy2ri from pathlib import Path from dppd import dppd import dppd_plotnine # noqa:F401 from mbf_qualitycontrol import register_qc, QCCollectingJob, qc_disabled from mbf_genomics.util import ( parse_a_or_c_to_plot_name, parse_a_or_c_to_column, parse_a_or_c_to_anno, ) from pandas import DataFrame dp, X = dppd() # ## Base classes and strategies - skip these if you just care about using TagCount annotators class _CounterStrategyBase: cores_needed = 1 def extract_lookup(self, data): """Adapter for count strategies that have different outputs (e.g. one-hashmap-unstranded or two-hashmaps-one-forward-one-reversed) """ return data class CounterStrategyStrandedRust(_CounterStrategyBase): cores_needed = -1 name = "stranded" def __init__(self): self.disable_sanity_check = False def count_reads( self, interval_strategy, genome, bam_filename, bam_index_name, reverse=False, dump_matching_reads_filename=None, ): # bam_filename = bamfil intervals = interval_strategy._get_interval_tuples_by_chr(genome) gene_intervals = IntervalStrategyGene()._get_interval_tuples_by_chr(genome) from mbf_bam import count_reads_stranded if dump_matching_reads_filename: dump_matching_reads_filename = str(dump_matching_reads_filename) res = count_reads_stranded( bam_filename, bam_index_name, intervals, gene_intervals, matching_reads_output_bam_filename=dump_matching_reads_filename, ) self.sanity_check(res, bam_filename) return res def sanity_check(self, foward_and_reverse, bam_filename): if self.disable_sanity_check: return error_count = 0 forward, reverse = foward_and_reverse for gene_stable_id, forward_count in forward.items(): reverse_count = reverse.get(gene_stable_id, 0) if (reverse_count > 100) and (reverse_count > forward_count * 1.1): error_count += 1 if error_count > 0.1 * len(forward): raise ValueError( "Found at least %.2f%% of genes to have a reverse read count (%s) " "above 110%% of the exon read count (and at least 100 tags). " "This indicates that this lane (%s) should have been reversed before alignment. " "Set reverse_reads=True on your Lane object" % ( 100.0 * error_count / len(forward), self.__class__.__name__, bam_filename, ) ) def extract_lookup(self, data): """Adapter for count strategies that have different outputs (e.g. one-hashmap-unstranded or two-hashmaps-one-forward-one-reversed) """ return data[0] class CounterStrategyUnstrandedRust(_CounterStrategyBase): cores_needed = -1 name = "unstranded" def count_reads( self, interval_strategy, genome, bam_filename, bam_index_name, reverse=False, dump_matching_reads_filename=None, ): # bam_filename = bamfil if dump_matching_reads_filename: raise ValueError( "dump_matching_reads_filename not supoprted on this Counter" ) intervals = interval_strategy._get_interval_tuples_by_chr(genome) gene_intervals = IntervalStrategyGene()._get_interval_tuples_by_chr(genome) # chr -> [gene_id, strand, [start], [stops] from mbf_bam import count_reads_unstranded res = count_reads_unstranded( bam_filename, bam_index_name, intervals, gene_intervals ) return res class _IntervalStrategy: def get_interval_lengths_by_gene(self, genome): by_chr = self._get_interval_tuples_by_chr(genome) length_by_gene = {} for chr, tups in by_chr.items(): for tup in tups: # stable_id, strand, [starts], [stops] gene_stable_id = tup[0] length = 0 for start, stop in zip(tup[2], tup[3]): length += stop - start length_by_gene[gene_stable_id] = length return length_by_gene def _get_interval_tuples_by_chr(self, genome): # pragma: no cover raise NotImplementedError() def get_deps(self): return [] class IntervalStrategyGenomicRegion(_IntervalStrategy): """Used internally by _FastTagCounterGR""" def __init__(self, gr): self.gr = gr self.name = f"GR_{gr.name}" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} if self.gr.genome != genome: # pragma: no cover raise ValueError("Mismatched genomes") df = self.gr.df if not "strand" in df.columns: df = df.assign(strand=1) df = df[["chr", "start", "stop", "strand"]] if df.index.duplicated().any(): raise ValueError("index must be unique") for tup in df.itertuples(): result[tup.chr].append((str(tup[0]), tup.strand, [tup.start], [tup.stop])) return result class IntervalStrategyGene(_IntervalStrategy): """Count from TSS to TES""" name = "gene" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} gene_info = genome.df_genes for tup in gene_info[["chr", "start", "stop", "strand"]].itertuples(): result[tup.chr].append((tup[0], tup.strand, [tup.start], [tup.stop])) return result class IntervalStrategyExon(_IntervalStrategy): """count all exons""" name = "exon" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} for gene in genome.genes.values(): exons = gene.exons_merged result[gene.chr].append( (gene.gene_stable_id, gene.strand, list(exons[0]), list(exons[1])) ) return result class IntervalStrategyIntron(_IntervalStrategy): """count all introns""" name = "intron" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} for gene in genome.genes.values(): exons = gene.introns_strict result[gene.chr].append( (gene.gene_stable_id, gene.strand, list(exons[0]), list(exons[1])) ) return result class IntervalStrategyExonSmart(_IntervalStrategy): """For protein coding genes: count only in exons of protein-coding transcripts. For other genes: count all exons""" name = "exonsmart" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} for g in genome.genes.values(): e = g.exons_protein_coding_merged if len(e[0]) == 0: e = g.exons_merged result[g.chr].append((g.gene_stable_id, g.strand, list(e[0]), list(e[1]))) return result # Now the actual tag count annotators class TagCountCommonQC: def register_qc(self, genes): if not qc_disabled(): self.register_qc_distribution(genes) self.register_qc_pca(genes) # self.register_qc_cummulative(genes) def register_qc_distribution(self, genes): output_filename = genes.result_dir / self.qc_folder / "read_distribution.png" output_filename.parent.mkdir(exist_ok=True) def plot( output_filename, elements, qc_distribution_scale_y_name=self.qc_distribution_scale_y_name, ): df = genes.df df = dp(df).select({x.aligned_lane.name: x.columns[0] for x in elements}).pd if len(df) == 0: df = pd.DataFrame({"x": [0], "y": [0], "text": "no data"}) dp(df).p9().add_text("x", "y", "text").render(output_filename).pd else: plot_df = dp(df).melt(var_name="sample", value_name="count").pd plot = dp(plot_df).p9().theme_bw() print(df) # df.to_pickle(output_filename + '.pickle') if ((df > 0).sum(axis=0) > 1).any() and len(df) > 1: # plot = plot.geom_violin( # dp.aes(x="sample", y="count"), width=0.5, bw=0.1 # ) pass # oh so slow as of 20201019 if len(plot_df["sample"].unique()) > 1: plot = plot.annotation_stripes(fill_range=True) if (plot_df["count"] > 0).any(): # can't have a log boxplot with all nans (log(0)) plot = plot.scale_y_continuous( trans="log10", name=qc_distribution_scale_y_name, breaks=[1, 10, 100, 1000, 10000, 100_000, 1e6, 1e7], ) return ( plot.add_boxplot( x="sample", y="count", _width=0.1, _fill=None, _color="blue" ) .turn_x_axis_labels() .title("Raw read distribution") .hide_x_axis_title() .render_args(limitsize=False) .render(output_filename, width=0.2 * len(elements) + 1, height=4) ) return register_qc( QCCollectingJob(output_filename, plot) .depends_on(genes.add_annotator(self)) .add(self) ) def register_qc_pca(self, genes): output_filename = genes.result_dir / self.qc_folder / "pca.png" def plot(output_filename, elements): import sklearn.decomposition as decom if len(elements) == 1: xy = np.array([[0], [0]]).transpose() title = "PCA %s - fake / single sample" % genes.name else: pca = decom.PCA(n_components=2, whiten=False) data = genes.df[[x.columns[0] for x in elements]] data -= data.min() # min max scaling 0..1 data /= data.max() data = data[~pd.isnull(data).any(axis=1)] # can' do pca on NAN values if len(data): pca.fit(data.T) xy = pca.transform(data.T) title = "PCA %s\nExplained variance: x %.2f%%, y %.2f%%" % ( genes.name, pca.explained_variance_ratio_[0] * 100, pca.explained_variance_ratio_[1] * 100, ) else: xy = np.array( [[0] * len(elements), [0] * len(elements)] ).transpose() title = "PCA %s - fake / no rows" % genes.name plot_df = pd.DataFrame( {"x": xy[:, 0], "y": xy[:, 1], "label": [x.plot_name for x in elements]} ) print(plot_df) ( dp(plot_df) .p9() .theme_bw() .add_scatter("x", "y") .add_text( "x", "y", "label", # cool, this can go into an endless loop... # _adjust_text={ # "expand_points": (2, 2), # "arrowprops": {"arrowstyle": "->", "color": "red"}, # }, ) .scale_color_many_categories() .title(title) .render(output_filename, width=8, height=6) ) return register_qc( QCCollectingJob(output_filename, plot) .depends_on(genes.add_annotator(self)) .add(self) ) class _FastTagCounter(Annotator, TagCountCommonQC): def __init__( self, aligned_lane, count_strategy, interval_strategy, column_name, column_desc, dump_matching_reads_filename=None, ): if not hasattr(aligned_lane, "get_bam"): raise ValueError("_FastTagCounter only accepts aligned lanes!") self.aligned_lane = aligned_lane self.genome = self.aligned_lane.genome self.count_strategy = count_strategy self.interval_strategy = interval_strategy self.columns = [(column_name % (self.aligned_lane.name,)).strip()] self.cache_name = ( "FT_%s_%s" % (count_strategy.name, interval_strategy.name) + "_" + hashlib.md5(self.columns[0].encode("utf-8")).hexdigest() ) self.column_properties = {self.columns[0]: {"description": column_desc}} self.vid = aligned_lane.vid self.cores_needed = count_strategy.cores_needed self.plot_name = self.aligned_lane.name self.qc_folder = f"{self.count_strategy.name}_{self.interval_strategy.name}" self.qc_distribution_scale_y_name = "raw counts" self.dump_matching_reads_filename = dump_matching_reads_filename def calc(self, df): if ppg.inside_ppg(): data = self._data else: data = self.calc_data() lookup = self.count_strategy.extract_lookup(data) result = [] for gene_stable_id in df["gene_stable_id"]: result.append(lookup.get(gene_stable_id, 0)) result = np.array(result, dtype=np.float) return
pd.Series(result)
pandas.Series
import pandas as pd import os import matplotlib.pyplot as plt import numpy as np # This only gets run at the end of the season to update the stats def list_of_specific_files(r_then_file_directory): files = os.listdir(f"{r_then_file_directory}") new_file = [] for i in files: new_file.append(i) return new_file def year_season(): year = [] for file_number in range(len(list_of_specific_files(r"C:\Users\sabzu\Documents\Fantasy_EPL"))): year_in_file = list_of_specific_files(r"C:\Users\sabzu\Documents\Fantasy_EPL")[file_number] split_year_in_file = year_in_file.split(" ") for i in split_year_in_file: if 'xlsx' in i: y = i.split(".") year.append(y[0]) return year def weekly_stats(Df, player_name_from_class): for year in year_season(): weekly = pd.read_excel(rf"C:\Users\sabzu\Documents\Fantasy_EPL\EPL Season {year}.xlsx", sheet_name=player_name_from_class) weekly = weekly.iloc[:, 1:9] weekly.insert(0, "Year", [int(year)] * 38) df_cols = weekly.columns selected_cols = df_cols[2:] lists_of_weekly_stats = [] column = 2 for col in selected_cols: weekly_stat = [] row = 0 for i in weekly[col]: if i == weekly.iloc[0, column]: weekly_stat.append(i) row += 1 else: this = int(i) - weekly.iloc[(row - 1), column] weekly_stat.append(this) row += 1 lists_of_weekly_stats.append(weekly_stat) column += 1 for col in selected_cols: i = 0 weekly[f"Wkly_{col}"] = lists_of_weekly_stats[i] lists_of_weekly_stats.pop(0) weekly = weekly[ ['Year', 'Mp', 'Wkly_Wins', 'Wkly_Ties', 'Wkly_Loss', 'Wkly_Points', 'Wkly_Tot_GF', 'Wkly_Tot_GA', 'Wkly_GD']] weekly["Wkly_GF"] = weekly["Wkly_Tot_GF"] del weekly["Wkly_Tot_GF"] weekly["Wkly_GA"] = weekly["Wkly_Tot_GA"] del weekly["Wkly_Tot_GA"] if Df.empty: Df = weekly else: Df = pd.concat([Df, weekly]) return Df def player_total_stats(): player_totals = pd.DataFrame() cols, cols2 = df_all_time_player_standings.columns[1:7], df_all_time_player_standings.columns[8:12] cols = [i for i in cols] cols2 = [n for n in cols2] cols = cols+cols2 player = df_all_time_player_standings["Player"].unique() for i in cols[1:]: totals = [] for p in player: pdf = df_all_time_player_standings[df_all_time_player_standings[cols[0]] == p] summ = sum(pdf[i]) totals.append(summ) player_totals[i] = totals player_totals.insert(6,"Pts/G", (player_totals["Pts"] / player_totals["Mp"]).round(2)) player_totals.insert(0,"Player", player) player_totals.sort_values(["Pts", "GD"], ascending=False, inplace=True) return player_totals sab_wkly_stats_df = pd.DataFrame() sabastian_weekly_stats = weekly_stats(sab_wkly_stats_df, "Sabastian") df_team_standings = pd.DataFrame() for year in year_season(): team_standings = pd.read_excel( rf"C:\Users\sabzu\Documents\All EPL Project Files\Seasons\Fantasy Premier League {year}.xlsx", sheet_name="Standings") team_standings = team_standings.iloc[:20, 0:9] team_standings.insert(0, "Year", [int(year)] * 20) if df_team_standings.empty: df_team_standings = team_standings else: df_team_standings = pd.concat([df_team_standings, team_standings]) df_team_standings = df_team_standings.sort_values(["Pts", "GD"], ascending=False).reset_index(drop=True) df_team_Xstandings = pd.DataFrame() for year in year_season(): if int(year) > 2017: team_standings = pd.read_excel( rf"C:\Users\sabzu\Documents\All EPL Project Files\Seasons\Fantasy Premier League {year}.xlsx", sheet_name="Standings") team_standings = team_standings.iloc[:20, 10:19] team_standings.insert(0, "Year", [int(year)] * 20) if df_team_Xstandings.empty: df_team_Xstandings = team_standings else: df_team_Xstandings =
pd.concat([df_team_Xstandings, team_standings])
pandas.concat
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestNoNewAttributesMixin: def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") with pytest.raises(AttributeError): t.b = "test" assert not hasattr(t, "b") class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta("1 days"), Timedelta("2 days")] s = Series(vals) assert s.dtype == "timedelta64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timedelta) assert res == exp # period vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] s = Series(vals) assert s.dtype == "Period[M]" for res, exp in zip(s, vals): assert isinstance(res, pd.Period) assert res.freq == "M" assert res == exp @pytest.mark.parametrize( "array, expected_type, dtype", [ (np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), (np.array(["a", "b"]), np.ndarray, "object"), (pd.Categorical(["a", "b"]), pd.Categorical, "category"), ( pd.DatetimeIndex(["2017", "2018"], tz="US/Central"), DatetimeArray, "datetime64[ns, US/Central]", ), ( pd.PeriodIndex([2018, 2019], freq="A"), pd.core.arrays.PeriodArray, pd.core.dtypes.dtypes.PeriodDtype("A-DEC"), ), ( pd.IntervalIndex.from_breaks([0, 1, 2]), pd.core.arrays.IntervalArray, "interval", ), # This test is currently failing for datetime64[ns] and timedelta64[ns]. # The NumPy type system is sufficient for representing these types, so # we just use NumPy for Series / DataFrame columns of these types (so # we get consolidation and so on). # However, DatetimeIndex and TimedeltaIndex use the DateLikeArray # abstraction to for code reuse. # At the moment, we've judged that allowing this test to fail is more # practical that overriding Series._values to special case # Series[M8[ns]] and Series[m8[ns]] to return a DateLikeArray. pytest.param( pd.DatetimeIndex(["2017", "2018"]), np.ndarray, "datetime64[ns]", marks=[pytest.mark.xfail(reason="datetime _values", strict=True)], ), pytest.param( pd.TimedeltaIndex([10 ** 10]), np.ndarray, "m8[ns]", marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)], ), ], ) def test_values_consistent(array, expected_type, dtype): l_values = pd.Series(array)._values r_values = pd.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) tm.assert_equal(l_values, r_values) @pytest.mark.parametrize( "array, expected", [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(["0", "1"]), np.array(["0", "1"], dtype=object)), (pd.Categorical(["a", "a"]), np.array([0, 0], dtype="int8")), ( pd.DatetimeIndex(["2017-01-01T00:00:00"]), np.array(["2017-01-01T00:00:00"], dtype="M8[ns]"), ), ( pd.DatetimeIndex(["2017-01-01T00:00:00"], tz="US/Eastern"), np.array(["2017-01-01T05:00:00"], dtype="M8[ns]"), ), (pd.TimedeltaIndex([10 ** 10]), np.array([10 ** 10], dtype="m8[ns]")), ( pd.PeriodIndex(["2017", "2018"], freq="D"), np.array([17167, 17532], dtype=np.int64), ), ], ) def test_ndarray_values(array, expected): l_values = pd.Series(array)._ndarray_values r_values = pd.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected) @pytest.mark.parametrize("arr", [np.array([1, 2, 3])]) def test_numpy_array(arr): ser = pd.Series(arr) result = ser.array expected = PandasArray(arr) tm.assert_extension_array_equal(result, expected) def test_numpy_array_all_dtypes(any_numpy_dtype): ser = pd.Series(dtype=any_numpy_dtype) result = ser.array if
is_datetime64_dtype(any_numpy_dtype)
pandas.core.dtypes.common.is_datetime64_dtype
import time import argparse import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as patches from pathlib import Path import context from mhealth.utils.plotter_helper import save_figure from mhealth.utils.commons import create_progress_bar # Used if command-line option --parameters is not provided. DEFAULT_PARAMETERS = ["Temperatur", "Herzfrequenz", "Atemfrequenz"] # Data sources included in HF-AF_25052021.csv. VALIDATION_DATA_SOURCES = ["WELCHALLYN_MONITOR", "PHILIPS_GATEWAY"] # Half-ranges relevant for the validation: x +/- delta DELTAS = { "Atemfrequenz": 3, # ±3bpm "Herzfrequenz": 10, # ±10bpm "Temperatur": 0.5 # ±0.5°C } # Half-range of the for the timestamp delta, in minutes. DELTA_TS = 2.5 # ±2.5min # Devices are identified by the bed number they are used with. # In case of device breakdown (or other problems), some devices # were replaced by a device of another room. The below lookup # specifies which the bed ids (devices) must be renamed, as well # as the time range, between which the lookup applies. DEVICE_REPLACEMENT_LOOKUP = { # Alias True From To "2653F" : ("2655F", "2021-05-14 12:00:00+02:00", None), "2652F" : ("2656FL", "2021-05-18 00:00:00+02:00", None), "2661TL" : ("2661FL", "2021-05-20 00:00:00+02:00", None), "2664T" : ("2664F", "2021-05-12 00:00:00+02:00", None), "2665T" : ("2665F", None, "2021-05-19 10:30:00+02:00"), } # Expected value ranges per vital parameter. VALUE_RANGES = { "Atemfrequenz": [0, 35], "Herzfrequenz": [30, 130], "Temperatur": [35, 40], } BIN_WIDTHS = { "Atemfrequenz": 0.5, "Herzfrequenz": 1, "Temperatur": 0.01, } BIN_WIDTHS_VALID = { "Atemfrequenz": 1, "Herzfrequenz": 2, "Temperatur": 0.1, } def tic(): return time.time() def toc(label, start): diff = time.time()-start print(label + (": %.3f" % diff)) def check_dir(path): if not path.is_dir(): msg = "Requested folder does not exist: %s" raise FileNotFoundError(msg % path) def ensure_dir(path, exist_ok=True): path = Path(path) if not path.is_dir(): path.mkdir(parents=True, exist_ok=exist_ok) return path.is_dir() def apply_replacement_lookup(df): print("Applying device replacements...") def dt_to_str(dt): return "--" if dt is None else dt.strftime("%m.%d.%y %H:%M") for id_alias, replace_data in DEVICE_REPLACEMENT_LOOKUP.items(): id_true, repl_start, repl_stop = replace_data repl_start = pd.to_datetime(repl_start) repl_stop = pd.to_datetime(repl_stop) mask = ((df["Bettenstellplatz"]==id_alias) & ((repl_start is None) or df["Timestamp"]>=repl_start) & ((repl_stop is None) or df["Timestamp"]<=repl_stop)) df.loc[mask, "Bettenstellplatz"] = id_true print("%-6s => %-6s: %6d affected values in time range (%s, %s)" % (id_alias, id_true, mask.sum(), dt_to_str(repl_start), dt_to_str(repl_stop))) print() def read_validation_data(data_dir): def no_whitespace(s): return s.replace(" ", "") def fix_time(s): return s.replace(".", ":") def form_timestamp(df, col_date, col_time): timestamp = df[col_date] + " " + df[col_time] timestamp = pd.to_datetime(timestamp, dayfirst=True) timestamp = timestamp.dt.tz_localize("Europe/Zurich").copy() timestamp[(df[col_date]=="") | (df[col_time]=="")] = None return timestamp def format_manual(df, timestamp, parameter): df_ret = df[["Bettenstellplatz", parameter, "Bemerkungen", "Abweichung_Trageort"]].copy() df_ret = df_ret.rename({parameter: "Wert"}, axis=1) icol = df_ret.columns.get_loc("Wert") df_ret.insert(loc=icol, column="Vitalparameter", value=parameter) df_ret.insert(loc=0, column="Timestamp", value=timestamp) df_ret = df_ret[~df_ret["Wert"].isna()].copy() return df_ret def read_station_data(valid_dir): file_path = valid_dir/"HF-AF_25052021.csv" df = pd.read_csv(file_path, converters={"Signatur": str.strip, "Bettenstellplatz": str.strip}) df = df[df["Signatur"].isin(VALIDATION_DATA_SOURCES)] timestamp = form_timestamp(df=df, col_date="Datum", col_time="Zeit") df.insert(loc=0, column="Timestamp", value=timestamp) df = df.drop(["Datum", "Zeit"], axis=1) # Transform to long format. df = df.melt(id_vars=["Timestamp", "Bettenstellplatz", "Signatur"], value_vars=["Herzfrequenz", "Atemfrequenz", "Temperatur"], var_name="Vitalparameter", value_name="Wert") df = df[~df["Wert"].isna()].copy() df["Bemerkungen"] = "" df["Abweichung_Trageort"] = "" return df def read_manual_data(valid_dir): file_path = valid_dir/"Validierung_Daten_manuell_Mai2021_alle.csv" df = pd.read_csv(file_path, converters={"Bettenstellplatz": no_whitespace, "Zeit_AF": fix_time, "Zeit_HF": fix_time, "Bemerkungen": str.strip, "Abweichung_Trageort": str.strip}) # Atemfrequenz ts = form_timestamp(df=df, col_date="Datum", col_time="Zeit_AF") df_a = format_manual(df=df, timestamp=ts, parameter="Atemfrequenz") # Herzfrequenz ts = form_timestamp(df=df, col_date="Datum", col_time="Zeit_HF") df_h = format_manual(df=df, timestamp=ts, parameter="Herzfrequenz") # Temperatur (Zeit_Temp, use Zeit_HF is missing!) ts = form_timestamp(df=df, col_date="Datum", col_time="Zeit_HF") df_t = format_manual(df=df, timestamp=ts, parameter="Temperatur") df = pd.concat((df_a, df_h, df_t), axis=0) df["Signatur"] = "MANUELL" return df print("Reading Validation data...") valid_dir = data_dir/"original"/"validation" check_dir(valid_dir) df_station = read_station_data(valid_dir=valid_dir) df_manual = read_manual_data(valid_dir=valid_dir) df_valid = pd.concat((df_station, df_manual), axis=0) df_valid = df_valid.sort_values(["Bettenstellplatz", "Timestamp"]) return df_valid def read_baslerband_data(data_dir, n_max=None): def read_bb_file(path): # Sample path: # ../2021-05-25/2617_FL/basler_band_DB_B4_2C_E5_CC_45_activity_file.csv bed_id = path.parent.name.replace("_", "") if bed_id == "2668": bed_id = "2668E" device_id = path.stem device_id = device_id.replace("basler_band_", "") device_id = device_id.replace("_activity_file", "") df = pd.read_csv(path, index_col=[0], parse_dates=[0], sep=";") df.index.name = "Timestamp" # Filter by quality as specified df = df[df["wearing"]==4] df = df[["resp_filtered", "hrm_filtered",]] df = df.rename({"resp_filtered": "Atemfrequenz", "hrm_filtered": "Herzfrequenz"}, axis=1) df["Bettenstellplatz"] = bed_id df["DeviceID"] = device_id df["Signatur"] = "BASLER_BAND" df = df.reset_index(drop=False) return df print("Reading Basler Band data...") bb_dir = data_dir/"original"/"basler_band" check_dir(bb_dir) files = bb_dir.glob("**/basler_band*activity_file.csv") files = sorted(files) dfs = [] progress = create_progress_bar(size=len(files), label="Processing...") for i, path in enumerate(files): if i>=n_max: break progress.update(i) df = read_bb_file(path=path) dfs.append(df) progress.finish() df =
pd.concat(dfs, axis=0)
pandas.concat