prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import rba import copy import pandas import time import numpy import seaborn import matplotlib.pyplot as plt from .rba_Session import RBA_Session from sklearn.linear_model import LinearRegression # import matplotlib.pyplot as plt def find_ribosomal_proteins(rba_session, model_processes=['TranslationC', 'TranslationM'], external_annotations=None): out = [] for i in model_processes: out += [rba_session.ModelStructure.ProteinInfo.Elements[j]['ProtoID'] for j in list(rba_session.ModelStructure.ProcessInfo.Elements[i]['Composition'].keys()) if j in rba_session.ModelStructure.ProteinInfo.Elements.keys()] if external_annotations is not None: out += list(external_annotations['ID']) return(list(set(out))) def build_model_compartment_map(rba_session): out = {rba_session.ModelStructure.ProteinInfo.Elements[i]['ProtoID']: rba_session.ModelStructure.ProteinInfo.Elements[i]['Compartment'] for i in list( rba_session.ModelStructure.ProteinInfo.Elements.keys())} return(out) def build_compartment_annotations(Compartment_Annotations_external, model_protein_compartment_map): for i in Compartment_Annotations_external.index: if Compartment_Annotations_external.loc[i, 'ID'] in list(model_protein_compartment_map.keys()): Compartment_Annotations_external.loc[i, 'modelproteinannotation'] = 1 else: Compartment_Annotations_external.loc[i, 'modelproteinannotation'] = 0 Compartment_Annotations_internal = pandas.DataFrame() Compartment_Annotations_internal['ID'] = list(model_protein_compartment_map.keys()) Compartment_Annotations_internal['ModelComp'] = list(model_protein_compartment_map.values()) Compartment_Annotations = pandas.concat( [Compartment_Annotations_internal, Compartment_Annotations_external.loc[Compartment_Annotations_external['modelproteinannotation'] == 0, ['ID', 'ModelComp']]], axis=0) return(Compartment_Annotations) def build_dataset_annotations(input, ID_column, Uniprot, Compartment_Annotations, model_protein_compartment_map, ribosomal_proteins): print('riboprots-----------------') print(ribosomal_proteins) out = pandas.DataFrame() for g in list(input[ID_column]): out.loc[g, 'ID'] = g matches = [i for i in list(Uniprot.loc[pandas.isna( Uniprot['Gene names']) == False, 'Gene names']) if g in i] mass_prot = numpy.nan if len(matches) > 0: mass_prot = len(Uniprot.loc[Uniprot['Gene names'] == matches[0], 'Sequence'].values[0]) out.loc[g, 'AA_residues'] = mass_prot if g in list(Compartment_Annotations['ID']): out.loc[g, 'Location'] = Compartment_Annotations.loc[Compartment_Annotations['ID'] == g, 'ModelComp'].values[0] in_model = 0 if g in model_protein_compartment_map.keys(): in_model = 1 is_ribosomal = 0 if g in ribosomal_proteins: is_ribosomal = 1 out.loc[g, 'InModel'] = in_model out.loc[g, 'IsRibosomal'] = is_ribosomal return(out) def build_full_annotations_from_dataset_annotations(annotations_list): out = pandas.concat(annotations_list, axis=0) index = out.index is_duplicate = index.duplicated(keep="first") not_duplicate = ~is_duplicate out = out[not_duplicate] return(out) def infer_copy_numbers_from_reference_copy_numbers(fold_changes, absolute_data, matching_column_in_fold_change_data, matching_column_in_absolute_data, conditions_in_fold_change_data_to_restore): out = pandas.DataFrame() for i in list(absolute_data['Gene']): if i in list(fold_changes['Gene']): FoldChange_match = fold_changes.loc[fold_changes['Gene'] == i, matching_column_in_fold_change_data].values[0] CopyNumber_match = absolute_data.loc[absolute_data['Gene'] == i, matching_column_in_absolute_data].values[0] if not pandas.isna(FoldChange_match): if not pandas.isna(CopyNumber_match): out.loc[i, 'ID'] = i out.loc[i, 'Absolute_Reference'] = CopyNumber_match/(2**FoldChange_match) for gene in list(out['ID']): Abs_Ref = out.loc[gene, 'Absolute_Reference'] for condition in conditions_in_fold_change_data_to_restore: out.loc[gene, condition] = Abs_Ref * \ (2**fold_changes.loc[fold_changes['Gene'] == gene, condition].values[0]) return(out) def add_annotations_to_proteome(input, ID_column, annotations): for i in input.index: if input.loc[i, ID_column] in annotations.index: input.loc[i, 'AA_residues'] = annotations.loc[input.loc[i, ID_column], 'AA_residues'] input.loc[i, 'Location'] = annotations.loc[input.loc[i, ID_column], 'Location'] input.loc[i, 'InModel'] = annotations.loc[input.loc[i, ID_column], 'InModel'] input.loc[i, 'IsRibosomal'] = annotations.loc[input.loc[i, ID_column], 'IsRibosomal'] return(input) def determine_compartment_occupation(Data, Condition, mass_col='AA_residues', only_in_model=False, compartments_to_ignore=['DEF'], compartments_no_original_PG=[], ribosomal_proteins_as_extra_compartment=True): for i in compartments_to_ignore: Data = Data.loc[Data['Location'] != i] for i in compartments_no_original_PG: Data = Data.loc[(Data['Location'] != i) | (Data['InModel'] == 1)] if only_in_model: Data = Data.loc[Data['InModel'] >= 1] if ribosomal_proteins_as_extra_compartment: Data_R = Data.loc[Data['IsRibosomal'] == 1].copy() Data = Data.loc[Data['IsRibosomal'] == 0] Data_R_df = Data_R.loc[:, [Condition, mass_col, 'Location']] Data_R_df[Condition] = Data_R_df[Condition]*Data_R_df[mass_col] Ribosomal_sum = Data_R_df[Condition].sum() df = Data.loc[:, [Condition, mass_col, 'Location']] df[Condition] = df[Condition]*df[mass_col] out = pandas.DataFrame(df.groupby('Location').sum()) if ribosomal_proteins_as_extra_compartment: out.loc['Ribosomes', Condition] = Ribosomal_sum out.loc['Total', Condition] = out[Condition].sum() out.loc[:, 'original_protein_fraction'] = out[Condition]/out.loc['Total', Condition] out.rename(columns={Condition: 'original_amino_acid_occupation'}, inplace=True) out.drop(columns=['AA_residues'], inplace=True) return(out) def build_proteome_overview(input, condition, compartments_to_ignore=['DEF', 'DEFA', 'Def'], compartments_no_original_PG=['n', 'Secreted'], ribosomal_proteins_as_extra_compartment=True): out = determine_compartment_occupation(Data=input, Condition=condition, compartments_to_ignore=compartments_to_ignore, compartments_no_original_PG=compartments_no_original_PG, ribosomal_proteins_as_extra_compartment=ribosomal_proteins_as_extra_compartment, only_in_model=False) out_in_model = determine_compartment_occupation(Data=input, Condition=condition, compartments_to_ignore=compartments_to_ignore, compartments_no_original_PG=compartments_no_original_PG, ribosomal_proteins_as_extra_compartment=ribosomal_proteins_as_extra_compartment, only_in_model=True) out['original_PG_fraction'] = 1-out_in_model['original_amino_acid_occupation'] / \ out['original_amino_acid_occupation'] return(out) def determine_correction_factor_A(fractions_entirely_replaced_with_expected_value): expected_fraction_sum = 0 for i in fractions_entirely_replaced_with_expected_value.keys(): expected_fraction_sum += fractions_entirely_replaced_with_expected_value[i] factor = 1/(1-expected_fraction_sum) return(factor) def determine_correction_factor_B(imposed_compartment_fractions): expected_fractions = 0 for i in imposed_compartment_fractions.keys(): expected_fractions += imposed_compartment_fractions[i] factor = 1-expected_fractions return(factor) def determine_correction_factor_C(input, condition, reference_condition): return(input.loc[input['ID'] == 'Total_protein', condition].values[0]/input.loc[input['ID'] == 'Total_protein', reference_condition].values[0]) def correct_protein_fractions(input, factors, directly_corrected_compartments, imposed_compartment_fractions): out = input.copy() for c in out.index: if c in directly_corrected_compartments: out.loc[c, 'new_protein_fraction'] = out.loc[c, 'original_protein_fraction']*factors['A']*factors['B'] elif c in imposed_compartment_fractions.keys(): out.loc[c, 'new_protein_fraction'] = imposed_compartment_fractions[c] return(out) def correct_PG_fraction(input, factors, compartments_no_original_PG, merged_compartments): out = input.copy() for c in out.index: if c == 'Total': continue else: if c in compartments_no_original_PG: original_fraction = out.loc[c, 'original_protein_fraction'] out.loc[c, 'new_PG_fraction'] = 1 - ((factors['A']*factors['B']*original_fraction) / out.loc[c, 'new_protein_fraction']) elif c in merged_compartments.keys(): out.loc[c, 'new_PG_fraction'] = out.loc[c, 'original_PG_fraction']*out.loc[c, 'original_protein_fraction']/( out.loc[c, 'original_protein_fraction']+out.loc[merged_compartments[c], 'original_protein_fraction']) else: out.loc[c, 'new_PG_fraction'] = out.loc[c, 'original_PG_fraction'] return(out) def merge_compartments(input, merged_compartments): out = input.copy() for c in merged_compartments.keys(): out.loc[c, 'new_protein_fraction'] = out.loc[c, 'new_protein_fraction'] + \ out.loc[merged_compartments[c], 'new_protein_fraction'] return(out) def calculate_new_total_PG_fraction(input): out = input.copy() fraction = 0 for c in out.index: if c not in ['Total', 'Ribosomes']: fraction += out.loc[c, 'new_protein_fraction']*out.loc[c, 'new_PG_fraction'] out.loc['Total', 'new_PG_fraction'] = fraction out.loc['Total', 'new_protein_fraction'] = 1 return(out) def determine_apparent_process_efficiencies(growth_rate, input, rba_session, proteome_summary, protein_data, condition, gene_id_col): process_efficiencies = pandas.DataFrame() for i in input.index: process_ID = input.loc[i, 'Process_ID'] process_name = input.loc[i, 'Process_Name'] process_client_compartments = input.loc[i, 'Client_Compartments'].split(' , ') constituting_proteins = {rba_session.ModelStructure.ProteinInfo.Elements[i]['ProtoID']: rba_session.ModelStructure.ProteinInfo.Elements[ i]['AAnumber'] for i in rba_session.ModelStructure.ProcessInfo.Elements[process_name]['Composition'].keys()} Total_client_fraction = sum([proteome_summary.loc[i, 'new_protein_fraction'] for i in process_client_compartments]) n_AAs_in_machinery = 0 machinery_size = 0 for i in constituting_proteins.keys(): if i in protein_data['ID']: protein_data.loc[protein_data['ID'] == i, ] n_AAs_in_machinery += protein_data.loc[protein_data['ID'] == i, condition].values[0] * \ protein_data.loc[protein_data['ID'] == i, 'AA_residues'].values[0] machinery_size += constituting_proteins[i] # right reference amounth? if n_AAs_in_machinery > 0: relative_Protein_fraction_of_machinery = n_AAs_in_machinery / \ proteome_summary.loc['Total', 'original_amino_acid_occupation'] specific_capacity = growth_rate*Total_client_fraction/relative_Protein_fraction_of_machinery apparent_capacity = specific_capacity*machinery_size # process_ID[process_name] = apparent_capacity process_efficiencies.loc[process_name, 'Process'] = process_ID process_efficiencies.loc[process_name, 'Parameter'] = str( process_ID+'_apparent_efficiency') process_efficiencies.loc[process_name, 'Value'] = apparent_capacity return(process_efficiencies) def correction_pipeline(input, condition, compartments_to_ignore, compartments_no_original_PG, fractions_entirely_replaced_with_expected_value, imposed_compartment_fractions, directly_corrected_compartments, merged_compartments): out = build_proteome_overview(input=input, condition=condition, compartments_to_ignore=compartments_to_ignore, compartments_no_original_PG=compartments_no_original_PG, ribosomal_proteins_as_extra_compartment=True) factor_A = determine_correction_factor_A(fractions_entirely_replaced_with_expected_value={ i: imposed_compartment_fractions[i] for i in fractions_entirely_replaced_with_expected_value}) factor_B = determine_correction_factor_B( imposed_compartment_fractions=imposed_compartment_fractions) out = correct_protein_fractions(input=out, factors={ 'A': factor_A, 'B': factor_B}, directly_corrected_compartments=directly_corrected_compartments, imposed_compartment_fractions=imposed_compartment_fractions) out = correct_PG_fraction(input=out, factors={ 'A': factor_A, 'B': factor_B}, compartments_no_original_PG=compartments_no_original_PG, merged_compartments=merged_compartments) out = merge_compartments(input=out, merged_compartments=merged_compartments) out = calculate_new_total_PG_fraction(input=out) out.to_csv(str('Correction_overview_'+condition+'.csv')) return({'Summary': out, 'Correction_factors': {'A': factor_A, 'B': factor_B}}) def build_input_for_default_kapp_estimation(input): out = pandas.DataFrame(columns=['Compartment_ID', 'Density', 'PG_fraction']) for i in input['Summary'].index: if i not in ['Total', 'Ribosomes']: out.loc[i, 'Compartment_ID'] = i out.loc[i, 'Density'] = input['Summary'].loc[i, 'new_protein_fraction'] out.loc[i, 'PG_fraction'] = input['Summary'].loc[i, 'new_PG_fraction'] return(out) def flux_bounds_from_input(input, condition, specific_exchanges=None): flux_mean_df = input.loc[input['Type'] == 'ExchangeFlux_Mean', :] flux_mean_SE = input.loc[input['Type'] == 'ExchangeFlux_StandardError', :] out = pandas.DataFrame(columns=['Reaction_ID', 'LB', 'UB']) if specific_exchanges is None: exchanges_to_set = list(flux_mean_df['ID']) else: exchanges_to_set = specific_exchanges for rx in exchanges_to_set: mean_val = flux_mean_df.loc[flux_mean_df['ID'] == rx, condition].values[0] if not
pandas.isna(mean_val)
pandas.isna
# -*- coding: utf-8 -*- """ Created on Wed Mar 4 15:42:23 2020 @author: MichaelEK """ import pandas as pd import numpy as np import json from pdsf import sflake as sf from utils import split_months def agg_allo(param, allo, use_mapping): """ """ run_time_start =
pd.Timestamp.today()
pandas.Timestamp.today
# -*- coding: utf-8 -*- """ .. module:: skimpy :platform: Unix, Windows :synopsis: Simple Kinetic Models in Python .. moduleauthor:: SKiMPy team [---------] Copyright 2017 Laboratory of Computational Systems Biotechnology (LCSB), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from ..viz.plotting import timetrace_plot, plot_population_per_variable from ..utils import TabDict,iterable_to_tabdict from copy import deepcopy import pandas as pd # Class for ode solutions class ODESolution: def __init__(self, model, solution): self.ode_solution = solution self.time = np.array(solution.values.t) self.species = np.array(solution.values.y) self.names = [x for x in model.ode_fun.variables] # TODO: Cleanup this concentrations = iterable_to_tabdict([]) for this_species, this_name in zip(self.species.T, self.names): concentrations[this_name] = this_species self.concentrations = pd.DataFrame.from_dict(concentrations, orient='columns') def plot(self, filename='', **kwargs): timetrace_plot(self.time, self.species, filename, legend=self.names, **kwargs) def copy(self): return deepcopy(self) class ODESolutionPopulation: def __init__(self, list_of_solutions, index=None): sol_cols = list(list_of_solutions[0].concentrations.keys()) self.data =
pd.DataFrame(columns=['solution_id', 'time']+sol_cols)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_preprocessing ---------------------------------- Tests for `preprocessing` module. """ import pytest from sktutor.preprocessing import (GroupByImputer, MissingValueFiller, OverMissingThresholdDropper, ValueReplacer, FactorLimiter, SingleValueAboveThresholdDropper, SingleValueDropper, ColumnExtractor, ColumnDropper, DummyCreator, ColumnValidator, TextContainsDummyExtractor, BitwiseOperator, BoxCoxTransformer, InteractionCreator, StandardScaler, PolynomialFeatures, ContinuousFeatureBinner, TypeExtractor, GenericTransformer, MissingColumnsReplacer) from sktutor.pipeline import make_union import numpy as np import pandas as pd import pandas.util.testing as tm from random import shuffle from sklearn.pipeline import make_pipeline @pytest.mark.usefixtures("missing_data") @pytest.mark.usefixtures("missing_data2") class TestGroupByImputer(object): def test_groups_most_frequent(self, missing_data): # Test imputing most frequent value per group. prep = GroupByImputer('most_frequent', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 7.0, 9.0, 9.0, 9.0], 'd': ['a', 'a', 'a', None, 'e', 'f', 'j', 'h', 'j', 'j'], 'e': [1, 2, 1, None, None, None, None, None, None, None], 'f': ['a', 'b', 'a', None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_mean(self, missing_data): # Test imputing mean by group. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7 + 2/3, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_median(self, missing_data): # Test imputing median by group. prep = GroupByImputer('median', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 1.5, 4, 4, 4, 7, 9, 9, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_most_frequent(self, missing_data): # Test imputing most frequent with no group by. prep = GroupByImputer('most_frequent') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, 2, 4, 4, 7, 8, 2, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 7.0, 9.0, 4.0, 9.0], 'd': ['a', 'a', 'a', 'a', 'e', 'f', 'a', 'h', 'j', 'j'], 'e': [1, 2, 1, 1, 1, 1, 1, 1, 1, 1], 'f': ['a', 'b', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_mean(self, missing_data): # Test imputing mean with no group by. prep = GroupByImputer('mean') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 5, 5, 4, 4, 7, 8, 5, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 5, 4, 4, 4, 7, 9, 5, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_median(self, missing_data): # Test imputing median with no group by. prep = GroupByImputer('median') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 4, 4, 4, 4, 7, 8, 4, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 4, 4, 4, 4, 7, 9, 4, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_value_error(self, missing_data): # Test limiting options without a group by. prep = GroupByImputer('stdev') with pytest.raises(ValueError): prep.fit(missing_data) def test_key_error(self, missing_data): # Test imputing with np.nan when a new group level is introduced in # Transform. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) new_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } new_data = pd.DataFrame(new_dict) # set equal to the expected for test means group exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7+2/3, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) result = prep.transform(new_data) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_most_frequent(self, missing_data2): # Test most frequent with group by with 2 columns. prep = GroupByImputer('most_frequent', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', 'a', 'e', 'e', 'f', 'f', 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_mean(self, missing_data2): # Test mean with group by with 2 columns. prep = GroupByImputer('mean', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1.5, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_median(self, missing_data2): # Test median with group by with 2 columns. prep = GroupByImputer('median', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1.5, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_unordered_index(self, missing_data): # Test unordered index is handled properly new_index = list(missing_data.index) shuffle(new_index) missing_data.index = new_index prep = GroupByImputer('most_frequent', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 7.0, 9.0, 9.0, 9.0], 'd': ['a', 'a', 'a', None, 'e', 'f', 'j', 'h', 'j', 'j'], 'e': [1, 2, 1, None, None, None, None, None, None, None], 'f': ['a', 'b', 'a', None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("missing_data_factors") @pytest.mark.usefixtures("missing_data_numeric") class TestMissingValueFiller(object): def test_missing_factors(self, missing_data_factors): # Test filling in missing factors with a string. prep = MissingValueFiller('Missing') result = prep.fit_transform(missing_data_factors) exp_dict = {'c': ['a', 'Missing', 'a', 'b', 'b', 'Missing', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', 'Missing', 'Missing', 'e', 'f', 'Missing', 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_missing_numeric(self, missing_data_numeric): # Test filling in missing numeric data with a number. prep = MissingValueFiller(0) result = prep.fit_transform(missing_data_numeric) exp_dict = {'a': [2, 2, 0, 0, 4, 4, 7, 8, 0, 8], 'c': [1, 2, 0, 4, 4, 4, 7, 9, 0, 9], 'e': [1, 2, 0, 0, 0, 0, 0, 0, 0, 0] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_unordered_index(self, missing_data_numeric): # Test unordered index is handled properly new_index = list(missing_data_numeric.index) shuffle(new_index) missing_data_numeric.index = new_index prep = MissingValueFiller(0) result = prep.fit_transform(missing_data_numeric) exp_dict = {'a': [2, 2, 0, 0, 4, 4, 7, 8, 0, 8], 'c': [1, 2, 0, 4, 4, 4, 7, 9, 0, 9], 'e': [1, 2, 0, 0, 0, 0, 0, 0, 0, 0] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("missing_data") class TestOverMissingThresholdDropper(object): def test_drop_20(self, missing_data): # Test dropping columns with missing over a threshold. prep = OverMissingThresholdDropper(.2) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_threshold_high_value_error(self, missing_data): # Test throwing error with threshold set too high. with pytest.raises(ValueError): svatd = OverMissingThresholdDropper(1.5) svatd def test_threshold_low_value_error(self, missing_data): # Test throwing error with threshold set too low. with pytest.raises(ValueError): svatd = OverMissingThresholdDropper(-1) svatd def test_unordered_index(self, missing_data): # Test unordered index is handled properly new_index = list(missing_data.index) shuffle(new_index) missing_data.index = new_index prep = OverMissingThresholdDropper(.2) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("full_data_factors") class TestValueReplacer(object): def test_mapper(self, full_data_factors): # Test replacing values with mapper. mapper = {'c': {'a': 'z', 'b': 'z'}, 'd': {'a': 'z', 'b': 'z', 'c': 'y', 'd': 'y', 'e': 'x', 'f': 'x', 'g': 'w', 'h': 'w', 'j': 'w' } } prep = ValueReplacer(mapper) prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = {'c': ['z', 'z', 'z', 'z', 'z', 'c', 'c', 'z', 'z', 'c'], 'd': ['z', 'z', 'y', 'y', 'x', 'x', 'w', 'w', 'w', 'w'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_inverse_mapper(self, full_data_factors): # Test replacing values with inverse_mapper. inv_mapper = {'c': {'z': ['a', 'b']}, 'd': {'z': ['a', 'b'], 'y': ['c', 'd'], 'x': ['e', 'f'], 'w': ['g', 'h', 'j'] } } prep = ValueReplacer(inverse_mapper=inv_mapper) prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = {'c': ['z', 'z', 'z', 'z', 'z', 'c', 'c', 'z', 'z', 'c'], 'd': ['z', 'z', 'y', 'y', 'x', 'x', 'w', 'w', 'w', 'w'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_extra_column_value_error(self, full_data_factors): # Test throwing error when replacing values with a non-existant column. mapper = {'c': {'a': 'z', 'b': 'z'}, 'e': {'a': 'z', 'b': 'z', 'c': 'y', 'd': 'y', 'e': 'x', 'f': 'x', 'g': 'w', 'h': 'w', 'j': 'w' } } prep = ValueReplacer(mapper) with pytest.raises(ValueError): prep.fit(full_data_factors) def test_2_mappers_value_error(self): # Test throwing error when specifying mapper and inverse_mapper. mapper = {'c': {'a': 'z', 'b': 'z'}, 'e': {'a': 'z', 'b': 'z', 'c': 'y', 'd': 'y', 'e': 'x', 'f': 'x', 'g': 'w', 'h': 'w', 'j': 'w' } } inv_mapper = {'c': {'z': ['a', 'b']}, 'd': {'z': ['a', 'b'], 'y': ['c', 'd'], 'x': ['e', 'f'], 'w': ['g', 'h', 'j'] } } with pytest.raises(ValueError): prep = ValueReplacer(mapper=mapper, inverse_mapper=inv_mapper) prep def test_no_mappers_value_error(self): # Test throwing error when not specifying mapper or inverse_mapper. with pytest.raises(ValueError): prep = ValueReplacer() prep def test_unordered_index(self, full_data_factors): # Test unordered index is handled properly new_index = list(full_data_factors.index) shuffle(new_index) full_data_factors.index = new_index mapper = {'c': {'a': 'z', 'b': 'z'}, 'd': {'a': 'z', 'b': 'z', 'c': 'y', 'd': 'y', 'e': 'x', 'f': 'x', 'g': 'w', 'h': 'w', 'j': 'w' } } prep = ValueReplacer(mapper) prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = {'c': ['z', 'z', 'z', 'z', 'z', 'c', 'c', 'z', 'z', 'c'], 'd': ['z', 'z', 'y', 'y', 'x', 'x', 'w', 'w', 'w', 'w'] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("missing_data_factors") class TestFactorLimiter(object): def test_limiter(self, missing_data_factors): # Test limiting factor levels to specified levels with default. factors = {'c': {'factors': ['a', 'b'], 'default': 'a' }, 'd': {'factors': ['a', 'b', 'c', 'd'], 'default': 'd' } } prep = FactorLimiter(factors) prep.fit(missing_data_factors) result = prep.transform(missing_data_factors) exp_dict = {'c': ['a', 'a', 'a', 'b', 'b', 'a', 'a', 'a', 'a', 'a'], 'd': ['a', 'a', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_extra_column_value_error(self, missing_data_factors): # Test throwing error when limiting values with a non-existant column. factors = {'c': {'factors': ['a', 'b'], 'default': 'a' }, 'e': {'factors': ['a', 'b', 'c', 'd'], 'default': 'd' } } fl = FactorLimiter(factors) with pytest.raises(ValueError): fl.fit(missing_data_factors) def test_unordered_index(self, missing_data_factors): # Test unordered index is handled properly new_index = list(missing_data_factors.index) shuffle(new_index) missing_data_factors.index = new_index factors = {'c': {'factors': ['a', 'b'], 'default': 'a' }, 'd': {'factors': ['a', 'b', 'c', 'd'], 'default': 'd' } } prep = FactorLimiter(factors) prep.fit(missing_data_factors) result = prep.transform(missing_data_factors) exp_dict = {'c': ['a', 'a', 'a', 'b', 'b', 'a', 'a', 'a', 'a', 'a'], 'd': ['a', 'a', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd'] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("missing_data") class TestSingleValueAboveThresholdDropper(object): def test_drop_70_with_na(self, missing_data): # test dropping columns with over 70% single value, including NaNs. prep = SingleValueAboveThresholdDropper(.7, dropna=False) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_drop_70_without_na(self, missing_data): # test dropping columns with over 70% single value, not including NaNs. prep = SingleValueAboveThresholdDropper(.7, dropna=True) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_threshold_high_value_error(self, missing_data): # Test throwing error with threshold set too high. with pytest.raises(ValueError): prep = SingleValueAboveThresholdDropper(1.5) prep def test_threshold_low_value_error(self, missing_data): # Test throwing error with threshold set too low. with pytest.raises(ValueError): prep = SingleValueAboveThresholdDropper(-1) prep def test_unordered_index(self, missing_data): # Test unordered index is handled properly new_index = list(missing_data.index) shuffle(new_index) missing_data.index = new_index prep = SingleValueAboveThresholdDropper(.7, dropna=False) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("single_values_data") class TestSingleValueDropper(object): def test_without_na(self, single_values_data): # Test dropping columns with single values, excluding NaNs as a value. prep = SingleValueDropper(dropna=True) prep.fit(single_values_data) result = prep.transform(single_values_data) exp_dict = {'a': [2, 2, 2, 3, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'e': [1, 2, None, None, None, None, None, None, None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_with_na(self, single_values_data): # Test dropping columns with single values, including NaNs as a value. prep = SingleValueDropper(dropna=False) prep.fit(single_values_data) result = prep.transform(single_values_data) exp_dict = {'a': [2, 2, 2, 3, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'd': [1, 1, 1, 1, 1, 1, 1, 1, 1, None], 'e': [1, 2, None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_unordered_index(self, single_values_data): # Test unordered index is handled properly new_index = list(single_values_data.index) shuffle(new_index) single_values_data.index = new_index prep = SingleValueDropper(dropna=False) prep.fit(single_values_data) result = prep.transform(single_values_data) exp_dict = {'a': [2, 2, 2, 3, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'd': [1, 1, 1, 1, 1, 1, 1, 1, 1, None], 'e': [1, 2, None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("missing_data") class TestColumnExtractor(object): def test_extraction(self, missing_data): # Test extraction of columns from a DataFrame. prep = ColumnExtractor(['a', 'b', 'c']) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_column_missing_error(self, missing_data): # Test throwing error when an extraction is requested of a missing. # column prep = ColumnExtractor(['a', 'b', 'z']) with pytest.raises(ValueError): prep.fit(missing_data) def test_unordered_index(self, missing_data): # Test unordered index is handled properly new_index = list(missing_data.index) shuffle(new_index) missing_data.index = new_index prep = ColumnExtractor(['a', 'b', 'c']) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("missing_data") class TestColumnDropper(object): def test_drop_multiple(self, missing_data): # Test extraction of columns from a DataFrame prep = ColumnDropper(['d', 'e', 'f', 'g', 'h']) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_drop_single(self, missing_data): # Test extraction of columns from a DataFrame prep = ColumnDropper('d') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_error(self, missing_data): # Test throwing error when dropping is requested of a missing column prep = ColumnDropper(['a', 'b', 'z']) with pytest.raises(ValueError): prep.fit(missing_data) def test_unordered_index(self, missing_data): # Test unordered index is handled properly new_index = list(missing_data.index) shuffle(new_index) missing_data.index = new_index prep = ColumnDropper(['d', 'e', 'f', 'g', 'h']) prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("full_data_factors") @pytest.mark.usefixtures("full_data_factors_subset") @pytest.mark.usefixtures("missing_data_factors") class TestDummyCreator(object): def test_default_dummies(self, full_data_factors): # Test creating dummies variables from a DataFrame prep = DummyCreator() prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = {'c_a': [1, 1, 1, 0, 0, 0, 0, 1, 1, 0], 'c_b': [0, 0, 0, 1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 0, 0, 0, 1, 1, 0, 0, 1], 'd_a': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'd_b': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'd_c': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 'd_d': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 'd_e': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 'd_g': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'd_h': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_fit_transform(self, full_data_factors): # Test creating dummies variables from a DataFrame prep = DummyCreator() result = prep.fit_transform(full_data_factors) exp_dict = {'c_a': [1, 1, 1, 0, 0, 0, 0, 1, 1, 0], 'c_b': [0, 0, 0, 1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 0, 0, 0, 1, 1, 0, 0, 1], 'd_a': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'd_b': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'd_c': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 'd_d': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 'd_e': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 'd_g': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'd_h': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_drop_first_dummies(self, full_data_factors): # Test dropping first dummies for each column. kwargs = {'drop_first': True} prep = DummyCreator(**kwargs) prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = {'c_b': [0, 0, 0, 1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 0, 0, 0, 1, 1, 0, 0, 1], 'd_b': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'd_c': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 'd_d': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 'd_e': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 'd_g': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'd_h': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_drop_first_dummies_missing_levels(self, full_data_factors, full_data_factors_subset): # Test dropping first dummies for each column. kwargs = {'drop_first': True} prep = DummyCreator(**kwargs) prep.fit(full_data_factors) result = prep.transform(full_data_factors_subset) exp_dict = {'c_b': [1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 1, 1, 0, 0, 1], 'd_b': [0, 0, 0, 0, 0, 0, 0], 'd_c': [0, 0, 0, 0, 0, 0, 0], 'd_d': [1, 0, 0, 0, 0, 0, 0], 'd_e': [0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 1, 0, 0, 0, 0], 'd_g': [0, 0, 0, 1, 0, 0, 0], 'd_h': [0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 1, 1] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_dummy_na_false_dummies(self, missing_data_factors): # Test not creating dummies for NaNs. prep = DummyCreator() prep.fit(missing_data_factors) result = prep.transform(missing_data_factors) exp_dict = {'c_a': [1, 0, 1, 0, 0, 0, 0, 1, 1, 0], 'c_b': [0, 0, 0, 1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 0, 0, 0, 0, 1, 0, 0, 1], 'd_a': [1, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'd_e': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 'd_h': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_dummy_na_true_dummies(self, missing_data_factors): # Test creating dummies for NaNs. kwargs = {'dummy_na': True} prep = DummyCreator(**kwargs) prep.fit(missing_data_factors) result = prep.transform(missing_data_factors) exp_dict = {'c_a': [1, 0, 1, 0, 0, 0, 0, 1, 1, 0], 'c_b': [0, 0, 0, 1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 0, 0, 0, 0, 1, 0, 0, 1], 'c_nan': [0, 1, 0, 0, 0, 1, 0, 0, 0, 0], 'd_a': [1, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'd_e': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 'd_h': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1], 'd_nan': [0, 0, 1, 1, 0, 0, 1, 0, 0, 0] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_fillin_missing_dummies(self, full_data_factors): # Test filling missing dummies with a transform data missing levels # present in the fitting data set. prep = DummyCreator() prep.fit(full_data_factors) new_dict = {'c': ['b', 'c'], 'd': ['a', 'b'] } new_data = pd.DataFrame(new_dict) result = prep.transform(new_data) exp_dict = {'c_a': [0, 0], 'c_b': [1, 0], 'c_c': [0, 1], 'd_a': [1, 0], 'd_b': [0, 1], 'd_c': [0, 0], 'd_d': [0, 0], 'd_e': [0, 0], 'd_f': [0, 0], 'd_g': [0, 0], 'd_h': [0, 0], 'd_j': [0, 0] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_unordered_index(self, full_data_factors): # Test unordered index is handled properly new_index = list(full_data_factors.index) shuffle(new_index) full_data_factors.index = new_index prep = DummyCreator() prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = {'c_a': [1, 1, 1, 0, 0, 0, 0, 1, 1, 0], 'c_b': [0, 0, 0, 1, 1, 0, 0, 0, 0, 0], 'c_c': [0, 0, 0, 0, 0, 1, 1, 0, 0, 1], 'd_a': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'd_b': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'd_c': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 'd_d': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 'd_e': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'd_f': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], 'd_g': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'd_h': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'd_j': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("full_data_factors") class TestColumnValidator(object): def test_order(self, full_data_factors): # Test extraction of columns from a DataFrame prep = ColumnValidator() prep.fit(full_data_factors) new_dict = {'d': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'j'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'] } new_data = pd.DataFrame(new_dict) result = prep.transform(new_data) exp_dict = {'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_missing_columns_error(self, full_data_factors): # Test throwing an error when the new data is missing columns prep = ColumnValidator() prep.fit(full_data_factors) new_dict = {'d': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'j'] } new_data = pd.DataFrame(new_dict) with pytest.raises(ValueError): prep.transform(new_data) def test_new_columns_error(self, full_data_factors): # Test throwing an error when the new data is missing columns prep = ColumnValidator() prep.fit(full_data_factors) new_dict = {'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'j'], 'e': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'j'] } new_data = pd.DataFrame(new_dict) with pytest.raises(ValueError): prep.transform(new_data) def test_unordered_index(self, full_data_factors): # Test unordered index is handled properly new_index = list(full_data_factors.index) shuffle(new_index) full_data_factors.index = new_index prep = ColumnValidator() prep.fit(full_data_factors) result = prep.transform(full_data_factors) exp_dict = { 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.usefixtures("text_data") class TestTextContainsDummyExtractor(object): def test_mapper(self, text_data): # Test text contains dummy with mapper. mapper = {'a': {'a_1': [{'pattern': 'birthday', 'kwargs': {'case': False}}, {'pattern': 'bday', 'kwargs': {'case': False}} ], 'a_2': [{'pattern': 'b.*day', 'kwargs': {'case': False}} ], }, 'b': {'b_1': [{'pattern': 'h.*r', 'kwargs': {'case': False}} ], 'b_2': [{'pattern': '!', 'kwargs': {'case': False}}, ] } } prep = TextContainsDummyExtractor(mapper) prep.fit(text_data) result = prep.transform(text_data) exp_dict = {'a': ['Happy Birthday!', 'It\'s your bday!'], 'b': ['Happy Arbor Day!', 'Happy Gilmore'], 'c': ['a', 'b'], 'a_1': [1, 1], 'a_2': [1, 1], 'b_1': [1, 1], 'b_2': [1, 0] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_extra_column_value_error(self, text_data): # Test throwing error when replacing values with a non-existant column. mapper = {'a': {'a_1': [{'pattern': 'birthday', 'kwargs': {'case': False}}, {'pattern': 'bday', 'kwargs': {'case': False}} ], 'a_2': [{'pattern': 'b.*day', 'kwargs': {'case': False}} ], }, 'd': {'b_1': [{'pattern': 'h.*r', 'kwargs': {'case': False}} ], 'b_2': [{'pattern': '!', 'kwargs': {'case': False}}, ] } } prep = TextContainsDummyExtractor(mapper) with pytest.raises(ValueError): prep.fit(text_data) def test_unordered_index(self, text_data): # Test unordered index is handled properly new_index = list(text_data.index) shuffle(new_index) text_data.index = new_index mapper = {'a': {'a_1': [{'pattern': 'birthday', 'kwargs': {'case': False}}, {'pattern': 'bday', 'kwargs': {'case': False}} ], 'a_2': [{'pattern': 'b.*day', 'kwargs': {'case': False}} ], }, 'b': {'b_1': [{'pattern': 'h.*r', 'kwargs': {'case': False}} ], 'b_2': [{'pattern': '!', 'kwargs': {'case': False}}, ] } } prep = TextContainsDummyExtractor(mapper) prep.fit(text_data) result = prep.transform(text_data) exp_dict = {'a': ['Happy Birthday!', 'It\'s your bday!'], 'b': ['Happy Arbor Day!', 'Happy Gilmore'], 'c': ['a', 'b'], 'a_1': [1, 1], 'a_2': [1, 1], 'b_1': [1, 1], 'b_2': [1, 0] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) @pytest.mark.usefixtures("boolean_data") class TestBitwiseOperator(object): def test_operator_value_error(self, text_data): # Test throwing error when using invalid operator parameter mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } with pytest.raises(ValueError): prep = BitwiseOperator('with', mapper) prep def test_or_mapper_boolean(self, boolean_data): # Test bitwise or applied to booleans mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('or', mapper) prep.fit(boolean_data) result = prep.transform(boolean_data) exp_dict = {'a': [True, True, False, False], 'b': [True, False, False, True], 'c': [False, True, True, False], 'd': [True, False, True, False], 'e': [False, True, False, True], 'f': [1, 1, 1, 1], 'g': [1, 1, 0, 1], } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_or_mapper_binary(self, boolean_data): # Test bitwise or applied to integers mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('or', mapper) prep.fit(boolean_data) result = prep.transform(boolean_data) exp_dict = {'a': [1, 1, 0, 0], 'b': [1, 0, 0, 1], 'c': [0, 1, 1, 0], 'd': [1, 0, 1, 0], 'e': [0, 1, 0, 1], 'f': [1, 1, 1, 1], 'g': [1, 1, 0, 1], } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_or_extra_column_value_error(self, text_data): # Test throwing error when replacing values with a non-existant column. mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('or', mapper) with pytest.raises(ValueError): prep.fit(text_data) def test_and_mapper_boolean(self, boolean_data): # Test bitwise and applied to booleans mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('and', mapper) prep.fit(boolean_data) result = prep.transform(boolean_data) exp_dict = {'a': [True, True, False, False], 'b': [True, False, False, True], 'c': [False, True, True, False], 'd': [True, False, True, False], 'e': [False, True, False, True], 'f': [0, 0, 0, 0], 'g': [1, 0, 0, 0] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_and_mapper_binary(self, boolean_data): # Test bitwise and applied to integers mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('and', mapper) prep.fit(boolean_data) result = prep.transform(boolean_data) exp_dict = {'a': [1, 1, 0, 0], 'b': [1, 0, 0, 1], 'c': [0, 1, 1, 0], 'd': [1, 0, 1, 0], 'e': [0, 1, 0, 1], 'f': [0, 0, 0, 0], 'g': [1, 0, 0, 0] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_and_extra_column_value_error(self, text_data): # Test throwing error when replacing values with a non-existant column. mapper = {'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('and', mapper) with pytest.raises(ValueError): prep.fit(text_data) def test_unordered_index(self, boolean_data): # Test unordered index is handled properly new_index = list(boolean_data.index) shuffle(new_index) boolean_data.index = new_index mapper = { 'f': ['c', 'd', 'e'], 'g': ['a', 'b'] } prep = BitwiseOperator('or', mapper) prep.fit(boolean_data) result = prep.transform(boolean_data) exp_dict = {'a': [True, True, False, False], 'b': [True, False, False, True], 'c': [False, True, True, False], 'd': [True, False, True, False], 'e': [False, True, False, True], 'f': [1, 1, 1, 1], 'g': [1, 1, 0, 1], } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) @pytest.mark.usefixtures("full_data_numeric") class TestBoxCoxTransformer(object): def test_fit_transfrom(self, full_data_numeric): # test default functionalty prep = BoxCoxTransformer() result = prep.fit_transform(full_data_numeric) exp_dict = {'a': [0.71695113, 0.71695113, 0.71695113, 1.15921005, 1.48370246, 1.48370246, 2.1414305, 2.30371316, 2.30371316, 2.30371316], 'c': [0., 0.8310186, 1.47159953, 2.0132148, 2.0132148, 2.0132148, 3.32332097, 4.0444457, 4.0444457, 4.0444457], 'e': [0., 0.89952678, 1.67649211, 2.38322965, 3.04195191, 3.66477648, 4.25925117, 4.83048775, 5.38215505, 5.91700138] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_fit_then_transform(self, full_data_numeric): # test using fit then transform prep = BoxCoxTransformer() prep.fit(full_data_numeric) result = prep.transform(full_data_numeric) exp_dict = {'a': [0.71695113, 0.71695113, 0.71695113, 1.15921005, 1.48370246, 1.48370246, 2.1414305, 2.30371316, 2.30371316, 2.30371316], 'c': [0., 0.8310186, 1.47159953, 2.0132148, 2.0132148, 2.0132148, 3.32332097, 4.0444457, 4.0444457, 4.0444457], 'e': [0., 0.89952678, 1.67649211, 2.38322965, 3.04195191, 3.66477648, 4.25925117, 4.83048775, 5.38215505, 5.91700138] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_unordered_index(self, full_data_numeric): # Test unordered index is handled properly new_index = list(full_data_numeric.index) shuffle(new_index) full_data_numeric.index = new_index prep = BoxCoxTransformer() result = prep.fit_transform(full_data_numeric) exp_dict = {'a': [0.71695113, 0.71695113, 0.71695113, 1.15921005, 1.48370246, 1.48370246, 2.1414305, 2.30371316, 2.30371316, 2.30371316], 'c': [0., 0.8310186, 1.47159953, 2.0132148, 2.0132148, 2.0132148, 3.32332097, 4.0444457, 4.0444457, 4.0444457], 'e': [0., 0.89952678, 1.67649211, 2.38322965, 3.04195191, 3.66477648, 4.25925117, 4.83048775, 5.38215505, 5.91700138] } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) @pytest.mark.usefixtures("interaction_data") class TestInteractionCreator(object): def test_interactions(self, interaction_data): # test generation of interactions prep = InteractionCreator(columns1=['a', 'b'], columns2=['c', 'd', 'e']) result = prep.fit_transform(interaction_data) exp_dict = {'a': [2, 3, 4, 5], 'b': [1, 0, 0, 1], 'c': [0, 1, 1, 0], 'd': [1, 0, 1, 0], 'e': [0, 1, 0, 1], 'a:c': [0, 3, 4, 0], 'a:d': [2, 0, 4, 0], 'a:e': [0, 3, 0, 5], 'b:c': [0, 0, 0, 0], 'b:d': [1, 0, 0, 0], 'b:e': [0, 0, 0, 1] } expected = pd.DataFrame(exp_dict) print(result) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test__extra_column_value_error(self, interaction_data): # test value error with non-existent columns prep = InteractionCreator(columns1=['a', 'f'], columns2=['c', 'd', 'g']) with pytest.raises(ValueError): prep.fit_transform(interaction_data) def test_unordered_index(self, interaction_data): # Test unordered index is handled properly new_index = list(interaction_data.index) shuffle(new_index) interaction_data.index = new_index prep = InteractionCreator(columns1=['a', 'b'], columns2=['c', 'd', 'e']) result = prep.fit_transform(interaction_data) exp_dict = {'a': [2, 3, 4, 5], 'b': [1, 0, 0, 1], 'c': [0, 1, 1, 0], 'd': [1, 0, 1, 0], 'e': [0, 1, 0, 1], 'a:c': [0, 3, 4, 0], 'a:d': [2, 0, 4, 0], 'a:e': [0, 3, 0, 5], 'b:c': [0, 0, 0, 0], 'b:d': [1, 0, 0, 0], 'b:e': [0, 0, 0, 1] } expected = pd.DataFrame(exp_dict, index=new_index) print(result) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) @pytest.mark.usefixtures("full_data_numeric") class TestStandardScaler(object): def test_fit_transform(self, full_data_numeric): # test default functionalty prep = StandardScaler() result = prep.fit_transform(full_data_numeric) exp_dict = {'a': [-1.11027222, -1.11027222, -1.11027222, -0.71374643, -0.31722063, -0.31722063, 0.87235674, 1.26888254, 1.26888254, 1.26888254], 'c': [-1.45260037, -1.10674314, -0.76088591, -0.41502868, -0.41502868, -0.41502868, 0.62254302, 1.31425748, 1.31425748, 1.31425748], 'e': [-1.5666989, -1.21854359, -0.87038828, -0.52223297, -0.17407766, 0.17407766, 0.52223297, 0.87038828, 1.21854359, 1.5666989] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_fit_transform_defined_columns(self, full_data_numeric): # test defining which columns to apply standardization to prep = StandardScaler(columns=['a', 'e']) result = prep.fit_transform(full_data_numeric) exp_dict = { 'a': [-1.11027222, -1.11027222, -1.11027222, -0.71374643, -0.31722063, -0.31722063, 0.87235674, 1.26888254, 1.26888254, 1.26888254], 'c': [1, 2, 3, 4, 4, 4, 7, 9, 9, 9], 'e': [-1.5666989, -1.21854359, -0.87038828, -0.52223297, -0.17407766, 0.17407766, 0.52223297, 0.87038828, 1.21854359, 1.5666989] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_fit_then_transform(self, full_data_numeric): # test using fit then transform prep = StandardScaler() prep.fit(full_data_numeric) result = prep.transform(full_data_numeric) exp_dict = {'a': [-1.11027222, -1.11027222, -1.11027222, -0.71374643, -0.31722063, -0.31722063, 0.87235674, 1.26888254, 1.26888254, 1.26888254], 'c': [-1.45260037, -1.10674314, -0.76088591, -0.41502868, -0.41502868, -0.41502868, 0.62254302, 1.31425748, 1.31425748, 1.31425748], 'e': [-1.5666989, -1.21854359, -0.87038828, -0.52223297, -0.17407766, 0.17407766, 0.52223297, 0.87038828, 1.21854359, 1.5666989] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_fit_then_transform_defined_columns(self, full_data_numeric): # test defining which columns to apply standardization to prep = StandardScaler(columns=['a', 'e']) prep.fit(full_data_numeric) result = prep.transform(full_data_numeric) exp_dict = { 'a': [-1.11027222, -1.11027222, -1.11027222, -0.71374643, -0.31722063, -0.31722063, 0.87235674, 1.26888254, 1.26888254, 1.26888254], 'c': [1, 2, 3, 4, 4, 4, 7, 9, 9, 9], 'e': [-1.5666989, -1.21854359, -0.87038828, -0.52223297, -0.17407766, 0.17407766, 0.52223297, 0.87038828, 1.21854359, 1.5666989] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_fit_then_partial_transform(self, full_data_numeric): # test using fit then transform on specified columns prep = StandardScaler() prep.fit(full_data_numeric) result = prep.transform(X=full_data_numeric, partial_cols=['c', 'e']) exp_dict = {'a': [-1.11027222, -1.11027222, -1.11027222, -0.71374643, -0.31722063, -0.31722063, 0.87235674, 1.26888254, 1.26888254, 1.26888254], 'c': [-1.45260037, -1.10674314, -0.76088591, -0.41502868, -0.41502868, -0.41502868, 0.62254302, 1.31425748, 1.31425748, 1.31425748], 'e': [-1.5666989, -1.21854359, -0.87038828, -0.52223297, -0.17407766, 0.17407766, 0.52223297, 0.87038828, 1.21854359, 1.5666989] } expected = pd.DataFrame(exp_dict) expected = expected[['c', 'e']] tm.assert_frame_equal(result, expected, check_dtype=False, check_like=True) def test_unordered_index(self, full_data_numeric): # Test unordered index is handled properly new_index = list(full_data_numeric.index) shuffle(new_index) full_data_numeric.index = new_index prep = StandardScaler() prep.fit(full_data_numeric) result = prep.transform(full_data_numeric) exp_dict = {'a': [-1.11027222, -1.11027222, -1.11027222, -0.71374643, -0.31722063, -0.31722063, 0.87235674, 1.26888254, 1.26888254, 1.26888254], 'c': [-1.45260037, -1.10674314, -0.76088591, -0.41502868, -0.41502868, -0.41502868, 0.62254302, 1.31425748, 1.31425748, 1.31425748], 'e': [-1.5666989, -1.21854359, -0.87038828, -0.52223297, -0.17407766, 0.17407766, 0.52223297, 0.87038828, 1.21854359, 1.5666989], } expected = pd.DataFrame(exp_dict, index=new_index) tm.assert_frame_equal(result, expected, check_dtype=False, check_like=False) def test_inverse_transform(self, full_data_numeric): # test inverse_transform new_index = list(full_data_numeric.index) shuffle(new_index) full_data_numeric.index = new_index prep = StandardScaler() transformed = prep.fit_transform(full_data_numeric) original = prep.inverse_transform(transformed) tm.assert_frame_equal( full_data_numeric, original, check_dtype=False, check_like=True ) def test_inverse_partial_transform(self, full_data_numeric): # test inverse_transform new_index = list(full_data_numeric.index) shuffle(new_index) full_data_numeric.index = new_index prep = StandardScaler() transformed = prep.fit_transform(full_data_numeric) partial_original = prep.inverse_transform( transformed, partial_cols=['a', 'e'] ) tm.assert_frame_equal( full_data_numeric[['a', 'e']], partial_original, check_dtype=False, check_like=True ) def test_inverse_transform_defined_columns(self, full_data_numeric): # test defining which columns to apply standardization to prep = StandardScaler(columns=['a', 'e']) prep.fit(full_data_numeric) transformed = prep.fit_transform(full_data_numeric) result = prep.inverse_transform(transformed) tm.assert_frame_equal( result, full_data_numeric, check_dtype=False, check_like=True ) @pytest.mark.usefixtures("full_data_numeric") class TestPolynomialFeatures(object): def test_polynomial_features(self, full_data_numeric): # test polynomial feature creation prep = PolynomialFeatures(degree=3) result = prep.fit_transform(full_data_numeric) exp_dict = { 'a': [2, 2, 2, 3, 4, 4, 7, 8, 8, 8], 'c': [1, 2, 3, 4, 4, 4, 7, 9, 9, 9], 'e': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'a^2': [4, 4, 4, 9, 16, 16, 49, 64, 64, 64], 'a*c': [2, 4, 6, 12, 16, 16, 49, 72, 72, 72], 'a*e': [2, 4, 6, 12, 20, 24, 49, 64, 72, 80], 'c^2': [1, 4, 9, 16, 16, 16, 49, 81, 81, 81], 'c*e': [1, 4, 9, 16, 20, 24, 49, 72, 81, 90], 'e^2': [1, 4, 9, 16, 25, 36, 49, 64, 81, 100], 'a^3': [8, 8, 8, 27, 64, 64, 343, 512, 512, 512], 'a^2*c': [4, 8, 12, 36, 64, 64, 343, 576, 576, 576], 'a^2*e': [4, 8, 12, 36, 80, 96, 343, 512, 576, 640], 'a*c^2': [2, 8, 18, 48, 64, 64, 343, 648, 648, 648], 'a*c*e': [2, 8, 18, 48, 80, 96, 343, 576, 648, 720], 'a*e^2': [2, 8, 18, 48, 100, 144, 343, 512, 648, 800], 'c^3': [1, 8, 27, 64, 64, 64, 343, 729, 729, 729], 'c^2*e': [1, 8, 27, 64, 80, 96, 343, 648, 729, 810], 'c*e^2': [1, 8, 27, 64, 100, 144, 343, 576, 729, 900], 'e^3': [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000] } expected = pd.DataFrame(exp_dict) expected = expected[[ 'a', 'c', 'e', 'a^2', 'a*c', 'a*e', 'c^2', 'c*e', 'e^2', 'a^3', 'a^2*c', 'a^2*e', 'a*c^2', 'a*c*e', 'a*e^2', 'c^3', 'c^2*e', 'c*e^2', 'e^3' ]] tm.assert_frame_equal( result, expected, check_dtype=False, ) def test_polynomial_features_interactions(self, full_data_numeric): # test polynomial feature creation prep = PolynomialFeatures(interaction_only=True) result = prep.fit_transform(full_data_numeric) exp_dict = { 'a': [2, 2, 2, 3, 4, 4, 7, 8, 8, 8], 'c': [1, 2, 3, 4, 4, 4, 7, 9, 9, 9], 'e': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'a*c': [2, 4, 6, 12, 16, 16, 49, 72, 72, 72], 'a*e': [2, 4, 6, 12, 20, 24, 49, 64, 72, 80], 'c*e': [1, 4, 9, 16, 20, 24, 49, 72, 81, 90], } expected = pd.DataFrame(exp_dict) expected = expected[[ 'a', 'c', 'e', 'a*c', 'a*e', 'c*e' ]] tm.assert_frame_equal( result, expected, check_dtype=False, ) def test_unordered_index(self, full_data_numeric): # Test unordered index is handled properly new_index = list(full_data_numeric.index) shuffle(new_index) full_data_numeric.index = new_index # test polynomial feature creation prep = PolynomialFeatures(degree=3) result = prep.fit_transform(full_data_numeric) exp_dict = { 'a': [2, 2, 2, 3, 4, 4, 7, 8, 8, 8], 'c': [1, 2, 3, 4, 4, 4, 7, 9, 9, 9], 'e': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'a^2': [4, 4, 4, 9, 16, 16, 49, 64, 64, 64], 'a*c': [2, 4, 6, 12, 16, 16, 49, 72, 72, 72], 'a*e': [2, 4, 6, 12, 20, 24, 49, 64, 72, 80], 'c^2': [1, 4, 9, 16, 16, 16, 49, 81, 81, 81], 'c*e': [1, 4, 9, 16, 20, 24, 49, 72, 81, 90], 'e^2': [1, 4, 9, 16, 25, 36, 49, 64, 81, 100], 'a^3': [8, 8, 8, 27, 64, 64, 343, 512, 512, 512], 'a^2*c': [4, 8, 12, 36, 64, 64, 343, 576, 576, 576], 'a^2*e': [4, 8, 12, 36, 80, 96, 343, 512, 576, 640], 'a*c^2': [2, 8, 18, 48, 64, 64, 343, 648, 648, 648], 'a*c*e': [2, 8, 18, 48, 80, 96, 343, 576, 648, 720], 'a*e^2': [2, 8, 18, 48, 100, 144, 343, 512, 648, 800], 'c^3': [1, 8, 27, 64, 64, 64, 343, 729, 729, 729], 'c^2*e': [1, 8, 27, 64, 80, 96, 343, 648, 729, 810], 'c*e^2': [1, 8, 27, 64, 100, 144, 343, 576, 729, 900], 'e^3': [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000] } expected = pd.DataFrame(exp_dict, index=new_index) expected = expected[[ 'a', 'c', 'e', 'a^2', 'a*c', 'a*e', 'c^2', 'c*e', 'e^2', 'a^3', 'a^2*c', 'a^2*e', 'a*c^2', 'a*c*e', 'a*e^2', 'c^3', 'c^2*e', 'c*e^2', 'e^3' ]] tm.assert_frame_equal( result, expected, check_dtype=False, ) @pytest.mark.usefixtures("missing_data") class TestContinuousFeatureBinner(object): def test_feature_binning(self, missing_data): # test standard use prep = ContinuousFeatureBinner( field='a', bins=[0, 3, 6, 9] ) result = prep.fit_transform(missing_data) expected = { 'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None], 'a_GRP': ['(0.0, 3.0]', '(0.0, 3.0]', 'Other', 'Other', '(3.0, 6.0]', '(3.0, 6.0]', '(6.0, 9.0]', '(6.0, 9.0]', 'Other', '(6.0, 9.0]'] } expected = pd.DataFrame(expected, index=missing_data.index) expected = expected[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'a_GRP']] tm.assert_frame_equal( result, expected, check_dtype=False, ) def test_missing_field_error(self, missing_data): # test that specifying a field that doesn't exist returns error prep = ContinuousFeatureBinner( field='x', bins=[0, 3, 6, 9] ) with pytest.raises(ValueError): prep.fit_transform(missing_data) def test_feature_binning_right(self, missing_data): # test standard use prep = ContinuousFeatureBinner( field='a', bins=[0, 4, 8], right_inclusive=False ) result = prep.fit_transform(missing_data) expected = { 'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None], 'a_GRP': ['[0.0, 4.0)', '[0.0, 4.0)', 'Other', 'Other', '[4.0, 8.0)', '[4.0, 8.0)', '[4.0, 8.0)', 'Other', 'Other', 'Other'] } expected =
pd.DataFrame(expected, index=missing_data.index)
pandas.DataFrame
import pandas as pd import numpy as np import scipy.sparse as spl from concurrent.futures import ProcessPoolExecutor import sys threads = 4 all_tasks = [ [5, 8000, ['5t', '5nt'], 0.352], [10, 12000, ['10t', '10nt'], 0.38], [25, 40000, ['25f'], 0.43386578246281293], [25, 9000, ['25r'], 0.4], [100, 4000, ['100r'], 0.39], ] split, knn_k, test_task, powb = all_tasks[int(sys.argv[1])] def recode(column, min_val=0): uniques = column.unique() codes = range(min_val, len(uniques) + min_val) code_map = dict(zip(uniques, codes)) return (column.map(code_map), code_map) def reverse_code(column, code_map): inv_map = {v: k for k, v in code_map.items()} return column.map(inv_map) playlist_meta = pd.read_csv('data/million_playlist_dataset/playlist_meta.csv') playlist_meta_c = pd.read_csv('data/challenge_set/playlist_meta.csv') playlist_meta =
pd.concat([playlist_meta, playlist_meta_c], axis=0, ignore_index=True)
pandas.concat
import tensorflow as tf tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True tf.keras.backend.set_session(tf.Session(config=tf_config)) from tensorflow.python.keras.models import load_model import numpy as np from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, cohen_kappa_score import configparser, argparse, datetime, json, os, visualize import pandas as pd from data_generator import test_crop_generator timestamps = {'temporal-1dcnn':['crop-1dcnn_1dcnn'+x+'.h5' for x in ['2020-02-13 17:01:10']]} parser = argparse.ArgumentParser() parser.add_argument('-c', '--configPath', help="""path to config file""", default='./config.ini') parser.add_argument('-t', '--task', help="""task you are performing - refers to the header for each section in the config file""", default='temporal-1dcnn') parser_args = parser.parse_args() config = configparser.ConfigParser() config.read(parser_args.configPath) te_path = str(config[parser_args.task]['TEST_FOLDER']) test_accuracies = [] kappa_scores = [] for timestamp in timestamps[parser_args.task]: model_name = os.path.join('/home/kgadira/multi-modal-crop-classification/8_models/', timestamp) print(model_name) test_datagen = test_crop_generator(input_path=te_path, batch_size=1, mode="test", num_classes =6, epsilon = 0, resize_params = (224, 224), do_shuffle=True) print('Loading model {}'.format(model_name)) model = load_model(model_name) print(model.summary()) all_predictions = [] all_gt = [] data_paths = [] results = [] for te_data, label, curr_path in test_datagen: result = model.predict(te_data, verbose=0) results.append(result) #print(result.shape) prediction = np.argmax(result, axis = 1) #print(prediction, label) all_predictions.append(prediction) all_gt.append(label) data_paths.append(curr_path) #print(all_predictions) results = np.array(results) #results = np.squeeze(results, axis=1) print(results.shape) cm = confusion_matrix(all_gt, all_predictions) print(cm) classes_lst = ['Corn', 'Cotton', 'Soy', 'Spring Wheat', 'Winter Wheat', 'Barley'] creport = classification_report(y_true = all_gt, y_pred=all_predictions, target_names = classes_lst, digits = 4, output_dict = True) creport_df =
pd.DataFrame(creport)
pandas.DataFrame
""" Test cases for DataFrame.plot """ import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase, _check_plot_works @td.skip_if_no_mpl class TestDataFrameColor(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform(size=20), } ) def test_mpl2_color_cycle_str(self): # GH 15516 df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"]) colors = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"] with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", "MatplotlibDeprecationWarning") for color in colors: _check_plot_works(df.plot, color=color) # if warning is raised, check that it is the exact problematic one # GH 36972 if w: match = "Support for uppercase single-letter colors is deprecated" warning_message = str(w[0].message) msg = "MatplotlibDeprecationWarning related to CN colors was raised" assert match not in warning_message, msg def test_color_single_series_list(self): # GH 3486 df = DataFrame({"A": [1, 2, 3]}) _check_plot_works(df.plot, color=["red"]) @pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)]) def test_rgb_tuple_color(self, color): # GH 16695 df = DataFrame({"x": [1, 2], "y": [3, 4]}) _check_plot_works(df.plot, x="x", y="y", color=color) def test_color_empty_string(self): df = DataFrame(np.random.randn(10, 2)) with pytest.raises(ValueError): df.plot(color="") def test_color_and_style_arguments(self): df = DataFrame({"x": [1, 2], "y": [3, 4]}) # passing both 'color' and 'style' arguments should be allowed # if there is no color symbol in the style strings: ax = df.plot(color=["red", "black"], style=["-", "--"]) # check that the linestyles are correctly set: linestyle = [line.get_linestyle() for line in ax.lines] assert linestyle == ["-", "--"] # check that the colors are correctly set: color = [line.get_color() for line in ax.lines] assert color == ["red", "black"] # passing both 'color' and 'style' arguments should not be allowed # if there is a color symbol in the style strings: with pytest.raises(ValueError): df.plot(color=["red", "black"], style=["k-", "r--"]) @pytest.mark.parametrize( "color, expected", [ ("green", ["green"] * 4), (["yellow", "red", "green", "blue"], ["yellow", "red", "green", "blue"]), ], ) def test_color_and_marker(self, color, expected): # GH 21003 df = DataFrame(np.random.random((7, 4))) ax = df.plot(color=color, style="d--") # check colors result = [i.get_color() for i in ax.lines] assert result == expected # check markers and linestyles assert all(i.get_linestyle() == "--" for i in ax.lines) assert all(i.get_marker() == "d" for i in ax.lines) @pytest.mark.slow def test_bar_colors(self): import matplotlib.pyplot as plt default_colors = self._unpack_cycler(plt.rcParams) df = DataFrame(np.random.randn(5, 5)) ax = df.plot.bar() self._check_colors(ax.patches[::5], facecolors=default_colors[:5]) tm.close() custom_colors = "rgcby" ax = df.plot.bar(color=custom_colors) self._check_colors(ax.patches[::5], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.bar(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.bar(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.bar(color="DodgerBlue") self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) tm.close() ax = df.plot(kind="bar", color="green") self._check_colors(ax.patches[::5], facecolors=["green"] * 5) tm.close() def test_bar_user_colors(self): df = DataFrame( {"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]} ) # This should *only* work when `y` is specified, else # we use one color per column ax = df.plot.bar(y="A", color=df["color"]) result = [p.get_facecolor() for p in ax.patches] expected = [ (1.0, 0.0, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.0, 1.0, 1.0), (1.0, 0.0, 0.0, 1.0), ] assert result == expected @pytest.mark.slow def test_if_scatterplot_colorbar_affects_xaxis_visibility(self): # addressing issue #10611, to ensure colobar does not # interfere with x-axis label and ticklabels with # ipython inline backend. random_array = np.random.random((1000, 3)) df = DataFrame(random_array, columns=["A label", "B label", "C label"]) ax1 = df.plot.scatter(x="A label", y="B label") ax2 = df.plot.scatter(x="A label", y="B label", c="C label") vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()] vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()] assert vis1 == vis2 vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()] vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()] assert vis1 == vis2 assert ( ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible() ) @pytest.mark.slow def test_if_hexbin_xaxis_label_is_visible(self): # addressing issue #10678, to ensure colobar does not # interfere with x-axis label and ticklabels with # ipython inline backend. random_array = np.random.random((1000, 3)) df = DataFrame(random_array, columns=["A label", "B label", "C label"]) ax = df.plot.hexbin("A label", "B label", gridsize=12) assert all(vis.get_visible() for vis in ax.xaxis.get_minorticklabels()) assert all(vis.get_visible() for vis in ax.xaxis.get_majorticklabels()) assert ax.xaxis.get_label().get_visible() @pytest.mark.slow def test_if_scatterplot_colorbars_are_next_to_parent_axes(self): import matplotlib.pyplot as plt random_array = np.random.random((1000, 3)) df = DataFrame(random_array, columns=["A label", "B label", "C label"]) fig, axes = plt.subplots(1, 2) df.plot.scatter("A label", "B label", c="C label", ax=axes[0]) df.plot.scatter("A label", "B label", c="C label", ax=axes[1]) plt.tight_layout() points = np.array([ax.get_position().get_points() for ax in fig.axes]) axes_x_coords = points[:, :, 0] parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :] colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :] assert np.isclose(parent_distance, colorbar_distance, atol=1e-7).all() @pytest.mark.parametrize("cmap", [None, "Greys"]) def test_scatter_with_c_column_name_with_colors(self, cmap): # https://github.com/pandas-dev/pandas/issues/34316 df = DataFrame( [[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]], columns=["length", "width"], ) df["species"] = ["r", "r", "g", "g", "b"] ax = df.plot.scatter(x=0, y=1, c="species", cmap=cmap) assert ax.collections[0].colorbar is None def test_scatter_colors(self): df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) with pytest.raises(TypeError): df.plot.scatter(x="a", y="b", c="c", color="green") default_colors = self._unpack_cycler(self.plt.rcParams) ax = df.plot.scatter(x="a", y="b", c="c") tm.assert_numpy_array_equal( ax.collections[0].get_facecolor()[0], np.array(self.colorconverter.to_rgba(default_colors[0])), ) ax = df.plot.scatter(x="a", y="b", color="white") tm.assert_numpy_array_equal( ax.collections[0].get_facecolor()[0], np.array([1, 1, 1, 1], dtype=np.float64), ) def test_scatter_colorbar_different_cmap(self): # GH 33389 import matplotlib.pyplot as plt df = DataFrame({"x": [1, 2, 3], "y": [1, 3, 2], "c": [1, 2, 3]}) df["x2"] = df["x"] + 1 fig, ax = plt.subplots() df.plot("x", "y", c="c", kind="scatter", cmap="cividis", ax=ax) df.plot("x2", "y", c="c", kind="scatter", cmap="magma", ax=ax) assert ax.collections[0].cmap.name == "cividis" assert ax.collections[1].cmap.name == "magma" @pytest.mark.slow def test_line_colors(self): from matplotlib import cm custom_colors = "rgcby" df = DataFrame(np.random.randn(5, 5)) ax = df.plot(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax2 = df.plot(color=custom_colors) lines2 = ax2.get_lines() for l1, l2 in zip(ax.get_lines(), lines2): assert l1.get_color() == l2.get_color() tm.close() ax = df.plot(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') ax = df.loc[:, [0]].plot(color="DodgerBlue") self._check_colors(ax.lines, linecolors=["DodgerBlue"]) ax = df.plot(color="red") self._check_colors(ax.get_lines(), linecolors=["red"] * 5) tm.close() # GH 10299 custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"] ax = df.plot(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() @pytest.mark.slow def test_dont_modify_colors(self): colors = ["r", "g", "b"] DataFrame(np.random.rand(10, 2)).plot(color=colors) assert len(colors) == 3 @pytest.mark.slow def test_line_colors_and_styles_subplots(self): # GH 9894 from matplotlib import cm default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(np.random.randn(5, 5)) axes = df.plot(subplots=True) for ax, c in zip(axes, list(default_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # single color char axes = df.plot(subplots=True, color="k") for ax in axes: self._check_colors(ax.get_lines(), linecolors=["k"]) tm.close() # single color str axes = df.plot(subplots=True, color="green") for ax in axes: self._check_colors(ax.get_lines(), linecolors=["green"]) tm.close() custom_colors = "rgcby" axes = df.plot(color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() axes = df.plot(color=list(custom_colors), subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # GH 10299 custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"] axes = df.plot(color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] for cmap in ["jet", cm.jet]: axes = df.plot(colormap=cmap, subplots=True) for ax, c in zip(axes, rgba_colors): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') axes = df.loc[:, [0]].plot(color="DodgerBlue", subplots=True) self._check_colors(axes[0].lines, linecolors=["DodgerBlue"]) # single character style axes = df.plot(style="r", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["r"]) tm.close() # list of styles styles = list("rgcby") axes = df.plot(style=styles, subplots=True) for ax, c in zip(axes, styles): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() @pytest.mark.slow def test_area_colors(self): from matplotlib import cm from matplotlib.collections import PolyCollection custom_colors = "rgcby" df = DataFrame(np.random.rand(5, 5)) ax = df.plot.area(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] self._check_colors(poly, facecolors=custom_colors) handles, labels = ax.get_legend_handles_labels() self._check_colors(handles, facecolors=custom_colors) for h in handles: assert h.get_alpha() is None tm.close() ax = df.plot.area(colormap="jet") jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=jet_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] self._check_colors(poly, facecolors=jet_colors) handles, labels = ax.get_legend_handles_labels() self._check_colors(handles, facecolors=jet_colors) for h in handles: assert h.get_alpha() is None tm.close() # When stacked=False, alpha is set to 0.5 ax = df.plot.area(colormap=cm.jet, stacked=False) self._check_colors(ax.get_lines(), linecolors=jet_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors] self._check_colors(poly, facecolors=jet_with_alpha) handles, labels = ax.get_legend_handles_labels() linecolors = jet_with_alpha self._check_colors(handles[: len(jet_colors)], linecolors=linecolors) for h in handles: assert h.get_alpha() == 0.5 @pytest.mark.slow def test_hist_colors(self): default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(np.random.randn(5, 5)) ax = df.plot.hist() self._check_colors(ax.patches[::10], facecolors=default_colors[:5]) tm.close() custom_colors = "rgcby" ax = df.plot.hist(color=custom_colors) self._check_colors(ax.patches[::10], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.hist(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.hist(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.hist(color="DodgerBlue") self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) ax = df.plot(kind="hist", color="green") self._check_colors(ax.patches[::10], facecolors=["green"] * 5) tm.close() @pytest.mark.slow @td.skip_if_no_scipy def test_kde_colors(self): from matplotlib import cm custom_colors = "rgcby" df = DataFrame(np.random.rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) @pytest.mark.slow @td.skip_if_no_scipy def test_kde_colors_and_styles_subplots(self): from matplotlib import cm default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(np.random.randn(5, 5)) axes = df.plot(kind="kde", subplots=True) for ax, c in zip(axes, list(default_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # single color char axes = df.plot(kind="kde", color="k", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["k"]) tm.close() # single color str axes = df.plot(kind="kde", color="red", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["red"]) tm.close() custom_colors = "rgcby" axes = df.plot(kind="kde", color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] for cmap in ["jet", cm.jet]: axes = df.plot(kind="kde", colormap=cmap, subplots=True) for ax, c in zip(axes, rgba_colors): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') axes = df.loc[:, [0]].plot(kind="kde", color="DodgerBlue", subplots=True) self._check_colors(axes[0].lines, linecolors=["DodgerBlue"]) # single character style axes = df.plot(kind="kde", style="r", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["r"]) tm.close() # list of styles styles = list("rgcby") axes = df.plot(kind="kde", style=styles, subplots=True) for ax, c in zip(axes, styles): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() @pytest.mark.slow def test_boxplot_colors(self): def _check_colors(bp, box_c, whiskers_c, medians_c, caps_c="k", fliers_c=None): # TODO: outside this func? if fliers_c is None: fliers_c = "k" self._check_colors(bp["boxes"], linecolors=[box_c] * len(bp["boxes"])) self._check_colors( bp["whiskers"], linecolors=[whiskers_c] * len(bp["whiskers"]) ) self._check_colors( bp["medians"], linecolors=[medians_c] * len(bp["medians"]) ) self._check_colors(bp["fliers"], linecolors=[fliers_c] * len(bp["fliers"])) self._check_colors(bp["caps"], linecolors=[caps_c] * len(bp["caps"])) default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(np.random.randn(5, 5)) bp = df.plot.box(return_type="dict") _check_colors(bp, default_colors[0], default_colors[0], default_colors[2]) tm.close() dict_colors = dict( boxes="#572923", whiskers="#982042", medians="#804823", caps="#123456" ) bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict") _check_colors( bp, dict_colors["boxes"], dict_colors["whiskers"], dict_colors["medians"], dict_colors["caps"], "r", ) tm.close() # partial colors dict_colors = dict(whiskers="c", medians="m") bp = df.plot.box(color=dict_colors, return_type="dict") _check_colors(bp, default_colors[0], "c", "m")
tm.close()
pandas._testing.close
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2014-2019 OpenEEmeter contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datetime import datetime, timedelta from pkg_resources import resource_stream import numpy as np import pandas as pd import pytest import pytz from eemeter.transform import ( as_freq, clean_caltrack_billing_data, downsample_and_clean_caltrack_daily_data, clean_caltrack_billing_daily_data, day_counts, get_baseline_data, get_reporting_data, get_terms, remove_duplicates, NoBaselineDataError, NoReportingDataError, overwrite_partial_rows_with_nan, ) def test_as_freq_not_series(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) with pytest.raises(ValueError): as_freq(meter_data, freq="H") def test_as_freq_hourly(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) as_hourly = as_freq(meter_data.value, freq="H") assert as_hourly.shape == (18961,) assert round(meter_data.value.sum(), 1) == round(as_hourly.sum(), 1) == 21290.2 def test_as_freq_daily(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) as_daily = as_freq(meter_data.value, freq="D") assert as_daily.shape == (792,) assert round(meter_data.value.sum(), 1) == round(as_daily.sum(), 1) == 21290.2 def test_as_freq_daily_all_nones_instantaneous(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] meter_data["value"] = np.nan assert meter_data.shape == (27, 1) as_daily = as_freq(meter_data.value, freq="D", series_type="instantaneous") assert as_daily.shape == (792,) assert round(meter_data.value.sum(), 1) == round(as_daily.sum(), 1) == 0 def test_as_freq_daily_all_nones(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] meter_data["value"] = np.nan assert meter_data.shape == (27, 1) as_daily = as_freq(meter_data.value, freq="D") assert as_daily.shape == (792,) assert round(meter_data.value.sum(), 1) == round(as_daily.sum(), 1) == 0 def test_as_freq_month_start(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) as_month_start = as_freq(meter_data.value, freq="MS") assert as_month_start.shape == (28,) assert round(meter_data.value.sum(), 1) == round(as_month_start.sum(), 1) == 21290.2 def test_as_freq_hourly_temperature(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] assert temperature_data.shape == (19417,) as_hourly = as_freq(temperature_data, freq="H", series_type="instantaneous") assert as_hourly.shape == (19417,) assert round(temperature_data.mean(), 1) == round(as_hourly.mean(), 1) == 54.6 def test_as_freq_daily_temperature(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] assert temperature_data.shape == (19417,) as_daily = as_freq(temperature_data, freq="D", series_type="instantaneous") assert as_daily.shape == (811,) assert abs(temperature_data.mean() - as_daily.mean()) <= 0.1 def test_as_freq_month_start_temperature(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] assert temperature_data.shape == (19417,) as_month_start = as_freq(temperature_data, freq="MS", series_type="instantaneous") assert as_month_start.shape == (29,) assert round(as_month_start.mean(), 1) == 53.4 def test_as_freq_daily_temperature_monthly(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temperature_data = temperature_data.groupby(pd.Grouper(freq="MS")).mean() assert temperature_data.shape == (28,) as_daily = as_freq(temperature_data, freq="D", series_type="instantaneous") assert as_daily.shape == (824,) assert round(as_daily.mean(), 1) == 54.5 def test_as_freq_empty(): meter_data = pd.DataFrame({"value": []}) empty_meter_data = as_freq(meter_data.value, freq="H") assert empty_meter_data.empty def test_as_freq_perserves_nulls(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] monthly_with_nulls = meter_data[meter_data.index.year != 2016].reindex( meter_data.index ) daily_with_nulls = as_freq(monthly_with_nulls.value, freq="D") assert ( round(monthly_with_nulls.value.sum(), 2) == round(daily_with_nulls.sum(), 2) == 11094.05 ) assert monthly_with_nulls.value.isnull().sum() == 13 assert daily_with_nulls.isnull().sum() == 365 def test_day_counts(il_electricity_cdd_hdd_billing_monthly): data = il_electricity_cdd_hdd_billing_monthly["meter_data"].value counts = day_counts(data.index) assert counts.shape == (27,) assert counts.iloc[0] == 29.0 assert pd.isnull(counts.iloc[-1]) assert counts.sum() == 790.0 def test_day_counts_empty_series(): index = pd.DatetimeIndex([]) index.freq = None data = pd.Series([], index=index) counts = day_counts(data.index) assert counts.shape == (0,) def test_get_baseline_data(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] baseline_data, warnings = get_baseline_data(meter_data) assert meter_data.shape == baseline_data.shape == (19417, 1) assert len(warnings) == 0 def test_get_baseline_data_with_timezones(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data.tz_convert("America/New_York") ) assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data.tz_convert("Australia/Sydney") ) assert len(warnings) == 0 def test_get_baseline_data_with_end(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_start_date = il_electricity_cdd_hdd_hourly["blackout_start_date"] baseline_data, warnings = get_baseline_data(meter_data, end=blackout_start_date) assert meter_data.shape != baseline_data.shape == (8761, 1) assert len(warnings) == 0 def test_get_baseline_data_with_end_no_max_days(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_start_date = il_electricity_cdd_hdd_hourly["blackout_start_date"] baseline_data, warnings = get_baseline_data( meter_data, end=blackout_start_date, max_days=None ) assert meter_data.shape != baseline_data.shape == (9595, 1) assert len(warnings) == 0 def test_get_baseline_data_empty(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_start_date = il_electricity_cdd_hdd_hourly["blackout_start_date"] with pytest.raises(NoBaselineDataError): get_baseline_data(meter_data, end=pd.Timestamp("2000").tz_localize("UTC")) def test_get_baseline_data_start_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] start = meter_data.index.min() - timedelta(days=1) baseline_data, warnings = get_baseline_data(meter_data, start=start, max_days=None) assert meter_data.shape == baseline_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_baseline_data.gap_at_baseline_start" assert ( warning.description == "Data does not have coverage at requested baseline start date." ) assert warning.data == { "data_start": "2015-11-22T06:00:00+00:00", "requested_start": "2015-11-21T06:00:00+00:00", } def test_get_baseline_data_end_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] end = meter_data.index.max() + timedelta(days=1) baseline_data, warnings = get_baseline_data(meter_data, end=end, max_days=None) assert meter_data.shape == baseline_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_baseline_data.gap_at_baseline_end" assert ( warning.description == "Data does not have coverage at requested baseline end date." ) assert warning.data == { "data_end": "2018-02-08T06:00:00+00:00", "requested_end": "2018-02-09T06:00:00+00:00", } def test_get_baseline_data_with_overshoot(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=32, allow_billing_period_overshoot=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=32, allow_billing_period_overshoot=False, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_baseline_data_with_ignored_gap(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=False, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_baseline_data_with_overshoot_and_ignored_gap( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=False, ignore_billing_period_gap_for_day_count=False, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_baseline_data_n_days_billing_period_overshoot( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2017, 11, 9, tzinfo=pytz.UTC), max_days=45, allow_billing_period_overshoot=True, n_days_billing_period_overshoot=45, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 526.25 assert len(warnings) == 0 def test_get_baseline_data_too_far_from_date(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] end_date = datetime(2020, 11, 9, tzinfo=pytz.UTC) max_days = 45 baseline_data, warnings = get_baseline_data( meter_data, end=end_date, max_days=max_days, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 1393.4 assert len(warnings) == 0 with pytest.raises(NoBaselineDataError): get_baseline_data( meter_data, end=end_date, max_days=max_days, n_days_billing_period_overshoot=45, ignore_billing_period_gap_for_day_count=True, ) baseline_data, warnings = get_baseline_data( meter_data, end=end_date, max_days=max_days, allow_billing_period_overshoot=True, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (3, 1) assert round(baseline_data.value.sum(), 2) == 2043.92 assert len(warnings) == 0 # Includes 3 data points because data at index -3 is closer to start target # then data at index -2 start_target = baseline_data.index[-1] - timedelta(days=max_days) assert abs((baseline_data.index[0] - start_target).days) < abs( (baseline_data.index[1] - start_target).days ) with pytest.raises(NoBaselineDataError): get_baseline_data( meter_data, end=end_date, max_days=max_days, allow_billing_period_overshoot=True, n_days_billing_period_overshoot=45, ignore_billing_period_gap_for_day_count=True, ) def test_get_reporting_data(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] reporting_data, warnings = get_reporting_data(meter_data) assert meter_data.shape == reporting_data.shape == (19417, 1) assert len(warnings) == 0 def test_get_reporting_data_with_timezones(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data.tz_convert("America/New_York") ) assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data.tz_convert("Australia/Sydney") ) assert len(warnings) == 0 def test_get_reporting_data_with_start(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_end_date = il_electricity_cdd_hdd_hourly["blackout_end_date"] reporting_data, warnings = get_reporting_data(meter_data, start=blackout_end_date) assert meter_data.shape != reporting_data.shape == (8761, 1) assert len(warnings) == 0 def test_get_reporting_data_with_start_no_max_days(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_end_date = il_electricity_cdd_hdd_hourly["blackout_end_date"] reporting_data, warnings = get_reporting_data( meter_data, start=blackout_end_date, max_days=None ) assert meter_data.shape != reporting_data.shape == (9607, 1) assert len(warnings) == 0 def test_get_reporting_data_empty(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_end_date = il_electricity_cdd_hdd_hourly["blackout_end_date"] with pytest.raises(NoReportingDataError): get_reporting_data(meter_data, start=pd.Timestamp("2030").tz_localize("UTC")) def test_get_reporting_data_start_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] start = meter_data.index.min() - timedelta(days=1) reporting_data, warnings = get_reporting_data( meter_data, start=start, max_days=None ) assert meter_data.shape == reporting_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_reporting_data.gap_at_reporting_start" assert ( warning.description == "Data does not have coverage at requested reporting start date." ) assert warning.data == { "data_start": "2015-11-22T06:00:00+00:00", "requested_start": "2015-11-21T06:00:00+00:00", } def test_get_reporting_data_end_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] end = meter_data.index.max() + timedelta(days=1) reporting_data, warnings = get_reporting_data(meter_data, end=end, max_days=None) assert meter_data.shape == reporting_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_reporting_data.gap_at_reporting_end" assert ( warning.description == "Data does not have coverage at requested reporting end date." ) assert warning.data == { "data_end": "2018-02-08T06:00:00+00:00", "requested_end": "2018-02-09T06:00:00+00:00", } def test_get_reporting_data_with_overshoot(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=30, allow_billing_period_overshoot=True, ) assert reporting_data.shape == (2, 1) assert round(reporting_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=30, allow_billing_period_overshoot=False, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_reporting_data_with_ignored_gap(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=True, ) assert reporting_data.shape == (2, 1) assert round(reporting_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=False, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, ignore_billing_period_gap_for_day_count=True, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_reporting_data_with_overshoot_and_ignored_gap( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ignore_billing_period_gap_for_day_count=True, ) assert reporting_data.shape == (2, 1) assert round(reporting_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=False, ignore_billing_period_gap_for_day_count=False, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_terms_unrecognized_method(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] with pytest.raises(ValueError): get_terms(meter_data.index, term_lengths=[365], method="unrecognized") def test_get_terms_unsorted_index(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] with pytest.raises(ValueError): get_terms(meter_data.index[::-1], term_lengths=[365]) def test_get_terms_bad_term_labels(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] with pytest.raises(ValueError): terms = get_terms( meter_data.index, term_lengths=[60, 60, 60], term_labels=["abc", "def"], # too short ) def test_get_terms_default_term_labels(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] terms = get_terms(meter_data.index, term_lengths=[60, 60, 60]) assert [t.label for t in terms] == ["term_001", "term_002", "term_003"] def test_get_terms_custom_term_labels(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] terms = get_terms( meter_data.index, term_lengths=[60, 60, 60], term_labels=["abc", "def", "ghi"] ) assert [t.label for t in terms] == ["abc", "def", "ghi"] def test_get_terms_empty_index_input(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] terms = get_terms(meter_data.index[:0], term_lengths=[60, 60, 60]) assert len(terms) == 0 def test_get_terms_strict(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] strict_terms = get_terms( meter_data.index, term_lengths=[365, 365], term_labels=["year1", "year2"], start=datetime(2016, 1, 15, tzinfo=pytz.UTC), method="strict", ) assert len(strict_terms) == 2 year1 = strict_terms[0] assert year1.label == "year1" assert year1.index.shape == (12,) assert ( year1.target_start_date == pd.Timestamp("2016-01-15 00:00:00+0000", tz="UTC").to_pydatetime() ) assert ( year1.target_end_date == pd.Timestamp("2017-01-14 00:00:00+0000", tz="UTC").to_pydatetime() ) assert year1.target_term_length_days == 365 assert ( year1.actual_start_date == year1.index[0] == pd.Timestamp("2016-01-22 06:00:00+0000", tz="UTC") ) assert ( year1.actual_end_date == year1.index[-1] == pd.Timestamp("2016-12-19 06:00:00+0000", tz="UTC") ) assert year1.actual_term_length_days == 332 assert year1.complete year2 = strict_terms[1] assert year2.index.shape == (13,) assert year2.label == "year2" assert year2.target_start_date == pd.Timestamp("2016-12-19 06:00:00+0000", tz="UTC") assert ( year2.target_end_date == pd.Timestamp("2018-01-14 00:00:00+0000", tz="UTC").to_pydatetime() ) assert year2.target_term_length_days == 365 assert ( year2.actual_start_date == year2.index[0] ==
pd.Timestamp("2016-12-19 06:00:00+00:00", tz="UTC")
pandas.Timestamp
#--------------------------------------------------------------- #__main__.py #this script collates measurements from individual csv outputs of #the morphometriX GUI #the csvs can be saved either all in one folder or within each individual #animals folder. #this version includes a safety net that recalculates the measurement using #accurate altitude and focal lengths that the user must provie in csvs. # this version uses PyQt5 instead of easygui (used in v2.0) #created by: <NAME> (<EMAIL>), March 2020 #updated by: <NAME>, June 2021 #---------------------------------------------------------------- #import modules import pandas as pd import numpy as np import os, sys import math from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QWidget, QInputDialog, QLineEdit, QFileDialog, QMessageBox, QLabel, QVBoxLayout from PyQt5.QtGui import QIcon import collatrix.collatrix_functions from collatrix.collatrix_functions import anydup, readfile, fheader, lmeas, wmeas, setup, pull_data, safe_data, end_concat, df_formatting from collatrix.collatrix_functions import collate_v4and5, collate_v6 class App(QWidget): def __init__(self): super().__init__() self.title = 'close box to end script' self.left = 10 self.top = 10 self.width = 640 self.height = 480 self.initUI() def initUI(self): self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.show() #add message box with link to github documentation msgBox = QMessageBox() msgBox.setWindowTitle("For detailed input info click link below") msgBox.setTextFormat(QtCore.Qt.RichText) msgBox.setText('<a href = "https://github.com/cbirdferrer/collatrix#inputs">CLICK HERE</a> for detailed input instructions, \n then click on OK button to continue') x = msgBox.exec_() #do you want the Animal ID to be assigned based on the name of the folder items = ('yes', 'no') anFold, okPressed = QInputDialog.getItem(self,"Input #1", "Do you want the Animal ID to be assigned based on the name of the folder? \n yes or no",items,0,False) if okPressed and anFold: print("{0} Animal ID in folder name".format(anFold)) #ask if they want safey net items = ('yes', 'no') safety, okPressed = QInputDialog.getItem(self,"Input #2", "Do you want to use the safety? \n Yes or No?",items,0,False) if okPressed and safety: print("{0} safety".format(safety)) #if safety yes, ask for file if safety == 'yes': options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog safe_csv, _ = QFileDialog.getOpenFileName(self,"2.1 Safety File: Image list with altitudes and other information.", "","All Files (*);;csv files (*.csv)", options=options) print("safety csv = {0}".format(safe_csv)) elif safety == 'no': pass #animal id list? items = ('no','yes') idchoice, okPressed = QInputDialog.getItem(self, "Input #3", "Do you want output to only contain certain individuals? \n Yes or No?",items,0,False) if idchoice and okPressed: print("{0} subset list".format(idchoice)) if idchoice == 'yes': options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog idsCSV, _ = QFileDialog.getOpenFileName(self,"3.1 File containing ID list", "","All Files (*);;csv files (*.csv)", options=options) if idsCSV: print("ID list file = {0}".format(idsCSV)) elif idchoice == 'no': pass #ask for name of output outname, okPressed = QInputDialog.getText(self, "Input #4", "Prefix for output file",QLineEdit.Normal,"") #import safety csv if safety selected if safety == 'yes': dfList = pd.read_csv(safe_csv, sep = ",") dfList = dfList.dropna(how="all",axis='rows').reset_index() df_L = dfList.groupby('Image').first().reset_index() df_L['Image'] = [x.strip() for x in df_L['Image']] elif safety == 'no': df_L = "no safety" #get folders options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog GUIfold = QFileDialog.getExistingDirectory(None, "Input 5. Folder containing MorphoMetriX outputs",options=options) saveFold = QFileDialog.getExistingDirectory(None,"Input 6. Folder where output should be saved",options = options) options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog #make lists #for csvs csvs_all = [] csvs = [] not_mmx = [] #for measurements measurements = [] nonPercMeas = [] #walk through all folders in GUI folder and collect all csvs for root,dirs,files in os.walk(GUIfold): csvs_all += [os.path.join(root,f) for f in files if f.endswith('.csv')] #make sure the csvs are morphometrix outputs by checking first row csvs += [c for c in csvs_all if 'Image ID' in pd.read_csv(c,sep='^',header=None,prefix='X',engine = 'python',quoting=3, na_values = ['""','"'],encoding_errors = "ignore")['X0'][0]] #make list of all csvs that were not morphometrix csvs to tell user not_mmx += [x for x in csvs_all if x not in csvs] #check for csvs that (for whatever reason) hit an error when being read in. #makes a list of those csvs for users to examine badcsvs = [] for f in csvs: try: temp=
pd.read_csv(f,sep='^',header=None,prefix='X',engine = 'python',quoting=3, na_values = ['""','"'],encoding_errors = "ignore")
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from collections import OrderedDict from datetime import datetime import numpy as np import pytest from pandas.compat import lrange from pandas import DataFrame, MultiIndex, Series, date_range, notna import pandas.core.panel as panelm from pandas.core.panel import Panel import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal, makeCustomDataframe as mkdf, makeMixedDataFrame) from pandas.tseries.offsets import MonthEnd @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class PanelTests(object): panel = None def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) pytest.raises(TypeError, hash, c_empty) pytest.raises(TypeError, hash, c) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class SafeForSparse(object): # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).iloc[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with pytest.raises(NotImplementedError): getattr(p, op)(d, axis=0) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class CheckIndexing(object): def test_delitem_and_pop(self): values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] tm.assert_frame_equal(panelc[1], panel[1]) tm.assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] tm.assert_frame_equal(panelc[0], panel[0]) tm.assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] tm.assert_frame_equal(panelc[1], panel[1]) tm.assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # bad shape p = Panel(np.random.randn(4, 3, 2)) msg = (r"shape of value must be \(3, 2\), " r"shape of given object was \(4, 2\)") with pytest.raises(ValueError, match=msg): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notna(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notna(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_getitem_fancy_slice(self): pass def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.loc[:, 22, [111, 333]] = b assert_frame_equal(a.loc[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort_values() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.loc[0, :, 0] = b assert_series_equal(df.loc[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.loc[:, 0, 0] = b assert_series_equal(df.loc[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.loc[0, 0, :] = b assert_series_equal(df.loc[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class TestPanel(PanelTests, CheckIndexing, SafeForSparse): def test_constructor_cast(self): # can't cast data = [[['foo', 'bar', 'baz']]] pytest.raises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() assert len(empty.items) == 0 assert len(empty.major_axis) == 0 assert len(empty.minor_axis) == 0 def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') assert panel.values.dtype == np.object_ def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: assert panel[i].values.dtype.name == dtype # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel( np.random.randn(2, 10, 5), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): msg = "The number of dimensions required is 3" with pytest.raises(ValueError, match=msg): Panel(np.random.randn(10, 2)) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) assert list(p.items) == keys p = Panel.from_dict(d) assert list(p.items) == keys def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') assert panel['foo'].values.dtype == np.object_ assert panel['A'].values.dtype == np.float64 def test_constructor_error_msgs(self): msg = (r"Shape of passed values is \(3, 4, 5\), " r"indices imply \(4, 5, 5\)") with pytest.raises(ValueError, match=msg): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) msg = (r"Shape of passed values is \(3, 4, 5\), " r"indices imply \(5, 4, 5\)") with pytest.raises(ValueError, match=msg): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) msg = (r"Shape of passed values is \(3, 4, 5\), " r"indices imply \(5, 5, 4\)") with pytest.raises(ValueError, match=msg): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) def test_apply_slabs(self): # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply( lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_fillna(self): # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan pytest.raises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples( [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) expected_idx = MultiIndex.from_tuples( [ (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (2, 'two', 'A'), (2, 'two', 'B'), (2, 'two', 'C') ], names=[None, None, 'minor']) expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1], 'i2': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1]}, index=expected_idx) result = wp.to_frame() assert_frame_equal(result, expected) wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773 result = wp.to_frame() assert_frame_equal(result, expected[1:]) idx = MultiIndex.from_tuples( [(1, 'two'), (1, 'one'), (2, 'one'), (np.nan, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (np.nan, 'two', 'A'), (np.nan, 'two', 'B'), (np.nan, 'two', 'C')], names=[None, None, 'minor']) expected.index = ex_idx result = wp.to_frame() assert_frame_equal(result, expected) def test_to_frame_multi_major_minor(self): cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two'), (3, 'three'), (4, 'four')]) df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14], ['a', 'b', 'w', 'x'], ['c', 'd', 'y', 'z'], [-1, -2, -3, -4], [-5, -6, -7, -8]], columns=cols, index=idx) wp = Panel({'i1': df, 'i2': df}) exp_idx = MultiIndex.from_tuples( [(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'), (1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'), (1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'), (1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'), (2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'), (2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'), (2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'), (2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'), (3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'), (3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'), (4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'), (4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')], names=[None, None, None, None]) exp_val = [[1, 1], [2, 2], [11, 11], [12, 12], [3, 3], [4, 4], [13, 13], [14, 14], ['a', 'a'], ['b', 'b'], ['w', 'w'], ['x', 'x'], ['c', 'c'], ['d', 'd'], [ 'y', 'y'], ['z', 'z'], [-1, -1], [-2, -2], [-3, -3], [-4, -4], [-5, -5], [-6, -6], [-7, -7], [-8, -8]] result = wp.to_frame() expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx) assert_frame_equal(result, expected) def test_to_frame_multi_drop_level(self): idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')]) df = DataFrame({'A': [np.nan, 1, 2]}, index=idx) wp = Panel({'i1': df, 'i2': df}) result = wp.to_frame() exp_idx = MultiIndex.from_tuples( [(2, 'one', 'A'), (2, 'two', 'A')], names=[None, None, 'minor']) expected =
DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx)
pandas.DataFrame
# Core Pkg import streamlit as st import pandas as pd import numpy as np import pickle # loading model import base64 # enable file download #function to load and cache(faster) the dataset and set mutation to True @st.cache(allow_output_mutation=True) def load_data(dataset): df =
pd.read_csv(dataset)
pandas.read_csv
import pandas as pd class TripleBarrier: def __init__(self, price, vol_span=50, barrier_horizon=5, factors=None, label=0): """ Labels the Data with the Triple Barrier Method :param price: closing price :param vol_span: look back to dertermine volatility increment threshold :param barrier_horizon: represents vertical length (days) for barrier :param factors: repreesnts scalar for barrier height :param label: 0 represents label for classification [-1, 0, 1], 1 represenst label for regression -1 <= x <= 1 """ self.label = label if factors is None: factors = [2, 2] daily_vol = self.get_daily_vol(prices=price, lookback=vol_span) vertical_barriers = self.add_vertical_barrier( close=price, num_days=barrier_horizon ) triple_barrier_events = self.get_events( close=price, factor=factors, target=daily_vol, vertical_barrier=vertical_barriers, ) self.labels = self.get_labels(triple_barrier_events, price) @staticmethod def get_daily_vol(prices, lookback=50): """ Daily Volatility Estimates Computes the daily volatility at intraday estimation points, applying a span of lookback days to an exponentially weighted moving standard deviation. This function is used to compute dynamic thresholds for profit taking and stop loss limits """ # find the timestamps at [t-1] df = prices.index.searchsorted(prices.index - pd.Timedelta(days=1)) df = df[df > 0] # align timestamps of [t-1] to timestamp p df = pd.Series( prices.index[df - 1], index=prices.index[prices.shape[0] - df.shape[0] :] ) # get value by tiemstamps df = prices.loc[df.index] / prices.loc[df.values].values - 1 # estimate rolling std df = df.ewm(span=lookback).std() return df @staticmethod def add_vertical_barrier(close, num_days=0): """ Adds the vertical barrier For each index in events, find the timestamp of the next bar at or immediately after a number of days. This function creates a series that has all the timestamps of when the vertical barrier is reached. """ timedelta = pd.Timedelta("{} days".format(num_days)) nearest_index = close.index.searchsorted(close.index + timedelta) nearest_index = nearest_index[nearest_index < close.shape[0]] nearest_timestamp = close.index[nearest_index] return pd.Series( data=nearest_timestamp, index=close.index[: nearest_timestamp.shape[0]] ) @staticmethod def touch_barrier(close, events, factor, dates): """ This function applies the triple-barrier. It works on a set of datetime index values. Mainly it returns a DataFrame of timestamps regarding the time when the first barriers were reached. """ # Apply Stop Loss / Profit Taking, if it takes place before t1 (end of event) events_ = events.loc[dates] out = events_[["t1"]].copy(deep=True) # Profit taking active if factor[0] > 0: profit_taking = factor[0] * events_["trgt"] else: profit_taking = pd.Series(index=events.index) # Stop loss active if factor[1] > 0: stop_loss = -factor[1] * events_["trgt"] else: stop_loss = pd.Series(index=events.index) out["pt"] = pd.Series(dtype=events.index.dtype) out["sl"] =
pd.Series(dtype=events.index.dtype)
pandas.Series
import funcy import functools import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import shap from copy import deepcopy font = { "size": 30 } matplotlib.rc("font", **font) def plot_results_2x2(summaries, save_fpath, fformat="pdf", dpi=300): fig = plt.figure(figsize=(20, 20)) nrows, ncols = 2, 2 ax1 = fig.add_subplot(nrows, ncols, 1) for summary in summaries: ax1.plot(summary["fpr"], summary["tpr"], lw=2, label="AUC = %0.2f" % summary["roc_auc"]) ax1.plot([0, 1], [0, 1], color="red", lw=2, linestyle="--") ax1.set_xlim([-0.05, 1.05]) ax1.set_ylim([-0.05, 1.05]) ax1.set_ylabel("Sensitivity") ax1.set_xlabel("1 - Specificity") ax1.legend(loc="lower right") ax1.grid(which="major") ax1.grid(which="minor", linestyle='--', alpha=0.4) ax1.minorticks_on() ax2 = fig.add_subplot(nrows, ncols, 2) for summary in summaries: ax2.step(summary["recall"], summary["precision"], lw=2, label="Avg Prec = %0.2f" % summary["avg_precision"]) ax2.set_xlim([-0.05, 1.05]) ax2.set_ylim([-0.05, 1.05]) ax2.set_xlabel("Recall") ax2.set_ylabel("Precision") ax2.legend(loc="lower left") ax2.grid(which="major") ax2.grid(which="minor", linestyle='--', alpha=0.4) ax2.minorticks_on() ax3 = fig.add_subplot(nrows, ncols, 3) ax3.plot([0., 1.], [0., 1.], "r--") for summary in summaries: ax3.plot(summary["mean_predicted_value"], summary["fraction_of_positives"], "s-") ax3.set_xlim([-0.05, 1.05]) ax3.set_ylim([-0.05, 1.05]) ax3.set_xlabel("Mean predicted value") ax3.set_ylabel("Fraction of positive cases") ax3.grid(which="major") ax3.grid(which="minor", linestyle='--', alpha=0.4) ax3.minorticks_on() df_summary = pd.DataFrame(functools.reduce(lambda l1, l2: l1+l2, [ [ ("ROC AUC", summary["roc_auc"]), ("Average\nPrecision", summary["avg_precision"]), ("Best F1", summary["best_f1"]), ("Best\nAccuracy", summary["best_acc"]) ] for summary in summaries ]), columns=["Metric", "Value"]) ax4 = fig.add_subplot(nrows, ncols, 4) sns.boxplot(x="Metric", y="Value", data=df_summary, width=0.3, palette="muted") ax4.set_ylim([0., 1.]) ax4.grid(which="major") ax4.grid(which="minor", linestyle='--', alpha=0.4) ax4.minorticks_on() plt.tight_layout(pad=3) plt.savefig(save_fpath, format=fformat, dpi=dpi) plt.close() return df_summary.groupby("Metric").agg({ "Value": ["mean", "std"] }).reset_index() def plot_results_1x2(summaries, save_fpath, fformat="pdf", dpi=300): fig = plt.figure(figsize=(20, 10)) nrows, ncols = 1, 2 mean_fpr = np.linspace(0, 1, 100) aucs = [] tprs = [] for summary in summaries: aucs.append(summary["roc_auc"]) interp_tpr = np.interp(mean_fpr, summary["fpr"], summary["tpr"]) interp_tpr[0] = 0.0 tprs.append(interp_tpr) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc, std_auc = np.mean(aucs), np.std(aucs) ax1 = fig.add_subplot(nrows, ncols, 1) ax1.plot( mean_fpr, mean_tpr, color="b", lw=2, alpha=1., label="Mean AUC = %0.2f $\pm$ %0.2f" % (mean_auc, std_auc) ) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax1.fill_between(mean_fpr, tprs_lower, tprs_upper, color="grey", alpha=.4, label=r"$\pm$ 1 std. dev.") ax1.plot([0, 1], [0, 1], color="red", lw=2, linestyle="--") for summary in summaries: ax1.plot(summary["fpr"], summary["tpr"], "--", lw=2, label="AUC = %0.2f" % summary["roc_auc"], alpha=1.) ax1.legend(loc="lower right", framealpha=0.7) ax1.set_xlim([-0.05, 1.05]) ax1.set_ylim([-0.05, 1.05]) ax1.set_ylabel("Sensitivity") ax1.set_xlabel("1 - Specificity") ax1.grid(which="major") ax1.grid(which="minor", linestyle='--', alpha=0.4) ax1.minorticks_on() df_summary = pd.DataFrame(functools.reduce(lambda l1, l2: l1+l2, [ [ ("ROC AUC", summary["roc_auc"]), ("Average\nPrecision", summary["avg_precision"]), ("Best F1", summary["best_f1"]), ("Best\nAccuracy", summary["best_acc"]) ] for summary in summaries ]), columns=["Metric", "Value"]) ax4 = fig.add_subplot(nrows, ncols, 2) sns.boxplot(x="Metric", y="Value", data=df_summary, width=0.3, palette="muted") ax4.set_ylim([0., 1.]) ax4.grid(which="major") ax4.grid(which="minor", linestyle='--', alpha=0.4) ax4.minorticks_on() plt.tight_layout(pad=3) plt.savefig(save_fpath, format=fformat, dpi=dpi) plt.close() return df_summary.groupby("Metric").agg({ "Value": ["mean", "std"] }).reset_index() def plot_shap_values(X_test, summaries, feature_names, save_fpath, fformat="pdf", dpi=300): plt.figure() shap_values = np.stack([summary["shap_values"] for summary in summaries]) shap_values = np.mean(shap_values, axis=0) shap.summary_plot( shap_values, X_test, plot_type="violin", plot_size=(10, 7), sort=False, show=False, feature_names=feature_names ) plt.tight_layout() plt.savefig(save_fpath, format=fformat, dpi=dpi) plt.close() def plot_survival(df_test, features, summaries, save_fpath, fformat="pdf", dpi=300): use_df = deepcopy(df_test) use_df["tempo_estadia_hospitalar"] = use_df.apply( lambda row: 100000 if not row["obito"] else row["tempo_estadia_hospitalar"], axis=1 ) grouped = use_df.groupby("record_id") data_tmp = [] for record_id, group in grouped: sorted_group = group.sort_values("data") data_tmp.append(dict(sorted_group.iloc[0])) df_first_register =
pd.DataFrame(data_tmp)
pandas.DataFrame
import pandas as pd def llr(k): ''' Compute loglikelihood ratio see http://tdunning.blogspot.de/2008/03/surprise-and-coincidence.html And https://github.com/apache/mahout/blob/4f2108c576daaa3198671568eaa619266e787b1a/math/src/main/java/org/apache/mahout/math/stats/LogLikelihood.java#L100 And https://en.wikipedia.org/wiki/G-test ''' def H(k): N = k.values.sum() wtf = pd.np.log(k / N + (k == 0).astype(int)) return (k / N * wtf).values.sum() return 2 * k.values.sum() * (H(k) - H(k.sum(0)) - H(k.sum(1))) def compute_scores(A, B, skip_diagonal=False): ''' Compute the scores for a primary and secondary action (across all items) 'A' is the user x item matrix of the primary action 'B' is the user x item matrix of a secondary action the result is a dataframe where 'primary_item' is the item associated with the primary event (ie 'buy') 'secondary_item' is the item associated with the secondary event (ie 'click') 'score' is the log likelihood score representing the strength of association (the higher the score the stronger association) For example, people who 'primary action' item_A do 'secondary action' item_B with strength 'score' Loosely based on: https://github.com/apache/mahout/blob/4f2108c576daaa3198671568eaa619266e787b1a/math-scala/src/main/scala/org/apache/mahout/math/cf/SimilarityAnalysis.scala#L312 ''' # We ignore the original interaction value and create a binary (binarize) 0-1 matrix # as we only consider whether interactions happened or did not happen # only consider action B for users where action A occured A = (A != 0).astype(int) B = (B != 0).astype(int) AtB = A.loc[B.index, B.columns].transpose().dot(B) numInteractionsWithAandB = AtB numInteractionsWithA = A.sum() numInteractionsWithB = B.sum() # Total number of interactions is # total number of users where primary event occurs numInteractions = len(A) K11 = numInteractionsWithAandB K12 = numInteractionsWithAandB.rsub(numInteractionsWithA, axis=0).dropna() K21 = numInteractionsWithAandB.rsub(numInteractionsWithB, axis=1) K22 = numInteractions + numInteractionsWithAandB.sub( numInteractionsWithB, axis=1).sub( numInteractionsWithA, axis=0) the_data = zip( K11.apply(lambda x: x.index + '_' + x.name).values.flatten(), K11.values.flatten(), K12.values.flatten(), K21.values.flatten(), K22.values.flatten()) container = [] for name, k11, k12, k21, k22 in the_data: item_A, item_B = name.split('_') if k11 != 0 and not (skip_diagonal and item_A == item_B): df = pd.DataFrame([[k11, k12], [k21, k22]]) score = llr(df) else: score = 0 # Warning! while llr score could be calculated, for cooccurance purposes, it doesn't makes sense to compute llr when cooccurnace (k11) is zero container.append((item_A, item_B, score)) return pd.DataFrame( container, columns=['primary_item', 'secondary_item', 'score']).sort_values( ['primary_item', 'score'], ascending=[True, False]) def train(raw_data, primary_action): ''' this is like the 'main' funciton: takes a dataset and returns a dataframe with LLR scores raw_data is a dataframe with the columns: user, action, item primary_action is the action from raw_data that we want to determine associations for 'A' is the matrix of primary actions 'B' is a matrix of secondary actions ''' # pretty sure we only want to keep users and user metadata for only the users where the primary action occurs # not sure where this happens int he Mahout code though... users_who_did_primary_action = pd.unique( raw_data.loc[raw_data.action == primary_action, 'user']) data = raw_data.loc[raw_data.user.isin(users_who_did_primary_action), :] freq = data.groupby(['user', 'action', 'item']).size().to_frame('freq').reset_index() freq_actions = freq.groupby('action') A = freq_actions.get_group(primary_action).pivot( index='user', columns='item', values='freq').fillna(0) cco_results = [] for action, matrix in freq_actions: skip_diagonal = primary_action == action B = matrix.pivot(index='user', columns='item', values='freq').fillna(0) scores = compute_scores(A, B, skip_diagonal) scores['primary_action'] = primary_action scores['secondary_action'] = action cco_results.append(scores) all_data = pd.concat(cco_results, ignore_index=True) return all_data[[ 'primary_action', 'primary_item', 'secondary_action', 'secondary_item', 'score' ]] if __name__ == '__main__': ''' These unit tests are the same as the Apache Mahout unit tests per: https://github.com/apache/mahout/blob/08e02602e947ff945b9bd73ab5f0b45863df3e53/spark/src/test/scala/org/apache/mahout/cf/SimilarityAnalysisSuite.scala#L49 https://github.com/apache/mahout/blob/08e02602e947ff945b9bd73ab5f0b45863df3e53/math/src/test/java/org/apache/mahout/math/stats/LogLikelihoodTest.java#L50 https://github.com/apache/mahout/blob/4f2108c576daaa3198671568eaa619266e787b1a/math/src/main/java/org/apache/mahout/math/stats/LogLikelihood.java#L1 ''' # test compute_scores a = pd.DataFrame( [(1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (0, 0, 0, 0, 1), (1, 0, 0, 1, 0)], columns=['a', 'b', 'c', 'd', 'e']) b = pd.DataFrame( [(1, 1, 1, 1, 0), (1, 1, 1, 1, 0), (0, 0, 1, 0, 1), (1, 1, 0, 1, 0)], columns=['a', 'b', 'c', 'd', 'e']) AtAControl = pd.DataFrame( [(0.0, 1.7260924347106847, 0.0, 0.0, 0.0), (1.7260924347106847, 0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.7260924347106847, 0.0), (0.0, 0.0, 1.7260924347106847, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0)])\ .round(5)\ .as_matrix() AtBControl = pd.DataFrame( [(1.7260924347106847, 1.7260924347106847, 1.7260924347106847, 1.7260924347106847, 0.0), (0.6795961471815897, 0.6795961471815897, 0.6795961471815897, 0.6795961471815897, 0.0), (0.6795961471815897, 0.6795961471815897, 0.6795961471815897, 0.6795961471815897, 0.0), (1.7260924347106847, 1.7260924347106847, 1.7260924347106847, 1.7260924347106847, 0.0), (0.0, 0.0, 0.6795961471815897, 0.0, 4.498681156950466)])\ .round(5)\ .as_matrix() ata = compute_scores(a, a, True).pivot( index='primary_item', columns='secondary_item', values='score').round(5).as_matrix() atb = compute_scores(a, b, False).pivot( index='primary_item', columns='secondary_item', values='score').round(5).as_matrix() assert pd.np.array_equal(ata, AtAControl) assert pd.np.array_equal(atb, AtBControl) # test llr assert 2.773 == round(llr(pd.DataFrame([[1, 0], [0, 1]])), 3) assert 27.726 == round(llr(pd.DataFrame([[10, 0], [0, 10]])), 3) assert 39.331 == round(llr(pd.DataFrame([[5, 1995], [0, 100000]])), 3) assert 4730.737 == round( llr(pd.DataFrame([[1000, 1995], [1000, 100000]])), 3) assert 5734.343 == round( llr(pd.DataFrame([[1000, 1000], [1000, 100000]])), 3) assert 5714.932 == round( llr(
pd.DataFrame([[1000, 1000], [1000, 99000]])
pandas.DataFrame
import requests import pandas as pd import numpy as np from pandas import json_normalize from scipy.optimize import curve_fit from time import gmtime, strftime import streamlit as st base_url = 'http://corona-api.com/countries' def getcountrylist(): response = requests.get(base_url).json() countrylistcode = {} for country in response['data']: countrylistcode[country['name']] = country['code'] return countrylistcode def getcountrydata(countrycode): url = f'{base_url}/{countrycode}' response = requests.get(url).json() df =
json_normalize(response['data'])
pandas.json_normalize
import pandas as pd import numpy as np import lightgbm as lgb import time train_1 =
pd.read_csv("dataset/validation_2/train_complete.csv")
pandas.read_csv
import sys import re import json import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import MultiLabelBinarizer from scipy.spatial.distance import cdist from colorama import Fore, Style from kneed import KneeLocator import copy import time import pickle import os def error_msg(error_msg, arg): """ Helper function to display error message on the screen. Input: The error message along with its respective argument. (Values include - filename, selected action). Output: The formatted error message on the screen along with the argument. """ print("****************************") print(Fore.RED, end='') print(error_msg,":", arg) print(Style.RESET_ALL, end='') print("****************************") sys.exit(0) def printINFO(info): """ Helper function to ask the user for Input. Input: The message that is to be displayed. Output: The formatted message on the screen. """ print(Fore.BLUE, end='') print(info) print(Style.RESET_ALL, end='') # ***************************************************************************** # ***************************************************************************** # Helper Methods Start def calculate_num_clusters(df, acl_weights): """ Calculates the optimal number of clusters using the elbow_graph approach. Input: The Pandas dataframe of the input file (ACL.json) output: The value of k that provides the least MSE. """ files = ['IP_Access_List', 'Route_Filter_List', 'VRF', 'AS_Path_Access_List', 'IKE_Phase1_Keys', 'IPsec_Phase2_Proposals', 'Routing_Policy'] k_select_vals = [41, 17, 42, 5, 3, 2, 58] curr_file = file_name.split(".")[0] file_index = files.index(curr_file) return k_select_vals[file_index] features = df[df.columns] ran = min(len(df.columns), len(discrete_namedstructure)) if ran > 50: k_range = range(1, 587) else: k_range = range(1, ran) print(k_range) k_range = range(1, 580) distortions = [] np.seed = 0 clusters_list = [] f = open('distortions.txt', 'w') for k in k_range: print(k) kmeans = KMeans(n_clusters=k).fit(features, None, sample_weight=acl_weights) clusters_list.append(kmeans) cluster_centers = kmeans.cluster_centers_ k_distance = cdist(features, cluster_centers, "euclidean") distance = np.min(k_distance, axis=1) distortion = np.sum(distance)/features.shape[0] distortions.append(distortion) f.write(str(distortion)) f.write("\n") kn = KneeLocator(list(k_range), distortions, S=3.0, curve='convex', direction='decreasing') print("Knee is: ", kn.knee) plt.xlabel('k') plt.ylabel('Distortion') plt.title('The Elbow Method showing the optimal k') plt.plot(k_range, distortions, 'bx-') plt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed') plt.show() if kn.knee is None: if ran < 5: return ran - 1 else: return 5 return kn.knee ''' for i in range(1, len(avg_within)): if (avg_within[i-1] - avg_within[i]) < 1: break # return i-1 if len(avg_within) > 1 else 1 # return i - 1 if i > 1 else 1 ''' def perform_kmeans_clustering(df, ns_weights): """ To get a mapping of the rows into respective clusters generated using the K-means algorithm. Input: df:The Pandas data-frame of the input file (ACL.json) ns_weights: The weights of each name structure which allows the weighted k-means algorithm to work. Output: Adding respective K-means cluster label to the input dataframe. Example: Row1 - Label 0 //Belongs to Cluster 0 Row2 - Label 0 //Belongs to Cluster 0 Row3 - Label 1 //Belongs to Cluster 1 """ global k_select k_select = calculate_num_clusters(df, ns_weights) features = df[df.columns] kmeans = KMeans(n_clusters=k_select) kmeans.fit(features, None, sample_weight=ns_weights) labels = kmeans.labels_ df["kmeans_cluster_number"] = pd.Series(labels) def extract_keys(the_dict, prefix=''): """ Recursive approach to gather all the keys that have nested keys in the input file. Input: The dictionary file to find all the keys in. Output: All the keys found in the nested dictionary. Example: Consider {key1:value1, key2:{key3:value3}, key4:[value4], key5:[key6:{key7:value7}]} The function returns key2, key5=key6 """ key_list = [] for key, value in the_dict.items(): if len(prefix) == 0: new_prefix = key else: new_prefix = prefix + '=' + key try: if type(value) == dict: key_list.extend(extract_keys(value, new_prefix)) elif type(value) == list and type(value[0]) == dict: key_list.extend(extract_keys(value[0], new_prefix)) elif type(value) == list and type(value[0]) != dict: key_list.append(new_prefix) else: key_list.append(new_prefix) except: key_list.append(new_prefix) return key_list def get_uniques(data): """ A helper function to get unique elements in a List. Input: A list that we need to capture uniques from. Output: A dictionary with unique entries and count of occurrences. """ acl_count_dict = {} for acl in data: acl = json.dumps(acl) if acl not in acl_count_dict: acl_count_dict[acl] = 1 else: value = acl_count_dict[acl] value += 1 acl_count_dict[acl] = value keys = [] values = [] for key, value in acl_count_dict.items(): keys.append(key) values.append(value) return keys, values def overall_dict(data_final): """ Parses through the dictionary and appends the frequency with which the keys occur. Input: A nested dictionary. Example: {key1:{key2:value1, key3:value2, key4:{key5:value3}} {key6:{key7:value2} {key8:{key3:value3, key4:value5, key6:value3}} Output: Returns a new array with the nested keys appended along with a tuple containing the un-nested value along with the frequency count. [{ key1=key2:{'value1':1}, key1=key3:{'value2':2}, key1=key4=key5:{'value3':3}, key6=key7:{'value2':2}, key8=key3:{'value3':3}, key8=key4:{'value5':1}, key8=key6:{'value3':1} }] """ overall_array = [] for data in data_final: overall = {} for item in data: if item[0] is None: continue result = extract_keys(item[0]) for element in result: value = item[0] for key in element.split("="): new_value = value[key] if type(new_value) == list: if len(new_value) != 0: new_value = new_value[0] else: new_value = "#BUG#" value = new_value if element not in overall: overall[element] = {} if value not in overall[element]: overall[element][value] = 1 else: overall[element][value] += 1 overall_array.append(overall) return overall_array def get_overall_dict(data_final): """ Parses through the dictionary and appends the frequency with which the keys occur. Input: A nested dictionary. Example: {key1:{key2:value1, key3:value2, key4:{key5:value3}} {key6:{key7:value2} {key8:{key3:value3, key4:value5, key6:value3}} Output: Returns a new array with the nested keys appended along with a tuple containing the unnested value along with the frequency count. [{ key1=key2:{'value1':1}, key1=key3:{'value2':2}, key1=key4=key5:{'value3':3}, key6=key7:{'value2':2}, key8=key3:{'value3':3}, key8=key4:{'value5':1}, key8=key6:{'value3':1} }] """ overall_array = [] for data in data_final: overall = {} new_value = None flag = 0 for item in data: visited = {"lines=name":1} if item[0] is None: continue result = extract_keys(item[0]) for element in result: value = item[0] for key in element.split("="): if element not in visited: visited[element] = 1 new_value = value[key] flag = 0 if type(new_value) == list: if len(new_value) > 0: for list_data in new_value: if element not in overall: overall[element] = {} temp = element temp_val = list_data temp = temp.split("=", 1)[-1] while len(temp.split("=")) > 1: temp_val = temp_val[temp.split("=")[0]] temp = temp.split("=", 1)[-1] list_key = temp check = 0 try: if type(temp_val[list_key]) == list: if temp_val[list_key][0] not in overall[element]: overall[element][temp_val[list_key][0]] = 1 check = 1 else: if temp_val[list_key] not in overall[element]: overall[element][temp_val[list_key]] = 1 check = 1 except: dummy=0 ''' do nothing ''' try: if check == 0: if type(temp_val[list_key]) == list: if temp_val[list_key][0] in overall[element]: overall[element][temp_val[list_key][0]] += 1 else: if temp_val[list_key] in overall[element]: overall[element][temp_val[list_key]] += 1 except: dummy=0 flag = 1 value = new_value else: ''' Type is not list ''' value = new_value else: if flag == 0: if element not in overall: overall[element] = {} if new_value not in overall[element]: overall[element][new_value] = 1 else: overall[element][new_value] += 1 if flag == 0: if element not in overall: overall[element] = {} if new_value not in overall[element]: overall[element][new_value] = 1 else: overall[element][new_value] += 1 overall_array.append(overall) return overall_array def calculate_z_score(arr): """ Calculates the Z-score (uses mean) (or) Modified Z-score (uses median) of data-points Input: Data points generated from parsing through the input file. Also considers the Z_SCORE_FLAG that is set previously with 0 (default) using the Modified Z-score and 1 using Z-score. Output: The Z-score of given data-points array. """ if len(arr) == 1: return arr z_score = [] ''' Calculates the Z-score using mean. Generally used if distribution is normal (Bell curve). ''' if Z_SCORE_FLAG: mean = np.mean(arr) std = np.std(arr) if std == 0: return np.ones(len(arr)) * 1000 for val in arr: z_score.append((val - mean) / std) ''' Modified Z-score approach. Calculates the Z-score using median. Generally used if distribution is skewed. ''' else: median_y = np.median(arr) medians = [np.abs(y - median_y) for y in arr] med = np.median(medians) median_absolute_deviation_y = np.median([np.abs(y - median_y) for y in arr]) if median_absolute_deviation_y == 0: return np.ones(len(arr)) * 1000 z_score = [0.6745 * (y - median_y) / median_absolute_deviation_y for y in arr] return z_score def calculate_signature_d(overall_arr): """ Uses Z-score to generate the signatures of data-points and also maps points on level of significance (include for signature calculation, include for bug calculation, no significance). If Z-score is equal to 1000.0 or in between sig_threshold and bug_threshold, no-significance. If Z-score is >= sig_threshold, include for signature calculation. If Z-score is <= bug_threshold, include for bug calculation. Input: The individual master-signature generated for each Cluster. Output: An array containing dictionaries marked with tags that represent the action that needs to be performed on them. """ signature = {} for key, value in overall_arr.items(): sig_threshold = 0.5 bug_threshold = -0.1 key_points = [] data_points = [] sig_values = [] for k, v in value.items(): key_points.append(k) data_points.append(v) if len(data_points) == 1: sig_values.append((key_points[0], (data_points[0]))) ''' Check for two data points case ''' else: z_score = calculate_z_score(data_points) if len(z_score) > 0: avg_z_score = sum(z_score)/len(z_score) bug_threshold = bug_threshold + (avg_z_score - sig_threshold) for i in range(len(z_score)): present_zscore = z_score[i] if present_zscore == 1000.0: sig_values.append((key_points[i], "*", (data_points[i]))) elif present_zscore >= sig_threshold: sig_values.append((key_points[i], (data_points[i]))) elif present_zscore <= bug_threshold: sig_values.append((key_points[i], "!", (data_points[i]))) elif (present_zscore < sig_threshold) and (present_zscore > bug_threshold): sig_values.append((key_points[i], "*", (data_points[i]))) if key in signature: signature[key].append(sig_values) else: signature[key] = [] signature[key] += sig_values return signature def results(data, signatures): title = file_name.split(".")[0] + "_Results.txt" if not os.path.exists(os.path.dirname(title)): os.makedirs(os.path.dirname(title)) f = open(title, "w") f.write(title + "\n") f.write("\n") totalBugs = 0 totalConformers = 0 for cluster_index, clustered_namedStructure in enumerate(data): numBugs = 0 numConformers = 0 cluster_signature = signatures[cluster_index] for namedStructure in clustered_namedStructure: keys = extract_keys(namedStructure[0]) namedStructure = flatten_json((namedStructure[0]), '=') isNamedStructureABug = False newNamedStructure = {} for key, value in namedStructure.items(): flag = 0 for index, char in enumerate(key): if char == '0' or char == '1' or char == '2' or char == '3' or char == '4' or char == '5' or char == '6' or char == '7' or char == '8' or char == '9': flag = 1 if index == len(key)-1: new_key = str(key[0:index-1]) newNamedStructure[new_key] = value else: new_key = str(key[0:index-1]) + str(key[index+1:len(key)]) newNamedStructure[new_key] = value if not flag: newNamedStructure[key] = value flag = 0 for propertyKey, propertyValue in newNamedStructure.items(): try: propValues = cluster_signature[propertyKey] except: print("EXCEPTION OCCURRED!") print(propertyKey) for value in propValues: if value[0] == propertyValue and value[1] == '!': numBugs += 1 isNamedStructureABug = True if isNamedStructureABug: numBugs += 1 else: numConformers += 1 numBugs = len(clustered_namedStructure) - numConformers f.write("Cluster Index: " + str(cluster_index) + "\n") f.write(" Number of elements in Cluster = " + str(len(clustered_namedStructure)) + "\n") f.write(" Number of Bugs using Z-score: " + str(len(clustered_namedStructure) - numConformers) + "\n") f.write(" Number of Conformers using Z-score: " + str(numConformers) + "\n") f.write("\n") totalBugs += numBugs totalConformers += numConformers print("Total Bugs = ", totalBugs) print("Total Confomers = ", totalConformers) f.write("\n") f.write("\n") f.write("Total Bugs using Z-score: " + str(totalBugs) + "\n") f.write("Total Conformers using Z-score: " + str(totalConformers)) def transform_data(data): """ A helper function to extract nested keys from the ACL and to add the frequency of the repeated value. Helps score data. Input: An ACL in the form {key1:value1, key2:{key3:value3}, key4:[value4], key5:[key6:{key7:value7}]}. Output: Extracted nested keys from the extract_keys function along with the frequency count. Example: [ {key1:{key2:value1, key3:value2, key4:{key5:value3}} {key6:{key7:value2} {key8:{key3:value3, key4:value5, key6:value3}} ] Returns a new array with the nested keys appended along with a tuple containing the unnested value along with the frequency count. [{ key1=key2:{'value1':1}, key1=key3:{'value2':2}, key1=key4=key5:{'value3':3}, key6=key7:{'value2':2}, key8=key3:{'value3':3}, key8=key4:{'value5':1}, key8=key6:{'value3':3} }] """ count = 1 overall = {} flag = 0 i = 0 while i < count: value = None result = None new_value = None for item in data: result = extract_keys(item) for element in result: value = item for key in element.split("="): if key in value: new_value = value[key] if (type(new_value) == list) and (len(new_value) > 1): if flag == 0: count = len(new_value) flag = 1 try: new_value = new_value[i] except: new_value = new_value[-1] elif (type(new_value) == list) and (len(new_value) == 1): new_value = new_value[0] value = new_value if element not in overall: overall[element] = {} if type(value) != dict and type(value) != list: if value not in overall[element]: overall[element][value] = 1 i += 1 return overall def calculate_signature_score(signature): """ Calculates the signature score for each signature as the sum of all the weights in it but ignoring the weights marked with "*". Input: A signature that contains tags of whether or not the weight should be included in calculating the signature. Output: An array containing the weights of all the signatures that should be considered. Example: Consider [ {'key1=key2':['val1', 40], 'key3=key4':['val2':90]}, //40 + 90 {'key5=key6=key7':['val3', *, 20], 'key8=key9':['val4':80]}, //80 {'key10=key11':['val5', 40]} //40 Returns [130, 80, 40]. """ score_arr = [] for sig in signature: score = 0 for key, value in sig.items(): for val in value: if (val[1] != "!") and (val[1] != "*"): score += val[1] elif val[1] == "!": score += val[2] score_arr.append(score) return score_arr def calculate_namedstructure_scores(data_final, all_signatures): """ Calculate the individual scores for each discrete-ACL. This includes calculating human_error scores, signature_scores, and deviant scores. Input: data_final: List of ACLs grouped into a Cluster. Example: [ [acl-1, acl-4, acl-5, acl-9], //Cluster-0 [acl-2, acl-3], //Cluster-1 [acl-7], //Cluster-2 [acl-6, acl-8] //Cluster-3 ] all_signatures: Consolidated signature for each Cluster. Output: deviant_arr: Returns all deviant properties for the ACL. Empty list is returned if no deviant property in the ACL. count_arr: [[TODO]] dev_score: Returns the deviant score for the deviant properties found. 0 if no deviant property. acls_arr: [[TODO]] sig_score: Returns the signature score of the ACL. cluster_num: Returns the cluster number that the ACL belongs to. acls_score: The score that is generated for each acl human_errors_arr: Returns the human_error properties (IPValidity, DigitRepetition, PortRange) for each ACL and empty list if no human_error properties present in the ACL. human_error_score: Returns the score of the human error property calculated for the ACL. 0 is returned if no human_error property exists in the ACL. """ deviant_arr = [] count_arr = [] acls_dict = {} acls_arr = [] acls_score = [] sig_score = [] dev_score = [] cluster_num = [] human_errors_arr = [] human_errors_score = [] i = 0 for acl_list in data_final: bug_count = 0 conformer_count = 0 signature = all_signatures[i] for acl in acl_list: flag = 0 if str(acl[0]) not in acls_dict: acls_dict[str(acl[0])] = 1 acls_arr.append(acl[0]) cluster_num.append(i) flag = 1 else: print(acl[0]) print(acls_dict) continue sig_score.append(signature_scores[i]) deviant = [] count = 0 dev_c = 0 acl_c = 0 human_errors = [] human_error_category = {} data = transform_data(acl) for data_key, data_val in data.items(): if data_key in signature: ''' Key Valid. Now check for actual Value ''' for val in data_val.items(): (error_key, error_value), error_category = calculateHumanErrors(data_key, val[0], signature[data_key], file_name.split(".")[0]) if error_category: human_errors.append((error_key, error_value)) if error_category not in human_error_category: human_error_category[error_category] = 0 human_error_category[error_category] += 1 for sig_val in signature[data_key]: if val[0] == sig_val[0]: ''' value also present. Now check if value part of bug/sig/skip ''' if sig_val[1] == "!": dev_c += sig_val[2] acl_c += sig_val[2] deviant.append((data_key, sig_val[0])) bug_count += 1 elif sig_val[1] == "*": conformer_count += 1 continue else: conformer_count += 1 count += sig_val[1] acl_c += sig_val[1] else: ''' Deviant Key ''' if data_key != "lines=name": deviant.append(data_key) dev_c += data_val acl_c += data_val if flag == 1: count_arr.append(count) deviant_arr.append(deviant) dev_score.append(dev_c) acls_score.append(acl_c) human_errors_arr.append(human_errors) human_errors_score.append(calculate_human_error_score(human_error_category)) i += 1 return deviant_arr, count_arr, dev_score, acls_arr, sig_score, cluster_num, acls_score, human_errors_arr, human_errors_score def checkIPValidity(ip_address): """ A reg-ex check to verify the validity of an IP address. Input: A list of IP addresses Output: A boolean representing the validity of the IP address. Returns 'True' if all the IPs are valid and 'False' if any of the IP is invalid. """ try: ip_address = ip_address.split(":") for ip in ip_address: IP_check = "^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])?(\/)?((3[01]|3[02]|[12][0-9]|[0-9])?)$" match = re.match(IP_check, ip) if not match: return False return True except e: print(e) return True def checkPortRange(port_range): """ A check to verify that the port range is specified correctly (elem0 <= elem1). Input: A string that contains two numbers separated by a '-'. Output: A boolean representing the validity of the range (elem0 <= elem1). Example: 52108-52109 (True) 466 - 466 (True) 466 - 465 (False) """ try: port_split = port_range.split("-") if port_split[-1] < port_split[0]: return False return True except: return True def checkDigitRepetition(digit, signature): """ Checks for Digit repetition. Input: The value for the following keys: srcPorts, dstPorts, lengthRange Output: Returns True if there is any Human Error and the digit is repeated twice. """ try: if type(digit) == str: digit = float(digit.split(":")[0]) if digit == 0: return False for item in signature: if type(item) == str: item = int(item.split(":")[0]) if digit == (item*10+item%10): print("--------", digit, item*10 + item%10) return True return False except: return False def calculateHumanErrors(data_key, data, signature, namedStructure): """ Checks for simple human errors like entering invalid IP Addresses, incorrect port-ranges, and digit repetitions. Input: data_key: The nested keys calculated in the overall_dict and get_overall_dict methods. Example: key1=key2=key4 data: The data value for the keys. signature: The signature for the keys that was calculated in the calculate_signature_d method. namedStructure: The type of the IP file. Possible values: IP_Access_List, Route_Filter_List, Routing_Policy, VRF, others. Output: Returns the error and the category it belongs to. Example: key1=key2=key3 [1333.0.0.13] [13172.16.31.10] IP_Access_List Returns: key1=key2=key3 [1333.0.0.13] IP """ human_error = (None, None) category = None data_key = data_key.split("=")[-1] signature_items = [] for sig_item in signature: signature_items.append(sig_item[0]) if namedStructure == "IP_Access_List": if data_key == "ipWildcard": if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif data_key in ["dstPorts", "srcPorts"]: if not checkPortRange(data): ''' Invalid Ports Range ''' human_error = (data_key, data) category = "RANGE" elif namedStructure == "Route_Filter_List": if data_key == "ipWildcard": if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif data_key == "lengthRange": if not checkPortRange(data): ''' Invalid Ports Range ''' human_error = (data_key, data) category = "RANGE" elif namedStructure == "Routing_Policy": if data_key == "communities": if checkDigitRepetition(data, signature_items): ''' Error Copying digits ''' human_error = (data_key, data) category = "DIGIT" elif data_key == "ips": if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif namedStructure == "VRF": if data_key in ["administrativeCost", "remoteAs", "metric", "localAs", "referenceBandwidth", ]: if checkDigitRepetition(data, signature_items): ''' Error Copying digits ''' human_error = (data_key, data) category = "DIGIT" elif data_key in ["peerAddress", "localIp", "routerId", "network"]: if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" ''' Any Other namedStructure ''' else: try: if re.search('IP|ip', data_key) and not re.search('[a-zA-Z]', data): if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif not re.search("[a-zA-Z]", data): if checkDigitRepetition(data, signature_items): ''' Error Copying digits ''' human_error = (data_key, data) category = "DIGIT" except: pass return human_error, category def calculate_human_error_score(category_dict): """ Scores the human_errors that have been found with IPValidity and DigitRepetition errors weighed as 'high,' i.e, 0.8 and PortRange errors weighed 'medium,' i.e., 0.5. Input: A dictionary containing the count of the error occurrences. Output: A weighted sum of all the errors found. """ total_score = 0 low = 0.2 medium = 0.5 high = 0.8 weightage_dict = {"IP": high, "RANGE": medium, "DIGIT": high} for category, count in category_dict.items(): if count != 0: #print("* Human Error Found *") total_score += weightage_dict[category]/np.log(1+count) return round(total_score/len(category_dict), 2) if category_dict else total_score def flatten_json(data, delimiter): """ Flattens a JSON file. Input: data: A JSON dictionary of hierarchical format. {key1: {key2: value2, key3: value3}, key4: {key5: value5, key6: [value6, value7, value8]}} delimiter: A parameter to separate the keys in order to facilitate easy splitting. Output: A flattened dictionary with keys separated by the delimiter parameter. key1_key2:value2, key1_key3:value3, key4_key5:value5, key4_key6:value6, key4_key6:value7, key4_key6:value8 """ out = {} def flatten(data, name=''): if type(data) is dict: for key in data: flatten(data[key], name + key + delimiter) elif type(data) is list: i = 0 for elem in data: flatten(elem, name + str(i) + delimiter) i += 1 else: out[name[:-1]] = data flatten(data) return out def encode_data(data): """ Converts categorical values into numeric values. We use MultiLabelBinarizer to encode categorical data. This is done in order to pass the data into clustering and other similar algorithms that can only handle numerical data. Flattens each ACL list and then encodes them. Input: A Python list that contains all discrete-ACLs. Output: A Python list after encoding. """ flattenedData = [] allKeys = [] for NS in data: flattenedNamedStructure = flatten_json(NS, '_') flattenedData.append(flattenedNamedStructure) for key in flattenedNamedStructure.keys(): if key not in allKeys: allKeys.append(key) mergedData = [] for NS in flattenedData: mergedNS = [] for key, value in NS.items(): mergedNS.append(str(value)) mergedData.append(mergedNS) mlb = MultiLabelBinarizer() data_T = mlb.fit_transform(mergedData) print("MLb classes=") print(mlb.classes_) return data_T, mlb.classes_ def export_clusters(data, acl_weight_mapper): """ Helper Method to verify authenticity of Clusters being formed. Input: The data that is sorted into list of Clusters. Example: [ [acl-1, acl-4, acl-5, acl-9], //Cluster-0 [acl-2, acl-3], //Cluster-1 [acl-7], //Cluster-2 [acl-6, acl-8] //Cluster-3 ] We also make use of acl_dict and node_name_dict dictionaries by searching for the ACL and then getting the appropriate ACL_name and the nodes that the ACL is present in. Output: A csv file by the name of Generated_Clusters is written in the format: Cluster-0 |||| Cluster-0 Names |||| Cluster-0 Nodes |||| Cluster-1 |||| Cluster-1 Names |||| Cluster-1 Nodes acl-1 |||| permit tcp eq 51107 |||| st55in15hras |||| acl-2 |||| permit udp any eq 1200 |||| rt73ve11m5ar acl-4 |||| permit tcp eq 51102 |||| st55in15hras, st55in17hras |||| acl-3 |||| permit udp any eq 120002 |||| rt73ve10m4ar acl-5 |||| permit tcp eq 51100 |||| st55in17hras |||| acl-9 |||| permit tcp eq 51109 |||| st55in17hras |||| """ column_labels = [] for index in range(len(data)): column_labels.append("Cluster " + str(index)) column_labels.append("Cluster " + str(index) + " ACL Weights") column_labels.append("Cluster " + str(index) + " Nodes") data_to_export = pd.DataFrame(columns=column_labels) for cluster_index, cluster_data in enumerate(data): discrete_ACL_nodes = [] cluster_weights = [] for discrete_ACL in cluster_data: temp = json.dumps(discrete_ACL[0], sort_keys=True) temp_arr = [] try: for node in namedstructure_node_mapper[temp]: temp_arr.append(node) discrete_ACL_nodes.append(temp_arr) except: discrete_ACL_nodes.append(None) cluster_weights.append(acl_weight_mapper[temp]) cluster_data =
pd.Series(cluster_data)
pandas.Series
from __future__ import print_function from __future__ import division import source.cymdist_tool.tool as cymdist import v2gsim import pandas import datetime import random import numpy import matplotlib.pyplot as plt import progressbar import traceback try: import cympy except: pass class EVForecast(object): """Forecast EV demand at a feeder""" def __init__(self): self.ev_forecast = None self.vehicle_project = None self.directory = None self.pk = None self.feeder_timestep = None self.itinerary_path = None self.power_demand_path = None self.configuration = None def initialize(self, feeder): """Initialize feeder inputs""" self.ev_forecast = pandas.read_excel(feeder.cyder_input_row.ev_forecast) self.vehicle_project = pandas.read_excel( self.ev_forecast.loc[0, 'vehicle_parameters'], sheetname=None) self.directory = feeder.directory self.pk = feeder.pk self.feeder_timestep = feeder.timestep self.feeder = feeder self.itinerary_path = self.directory + str(self.pk) + '_itinerary.csv' self.power_demand_path = self.directory + str(self.pk) + '_power.csv' self.configuration = feeder.configuration def forecast(self): """Forecast EV demand and return configuration file for CyDER""" # Create an itinerary file from an occupancy schedule self._occupancy_to_itineraries() # Forecast power demand based on the an itinerary file power_demand = self._itineraries_to_power_demand() # Save power demand with the right format formatted_power_demand = self._save_power_demand(power_demand) # Update the configuration file self._update_configuration(formatted_power_demand) # Read power demand and plot (formatted_power_demand / 1000).plot() plt.ylabel('Power demand [kW]') plt.xlabel('Time') plt.show() return self.configuration def _open_itinerary_database(self): """Open itinerary database to pick itineraries""" # Create a V2G-Sim project itinerary_db = v2gsim.model.Project() # Initialize starting date before loading vehicles itinerary_db.date = self.vehicle_project['project'].loc[0, 'start_date'] # Load vehicles into the V2G-Sim project print('') print('Loading itineraries...') df_itinerary_db = pandas.read_excel( io=self.ev_forecast.loc[0, 'itinerary_database'], sheetname='Activity') itinerary_db = v2gsim.itinerary.from_excel( itinerary_db, is_preload=True, df=df_itinerary_db) # Filter out vehicles that don't have a full cycle over the day # (avoid midnight mismatch) itinerary_db.vehicles = v2gsim.itinerary.get_cycling_itineraries(itinerary_db) return itinerary_db, df_itinerary_db def _preprocess_itinerary_database(self, row, itinerary_db): """Filter out itineraries before picking itineraries Return a dictionary containing boolean describing vehicle match with the occupancy schedule""" def activity_to_boolean(start, end, boolean): delta_minutes = int((end - start).total_seconds() / 60) return [boolean] * delta_minutes # Load occupancy dfocc =
pandas.read_pickle(row.occupancy_filename)
pandas.read_pickle
# -*- coding: utf-8 -*- from __future__ import print_function import pytest from datetime import datetime, timedelta import itertools from numpy import nan import numpy as np from pandas import (DataFrame, Series, Timestamp, date_range, compat, option_context, Categorical) from pandas.core.arrays import IntervalArray, integer_array from pandas.compat import StringIO import pandas as pd from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm # Segregated collection of methods that require the BlockManager internal data # structure class TestDataFrameBlockInternals(): def test_cast_internals(self, float_frame): casted = DataFrame(float_frame._data, dtype=int) expected = DataFrame(float_frame._series, dtype=int) assert_frame_equal(casted, expected) casted = DataFrame(float_frame._data, dtype=np.int32) expected = DataFrame(float_frame._series, dtype=np.int32) assert_frame_equal(casted, expected) def test_consolidate(self, float_frame): float_frame['E'] = 7. consolidated = float_frame._consolidate() assert len(consolidated._data.blocks) == 1 # Ensure copy, do I want this? recons = consolidated._consolidate() assert recons is not consolidated tm.assert_frame_equal(recons, consolidated) float_frame['F'] = 8. assert len(float_frame._data.blocks) == 3 float_frame._consolidate(inplace=True) assert len(float_frame._data.blocks) == 1 def test_consolidate_inplace(self, float_frame): frame = float_frame.copy() # noqa # triggers in-place consolidation for letter in range(ord('A'), ord('Z')): float_frame[chr(letter)] = chr(letter) def test_values_consolidate(self, float_frame): float_frame['E'] = 7. assert not float_frame._data.is_consolidated() _ = float_frame.values # noqa assert float_frame._data.is_consolidated() def test_modify_values(self, float_frame): float_frame.values[5] = 5 assert (float_frame.values[5] == 5).all() # unconsolidated float_frame['E'] = 7. float_frame.values[6] = 6 assert (float_frame.values[6] == 6).all() def test_boolean_set_uncons(self, float_frame): float_frame['E'] = 7. expected = float_frame.values.copy() expected[expected > 1] = 2 float_frame[float_frame > 1] = 2 assert_almost_equal(expected, float_frame.values) def test_values_numeric_cols(self, float_frame): float_frame['foo'] = 'bar' values = float_frame[['A', 'B', 'C', 'D']].values assert values.dtype == np.float64 def test_values_lcd(self, mixed_float_frame, mixed_int_frame): # mixed lcd values = mixed_float_frame[['A', 'B', 'C', 'D']].values assert values.dtype == np.float64 values = mixed_float_frame[['A', 'B', 'C']].values assert values.dtype == np.float32 values = mixed_float_frame[['C']].values assert values.dtype == np.float16 # GH 10364 # B uint64 forces float because there are other signed int types values = mixed_int_frame[['A', 'B', 'C', 'D']].values assert values.dtype == np.float64 values = mixed_int_frame[['A', 'D']].values assert values.dtype == np.int64 # B uint64 forces float because there are other signed int types values = mixed_int_frame[['A', 'B', 'C']].values assert values.dtype == np.float64 # as B and C are both unsigned, no forcing to float is needed values = mixed_int_frame[['B', 'C']].values assert values.dtype == np.uint64 values = mixed_int_frame[['A', 'C']].values assert values.dtype == np.int32 values = mixed_int_frame[['C', 'D']].values assert values.dtype == np.int64 values = mixed_int_frame[['A']].values assert values.dtype == np.int32 values = mixed_int_frame[['C']].values assert values.dtype == np.uint8 def test_constructor_with_convert(self): # this is actually mostly a test of lib.maybe_convert_objects # #2845 df = DataFrame({'A': [2 ** 63 - 1]}) result = df['A'] expected = Series(np.asarray([2 ** 63 - 1], np.int64), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [2 ** 63]}) result = df['A'] expected = Series(np.asarray([2 ** 63], np.uint64), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [datetime(2005, 1, 1), True]}) result = df['A'] expected = Series(np.asarray([datetime(2005, 1, 1), True], np.object_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [None, 1]}) result = df['A'] expected = Series(np.asarray([np.nan, 1], np.float_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [1.0, 2]}) result = df['A'] expected = Series(np.asarray([1.0, 2], np.float_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [1.0 + 2.0j, 3]}) result = df['A'] expected = Series(np.asarray([1.0 + 2.0j, 3], np.complex_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [1.0 + 2.0j, 3.0]}) result = df['A'] expected = Series(np.asarray([1.0 + 2.0j, 3.0], np.complex_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [1.0 + 2.0j, True]}) result = df['A'] expected = Series(np.asarray([1.0 + 2.0j, True], np.object_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [1.0, None]}) result = df['A'] expected = Series(np.asarray([1.0, np.nan], np.float_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [1.0 + 2.0j, None]}) result = df['A'] expected = Series(np.asarray( [1.0 + 2.0j, np.nan], np.complex_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [2.0, 1, True, None]}) result = df['A'] expected = Series(np.asarray( [2.0, 1, True, None], np.object_), name='A') assert_series_equal(result, expected) df = DataFrame({'A': [2.0, 1, datetime(2006, 1, 1), None]}) result = df['A'] expected = Series(np.asarray([2.0, 1, datetime(2006, 1, 1), None], np.object_), name='A') assert_series_equal(result, expected) def test_construction_with_mixed(self, float_string_frame): # test construction edge cases with mixed types # f7u12, this does not work without extensive workaround data = [[datetime(2001, 1, 5), nan, datetime(2001, 1, 2)], [datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)]] df = DataFrame(data) # check dtypes result = df.get_dtype_counts().sort_values() expected = Series({'datetime64[ns]': 3}) # mixed-type frames float_string_frame['datetime'] = datetime.now() float_string_frame['timedelta'] = timedelta(days=1, seconds=1) assert float_string_frame['datetime'].dtype == 'M8[ns]' assert float_string_frame['timedelta'].dtype == 'm8[ns]' result = float_string_frame.get_dtype_counts().sort_values() expected = Series({'float64': 4, 'object': 1, 'datetime64[ns]': 1, 'timedelta64[ns]': 1}).sort_values() assert_series_equal(result, expected) def test_construction_with_conversions(self): # convert from a numpy array of non-ns timedelta64 arr = np.array([1, 2, 3], dtype='timedelta64[s]') df = DataFrame(index=range(3)) df['A'] = arr expected = DataFrame({'A': pd.timedelta_range('00:00:01', periods=3, freq='s')}, index=range(3)) assert_frame_equal(df, expected) expected = DataFrame({ 'dt1': Timestamp('20130101'), 'dt2': date_range('20130101', periods=3), # 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'), }, index=range(3)) df = DataFrame(index=range(3)) df['dt1'] = np.datetime64('2013-01-01') df['dt2'] = np.array(['2013-01-01', '2013-01-02', '2013-01-03'], dtype='datetime64[D]') # df['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01 # 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]') assert_frame_equal(df, expected) def test_constructor_compound_dtypes(self): # GH 5191 # compound dtypes should raise not-implementederror def f(dtype): data = list(itertools.repeat((datetime(2001, 1, 1), "aa", 20), 9)) return DataFrame(data=data, columns=["A", "B", "C"], dtype=dtype) pytest.raises(NotImplementedError, f, [("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) # these work (though results may be unexpected) f('int64') f('float64') # 10822 # invalid error message on dt inference if not compat.is_platform_windows(): f('M8[ns]') def test_equals_different_blocks(self): # GH 9330 df0 = pd.DataFrame({"A": ["x", "y"], "B": [1, 2], "C": ["w", "z"]}) df1 = df0.reset_index()[["A", "B", "C"]] # this assert verifies that the above operations have # induced a block rearrangement assert (df0._data.blocks[0].dtype != df1._data.blocks[0].dtype) # do the real tests assert_frame_equal(df0, df1) assert df0.equals(df1) assert df1.equals(df0) def test_copy_blocks(self, float_frame): # API/ENH 9607 df = DataFrame(float_frame, copy=True) column = df.columns[0] # use the default copy=True, change a column # deprecated 0.21.0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): blocks = df.as_blocks() for dtype, _df in blocks.items(): if column in _df: _df.loc[:, column] = _df[column] + 1 # make sure we did not change the original DataFrame assert not _df[column].equals(df[column]) def test_no_copy_blocks(self, float_frame): # API/ENH 9607 df = DataFrame(float_frame, copy=True) column = df.columns[0] # use the copy=False, change a column # deprecated 0.21.0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): blocks = df.as_blocks(copy=False) for dtype, _df in blocks.items(): if column in _df: _df.loc[:, column] = _df[column] + 1 # make sure we did change the original DataFrame assert _df[column].equals(df[column]) def test_copy(self, float_frame, float_string_frame): cop = float_frame.copy() cop['E'] = cop['A'] assert 'E' not in float_frame # copy objects copy = float_string_frame.copy() assert copy._data is not float_string_frame._data def test_pickle(self, float_string_frame, empty_frame, timezone_frame): unpickled = tm.round_trip_pickle(float_string_frame) assert_frame_equal(float_string_frame, unpickled) # buglet float_string_frame._data.ndim # empty unpickled = tm.round_trip_pickle(empty_frame) repr(unpickled) # tz frame unpickled = tm.round_trip_pickle(timezone_frame) assert_frame_equal(timezone_frame, unpickled) def test_consolidate_datetime64(self): # numpy vstack bug data = """\ starting,ending,measure 2012-06-21 00:00,2012-06-23 07:00,77 2012-06-23 07:00,2012-06-23 16:30,65 2012-06-23 16:30,2012-06-25 08:00,77 2012-06-25 08:00,2012-06-26 12:00,0 2012-06-26 12:00,2012-06-27 08:00,77 """ df = pd.read_csv(StringIO(data), parse_dates=[0, 1]) ser_starting = df.starting ser_starting.index = ser_starting.values ser_starting = ser_starting.tz_localize('US/Eastern') ser_starting = ser_starting.tz_convert('UTC') ser_starting.index.name = 'starting' ser_ending = df.ending ser_ending.index = ser_ending.values ser_ending = ser_ending.tz_localize('US/Eastern') ser_ending = ser_ending.tz_convert('UTC') ser_ending.index.name = 'ending' df.starting = ser_starting.index df.ending = ser_ending.index tm.assert_index_equal(pd.DatetimeIndex( df.starting), ser_starting.index) tm.assert_index_equal(pd.DatetimeIndex(df.ending), ser_ending.index) def test_is_mixed_type(self, float_frame, float_string_frame): assert not float_frame._is_mixed_type assert float_string_frame._is_mixed_type def test_get_numeric_data(self): # TODO(wesm): unused? intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', 'f': Timestamp('20010102')}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, 'float64': 1, datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() assert_series_equal(result, expected) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', 'd': np.array([1.] * 10, dtype='float32'), 'e': np.array([1] * 10, dtype='int32'), 'f': np.array([1] * 10, dtype='int16'), 'g': Timestamp('20010102')}, index=np.arange(10)) result = df._get_numeric_data() expected = df.loc[:, ['a', 'b', 'd', 'e', 'f']] assert_frame_equal(result, expected) only_obj = df.loc[:, ['c', 'g']] result = only_obj._get_numeric_data() expected = df.loc[:, []] assert_frame_equal(result, expected) df = DataFrame.from_dict( {'a': [1, 2], 'b': ['foo', 'bar'], 'c': [np.pi, np.e]}) result = df._get_numeric_data() expected = DataFrame.from_dict({'a': [1, 2], 'c': [np.pi, np.e]}) assert_frame_equal(result, expected) df = result.copy() result = df._get_numeric_data() expected = df assert_frame_equal(result, expected) def test_get_numeric_data_extension_dtype(self): # GH 22290 df = DataFrame({ 'A': integer_array([-10, np.nan, 0, 10, 20, 30], dtype='Int64'), 'B': Categorical(list('abcabc')), 'C': integer_array([0, 1, 2, 3, np.nan, 5], dtype='UInt8'), 'D': IntervalArray.from_breaks(range(7))}) result = df._get_numeric_data() expected = df.loc[:, ['A', 'C']] assert_frame_equal(result, expected) def test_convert_objects(self, float_string_frame): oops = float_string_frame.T.T converted = oops._convert(datetime=True) assert_frame_equal(converted, float_string_frame) assert converted['A'].dtype == np.float64 # force numeric conversion float_string_frame['H'] = '1.' float_string_frame['I'] = '1' # add in some items that will be nan length = len(float_string_frame) float_string_frame['J'] = '1.' float_string_frame['K'] = '1' float_string_frame.loc[0:5, ['J', 'K']] = 'garbled' converted = float_string_frame._convert(datetime=True, numeric=True) assert converted['H'].dtype == 'float64' assert converted['I'].dtype == 'int64' assert converted['J'].dtype == 'float64' assert converted['K'].dtype == 'float64' assert len(converted['J'].dropna()) == length - 5 assert len(converted['K'].dropna()) == length - 5 # via astype converted = float_string_frame.copy() converted['H'] = converted['H'].astype('float64') converted['I'] = converted['I'].astype('int64') assert converted['H'].dtype == 'float64' assert converted['I'].dtype == 'int64' # via astype, but errors converted = float_string_frame.copy() with tm.assert_raises_regex(ValueError, 'invalid literal'): converted['H'].astype('int32') # mixed in a single column df = DataFrame(dict(s=Series([1, 'na', 3, 4]))) result = df._convert(datetime=True, numeric=True) expected = DataFrame(dict(s=Series([1, np.nan, 3, 4]))) assert_frame_equal(result, expected) def test_convert_objects_no_conversion(self): mixed1 = DataFrame( {'a': [1, 2, 3], 'b': [4.0, 5, 6], 'c': ['x', 'y', 'z']}) mixed2 = mixed1._convert(datetime=True) assert_frame_equal(mixed1, mixed2) def test_infer_objects(self): # GH 11221 df = DataFrame({'a': ['a', 1, 2, 3], 'b': ['b', 2.0, 3.0, 4.1], 'c': ['c', datetime(2016, 1, 1), datetime(2016, 1, 2), datetime(2016, 1, 3)], 'd': [1, 2, 3, 'd']}, columns=['a', 'b', 'c', 'd']) df = df.iloc[1:].infer_objects() assert df['a'].dtype == 'int64' assert df['b'].dtype == 'float64' assert df['c'].dtype == 'M8[ns]' assert df['d'].dtype == 'object' expected = DataFrame({'a': [1, 2, 3], 'b': [2.0, 3.0, 4.1], 'c': [datetime(2016, 1, 1), datetime(2016, 1, 2), datetime(2016, 1, 3)], 'd': [2, 3, 'd']}, columns=['a', 'b', 'c', 'd']) # reconstruct frame to verify inference is same tm.assert_frame_equal(df.reset_index(drop=True), expected) def test_stale_cached_series_bug_473(self): # this is chained, but ok with option_context('chained_assignment', None): Y = DataFrame(np.random.random((4, 4)), index=('a', 'b', 'c', 'd'), columns=('e', 'f', 'g', 'h')) repr(Y) Y['e'] = Y['e'].astype('object') Y['g']['c'] = np.NaN repr(Y) result = Y.sum() # noqa exp = Y['g'].sum() # noqa assert pd.isna(Y['g']['c']) def test_get_X_columns(self): # numeric and object columns df = DataFrame({'a': [1, 2, 3], 'b': [True, False, True], 'c': ['foo', 'bar', 'baz'], 'd': [None, None, None], 'e': [3.14, 0.577, 2.773]}) tm.assert_index_equal(df._get_numeric_data().columns,
pd.Index(['a', 'b', 'e'])
pandas.Index
"""Implementation of prototype set models with sklearn compatible interface. Copyright by <NAME> Released under the MIT license - see LICENSE file for details This submodule creates a logger named like itself that logs to a NullHandler and tracks progress on model fitting at log level INFO. The invoking application needs to manage log output. """ from abc import ABCMeta, abstractmethod import logging import numpy as np import pandas as pd from scipy.optimize import fmin_l_bfgs_b from scipy.stats import rankdata from sklearn.base import BaseEstimator from sklearn.preprocessing import LabelEncoder from sklearn.utils import check_X_y from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.validation import check_array, check_is_fitted, check_random_state from statsmodels.distributions.empirical_distribution import ECDF from proset.objective import ClassifierObjective from proset.set_manager import ClassifierSetManager from proset.shared import find_changes, check_feature_names, check_scale_offset, LOG_OFFSET logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) LOG_CAPTION = " ".join(["{:>10s}"] * 6 + ["{:s}"]).format( "Iterations", "Calls", "Objective", "Gradient", "Features", "Prototypes", "Status" ) LOG_MESSAGE = " ".join(["{:10d}", "{:10d}", "{:10.1e}", "{:10.1e}", "{:10d}", "{:10d}", "{:s}"]) LIMITED_M = 10 # parameters controlling L-BFGS-B fit LIMITED_FACTR = 1e7 LIMITED_PGTOL = 1e-5 LIMITED_MAXFUN = 15000 LIMITED_MAXITER = 15000 LIMITED_MAXLS = 20 # noinspection PyPep8Naming, PyAttributeOutsideInit class Model(BaseEstimator, metaclass=ABCMeta): """Base class for prototype set models. """ def __init__( self, n_iter=1, lambda_v=1e-3, lambda_w=1e-8, alpha_v=0.95, alpha_w=0.95, num_candidates=1000, max_fraction=0.5, random_state=None ): """Initialize prototype set model with hyperparameters. :param n_iter: non-negative integer; number of batches of prototypes to fit :param lambda_v: non-negative float; penalty weight for the feature weights :param lambda_w: non-negative float; penalty weight for the prototype weights :param alpha_v: float in [0.0, 1.0]; fraction of lambda_v assigned as l2 penalty weight to feature weights; the remainder is assigned as l1 penalty weight :param alpha_w: float in [0.0, 1.0]; fraction of lambda_w assigned as l2 penalty weight to prototype weights; the remainder is assigned as l1 penalty weight :param num_candidates: positive integer; number of candidates for prototypes to try for each batch :param max_fraction: float in (0.0, 1.0); maximum fraction of candidates to draw from one group of candidates; candidates are grouped by class and whether the current model classifies them correctly or not :param random_state: instance of np.random.RandomState, integer, or None; if a random state is passed, that state will be used for randomization; if an integer or None is passed, a new random state is generated using the argument as seed for every call to fit() """ self.n_iter = n_iter self.lambda_v = lambda_v self.lambda_w = lambda_w self.alpha_v = alpha_v self.alpha_w = alpha_w self.num_candidates = num_candidates self.max_fraction = max_fraction self.random_state = random_state def fit(self, X, y, sample_weight=None, warm_start=False): """Fit proset model to data. :param X: 2D numpy float array; feature matrix; sparse matrices or infinite/missing values not supported :param y: list-like object; target for supervised learning :param sample_weight: 1D numpy array of positive floats or None; sample weights used for likelihood calculation; pass None to use unit weights :param warm_start: boolean; whether to create a new model or to add batches to an existing model :return: no return value; model updated in place """ self._check_hyperparameters() X, y, sample_weight = self._validate_arrays(X=X, y=y, sample_weight=sample_weight, reset=not warm_start) logger.info("Fit proset model with {} batches and penalties lambda_v = {:0.2e}, lambda_w = {:0.2e}".format( self.n_iter, self.lambda_v, self.lambda_w )) MySetManager, MyObjective = self._get_compute_classes() # pylint: disable=invalid-name if not warm_start or not hasattr(self, "set_manager_"): self.set_manager_ = MySetManager(target=y) # pylint: disable=attribute-defined-outside-init for i in range(self.n_iter): objective = MyObjective( features=X, target=y, weights=sample_weight, num_candidates=self.num_candidates, max_fraction=self.max_fraction, set_manager=self.set_manager_, lambda_v=self.lambda_v, lambda_w=self.lambda_w, alpha_v=self.alpha_v, alpha_w=self.alpha_w, random_state=check_random_state(self.random_state) ) starting_point, bounds = objective.get_starting_point_and_bounds() solution = fmin_l_bfgs_b( func=objective.evaluate, x0=starting_point, bounds=bounds, m=LIMITED_M, factr=LIMITED_FACTR, pgtol=LIMITED_PGTOL, maxfun=LIMITED_MAXFUN, maxiter=LIMITED_MAXITER, maxls=LIMITED_MAXLS ) batch_info = objective.get_batch_info(solution[0]) # solution[0] is the parameter vector self.set_manager_.add_batch(batch_info) if logger.isEnabledFor(logging.INFO): # pragma: no cover logger.info("Batch {} fit results".format(i + 1)) logger.info(LOG_CAPTION) logger.info(LOG_MESSAGE.format( solution[2]["nit"], solution[2]["funcalls"], solution[1], np.max(np.abs(solution[2]["grad"])), len(np.nonzero(batch_info["feature_weights"])[0]), len(np.nonzero(batch_info["prototype_weights"])[0]), self._parse_solver_status(solution[2]) )) logger.info("Model fit complete") return self def _check_hyperparameters(self): """Check that model hyperparameters are valid. :return: no return value; raises a ValueError if an issue is found """ if not np.issubdtype(type(self.n_iter), np.integer): raise TypeError("Parameter n_iter must be integer.") if self.n_iter < 0: raise ValueError("Parameter n_iter must not be negative.") # validation of other parameters is left to the classes or functions relying on them # noinspection PyMethodMayBeStatic, PyUnresolvedReferences def _validate_arrays(self, X, y, sample_weight, reset): """Check or transform input target, features, and sample weights as appropriate for the model. :param X: see docstring of fit() for details :param y: see docstring of fit() for details :param sample_weight: see docstring of fit() for details :param reset: boolean; whether to prepare the model for a new fit or enable warm start :return: transformed versions of X and y; may also update the state of the model instance """ X, y = check_X_y(X=X, y=y) if reset or not hasattr(self, "n_features_in_"): self.n_features_in_ = X.shape[1] # pylint: disable=attribute-defined-outside-init # the n_features_in_ attribute for tabular input is an sklearn convention elif self.n_features_in_ != X.shape[1]: raise ValueError("Parameter X must have {} columns.".format(self.n_features_in_)) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if sample_weight.shape[0] != X.shape[0]: raise ValueError("Parameter sample_weight must have one element per row of X if not None.") return X, self._validate_y(y, reset), sample_weight @abstractmethod def _validate_y(self, y, reset): # pragma: no cover """Perform checks on estimator target that depend on estimator type. :param y: 1D numpy array; target for supervised learning :param reset: boolean; whether to prepare the model for a new fit or enable warm start :return: y after applying appropriate checks and transforms """ raise NotImplementedError("Abstract method Model._validate_y() has no default implementation.") @staticmethod @abstractmethod def _get_compute_classes(): # pragma: no cover """Provide classes implementing the set manager and objective function for the model. :return: subclasses of proset.set_manager.SetManager and proset.objective.Objective """ raise NotImplementedError("Abstract method Model._get_compute_classes() has no default implementation.") @staticmethod def _parse_solver_status(solver_status): """Translate L-BFGS-B solver status into human-readable format. :param solver_status: dict; third output argument of scipy.fmin_l_bfgs_b() :return: string; solver exit status """ if solver_status["warnflag"] == 0: return "converged" if solver_status["warnflag"] == 1: return "reached limit on iterations or function calls" return "not converged ({})".format(solver_status["task"]) def predict(self, X, n_iter=None, compute_familiarity=False): """Predict class labels for a feature matrix. :param X: 2D numpy array; feature matrix; sparse matrices or infinite/missing values not supported :param n_iter: non-negative integer, 1D numpy array of non-negative and strictly increasing integers, or None; number of batches to use for evaluation; pass None for all batches; pass an array to evaluate for multiple values at once :param compute_familiarity: boolean; whether to compute the familiarity for each sample :return: 1D numpy array or list of 1D numpy arrays; if n_iter is integer or None, a single set of predictions is returned as an array; if n_iter is an array, a list of predictions is returned with one element for each element of the array; if compute_familiarity is True, also returns a 1D numpy float array or list of float arrays containing the familiarity of each sample """ check_is_fitted(self, attributes="set_manager_") return self._compute_prediction(X=check_array(X), n_iter=n_iter, compute_familiarity=compute_familiarity) @abstractmethod def _compute_prediction(self, X, n_iter, compute_familiarity): # pragma: no cover """Compute prediction. :param X: see docstring of predict() for details :param n_iter: see docstring of predict() for details :param compute_familiarity: see docstring of predict() for details :return: see docstring of predict() for details """ raise NotImplementedError("Abstract method Model._get_prediction() has no default implementation.") def score(self, X, y, sample_weight=None, n_iter=None): """Use trained model to score sample data. :param X: 2D numpy array; feature matrix; sparse matrices or infinite/missing values not supported :param y: list-like object; target for supervised learning :param sample_weight: 1D numpy array of positive floats or None; sample weights used for likelihood calculation; pass None to use unit weights :param n_iter: non-negative integer, 1D numpy array of non-negative and strictly increasing integers, or None; number of batches to use for evaluation; pass None for all batches; pass an array to evaluate for multiple values at once :return: float or 1D numpy array of floats; if n_iter is integer or None, a single score is returned as a float value; if n_iter is an array, an array of scores of the same length is returned """ check_is_fitted(self, attributes="set_manager_") X, y, sample_weight = self._validate_arrays(X=X, y=y, sample_weight=sample_weight, reset=False) return self._compute_score(X=X, y=y, sample_weight=sample_weight, n_iter=n_iter) @abstractmethod def _compute_score(self, X, y, sample_weight, n_iter): # pragma: no cover """Compute score. :param X: see docstring of score() for details :param y: numpy array; target for supervised learning :param sample_weight: see docstring of score() for details :param n_iter: see docstring of score() for details :return: as return value of score() """ raise NotImplementedError("Abstract method Model._compute_score() has no default implementation.") def export( self, n_iter=None, train_names=None, include_features=True, feature_names=None, scale=None, offset=None ): """Export information on prototypes and parameters from trained model. :param n_iter: non-negative integer, or None; number of batches to use for evaluation; pass None for all batches :param train_names: list of strings or None; names for the original training samples in order; these are associated with the prototypes in the report; pass None to use default names 'sample 0', 'sample 1', etc. :param include_features: boolean; whether to include information on relevant features :param feature_names: list of strings or None; if not None, must have one element per column of features; feature names to be used as column headers; pass None to use default names X0, X1, etc.; only used if include_features is True :param scale: 1D numpy array of positive floats or None; if not None, must have one element per column of features; use this to scale features back to their original values for the report; pass None for no scaling; only used if include_features is True :param offset: 1D numpy array of floats or None; if not None, must have one element per column of features; use this to shift features back to their original values for the report; pass None for no offset; only used if include_features is True :return: pandas data frame with the following columns; columns containing the feature name are repeated once for each active feature; active features are ordered by decreasing weight over batches as per set_manager.SetManager.get_feature_weights(): - batch: non-negative float; integer batch index for prototypes, np.Nan for properties of the baseline distribution - sample: non-negative float; integer sample index for prototypes, np.Nan for properties of the baseline distribution - sample name: string; sample name - target: varies; target for supervised learning - prototype weight: positive float; prototype weight - <feature> weight: non-negative float; feature weight for the associated batch, np.NaN means the feature plays no role for the batch; only included of include_features is True - <feature> value: float; feature value as used by the model; set to np.NaN if the feature weight is np.NaN; only included of include_features is True - <feature> original: float; original feature value; set to np.NaN if the feature weight is np.Nan; this column is not generated if both scale and offset are None; only included of include_features is True """ check_is_fitted(self, attributes="set_manager_") feature_columns, include_original, scale, offset = self._check_report_input( feature_names=feature_names, num_features=self.n_features_in_, scale=scale, offset=offset, sample_name=None )[:4] batches = self.set_manager_.get_batches(features=None, num_batches=n_iter) report = self._make_prototype_report(batches=batches, train_names=train_names, compute_impact=False) if include_features: report = pd.concat([report, self._make_feature_report( batches=batches, feature_columns=feature_columns, include_original=include_original, scale=scale, offset=offset, active_features=self.set_manager_.get_feature_weights(num_batches=n_iter)["feature_index"], include_similarities=False )], axis=1) report = report.sort_values(["batch", "prototype weight"], ascending=[True, False]) report = pd.concat([self._make_baseline_for_export(), report]) report.reset_index(inplace=True, drop=True) return report @staticmethod def _check_report_input(feature_names, num_features, scale, offset, sample_name): """Check input for export() and explain() for consistency and apply defaults. :param feature_names: see docstring of export() for details :param num_features: positive integer; number of features :param scale: see docstring of export() for details :param offset: see docstring of export() for details :param sample_name: string or None; name used for reference sample :return: five return arguments: - list of lists of strings; each list contains column names associated with one feature in the report - boolean; whether original values need to be included in the report - 1D numpy float array; scale as input or vector of ones if input is None - 1D numpy float array; offset as input or vector of zeros if input is None - string; sample name as input or default raise an error if a check fails """ feature_names = check_feature_names( num_features=num_features, feature_names=feature_names, active_features=None ) feature_columns = [[ "{} weight".format(feature_name), "{} value".format(feature_name), "{} original".format(feature_name), "{} similarity".format(feature_name) ] for feature_name in feature_names] include_original = scale is not None or offset is not None scale, offset = check_scale_offset(num_features=num_features, scale=scale, offset=offset) if sample_name is None: sample_name = "new sample" return feature_columns, include_original, scale, offset, sample_name @classmethod def _make_prototype_report(cls, batches, train_names, compute_impact): """Format prototype information for report. :param batches: list as generated by set_manager.SetManager.get_batches() :param train_names: see docstring of export() for details :param compute_impact: boolean; whether to compute the similarity and impact for each prototype relative to a reference sample; if True, the information for each non-empty batch needs to contain the key 'similarities' :return: pandas data frame with the following columns: - batch: positive integer; batch index - sample: non-negative integer; sample index for prototypes - sample name: string; sample name - target: varies; target for supervised learning - prototype weight: positive float; prototype weight - similarity: float in (0.0, 1.0]; similarity between prototype and reference sample; only included if compute_impact is True - impact: positive float; impact of prototype on reference sample; only included if compute_impact is True """ parts = [ cls._format_batch(batch=batch, batch_index=i, train_names=train_names) for i, batch in enumerate(batches) if batch is not None ] if len(parts) > 0: report = pd.concat(parts, axis=0) report.reset_index(inplace=True, drop=True) return report columns = ["batch", "sample", "sample name", "target", "prototype weight"] if compute_impact: columns.extend(["similarity", "impact"]) return pd.DataFrame(columns=columns) @staticmethod def _format_batch(batch, batch_index, train_names): """Format information for a single batch of prototypes to include in the report. :param batch: one element from the output list generated by set_manager.SetManager.get_batches(); must not be None :param batch_index: non-negative integer; batch index :param train_names: see docstring of export() for details :return: as return value of _make_prototype_report(); the function determines whether impact needs to be computed by checking whether the batch definitions contain the key "similarities" """ formatted = { "batch": batch_index + 1, "sample": batch["sample_index"], "sample name": [ train_names[j] if train_names is not None else "sample {}".format(j) for j in batch["sample_index"] ], "target": batch["target"], "prototype weight": batch["prototype_weights"] } columns = ["batch", "sample", "sample name", "target", "prototype weight"] if "similarities" in batch.keys(): formatted["similarity"] = np.exp(np.sum(np.log(batch["similarities"] + LOG_OFFSET), axis=1)) # use sum of logarithms instead of product for numerical stability formatted["impact"] = formatted["similarity"] * formatted["prototype weight"] columns.extend(["similarity", "impact"]) return pd.DataFrame(formatted, columns=columns) @classmethod def _make_feature_report( cls, batches, feature_columns, include_original, scale, offset, active_features, include_similarities ): """Format feature information for report. :param batches: list as generated by set_manager.SetManager.get_batches() :param feature_columns: as first return value of _check_report_input() :param include_original: boolean; whether to include original feature values in the report :param scale: see docstring of export() for details; None is not allowed :param offset: see docstring of export() for details; None is not allowed :param active_features: 1D numpy array of non-negative integers; indices of active features across all batches :param include_similarities: boolean; whether to include per-feature similarities in the report; if True, the information for each non-empty batch needs to contain the key 'similarities' :return: pandas data frame with the following columns: - <feature> weight: non-negative float; feature weight for the associated batch, np.NaN means the feature plays no role for the batch - <feature> value: float; feature value as used by the model; set to np.NaN if the feature weight is np.NaN - <feature> original: float; original feature value; set to np.NaN if the feature weight is np.Nan; this column is not generated if both scale and offset are None - <feature> similarity: float in (0.0, 1.0]; per-feature similarity between the prototype and reference sample; this is only included if include_similarities is True """ if active_features.shape[0] == 0: return pd.DataFrame() return pd.concat([cls._format_feature( batches=batches, feature_index=i, feature_columns=feature_columns, include_original=include_original, scale=scale, offset=offset, include_similarities=include_similarities ) for i in active_features], axis=1) @staticmethod def _format_feature(batches, feature_index, feature_columns, include_original, scale, offset, include_similarities): """Format information for a single feature. :param batches: list as generated by set_manager.SetManager.get_batches() :param feature_index: positive integer; index of feature :param feature_columns: list of strings; as return value of _check_report_input() :param include_original: boolean; whether to include original feature values in the report :param scale: see docstring of export() for details; None is not allowed :param offset: see docstring of export() for details; None is not allowed :param include_similarities: boolean; whether to include per-feature similarities in the report :return: as one set of columns for the return value of _make_feature_report() """ feature_columns = feature_columns[feature_index] scale = scale[feature_index] offset = offset[feature_index] result = [] for batch in batches: if batch is not None: position = np.nonzero(feature_index == batch["active_features"])[0] if len(position) == 0: # feature is not used by current batch nan_column = np.NaN * np.zeros(batch["prototype_weights"].shape[0], dtype=float) new_info = pd.DataFrame({ feature_columns[0]: nan_column, feature_columns[1]: nan_column }, columns=feature_columns[:2]) if include_original: new_info[feature_columns[2]] = nan_column if include_similarities: new_info[feature_columns[3]] = nan_column else: new_info = pd.DataFrame({ feature_columns[0]: batch["feature_weights"][position[0]], feature_columns[1]: np.reshape( batch["prototypes"][:, position], batch["prototype_weights"].shape[0] ) }, columns=feature_columns[:2]) if include_original: new_info[feature_columns[2]] = scale * new_info[feature_columns[1]] + offset if include_similarities: new_info[feature_columns[3]] = batch["similarities"][:, position] result.append(new_info) if len(result) > 0: result =
pd.concat(result, axis=0)
pandas.concat
#!/usr/bin/env python3 from argparse import ArgumentParser from pathlib import Path import anndata import h5py import numpy as np import pandas as pd import scipy.io import scipy.sparse def main( umap_coords_csv: Path, cell_by_gene_raw_mtx: Path, cell_by_gene_smoothed_hdf5: Path, cell_by_bin_mtx: Path, cell_by_bin_barcodes: Path, cell_by_bin_bins: Path, ): umap_coords_df = pd.read_csv(umap_coords_csv, index_col=0) umap_coords_df.loc[:, "cluster"] = umap_coords_df.loc[:, "cluster"].astype("category") umap_coords = umap_coords_df.loc[:, ["umap.1", "umap.2"]].to_numpy() cell_by_bin_mat = scipy.io.mmread(cell_by_bin_mtx).astype(bool).tocsr() with open(cell_by_bin_barcodes) as f: barcodes = [line.strip() for line in f] with open(cell_by_bin_bins) as f: bins = [line.strip() for line in f] assert barcodes == list(umap_coords_df.index) obs = umap_coords_df.loc[:, ["cluster"]].copy() obsm = {"X_umap": umap_coords} chroms = [] bin_start = [] bin_stop = [] for b in bins: chrom, pos = b.rsplit(":", 1) start, stop = (int(p) for p in pos.split("-")) chroms.append(chrom) bin_start.append(start) bin_stop.append(stop) var = pd.DataFrame( { "chrom": chroms, "bin_start": bin_start, "bin_stop": bin_stop, }, index=bins, ) cell_by_bin = anndata.AnnData( cell_by_bin_mat, obs=obs, obsm=obsm, var=var, dtype=bool, ) print("Saving cell by bin matrix") cell_by_bin.write_h5ad("cell_by_bin.h5ad") cell_by_gene_raw = scipy.sparse.csr_matrix(scipy.io.mmread(cell_by_gene_raw_mtx)) with h5py.File(cell_by_gene_smoothed_hdf5, "r") as f: cell_by_gene_smoothed = np.array(f["cell_by_gene_smoothed"]).T cells = [row.decode("utf-8") for row in np.array(f["barcodes"])] genes = [col.decode("utf-8") for col in np.array(f["genes"])] assert barcodes == cells cell_by_gene = anndata.AnnData( cell_by_gene_raw, obs=obs, obsm=obsm, var=
pd.DataFrame(index=genes)
pandas.DataFrame
import os import time import pandas as pd import numpy as np import json from hydroDL import kPath from hydroDL.data import usgs, gageII, gridMET, ntn from hydroDL.post import axplot, figplot import matplotlib.pyplot as plt dirInv = os.path.join(kPath.dirData, 'USGS', 'inventory') fileSiteNo = os.path.join(dirInv, 'siteNoLst-1979') siteNoLstAll = pd.read_csv(fileSiteNo, header=None, dtype=str)[0].tolist() dfCount = pd.read_csv(os.path.join(dirInv, 'codeCount.csv'), dtype={'siteNo': str}).set_index('siteNo') # pick some sites code = '00945' varC = [code] varNtn = ['SO4'] siteNoLst = dfCount[dfCount[code] > 100].index.tolist() nSite = dfCount.loc[siteNoLst][code].values dfCrd = gageII.readData( varLst=['LAT_GAGE', 'LNG_GAGE', 'CLASS'], siteNoLst=siteNoLst) dfCrd = gageII.updateCode(dfCrd) lat = dfCrd['LAT_GAGE'].values lon = dfCrd['LNG_GAGE'].values # add a start/end date to improve efficiency. t =
pd.date_range(start='1979-01-01', end='2019-12-30', freq='W-TUE')
pandas.date_range
import pandas as pd import numpy as np import requests import time import argparse from tqdm import tqdm from pyarrow import feather def get_edit_history( userid=None, user=None, latest_timestamp=None, earliest_timestamp=None, limit=None ): """For a particular user, pull their whole history of edits. Args: param1 (int): The first parameter. param2 (str): The second parameter. Returns: bool: The return value. True for success, False otherwise. """ S = requests.Session() S.headers.update( {"User-Agent": "WikiRecs (<EMAIL>) One-time pull"} ) URL = "https://en.wikipedia.org/w/api.php" PARAMS = { "action": "query", "format": "json", "ucnamespace": "0", "list": "usercontribs", "ucuserids": userid, "ucprop": "title|ids|sizediff|flags|comment|timestamp", "ucshow=": "!minor|!new", } if latest_timestamp is not None: PARAMS["ucstart"] = latest_timestamp if earliest_timestamp is not None: PARAMS["ucend"] = earliest_timestamp if user is not None: PARAMS["ucuser"] = user if userid is not None: PARAMS["ucuserid"] = userid PARAMS["uclimit"] = 500 R = S.get(url=URL, params=PARAMS) DATA = R.json() if "query" not in DATA: print(DATA) raise ValueError USERCONTRIBS = DATA["query"]["usercontribs"] all_ucs = USERCONTRIBS i = 500 while i < 100000: if "continue" not in DATA: break last_continue = DATA["continue"] PARAMS.update(last_continue) R = S.get(url=URL, params=PARAMS) DATA = R.json() USERCONTRIBS = DATA["query"]["usercontribs"] all_ucs.extend(USERCONTRIBS) i = i + 500 return all_ucs def pull_edit_histories( sampled_users_file, edit_histories_file_pattern, users_per_chunk, earliest_timestamp, start=0, ): histories = [] cols = ["userid", "user", "pageid", "title", "timestamp", "sizediff"] sampled_users = pd.read_csv(sampled_users_file) sampled_users.loc[:, "userid"].astype(int) sampled_users = sampled_users.reset_index() # Iterate through all the users in the list for i, (user, userid) in tqdm( iterable=enumerate( zip(sampled_users["user"][start:], sampled_users["userid"][start:]), start=start, ), total=len(sampled_users), initial=start, ): # Get the history of edits for this userid thehistory = get_edit_history( userid=int(userid), earliest_timestamp=earliest_timestamp ) # If no edits, skip if len(thehistory) == 0: continue thehistory = pd.DataFrame(thehistory) # Remove edits using automated tools by looking for the word "using" in the comments try: thehistory = thehistory[ np.invert(thehistory.comment.astype(str).str.contains("using")) ] except AttributeError: continue if len(thehistory) == 0: continue histories.append(thehistory.loc[:, cols]) if np.mod(i, 50) == 0: print( "Most recent: {}/{} {} ({}) has {} edits".format( i, len(sampled_users), user, int(userid), len(thehistory) ) ) # Every x users save it out, for the sake of ram limitations if np.mod(i, users_per_chunk) == 0: feather.write_feather(
pd.concat(histories)
pandas.concat
from django.core.files import temp from django.shortcuts import render from django.conf import settings from django.http import HttpResponse from django.core.files.storage import FileSystemStorage from django.http import FileResponse from django.views.static import serve import xlsxwriter import pdfkit import csv import numpy #import required libraries import pandas as pd import pyexcel import xlrd from matplotlib import pylab from matplotlib import collections as mc from pylab import * from pylev3 import Levenshtein from matplotlib.ticker import PercentFormatter from matplotlib import pyplot import matplotlib.pyplot as plt import PIL, PIL.Image import os try: from StringIO import BytesIO except ImportError: from io import BytesIO '''from google.colab import drive drive.mount('/content/drive')''' # Create your views here. def welcome(request): return HttpResponse("Welcome") def ourResponse(request): return HttpResponse("OUR RESPONSE") def takeInput(request): return render(request,'input.html') def similarity(seq1, seq2): l1 , l2 = len(seq1), len(seq2) ldist = Levenshtein.wf(seq1, seq2) return (1 - ldist/max(l1, l2))*100 def df_gdomain_counter(df): df_count = df["ProteinID"].value_counts() return df_count def match(x, y, mm): mismatch = 0 for i in range(len(x)): if (x[i] == 'X' or x[i] == y[i]): pass else: mismatch += 1 if (mismatch <= mm): return True else: return False def shuffler(word): word_to_scramble = list(word) numpy.random.shuffle(word_to_scramble) # O=seq= ''.join(seq_temp) new_word = ''.join(word_to_scramble) return new_word def list_of_7mer_X(sevenmer): x_data = [] for r1 in range(7): x = list(sevenmer) x[r1] = "X" x = ''.join(x) x_data.append(x) return x_data def performAlgo(request): myfile = request.FILES['document'] print(myfile.name) fs = FileSystemStorage() '''fs.save(myfile.name, myfile)''' workbook = xlsxwriter.Workbook('media/new.xlsx') family = request.POST.get("input01") outpath = "media/new.xlsx" df1 = pd.read_excel(myfile) df2 = df1 for i in range((df1.shape[0] - 1)): A = df1.loc[i, "Sequence"] B = df1.loc[(i + 1), "Sequence"] percent_similarity = similarity(A, B) if (percent_similarity >= 90): df2 = df2.drop(df2[df2.Sequence == B].index) df2.to_excel(outpath, index=False) NumProteins = df2.shape[0] def H(protein_id, protein, x1, x2, x3, x4, mm1, mm2, mm3, mm4, min13, min34, min45, max13, max34, max45): pL1 = [] pL2 = [] pL3 = [] pL4 = [] L1 = [] L2 = [] L3 = [] L4 = [] for i in range(len(protein) - len(x1)): if (match(x1, protein[i:i + len(x1)], mm1) == True): # global L1 pL1 = pL1 + [i] L1 = L1 + [protein[i:i + len(x1)]] # print "L1 = ", pL1,L1 for j in range(len(protein) - len(x2)): if (match(x2, protein[j:j + len(x2)], mm2) == True): # global L2 pL2 = pL2 + [j] L2 = L2 + [protein[j:j + len(x2)]] # print "L2 = ", pL2,L2 for k in range(len(protein) - len(x3)): if (match(x3, protein[k:k + len(x3)], mm3) == True): # global L3 pL3 = pL3 + [k] L3 = L3 + [protein[k:k + len(x3)]] # print "L3 = ", pL3,L3 for l in range(len(protein) - len(x4)): if (match(x4, protein[l:l + len(x4)], mm4) == True): # global L3 pL4 = pL4 + [l] L4 = L4 + [protein[l:l + len(x4)]] candidates = [] for i in range(len(pL1)): for j in range(len(pL2)): for k in range(len(pL3)): for l in range(len(pL4)): if (min13 <= pL2[j] - pL1[i] <= max13 and min34 <= pL3[k] - pL2[j] <= max34 and min45 <= pL4[l] - pL3[k] <= max45): # if 80 <=pL2[j]-pL1[i] <= 120 and 40 <=pL3[k]- pL2[j] <= 80 and 20 <=pL4[l]- pL3[k] <= 80 a = L1[i] a_pos = pL1[i] b = L2[j] b_pos = pL2[j] c = L3[k] c_pos = pL3[k] d = L4[l] d_pos = pL4[l] candidates.append((protein_id, a, a_pos, b, b_pos, c, c_pos, d, d_pos)) return candidates abc = [] l1 = [] inpath = "media/new.xlsx" mismatch1 = int(request.POST.get("mismatch1")) mismatch2 = int(request.POST.get("mismatch2")) mismatch3 = int(request.POST.get("mismatch3")) mismatch4 = int(request.POST.get("mismatch4")) mismatch41 = mismatch4 x1 = request.POST.get("x1") x2 = request.POST.get("x2") x3 = request.POST.get("x3") x4 = request.POST.get("x4") Min_G1_G3 = int(request.POST.get("Min_G1_G3")) Max_G1_G3 = int(request.POST.get("Max_G1_G3")) Min_G3_G4 = int(request.POST.get("Min_G3_G4")) Max_G3_G4 = int(request.POST.get("Max_G3_G4")) Min_G4_G5 = int(request.POST.get("Min_G4_G5")) Max_G4_G5 = int(request.POST.get("Max_G4_G5")) workbook = xlsxwriter.Workbook('media/output_wo_bias.xlsx') outpath = "media/output_wo_bias.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x4, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position.1', 'G4-box', 'Position.2', 'G5-box', 'Position.3']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/SA_nomismatch.xlsx') outpath = "media/SA_nomismatch.xlsx" str1 = "XXX" x41 = str1 + x4 + "X" mismatch41 = 0 df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] #protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x41, mismatch1, mismatch2, mismatch3, mismatch41, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/SA_mismatch.xlsx') outpath = "media/SA_mismatch.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x41, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/A_nomismatch.xlsx') outpath = "media/A_nomismatch.xlsx" y = x4[1:] z = y[:-1] x42 = str1 + z + str1 df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x42, mismatch1, mismatch2, mismatch3, mismatch41, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) inpath_SA_mm = "media/SA_mismatch.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_X_dict.xlsx') outpath1_SA_mm = "media/SA_mm_7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_X_dict_count.xlsx') outpath2_SA_mm = "media/SA_mm_7mer_X_dict_count.xlsx" str2 = [["Rab", 470], ["Rac", 128], ["Ran", 29], ["Ras", 190], ["Roc", 19], ["Arf", 140], ["AlG1", 44], ["Era", 188], ["FeoB", 18], ["Hflx", 26], ["GB1", 116], ["EngB", 401], ["Dynamin", 115], ["IRG", 10], ["Obg", 659], ["Septin", 86], ["SRP", 99], ["Translational", 2869], ["tRme", 454], ["EngA", 424]] #for i in str2: # if (i[0] == family): # #total = i[1] total = NumProteins data = pd.read_excel(inpath_SA_mm) unique_7mers = data['G5-box'].unique() temp = data id_set = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set): id_set[x] = set() id_set[x].add(ID) else: id_set[x].add(ID) id_set.items() with open(outpath1_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set.items()] with open(outpath2_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set.items()] inpath_A_nomm = "media/A_nomismatch.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_X_dict.xlsx') outpath1_A_nomm = "media/A_nomm_7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_X_dict_count.xlsx') outpath2_A_nomm = "media/A_nomm_7mer_X_dict_count.xlsx" data1 = pd.read_excel(inpath_A_nomm) unique_7mers = data1['G5-box'].unique() temp = data1 id_set1 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set1): id_set1[x] = set() id_set1[x].add(ID) else: id_set1[x].add(ID) id_set1.items() with open(outpath1_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set1.items()] with open(outpath2_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set1.items()] inpath_SA_nomm = "media/SA_nomismatch.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_X_dict.xlsx') outpath1_SA_nomm = "media/SA_nomm_7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_X_dict_count.xlsx') outpath2_SA_nomm = "media/SA_nomm_7mer_X_dict_count.xlsx" data2 = pd.read_excel(inpath_SA_nomm) unique_7mers = data2['G5-box'].unique() temp = data2 id_set2 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set2): id_set2[x] = set() id_set2[x].add(ID) else: id_set2[x].add(ID) id_set2.items() with open(outpath1_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set2.items()] with open(outpath2_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set2.items()] workbook = xlsxwriter.Workbook('media/7mer_X_dict.xlsx') outpath1 = "media/7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/7mer_X_count_dict.xlsx') outpath2 = "media/7mer_X_count_dict.xlsx" SA_nomm = pd.read_excel(inpath_SA_nomm) A_nomm = pd.read_excel(inpath_A_nomm) SA_mm = pd.read_excel(inpath_SA_mm) table = [SA_nomm[['ProteinID', 'G5-box', 'Position']], A_nomm[['ProteinID', 'G5-box', 'Position']], SA_mm[['ProteinID', 'G5-box', 'Position']]] # to be used when SA with no mismatch doesn't give any result. # table= [A_nomm[['Entry', 'G5_box', 'Value']], SA_mm[['Entry', 'G5_box', 'Value']]] data3 = pd.concat(table) data3 = data3.reset_index(drop=True) unique_7mers = data3['G5-box'].unique() temp = data3 id_set3 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set3): id_set3[x] = set() id_set3[x].add(ID) else: id_set3[x].add(ID) id_set3.items() with open(outpath1, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set3.items()] with open(outpath2, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set3.items()] def list_of_7mer_2X(sevenmer): x_data = [] for r1 in range(7): for r2 in range(7): if (r1 != r2): x = list(sevenmer) x[r1] = "X" x[r2] = "X" x = ''.join(x) x_data.append(x) return x_data workbook = xlsxwriter.Workbook('media/SA_mm_7mer_2X_dict.xlsx') outpath1_SA_mm = "media/SA_mm_7mer_2X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_2X_dict_count.xlsx') outpath2_SA_mm = "media/SA_mm_7mer_2X_dict_count.xlsx" data =
pd.read_excel(inpath_SA_mm)
pandas.read_excel
# coding: utf-8 """ .. _l-estim-sird-theory: Estimation des paramètres d'un modèle SIRD ========================================== On part d'un modèle :class:`CovidSIRD <aftercovid.models.CovidSIRD>` qu'on utilise pour simuler des données. On regarde s'il est possible de réestimer les paramètres du modèle à partir des observations. .. contents:: :local: Simulation des données ++++++++++++++++++++++ """ import warnings from pprint import pprint import numpy from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning import matplotlib.pyplot as plt import pandas from aftercovid.models import EpidemicRegressor, CovidSIRD model = CovidSIRD() model ########################################### # Mise à jour des coefficients. model['beta'] = 0.4 model["mu"] = 0.06 model["nu"] = 0.04 pprint(model.P) ################################### # Point de départ pprint(model.Q) ################################### # Simulation X, y = model.iterate2array(50, derivatives=True) data = {_[0]: x for _, x in zip(model.Q, X.T)} data.update({('d' + _[0]): c for _, c in zip(model.Q, y.T)}) df =
pandas.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import math from scipy.stats import hypergeom from prettytable import PrettyTable from scipy.special import betainc class DISA: """ A class to analyse the subspaces inputted for their analysis Parameters ---------- data : pandas.Dataframe patterns : list [x] : dict, where x can represent any position of the list "lines" : list (mandatory) "columns" : list (mandatory) "column_values": list (optional) "noise": list (optional) "type" : string (optional) outcome : dict "values": pandas.Series "outcome_value" : int "type": string border_values : boolean (default=False) Class Attributes ---------------- border_values : boolean data : pandas.Dataframe size_of_dataset : int y_column : pandas.Series outcome_type : string patterns : dict Contains all the auxiliary information needed by the metrics """ def __init__(self, data, patterns, outcome, border_values=False): self.border_values = border_values self.data = data self.size_of_dataset = len(outcome["values"]) self.y_column = outcome["values"] self.outcome_type = outcome["type"] self.y_value = outcome["outcome_value"] if "outcome_value" in list(outcome.keys()) else None # Check if numerical to binarize or categorical to determine the categories if outcome["type"] == "Numerical": self.unique_classes = [0, 1] else: self.unique_classes = [] for value in outcome["values"].unique(): if np.issubdtype(value, np.integer): self.unique_classes.append(value) elif value.is_integer(): self.unique_classes.append(value) self.patterns = [] for i in range(len(patterns)): column_values = patterns[i]["column_values"] if "column_values" in list(patterns[i].keys()) else None if column_values is not None: col_values_counter = 0 for value in column_values: column_values[col_values_counter] = float(value) col_values_counter += 1 patterns[i]["lines"] = list(map(int, patterns[i]["lines"])) outcome_to_assess = self.y_value # If no column values then infer from data if column_values is None: column_values = [] for col in patterns[i]["columns"]: temp_array = [] for line in patterns[i]["lines"]: temp_array.append(self.data.at[line, col]) column_values.append(np.median(temp_array)) # If no noise inputted then all column contain 0 noise noise = patterns[i]["noise"] if "noise" in list(patterns[i].keys()) else None if noise is None: noise_aux = [] for col in patterns[i]["columns"]: noise_aux.append(0) noise = noise_aux # If no type then assume its a constant subspace type = patterns[i]["type"] if "type" in list(patterns[i].keys()) else "Constant" nr_cols = len(patterns[i]["columns"]) x_space = outcome["values"].filter(axis=0, items=patterns[i]["lines"]) _x_space = outcome["values"].drop(axis=0, labels=patterns[i]["lines"]) x_data = data.drop(columns=data.columns.difference(patterns[i]["columns"])).filter(axis=0, items=patterns[i]["lines"]) Cx = len(patterns[i]["lines"]) C_x = self.size_of_dataset - Cx intervals = None if outcome["type"] == "Numerical": outcome_to_assess = 1 intervals = self.handle_numerical_outcome(x_space) c1 = 0 for value in outcome["values"]: if intervals[0] <= float(value) <= intervals[1]: c1 += 1 Cy = c1 C_y = self.size_of_dataset - Cy c1 = 0 for value in x_space: if intervals[0] <= float(value) <= intervals[1]: c1 += 1 Cxy = c1 Cx_y = len(x_space) - Cxy c1 = 0 for value in _x_space: if intervals[0] <= float(value) <= intervals[1]: c1 += 1 C_xy = c1 C_x_y = len(_x_space) - C_xy else: if outcome_to_assess is None: maxLift = 0 discriminative_unique_class = 0 for unique_class in self.unique_classes: testY = len(outcome["values"][outcome["values"] == unique_class]) omega = max(Cx + testY - 1, 1 / self.size_of_dataset) v = 1 / max(Cx, testY) testXY = len(x_space[x_space == unique_class]) if testXY == 0: continue lift_of_pattern = testXY / (Cx * testY) curr_lift = (lift_of_pattern - omega) / (v - omega) if curr_lift > maxLift: maxLift = curr_lift discriminative_unique_class = unique_class outcome_to_assess = discriminative_unique_class Cy = len(outcome["values"][outcome["values"] == outcome_to_assess]) Cxy = len(x_space[x_space == outcome_to_assess]) C_xy = len(_x_space[_x_space == outcome_to_assess]) Cx_y = len(x_space) - len(x_space[x_space == outcome_to_assess]) C_x_y = len(_x_space) - len(_x_space[_x_space == outcome_to_assess]) if border_values: Cy += len(outcome["values"][outcome["values"] == outcome_to_assess-0.5]) \ + len(outcome["values"][outcome["values"] == outcome_to_assess+0.5]) Cxy += len(x_space[x_space == outcome_to_assess-0.5]) \ + len(x_space[x_space == outcome_to_assess+0.5]) C_xy = len(_x_space[_x_space == outcome_to_assess-0.5]) \ + len(_x_space[_x_space == outcome_to_assess+0.5]) Cx_y -= len(x_space[x_space == outcome_to_assess-0.5]) \ - len(x_space[x_space == outcome_to_assess+0.5]) C_x_y -= len(_x_space[_x_space == outcome_to_assess-0.5]) \ - len(_x_space[_x_space == outcome_to_assess+0.5]) C_y = self.size_of_dataset - Cy X = Cx / self.size_of_dataset _X = 1 - X Y = Cy / self.size_of_dataset _Y = 1 - Y XY = Cxy / self.size_of_dataset _XY = C_xy / self.size_of_dataset X_Y = Cx_y / self.size_of_dataset _X_Y = C_x_y / self.size_of_dataset self.patterns.append({ "outcome_to_assess": outcome_to_assess, "outcome_intervals": intervals, "columns": patterns[i]["columns"], "lines": patterns[i]["lines"], "nr_cols": nr_cols, "column_values": column_values, "noise": noise, "type": type, "x_space": x_space, "_x_space": _x_space, "x_data": x_data, "Cx": Cx, "C_x": C_x, "Cy": Cy, "C_y": C_y, "Cxy": Cxy, "C_xy": C_xy, "Cx_y": Cx_y, "C_x_y": C_x_y, "X": X, "_X": _X, "Y": Y, "_Y": _Y, "XY": XY, "_XY": _XY, "X_Y": X_Y, "_X_Y": _X_Y }) def assess_patterns(self, print_table=False): """ Executes all the subspace metrics for the inputted patterns Parameters ---------- print_table : boolean If true, prints a table containing the metric values Returns ------- list [x] : dictionary : "Outcome selected for analysis", "Information Gain", "Chi-squared", "Gini index", "Difference in Support", "Bigger Support", "Confidence", "All-Confidence", "Lift", "Standardised Lift", "Standardised Lift (with correction)", "Collective Strength", "Cosine", "Interestingness", "Comprehensibility", "Completeness", "Added Value", "Casual Confidence", "Casual Support", "Certainty Factor", "Conviction", "Coverage (Support)", "Descriptive Confirmed Confidence", "Difference of Proportions", "Example and Counter Example", "Imbalance Ratio", "Fisher's Exact Test (p-value)", "Hyper Confidence", "Hyper Lift", "Laplace Corrected Confidence", "Importance", "Jaccard Coefficient", "J-Measure", "Kappa", "Klosgen", "Kulczynski", "Goodman-Kruskal's Lambda", "Least Contradiction", "Lerman Similarity", "Piatetsky-Shapiro", "Max Confidence", "Odds Ratio", "Phi Correlation Coefficient", "Ralambondrainy", "Relative Linkage Disequilibrium", "Relative Risk" "Rule Power Factor", "Sebag-Schoenauer", "Yule Q", "Yule Y", "Weighted Support", "Weighted Rule Support" "Weighted Confidence", "Weighted Lift", "Statistical Significance", "FleBiC Score" where "x" represents the position of a subspace, and the dictionary the corresponding metrics calculated for the subspace. More details about the metrics are given in the methods. """ dict = [] for i in range(len(self.patterns)): information_gain = self.information_gain(i) chi_squared = self.chi_squared(i) gini_index = self.gini_index(i) diff_sup = self.diff_sup(i) bigger_sup = self.bigger_sup(i) confidence = self.confidence(i) all_confidence = self.all_confidence(i) lift = self.lift(i) standardisation_of_lift = self.standardisation_of_lift(i) collective_strength = self.collective_strength(i) cosine = self.cosine(i) interestingness = self.interestingness(i) comprehensibility = self.comprehensibility(i) completeness = self.completeness(i) added_value = self.added_value(i) casual_confidence = self.casual_confidence(i) casual_support = self.casual_support(i) certainty_factor = self.certainty_factor(i) conviction = self.conviction(i) coverage = self.coverage(i) descriptive_confirmed_confidence = self.descriptive_confirmed_confidence(i) difference_of_confidence = self.difference_of_confidence(i) example_counter_example = self.example_counter_example(i) imbalance_ratio = self.imbalance_ratio(i) fishers_exact_test_p_value = self.fishers_exact_test_p_value(i) hyper_confidence = self.hyper_confidence(i) hyper_lift = self.hyper_lift(i) laplace_corrected_confidence = self.laplace_corrected_confidence(i) importance = self.importance(i) jaccard_coefficient = self.jaccard_coefficient(i) j_measure = self.j_measure(i) kappa = self.kappa(i) klosgen = self.klosgen(i) kulczynski = self.kulczynski(i) kruskal_lambda = self.kruskal_lambda(i) least_contradiction = self.least_contradiction(i) lerman_similarity = self.lerman_similarity(i) piatetsky_shapiro = self.piatetsky_shapiro(i) max_confidence = self.max_confidence(i) odds_ratio = self.odds_ratio(i) phi_correlation_coefficient = self.phi_correlation_coefficient(i) ralambondrainy_measure = self.ralambondrainy_measure(i) rld = self.rld(i) relative_risk = self.relative_risk(i) rule_power_factor = self.rule_power_factor(i) sebag = self.sebag(i) yule_q = self.yule_q(i) yule_y = self.yule_y(i) Wsup_pattern = self.Wsup_pattern(i) if "column_values" in list(self.patterns[i].keys()) else "Not enough information to calculate" Wsup_rule = self.Wsup_rule(i) if "column_values" in list(self.patterns[i].keys()) else "Not enough information to calculate" Wconf = self.Wconf(i) if "column_values" in list(self.patterns[i].keys()) else "Not enough information to calculate" WLift = self.WLift(i) if "column_values" in list(self.patterns[i].keys()) else "Not enough information to calculate" Tsig = self.Tsig(i) if "column_values" in list(self.patterns[i].keys()) else "Not enough information to calculate" FleBiC_score = self.FleBiC_score(i) if "column_values" in list(self.patterns[i].keys()) else "Not enough information to calculate" dict.append({ "Outcome selected for analysis": self.patterns[i]["outcome_to_assess"], "Information Gain": information_gain, "Chi-squared": chi_squared, "Gini index": gini_index, "Difference in Support": diff_sup, "Bigger Support": bigger_sup, "Confidence": confidence, "All-Confidence": all_confidence, "Lift": lift, "Standardised Lift": standardisation_of_lift, "Collective Strength": collective_strength, "Cosine": cosine, "Interestingness": interestingness, "Comprehensibility": comprehensibility, "Completeness": completeness, "Added Value": added_value, "Casual Confidence": casual_confidence, "Casual Support": casual_support, "Certainty Factor": certainty_factor, "Conviction": conviction, "Coverage (Support)": coverage, "Descriptive Confirmed Confidence": descriptive_confirmed_confidence, "Difference of Proportions": difference_of_confidence, "Example and Counter Example": example_counter_example, "Imbalance Ratio": imbalance_ratio, "Fisher's Exact Test (p-value)": fishers_exact_test_p_value, "Hyper Confidence": hyper_confidence, "Hyper Lift": hyper_lift, "Laplace Corrected Confidence": laplace_corrected_confidence, "Importance": importance, "Jaccard Coefficient": jaccard_coefficient, "J-Measure": j_measure, "Kappa": kappa, "Klosgen": klosgen, "Kulczynski": kulczynski, "Goodman-Kruskal's Lambda": kruskal_lambda, "Least Contradiction": least_contradiction, "Lerman Similarity": lerman_similarity, "Piatetsky-Shapiro": piatetsky_shapiro, "Max Confidence": max_confidence, "Odds Ratio": odds_ratio, "Phi Correlation Coefficient": phi_correlation_coefficient, "Ralambondrainy": ralambondrainy_measure, "Relative Linkage Disequilibrium": rld, "Relative Risk": relative_risk, "Rule Power Factor": rule_power_factor, "Sebag-Schoenauer": sebag, "Yule Q": yule_q, "Yule Y": yule_y, "Weighted Support": Wsup_pattern, "Weighted Rule Support": Wsup_rule, "Weighted Confidence": Wconf, "Weighted Lift": WLift, "Statistical Significance": Tsig, "FleBiC Score": FleBiC_score }) if print_table: columns = ['Metric'] for i in range(len(self.patterns)): columns.append('P'+str(i+1)) t = PrettyTable(columns) for metric in list(dict[0].keys()): line = [metric] for x in range(len(self.patterns)): line.append(str(dict[x][metric])) t.add_row(line) print(t) return dict def information_gain(self, i): """ Calculates information gain of the subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Information gain of subspace """ one = self.patterns[i]["XY"]*math.log(self.patterns[i]["XY"]/(self.patterns[i]["X"]*self.patterns[i]["Y"]), 10) if self.patterns[i]["XY"] != 0 else 0 two = self.patterns[i]["X_Y"]*math.log(self.patterns[i]["X_Y"]/(self.patterns[i]["X"]*self.patterns[i]["_Y"]), 10) if self.patterns[i]["X_Y"] != 0 else 0 three = self.patterns[i]["_XY"]*math.log(self.patterns[i]["_XY"]/(self.patterns[i]["_X"]*self.patterns[i]["Y"]),10) if self.patterns[i]["_XY"] != 0 else 0 four = self.patterns[i]["_X_Y"]*math.log(self.patterns[i]["_X_Y"]/(self.patterns[i]["_X"]*self.patterns[i]["_Y"]), 10) if self.patterns[i]["_X_Y"] != 0 else 0 frac_up = one + two + three + four frac_down_one = - (self.patterns[i]["X"] * math.log(self.patterns[i]["X"],10) + self.patterns[i]["_X"] * math.log(self.patterns[i]["_X"], 10)) if self.patterns[i]["X"] != 0 and self.patterns[i]["_X"] != 0 else 0 frac_down_two = - (self.patterns[i]["Y"] * math.log(self.patterns[i]["Y"],10) + self.patterns[i]["_Y"] * math.log(self.patterns[i]["_Y"], 10)) if self.patterns[i]["Y"] != 0 and self.patterns[i]["_Y"] != 0 else 0 frac_down = min(frac_down_one,frac_down_two) return frac_up / frac_down def chi_squared(self, i): """ Calculates the Chi-squared test statistic given a subspace https://doi.org/10.1145/253260.253327 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Chi-squared test statistic of subspace """ one=((self.patterns[i]["Cxy"]-(self.patterns[i]["Cx"]*self.patterns[i]["Cy"]/self.size_of_dataset))**2)/(self.patterns[i]["Cx"]*self.patterns[i]["Cy"]/self.size_of_dataset) two=((self.patterns[i]["C_xy"]-(self.patterns[i]["C_x"]*self.patterns[i]["Cy"]/self.size_of_dataset))**2)/(self.patterns[i]["C_x"]*self.patterns[i]["Cy"]/self.size_of_dataset) three=((self.patterns[i]["Cx_y"]-(self.patterns[i]["Cx"]*self.patterns[i]["C_y"]/self.size_of_dataset))**2)/(self.patterns[i]["Cx"]*self.patterns[i]["C_y"]/self.size_of_dataset) four=((self.patterns[i]["C_x_y"]-(self.patterns[i]["C_x"]*self.patterns[i]["C_y"]/self.size_of_dataset))**2)/(self.patterns[i]["C_x"]*self.patterns[i]["C_y"]/self.size_of_dataset) return one + two + three + four def gini_index(self, i): """ Calculates the gini index metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Gini index of subspace """ return (self.patterns[i]["X"] * (((self.patterns[i]["XY"]/self.patterns[i]["X"])**2)+((self.patterns[i]["X_Y"]/self.patterns[i]["X"])**2)))\ + (self.patterns[i]["_X"] * (((self.patterns[i]["_XY"]/self.patterns[i]["_X"])**2)+((self.patterns[i]["_X_Y"]/self.patterns[i]["_X"])**2)))\ - (self.patterns[i]["Y"]**2) - (self.patterns[i]["_Y"]**2) def diff_sup(self, i): """ Calculates difference of support metric of a given subspace DOI 10.1109/TKDE.2010.241 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Difference in support of subspace """ return abs((self.patterns[i]["XY"]/self.patterns[i]["Y"]) - (self.patterns[i]["X_Y"]/self.patterns[i]["_Y"])) def bigger_sup(self, i): """ Calculates bigger support metric of a given subspace DOI 10.1109/TKDE.2010.241 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Bigger support of subspace """ return max((self.patterns[i]["XY"]/self.patterns[i]["Y"]), (self.patterns[i]["X_Y"]/self.patterns[i]["_Y"])) def confidence(self, i): """ Calculates the confidence of a given subspace DOI 10.1145/170036.170072 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Confidence of subspace """ return self.patterns[i]["XY"] / self.patterns[i]["X"] def all_confidence(self, i): """ Calculates the all confidence metric of a given subspace DOI 10.1109/TKDE.2003.1161582 Parameters ---------- i : int Index of subspace. Returns ------- metric : float All confidence of subspace """ return self.patterns[i]["XY"] / max(self.patterns[i]["X"], self.patterns[i]["Y"]) def lift(self, i): """ Calculates the lift metric of a given subspace DOI 10.1145/170036.170072 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Lift of subspace """ return self.patterns[i]["XY"] / (self.patterns[i]["X"] * self.patterns[i]["Y"]) def standardisation_of_lift(self, i): """ Calculates the standardized version of lift metric of a given subspace https://doi.org/10.1016/j.csda.2008.03.013 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Standardized lift of subspace """ omega = max(self.patterns[i]["X"] + self.patterns[i]["Y"] - 1, 1/self.size_of_dataset) v = 1 / max(self.patterns[i]["X"], self.patterns[i]["Y"]) return (self.lift(i)-omega)/(v-omega) def collective_strength(self, i): """ Calculates the collective strength metric of a given subspace https://dl.acm.org/doi/pdf/10.1145/275487.275490 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Collective strength of subspace """ return (self.patterns[i]["XY"] + self.patterns[i]["_X_Y"] / self.patterns[i]["_X"]) / (self.patterns[i]["X"] * self.patterns[i]["Y"] + self.patterns[i]["_X"] * self.patterns[i]["_Y"]) def cosine(self, i): """ Calculates cosine metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Cosine of subspace """ return self.patterns[i]["XY"] / math.sqrt(self.patterns[i]["X"] * self.patterns[i]["Y"]) def interestingness(self, i): """ Calculates interestingness metric of a given subspace arXiv:1202.3215 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Interestingness of subspace """ return (self.patterns[i]["XY"] / self.patterns[i]["X"]) * (self.patterns[i]["XY"] / self.patterns[i]["Y"]) * (1 - (self.patterns[i]["XY"]/self.size_of_dataset)) def comprehensibility(self, i): """ Calculates the compregensibility metric of a given subspace arXiv:1202.3215 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Interestingness of subspace """ return np.log(1+1)/np.log(1+self.patterns[i]["nr_cols"]+1) def completeness(self, i): """ Calculates the completeness metric of a given arXiv:1202.3215 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Completeness of subspace """ return self.patterns[i]["XY"] / self.patterns[i]["Y"] def added_value(self, i): """ Calculates the added value metric of a subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Added value of subspace """ return self.confidence(i) - (self.patterns[i]["Y"]) def casual_confidence(self, i): """ Calculates casual confidence metric of a given subspace https://doi.org/10.1007/3-540-44673-7_1 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Casual confidence of subspace """ return 0.5 * ((self.patterns[i]["XY"]/self.patterns[i]["X"]) + (self.patterns[i]["XY"]/self.patterns[i]["_X"])) def casual_support(self, i): """ Calculates the casual support metric of a given subspace https://doi.org/10.1007/3-540-44673-7_1 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Casual support of subspace """ return self.patterns[i]["XY"] + self.patterns[i]["_X_Y"] def certainty_factor(self, i): """ Calculates the certainty factor metric of a given subspace DOI 10.3233/IDA-2002-6303 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Certainty factor metric of a given subspace """ return ((self.patterns[i]["XY"] / self.patterns[i]["X"]) - self.patterns[i]["Y"])/self.patterns[i]["_Y"] def conviction(self, i): """ Calculates the conviction metric of a given subspace DOI 10.1145/170036.170072 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Conviction of subspace """ if self.patterns[i]["X_Y"] == 0: return math.inf else: return self.patterns[i]["X"] * self.patterns[i]["_Y"] / self.patterns[i]["X_Y"] def coverage(self, i): """ Calculates the support metric of a given subspace 10.1145/170036.170072 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Support of subspace """ return self.patterns[i]["X"] def descriptive_confirmed_confidence(self, i): """ Calculates the descriptive confidence of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Descriptive confidence of subspace """ return (self.patterns[i]["XY"]/self.patterns[i]["X"]) - (self.patterns[i]["X_Y"]/self.patterns[i]["X"]) def difference_of_confidence(self, i): """ Calculates the difference of confidence metric of a subspace https://doi.org/10.1007/s001800100075 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Difference of confidence of subspace """ return (self.patterns[i]["XY"] / self.patterns[i]["X"]) - (self.patterns[i]["_XY"] / self.patterns[i]["_X"]) def example_counter_example(self, i): """ Calculates Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases author : <NAME> <NAME> Parameters ---------- i : int Index of subspace. Returns ------- metric : float Example and counter example metric of subspace """ if self.patterns[i]["XY"] == 0: return "No intersection between subspace and outcome" return (self.patterns[i]["XY"] - self.patterns[i]["X_Y"]) / self.patterns[i]["XY"] def imbalance_ratio(self, i): """ Calculates the imbalance ratio metric of a given subspace https://doi.org/10.1007/s10618-009-0161-2 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Imbalance ratio of subspace """ if self.patterns[i]["XY"] == 0: return "No intersection between subspace and outcome" return abs((self.patterns[i]["XY"]/self.patterns[i]["X"])-(self.patterns[i]["XY"]/self.patterns[i]["Y"]))/((self.patterns[i]["XY"]/self.patterns[i]["X"])+(self.patterns[i]["XY"]/self.patterns[i]["Y"])-((self.patterns[i]["XY"]/self.patterns[i]["X"])*(self.patterns[i]["XY"]/self.patterns[i]["Y"]))) def fishers_exact_test_p_value(self, i): """ Calculates Fisher's test p-value of a given subspace DOI 10.3233/IDA-2007-11502 Parameters ---------- i : int Index of subspace. Returns ------- metric : float P-value of Fisher's test of subspace """ comb3 = math.factorial(self.size_of_dataset) // (math.factorial(self.patterns[i]["Cx"]) * math.factorial(self.size_of_dataset - self.patterns[i]["Cx"])) sum_Pcxy = 0 for counter in range(0, self.patterns[i]["Cxy"]): comb1 = math.factorial(self.patterns[i]["Cy"])//(math.factorial(counter)*math.factorial(self.patterns[i]["Cy"]-counter)) comb2_aux = (self.size_of_dataset-self.patterns[i]["Cy"])-(self.patterns[i]["Cx"]-counter) if comb2_aux < 0: comb2_aux = 0 comb2 = math.factorial(self.size_of_dataset-self.patterns[i]["Cy"])//(math.factorial(self.patterns[i]["Cx"]-counter)*math.factorial(comb2_aux)) sum_Pcxy += ((comb1*comb2)/comb3) return 1 - sum_Pcxy def hyper_confidence(self, i): """ Calculates the Hyper confidence metric of a given subspace DOI 10.3233/IDA-2007-11502 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Hyper confidence of subspace """ return 1 - self.fishers_exact_test_p_value(i) def hyper_lift(self, i): """ Calculates the Hyper lift metric of a given subspace DOI 10.3233/IDA-2007-11502 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Hyper lift of subspace """ [M, n, N] = [self.size_of_dataset, self.patterns[i]["Cy"], self.patterns[i]["Cx"]] ppf95 = hypergeom.ppf(0.95, M, n, N) return self.patterns[i]["Cxy"]/ppf95 def laplace_corrected_confidence(self, i): """ Calculates the laplace corrected confidence of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Laplace corrected confidence """ return (self.patterns[i]["Cxy"]+1)/(self.patterns[i]["Cx"]+(len(self.unique_classes))) def importance(self, i): """ Calculates the importance metric of a given subspace https://docs.microsoft.com/en-us/analysis-services/data-mining/microsoft-association-algorithm-technical-reference?view=asallproducts-allversions&viewFallbackFrom=sql-server-ver15 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Importance metric of subspace """ return math.log(((self.patterns[i]["Cxy"]+1)/(self.patterns[i]["Cx"]+len(self.unique_classes))) / ((self.patterns[i]["Cx_y"]+1)/(self.patterns[i]["Cx"]+len(self.unique_classes))), 10) def jaccard_coefficient(self, i): """ Calculates the jaccard coefficient metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Jaccard coefficient of subspace """ return self.patterns[i]["XY"]/(self.patterns[i]["X"]+self.patterns[i]["Y"]-self.patterns[i]["XY"]) def j_measure(self, i): """ Calculates the J-Measure (scaled version of cross entropy) of a given subspace NII Article ID (NAID) 10011699020 Parameters ---------- i : int Index of subspace. Returns ------- metric : float J-Measure of subspace """ a = (self.patterns[i]["XY"]/self.patterns[i]["X"])/self.patterns[i]["Y"] if a == 0: a = 0 else: a = self.patterns[i]["XY"] * math.log((self.patterns[i]["XY"]/self.patterns[i]["X"])/self.patterns[i]["Y"], 10) b = (self.patterns[i]["X_Y"]/self.patterns[i]["X"])/self.patterns[i]["_Y"] if b == 0: b = 0 else: b = self.patterns[i]["X_Y"] * math.log((self.patterns[i]["X_Y"] / self.patterns[i]["X"]) / self.patterns[i]["_Y"], 10) return a + b def kappa(self, i): """ Calculates the kappa metric for a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Kappa of subspace """ return (self.patterns[i]["XY"] + self.patterns[i]["_X_Y"]-(self.patterns[i]["X"] * self.patterns[i]["Y"])-(self.patterns[i]["_X"]*self.patterns[i]["_Y"])) / (1-(self.patterns[i]["X"]*self.patterns[i]["Y"])-(self.patterns[i]["_X"]*self.patterns[i]["_Y"])) def klosgen(self, i): """ Calculates the klosgen metric for a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Klosgen metric of subspace """ return math.sqrt(self.patterns[i]["XY"])*((self.patterns[i]["XY"]/self.patterns[i]["X"])-self.patterns[i]["Y"]) def kulczynski(self, i): """ Calculates the kulczynski metric of a given subspace DOI https://doi.org/10.1007/s10618-009-0161-2 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Kulczynski metric of subspace """ return 0.5 * ((self.patterns[i]["XY"] / self.patterns[i]["X"]) + (self.patterns[i]["XY"] / self.patterns[i]["Y"])) def kruskal_lambda(self, i): """ Calculates the goodman-kruskal lambda metric for a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Goodman-kruskal lambda of subspace """ return ((1-self.patterns[i]["XY"])-(1-self.patterns[i]["Y"]))/(1-self.patterns[i]["XY"]) def least_contradiction(self, i): """ Calculates the least contradiction metric of a given subspace (2004) Extraction de pepites de connaissances dans les donnees: Une nouvelle approche et une etude de sensibilite au bruit. In Mesures de Qualite pour la fouille de donnees. Revue des Nouvelles Technologies de l’Information, RNTI author : <NAME>. and <NAME> Parameters ---------- i : int Index of subspace. Returns ------- metric : float Least contradiction of subspace """ return (self.patterns[i]["XY"] - self.patterns[i]["X_Y"]) / self.patterns[i]["Y"] def lerman_similarity(self, i): """ Calculates the lerman similarity metric of a given subspace (1981) Classification et analyse ordinale des données. Author : Lerman, Israel-César. Parameters ---------- i : int Index of subspace. Returns ------- metric : float Lerman similarity of subspace """ return (self.patterns[i]["Cxy"] - ((self.patterns[i]["Cx"] * self.patterns[i]["Cy"]) / self.size_of_dataset)) / math.sqrt((self.patterns[i]["Cx"] * self.patterns[i]["Cy"]) / self.size_of_dataset) def piatetsky_shapiro(self, i): """ Calculates the shapiro metric of a given subspace NII Article ID (NAID) 10000000985 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Shapiro metric of subspace """ return self.patterns[i]["XY"] - (self.patterns[i]["X"] * self.patterns[i]["Y"]) def max_confidence(self, i): """ Calculates the maximum confidence metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Max Confidence of subspace """ return max(self.patterns[i]["XY"] / self.patterns[i]["X"], self.patterns[i]["XY"] / self.patterns[i]["Y"]) def odds_ratio(self, i): """ Calculates the odds ratio metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Odds ratio of subspace """ if self.patterns[i]["X_Y"] == 0 or self.patterns[i]["_XY"] == 0: return math.inf else: return (self.patterns[i]["XY"] * self.patterns[i]["_X_Y"]) / (self.patterns[i]["X_Y"] * self.patterns[i]["_XY"]) def phi_correlation_coefficient(self, i): """ Calculates the phi correlation coefficient metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Phi correlation coefficient of subspace """ return math.sqrt(self.chi_squared(i)/self.size_of_dataset) def ralambondrainy_measure(self, i): """ Calculates the support of the counter examples of a given subspace Parameters ---------- i : int Index of subspace. Returns ------- metric : float Ralambondrainy metric of subspace """ return self.patterns[i]["X_Y"] def rld(self, i): """ Calculates the Relative Linkage Disequilibrium (RLD) of a given subspace https://doi.org/10.1007/978-3-540-70720-2_15 Parameters ---------- i : int Index of subspace. Returns ------- metric : float RLD of subspace """ rld = 0 d = (self.patterns[i]["Cxy"]*self.patterns[i]["C_x_y"])-(self.patterns[i]["Cx_y"]*self.patterns[i]["C_xy"]) if d > 0: if self.patterns[i]["C_xy"] < self.patterns[i]["Cx_y"]: rld = d / (d+(self.patterns[i]["C_xy"] / self.size_of_dataset)) else: rld = d / (d+(self.patterns[i]["Cx_y"] / self.size_of_dataset)) else: if self.patterns[i]["Cxy"] < self.patterns[i]["C_x_y"]: rld = d / (d-(self.patterns[i]["Cxy"] / self.size_of_dataset)) else: rld = d / (d-(self.patterns[i]["C_x_y"] / self.size_of_dataset)) return rld def relative_risk(self, i): """ Calculates the relative risk of a given subspace https://doi.org/10.1148/radiol.2301031028 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Relative risk of subspace """ if self.patterns[i]["_XY"] == 0: return math.inf return (self.patterns[i]["XY"]/self.patterns[i]["X"])/(self.patterns[i]["_XY"]/self.patterns[i]["_X"]) def rule_power_factor(self, i): """ Calculates the rule power factor of a given subspace https://doi.org/10.1016/j.procs.2016.07.175 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Rule power factor of subspace """ return (self.patterns[i]["XY"]**2)/self.patterns[i]["X"] def sebag(self, i): """ Calculates the sebag metric of a given subspace Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases author : <NAME> <NAME> Parameters ---------- i : int Index of subspace. Returns ------- metric : float Sebag metric of subspace """ if self.patterns[i]["X_Y"] == 0: return math.inf else: return self.patterns[i]["XY"]/self.patterns[i]["X_Y"] def yule_q(self, i): """ Calculates the yule's Q metric of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Yule's Q of subspace """ return (self.patterns[i]["XY"]*self.patterns[i]["_X_Y"] - self.patterns[i]["X_Y"]*self.patterns[i]["_XY"]) / (self.patterns[i]["XY"]*self.patterns[i]["_X_Y"] + self.patterns[i]["X_Y"]*self.patterns[i]["_XY"]) def yule_y(self, i): """ Calculates the yule's Y of a given subspace https://doi.org/10.1016/S0306-4379(03)00072-3 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Yule's Y of subspace """ return (math.sqrt(self.patterns[i]["XY"] * self.patterns[i]["_X_Y"]) - math.sqrt(self.patterns[i]["X_Y"] * self.patterns[i]["_XY"])) / (math.sqrt(self.patterns[i]["XY"] * self.patterns[i]["_X_Y"]) + math.sqrt(self.patterns[i]["X_Y"] * self.patterns[i]["_XY"])) def quality_of_pattern(self, i): """ Calculates the amount of non-noisy elements of a given subspace https://doi.org/10.1016/j.patcog.2021.107900 Parameters ---------- i : int Index of subspace. Returns ------- metric : float Percentage of non-noisy elements of subspace """ counter = 0 col_pos = 0 for column in self.patterns[i]["columns"]: for row in self.patterns[i]["lines"]: column_value = self.patterns[i]["column_values"][col_pos] if
pd.isna(self.data.at[row, column])
pandas.isna
import Functions import pandas as pd import matplotlib.pyplot as plt def group_sentiment(dfSentiment): dfSentiment['datetime'] = pd.to_datetime(dfSentiment['created_utc'], unit='s') dfSentiment['date'] = pd.DatetimeIndex(dfSentiment['datetime']).date dfSentiment = dfSentiment[ ['created_utc', 'negative_comment', 'neutral_comment', 'positive_comment', 'datetime', 'date']] dfSentiment = dfSentiment.groupby(by=['date']).sum() return dfSentiment def cleaning(df): # Importing Bot user names bots =
pd.read_csv(r'Data\Bots.csv', index_col=0, sep=';')
pandas.read_csv
import pandas as pd pd.options.mode.chained_assignment = None # default='warn' import numpy as np import os from py2neo import Graph, Node, Relationship, NodeMatcher, RelationshipMatcher # from neo4j import GraphDatabase # import neo4j import networkx as nx import json import datetime import matplotlib.pyplot as plt # from ggplot import * from shutil import copytree import math # from graph_tool.all import * import json import random # Choose a path for the Neo4j_Imports folder to import the data from MOD into Neo4j # formose_MOD_exports_path = "../data/formose/Neo4j_Imports" formose_MOD_exports_path = "../data/pyruvic_acid/Neo4j_Imports" glucose_MOD_exports_path = "../data/glucose/Neo4j_Imports" # exports_folder_paths = [formose_MOD_exports_path, glucose_MOD_exports_path] EXPORT_PATHS = [glucose_MOD_exports_path] # Set the following to False if you want to leave order of import records in # each generation file the same; set to True to randomly shuffle the order of # the records within each file. By shuffling the order, the order at which the # molecules are imported into Neo4j will be randomized, and thus the start point # at which the cycles pattern match begins is randomized each time, so we can # get samples at different starting points in the network since it is too # computationally intensive to match for all possible patterns in the network. SHUFFLE_GENERATION_DATA = True # Repeat the whole import and pattern match routine REPEAT_RUNS amount of times. # Pair this with SHUFFLE_GENERATION_DATA so that if SHUFFLE_GENERATION_DATA # is True, sample pattern matches on the graph REPEAT_RUNS amount of times # starting from random points on the graph from the shuffling, where each # run matches up to NUM_STRUCTURES_LIMIT of patterns. REPEAT_RUNS = 10 # Filter out these molecules by smiles string from being imported into Neo4j # for pattern match / network statistic calculations. MOLECULE_FILTER = ['O'] # If True, will match for autocatalytic pattern mattches using the pattern match # query in graph_queries/_FINAL_QUERY_PARAMETERIZED.txt. If not, will skip this # and just do node degree / rank calculations. (One reason you might want to disable # pattern match query results is because this is very computationally intensive # and takes a lot of time; so disable if you are just looking for network statistics.) PATTERN_MATCHES = True # Rather than disabling completely if running into performance issues, limit the # number of patterns that can be matched so that the query stops executing as # soon as it reaches the pattern limit, and the matches are returned. NUM_STRUCTURES_LIMIT = 100 # Limit the range of the ring size. Note that the ring size includes molecule # and reaction nodes, so if a ring of 3 molecules to 6 molecules is desired, # for example, then RING_SIZE_RANGE would be (3*2, 6*2), or (6, 12) RING_SIZE_RANGE = (6, 8) # (6, 8) is size 6-8 reaction+molecule nodes, or 3-4 molecule nodes only # Limit the number of generations that each network can be imported on. If None, # no limit--will default to the maximum number of generations generated. You may # want to limit this to ~4 generations or less if performance is an issue; the # network will grow exponentially, so pattern match queries might take too long # to produce results. GENERATION_LIMIT = 4 # None # If NETWORK_SNAPSHOTS is True, the program gathers data on the network at each generation # in the reaction netowrk. If False, the program gathers data only on the state of # the network once all generations have completely finished being loaded (snapshot # only of the final generation). NETWORK_SNAPSHOTS = True # Enable this only if you want to capture network statistics (such as node degree # plots over generation) COLLECT_NETWORK_STATISTICS = False # Set this to True if you want to generate a static image of the network after # loading. Might run into Out of Memory error. Default leaving this as False # because we generated a much nicer visualization of the full network using Gephi. FULL_NETWORK_VISUALIZATION = False # configure network database Neo4j url = "bolt://neo4j:0000@localhost:7687" graph = Graph(url) matcher = NodeMatcher(graph) rel_matcher = RelationshipMatcher(graph) def get_timestamp(): return str(datetime.datetime.now()).replace(":","-").replace(" ","_").replace(".","-") def create_molecule_if_not_exists(smiles_str, generation_formed, exact_mass=0): """ Create molecule in DB if not exists. """ molecule = matcher.match("Molecule", smiles_str = smiles_str).first() if molecule is None: # molecule does not exist, create node with generation information tx = graph.begin() new_m = Node("Molecule", smiles_str = smiles_str, exact_mass = round(float(exact_mass),3), generation_formed = generation_formed) tx.create(new_m) tx.commit() return new_m return molecule def create_reaction_if_not_exists(id, rule, generation_formed): reaction = matcher.match("Reaction", id = id).first() if reaction is None: tx = graph.begin() new_rxn = Node("Reaction", id = id, rule = rule, generation_formed = generation_formed) tx.create(new_rxn) tx.commit() return new_rxn return reaction def create_reactant_rel_if_not_exists(smiles_str, rxn_id, generation_formed): molecule = matcher.match("Molecule", smiles_str = smiles_str).first() reaction = matcher.match("Reaction", id = rxn_id).first() match_pattern = rel_matcher.match(nodes=(molecule, reaction), r_type="REACTANT" #, # properties = {"generation_formed": generation_formed} ) # if pattern does not exist in db if len(list(match_pattern)) <= 0: tx = graph.begin() # see documentation for weird Relationship function; order of args go: # from node, relationship, to node, and then kwargs for relationship properties # https://py2neo.org/v4/data.html#py2neo.data.Relationship new_r = Relationship(molecule, "REACTANT", reaction, generation_formed=generation_formed) tx.create(new_r) tx.commit() return new_r return match_pattern def create_product_rel_if_not_exists(smiles_str, rxn_id, generation_formed): molecule = matcher.match("Molecule", smiles_str = smiles_str).first() reaction = matcher.match("Reaction", id = rxn_id).first() match_pattern = rel_matcher.match(nodes=(reaction, molecule), r_type="PRODUCT" #, # properties = {"generation_formed": generation_formed} ) # if pattern does not exist in db if len(list(match_pattern)) <= 0: tx = graph.begin() # see documentation for weird Relationship function; order of args go: # from node, relationship, to node, and then kwargs for relationship properties # https://py2neo.org/v4/data.html#py2neo.data.Relationship new_r = Relationship(reaction, "PRODUCT", molecule, generation_formed=generation_formed) tx.create(new_r) tx.commit() return new_r return match_pattern def save_query_results(generation_num, query_result, file_name, this_out_folder): with open(f'output/' + this_out_folder + f"/{generation_num}/{file_name}.json", 'w') as file_data_out: json.dump(query_result, file_data_out) data_df = pd.read_json(f'output/' + this_out_folder + f"/{generation_num}/{file_name}.json") data_df.to_csv(f'output/' + this_out_folder + f"/{generation_num}/{file_name}.csv", index=False) def read_query_results(file_path): try: df = pd.read_csv(file_path) except: df = pd.DataFrame() return df def run_single_value_query(query, value): return graph.run(query).data()[0][value] def get_tabulated_possible_autocatalytic_cycles(generation_num, mod_exports_folder_path, this_out_folder, ring_size_range = (6,8), feeder_molecule_generation_range = None, num_structures_limit = 100 ): """ After the graph has been loaded with data, let's execute a query and export the tabulated results. An input of "None" to any of the params means no limit. By default the ring size will be from 3 molecules to 7. """ print("\t\t\tPreparing query for cycles...") # make sure inputs are okay print("\t\t\t\tChecking input parameters...") min_ring_size = ring_size_range[0] max_ring_size = ring_size_range[1] if min_ring_size < 0 or max_ring_size < 0: print("Ring sizes can not be negative.") quit() if min_ring_size > max_ring_size: print("The minimum ring size must not exceed the maximum.") quit() if min_ring_size <= 2: print("The minimum ring size must be above 2.") quit() if feeder_molecule_generation_range != None: min_feeder_gen = feeder_molecule_generation_range[0] max_feeder_gen = feeder_molecule_generation_range[1] if min_feeder_gen < 0 or max_feeder_gen < 0: print("The feeder generation can not be negative.") quit() if min_feeder_gen > max_feeder_gen: print("The minimum feeder generation must not exceed the maximum.") quit() else: min_feeder_gen = None max_feeder_gen = None # load query and insert params print("\t\t\t\tReplacing query parameters in query string...") query_txt = open("graph_queries/_FINAL_QUERY_PARAMETERIZED.txt",'r').read() query_txt = query_txt.replace("{{MIN_RING_SIZE}}", str(min_ring_size)) query_txt = query_txt.replace("{{MAX_RING_SIZE}}", str(max_ring_size)) if feeder_molecule_generation_range == None: query_txt = query_txt.replace("{{COMMENT_OUT_FEEDER_GEN_LOGIC}}", "//") else: query_txt = query_txt.replace("{{COMMENT_OUT_FEEDER_GEN_LOGIC}}", "") query_txt = query_txt.replace("{{MIN_FEEDER_GENERATION}}", str(min_feeder_gen)) query_txt = query_txt.replace("{{MAX_FEEDER_GENERATION}}", str(max_feeder_gen)) query_txt = query_txt.replace("{{NUM_STRUCTURES_LIMIT}}", str(num_structures_limit)) # Get the max ID of all molecules to get a random molecule to start with. # Query several times in small chunks to stochastically estimate the behavior # of the graph without having to traverse the entire thing for this query. # max_node_id = run_single_value_query("MATCH (n) RETURN max(ID(n)) AS max_node_id","max_node_id") # WHERE ID(beginMol) = round(rand() * {{MAX_NODE_ID}}) # print("\t\t\t" + query_txt) # Execute query in Neo4j. If out of memory error occurs, need to change DB settings: # I used heap initial size set to 20G, heap max size set to 20G, and page cache size set to 20G, # but these settings would depend on your hardware limitations. # See Neo4j Aura for cloud hosting: https://neo4j.com/aura/ print("\t\t\t\tExecuting query and collecting results (this may take awhile)...") print(f"\t\t\t\tTime start: {get_timestamp()}") query_result = graph.run(query_txt).data() print(f"\t\t\t\tTime finish: {get_timestamp()}") # print("\t\tQuery results:") # print(query_result[0]) print("\t\t\t\tSaving query results and meta info...") # save data as JSON and CSV (JSON for easy IO, CSV for human readability) save_query_results(generation_num = generation_num, query_result = query_result, file_name = "autocat_query_results", this_out_folder = this_out_folder) # save meta info as well in out folder with open(f"output/" + this_out_folder + f"/{generation_num}/autocat_query.txt", 'w') as file_query_out: file_query_out.write(query_txt) query_params = pd.DataFrame( {"parameter": ["min_ring_size","max_ring_size","min_feeder_gen","max_feeder_gen","num_structures_limit"], "value": [min_ring_size, max_ring_size, min_feeder_gen, max_feeder_gen, num_structures_limit] } ) query_params.to_csv(f"output/" + this_out_folder + f"/{generation_num}/autocat_query_parameters.csv", index=False) return this_out_folder def analyze_possible_autocatalytic_cycles(generation_num, mod_exports_folder_path, query_results_folder): """ Now that we have the tabulated results of the graph queries, let's do some analysis on what's going on. 1. Ring size frequency distribution 2. Total mass per cycle per feeder molecule's generation (calculate total using only the molecules in the ring, and use the feeder molecule's generation as the ring's generation). Note: make sure to remove duplicates when getting sum of mass in ringPathNodes because the beginMol is counted twice (it is the start and end node in the path). 3. Count of cycles by feeder generation """ print("Generating some plots on cycle size distribution / stats by generation...") # 1. query_data = pd.read_json(f"output/" + query_results_folder + f"/{generation_num}/autocat_query_results.json") if query_data.empty: print("No cycles found.") return # print(query_data.describe()) # print(query_data.head()) # cycle distribution (y axis is frequency, x axis is ring size) fig, ax = plt.subplots() # print(query_data.head()) # query_data['countMolsInRing'] = query_data['countMolsInRing'].astype(int) query_data['countMolsInRing'].value_counts().plot(ax = ax, kind='bar', title = "Ring Size Frequency Distribution") ax.set_xlabel("Ring Size (# of Molecules)") ax.set_ylabel("Count of Cycles") plt.savefig(f"output/" + query_results_folder + f"/{generation_num}/ring_size_distribution.png") # plt.show() # 2. # Total mass of cycle per generation. Not really needed. # 3. # count of cycles by feeder generation fig, ax = plt.subplots() gen_formed_arr = [] feederMolData = list(query_data['feederMol']) for feederMol in feederMolData: gen_formed_arr.append(feederMol['generation_formed']) # get unique list of feeder generations and sum by generation gen_formed_arr = np.array(gen_formed_arr) feeder_gen_counts = np.unique(gen_formed_arr, return_counts=True) feeder_gen_counts = np.transpose(feeder_gen_counts) cycles_by_gen_df = pd.DataFrame(feeder_gen_counts, columns=['feeder_gen', 'cycle_count']) cycles_by_gen_df.plot(ax=ax, x = "feeder_gen", y = "cycle_count", kind = "bar", legend = False, title = "Count of Cycles by Feeder Generation") ax.set_xlabel("Cycle Generation (Generation Formed of Feeder Molecule)") ax.set_ylabel("Count of Cycles") plt.savefig(f"output/" + query_results_folder + f"/{generation_num}/count_cycles_by_feeder_generation.png") # close all plots so they don't accumulate memory print("\tAutocatalysis pattern matching done.") plt.close('all') def plot_hist(query_results_folder, generation_num, file_name, statistic_col_name, title, x_label, y_label): # fig, ax = plt.subplots() # df = pd.read_csv(f"output/{query_results_folder}/{file_name}.csv") # num_bins = int(math.sqrt(df.shape[0])) # estimate the number of bins by taking the square root of the number of rows in the dataset # df.plot.hist(bins=num_bins, ax=ax) # ax.set_xlabel(x_label) # ax.set_ylabel(y_label) # plt.savefig(f"output/{query_results_folder}/{file_name}.png") fig, ax = plt.subplots() df = pd.read_csv(f"output/{query_results_folder}/{generation_num}/{file_name}.csv") num_bins = int(math.sqrt(df.shape[0])) # estimate the number of bins by taking the square root df = pd.pivot_table(df, values="smiles_str", index=[statistic_col_name], columns=["generation_formed"], aggfunc=lambda x: math.log10(len(x.unique()))) # the log of the count of unique smiles_str df.plot.hist(ax=ax, bins = num_bins, title=title, figsize = (15,15)) ax.set_xlabel(x_label) ax.set_ylabel(y_label) plt.savefig(f"output/{query_results_folder}/{generation_num}/{file_name}_histogram.png") def plot_scatter(query_results_folder, generation_num, file_name, statistic_col_name, title, x_label, y_label): fig, ax = plt.subplots() df = pd.read_csv(f"output/{query_results_folder}/{generation_num}/{file_name}.csv") df = df.head(100) # cut off by top 100 most interesting # df.plot.bar(ax = ax, # x = "smiles_str", # y = statistic_col_name, # # color = "generation_formed", # legend = True, # title = title, # figsize = (14,14)) # ggplot(aes(x = "smiles_str", # y = statistic_col_name, # color = "generation_formed"), # data = df) + geom_point() # ax.legend(['generation_formed']) groups = df.groupby("generation_formed") for name, group in groups: plt.plot(group['smiles_str'], group[statistic_col_name], marker = "o", linestyle = "", label = name) plt.legend(loc="best", title="Generation Formed") plt.xticks(rotation=90) fig.set_figheight(15) fig.set_figwidth(15) ax.set_title(title) ax.set_xlabel(x_label) ax.set_ylabel(y_label) plt.savefig(f"output/{query_results_folder}/{generation_num}/{file_name}_scatter.png") def network_statistics(generation_num, query_results_folder): """ Get some statistics on the network. 0. Number of nodes and edges in the graph, as well as various network-level statistics: 1. Eigenvector centrality, 2. Betweenness Centrality, 3. Random-walk betweenness, 4. Clique enumeration, 5. k-plex enumeration, 6. k-core enumeration, 7. k-component enumeration, 8. neighbor redundancy 1. Node degree distribution: log10 of node degree frequency by degree value colored by generation_formed, one plot for incoming, outgoing, and incoming and outgoing edges 2. Avg number of edges per node per generation """ print("Doing some network statistics...") # 0. # get total number of nodes and edges total_count_nodes = run_single_value_query("MATCH (n) RETURN COUNT(n) AS count_nodes", 'count_nodes') total_count_rels = run_single_value_query("MATCH (n)-[r]->() RETURN COUNT(r) AS count_rels", 'count_rels') # 0.1 eigenvector_centrality # do by generation, molecule, order by score first eigenvector_centrality = graph.run(""" CALL algo.eigenvector.stream('Molecule', 'FORMS', {}) YIELD nodeId, score RETURN algo.asNode(nodeId).smiles_str AS smiles_str, algo.asNode(nodeId).generation_formed AS generation_formed, score AS eigenvector_centrality ORDER BY eigenvector_centrality DESC """).data() save_query_results(generation_num, eigenvector_centrality, "eigenvector_centrality", query_results_folder) plot_hist(query_results_folder = query_results_folder, generation_num = generation_num, file_name = "eigenvector_centrality", statistic_col_name = "eigenvector_centrality", title = "Histogram of Eigenvector Centrality", x_label = "Eigenvector Centrality Score Bin", y_label = "Count of Molecules") plot_scatter(query_results_folder = query_results_folder, generation_num = generation_num, file_name = "eigenvector_centrality", statistic_col_name = "eigenvector_centrality", title = "Eigenvector Centrality - Top 100 Connected Molecules", x_label = "Molecule Smiles Format", y_label = "Eigenvector Centrality Score") avg_eigenvector_centrality = run_single_value_query(""" CALL algo.eigenvector.stream('Molecule', 'FORMS', {}) YIELD nodeId, score RETURN avg(score) AS avg_score """, "avg_score") # 0.2 betweenness_centrality betweenness_centrality = graph.run(""" CALL algo.betweenness.stream('Molecule','FORMS',{direction:'out'}) YIELD nodeId, centrality MATCH (molecule:Molecule) WHERE id(molecule) = nodeId RETURN molecule.smiles_str AS smiles_str, molecule.generation_formed AS generation_formed, centrality AS betweenness_centrality ORDER BY betweenness_centrality DESC; """).data() save_query_results(generation_num, betweenness_centrality, "betweenness_centrality", query_results_folder) plot_hist(query_results_folder = query_results_folder, generation_num = generation_num, file_name = "betweenness_centrality", statistic_col_name = "betweenness_centrality", title = "Histogram of Betweenness Centrality", x_label = "Betweenness Centrality Score Bin", y_label = "Count of Molecules") plot_scatter(query_results_folder = query_results_folder, generation_num = generation_num, file_name = "betweenness_centrality", statistic_col_name = "betweenness_centrality", title = "Betweenness Centrality - Top 100 Connected Molecules", x_label = "Molecule Smiles Format", y_label = "Betweenness Centrality Score") avg_betweenness_centrality = run_single_value_query(""" CALL algo.betweenness.stream('Molecule','FORMS',{direction:'out'}) YIELD nodeId, centrality MATCH (molecule:Molecule) WHERE id(molecule) = nodeId RETURN avg(centrality) AS avg_centrality """, 'avg_centrality') # 0.3 Random-walk betweenness random_walk_betweenness = graph.run(""" CALL algo.betweenness.sampled.stream('Molecule','FORMS', {strategy:'random', probability:1.0, maxDepth:1, direction: "out"}) YIELD nodeId, centrality MATCH (molecule) WHERE id(molecule) = nodeId RETURN molecule.smiles_str AS smiles_str, molecule.generation_formed AS generation_formed, centrality AS random_walk_betweenness ORDER BY random_walk_betweenness DESC;""").data() save_query_results(generation_num, random_walk_betweenness, "random_walk_betweenness", query_results_folder) plot_hist(query_results_folder = query_results_folder, generation_num = generation_num, file_name = "random_walk_betweenness", statistic_col_name = "random_walk_betweenness", title = "Histogram of Random Walk Betweenness Centrality", x_label = "Random Walk Betweenness Centrality Score Bin", y_label = "Count of Molecules") plot_scatter(query_results_folder = query_results_folder, generation_num = generation_num, file_name = "random_walk_betweenness", statistic_col_name = "random_walk_betweenness", title = "Random Walk Betweenness Centrality - Top 100 Connected Molecules", x_label = "Molecule Smiles Format", y_label = "Random Walk Betweenness Centrality Score") avg_random_walk_betweenness = run_single_value_query("""CALL algo.betweenness.stream('Molecule','FORMS',{direction:'out'}) YIELD nodeId, centrality MATCH (molecule:Molecule) WHERE id(molecule) = nodeId RETURN avg(centrality) AS avg_random_walk_betweenness""", 'avg_random_walk_betweenness') # 0.4 Clique enumeration avg_clique_enumeration = None #run_single_value_query("", 'clique_enumeration') # 0.5 K-Plex enumeration avg_k_plex_enumeration = None #run_single_value_query("", 'k_plex_enumeration') # 0.6 K-Core enumeration avg_k_core_enumeration = None #run_single_value_query("", 'k_core_enumeration') # 0.7 K-Component enumeration avg_k_component_enumeration = None #run_single_value_query("", 'k_component_enumeration') # 0.8 Neighbor redundancy avg_neighbor_redundancy = None #run_single_value_query("", 'neighbor_redundancy') # save all to graph_info DataFrame graph_info = pd.DataFrame({"statistic": ["Total Count Molecules", "Total Count Edges","Average Eigenvector Centrality", "Average Betweenness Centrality", "Average Random-walk Betweenness", 'Clique enumeration','k-plex enumation','k-core enumeration','k-component enumeration','Neighbor redundancy'], "value": [total_count_nodes, total_count_rels, avg_eigenvector_centrality, avg_betweenness_centrality, avg_random_walk_betweenness, avg_clique_enumeration, avg_k_plex_enumeration, avg_k_core_enumeration, avg_k_component_enumeration, avg_neighbor_redundancy]}) graph_info.to_csv(f"output/{query_results_folder}/_network_info.csv", index=False) # 1. # first do the query and save the results node_deg_query = """ MATCH (n:Molecule) RETURN n.smiles_str AS smiles_str, n.exact_mass AS exact_mass, n.generation_formed AS generation_formed, size((n)--()) AS count_relationships """ node_deg_query_results = graph.run(node_deg_query).data() node_deg_file = "node_distribution_results" save_query_results(generation_num = generation_num, query_result = node_deg_query_results, file_name = node_deg_file, this_out_folder = query_results_folder) # now read in the results, transform, and plot # also can represent this as a histogram? fig, ax = plt.subplots() node_deg_df = pd.read_csv(f"output/{query_results_folder}/{generation_num}/{node_deg_file}.csv") # node_deg_df['count_relationships'].value_counts().plot(ax=ax, # kind='bar', # title="Node Degree Distribution by Generation Formed") node_deg_pivot = pd.pivot_table(node_deg_df, values="smiles_str", index=["count_relationships"], columns=["generation_formed"], aggfunc=lambda x: math.log10(len(x.unique()))) # the log of the count of unique smiles_str node_deg_pivot.plot(ax=ax, kind="bar", title="Square of Molecule Degree by Generation Formed", figsize = (8,5)) ax.set_xlabel("Molecule Degree (count of incoming and outgoing edges)") ax.set_ylabel("log10(Count of Molecules)") plt.savefig(f"output/{query_results_folder}/{generation_num}/{node_deg_file}.png") # 2. # get average number of edges by node and generation fig, ax = plt.subplots() node_deg_avg = node_deg_df.groupby(by=['generation_formed']).mean().reset_index() # print(node_deg_avg) node_deg_avg.plot(ax=ax, x = "generation_formed", y = "count_relationships", kind="scatter", title="Average Molecule Degree by Generation Formed", figsize = (8,5), legend = False) ax.set_xlabel("Generation Formed") ax.set_ylabel("Average Node Degree") plt.savefig(f"output/{query_results_folder}/{generation_num}/{node_deg_file}_avg.png") # incoming relationships by molecule incoming_rels_count_file = "incoming_rels_count" incoming_rels_count = graph.run(""" MATCH (n)<-[r:FORMS]-() RETURN n.smiles_str AS smiles_str, n.generation_formed AS generation_formed, n.exact_mass AS exact_mass, count(r) AS count_incoming ORDER BY count_incoming DESC """).data() save_query_results(generation_num = generation_num, query_result = incoming_rels_count, file_name = incoming_rels_count_file, this_out_folder = query_results_folder) fig, ax = plt.subplots() # node_deg_df = pd.read_csv(f"output/{query_results_folder}/{generation_num}/{incoming_rels_count_file}.csv") node_deg_df = read_query_results(f"output/{query_results_folder}/{generation_num}/{incoming_rels_count_file}.csv") # node_deg_df['count_relationships'].value_counts().plot(ax=ax, # kind='bar', # title="Node Degree Distribution by Generation Formed") if not node_deg_df.empty: node_deg_pivot = pd.pivot_table(node_deg_df, values="smiles_str", index=["count_incoming"], columns=["generation_formed"], aggfunc=lambda x: math.log10(len(x.unique()))) # the square of the count of unique smiles_str node_deg_pivot.plot(ax=ax, kind="bar", title="Square of Molecule Degree by Generation Formed for Incoming Relationships", figsize = (8,5)) ax.set_xlabel("Molecule Degree (count of incoming edges)") ax.set_ylabel("log10(Count of Molecules)") plt.savefig(f"output/{query_results_folder}/{generation_num}/{incoming_rels_count_file}.png") # outgoing relationships by molecule outgoing_rels_count_file = "outgoing_rels_count" outgoing_rels_count = graph.run(""" MATCH (n)-[r:FORMS]->() RETURN n.smiles_str AS smiles_str, n.generation_formed AS generation_formed, n.exact_mass AS exact_mass, count(r) AS count_outgoing ORDER BY count_outgoing DESC """).data() save_query_results(generation_num = generation_num, query_result = outgoing_rels_count, file_name = outgoing_rels_count_file, this_out_folder = query_results_folder) fig, ax = plt.subplots() # node_deg_df = pd.read_csv(f"output/{query_results_folder}/{generation_num}/{outgoing_rels_count_file}.csv") node_deg_df = read_query_results(f"output/{query_results_folder}/{generation_num}/{outgoing_rels_count_file}.csv") if not node_deg_df.empty: node_deg_pivot = pd.pivot_table(node_deg_df, values="smiles_str", index=["count_outgoing"], columns=["generation_formed"], aggfunc=lambda x: math.log10(len(x.unique()))) # the square of the count of unique smiles_str node_deg_pivot.plot(ax=ax, kind="bar", title="Square of Molecule Degree by Generation Formed for Outgoing Relationships", figsize = (8,5)) ax.set_xlabel("Molecule Degree (count of outgoing edges)") ax.set_ylabel("log10(Count of Molecules)") plt.savefig(f"output/{query_results_folder}/{generation_num}/{outgoing_rels_count_file}.png") # close all plots so they don't accumulate memory print("\tNetwork statistics done.") plt.close('all') def graph_from_cypher(data): """ Setting FULL_NETWORK_VISUALIZATION to False because we generated a plot in Gephi for the whole network visualizations; not needed in this module. Only keeping in case we want to programmatically generate a static network visualization. From: https://stackoverflow.com/questions/59289134/constructing-networkx-graph-from-neo4j-query-result Constructs a networkx graph from the results of a neo4j cypher query. Example of use: >>> result = session.run(query) >>> G = graph_from_cypher(result.data()) Nodes have fields 'labels' (frozenset) and 'properties' (dicts). Node IDs correspond to the neo4j graph. Edges have fields 'type_' (string) denoting the type of relation, and 'properties' (dict). """ G = nx.MultiDiGraph() def add_node(node): # Adds node id it hasn't already been added # print(node) # print(type(node)) # print(node.keys()) u = node['smiles_str'] # unique identifier for Node if G.has_node(u): return G.add_node(u, labels=node._labels, properties=dict(node)) def add_edge(relation): # Adds edge if it hasn't already been added. # Make sure the nodes at both ends are created for node in (relation.start_node, relation.end_node): add_node(node) # Check if edge already exists u = relation.start_node['smiles_str'] # unique identifier for Node v = relation.end_node['smiles_str'] # unique identifier for Node eid = relation['rxn_id'] # unique identifier for Relationship if G.has_edge(u, v, key=eid): return # If not, create it G.add_edge(u, v, key=eid, type_=relation.type, properties=dict(relation)) for d in data: for entry in d.values(): # Parse node if isinstance(entry, Node): add_node(entry) # Parse link elif isinstance(entry, Relationship): add_edge(entry) else: raise TypeError("Unrecognized object") return G def network_visualization_by_gen(query_results_folder, generation_num): print("Generating an image for the network visualization...") # driver = GraphDatabase.driver(url) full_network_query = """ MATCH (n)-[r]->(m) RETURN * """ # with driver.session() as session: # result = session.run(full_network_query) result = graph.run(full_network_query) # plot using NetworkX graph object + Matplotlib nxG = graph_from_cypher(result.data()) nx.draw(nxG) plt.savefig(f"output/{query_results_folder}/{generation_num}/network_visualization_nxG_at_gen_{generation_num}.png") plt.close('all') # plot using graph_tool module (convert from NetworkX graph to this graph) # gtG = nx2gt(nxG) # graph_draw(gtG, # vertex_text = g.vertex_index, # output = f"output/{query_results_folder}/{generation_num}/network_visualization_gtG_at_gen_{generation_num}.png") def compute_likely_abundance_by_molecule(generation_num, query_results_folder): """ Get a dataset with the following columns in order to compute the abundance score: """ print("\tComputing the likely abundance score by molecule...") # Join all the datasets for rels for all generations. Start with the # node_distribution_results query and then join all the other data onto it datasets = {'node_distribution_results': ['smiles_str', 'exact_mass', 'generation_formed', 'count_relationships'], 'incoming_rels_count': ['smiles_str', 'count_incoming'], 'outgoing_rels_count': ['smiles_str', 'count_outgoing'], 'betweenness_centrality': ['smiles_str', 'betweenness_centrality'], 'eigenvector_centrality': ['smiles_str', 'eigenvector_centrality'], 'random_walk_betweenness': ['smiles_str', 'random_walk_betweenness'] } full_df = pd.DataFrame() for dataset in datasets.keys(): try: df = pd.read_csv(f"output/{query_results_folder}/{generation_num}/{dataset}.csv") df = df[datasets[dataset]] # filter only by the needed columns if dataset == "node_distribution_results": full_df = df else: full_df =
pd.merge(full_df, df, on="smiles_str", how='left')
pandas.merge
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix, roc_curve, auc def multiple_histograms_plot(data, x, hue, density=False, bins=10, alpha=0.5, colors=None, hue_order=None, probability_hist=False, xticks=None, title=None, xlabel=None, ylabel=None, figsize=(15, 8), xticklabels=None): hue_order = hue_order if hue_order is not None else sorted(data[hue].unique()) colors = colors if colors is not None else sns.color_palette(n_colors=len(hue_order)) colors_dict = dict(zip(hue_order, colors)) plt.figure(figsize=figsize) for current_hue in hue_order: current_hue_mask = data[hue] == current_hue data.loc[current_hue_mask, x].hist(bins=bins, density=density, alpha=alpha, label=str(current_hue), color=colors_dict[current_hue]) xlabel = x if xlabel is None else xlabel ylabel = (ylabel if ylabel is not None else 'Density' if density else 'Frequency') _title_postfix = ' (normalized)' if density else '' title = f'{xlabel} by {hue}{_title_postfix}' plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend() ax = plt.gca() if probability_hist: plt.xlim(-0.0001, 1.0001) ax.set_xticks(np.arange(0, 1.1, 0.1)) ax.set_xticks(np.arange(0.05, 1, 0.1), minor=True) elif xticks is not None: ax.set_xticks(xticks) if xticklabels is not None: ax.set_xticklabels(xticklabels) def bar_plot_with_categorical(df, x, hue, order=None, figsize=(16, 8), plot_average=True, xticklabels=None, **sns_kwargs): if order is None: order = (
pd.pivot_table(data=df, values=hue, index=[x], aggfunc='mean')
pandas.pivot_table
import datetime as dt import io import unittest from unittest.mock import patch import numpy as np import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal from spaced_repetition.domain.problem import Difficulty, ProblemCreator from spaced_repetition.domain.problem_log import ProblemLogCreator, Result from spaced_repetition.domain.tag import TagCreator from spaced_repetition.presenters.cli_presenter import CliPresenter # pylint: disable=protected-access, no-self-use class TestCommonFormatters(unittest.TestCase): def test_format_difficulty(self): difficulty = pd.Series({1: Difficulty.MEDIUM}) expected_res = pd.Series({1: Difficulty.MEDIUM.name}) res = CliPresenter._format_difficulty(difficulty=difficulty) assert_series_equal(expected_res, res) def test_format_result(self): result = pd.Series({1: Result.KNEW_BY_HEART}) expected_res = pd.Series({1: Result.KNEW_BY_HEART.name}) res = CliPresenter._format_result(result=result) assert_series_equal(expected_res, res) def test_format_timestamp(self): timestamp = pd.Series({1: dt.datetime(2021, 1, 15, 10, 23, 45, 124)}) expected_res = pd.Series({1: '2021-01-15 10:23'}) res = CliPresenter._format_timestamp(ts=timestamp) assert_series_equal(expected_res, res) class TestListProblemTagCombos(unittest.TestCase): def setUp(self): self.problem_tag_combo_df = pd.DataFrame(data=[{ 'difficulty': Difficulty.MEDIUM, 'ease': 2.5, 'interval': 10, 'KS': 2.0, 'problem': 'name', 'problem_id': 5, 'result': Result.NO_IDEA, 'RF': 0.7, 'surplus_col': 'not displayed', 'tag': 'test-tag', 'ts_logged': dt.datetime(2021, 1, 10, 8, 10, 0, 1561), 'url': 'www.test.com' }]) self.pre_format_cols = ['tag', 'problem', 'problem_id', 'difficulty', 'last_access', 'last_result', 'KS', 'RF', 'url', 'ease', 'interval'] self.post_format_cols = ['problem', 'problem_id', 'difficulty', 'last_access', 'last_result', 'KS', 'RF', 'url', 'ease', 'interval'] def test_format_df(self): expected_df = pd.DataFrame(data=[{ 'difficulty': 'MEDIUM', 'ease': 2.5, 'interval': 10, 'problem_id': 5, 'KS': 2.0, 'last_access': '2021-01-10 08:10', 'problem': 'name', 'last_result': Result.NO_IDEA.name, 'RF': 0.7, 'tag': 'test-tag', 'url': 'www.test.com'}]) \ .set_index('tag') \ .reindex(columns=self.post_format_cols) formatted_df = CliPresenter.format_df( self.problem_tag_combo_df, ordered_cols=self.pre_format_cols, index_col='tag')
assert_frame_equal(expected_df, formatted_df)
pandas.testing.assert_frame_equal
import enum from functools import lru_cache from typing import List import dataclasses import pathlib import pandas as pd import numpy as np from covidactnow.datapublic.common_fields import CommonFields from covidactnow.datapublic.common_fields import FieldName from covidactnow.datapublic.common_fields import GetByValueMixin from covidactnow.datapublic.common_fields import ValueAsStrMixin from covidactnow.datapublic.common_fields import PdFields from libs.datasets import taglib from libs.datasets import timeseries from libs.datasets import dataset_utils MultiRegionDataset = timeseries.MultiRegionDataset NYTIMES_ANOMALIES_CSV = dataset_utils.LOCAL_PUBLIC_DATA_PATH / pathlib.Path( "data/cases-nytimes/anomalies.csv" ) @enum.unique class NYTimesFields(GetByValueMixin, ValueAsStrMixin, FieldName, enum.Enum): """Fields used in the NYTimes anomalies file""" DATE = "date" END_DATE = "end_date" COUNTY = "county" STATE = "state" GEOID = "geoid" TYPE = "type" OMIT_FROM_ROLLING_AVERAGE = "omit_from_rolling_average" OMIT_FROM_ROLLING_AVERAGE_ON_SUBGEOGRAPHIES = "omit_from_rolling_average_on_subgeographies" DESCRIPTION = "description" @lru_cache(None) def read_nytimes_anomalies(): df = pd.read_csv( NYTIMES_ANOMALIES_CSV, parse_dates=[NYTimesFields.DATE, NYTimesFields.END_DATE] ) # Extract fips from geoid column. df[CommonFields.FIPS] = df[NYTimesFields.GEOID].str.replace("USA-", "") # Denormalize data so that each row represents a single date+location+metric anomaly df = _denormalize_nyt_anomalies(df) # Add LOCATION_ID column (must happen after denormalizing since denormalizing can add additional # rows for subgeographies). df[CommonFields.LOCATION_ID] = df[CommonFields.FIPS].map(dataset_utils.get_fips_to_location()) # A few locations (e.g. NYC aggregated FIPS 36998) don't have location IDs. That's okay, just remove them. df = df.loc[df[CommonFields.LOCATION_ID].notna()] # Convert "type" column into "variable" column using new_cases / new_deaths as the variable. assert df[NYTimesFields.TYPE].isin(["cases", "deaths"]).all() df[PdFields.VARIABLE] = df[NYTimesFields.TYPE].map( {"cases": CommonFields.NEW_CASES, "deaths": CommonFields.NEW_DEATHS} ) # Add demographic bucket (all) to make it more compatible with our dataset structure. df[PdFields.DEMOGRAPHIC_BUCKET] = "all" return df # TODO(mikelehen): This should probably live somewhere more central, but I'm not sure where. def _get_county_fips_codes_for_state(state_fips_code: str) -> List[str]: """Helper to get county FIPS codes for all counties in a given state.""" geo_data = dataset_utils.get_geo_data() state = geo_data.set_index("fips").at[state_fips_code, "state"] counties_df = geo_data.loc[ (geo_data["state"] == state) & (geo_data["aggregate_level"] == "county") ] counties_fips = counties_df["fips"].to_list() return counties_fips def _denormalize_nyt_anomalies(df: pd.DataFrame) -> pd.DataFrame: """ The NYT anomaly data is normalized such that each row can represent an anomaly for multiple dates, locations, and metrics. We want to denormalize it so that each row represents a single date+location+metric anomaly. """ # Look for rows with an end_date and create separate rows for each date in the [date, end_date] range. def date_range_for_row(row: pd.Series): return pd.date_range( row[NYTimesFields.DATE], row[NYTimesFields.DATE] if
pd.isna(row[NYTimesFields.END_DATE])
pandas.isna
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import sys import matplotlib.pyplot as plt sys.path.insert(1, '../MLA') import imp import numpy as np import xgboost_wrapper as xw import regression_wrappers as rw from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore') # In[2]: from hyperopt import hp, tpe from hyperopt.fmin import fmin from hyperopt import STATUS_OK from sklearn.model_selection import cross_val_score, StratifiedKFold # In[3]: # A = pd.read_csv("CHESS%20COVID19%20CaseReport%2020200401.csv") A = pd.read_csv("CHESS COVID19 CaseReport 20200628.csv") # # In[4]: A_ = pd.read_csv("CHESS COVID19 CaseReport 20200628.csv") idx = A_['asymptomatictesting']=='Yes' A_ = A_.loc[idx,][['infectionswabdate', 'hospitaladmissiondate']] lag = pd.to_datetime(A_['infectionswabdate']).dt.round('D') - pd.to_datetime(A_['hospitaladmissiondate']).dt.round('D') # In[5]: # plt.hist(lag.dt.days, bins=50); print('swab at or after admission:') print(np.sum(lag.dt.days >= 0)) print('swab before admission:') print(np.sum(lag.dt.days < 0)) # In[6]: # A = pd.read_csv("CHESS COVID19 CaseReport 20200601.csv") def to_eliminate(x): if str(x.finaloutcomedate) == 'nan': if str(x.finaloutcome) == 'nan': return True elif 'still on unit' in str(x.finaloutcome): return True else: return False elif str(x.finaloutcomedate) == '1900-01-01': return True else: return False to_elimi = A[['finaloutcomedate','dateadmittedicu','finaloutcome']].apply(to_eliminate, axis=1) # In[7]: to_elimi.sum() # In[8]: A['dateupdated'] = pd.to_datetime(A['dateupdated']).dt.round('D') A[['hospitaladmissiondate','finaloutcomedate','dateadmittedicu','finaloutcome','dateupdated']].head() # In[9]: A = A[~to_elimi] # In[10]: pd.to_datetime(A['hospitaladmissiondate']).min(), pd.to_datetime( A['dateleavingicu']).max() # In[11]: A = A.loc[~A.caseid.duplicated()] # In[12]: A = A.rename(columns={'immunosuppressiontreatmentcondit': 'immunosuppressiontreatmentcondition'}) A = A.rename(columns={'immunosuppressiondiseaseconditio': 'immunosuppressiondiseasecondition'}) # In[13]: for feature in ['isviralpneumoniacomplication', 'isardscomplication', 'isunknowncomplication', 'isothercoinfectionscomplication', 'isothercomplication', 'issecondarybacterialpneumoniacom', 'chronicrespiratory', 'asthmarequiring', 'chronicheart', 'chronicrenal', 'asymptomatictesting', 'chronicliver', 'chronicneurological', 'immunosuppressiontreatment', 'immunosuppressiondisease', 'obesityclinical', 'pregnancy', 'other', 'hypertension', 'seriousmentalillness']: A[feature] = A[feature].apply(lambda x: 1 if 'Yes' in str(x) else 0) # In[14]: A = A.rename(columns={'other': 'other_comorbidity'}) # In[15]: A['age10year'] = A['ageyear'].apply(lambda x: x/10) # In[16]: A['sex_is_M'] = A['sex'].apply(lambda x: 1 if 'Male' in x else 0) # In[17]: A['sex_is_unkn'] = A['sex'].apply(lambda x: 1 if 'Unknown' in x else 0) # In[18]: A = A.drop(columns = ['ageyear', 'sex']) # In[19]: A['ethnicity'] = A['ethnicity'].apply(lambda x: 'Eth. NA' if pd.isna(x) else x) # In[20]: A['ethnicity'] = A['ethnicity'].apply(lambda x: x.strip(' ')) # In[21]: def stratify(df, feature): keys = [str(s) for s in df[feature].unique()] keys = list(set(keys)) df = df.copy() for key in keys: df[key.strip(' ')] = df[feature].apply(lambda x, key: 1 if str(x)==key else 0, args=(key, )) return df.drop(columns=feature) # In[22]: A['ethnicity'].value_counts() # In[23]: A['ethnicity'].value_counts().sum(), A.shape # In[24]: A = stratify(A, 'ethnicity') # In[25]: A = A.rename(columns={'Unknown':'Eth. unknown', 'other':'Other ethn.', 'White British': 'White British', 'Other White': 'Other white', 'Other Asian': 'Other Asian', 'Black African':'Black African', 'Black Caribbean':'Black Caribbean', 'Other Black': 'Other black', 'White Irish': 'White Irish', 'White and Black Caribbean':'White and black Caribbean', 'Other mixed':'Other mixed', 'White and Black African':'White and black African', 'White and Asian':'White and Asian'}) # In[26]: def diabetes_type(x): if x.isdiabetes == 'Yes': if x.diabetestype == 'Type I': return 'T1 diabetes' else: return 'T2 diabetes' else: return np.nan # In[27]: A['diabetes'] = A[['isdiabetes', 'diabetestype']].apply(diabetes_type, axis=1) # In[28]: A = stratify(A, 'diabetes') # In[29]: # drop nan column created from stratification of diabetes categorical A = A.drop(columns=['isdiabetes','nan', 'diabetestype']) # In[30]: A = A.drop(columns=['organismname']) # In[31]: to_drop = ['trustcode', 'trustname', 'dateupdated', 'weekno', 'weekofadmission', 'yearofadmission', 'agemonth', 'postcode', 'estimateddateonset', 'infectionswabdate', 'labtestdate', 'typeofspecimen', 'otherspecimentype', 'covid19', 'influenzaah1n1pdm2009', 'influenzaah3n2', 'influenzab', 'influenzaanonsubtyped', 'influenzaaunsubtypable', 'rsv', 'otherresult', 'otherdetails', 'admissionflu', 'admissionrsv', 'admissioncovid19', 'admittedfrom', 'otherhospital', 'hospitaladmissionhours', 'hospitaladmissionminutes', 'hospitaladmissionadmittedfrom', 'wasthepatientadmittedtoicu', 'hoursadmittedicu', 'minutesadmittedicu', 'sbother', 'sbdate', 'respiratorysupportnone', 'oxygenviacannulaeormask', 'highflownasaloxygen', 'noninvasivemechanicalventilation', 'invasivemechanicalventilation', 'respiratorysupportecmo', 'mechanicalinvasiveventilationdur', 'anticovid19treatment', 'chronicrespiratorycondition', 'respiratorysupportunknown', 'asthmarequiringcondition', 'seriousmentalillnesscondition', 'chronicheartcondition', 'hypertensioncondition', 'immunosuppressiontreatmentcondition', 'immunosuppressiondiseasecondition', 'obesitybmi', 'gestationweek', 'travelin14days', 'travelin14dayscondition', 'prematurity', 'chroniclivercondition', 'worksashealthcareworker', 'contactwithconfirmedcovid19case', 'contactwithconfirmedcovid19casec', 'othercondition', 'transferdestination', 'chronicneurologicalcondition', 'outcomeother', 'causeofdeath', 'chronicrenalcondition', 'othercomplication'] # In[32]: A = A.drop(columns=to_drop) # In[33]: A['caseid'] = A['caseid'].astype(int) # In[34]: A = A.set_index('caseid') # In[35]: A = A.loc[A.age10year > 0] # In[36]: A['is_ICU'] = ~A['dateadmittedicu'].isna() # In[37]: A['is_death'] = A['finaloutcome'] == 'Death' # In[38]: print(A['is_ICU'].sum()) # In[39]: print(A['is_death'].sum()) # In[40]: print((A['is_death'] & A['is_ICU']).sum()) # In[41]: A.to_csv('CHESS_comorb_only_with_outcome.csv') # In[42]: A = pd.read_csv('CHESS_comorb_only_with_outcome.csv') A = A.set_index('caseid') # In[43]: min_date = pd.to_datetime(A.hospitaladmissiondate).min() A['day_from_beginning1'] = (pd.to_datetime(A.hospitaladmissiondate) - min_date).dt.days plt.hist(A['day_from_beginning1'], bins=100); # In[44]: from sklearn.preprocessing import StandardScaler sc = StandardScaler() trasformed=sc.fit_transform(A['day_from_beginning1'].values.reshape(-1,1)) A['days from beginning'] = trasformed.flatten() #+ np.mean(trasformed.flatten()) A = A.drop(columns=['day_from_beginning1']) # In[45]: plt.hist(A['days from beginning'], bins=100); # In[46]: A['clinical experience'] = A['days from beginning'].rank() A['clinical experience'] = A['clinical experience'] / A['clinical experience'].max() # In[47]: plt.hist(A['clinical experience'], bins=100); # In[48]: def int_to_date(x, min_date): timestamp = pd.to_timedelta(x, unit='D') + min_date return '-'.join([str(timestamp.day), str(timestamp.month), str(timestamp.year)[-2:]]) # pd.to_timedelta(A['day_from_beginning1'], unit='D') + min_date).head() # In[49]: A['is_death'].sum(), A['is_ICU'].sum() # In[50]: a = (10 * A['age10year']).value_counts().reset_index().sort_values(by='index').values plt.plot(a[:,0], a[:,1],'.') plt.xlabel('age'); (10 * A['age10year']).describe() # In[51]: dizionario = {'chronicrespiratory':'Chronic respiratory disease', 'asthmarequiring':'Asthma', 'chronicheart':'Chronic heart disease', 'chronicrenal':'Chronic renal disease', 'chronicneurological':'Chronic neurological cond.', 'immunosuppressiontreatment':'Immunosuppression treatment', 'immunosuppressiondisease':'Immunosuppression disease', 'obesityclinical':'Obesity (clinical)', 'other_comorbidity':'Other comorbidity', 'age10year': 'Age (x10 years)', 'sex_is_M':'Sex male', 'sex_is_unkn':'Sex unknown', 'asymptomatictesting':'Asymptomatic testing', 'seriousmentalillness':'Serious mental illness', 'chronicliver':'Chronic liver', 'chronicliver_fatty':'Chronic fat liver', 'chronicliver_alcohol':'Chronic alcohol. liver', 'chronicliver_other': 'Chronic liver disease', 'hypertension': 'Hypertension', 'pregnancy': 'Pregnancy'} # In[52]: A = A.rename(columns=dizionario) # In[53]: A['Sex unknown'].sum() / A.shape[0] * 100 # In[54]: A['Sex male'].sum() / A.shape[0] * 100 # In[55]: A[A['is_ICU']]['is_death'].sum() # In[56]: A.shape # In[57]: A = A.rename(columns={'days from beginning': 'Admission day'}) # # Clustermap # In[58]: get_ipython().system('mkdir results_10Nov') # In[59]: import seaborn as sns sns.distplot(A[A['Eth. unknown'].astype('bool')]['Age (x10 years)'] * 10) sns.distplot(A[A['Eth. NA'].astype('bool')]['Age (x10 years)']* 10) sns.distplot(A['Age (x10 years)']* 10) # In[60]: import seaborn as sns C = A.drop(columns=['dateadmittedicu', 'hospitaladmissiondate', 'finaloutcome', 'finaloutcomedate', 'dateleavingicu', 'isviralpneumoniacomplication', 'issecondarybacterialpneumoniacom', 'isardscomplication', 'isunknowncomplication', 'isothercoinfectionscomplication', 'isothercomplication']) # Draw the full plt ethnicity = ['White Irish', 'Black Caribbean', 'Other Asian', 'White and black African', 'Bangladeshi', 'Indian', 'Other black', 'Chinese', 'Other white', 'Black African', 'White and Asian', 'Pakistani', 'White British', 'Other mixed', 'White and black Caribbean', 'Other ethn.', 'Eth. unknown', 'Eth. NA'] print("number of people who didn't report any ethnicity") print(C[ethnicity].apply(lambda x: ~x.any(), axis=1).sum()) # C['NA'] = C[ethnicity].apply(lambda x: ~x.any(), axis=1) comorbidities = ['chronicrespiratory', 'asthmarequiring', 'chronicheart', 'hypertension', 'chronicrenal', 'immunosuppressiontreatment', 'immunosuppressiondisease', 'obesityclinical', 'pregnancy', 'other_comorbidity', 'age10year', 'sex_is_unkn', 'sex_is_M', 'T1 diabetes', 'T2 diabetes', 'seriousmentalillness', 'chronicneurological', 'chronicliver', 'asymptomatictesting'] comorbidities =[dizionario.get(x) if x in dizionario else x for x in comorbidities ] Ccorr = C.corr(); Ccorr1 = Ccorr[comorbidities +['is_death', 'is_ICU']].loc[ethnicity,:] Ccorr1 = Ccorr1.rename(columns={'is_death':'death', 'is_ICU':'ICUA'}) fig,ax = plt.subplots(1, 1, figsize=(10, 8)) sns.heatmap(Ccorr1, center=0, cmap="vlag", ax=ax, # row_colors=network_colors, # col_colors=network_colors, linewidths=.75) # figsize=(13, 13)) fig = plt.gcf() plt.tight_layout() plt.savefig('results_10Nov/correlation1_new.png') # In[61]: dizionarioR = {'Age..x10.years.':'Age (x10 years)', 'Asthma':'Asthma', 'Black.African':'Black African', 'Black.Caribbean':'Black Caribbean', 'Chronic.heart.disease':'Chronic heart disease', 'Chronic.liver':'Chronic liver', 'Chronic.neurological.cond.':'Chronic neurological cond.', 'Chronic.renal.disease':'Chronic renal disease', 'Chronic.respiratory.disease':'Chronic respiratory disease', 'Immunosuppression.disease':'Immunosuppression disease', 'Immunosuppression.treatment':'Immunosuppression treatment', 'Obesity..clinical.':'Obesity (clinical)', 'Other.Asian':'Other Asian', 'Other.black':'Other black', 'Other.comorbidity':'Other comorbidity', 'Other.ethn.':'Other ethn.', 'Other.mixed':'Other mixed', 'Other.white':'Other white', 'Serious.mental.illness':'Serious mental illness', 'Sex.male':'Sex male', 'Sex.unknown':'Sex unknown', 'T1.diabetes':'T1 diabetes', 'T2.diabetes':'T2 diabetes', 'White.and.Asian':'White and Asian', 'White.and.black.African':'White and black African', 'White.and.black.Caribbean':'White and black Caribbean', 'White.British':'White British', 'White.Irish':'White Irish', 'Asymptomatic.testing':'Asymptomatic testing', 'Admission.day':'Admission day', 'Clinical.experience':'Clinical experience', 'Eth..NA':'Eth. NA', 'Eth..unknown':'Eth. unknown' } # # Logistic 1 # In[242]: ethnicity = ['Black Caribbean', 'Other Asian', 'White and black African', 'Bangladeshi', 'Indian', 'Other black', 'Chinese', 'Other white', 'Black African', 'White and Asian', 'Pakistani', 'Eth. unknown', 'Eth. NA', 'Other mixed', 'White and black Caribbean', 'White British', 'White Irish', 'Other ethn.'] # In[243]: B = A.drop(columns=['dateadmittedicu', 'hospitaladmissiondate', 'finaloutcome', 'finaloutcomedate', 'dateleavingicu', 'isviralpneumoniacomplication', 'issecondarybacterialpneumoniacom', 'isardscomplication', 'isunknowncomplication', 'patientstillonicu', 'isothercoinfectionscomplication', 'isothercomplication']).drop(columns=['clinical experience']) # In[244]: percentages_eth = pd.DataFrame((B[ethnicity].sum() / B.shape[0]).sort_values(ascending=False)) percentages_com = pd.DataFrame((B[comorbidities].sum() / B.shape[0]).sort_values(ascending=False)) # In[245]: percentages_eth # In[246]: percentages_com # In[247]: percentages_eth.to_excel('results_10Nov/frequencies_et.xls') percentages_com.to_excel('results_10Nov/frequencies_com.xls') # In[68]: targets = ['is_death', 'is_ICU'] # In[69]: B=B.drop(columns='White British') # ## Death outcome # In[70]: target = 'is_death' predictors = [x for x in B.columns if x not in targets] X_train, X_test, y_train, y_test = train_test_split(B[predictors], B[target], test_size=0.1, random_state=42) # In[71]: X_train.to_csv('results_10Nov/X_train_death.csv') pd.DataFrame(y_train).to_csv('results_10Nov/y_train_death.csv') X_test.to_csv('results_10Nov/X_test_death.csv') # In[72]: get_ipython().system('pwd') # In[73]: get_ipython().system('/usr/bin/Rscript logisticregression.R results_10Nov/X_train_death.csv results_10Nov/y_train_death.csv results_10Nov/X_test_death.csv results_10Nov/logistic_summary_death.csv results_10Nov/logistic_prediction_death.csv') # In[74]: Vif_death = pd.read_csv("tmp.csv") Vif_death.sort_values(by='vif.logitMod.', ascending=False).head() # In[75]: # Vif_death.sort_values(by='vif.logitMod.', ascending=False).rename(index=dizionarioR).to_excel('results_10Nov/vif_GLM_death_1.xls') # In[76]: logistic_summary = pd.read_csv("results_10Nov/logistic_summary_death.csv") logistic_prediction = pd.read_csv("results_10Nov/logistic_prediction_death.csv") # In[77]: fig, ax = plt.subplots(1,1,figsize=(4, 3.5)) xw.buildROC(y_test, logistic_prediction, ax, color=None, label=None, CI=True) ax.set_title('ROC GML logistic for death outcome'); # fig.savefig('results_10Nov/ROC_GML_death_1.png') # In[78]: fig_, ax_ = plt.subplots(1, 2, figsize=(4 * 2.2, 3.5), sharey=True) xw.buildROC(y_test, logistic_prediction, ax_[0], color=None, label=None, CI=True) ax_[0].set_title('ROC GML logistic for death outcome'); # fig.savefig('results_10Nov/ROC_GML_death_1.png') # In[79]: logistic_summary['OR'] = np.exp(logistic_summary['Estimate']) # Taylor series-based delta method logistic_summary['OR_sd'] = logistic_summary[['Std. Error', 'OR']].apply(lambda x: np.sqrt(x.OR**2) * x['Std. Error'], axis=1) # In[80]: def is_not_ethn(x): if x in ['Bangladeshi', 'Black.African', 'Black.Caribbean', 'Chinese', 'Other.ethn.', 'Indian', 'Other.Asian', 'Other.black', 'Other.mixed', 'Other.white', 'Pakistani', 'White.and.Asian', 'White.and.black.African', 'White.and.black.Caribbean', 'Eth..unknown', 'Eth..NA','White.Irish']: return 1 elif ('Sex' in x) or ('Age' in x) or ('Admis' in x) or ('Pregnan' in x) or ("Asympt" in x) or ("Immunosuppression.treatment" in x): return 0 else: return 2 # In[81]: logistic_summary['order'] = logistic_summary['Row.names'].apply(is_not_ethn) # In[82]: logistic_summary = logistic_summary.sort_values(by=['order','Estimate'], ascending=False).drop(columns=['order']) # In[83]: logistic_summary['Row.names'] = logistic_summary['Row.names'].apply(lambda x: dizionarioR.get(x) if x in dizionarioR else x) # In[84]: logistic_summary # In[85]: def pvaluesymbol(P): if P > 0.05: return '' elif (P <= 0.05) & (P > 0.01): return '*' elif (P <= 0.01) & (P > 0.001): return '**' elif (P <= 0.001) & (P > 0.0001): return '***' elif P <= 0.0001: return '****' # In[86]: logistic_summary['pvaluesymbol'] = logistic_summary['Pr(>|z|)'].apply(pvaluesymbol) # In[87]: logistic_summary.to_excel('results_10Nov/coefficients_GLM_death_1.xls') # In[88]: def plot_coeff(summary, ax, title=None, xtext=None): summary = summary.sort_values(by='Estimate', ascending=True) summary.plot.barh(x='Row.names', y='Estimate', ax=ax, color='none', xerr='Std. Error', legend=False) ax.set_ylabel('') ax.set_xlabel('') ax.set_title(title) ax.scatter(y=pd.np.arange(summary.shape[0]), marker='s', s=120, x=summary['Estimate'], color='black') ax.axvline(x=0, linestyle='--', color='grey', linewidth=1) if xtext is None: xtext = ax.get_xlim()[1] for i, p in enumerate(summary.pvaluesymbol.values): # try: ax.text(xtext, i, p) # print(p) # except: # pass def plot_OR(summary, ax, title=None, xtext=None): # summary['order'] = summary['Row.names'].apply(is_not_ethn) # summary = summary.sort_values(by=['order', 'Estimate'], ascending=True) summary = summary.loc[::-1,] xerr = summary.apply(lambda x: (x['OR']- x["2.5 %.y"], x["97.5 %.y"] -x['OR']), result_type='expand', axis=1).values.transpose() # print(xerr.head()) # print(xerr.tail()) summary.plot.barh(x='Row.names', y='OR', ax=ax, color='none', xerr=xerr, legend=False) ax.set_ylabel('') ax.set_xlabel('') ax.set_title(title) ax.scatter(y=pd.np.arange(summary.shape[0]), marker='s', s=120, x=summary['OR'], color='black') ax.axvline(x=1, linestyle='--', color='grey', linewidth=1) if xtext is None: xtext = ax.get_xlim()[1] for i, p in enumerate(summary.pvaluesymbol.values): try: float(p) bo = False except: bo = True if bo: ax.text(xtext, i, p) # In[89]: logistic_summary.to_excel('results_10Nov/coefficients_GLM_death_1_britbaseline.xls') logistic_summary = pd.read_excel('results_10Nov/coefficients_GLM_death_1_britbaseline.xls') # In[90]: fig, ax = plt.subplots(figsize=(8, 12)) plot_OR(logistic_summary.drop(index=1), ax, title='OR log. regression, death outcome') ax.autoscale(enable=False) ax.fill_between([-10,100],[-1,-1], [6.5, 6.5], color='grey', alpha=0.05, zorder=-100) ax.fill_between([-10,100],[23.5,23.5], [100,105], color='grey', alpha=0.05, zorder=-100) fig.tight_layout() fig.savefig('results_10Nov/OR_GML_death_1.png') # In[91]: fig, ax = plt.subplots(1,1,figsize=(4, 3.5)) plt.plot(X_test['Age (x10 years)'] * 10, logistic_prediction, '.') # ax.set_title('ROC XGBoost for ICU outcome'); ax.set_xlabel('Age'); ax.set_ylabel('Prob. of death'); # In[92]: fig, ax = plt.subplots(1,1,figsize=(4, 3.5)) plt.plot(X_test['Admission day'] * 10, logistic_prediction, '.') # ax.set_title('ROC XGBoost for ICU outcome'); ax.set_xlabel('days from beginning'); ax.set_ylabel('Prob. of death'); # ## ICU outcome # In[93]: target = 'is_ICU' predictors = [x for x in B.columns if x not in targets] X_train, X_test, y_train, y_test = train_test_split(B[predictors], B[target], test_size=0.1, random_state=42) # In[94]: X_train.to_csv('results_10Nov/X_train_ICU.csv') pd.DataFrame(y_train).to_csv('results_10Nov/y_train_ICU.csv') X_test.to_csv('results_10Nov/X_test_ICU.csv') # In[95]: get_ipython().system('/usr/bin/Rscript logisticregression.R results_10Nov/X_train_ICU.csv results_10Nov/y_train_ICU.csv results_10Nov/X_test_ICU.csv results_10Nov/logistic_summary_ICU.csv results_10Nov/logistic_prediction_ICU.csv') # In[96]: Vif_ICU = pd.read_csv("tmp.csv") Vif_ICU.sort_values(by='vif.logitMod.', ascending=False) Vif_ICU.to_excel('results_10Nov/vif_GLM_ICU_1.xls') # In[97]: Vif = Vif_death.join(Vif_ICU, lsuffix='death', rsuffix='ICU') Vif.sort_values(by='vif.logitMod.death', ascending=False).rename(index=dizionarioR).to_excel('results_10Nov/vif_GLM_1.xls') # In[98]: logistic_summary = pd.read_csv("results_10Nov/logistic_summary_ICU.csv") logistic_prediction = pd.read_csv("results_10Nov/logistic_prediction_ICU.csv") # In[99]: fig, ax = plt.subplots(1,1,figsize=(4, 3.5)) xw.buildROC(y_test, logistic_prediction, ax, color=None, label=None, CI=True); ax.set_title('ROC GML logistic for ICU outcome'); # fig.savefig('results_10Nov/ROC_GLM_ICU_1.png') # In[100]: # fig_, ax_ = plt.subplots(1, 2, figsize=(4 * 2.2, 3.5)) xw.buildROC(y_test, logistic_prediction, ax_[1], color=None, label=None, CI=True) ax_[1].set_title('ROC GML logistic for ICU outcome'); fig_.savefig('results_10Nov/ROC_GML_both_1.png') # In[101]: logistic_summary['OR'] = np.exp(logistic_summary['Estimate']) # Taylor series-based delta method logistic_summary['OR_sd'] = logistic_summary[['Std. Error', 'OR']].apply(lambda x: np.sqrt(x.OR**2) * x['Std. Error'], axis=1 ) # In[ ]: # In[102]: logistic_summary['pvaluesymbol'] = logistic_summary['Pr(>|z|)'].apply(pvaluesymbol) # In[103]: logistic_summary['order'] = logistic_summary['Row.names'].apply(is_not_ethn) # In[104]: logistic_summary = logistic_summary.sort_values(by=['order','Estimate'], ascending=False).drop(columns=['order']) # In[105]: logistic_summary['Row.names'] = logistic_summary['Row.names'].apply(lambda x: dizionarioR.get(x) if x in dizionarioR else x) # In[106]: logistic_summary # In[107]: logistic_summary.to_excel('results_10Nov/coefficients_GLM_ICU_1_britbaseline.xls') # In[108]: logistic_summary = pd.read_excel('results_10Nov/coefficients_GLM_ICU_1_britbaseline.xls') fig, ax = plt.subplots(figsize=(8, 12))# plot_OR(logistic_summary.drop(index=1), ax, title='ORs log. regression, ICU outcome') ax.autoscale(enable=False) ax.fill_between([-10,100],[-1,-1], [6.5, 6.5], color='grey', alpha=0.05, zorder=-100) ax.fill_between([-10,100],[23.5,23.5], [100,105], color='grey', alpha=0.05, zorder=-100) fig.tight_layout() fig.savefig('results_10Nov/OR_GML_ICU_1.png') # In[109]: fig, ax = plt.subplots(1,1,figsize=(4, 3.5)) plt.plot(X_test['Age (x10 years)'] * 10, logistic_prediction, '.') ax.set_xlabel('age'); ax.set_ylabel('Prob. of ICU'); # # Cross plots of ORs # In[248]: logistic_summary_ICU =
pd.read_excel('results_10Nov/coefficients_GLM_ICU_1_britbaseline.xls')
pandas.read_excel
import numpy as np import pandas as pd from typing import List, Tuple, Dict from sklearn.preprocessing import MinMaxScaler from data_mining import ColorizedLogger logger = ColorizedLogger('NullsFixer', 'yellow') class NullsFixer: __slots__ = ('sort_col', 'group_col') sort_col: str group_col: str cols: List[str] = ['iso_code', 'date', 'daily_vaccinations', 'total_vaccinations', 'people_vaccinated', 'people_fully_vaccinated'] def __init__(self, sort_col: str, group_col: str): self.sort_col = sort_col self.group_col = group_col @staticmethod def fill_with_population(df: pd.DataFrame, df_meta: pd.DataFrame) -> pd.DataFrame: def f1(row, col, target_col, multiplier=1): if pd.isna(row[target_col]): abs_val = row[col] ph_val = 100 * abs_val / get_population(df_meta, row['country']) return_val = round(ph_val, 2) * multiplier else: return_val = row[target_col] return return_val def get_population(_df, country): return _df.loc[_df['country'] == country, 'population'].values[0] df['people_vaccinated_per_hundred'] = df.apply(f1, args=( 'people_vaccinated', 'people_vaccinated_per_hundred'), axis=1) df['people_fully_vaccinated_per_hundred'] = df.apply(f1, args=( 'people_fully_vaccinated', 'people_fully_vaccinated_per_hundred'), axis=1) df['total_vaccinations_per_hundred'] = df.apply(f1, args=( 'total_vaccinations', 'total_vaccinations_per_hundred'), axis=1) df['daily_vaccinations_per_million'] = df.apply(f1, args=( 'daily_vaccinations', 'daily_vaccinations_per_million', 10000), axis=1) return df def scale_cols(self, df: pd.DataFrame, cols: List[Tuple], per_group: bool = False) \ -> Tuple[pd.DataFrame, Dict, List[Tuple]]: def scale_func(group_col, col_name): # if col.max() > max_val: scaler_ = MinMaxScaler(feature_range=(0, max_val)) scalers[(col_name, group_col.name)] = scaler_ return scaler_.fit_transform(group_col.astype(float).values.reshape(-1, 1)).reshape(-1) df_keys = df.copy()[[self.sort_col, self.group_col]] df_keys = [tuple(x) for x in df_keys.to_numpy()] scalers = {} for col, max_val in cols: # logger.info(f'Scaling "{col}" column in the range: [0, {max_val}]') if per_group: df[col] = df.groupby(self.group_col)[col].transform(scale_func, col_name=col) else: scaler = MinMaxScaler(feature_range=(0, max_val)) scalers[col] = scaler df[[col]] = scaler.fit_transform(df[[col]]) return df, scalers, df_keys def unscale_cols(self, df: pd.DataFrame, cols: List[Tuple], scalers: Dict, df_keys: List[Tuple], per_group: bool = False) -> pd.DataFrame: def unscale_func(group_col, col_name): scaler_ = scalers[(col_name, group_col.name)] return scaler_.inverse_transform(group_col.astype(float).values.reshape(-1, 1)).reshape(-1) def fix_negatives(group_col): min_val = group_col.min() if min_val < 0: group_col -= min_val return group_col df = df[df[[self.sort_col, self.group_col]].apply(tuple, axis=1).isin(df_keys)] for col, max_val in cols: # logger.info(f'Unscaling "{col}" column from the range: [0, {max_val}]') if per_group: df[col] = df.groupby(self.group_col)[col].transform(unscale_func, col_name=col) df[col] = df.groupby(self.group_col)[col].transform(fix_negatives) else: scaler = scalers[col] df[[col]] = scaler.inverse_transform(df[[col]]) return df def fix_and_infer(self, df: pd.DataFrame) -> pd.DataFrame: accum_cols = ['people_fully_vaccinated', 'people_vaccinated', 'total_vaccinations'] df = self.fix(df) for col in accum_cols: count_nan = len(df[col]) - df[col].count() if count_nan > 0: df = self.infer_accum_col(df, col, 'total_vaccinations') df = self.fix(df) return df def fix(self, df: pd.DataFrame) -> pd.DataFrame: all_cols = df.columns nulls_prev = df.loc[:, self.cols].isna().sum() while True: df = self.fix_people_fully_vaccinated(df) df = self.fix_people_vaccinated(df) df = self.fix_total_vaccinations(df) df = self.fix_daily_vaccinations(df) nulls = df.loc[:, self.cols].isna().sum() if nulls.equals(nulls_prev): break nulls_prev = nulls return df.loc[:, all_cols] def infer_accum_col(self, df: pd.DataFrame, col: str, limit_col: str) -> pd.DataFrame: def _infer_values(col, col_list, nulls_idx, val, consecutive_nulls, limit_col: pd.Series): # Get top and bottom non-null values (for this block of consecutive nulls) non_null_val_1 = col[col_list[nulls_idx[0] - 1][0]] non_null_val_2 = val # Calculate avg difference and create whole-number steps diff = non_null_val_2 - non_null_val_1 whole_step, remainder = divmod(diff, consecutive_nulls + 1) steps = whole_step * np.ones(consecutive_nulls) steps[1:int(remainder) + 1] += 1 # Add the avg steps to each null value for this block for null_ind, step in zip(nulls_idx, steps): pd_idx_previous = col_list[null_ind - 1][0] val_to_insert = col[pd_idx_previous] + step pd_idx_null_current = col_list[null_ind][0] limit_val = limit_col[pd_idx_null_current] if val_to_insert > limit_val: val_to_insert = limit_val col[pd_idx_null_current] = val_to_insert return col def f_cols(col, limit_col: pd.Series): consecutive_nulls = 0 nulls_idx = [] col_list = [(idx, val) for idx, val in col.items()] for ind, (pd_ind, val) in enumerate(col_list): if pd.isna(val): if ind == 0: col[pd_ind] = 0.0 else: consecutive_nulls += 1 nulls_idx.append(ind) if ind == len(col_list) - 1: non_null_val_1 = col[col_list[nulls_idx[0] - 1][0]] mean_step = round(col.mean()) max_val = non_null_val_1 + mean_step * consecutive_nulls col = _infer_values(col, col_list, nulls_idx, max_val, consecutive_nulls, limit_col) else: if consecutive_nulls > 0: col = _infer_values(col, col_list, nulls_idx, val, consecutive_nulls, limit_col) # Reset consecutive_nulls = 0 nulls_idx = [] return col def f_groups(df: pd.DataFrame, col: str, limit_col: str): df.loc[:, [col]] = df[[col]].apply(f_cols, args=(df[limit_col],), axis=0) return df df = df.sort_values(self.sort_col).reset_index(drop=True) df = df.groupby(df[self.group_col]).apply(f_groups, col, limit_col) return df def fix_people_fully_vaccinated(self, df: pd.DataFrame) -> pd.DataFrame: def f1(row): cond_1 = pd.notna(row['total_vaccinations']) and pd.notna(row['people_vaccinated']) cond_2 = pd.isna(row['people_fully_vaccinated']) if cond_1 and cond_2: row = row['total_vaccinations'] - row['people_vaccinated'] else: row = row['people_fully_vaccinated'] return row def f2(row): cond_1 = row['total_vaccinations'] == 0.0 cond_2 = pd.isna(row['people_fully_vaccinated']) if cond_1 and cond_2: row = 0.0 else: row = row['people_fully_vaccinated'] return row # people_fully_vaccinated = total_vaccinations - people_vaccinated df.loc[:, 'people_fully_vaccinated'] = df.apply(f1, axis=1) # If total_vaccinations==0 -> people_fully_vaccinated = 0.0 df.loc[:, 'people_fully_vaccinated'] = df.apply(f2, axis=1) # if prev_col == next_col -> col=prev_col self.fix_if_unchanged(df=df, col='people_fully_vaccinated') return df def fix_people_vaccinated(self, df: pd.DataFrame) -> pd.DataFrame: def f1(row): cond_1 = pd.notna(row['total_vaccinations']) and pd.notna(row['people_fully_vaccinated']) cond_2 = pd.isna(row['people_vaccinated']) if cond_1 and cond_2: row = row['total_vaccinations'] - row['people_fully_vaccinated'] else: row = row['people_vaccinated'] return row def f2(row): cond_1 = row['total_vaccinations'] == 0.0 cond_2 = pd.isna(row['people_vaccinated']) if cond_1 and cond_2: row = 0.0 else: row = row['people_vaccinated'] return row # people_vaccinated = total_vaccinations - people_fully_vaccinated df.loc[:, 'people_vaccinated'] = df.apply(f1, axis=1) # If total_vaccinations==0 -> people_vaccinated = 0.0 df.loc[:, 'people_vaccinated'] = df.apply(f2, axis=1) # if prev_col == next_col -> col=prev_col self.fix_if_unchanged(df, 'people_vaccinated') return df @staticmethod def global_fix(row): # Setup the conditions cond_1_1 = pd.notna(row['people_vaccinated']) and pd.notna(row['total_vaccinations']) cond_1_2 = row['people_vaccinated'] > row['total_vaccinations'] cond_2_1 = pd.notna(row['people_fully_vaccinated']) and pd.notna(row['total_vaccinations']) cond_2_2 = row['people_fully_vaccinated'] > row['total_vaccinations'] cond_3_1 = pd.notna(row['people_vaccinated']) and pd.notna(row['people_fully_vaccinated']) \ and pd.notna(row['total_vaccinations']) cond_3_2 = row['people_vaccinated'] + row['people_fully_vaccinated'] \ > row['total_vaccinations'] # Check and fix if cond_3_1: if cond_3_2: row['people_fully_vaccinated'], _ = divmod(row['total_vaccinations'], 2) row['people_vaccinated'] = row['total_vaccinations'] - row['people_fully_vaccinated'] elif cond_1_1: if cond_1_2: row['people_vaccinated'] = row['total_vaccinations'] elif cond_2_1: if cond_2_2: row['people_fully_vaccinated'] = row['total_vaccinations'] return row def fix_total_vaccinations(self, df: pd.DataFrame) -> pd.DataFrame: def f1(row): cond_1 = pd.notna(row['people_vaccinated']) and pd.notna(row['people_fully_vaccinated']) cond_2 =
pd.isna(row['total_vaccinations'])
pandas.isna
import pathlib import subprocess import pandas as pd from papermill import execute_notebook, PapermillExecutionError from .m3c import m3c_mapping_stats, m3c_additional_cols from .mc import mc_mapping_stats, mc_additional_cols from .mct import mct_mapping_stats, mct_additional_cols from ._4m import _4m_mapping_stats, _4m_additional_cols from .plate_info import get_plate_info from ..pipelines import PACKAGE_DIR from ...utilities import get_configuration def mapping_stats(output_dir): """This is UID level mapping summary, the config file is in parent dir""" output_dir = pathlib.Path(output_dir).absolute() config = get_configuration(output_dir.parent / 'mapping_config.ini') mode = config['mode'] if mode == 'mc': final_df = mc_mapping_stats(output_dir, config) elif mode == 'mct': final_df = mct_mapping_stats(output_dir, config) elif mode == 'm3c': final_df = m3c_mapping_stats(output_dir, config) elif mode == '4m': final_df = _4m_mapping_stats(output_dir, config) else: raise ValueError # plate info, which is tech independent. _plate_info = get_plate_info(final_df.index, barcode_version=config['barcode_version']) final_df = pd.concat([_plate_info, final_df], axis=1) # save final_df.to_csv(output_dir / 'MappingSummary.csv.gz') return def final_summary(output_dir, cleanup=True, notebook=None): output_dir = pathlib.Path(output_dir).absolute() mode = get_configuration(output_dir / 'mapping_config.ini')['mode'] path_to_remove = [] # Before running summary, # first make sure all the UID dir having Snakefile also has mapping summary (means successful) snakefile_list = list(output_dir.glob('*/Snakefile')) summary_paths = [] missing_summary_dirs = [] for path in snakefile_list: uid_dir = path.parent summary_path = uid_dir / 'MappingSummary.csv.gz' if summary_path.exists(): summary_paths.append(summary_path) else: missing_summary_dirs.append(uid_dir) if len(missing_summary_dirs) != 0: print('These sub dir missing MappingSummary files:') for p in missing_summary_dirs: print(p) raise FileNotFoundError(f'Note that all sub dir should be successfully mapped ' f'before generating final summary. \n' f'The MappingSummary.csv.gz is the final target file of snakefile in {path}. \n' f'Run the corresponding snakemake command again to retry mapping.\n' f'The snakemake commands can be found in output_dir/snakemake/*/snakemake_cmd.txt') # aggregate mapping summaries total_mapping_summary = pd.concat([
pd.read_csv(path, index_col=0)
pandas.read_csv
# ============= COMP90024 - Assignment 2 ============= # # # The University of Melbourne # Team 37 # # ** Authors: ** # # <NAME> 1048105 # <NAME> 694209 # <NAME> 980433 # <NAME> 640975 # <NAME> 1024577 # # Location: Melbourne # ==================================================== import tweepy import json import pandas as pd from time import sleep import copy from datetime import datetime #pip install openpyxl def processTweet(tweet, geocoordinate): geocoordSplit = geocoordinate.split(',') temp_dict = {'tweet id': tweet.id, 'user id': tweet.user.id, 'text': tweet.text, 'lang': tweet.lang, 'user location': tweet.user.location, 'user geo_enabled': tweet.user.geo_enabled, 'coordinates': tweet.coordinates, 'created_at': tweet.created_at, 'latlong' : str(geocoordSplit[0] + ',' + geocoordSplit[1]), 'search_radius': geocoordSplit[2]} return temp_dict def searchTweets(query, twitter_count, language, geocoordinate, api): tweets = api.search(q=query, count=twitter_count, lang=language, geocode=geocoordinate) tweet_data = [] for tweet in tweets: if not tweet.id: continue temp_dict = processTweet(tweet, geocoordinate) tweet_data.append(temp_dict) return tweet_data def readKeys(): f = open("keys_tokens.txt", "r") keys_tokens = eval(f.read()) #student_1 (Declan) #student_2 (Janelle) #Student_3 (Shuang) #student_4 (JJ) return keys_tokens def readCityCoords(): f = open("Australian_cities_coordinates.txt", "r") cityCoordsDict = eval(f.read()) cityList = cityCoordsDict.keys() return cityCoordsDict, cityList def setUser(keys_tokens, user_no): total_users = len(keys_tokens) user = user_no % total_users consumer_key = keys_tokens[user][1] consumer_secret= keys_tokens[user][2] access_token = keys_tokens[user][3] access_token_secret = keys_tokens[user][4] return consumer_key, consumer_secret, access_token, access_token_secret def createGridPoints(city, search_radius, cityCoordsDict): interval = 0.05 #approx 5km oglat = cityCoordsDict[city][0] oglong = cityCoordsDict[city][1] templong = copy.deepcopy(oglong) latlong_list = [] for i in range(1,16): for j in range(1,16): templong += interval tempcoord = str(oglat) +',' + str(templong) + ',' + str(search_radius) + 'km' latlong_list.append(tempcoord) oglat -=interval templong = copy.deepcopy(oglong) return latlong_list def checkWait(student_no, keys_tokens): total_users = len(keys_tokens) if student_no % total_users == 0: sleep(.5) def harvestTweets(city, cityCoordsDict, keys_tokens, tweet_count, query, language): tweet_df =
pd.DataFrame(columns=['tweet id','user id','text','lang','user location','user geo_enabled','coordinates','created_at','latlong','search_radius'])
pandas.DataFrame
""" Functions to prepare the data for the components """ from collections import Counter from datetime import datetime, timedelta from typing import Any, Callable, Dict, List, Optional, Tuple import pandas as pd from dateutil import parser from loguru import logger from pandas import DataFrame from openstats.client import Client class Data: """ Class containing the methods to fetch data """ def __init__(self, client: Client): self.client = client # Use client's Levy config self.config = self.client.config def stars_data(self) -> Optional[DataFrame]: """ Extract information from stargazers. Prepare an accumulative sum of stars by date """ today = datetime.today() delta = today - self.client.start_date try: stars = self.client.get_all( self.client.root / "repos" / self.client.owner / self.client.repo / "stargazers" ) clean_stars = [ parser.parse(user["starred_at"]).strftime("%Y/%m/%d") for user in stars ] star_counts = Counter(clean_stars) acc = 0 for i in range(delta.days + 1): day = self.client.start_date + timedelta(days=i) day_str = day.strftime("%Y/%m/%d") if not star_counts.get(day_str): star_counts[day_str] = acc sorted_dict = dict(sorted(star_counts.items())) df = pd.DataFrame( {"date": list(sorted_dict.keys()), "stars": list(sorted_dict.values())} ) df["date"] = pd.to_datetime(df["date"]) # This resample groups by week. Let's keep grouping by day. # df = df.resample("W", on="date")[["stars"]].sum() df["stars"] = df["stars"].cumsum() return df except Exception as err: # pylint: disable=broad-except logger.error("Error trying to retrieve stars data...") logger.error(err) return None def health_data(self) -> Tuple[str, str]: """ Obtain the health % from the community profile """ profile_data = self.client.get( self.client.root / "repos" / self.client.owner / self.client.repo / "community" / "profile" ).json() percentage = profile_data.get("health_percentage", "Endpoint error") description = profile_data.get("description", "Error fetching description") return percentage, description @staticmethod def is_good_first_issue(issue: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Check if an issue is a good first issue """ if isinstance(issue, dict): is_gfi = next( iter( label for label in issue.get("labels") if isinstance(label, dict) and label.get("name") == "good first issue" ), None, ) return is_gfi return None @staticmethod def is_support_issue(issue: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Check if an issue is a support issue """ if isinstance(issue, dict): is_support = next( iter( label for label in issue.get("labels") if isinstance(label, dict) and label.get("name") == "support" ), None, ) return is_support return None def _issues_data(self, filter_fn: Callable) -> Tuple[List[dict], List[dict]]: """ Return issue data with callable filtering. filter_fn should return True / False from a list of issues """ open_issues = self.client.get_all( self.client.root / "repos" / self.client.owner / self.client.repo / "issues" ) open_filtered_issues = [issue for issue in open_issues if filter_fn(issue)] closed_issues = self.client.get_all( self.client.root / "repos" / self.client.owner / self.client.repo / "issues", "&state=closed", ) closed_filtered_issues = [issue for issue in closed_issues if filter_fn(issue)] return open_filtered_issues, closed_filtered_issues def good_first_issues_data(self) -> Tuple[List[dict], List[dict]]: """ Analyze issues data for open and closed good first issues. """ return self._issues_data(filter_fn=self.is_good_first_issue) def support_issues_data(self) -> Tuple[List[dict], List[dict]]: """ Analyzes issues data for open and closed support issues """ return self._issues_data(filter_fn=self.is_support_issue) def contributors_data(self): """ Get all project contributors. Return them sorted by contributions """ data = self.client.get_all( self.client.root / "repos" / self.client.owner / self.client.repo / "contributors" ) sorted_contrib = sorted(data, key=lambda d: d["contributions"], reverse=True) df = pd.DataFrame(sorted_contrib) # df.reset_index(inplace=True) # df.set_index("index", drop=False, inplace=True) return df def traffic_data(self): """ Cook traffic data and views for the last 14 days """ clones = self.client.get_all( self.client.root / "repos" / self.client.owner / self.client.repo / "traffic" / "clones" ).get("uniques") views = self.client.get_all( self.client.root / "repos" / self.client.owner / self.client.repo / "traffic" / "views", option="&per=week", ).get("uniques") return clones, views def get_participation(self, owner: str, repo: str): """ Get all participation data for the last 52 weeks as a reversed list """ return self.client.get( self.client.root / "repos" / owner / repo / "stats" / "participation" ).json()["all"] def competitors_data(self) -> DataFrame: """ Compare your project stats vs. a list of competitors. Return my activity a list of competitor's activity """ my_activity = { self.client.repo: self.get_participation( self.client.owner, self.client.repo ) } activity = { competitor.repo: self.get_participation(competitor.owner, competitor.repo) for competitor in self.config.competitors } return
pd.DataFrame({**my_activity, **activity})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Jun 7 11:41:44 2018 @author: MichaelEK """ import types import pandas as pd import numpy as np import json from pdsf import sflake as sf from utils import split_months def process_allo(param): """ """ run_time_start = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S') print(run_time_start) ####################################### ### Read in source data and update accela tables in ConsentsReporting db print('--Reading in source data...') ## Make object to contain the source data db = types.SimpleNamespace() for t in param['misc']['AllocationProcessing']['tables']: p = param['source data'][t] print(p['table']) if p['schema'] != 'public': stmt = 'select {cols} from "{schema}"."{table}"'.format(schema=p['schema'], table=p['table'], cols=json.dumps(p['col_names'])[1:-1]) else: stmt = 'select {cols} from "{table}"'.format(table=p['table'], cols=json.dumps(p['col_names'])[1:-1]) setattr(db, t, sf.read_table(p['username'], p['password'], p['account'], p['database'], p['schema'], stmt)) ################################################## ### Sites print('--Process Waps') ## takes wap_allo1 = db.wap_allo.copy() wap1 = wap_allo1['Wap'].unique() waps = wap1[~pd.isnull(wap1)].copy() ## Check that all Waps exist in the USM sites table usm_waps1 = db.waps[db.waps.isin(waps)].copy() # usm_waps1[['NzTmX', 'NzTmY']] = usm_waps1[['NzTmX', 'NzTmY']].astype(int) if len(wap1) != len(usm_waps1): miss_waps = set(wap1).difference(set(usm_waps1.Wap)) print('Missing {} Waps in USM'.format(len(miss_waps))) wap_allo1 = wap_allo1[~wap_allo1.Wap.isin(miss_waps)].copy() ################################################## ### Permit table print('--Process Permits') ## Clean data permits2 = db.permit.copy() permits2['FromDate'] = pd.to_datetime(permits2['FromDate'], infer_datetime_format=True, errors='coerce') permits2['ToDate'] =
pd.to_datetime(permits2['ToDate'], infer_datetime_format=True, errors='coerce')
pandas.to_datetime
import os import logging import pickle from abc import ABC, abstractmethod import pandas as pd import numpy as np from . import dtutil from . import arguments from amulog import common from amulog import config _logger = logging.getLogger(__package__) SRCCLS_LOG = "log" SRCCLS_SNMP = "snmp" class EventDefinition(ABC): _l_attr = ["source", "host", "group"] def __init__(self, **kwargs): for attr in self._l_attr: setattr(self, attr, kwargs[attr]) @property def _attribute_keys(self): return self._l_attr def key(self): return None @abstractmethod def event(self) -> str: raise NotImplementedError @property def identifier(self): return self.__str__() @property def groups(self): group = getattr(self, "group") if group is None or group == "None": return [] elif "|" in group: return "|".split(group) else: return [group] def all_attr(self, key): return {getattr(self, key)} def member_identifiers(self): return [self.identifier] def match(self, evdef): if isinstance(evdef, MultipleEventDefinition): return any([self.match(tmp_evdef) for tmp_evdef in evdef.members]) else: return self.identifier == evdef.identifier def replaced_copy(self, **kwargs): input_kwargs = {} for attr in self._attribute_keys: input_kwargs[attr] = getattr(self, attr) input_kwargs.update(kwargs) return type(self)(**input_kwargs) class MultipleEventDefinition(EventDefinition): _l_attr = [] def __init__(self, members, **kwargs): super().__init__(**kwargs) self._members = members def __str__(self): return "|".join([str(evdef) for evdef in self._members]) @property def _attribute_keys(self): return self._l_attr + ["_members"] @property def members(self): return self._members def update_members(self, members): self._members = members @property def identifier(self): return "|".join(sorted([evdef.identifier for evdef in self._members])) def event(self): return "|".join(sorted([evdef.event() for evdef in self._members])) def all_attr(self, key): return {getattr(evdef, key) for evdef in self._members} def member_identifiers(self): ret = [] for evdef in self.members: ret += evdef.member_identifiers() return ret def match(self, evdef): self_identifiers = set(self.member_identifiers()) if isinstance(evdef, MultipleEventDefinition): given_identifiers = set(evdef.member_identifiers()) return len(self_identifiers & given_identifiers) > 0 else: return evdef.identifier in self_identifiers class EventDefinitionMap(object): """This class defines classified groups as "Event", and provide interconvirsion functions between Event IDs and their classifying criterions. The definition of Event is saved as a nametuple EvDef. Evdef has following attributes. source (str): key (int): host (str): label (str): """ def __init__(self): self._emap = {} # key : eid, val : evdef self._ermap = {} # key : evdef, val : eid def __len__(self): return len(self._emap) def eids(self): return self._emap.keys() def _next_eid(self): eid = len(self._emap) while eid in self._emap: eid += 1 else: return eid def add_evdef(self, evdef): eid = self._next_eid() self._emap[eid] = evdef self._ermap[evdef.identifier] = eid return eid def has_eid(self, eid): return eid in self._emap def has_evdef(self, evdef): return evdef.identifier in self._ermap def evdef(self, eid): return self._emap[eid] def items(self): return self._emap.items() def get_eid(self, evdef): return self._ermap[evdef.identifier] def iter_eid(self): return self._emap.keys() def iter_evdef(self): for eid in self.iter_eid(): yield self._emap[eid] @staticmethod def from_dict(mapping): evmap = EventDefinitionMap() evmap._emap = mapping for eid, evdef in mapping.items(): evmap._ermap[evdef.identifier] = eid return evmap def dump(self, args): fp = arguments.ArgumentManager.evdef_path(args) obj = (self._emap, self._ermap) with open(fp, "wb") as f: pickle.dump(obj, f) def load(self, args): fp = arguments.ArgumentManager.evdef_path(args) try: with open(fp, "rb") as f: obj = pickle.load(f) self._emap, self._ermap = obj except: # compatibility fp = arguments.ArgumentManager.evdef_path_old(args) with open(fp, "rb") as f: obj = pickle.load(f) self._emap, self._ermap = obj class AreaTest: def __init__(self, conf): self._arearule = conf["dag"]["area"] self._areadict = config.GroupDef(conf["dag"]["area_def"]) if self._arearule == "all": self._testfunc = self._test_all elif self._arearule == "each": self._testfunc = self._test_each else: self.areas = config.gettuple(conf, "dag", "area") self._testfunc = self._test_ingroup @staticmethod def _test_all(area, host): return True @staticmethod def _test_each(area, host): return area == host def _test_ingroup(self, area, host): return self._areadict.ingroup(area, host) def test(self, area, host): return self._testfunc(area, host) class EventDetail: def __init__(self, conf, d_evloaders, load_cache=True, dump_cache=True): self._conf = conf self._d_el = d_evloaders self._load_cache = load_cache self._dump_cache = dump_cache self._head = int(conf["dag"]["event_detail_head"]) self._foot = int(conf["dag"]["event_detail_foot"]) @staticmethod def output_format(data): return "{0} {1}: {2}".format(data[0], data[1], data[2]) @staticmethod def cache_name(evdef): return "cache_detail_" + evdef.identifier def cache_path(self, args, evdef): return arguments.ArgumentManager.unit_cache_path( self._conf, args, self.cache_name(evdef) ) def has_cache(self, args, evdef): path = self.cache_path(args, evdef) return os.path.exists(path) def load(self, args, evdef): path = self.cache_path(args, evdef) with open(path, "r") as f: buf = f.read() return buf def dump(self, args, evdef, buf): path = self.cache_path(args, evdef) with open(path, "w") as f: f.write(buf) def get_detail(self, args, evdef, evdef_org=None): if self._load_cache and self.has_cache(args, evdef): buf = self.load(args, evdef) else: conf, dt_range, area = args el = self._d_el[evdef.source] data = list(el.details(evdef, dt_range, evdef_org=evdef_org)) buf = common.show_repr( data, self._head, self._foot, indent=0, strfunc=self.output_format ) if self._dump_cache: self.dump(args, evdef, buf) return buf def init_evloader(conf, src): if src == SRCCLS_LOG: from .source import evgen_log return evgen_log.LogEventLoader(conf) elif src == SRCCLS_SNMP: from .source import evgen_snmp return evgen_snmp.SNMPEventLoader(conf) else: raise NotImplementedError def init_evloaders(conf): return {src: init_evloader(conf, src) for src in config.getlist(conf, "dag", "source")} def load_event(measure, tags, dt_range, ci_bin_size, ci_bin_diff, method, el=None): if method == "sequential": df = el.load(measure, tags, dt_range, ci_bin_size) if df is None or df[el.fields[0]].sum() == 0: _logger.debug("{0} is empty".format((measure, tags))) return None elif method == "slide": tmp_dt_range = (dt_range[0], max(dt_range[1], dt_range[1] + (ci_bin_size - ci_bin_diff))) items = sorted(list(el.load_items(measure, tags, tmp_dt_range)), key=lambda x: x[0]) if len(items) == 0: _logger.debug("{0} is empty".format((measure, tags))) return None l_dt = [e[0] for e in items] l_array = np.vstack([e[1] for e in items])[:, 0] data = dtutil.discretize_slide(l_dt, dt_range, ci_bin_diff, ci_bin_size, l_dt_values=l_array) l_dt_label = dtutil.range_dt(dt_range[0], dt_range[1], ci_bin_diff) dtindex = pd.to_datetime(l_dt_label) df = pd.DataFrame(data, index=dtindex) elif method == "radius": tmp_dt_range = (min(dt_range[0], dt_range[0] - 0.5 * (ci_bin_size - ci_bin_diff)), max(dt_range[1], dt_range[1] + 0.5 * (ci_bin_size - ci_bin_diff))) items = sorted(list(el.load_items(measure, tags, tmp_dt_range)), key=lambda x: x[0]) if len(items) == 0: _logger.debug("{0} is empty".format((measure, tags))) return None l_dt = [e[0] for e in items] l_array = np.vstack([e[1] for e in items])[:, 0] data = dtutil.discretize_radius(l_dt, dt_range, ci_bin_diff, 0.5 * ci_bin_size, l_dt_values=l_array) l_dt_label = dtutil.range_dt(dt_range[0], dt_range[1], ci_bin_diff) dtindex = pd.to_datetime(l_dt_label) df = pd.DataFrame(data, index=dtindex) else: raise NotImplementedError return df def load_event_log_all(conf, dt_range, area, d_el=None): if d_el is None: from .source import evgen_log el = evgen_log.LogEventLoader(conf) else: el = d_el[SRCCLS_LOG] areatest = AreaTest(conf) method = conf.get("dag", "ci_bin_method") ci_bin_size = config.getdur(conf, "dag", "ci_bin_size") ci_bin_diff = config.getdur(conf, "dag", "ci_bin_diff") for evdef in el.iter_evdef(dt_range): measure, tags = evdef.series() if not areatest.test(area, tags["host"]): continue df = load_event(measure, tags, dt_range, ci_bin_size, ci_bin_diff, method, el) if df is not None: yield evdef, df def load_event_snmp_all(conf, dt_range, area, d_el=None): if d_el is None: from .source import evgen_snmp el = evgen_snmp.SNMPEventLoader(conf) else: el = d_el["snmp"] areatest = AreaTest(conf) method = conf.get("dag", "ci_bin_method") ci_bin_size = config.getdur(conf, "dag", "ci_bin_size") ci_bin_diff = config.getdur(conf, "dag", "ci_bin_diff") l_feature_name = config.getlist(conf, "dag", "snmp_features") if len(l_feature_name) == 0: l_feature_name = el.all_feature() for evdef in el.iter_evdef(l_feature_name): measure, tags = evdef.series() if not areatest.test(area, tags["host"]): continue df = load_event(measure, tags, dt_range, ci_bin_size, ci_bin_diff, method, el) if df is not None: yield evdef, df def load_event_all(sources, conf, dt_range, area): for src in sources: if src == SRCCLS_LOG: for evdef, df in load_event_log_all(conf, dt_range, area): yield evdef, df elif src == SRCCLS_SNMP: for evdef, df in load_event_snmp_all(conf, dt_range, area): yield evdef, df else: raise NotImplementedError def makeinput(conf, dt_range, area): evmap = EventDefinitionMap() evlist = [] sources = config.getlist(conf, "dag", "source") for evdef, df in load_event_all(sources, conf, dt_range, area): eid = evmap.add_evdef(evdef) df.columns = [eid, ] evlist.append(df) msg = "loaded event {0} {1} (sum: {2})".format(eid, evmap.evdef(eid), df[eid].sum()) _logger.debug(msg) if len(evlist) == 0: _logger.warning("No data loaded") return None, None merge_sync = conf.getboolean("dag", "merge_syncevent") if merge_sync: merge_sync_rules = config.getlist(conf, "dag", "merge_syncevent_rules") evlist, evmap = merge_sync_event(evlist, evmap, merge_sync_rules) input_df = pd.concat(evlist, axis=1) return input_df, evmap def merge_sync_event(evlist, evmap, rules): from collections import defaultdict hashmap = defaultdict(list) # make clusters that have completely same values for old_eid, df in enumerate(evlist): # old_eid = df.columns[0] evdef = evmap.evdef(old_eid) value_key = tuple(df.iloc[:, 0]) tmp_key = [value_key, ] if "source" in rules: tmp_key.append(evdef.source) if "host" in rules: tmp_key.append(evdef.host) if "group" in rules: tmp_key.append(evdef.group) key = tuple(tmp_key) hashmap[key].append(old_eid) new_evlist = [] new_evmap = EventDefinitionMap() for l_old_eid in hashmap.values(): l_evdef = [evmap.evdef(eid) for eid in l_old_eid] new_evdef = MultipleEventDefinition(l_evdef) if "source" in rules: new_evdef.source = l_evdef[0].source if "host" in rules: new_evdef.host = l_evdef[0].host if "group" in rules: new_evdef.group = l_evdef[0].group new_eid = new_evmap.add_evdef(new_evdef) new_df = evlist[l_old_eid[0]] new_df.columns = [new_eid, ] new_evlist.append(new_df) _logger.info("merge-syncevent {0} -> {1}".format(len(evmap), len(new_evmap))) return new_evlist, new_evmap def _load_merged_event(conf, dt_range, area, evdef, areatest, ci_bin_size, ci_bin_diff, ci_bin_method, d_el): if isinstance(evdef, MultipleEventDefinition): l_df = [] for member in evdef.members: tmp_df = _load_merged_event(conf, dt_range, area, member, areatest, ci_bin_size, ci_bin_diff, ci_bin_method, d_el) if tmp_df is not None: tmp_df.columns = ["tmp"] l_df.append(tmp_df) if len(l_df) == 0: return None ret = l_df[0] for tmp_df in l_df[1:]: ret = ret.add(tmp_df) return ret else: measure, tags = evdef.series() if not areatest.test(area, tags["host"]): return None df = load_event(measure, tags, dt_range, ci_bin_size, ci_bin_diff, ci_bin_method, el=d_el[evdef.source]) return df def load_merged_events(conf, dt_range, area, l_evdef, d_el): """for visualization""" areatest = AreaTest(conf) ci_bin_method = conf.get("dag", "ci_bin_method") ci_bin_size = config.getdur(conf, "dag", "ci_bin_size") ci_bin_diff = config.getdur(conf, "dag", "ci_bin_diff") l_df = [] for idx, evdef in enumerate(l_evdef): tmp_df = _load_merged_event(conf, dt_range, area, evdef, areatest, ci_bin_size, ci_bin_diff, ci_bin_method, d_el) if tmp_df is None: raise ValueError("no time-series for {0}".format(evdef)) tmp_df.columns = [idx] l_df.append(tmp_df) return
pd.concat(l_df, axis=1)
pandas.concat
import pytest from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm @pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)]) def test_groupby_sample_balanced_groups_shape(n, frac): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=n, frac=frac) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=n, frac=frac) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_unbalanced_groups_shape(): values = [1] * 10 + [2] * 20 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=5) values = [1] * 5 + [2] * 5 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=5) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_index_value_spans_groups(): values = [1] * 3 + [2] * 3 df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2]) result = df.groupby("a").sample(n=2) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=2) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_n_and_frac_raises(): df = DataFrame({"a": [1, 2], "b": [1, 2]}) msg = "Please enter a value for `frac` OR `n`, not both" with pytest.raises(ValueError, match=msg): df.groupby("a").sample(n=1, frac=1.0) with pytest.raises(ValueError, match=msg): df.groupby("a")["b"].sample(n=1, frac=1.0) def test_groupby_sample_frac_gt_one_without_replacement_raises(): df = DataFrame({"a": [1, 2], "b": [1, 2]}) msg = "Replace has to be set to `True` when upsampling the population `frac` > 1." with pytest.raises(ValueError, match=msg): df.groupby("a").sample(frac=1.5, replace=False) with pytest.raises(ValueError, match=msg): df.groupby("a")["b"].sample(frac=1.5, replace=False) @pytest.mark.parametrize("n", [-1, 1.5]) def test_groupby_sample_invalid_n_raises(n): df = DataFrame({"a": [1, 2], "b": [1, 2]}) if n < 0: msg = "Please provide positive value" else: msg = "Only integers accepted as `n` values" with pytest.raises(ValueError, match=msg): df.groupby("a").sample(n=n) with pytest.raises(ValueError, match=msg): df.groupby("a")["b"].sample(n=n) def test_groupby_sample_oversample(): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(frac=2.0, replace=True) values = [1] * 20 + [2] * 20 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(frac=2.0, replace=True) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_without_n_or_frac(): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=None, frac=None) expected = DataFrame({"a": [1, 2], "b": [1, 2]}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=None, frac=None) expected = Series([1, 2], name="b", index=result.index)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import argparse import sys, os import numpy as np import pandas as pd import datetime, time import logging import traceback from sqlalchemy import select, Table, Column from semutils.logging.setup_logger import setup_logger setup_logger('download_data.log') from semutils.messaging.Slack import Slack from semutils.db_access.AccessReference import AccessReference from semutils.db_access.AccessSQL import Access_SQL_DB from semutils.db_access.MasterConfig import MasterConfig SQLHost = MasterConfig['prod']['sql_ref_host'] SignalsModel = '2018-06-21' DataDir = 'data_prod' RemoteDir = '/home/web/projects/semwebsite/semapp' EnterLong = 0.55 EnterShort = 0.45 def download_sec_master_and_pricing(**kwargs): ref = AccessReference(sql_host = SQLHost) # securities master logging.info('Downloading securities master') sm = ref.get_sec_master() sm.to_parquet(os.path.join(DataDir, 'sec_master.parquet')) # get indices benchmarks = [('SP500','SP50'),('SP400','MID'),('SP600','SML')] for b,bid in benchmarks: b_data = ref.get_index_prices(benchmark_id = bid) b_data.to_parquet(os.path.join(DataDir, b + '.parquet')) # prices logging.info('Downloading pricing data') cols = ['sec_id', 'm_ticker', 'data_date', 'adj_close', 'close'] filepath = os.path.join(DataDir, 'eod_prices.hdf') if os.path.exists(filepath) and (not kwargs['clear_existing']): prices =
pd.read_hdf(filepath, 'table')
pandas.read_hdf
import matplotlib.pyplot as plt import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.metrics import r2_score, confusion_matrix, classification_report from keras.wrappers.scikit_learn import KerasClassifier # load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`. df =
pd.read_csv('../data/HR_comma_sep.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 8 11:39:33 2020 @author: cristian """ import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import os from gurobipy import * from matplotlib import cm from time import time from scripts.utils import save_solution #from shapely.geometry import Point, shape #from numpy.random import uniform #from collections import Counter """ DistanceBetweenNodes: Given a set of coordinates XY, computes the euclidean distance between all nodes """ def DistanceBetweenNodes(XY): n = XY.shape[0] # Distance between points r = np.zeros((n, n)) for i in range(n): for j in range(i,n): form = np.around(np.sqrt((XY[i,0] - XY[j,0])**2 + (XY[i,1] - XY[j,1])**2)) r[i,j] = form r[j,i] = form return r """ ReadData: function for getting data from a .xlsx file Returns a dictionary with all the data extracted from the .xlsx file """ def ReadData(datadir, file): # Nodes df = pd.read_excel(os.path.join(datadir, file), sheet_name = 'Nodes') XY = df[['X','Y']].values F = df[df['Type'] == 'F'].index.tolist() D = df[df['Type'] == 'D'].index.tolist() S = df[df['Type'] == 'S'].index.tolist() C = df[df['Type'] == 'C'].index.tolist() LEZ = dict(zip(df.index.tolist(),df['LEZ'].tolist())) city = dict(zip(df.index.tolist(),df['City'].tolist())) # Products df = pd.read_excel(os.path.join(datadir, file), sheet_name = 'Products') P = df['Product'].tolist() nu = df['Volume'].tolist() omega = df['Weight'].tolist() omegaeff = df['Weight eff'].tolist() P_f = {} for f in F: P_f[f] = df[df['Firm'] == f]['Product'].tolist() # Demands df = pd.read_excel(os.path.join(datadir, file), sheet_name = 'Demands') DEM = {} for c in C: DEM[c] = df[df['Customer'] == c]['Demand'].tolist() # Depots cap. df = pd.read_excel(os.path.join(datadir, file), sheet_name = 'Depots cap.') Lambd = {} Omega = {} epsil = {} for i in range(df.shape[0]): d = int(df['Depot'].iloc[i]) Lambd[d] = df['Lambd'].iloc[i] Omega[d] = df['Omega'].iloc[i] epsil[d] = df['epsil'].iloc[i] # Vehicles df = pd.read_excel(os.path.join(datadir, file), sheet_name = 'Vehicles') K = df['Vehicle'].tolist() V_i = {} Phi = {} Theta = {} rho = {} delta = {} gamma = {} vehictype = {} DcupS = D+S for d in DcupS: V_i[d] = df[df['Depot'] == d]['Vehicle'].tolist() for k in V_i[d]: Phi[k] = df[df['Vehicle'] == k]['Phi'].sum() Theta[k] = df[df['Vehicle'] == k]['Theta'].sum() rho[k] = df[df['Vehicle'] == k]['rho'].sum() delta[k] = df[df['Vehicle'] == k]['delta'].sum() gamma[k] = df[df['Vehicle'] == k]['gamma'].sum() vehictype[k] = df[df['Vehicle'] == k]['VehicleType'].iloc[0] r = DistanceBetweenNodes(XY) """ DATA DICTIONARY """ data = {} data['XY'] = XY data['F'] = F data['D'] = D data['S'] = S data['C'] = C data['P'] = P data['P_f'] = P_f data['K'] = K data['V_i'] = V_i data['DEM'] = DEM data['Lambd'] = Lambd data['Omega'] = Omega data['Phi'] = Phi data['Theta'] = Theta data['nu'] = nu data['omega'] = omega data['omegaeff'] = omegaeff data['rho'] = rho data['delta'] = delta data['gamma'] = gamma data['epsil'] = epsil data['r'] = r data['LEZ'] = LEZ data['vehictype'] = vehictype data['city'] = city A = np.ones((len(F+D+S+C), len(K)), dtype=int) for s in S: for k in V_i[s]: for s1 in S: if s1 != s: # Bikes aren't shared between satellites A[s1,k] = 0 for n in F+D+C: # Bikes only visit nodes from the same city if vehictype[k] == 'bike' and city[s] != city[n]: A[n,k] = 0 # Non eco vehicles aren't allowed in LEZ points if vehictype[k] != 'bike' and LEZ[n] > 0: A[n,k] = 0 for d in D: for k in V_i[d]: for d1 in D: if d1 != d: # Vehicles aren't shared between delivering A[d1,k] = 0 for n in F+S+C: # Non eco vehicles aren't allowed in LEZ points if vehictype[k] != 'bike' and LEZ[n] > 0: A[n,k] = 0 data['A'] = A return data """ MATH HEURISTIC FUNCTIONS Here are all the steps for solving the multi-echelon multi-vehicle problem """ def GreedyRoutingForServingCost(d0, W0, NodesToVisit, WeightNodes, gamma_k, rho_k, r): # This function estimates the serving cost via greedy routing VisitedNodes = [d0] PendingNodes = [n for n in NodesToVisit] TotalCost = 0 CumulatedWeight = W0 # Initial case: select the first node to visit i = d0 ArcCost = np.inf for j in PendingNodes: CurrentCost = r[i,j]*(gamma_k*CumulatedWeight + rho_k) if CurrentCost < ArcCost: ArcCost = CurrentCost j_ = j TotalCost = TotalCost + ArcCost VisitedNodes.append(j_) CumulatedWeight = CumulatedWeight + WeightNodes[j_] PendingNodes = [n for n in PendingNodes if n not in VisitedNodes] i = j_ # rest of the cases while PendingNodes: i = j_ ArcCost = np.inf for j in PendingNodes: CurrentCost = r[i,j]*(gamma_k*CumulatedWeight + rho_k) if CurrentCost < ArcCost: ArcCost = CurrentCost j_ = j TotalCost = TotalCost + ArcCost VisitedNodes.append(j_) CumulatedWeight = CumulatedWeight + WeightNodes[j_] PendingNodes = [n for n in PendingNodes if n not in VisitedNodes] # return a tuple with the last node visited and the total cost return j_, TotalCost def GetMinimalLoadCostF1(r, i, gamma, Weight_cf, rho, FminFw, D, V_i): loadcostf1 = 0 # for f in FminFw: # gamma_kf = max([gamma[v] for v in V_i[f]]) # rho_kf = max([rho[v] for v in V_i[f]]) # cost_f = r[f,i]*(gamma_kf*Weight_cf[f] + rho_kf) # cost_d = np.inf # for d in D: # gamma_kd = max([gamma[v] for v in V_i[d]]) # rho_kd = max([rho[v] for v in V_i[d]]) # cost_d_ = r[f,d]*(gamma_kf*Weight_cf[f] + rho_kf) + r[d,i]*(gamma_kd*Weight_cf[f] + rho_kd) # if cost_d_ < cost_d: # cost_d = cost_d_ # loadcostf1 = loadcostf1 + min(cost_f, cost_d) return loadcostf1 def GetBestDeliveringCost(r, i, gamma, Weight_cf, rho, FirmsToVisit, D, V_i): cost_d = np.inf for d in D: gamma_kd = max([gamma[v] for v in V_i[d]]) rho_kd = max([rho[v] for v in V_i[d]]) f0, cost_d_ = GreedyRoutingForServingCost(d, 0, FirmsToVisit, Weight_cf, gamma_kd, rho_kd, r) cost_d_ = cost_d_ + r[f0,i]*(sum([gamma_kd*Weight_cf[f] for f in FirmsToVisit]) + rho_kd) if cost_d_ < cost_d: cost_d = cost_d_ return cost_d def Inter(list1, list2): return [i for i in list1 if i in list2] def GetFeasibleCombinationsForVehicles(minlen, nodes, Theta, Phi, WeightClient, VolClient, banned): result = [] for i in range(len(nodes), minlen, -1): for seq in itertools.combinations(nodes, i): if sum([WeightClient[c] for c in seq]) <= Theta and sum([VolClient[c] for c in seq]) <= Phi: result.append(list(seq)) return [r for r in result if not Inter(r,banned)] def GetBestListOfNodes(result, VolClient, WeightClient, banned): prod = 0 bestlist = [] for l in result: if l not in banned: vol_l = sum([VolClient[c] for c in l]) weight_l = sum([WeightClient[c] for c in l]) if vol_l*weight_l > prod: prod = vol_l*weight_l bestlist = l return bestlist def GetRoutingList(k,d0,N,w_final): routing = [] test = int(sum([w_final[i,j,k] for i in N for j in N])) if test > 2: routing_list = [d0] j = int(sum([w_final[d0,l,k]*l for l in N])) routing.append((d0,j)) routing_list.append(j) while j != d0: i = j j = int(sum([w_final[i,l,k]*l for l in N])) routing_list.append(j) routing.append((i,j)) elif test == 2: j = int(sum([w_final[d0,l,k]*l for l in N])) routing = [(d0,j), (j,d0)] routing_list = [d0, j] else: routing = [] routing_list = [] ##print('empty route') return routing, routing_list def CreateSetE(DEM, F, C, P_f): DictFirmCl = {} for c in C: listdem = [] for f in F: listdem.append(min(sum([DEM[c][p] for p in P_f[f]]),1)) DictFirmCl[c] = listdem listdem = [] for key in DictFirmCl.keys(): if DictFirmCl[key] not in listdem: listdem.append(DictFirmCl[key]) DemVecCl = {} for l in range(len(listdem)): dem = listdem[l] DemVecCl[l] = [c for c in DictFirmCl.keys() if DictFirmCl[c] == dem] E_c = {} for key in DemVecCl.keys(): l = DemVecCl[key] if len(l) % 2 != 0: l = l[:-1] for c in l: E_c[c] = [e for e in l if e != c] return E_c def ConstructorForRouting(dictclass, d0, k, m_opt, x_opt, data): # Unpack data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] P_f = data['P_f'] K = data['K'] V_i = data['V_i'] DEM = data['DEM'] Lambd = data['Lambd'] Omega = data['Omega'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] omegaeff = data['omegaeff'] rho = data['rho'] delta = data['delta'] gamma = data['gamma'] r = data['r'] N = F+D+S+C N_ = [] DEM_ = {} Q0 = [] if dictclass[d0] != 'D': for p in P: valid_keys = [(p,j,k) for j in N if (p,j,k) in m_opt.keys()] q0_ = int(sum([m_opt[t] for t in valid_keys])) Q0.append(q0_) else: for p in P: valid_keys = [(p,j,k) for j in N if (p,j,k) in m_opt.keys()] valid_keys_f = [(p,f,k) for f in F if (p,f,k) in x_opt.keys()] q0_ = int(sum([m_opt[t] for t in valid_keys]) - sum([x_opt[t] for t in valid_keys_f])) Q0.append(q0_) # if dictclass[d0] == 'F': # Q0 = [int(sum([m_opt[p,j,k] for j in N])) for p in P] # else: # Q0 = [int(sum([(m_opt[p,j,k])for j in N]) - sum([(x_opt[p,f,k])for f in F])) for p in P] Q0 = [max(q,0) for q in Q0] N_.append(d0) Nmin_i = [n for n in N if n != d0] DEM_[d0] = [int(m_opt.get((p,d0,k), 0)) for p in P] for j in Nmin_i: if dictclass[j] != 'F': tot = sum([m_opt.get((p,j,k), 0) for p in P]) else: tot = sum([x_opt.get((p,j,k),0) for p in P]) if tot > 0: N_.append(j) if dictclass[j] != 'F': DEM_[j] = [int(m_opt.get((p,j,k),0)) for p in P] else: DEM_[j] = [-int(x_opt.get((p,j,k),0)) for p in P] F_ = [f for f in F if f in N_] D_ = [d for d in D if d in N_] S_ = [s for s in S if s in N_] C_ = [c for c in C if c in N_] data_routing = {'Q0' : Q0, 'DEM': DEM_, 'N': N_, 'F' : F_, 'D': D_, 'S': S_, 'C': C_, 'P' : P, 'Phi' : Phi[k], 'Theta': Theta[k], 'nu' : nu, 'omega': omega, 'omegaeff': omegaeff, 'd0' : d0, 'gamma': gamma[k], 'rho' : rho[k], 'r' : r} return data_routing def FlowRouting(data_routing): # Unpacking data F = data_routing['F'] D = data_routing['D'] S = data_routing['S'] C = data_routing['C'] P = data_routing['P'] Phi = data_routing['Phi'] Theta = data_routing['Theta'] nu = data_routing['nu'] omega = data_routing['omega'] omegaeff = data_routing['omegaeff'] gamma = data_routing['gamma'] DEM = data_routing['DEM'] d0 = data_routing['d0'] Q0 = data_routing['Q0'] rho = data_routing['rho'] r = data_routing['r'] # Auxiliary sets N = F+D+S+C NminC = F+D+S NminF = D+S+C Nmind0 = [n for n in N if n != d0] Nmind0_i = {} ScupCmind0 = [i for i in S+C if i != d0] for i in Nmind0: Nmind0_i[i] = [j for j in Nmind0 if j != i] # Consolidation of weight and volume Weight = {} Volume = {} WeightE = {} for i in N: try: Weight[i] = sum([DEM[i][p]*omega[p] for p in P]) except: Weight[i] = 0 try: WeightE[i] = sum([DEM[i][p]*omegaeff[p] for p in P]) except: WeightE[i] = 0 try: Volume[i] = sum([DEM[i][p]*nu[p] for p in P]) except: Volume[i] = 0 #print(Q0) W0 = sum([Q0[p]*omega[p] for p in P]) W0e = sum([Q0[p]*omegaeff[p] for p in P]) ##print('W0 = ', W0) V0 = sum([Q0[p]*nu[p] for p in P]) #print('V0 = ', V0, " Vol cap = ", Phi) #print('W0 = ', W0, " Weight cap = ", Theta) #print('W0 effective = ', W0e) # #print('N = ', N) # #print('Nmind0 = ', Nmind0) # Model start model = Model() model.setParam('OutputFlag', 0) # Decision variables q = {} for i in N: for j in N: q[i,j] = model.addVar(vtype = GRB.CONTINUOUS, name = 'q[%s,%s]' % (i,j)) qe = {} for i in N: for j in N: qe[i,j] = model.addVar(vtype = GRB.CONTINUOUS, name = 'q[%s,%s]' % (i,j)) v = {} for i in N: for j in N: v[i,j] = model.addVar(vtype = GRB.CONTINUOUS, name = 'v[%s,%s]' % (i,j)) w = {} for i in N: for j in N: w[i,j] = model.addVar(vtype = GRB.BINARY, name = 'w[%s,%s]' % (i,j)) e = {} for i in Nmind0: e[i] = model.addVar(vtype = GRB.INTEGER, name = 'e[%s]' % i) # Aux fc = model.addVar(vtype = GRB.CONTINUOUS, name = 'fc') ac = model.addVar(vtype = GRB.CONTINUOUS, name = 'ac') # Constraints # Flow model.addConstrs( quicksum(q[i,j] for i in N) - quicksum(q[j,l] for l in N) == Weight[j] for j in Nmind0 ) model.addConstrs( quicksum(qe[i,j] for i in N) - quicksum(qe[j,l] for l in N) == WeightE[j] for j in Nmind0 ) model.addConstrs( quicksum(v[i,j] for i in N) - quicksum(v[j,l] for l in N) == Volume[j] for j in Nmind0 ) model.addConstrs( quicksum(w[i,j] for i in N) == quicksum(w[j,l] for l in N) for j in N ) model.addConstrs( q[i,j] <= Theta*w[i,j] for i in N for j in N ) model.addConstrs( qe[i,j] <= 2*(Theta + Phi)*w[i,j] for i in N for j in N ) model.addConstrs( v[i,j] <= Phi*w[i,j] for i in N for j in N ) # Out model.addConstr( quicksum(q[d0,j] for j in N) == W0 ) model.addConstr( quicksum(qe[d0,j] for j in N) == W0e ) model.addConstr( quicksum(v[d0,j] for j in N) == V0 ) # Back to depot OK with this one model.addConstr( quicksum(q[i,d0] for i in N) == Weight[d0] ) model.addConstr( quicksum(qe[i,d0] for i in N) == WeightE[d0] ) model.addConstr( quicksum(v[i,d0] for i in N) == Volume[d0] ) # Node visiting OK with this one model.addConstrs( quicksum(w[i,j] for i in N) == 1 for j in N ) # Node leaving OK with this one model.addConstrs( quicksum(w[i,j] for j in N) == 1 for i in N ) # TMZ model.addConstrs( e[i] - e[j] + len(N)*w[i,j] <= len(N) - 1 for i in Nmind0 for j in Nmind0 ) model.addConstrs( e[i] >= 0 for i in Nmind0 ) Fmind0 = [f for f in F if f != d0] model.addConstrs( e[i] >= e[f] for i in ScupCmind0 for f in Fmind0 ) # Logic model.addConstrs( q[i,i] == 0 for i in N ) # Logic model.addConstrs( qe[i,i] == 0 for i in N ) model.addConstrs( v[i,i] == 0 for i in N ) model.addConstrs( w[i,i] == 0 for i in N ) # Capacity and arc utilization model.addConstr( fc == quicksum(quicksum(qe[i,j]*gamma*r[i,j] for i in N) for j in N) ) model.addConstr( ac == quicksum(quicksum(w[i,j]*r[i,j]*rho for i in N) for j in N) ) model.update() model.__data = qe, q, w, v model.setObjective(fc + ac, GRB.MINIMIZE) model.update() return model """STEP 4: Vehicle routing""" def MultiEchelonRouting(data, x_opt, y_opt, m_opt, z_opt, u_opt): # Unpacking data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] P_f = data['P_f'] K = data['K'] V_i = data['V_i'] DEM = data['DEM'] Lambd = data['Lambd'] Omega = data['Omega'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] omegaeff = data['omegaeff'] rho = data['rho'] delta = data['delta'] gamma = data['gamma'] r = data['r'] # Auxiliary sets N = F+D+S+C NminC = F+D+S # for p in P: # for c in C: # for k in K: # m_opt[p,c,k] = DEM[c][p]*z_opt[k,c] model = Model() dictclass = {} for f in F: dictclass[f] = 'F' for d in D: dictclass[d] = 'D' for s in S: dictclass[s] = 'S' for c in C: dictclass[c] = 'C' # DEFINITIVE DECISION VARIABLES q_final, qe_final, w_final, v_final = {}, {} ,{}, {} for i in N: for j in N: for k in K: q_final[i,j,k] = 0 qe_final[i,j,k] = 0 w_final[i,j,k] = 0 v_final[i,j,k] = 0 # Auxiliary dictionary for routes DictRoutes = {} DictRoutesList = {} # Auxiliary dictionary for subsets for each vehicle DictNodes = {} # Auxiliary dictionaries for remaining capacities Phi_, Theta_ = {}, {} Q0_, DEMS_ = {}, {} for k in K: DictRoutes[k] = [] DictRoutesList[k] = [] DictNodes[k] = {'F' : [], 'D' : [], 'S': [], 'C': []} Phi_[k] = Phi[k] Theta_[k] = Theta[k] # for d0 in NminC: #print('y_opt = ', y_opt) for d0 in D+S: ##print('Node: %s, Vehicles = %s' % (d0,V_i[d0])) for k in V_i[d0]: data_routing = ConstructorForRouting(dictclass, d0, k, m_opt, x_opt, data) if y_opt.get(k,0) > 0 and len(data_routing['N']) > 1: #print('data for routing vehicle %s' % k) #print(data_routing) model_rou = FlowRouting(data_routing) model_rou.optimize() qe, q, w, v = model_rou.__data q_rou = model_rou.getAttr('x', q) qe_rou = model_rou.getAttr('x', qe) w_rou = model_rou.getAttr('x', w) v_rou = model_rou.getAttr('x', v) F_ = data_routing['F'] D_ = data_routing['D'] S_ = data_routing['S'] C_ = data_routing['C'] N_ = F_ + D_ + S_ + C_ Q0 = data_routing['Q0'] DEM_ = data_routing['DEM'] try: # model_rou.##printAttr('X') qe, q, w, v = model_rou.__data q_rou = model_rou.getAttr('x', q) qe_rou = model_rou.getAttr('x', qe) w_rou = model_rou.getAttr('x', w) v_rou = model_rou.getAttr('x', v) for i in N_: for j in N_: try: q_final[i,j,k] = q_rou[i,j] qe_final[i,j,k] = qe_rou[i,j] w_final[i,j,k] = w_rou[i,j] v_final[i,j,k] = v_rou[i,j] except: q_final[i,j,k] = 0 w_final[i,j,k] = 0 v_final[i,j,k] = 0 Theta_[k] = Theta[k] - max([q_rou[i,j] for i in N_ for j in N_]) Phi_[k] = Phi[k] - max([v_rou[i,j] for i in N_ for j in N_]) DictRoutes[k], DictRoutesList[k] = GetRoutingList(k,d0,N,w_final) DictNodes[k] = {'F' : F_, 'D' : D_, 'S': S_, 'C': C_} Q0_[k] = Q0 DEMS_[k] = DEM_ except: pass ##print('ERROR IN VEHICLE %s' % k) else: for i in N: for j in N: q_final[i,j,k] = 0 qe_final[i,j,k] = 0 v_final[i,j,k] = 0 w_final[i,j,k] = 0 solution = {'q_final' : q_final, 'qe_final' : qe_final, 'v_final' : v_final, 'w_final' : w_final, 'DictRoutes' : DictRoutes, 'DictRoutesList' : DictRoutesList, 'DictNodes' : DictNodes, 'Theta_' : Theta_, 'Phi_' : Phi_, 'Q0_' : Q0_, 'DEMS_' : DEMS_} return solution """ AUXILIARY FUNCTIONS FOR HEURISTIC LOOP """ # Function that computes the freight cost for the route of a certain vehicle def ComputeRouteCost(q, routing, k, gamma, r): return sum([q[i,j,k]*r[i,j]*gamma[k] for (i,j) in routing]) def DictFromListofTuples(listtuples): dic = {} for i,j in listtuples: dic[i] = j return dic # Function that computes every routing cost for every vehicle that visits clients and satellites def GetMaxRoutingCosts(N, K, depots, DictNodes, r, gamma, w_final, q_final): RC = {} Kfil = [k for k in K if DictNodes[k]['S'] and DictNodes[k]['C']] # Vehicles that visit satellites and clients for k in Kfil: routing, routing_list = GetRoutingList(k,depots[k],N,w_final) freightcost = ComputeRouteCost(q_final, routing, k, gamma, r) RC[k] = freightcost try: RC = DictFromListofTuples(sorted(RC.items(), key=lambda x: x[1], reverse=True)) except: pass return RC # Function that determines the "most expensive" destination in a route def GetNode2Exclude(routing, q, qe, v, C, k, gamma, r, banlist): DictRouFreight = dict(zip(routing,[qe[i,j,k]*r[i,j]*gamma[k] for (i,j) in routing])) MaxCost = 0 ex = None q_ex = None v_ex = None for t in routing: if t[1] in C and t[1] not in banlist: if DictRouFreight[t] > MaxCost: ex = t[1] MaxCost = DictRouFreight[t] # get freight from that node if ex != None: ant_ex = [t for t in routing if t[1] == ex][0][0] post_ex = [t for t in routing if t[0] == ex][0][1] q_ex = q[ant_ex,ex,k] - q[ex,post_ex,k] qe_ex = qe[ant_ex,ex,k] - qe[ex,post_ex,k] v_ex = v[ant_ex,ex,k] - v[ex,post_ex,k] return ex, q_ex, qe_ex, v_ex def GetNode2ExcludeFromVs(routing, q, v, C, k, gamma, r, banlist): DictRouFreight = dict(zip(routing,[q[i,j,k]*r[i,j]*gamma[k] for (i,j) in routing])) MaxCost = 0 ex = None q_ex = None v_ex = None if len(routing) > 2: for t in routing: if t[1] in C and t[1] not in banlist: if DictRouFreight[t] > MaxCost: ex = t[1] MaxCost = DictRouFreight[t] elif len(routing) == 2: ##print('Route of lenght 2') ex = routing[0][1] else: pass if ex != None: ant_ex = [t for t in routing if t[1] == ex][0][0] post_ex = [t for t in routing if t[0] == ex][0][1] q_ex = q[ant_ex,ex,k] - q[ex,post_ex,k] v_ex = v[ant_ex,ex,k] - v[ex,post_ex,k] return ex, q_ex, v_ex # Function that takes a route and adds a node to that route def ReroutingAdd(routing, tremove, tadd): rerouting = [] for t in routing: if t == tremove: rerouting = rerouting + tadd #tadd is a list of 2 tuples else: rerouting.append(t) return rerouting # Function that takes a route and removes a node from that route def ReroutingRemove(routing, ex): rerouting = [] t_aux = [None,None] for t in routing: flag = True if t[1] == ex: t_aux[0] = t[0] flag = False if t[0] == ex: t_aux[1] = t[1] flag = False try: if sum(t_aux) > 0: rerouting.append(tuple(t_aux)) t_aux = [None,None] except: pass if flag: rerouting.append(t) return rerouting # Function that decides which is the best way for adding a node to a route def MinRouteVariation(Vsat, ex, r, DictRoutes): MinDist = np.inf for k in Vsat: d0 = DictRoutes[k][0] for t in DictRoutes[k]: i1 = t[0] j1 = t[1] dist = r[i1,ex] + r[j1,t[1]] if i1 != d0 and j1 != d0: if dist < MinDist: ks = k i = t[0] l = t[1] tremove = (i,l) tadd = [(i,ex), (ex,l)] MinDist = dist # Rerouting rerouting = ReroutingAdd(DictRoutes[ks], tremove, tadd) return ks, rerouting # Function that decides which satellite will receive the freight from the excluded node def SelectSatellite(ex, q_ex, v_ex, Sk, V_i, cdv, cdw, Phi_, Theta_, r, DictRoutes): sat = None ks = None rerouting = None MinDist = np.inf for s in Sk: if q_ex <= cdw[s] and v_ex <= cdv[s]: Vsat = [k for k in V_i[s] if Theta_[k] >= q_ex and Phi_[k] >= v_ex] if len(Vsat) > 0: if r[s,ex] < MinDist: sat = s MinDist = r[s,ex] ks, rerouting = MinRouteVariation(Vsat, ex, r, DictRoutes) return sat, ks, rerouting # Function for recomputing the freight for routing def RecomputeFreightEx(q_final,w_final, N, k, ex, q_ex, sat, routing, gamma, r): routing_list = [routing[0][0]] for t in routing: routing_list.append(t[1]) flag_ex = 0 q_rec = {} for i in routing_list[:-1]: j = int(sum([w_final[i,j,k]*j for j in N])) if j == ex: ex_ant = i flag_ex = q_ex elif j == sat: if i == ex: q_rec[ex_ant,j,k] = q_final[i,j,k] + flag_ex else: q_rec[i,j,k] = q_final[i,j,k] + flag_ex flag_ex = 0 else: if i == ex: q_rec[ex_ant,j,k] = q_final[i,j,k] + flag_ex else: q_rec[i,j,k] = q_final[i,j,k] + flag_ex rerouting = ReroutingRemove(routing, ex) return ComputeRouteCost(q_rec, rerouting, k, gamma, r) # Function for recomputing the freight for routing def RecomputeFreightAdd(q_final, N, k, ex, q_ex, rerouting, gamma, r): flag_ex = q_ex q_rec = {} for t in rerouting: i = t[0] j = t[1] if j == ex: ex_ant = i else: if i == ex: q_rec[ex_ant,i,k] = q_final[ex_ant,j,k] + flag_ex flag_ex = 0 q_rec[i,j,k] = q_final[ex_ant,j,k] + flag_ex else: q_rec[i,j,k] = q_final[i,j,k] + flag_ex return ComputeRouteCost(q_rec, rerouting, k, gamma, r) def RecomputeFreightExFromKs(q_final,w_final, N, k, ex, q_ex, routing, gamma, r): ##print('Removing %s from freigh of vehicle %s' %(q_ex, k)) # Function for recomputing freight if len(routing) > 2: routing_list = [routing[0][0]] for t in routing: routing_list.append(t[1]) flag_ex = q_ex q_rec = {} for i in routing_list[:-1]: j = int(sum([w_final[i,j,k]*j for j in N])) if j == ex: ex_ant = i flag_ex = 0 else: if i == ex: q_rec[ex_ant,j,k] = q_final[i,j,k] - flag_ex else: q_rec[i,j,k] = q_final[i,j,k] - flag_ex rerouting = ReroutingRemove(routing, ex) cost = ComputeRouteCost(q_rec, rerouting, k, gamma, r) else: cost = 0 return cost def RecomputeFreightAddToKd(q_final, N, k, ex, q_ex, sat, rerouting, gamma, r): # Function for recomputing the freight for routing ##print('Adding %s to freight of vehicle %s' %(q_ex, k)) ##print('Rerouting: ', rerouting) q_or = {} for (i,j) in rerouting: try: q_or[i,j,k] = q_final[i,j,k] except: pass routing_list = [rerouting[0][0]] for t in rerouting: routing_list.append(t[1]) if routing_list.index(ex) < routing_list.index(sat): flag_ex = 0 q_rec = {} for t in rerouting: i = t[0] j = t[1] if j == ex: ex_ant = i else: if i == ex: q_rec[ex_ant,ex,k] = q_final[ex_ant,j,k] flag_ex = q_ex q_rec[ex,j,k] = q_final[ex_ant,j,k] - flag_ex elif i == sat: flag_ex = 0 q_rec[sat,j,k] = q_final[sat,j,k] - flag_ex else: q_rec[i,j,k] = q_final[i,j,k] - flag_ex else: flag_ex = 0 q_rec = {} for t in rerouting: i = t[0] j = t[1] if j == ex: ex_ant = i else: if i == ex: q_rec[ex_ant,ex,k] = q_final[ex_ant,j,k] q_rec[ex,j,k] = q_final[ex_ant,j,k] - flag_ex flag_ex = 0 elif i == sat: flag_ex = q_ex q_rec[sat,j,k] = q_final[sat,j,k] + flag_ex else: q_rec[i,j,k] = q_final[i,j,k] + flag_ex ##print('Q nuevo: ', q_rec) return ComputeRouteCost(q_rec, rerouting, k, gamma, r) def ImproveOptimalSwapKdKs(RCVd, data, cdv, cdw, DictRoutes, DictRoutesList, DictNodes, DEMS_, Q0_, q_final, qe_final, v_final, w_final, Phi_, Theta_, depots): # Unpacking data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] V_i = data['V_i'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] rho = data['rho'] gamma = data['gamma'] r = data['r'] A = data['A'] N = F+D+S+C banlist = [] for kd in RCVd.keys(): flag_feasible = True flag_descend = True while flag_feasible and flag_descend: # Get node to exclude REMARK: IS ALWAYS A CLIENT!! try: ex, q_ex, qe_ex, v_ex = GetNode2Exclude(DictRoutes[kd], q_final, qe_final, v_final, C, kd, gamma, r, banlist) # Get satellite sat, ks, rerouting_ks = SelectSatellite(ex, q_ex, v_ex, DictNodes[kd]['S'], V_i, cdv, cdw, Phi_, Theta_, r, DictRoutes) except: sat = None # If there is a satelite... if sat != None: IncumbentCost = np.inf # PrevCost: routing cost for kd and ks without changes PrevCost = ComputeRouteCost(qe_final, DictRoutes[kd], kd, gamma, r) + ComputeRouteCost(qe_final, DictRoutes[ks], ks, gamma, r) Costkd = RecomputeFreightEx(qe_final,w_final, N, kd, ex, qe_ex, sat, DictRoutes[kd], gamma, r) Costks = RecomputeFreightAdd(qe_final, N, ks, ex, qe_ex, rerouting_ks, gamma, r) IncumbentCost = Costkd + Costks if A[ex,ks] < 0: IncumbentCost = np.inf ##print('Incumbent: ', IncumbentCost, ' previous: ', PrevCost) if IncumbentCost <= PrevCost: # Modify nodes for kd and ks ##print('Removing %s from the route of vehicle %s' % (ex,kd)) DictNodes[kd]['C'] = [c for c in DictNodes[kd]['C'] if c != ex] DictNodes[ks]['C'] = DictNodes[ks]['C'] + [ex] # Create entry for exchanged node DEMS_[ks][ex] = [0 for p in P] # Correct demand for excluded node for p in P: aux = DEMS_[kd][ex][p] DEMS_[kd][sat][p] = DEMS_[kd][sat][p] + aux Q0_[ks][p] = Q0_[ks][p] + aux DEMS_[ks][ex][p] = aux cdv[sat] = cdv[sat] + aux*nu[p] cdw[sat] = cdw[sat] + aux*omega[p] del DEMS_[kd][ex] # Re routing for kd ##print('RE ROUTING FOR VEHICLE %s' % kd) F_ = DictNodes[kd]['F'] D_ = DictNodes[kd]['D'] S_ = DictNodes[kd]['S'] C_ = DictNodes[kd]['C'] N_ = F_ + D_ + S_ + C_ data_routing = {'Q0' : Q0_[kd], 'DEM': DEMS_[kd], 'N': N_, 'F' : F_, 'D': D_, 'S': S_, 'C': C_, 'P' : P, 'Phi' : Phi[kd], 'Theta': Theta[kd], 'nu' : nu, 'omega': omega, 'd0' : depots[kd], 'gamma': gamma[kd], 'rho' : rho[kd], 'r' : r} model_rou = FlowRouting(data_routing) model_rou.optimize() try: qe, q, w, v = model_rou.__data q_rou = model_rou.getAttr('x', q) qe_rou = model_rou.getAttr('x', qe) w_rou = model_rou.getAttr('x', w) v_rou = model_rou.getAttr('x', v) for i in N_: for j in N_: try: q_final[i,j,kd] = q_rou[i,j] qe_final[i,j,kd] = qe_rou[i,j] w_final[i,j,kd] = w_rou[i,j] v_final[i,j,kd] = v_rou[i,j] except: q_final[i,j,kd] = 0 qe_final[i,j,kd] = 0 w_final[i,j,kd] = 0 v_final[i,j,kd] = 0 # Delete route for excluded node for i in N_: q_final[i,ex,kd] = 0 qe_final[i,ex,kd] = 0 w_final[i,ex,kd] = 0 v_final[i,ex,kd] = 0 q_final[ex,i,kd] = 0 qe_final[ex,i,kd] = 0 w_final[ex,i,kd] = 0 v_final[ex,i,kd] = 0 Theta_[kd] = Theta[kd] - max([q_rou[i,j] for i in N_ for j in N_]) Phi_[kd] = Phi[kd] - max([v_rou[i,j] for i in N_ for j in N_]) DictRoutes[kd], DictRoutesList[kd] = GetRoutingList(kd,depots[kd],N,w_final) DictNodes[kd] = {'F' : F_, 'D' : D_, 'S': S_, 'C': C_} banlist.append(ex) except: pass ##print('ERROR FOR VEHICLE %s' % kd) ##print('RE ROUTING FOR VEHICLE %s' % ks) F_ = DictNodes[ks]['F'] D_ = DictNodes[ks]['D'] S_ = DictNodes[ks]['S'] C_ = DictNodes[ks]['C'] N_ = F_ + D_ + S_ + C_ data_routing = {'Q0' : Q0_[ks], 'DEM': DEMS_[ks], 'N': N_, 'F' : F_, 'D': D_, 'S': S_, 'C': C_, 'P' : P, 'Phi' : Phi[ks], 'Theta': Theta[ks], 'nu' : nu, 'omega': omega, 'd0' : depots[ks], 'gamma': gamma[ks], 'rho' : rho[ks], 'r' : r} model_rou = FlowRouting(data_routing) model_rou.optimize() try: qe, q, w, v = model_rou.__data q_rou = model_rou.getAttr('x', q) qe_rou = model_rou.getAttr('x', qe) w_rou = model_rou.getAttr('x', w) v_rou = model_rou.getAttr('x', v) for i in N_: for j in N_: try: q_final[i,j,ks] = q_rou[i,j] qe_final[i,j,ks] = qe_rou[i,j] w_final[i,j,ks] = w_rou[i,j] v_final[i,j,ks] = v_rou[i,j] except: q_final[i,j,ks] = 0 qe_final[i,j,ks] = 0 w_final[i,j,ks] = 0 v_final[i,j,ks] = 0 Theta_[ks] = Theta[ks] - max([q_rou[i,j] for i in N_ for j in N_]) Phi_[ks] = Phi[ks] - max([v_rou[i,j] for i in N_ for j in N_]) DictRoutes[ks], DictRoutesList[ks] = GetRoutingList(ks,depots[ks],N,w_final) DictNodes[ks] = {'F' : F_, 'D' : D_, 'S': S_, 'C': C_} except: pass ##print('ERROR IN REOPTI?IWING VEHICLE %s' % ks) else: ##print('No more feasible changes for Vehicle %s' % kd) flag_descend = False else: ##print('No more feasible changes for Vehicle %s' % kd) flag_feasible = False solution_swapkdks = {'DictRoutes' : DictRoutes, 'DictNodes' : DictNodes, 'DEMS_' : DEMS_, 'Q0_' : Q0_, 'q_final' : q_final, 'v_final' : v_final, 'w_final' : w_final, 'Phi_' : Phi_, 'Theta_' : Theta_, 'cdv' : cdv, 'cdw' : cdw, 'banlist' : banlist} return solution_swapkdks def AddNodeToSet(dictclass, add, F, D, S, C): cla = dictclass[add] if cla == 'F': F = F + [add] elif cla == 'D': D = D + [add] elif cla == 'S': S = S + [add] elif cla == 'C': C = C + [add] else: pass return F,D,S,C def RemoveNodeFromSet(dictclass, rem, F, D, S, C): cla = dictclass[rem] if cla == 'F': F = [f for f in F if f != rem] elif cla == 'D': D = [d for d in D if d != rem] elif cla == 'S': S = [s for s in S if s != rem] elif cla == 'C': C = [c for c in C if c != rem] else: pass return F,D,S,C def AddAndRemoveFromRoute(dictclass, DEMS_, P, DictNodes, k, add, DemAdd, rem, DemRem, r, depots, Q0_, Phi, Theta, nu, omega, rho, gamma): demms = DEMS_.copy() DEM_ = demms[k] Q0 = Q0_[k].copy() F_ = DictNodes[k]['F'] D_ = DictNodes[k]['D'] S_ = DictNodes[k]['S'] C_ = DictNodes[k]['C'] d0 = depots[k] ##print('AddAndRemoveFromRoute: Original demands ', DEM_) if add != None: ##print('AddAndRemoveFromRoute: Attempting to add node %s to vehicle %s' % (add,k)) F_, D_, S_, C_ = AddNodeToSet(dictclass, add, F_, D_, S_, C_) DEM_[add] = [0 for p in P] for p in P: aux = DemAdd[p] DEM_[add][p] = aux # Demand for the new node if rem != None: ##print('AddAndRemoveFromRoute: Attempting to remove node %s to vehicle %s' % (rem,k)) F_, D_, S_, C_ = RemoveNodeFromSet(dictclass, rem, F_, D_, S_, C_) for p in P: aux = DemRem[p] DEM_[rem][p] = DEM_[rem][p] - aux # If rem is depot, it will receive less feight # If rem is client, it will have demand 0 N_ = F_ + D_ + S_ + C_ q_rou, w_rou, v_rou = {},{},{} for i in N_: for j in N_: q_rou[i,j,k] = 0 v_rou[i,j,k] = 0 w_rou[i,j,k] = 0 N_mind0 = [n for n in N_ if n != d0] for n in N_mind0: if max([np.absolute(DEM_[n][p]) for p in P]) < 1: ##print('AddAndRemoveFromRoute: Removing node %s from route of vehicle %s because of empty demand' % (n,k)) # ##printx = True F_, D_, S_, C_ = RemoveNodeFromSet(dictclass, n, F_, D_, S_, C_) Route, RouteList = [], [] NewDictNodes = {'F' : F_, 'D': D_, 'S': S_, 'C': C_} ##print('AddAndRemoveFromRoute: Vehicle %s, Nodes: ' % k, NewDictNodes) ##print('AddAndRemoveFromRoute: Vehicle %s, Demands: ' % k, DEM_) flag_optim = True N_ = F_ + D_ + S_ + C_ if len(N_) > 2: data_routing = {'Q0' : Q0, 'DEM': DEMS_, 'N': N_, 'F' : F_, 'D': D_, 'S': S_, 'C': C_, 'P' : P, 'Phi' : Phi[k], 'Theta': Theta[k], 'nu' : nu, 'omega': omega, 'd0' : depots[k], 'gamma': gamma[k], 'rho' : rho[k], 'r' : r} model_rou = FlowRouting(data_routing) model_rou.optimize() try: q, w, v = model_rou.__data q_rou2 = model_rou.getAttr('x', q) w_rou2 = model_rou.getAttr('x', w) v_rou2 = model_rou.getAttr('x', v) for (i,j) in q_rou2: q_rou[i,j,k] = q_rou2[i,j] w_rou[i,j,k] = w_rou2[i,j] v_rou[i,j,k] = v_rou2[i,j] Route, RouteList = GetRoutingList(k,d0,N_,w_rou) ##print('End routing vehicle %s' % k) except: flag_optim = False ##print('Infeasible routing for vehicle %s' % k) elif len(N_) == 2: j = [n for n in N_ if n != d0][0] w_rou[d0, j, k] = 1 q_rou[d0, j, k] = sum([Q0[p]*omega[p] for p in P]) v_rou[d0, j, k] = sum([Q0[p]*nu[p] for p in P]) w_rou[j, d0, k] = 1 q_rou[j, d0, k] = 0 v_rou[j, d0, k] = 0 Route, RouteList = [(d0,j), (j,d0)], [d0,j] else: pass CapVolRem = Theta[k] - max([q_rou[i,j,k] for i in N_ for j in N_]) CapWeiRem = Phi[k] - max([v_rou[i,j,k] for i in N_ for j in N_]) if flag_optim: FreightCost = sum([q_rou[i,j,k]*gamma[k]*r[i,j] for i in N_ for j in N_]) else: FreightCost = np.infty return FreightCost, Route, RouteList, DEM_, Q0, CapVolRem, CapWeiRem, q_rou, w_rou, v_rou, NewDictNodes def AuxRoutingKd(DEMS_, P, DictNodes, k, add, DemAdd, sat, r, depots, Q0_, Phi, Theta, nu, omega, rho, gamma, omegaeff): # Kd gets a new node on its route. This new node has demand and, as before # was served by a satellite, now that satelite receives less freight demms = DEMS_.copy() DEM_ = demms[k] Q0 = Q0_[k].copy() F_ = DictNodes[k]['F'] D_ = DictNodes[k]['D'] S_ = DictNodes[k]['S'] C_ = DictNodes[k]['C'] d0 = depots[k] if add != None: ##print('AuxRoutingKd: adding node %s to route of vehicle %s' % (add, k)) C_ = C_ + [add] DEM_[add] = [0 for p in P] for p in P: aux = DemAdd[p] DEM_[sat][p] = DEM_[sat][p] - aux # satellite receives less freight DEM_[add][p] = aux # Demand for the new node N_ = F_ + D_ + S_ + C_ q_rou, w_rou, v_rou = {},{},{} for i in N_: for j in N_: q_rou[i,j,k] = 0 v_rou[i,j,k] = 0 w_rou[i,j,k] = 0 N_mind0 = [n for n in N_ if n != d0] for n in N_mind0: if max([np.absolute(DEM_[n][p]) for p in P]) < 1: ##print('AuxRoutingKd: Removing node %s from route of vehicle %s because of empty demand' % (n,k)) F_ = [f for f in F_ if f != n] D_ = [d for d in D_ if d != n] S_ = [s for s in S_ if s != n] C_ = [c for c in C_ if c != n] N_ = F_ + D_ + S_ + C_ Route, RouteList = [], [] NewDictNodes = {'F' : F_, 'D': D_, 'S': S_, 'C': C_} ##print('AuxRoutingKd: Vehicle %s, Nodes: ' % k, NewDictNodes) # Consolidation of weight and volume flag_optim = True if len(N_) > 2: data_routing = {'Q0' : Q0, 'DEM': DEM_, 'N': N_, 'F' : F_, 'D': D_, 'S': S_, 'C': C_, 'P' : P, 'Phi' : Phi[k], 'Theta': Theta[k], 'nu' : nu, 'omega': omega, 'omegaeff': omegaeff, 'd0' : depots[k], 'gamma': gamma[k], 'rho' : rho[k], 'r' : r} model_rou = FlowRouting(data_routing) model_rou.optimize() try: q, w, v = model_rou.__data q_rou2 = model_rou.getAttr('x', q) w_rou2 = model_rou.getAttr('x', w) v_rou2 = model_rou.getAttr('x', v) for (i,j) in q_rou2: q_rou[i,j,k] = q_rou2[i,j] w_rou[i,j,k] = w_rou2[i,j] v_rou[i,j,k] = v_rou2[i,j] Route, RouteList = GetRoutingList(k,d0,N_,w_rou) ##print('End routing vehicle %s' % k) except: flag_optim = False ##print('Infeasible routing for vehicle %s' % k) elif len(N_) == 2: j = [n for n in N_ if n != d0][0] w_rou[d0, j, k] = 1 q_rou[d0, j, k] = sum([Q0[p]*omega[p] for p in P]) v_rou[d0, j, k] = sum([Q0[p]*nu[p] for p in P]) w_rou[j, d0, k] = 1 q_rou[j, d0, k] = 0 v_rou[j, d0, k] = 0 Route, RouteList = [(d0,j), (j,d0)], [d0,j] else: pass CapVolRem = Theta[k] - max([q_rou[i,j,k] for i in N_ for j in N_]) CapWeiRem = Phi[k] - max([v_rou[i,j,k] for i in N_ for j in N_]) if flag_optim: FreightCost = sum([q_rou[i,j,k]*gamma[k]*r[i,j] for i in N_ for j in N_]) else: FreightCost = np.infty return FreightCost, Route, RouteList, DEM_, Q0, CapVolRem, CapWeiRem, q_rou, w_rou, v_rou, NewDictNodes def AuxRoutingKs(DEMS_, P, DictNodes, k, ex, DemRem, sat, r, depots, Q0_, Phi, Theta, nu, omega, rho, gamma, omegaeff): # Ks got a node removed. So Q0 changes demms = DEMS_.copy() DEM_ = demms[k] Q0 = Q0_[k].copy() F_ = DictNodes[k]['F'] D_ = DictNodes[k]['D'] S_ = DictNodes[k]['S'] C_ = DictNodes[k]['C'] d0 = depots[k] N_ = F_ + D_ + S_ + C_ C_ = [c for c in C_ if c != ex] DEM_[ex] = [0 for p in P] for p in P: aux = DemRem[p] Q0[p] = Q0[p] - aux # Vehicle starts with less freight DEM_[ex][p] = 0 N_ = F_ + D_ + S_ + C_ ##print('AuxRoutingKs: Vehicle %s, Nodes: ' % k, DictNodes[k]) q_rou, w_rou, v_rou = {},{},{} for i in N_: for j in N_: q_rou[i,j,k] = 0 v_rou[i,j,k] = 0 w_rou[i,j,k] = 0 Route, RouteList = [], [] # Consolidation of weight and volume Weight = {} Volume = {} for i in N_: Weight[i] = sum([DEM_[i][p]*omega[p] for p in P]) Volume[i] = sum([DEM_[i][p]*nu[p] for p in P]) flag_optim = True if len(N_) > 2: data_routing = {'Q0' : Q0, 'DEM': DEMS_, 'N': N_, 'F' : F_, 'D': D_, 'S': S_, 'C': C_, 'P' : P, 'Phi' : Phi[k], 'Theta': Theta[k], 'nu' : nu, 'omega': omega, 'omegaeff': omegaeff, 'd0' : depots[k], 'gamma': gamma[k], 'rho' : rho[k], 'r' : r} model_rou = FlowRouting(data_routing) model_rou.optimize() model_rou.optimize() try: q, w, v = model_rou.__data q_rou2 = model_rou.getAttr('x', q) w_rou2 = model_rou.getAttr('x', w) v_rou2 = model_rou.getAttr('x', v) for (i,j) in q_rou2: q_rou[i,j,k] = q_rou2[i,j] w_rou[i,j,k] = w_rou2[i,j] v_rou[i,j,k] = v_rou2[i,j] Route, RouteList = GetRoutingList(k,d0,N_,w_rou) ##print('End routing vehicle %s' % k) except: flag_optim = False ##print('Infeasible routing for vehicle %s' % k) elif len(N_) == 2: j = [n for n in N_ if n != d0][0] w_rou[d0, j, k] = 1 q_rou[d0, j, k] = sum([Q0[p]*omega[p] for p in P]) v_rou[d0, j, k] = sum([Q0[p]*nu[p] for p in P]) w_rou[j, d0, k] = 1 q_rou[j, d0, k] = 0 v_rou[j, d0, k] = 0 Route, RouteList = [(d0,j), (j,d0)], [d0,j] else: pass CapVolRem = Theta[k] - max([q_rou[i,j,k] for i in N_ for j in N_]) CapWeiRem = Phi[k] - max([v_rou[i,j,k] for i in N_ for j in N_]) if flag_optim: FreightCost = sum([q_rou[i,j,k]*gamma[k]*r[i,j] for i in N_ for j in N_]) else: FreightCost = np.infty NewDictNodes = {'F' : F_, 'D': D_, 'S': S_, 'C': C_} return FreightCost, Route, RouteList, DEM_, Q0, CapVolRem, CapWeiRem, q_rou, w_rou, v_rou, NewDictNodes def ImproveOptimalSwapKsKd(RCVs, data, banlist, DictSatKd, cdv, cdw, DictRoutes, DictRoutesList, DictNodes, DEMS_, Q0_, q_final, v_final, w_final, Phi_, Theta_, depots): # Unpacking data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] V_i = data['V_i'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] omegaeff = data['omegaeff'] rho = data['rho'] gamma = data['gamma'] DEM = data['DEM'] r = data['r'] A = data['A'] N = F+D+S+C ##print('starting: ImproveOptimalSwapKsKd') # PARAMETER THAT SAYS HOW MANY VEHICLES FROM DEPOTS ARE BEING USED: depots_list = [] for dep in depots.values(): if dep not in depots_list: depots_list.append(dep) VehiclesPerDepot = {} for dep in depots_list: VehiclesPerDepot[dep] = sum([w_final[dep,j,k] for j in N for k in V_i[dep]]) ##print(VehiclesPerDepot) for ks in RCVs.keys(): ##print('Vehicle %s' % ks) flag_feasible = True flag_descend = True while flag_feasible and flag_descend: ex, q_ex, v_ex = GetNode2ExcludeFromVs(DictRoutes[ks], q_final, v_final,C, ks, gamma, r, banlist) if ex != None: # patch qex y vex (sometimes it has errors) q_ex = sum([DEM[ex][p]*omega[p] for p in P]) v_ex = sum([DEM[ex][p]*nu[p] for p in P]) ##print('Original demand of node %s: ' % ex, DEM[ex]) ##print('Original freight of node %s: ' % ex, q_ex) sat = depots[ks] kd, rerouting_kd = MinRouteVariation([DictSatKd[sat]], ex, r, DictRoutes) # Backup for satellite demand dem_sat = [dem for dem in DEMS_[kd][sat]] else: sat = None # If there is a satelite... if sat != None and A[ex,kd] > 0: IncumbentCost = np.inf # PrevCost: routing cost for kd and ks without changes Costkd_pre = ComputeRouteCost(q_final, DictRoutes[kd], kd, gamma, r) Costks_pre = ComputeRouteCost(q_final, DictRoutes[ks], ks, gamma, r) PrevCost = Costkd_pre + Costks_pre ##print('Attempting to remove node %s from route of vehicle %s (sat = %s)' % (ex, ks,sat)) # Aux##printPreRerouting(DEMS_, Q0_, kd , nu, omega, P, DictNodes) Sol_kd = AuxRoutingKd(DEMS_, P, DictNodes, kd, ex, DEM[ex], sat, r, depots, Q0_, Phi, Theta, nu, omega, rho, gamma, omegaeff) Costkd_pos = Sol_kd[0] # Aux##printPreRerouting(DEMS_, Q0_, ks , nu, omega, P, DictNodes) Sol_ks = AuxRoutingKs(DEMS_, P, DictNodes, ks, ex, DEM[ex], sat, r, depots, Q0_, Phi, Theta, nu, omega, rho, gamma, omegaeff) Costks_pos = Sol_ks[0] # CHECK IF SATELLITE HAS EMPTY ROUTE if Sol_ks[10]['C']: IncumbentCost = Costkd_pos + Costks_pos else: ##print('Vehicle %s has an empty route' % ks) if VehiclesPerDepot[depots[ks]] - 1 == 0: IncumbentCost = Costkd_pos + Costks_pos - 1000 ##print('Attempting to close satelite %s' % depots[ks]) ##print('Incumbent: ', IncumbentCost, ' previous: ', PrevCost) if IncumbentCost <= PrevCost: ##print('Updating routes for vehicles kd = %s and ks = %s' % (kd,ks)) DictSol = {kd : Sol_kd, ks: Sol_ks} #FreightCost, Route, RouteList, DEM, Q0, CapVolRem, CapWeiRem, q_rou, w_rou, v_rou for k in [kd,ks]: OldRoute = DictRoutes[k] for (i,j) in OldRoute: q_final[i,j,k] = 0 w_final[i,j,k] = 0 v_final[i,j,k] = 0 DictRoutes[k] = DictSol[k][1] DictRoutesList[k] = DictSol[k][2] DEMS_[k] = DictSol[k][3] Q0_[k] = DictSol[k][4] Phi_[k] = DictSol[k][5] Theta_[k] = DictSol[k][6] for (i,j) in DictSol[k][1]: q_final[i,j,k] = DictSol[k][7][i,j,k] w_final[i,j,k] = DictSol[k][8][i,j,k] v_final[i,j,k] = DictSol[k][9][i,j,k] # Nodes are modified DictNodes[k] = DictSol[k][10] # Se agrega nuevo Node a kd y se quita de ks: # Remaining capacities of depots are modified: cdw[depots[ks]] = cdw[depots[ks]] + q_ex cdv[depots[ks]] = cdv[depots[ks]] + v_ex if Sol_ks[10]['C']: pass else: VehiclesPerDepot[depots[ks]] = VehiclesPerDepot[depots[ks]] - 1 ##print('There was an exchange between kd = %s y ks = %s' % (kd,ks)) else: ##print('There was not an exchange between kd = %s y ks = %s' % (kd,ks)) DEMS_[kd][sat] = dem_sat del DEMS_[kd][ex] flag_descend = False else: ##print('No more feasible changes for Vehicle %s' % ks) flag_feasible = False solution_swapkskd = {'DictRoutes' : DictRoutes, 'DictNodes' : DictNodes, 'DEMS_' : DEMS_, 'Q0_' : Q0_, 'q_final' : q_final, 'v_final' : v_final, 'w_final' : w_final, 'Phi_' : Phi_, 'Theta_' : Theta_, 'cdv' : cdv, 'cdw' : cdw, 'banlist' : banlist} return solution_swapkskd def Steps1To3(data): # Unpacking data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] P_f = data['P_f'] K = data['K'] V_i = data['V_i'] DEM = data['DEM'] Lambd = data['Lambd'] Omega = data['Omega'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] omegaeff = data['omegaeff'] rho = data['rho'] delta = data['delta'] gamma = data['gamma'] r = data['r'] epsil = data['epsil'] A = data['A'] firmswithout = F[- max(int(len(F)*0.2), 1):] #This is just for saying that 20% of the firms (or at least 1) # don't have vehicles Fw = [f for f in firmswithout] FminFw = [f for f in F if f not in Fw] Vs = [item for sublist in [V_i[s] for s in S] for item in sublist] Vd = [item for sublist in [V_i[d] for d in D] for item in sublist] N = F+D+S+C DcupS = D + S ScupC = S + C NminC = F + D + S # Other parameters VolClient = {} WeightClient = {} for client, dem in DEM.items(): VolClient[client] = sum([dem[p]*nu[p] for p in P]) WeightClient[client] = sum([dem[p]*omega[p] for p in P]) MinVolDep = {} MinWeightDep = {} for i in DcupS: MinVolDep[i] = min(Lambd[i], sum([Phi[k] for k in V_i[i]])) MinWeightDep[i] = min(Omega[i], sum([Theta[k] for k in V_i[i]])) ServCost = [] PfromFw = [item for sublist in [P_f[f] for f in Fw] for item in sublist] F_p = {} for f in F: for p in P_f[f]: F_p[p] = f # Serving cost for delivering to customers for i in D: # gamma_ki = max([gamma[v] for v in V_i[i]]) # rho_ki = max([rho[v] for v in V_i[i]]) for c in C: Weight_cf = {} gamma_kf = {} rho_kf = {} for f in F: Weight_cf[f] = sum([DEM[c][p]*omegaeff[p] for p in P_f[f]]) gamma_kf[f] = 0 rho_kf[f] = 0 # gamma_kf[f] = max([gamma[v] for v in V_i[f]]) # rho_kf[f] = max([rho[v] for v in V_i[f]]) # Check if customer c demanded products from firms without vehicles if sum([DEM[c][p] for p in PfromFw]) > 0: flag_fw = True FirmsToVisit = [f for f in Fw if max([DEM[c][p] for p in P_f[f]]) > 0] else: flag_fw = False load_cost_f1 = sum([r[f,i]*(gamma_kf[f]*Weight_cf[f] + rho_kf[f]) for f in FminFw]) for k in V_i[i]: if A[c,k] > 0: gamma_ki = gamma[k] rho_ki = rho[k] if flag_fw: f0, load_cost_f2 = GreedyRoutingForServingCost(i, sum([Weight_cf[f] for f in FminFw]), FirmsToVisit, Weight_cf, gamma_ki, rho_ki, r) del_cost = r[f0,c]*(gamma_ki*sum([Weight_cf[f] for f in Fw]) + rho_ki) else: load_cost_f2 = 0 del_cost = r[i,c]*(gamma_ki*sum([Weight_cf[f] for f in F]) + rho_ki) """HERE WE CAN ADD ADDITIONAL COSTS FOR ROUTING""" sc = load_cost_f1 + load_cost_f2 + del_cost + delta[k] ServCost.append([i,c,k, sc, VolClient[c], WeightClient[c]]) # serving cost for satellite for i in S: for c in C: Weight_cf = {} gamma_kf = {} rho_kf = {} for f in F: Weight_cf[f] = sum([DEM[c][p]*omegaeff[p] for p in P_f[f]]) gamma_kf[f] = 0 rho_kf[f] = 0 # gamma_kf[f] = max([gamma[v] for v in V_i[f]]) # rho_kf[f] = max([rho[v] for v in V_i[f]]) # Check if customer c demanded products from firms without vehicles if sum([DEM[c][p] for p in PfromFw]) > 0: flag_fw = True FirmsToVisit = [f for f in Fw if max([DEM[c][p] for p in P_f[f]]) > 0] else: flag_fw = False load_cost_f1 = GetMinimalLoadCostF1(r, i, gamma, Weight_cf, rho, FminFw, D, V_i) if flag_fw: del_cost = GetBestDeliveringCost(r, i, gamma, Weight_cf, rho, FirmsToVisit, D, V_i) else: del_cost = 0 for k in V_i[i]: if A[c,k] > 0: gamma_ki = max([gamma[v] for v in V_i[i]]) rho_ki = max([rho[v] for v in V_i[i]]) del_cost = r[i,c]*(gamma_ki*sum([Weight_cf[f] for f in Fw]) + rho_ki) + epsil[i] sc = load_cost_f1 + del_cost + epsil[i] + delta[k] ServCost.append([i,c,k,sc, VolClient[c], WeightClient[c]]) df_sc = pd.DataFrame(data = ServCost, columns = ['depot','customer','vehicle','servcost','volume','weight']) df_sc = df_sc.sort_values(by='servcost', ascending = True).reset_index(drop=True) openedS = [] usedK = [] DEM_i = {} # Dictionary for depots demands for i in DcupS: DEM_i[i] = [0 for p in P] h_opt = {} m_opt = {} x_opt = {} y_opt = {} u_opt = {} z_opt = {} Weight_i = {} Volume_i = {} for i in DcupS: Weight_i[i] = 0 Volume_i[i] = 0 Weight_k = {} Volume_k = {} for k in K: Weight_k[k] = 0 Volume_k[k] = 0 # #print(df_sc) while df_sc.shape[0] > 0: # Always check first element in dataframe i = int(df_sc.loc[0]['depot']) c = int(df_sc.loc[0]['customer']) k = int(df_sc.loc[0]['vehicle']) w = df_sc.loc[0]['weight'] v = df_sc.loc[0]['volume'] # #print(df_sc.head()) # #print(df_sc.shape[0]) #print('Customer %s trying to be added to depot %s' %(c,i)) # #print('Depot incumbent weight: %s of %s' % (Weight_i[i] + w, MinWeightDep[i])) # #print('Depot incumbent Volume: %s of %s' % (Volume_i[i] + v, MinVolDep[i])) if Weight_i[i] + w <= MinWeightDep[i] and Volume_i[i] + v <= MinVolDep[i]: # #print('Vehicle incumbent weight: %s of %s' % (Weight_k[k] + w, Theta[k])) # #print('Vehicle incumbent Volume: %s of %s' % (Volume_k[k] + v, Phi[k])) if Weight_k[k] + w <= Theta[k] and Volume_k[k] + v <= Phi[k]: # Add for p in P: if DEM[c][p] > 0: h_opt[p,i,c] = DEM[c][p] m_opt[p,c,k] = DEM[c][p] DEM_i[i][p] = DEM_i[i][p] + DEM[c][p] fp = F_p[p] if fp in Fw and k in Vd: if (p,fp,k) in x_opt.keys(): x_opt[p,fp,k] = x_opt[p,fp,k] + DEM[c][p] else: x_opt[p,fp,k] = DEM[c][p] Weight_i[i] = Weight_i[i] + w Volume_i[i] = Volume_i[i] + v Weight_k[k] = Weight_k[k] + w Volume_k[k] = Volume_k[k] + v z_opt[k,c] = 1 # Delete customer from set (becasue it was assigned) df_sc = df_sc[df_sc['customer'] != c] if i in S and i not in openedS: openedS.append(i) u_opt[i] = 1 # Substract the opening cost df_sc['servcost'] = np.where(df_sc['depot'] == i, df_sc['servcost'] - epsil[i], df_sc['servcost']) if k not in usedK: usedK.append(k) y_opt[k] = 1 # Substract the opening cost df_sc['servcost'] = np.where(df_sc['vehicle'] == k, df_sc['servcost'] - delta[k], df_sc['servcost']) # #print('Customer %s added to depot %s' %(c,i)) else: df_sc = df_sc[1:] else: df_sc = df_sc[1:] # wm = df_sc['weight'].min() # vm = df_sc['volume'].min() # if Weight_i[i] == MinWeightDep[i] or Volume_i[i] == MinVolDep[i]: # df_sc = df_sc[df_sc['depot'] != i] # if Weight_k[k] == Theta[k] or Volume_k[k] == Phi[k]: # df_sc = df_sc[df_sc['vehicle'] != k] # Reorder by servingcost df_sc = df_sc.sort_values(by='servcost', ascending = True).reset_index(drop=True) # Now, we know the satellites' demand for products. So, we will assign dustributor(s) to # each satellite as if they were customers # Serving cost for products from firms with vehicles # for s in openedS: # #print(DEM_i[s]) # #print('Opened satellites = %s' % len(openedS)) ServCost = [] for f in FminFw: for s in openedS: for p in P_f[f]: if DEM_i[s][p] > 0: w = DEM_i[s][p]*omega[p] we = DEM_i[s][p]*omegaeff[p] v = DEM_i[s][p]*nu[p] # for k in V_i[f]: # gamma_kf = gamma[k] # rho_kf = rho[k] # sc = r[f,s]*(gamma_kf*w + rho_kf) # ServCost.append([f, s, p, k, sc, v, w]) # gamma_kf = max([gamma[v] for v in V_i[f]]) # rho_kf = max([rho[v] for v in V_i[f]]) gamma_kf = 0 rho_kf = 0 for d in D: for k in V_i[d]: gamma_kd = gamma[k] rho_kd = rho[k] sc = r[f,d]*(gamma_kf*we + rho_kf) + r[d,s]*(gamma_kd*we + rho_kd) ServCost.append([d, s, p, k, sc, v, w]) # Serving cost for products from firms without vehicles: for f in Fw: for s in openedS: for p in P_f[f]: if DEM_i[s][p] > 0: w = DEM_i[s][p]*omega[p] we = DEM_i[s][p]*omegaeff[p] v = DEM_i[s][p]*nu[p] for d in D: for k in V_i[d]: gamma_kd = gamma[k] rho_kd = rho[k] sc = r[f,d]*(gamma_kd*we + rho_kd) + r[d,s]*(gamma_kd*we + rho_kd) if k not in usedK: sc = sc + delta[k] ServCost.append([d, s, p, k, sc, v, w]) df_sc = pd.DataFrame(data = ServCost, columns = ['depot','satellite','product','vehicle','servcost','volume','weight']) df_sc = df_sc.sort_values(by='servcost', ascending = True).reset_index(drop=True) df_sc['fixcostvehicle'] = [delta[v] for v in df_sc['vehicle'].tolist()] df_sc['servcost'] = np.where(df_sc['vehicle'].isin(usedK), df_sc['servcost'], df_sc['servcost'] + df_sc['fixcostvehicle']) while df_sc.shape[0] > 0: # Always check first element in dataframe i = int(df_sc.loc[0]['depot']) s = int(df_sc.loc[0]['satellite']) p = int(df_sc.loc[0]['product']) k = int(df_sc.loc[0]['vehicle']) w = int(df_sc.loc[0]['weight']) v = int(df_sc.loc[0]['volume']) if i in F: condition1 = True else: condition1 = Weight_i[i] + w <= MinWeightDep[i] and Volume_i[i] + v <= MinVolDep[i] # Add condition2 = Weight_k[k] + w <= Theta[k] and Volume_k[k] + v <= Phi[k] if condition1 and condition2: # if DEM_i[s][p] == 0: #print('Warning: s = %s and p = %s' % (s,p)) fp = F_p[p] h_opt[p,i,s] = DEM_i[s][p] # PATCH FOR MAKING PRODUCTS FROM FIRMS WITH VEHICLES APPEAR if fp not in Fw: m_opt[p,s,k] = 0 else: m_opt[p,s,k] = DEM_i[s][p] Weight_k[k] = Weight_k[k] + w Volume_k[k] = Volume_k[k] + v if i in D: DEM_i[i][p] = DEM_i[i][p] + DEM_i[s][p] Weight_i[i] = Weight_i[i] + w Volume_i[i] = Volume_i[i] + v if fp in Fw and k in Vd: if (p,fp,k) in x_opt.keys(): x_opt[p,fp,k] = x_opt[p,fp,k] + DEM_i[s][p] else: x_opt[p,fp,k] = DEM_i[s][p] if k not in usedK: usedK.append(k) y_opt[k] = 1 df_sc['servcost'] = df_sc['servcost'] - delta[k] DEM_i[s][p] = 0 df_sc = df_sc[1:] df_sc = df_sc[~((df_sc['satellite'] == s) & (df_sc['product'] == p))] else: df_sc = df_sc[1:] wm = df_sc['weight'].min() vm = df_sc['volume'].min() if i in D: if Weight_i[i] + wm > MinWeightDep[i] or Volume_i[i] + vm > MinVolDep[i]: df_sc = df_sc[df_sc['depot'] != i] if Weight_k[k] + wm > Theta[k] or Volume_k[k] + vm > Phi[k]: df_sc = df_sc[df_sc['vehicle'] != k] # Delete customer from set (becasue it was assigned) if sum([DEM_i[s][p_] for p_ in P]) < 1: df_sc = df_sc[df_sc['satellite'] != s] # Reorder by servingcost df_sc = df_sc.sort_values(by='servcost', ascending = True).reset_index(drop=True) cdv = {} cdw = {} for i in DcupS: cdv[i] = Lambd[i] - Volume_i[i] cdw[i] = Omega[i] - Weight_i[i] return m_opt, u_opt, x_opt, y_opt, z_opt, cdv, cdw def ExecuteMultiEchelon(data, filename = None, preplots = False): # Unpacking data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] P_f = data['P_f'] K = data['K'] V_i = data['V_i'] DEM = data['DEM'] Lambd = data['Lambd'] Omega = data['Omega'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] omegaeff = data['omegaeff'] rho = data['rho'] delta = data['delta'] gamma = data['gamma'] epsil = data['epsil'] r = data['r'] N = F+D+S+C dictclass = {} for f in F: dictclass[f] = 'F' for d in D: dictclass[d] = 'D' for s in S: dictclass[s] = 'S' for c in C: dictclass[c] = 'C' m_opt, u_opt, x_opt, y_opt, z_opt, cdv, cdw = Steps1To3(data) solution = MultiEchelonRouting(data, x_opt, y_opt, m_opt, z_opt, u_opt) # Unpack data from solution q_final = solution['q_final'] qe_final = solution['qe_final'] v_final = solution['v_final'] w_final = solution['w_final'] y_final = {} for k in K: try: y_final[k] = min(sum([w_final[i,j,k] for i in N for j in N]), 1) except: y_final[k] = 0 DictRoutes = solution['DictRoutes'] DictRoutesList = solution['DictRoutesList'] DictNodes = solution['DictNodes'] Theta_ = solution['Theta_'] Phi_ = solution['Phi_'] Q0_ = solution['Q0_'] DEMS_ = solution['DEMS_'] """RETRIEVE ORIGINAL OBJECTIVE FUNCTION VALUE""" # Aux m_final = {} # Patch m_final: for i in N: for j in N: for k in K: m_final[i,j,k] = m_opt.get((i,j,k),0) # Patch w_final, q final, v_final: for i in N: for j in N: for k in K: if (i,j,k) not in q_final: q_final[i,j,k] = 0 if (i,j,k) not in w_final: w_final[i,j,k] = 0 if (i,j,k) not in v_final: v_final[i,j,k] = 0 if preplots: AuxSubPlot(data, w_final, figsize = (5,5), save = True, filename = filename) u_final = {} for s in S: u_final[s] = u_opt.get(s,0) # Cost of Satellites SatCost = sum([u_final[s]*epsil[s] for s in S]) VehicCost = sum([y_final[k]*delta[k] for k in K]) ArcCost = sum([w_final[i,j,k]*r[i,j]*rho[k] for i in N for j in N for k in K]) FreightCost = sum([gamma[k]*qe_final[i,j,k]*r[i,j] for i in N for j in N for k in K]) Opt = SatCost + VehicCost + ArcCost + FreightCost depots = {} for i in D+S: for k in V_i[i]: depots[k] = i ##print('LOOP: START!') # WORKING HERE CurrentOpt = Opt Vd = [item for sublist in [V_i[d] for d in D] for item in sublist] n_iters = 3 iters = 1 tries = 1 while iters <= n_iters and tries < 2: ##print('Iter: %s, Try: %s' % (iters,tries)) RCVd = GetMaxRoutingCosts(N, Vd, depots, DictNodes, r, gamma, w_final, q_final) # ADD FUNCTION FOR SORT RCVd dictionary by value ##print('PERMUTACIONES KD A KS') solution_swapkdks = ImproveOptimalSwapKdKs(RCVd, data, cdv, cdw, DictRoutes, DictRoutesList, DictNodes, DEMS_, Q0_, q_final, qe_final, v_final, w_final, Phi_, Theta_, depots) # Unpack data DictRoutes = solution_swapkdks['DictRoutes'] DictNodes = solution_swapkdks['DictNodes'] DEMS_ = solution_swapkdks['DEMS_'] Q0_ = solution_swapkdks['Q0_'] q_final = solution_swapkdks['q_final'] v_final = solution_swapkdks['v_final'] w_final = solution_swapkdks['w_final'] Phi_ = solution_swapkdks['Phi_'] Theta_ = solution_swapkdks['Theta_'] cdv = solution_swapkdks['cdv'] cdw = solution_swapkdks['cdw'] banlist = solution_swapkdks['banlist'] # Patch w_final, q final, v_final: for i in N: for j in N: for k in K: if (i,j,k) not in q_final: q_final[i,j,k] = 0 if (i,j,k) not in w_final: w_final[i,j,k] = 0 if (i,j,k) not in v_final: v_final[i,j,k] = 0 # Get Dictionary with this structure: key = satellite, value = vehicle from D that visits that satellite KminV_is = {} for s in S: KminV_is[s] = [k for k in K if k not in V_i[s]] Sserv1 = [s for s in S if sum([w_final[s,j,k] for j in N for k in KminV_is[s]]) == 1] DictSatKd = {} for kd in Vd: if DictNodes[kd]['S']: for s in DictNodes[kd]['S']: if s in Sserv1: DictSatKd[s] = kd Vs1 = [item for sublist in [V_i[s] for s in DictSatKd.keys()] for item in sublist] RCVs = GetMaxRoutingCosts(N, Vs1, depots, DictNodes, r, gamma, w_final, q_final) solution_swapkskd = ImproveOptimalSwapKsKd(RCVs, data, banlist, DictSatKd, cdv, cdw, DictRoutes, DictRoutesList, DictNodes, DEMS_, Q0_, q_final, v_final, w_final, Phi_, Theta_, depots) DictRoutes = solution_swapkskd['DictRoutes'] DictNodes = solution_swapkskd['DictNodes'] DEMS_ = solution_swapkskd['DEMS_'] Q0_ = solution_swapkskd['Q0_'] q_final = solution_swapkskd['q_final'] v_final = solution_swapkskd['v_final'] w_final = solution_swapkskd['w_final'] Phi_ = solution_swapkskd['Phi_'] Theta_ = solution_swapkskd['Theta_'] cdv = solution_swapkskd['cdv'] cdw = solution_swapkskd['cdw'] banlist = solution_swapkskd['banlist'] # Patch w_final, q final, v_final: for i in N: for j in N: for k in K: if (i,j,k) not in q_final: q_final[i,j,k] = 0 if (i,j,k) not in w_final: w_final[i,j,k] = 0 if (i,j,k) not in v_final: v_final[i,j,k] = 0 for s in S: if sum(w_final[s,j,k] for j in N for k in V_i[s]) < 1: u_final[s] = 0 else: u_final[s] = 1 for k in K: y_final[k] = max(min(sum([w_final[i,j,k] for i in N for j in N]),1),0) SatCost = sum([u_final[s]*epsil[s] for s in S]) VehicCost = sum([y_final[k]*delta[k] for k in K]) ArcCost = sum([w_final[i,j,k]*r[i,j]*rho[k] for i in N for j in N for k in K]) FreightCost = sum([gamma[k]*q_final[i,j,k]*r[i,j] for i in N for j in N for k in K]) Opt = SatCost + VehicCost + ArcCost + FreightCost ### STEP FOR VEHICLES FROM FIRMS ### iters = iters + 1 if Opt < CurrentOpt: ##print('####################### REPORT FOR ITER %s #######################' % iters) ##print('Number of satellites open: %s at cost %s' % (sum([u_final[s] for s in S]), SatCost)) ##print('Number of vehicles used: %s at cost %s' % (sum([y_final[k] for k in K]), VehicCost)) ##print('Arc cost: %s' % ArcCost) ##print('Freight cost: %s' % FreightCost) ##print('Optimal value for original O.F: %s' % Opt) CurrentOpt = Opt tries = 1 else: tries = tries + 1 ##print('####################### FINAL REPORT #######################') for k in K: y_final[k] = max(min(sum([w_final[i,j,k] for i in N for j in N]),1),0) SatCost = sum([u_final[s]*epsil[s] for s in S]) VehicCost = sum([y_final[k]*delta[k] for k in K]) ArcCost = sum([w_final[i,j,k]*r[i,j]*rho[k] for i in N for j in N for k in K]) FreightCost = sum([gamma[k]*qe_final[i,j,k]*r[i,j] for i in N for j in N for k in K]) #print('Number of satellites open: %s at cost %s' % (sum([u_final[s] for s in S]), SatCost)) #print('Number of vehicles used: %s at cost %s' % (sum([y_final[k] for k in K]), VehicCost)) #print('Arc cost: %s' % ArcCost) #print('Freight cost: %s' % FreightCost) Opt = SatCost + VehicCost + ArcCost + FreightCost #print('Optimal value for original O.F: %s' % Opt) return q_final, w_final, u_final, y_final, DictRoutes, Opt """ FUNCTIONS FOR PLOTTING """ def PlotNodes(XY, F, D, S, C, figsize = (20,20)): fig, ax = plt.subplots(figsize= figsize) plt.scatter(XY[F,0],XY[F,1],color='red', label= 'Goods') plt.scatter(XY[D,0], XY[D,1],color='blue', label = 'Delivery') plt.scatter(XY[S,0], XY[S,1],color='green', label = 'Satellites') plt.scatter(XY[C,0], XY[C,1],color='brown', label = 'Clients') for i in S: ax.annotate(i, (XY[i,0], XY[i,1])) for i in C: ax.annotate(i, (XY[i,0], XY[i,1])) return fig, ax def PlotAssignsSatCli(XY,F, D, S, C, model, figsize = (20,20)): l, u = model.__data N = F+D+S+C DcupS = D + S FcupD = D + S NminC = F + D + S l_opt = model.getAttr('x', l) u_opt = model.getAttr('x', u) colors = {} for s in NminC: colors[s] = tuple(np.random.rand(3)) dictveh = {} fig, ax = plt.subplots(figsize = figsize) S_op = [] for s in S: if u_opt[s] > 0: S_op.append(s) ##print(S_op) plt.scatter(XY[F,0],XY[F,1],color='red', label= 'Goods') plt.scatter(XY[D,0], XY[D,1],color='blue', label = 'Delivery') plt.scatter(XY[S_op,0], XY[S_op,1],color='green', label = 'Satellites') plt.scatter(XY[C,0], XY[C,1],color='brown', label = 'Clients') for s in NminC: flag_v = True for c in C: if l_opt[s,c] > 0: x1, x2 = XY[s,0], XY[c,0] y1, y2 = XY[s,1], XY[c,1] plt.plot([x1,x2],[y1,y2], color = colors[s], linestyle = 'dashed', label = 'Satelite %s' % s if flag_v else "") flag_v = False for i in F: ax.annotate(i, (XY[i,0], XY[i,1])) for i in D: ax.annotate(i, (XY[i,0], XY[i,1])) for i in S: ax.annotate(i, (XY[i,0], XY[i,1])) for i in C: ax.annotate(i, (XY[i,0], XY[i,1])) plt.legend() plt.show() def PlotAssignsVehCli(XY,F, D, S, C, V_i, model, figsize = (20,20)): y, z = model.__data Vs = [item for sublist in [V_i[s] for s in S] for item in sublist] Vd = [item for sublist in [V_i[d] for d in D] for item in sublist] Vf = [item for sublist in [V_i[f] for f in F] for item in sublist] VdcupVs = Vd + Vs VfcupVs = Vf + Vd K = Vf + Vd + Vs N = F+D+S+C DcupS = D + S FcupD = D + S NminC = F + D + S z_opt = model.getAttr('x', z) colors = {} for s in NminC: for k in V_i[s]: colors[k] = tuple(np.random.rand(3)) dictveh = {} for i in NminC: for k in V_i[i]: dictveh[k] = i fig, ax = plt.subplots(figsize = figsize) plt.scatter(XY[F,0],XY[F,1],color='red', label= 'Goods') plt.scatter(XY[D,0], XY[D,1],color='blue', label = 'Delivery') plt.scatter(XY[S,0], XY[S,1],color='green', label = 'Satellites') plt.scatter(XY[C,0], XY[C,1],color='brown', label = 'Clients') for k in K: flag_v = True for c in C: try: if z_opt[k,c] > 0: s = dictveh[k] x1, x2 = XY[s,0], XY[c,0] y1, y2 = XY[s,1], XY[c,1] plt.plot([x1,x2],[y1,y2], color = colors[k], linestyle = 'dashed', label = 'Vehicle %s (%s)' % (k, dictveh[k]) if flag_v else "") flag_v = False except: pass for i in F: ax.annotate(i, (XY[i,0], XY[i,1])) for i in D: ax.annotate(i, (XY[i,0], XY[i,1])) for i in S: ax.annotate(i, (XY[i,0], XY[i,1])) for i in C: ax.annotate(i, (XY[i,0], XY[i,1])) plt.legend() plt.show() def AuxSubPlot(data, w_opt, figsize = (20,20), save = False, filename = 'test'): # Unpacking data XY = data['XY'] F = data['F'] D = data['D'] S = data['S'] C = data['C'] P = data['P'] P_f = data['P_f'] K = data['K'] V_i = data['V_i'] DEM = data['DEM'] Lambd = data['Lambd'] Omega = data['Omega'] Phi = data['Phi'] Theta = data['Theta'] nu = data['nu'] omega = data['omega'] rho = data['rho'] delta = data['delta'] gamma = data['gamma'] r = data['r'] X,Y = XY[:,0], XY[:,1] label = ['Goods' for f in F] + ['Delivery' for d in D] + ['Satellite' for s in S] + ['Clients' for c in C] n_label = [0 for f in F] + [1 for d in D] + [2 for s in S] + [3 for c in C] colors_xy = ['red','blue','green','brown'] N = F + D + S + C NminC = F + D + S dictveh = {} for i in NminC: for k in V_i[i]: dictveh[k] = i K = [item for sublist in [V_i[i] for i in NminC] for item in sublist] cmapp = cm.get_cmap('viridis', len(K)) colors = {} for k in K: if k % 2 == 0: colors[k] = cmapp(k) else: colors[k] = cmapp(K[::-1][k]) plt.figure(figsize=figsize) plt.scatter(X[F], Y[F], label = 'Firms', color = 'red') plt.scatter(X[D], Y[D], label = 'Delivery', color = 'blue') plt.scatter(X[S], Y[S], label = 'Satellites', color = 'green') plt.scatter(X[C], Y[C], label = 'Clients', color = 'brown') for i in range(XY.shape[0]): x = X[i] y = Y[i] plt.text(x+0.3, y+0.3, i, fontsize=9) for f in F: for k in V_i[f]: for i in N: for j in N: key = (i,j,k) if key in w_opt: if w_opt[key] > 0: x1, x2 = XY[i,0], XY[j,0] y1, y2 = XY[i,1], XY[j,1] plt.plot([x1,x2],[y1,y2], color = colors[k], linestyle = 'dashed', label = 'Vehicle %s (%s)' % (k, dictveh[k]) if i == dictveh[k] else "") plt.legend() plt.title('Vehicles from Firms') if save: plt.tight_layout() plt.savefig('%s-firms.png' % filename, dpi = 250) plt.figure(figsize=figsize) plt.scatter(X[F], Y[F], label = 'Firms', color = 'red') plt.scatter(X[D], Y[D], label = 'Delivery', color = 'blue') plt.scatter(X[S], Y[S], label = 'Satellites', color = 'green') plt.scatter(X[C], Y[C], label = 'Clients', color = 'brown') for i in range(XY.shape[0]): x = X[i] y = Y[i] plt.text(x+0.3, y+0.3, i, fontsize=9) for d in D: for k in V_i[d]: for i in N: for j in N: key = (i,j,k) if key in w_opt: if w_opt[key] > 0: x1, x2 = XY[i,0], XY[j,0] y1, y2 = XY[i,1], XY[j,1] plt.plot([x1,x2],[y1,y2], color = colors[k], linestyle = 'dashed', label = 'Vehicle %s (%s)' % (k, dictveh[k]) if i == dictveh[k] else "") plt.legend() plt.title('Vehicles from Delivery') if save: plt.tight_layout() plt.savefig('%s-delivery.png' % filename, dpi = 250) plt.figure(figsize=figsize) plt.scatter(X[F], Y[F], label = 'Firms', color = 'red') plt.scatter(X[D], Y[D], label = 'Delivery', color = 'blue') plt.scatter(X[S], Y[S], label = 'Satellites', color = 'green') plt.scatter(X[C], Y[C], label = 'Clients', color = 'brown') for i in range(XY.shape[0]): x = X[i] y = Y[i] plt.text(x+0.3, y+0.3, i, fontsize=9) for s in S: for k in V_i[s]: for i in N: for j in N: key = (i,j,k) if key in w_opt: if w_opt[key] > 0: x1, x2 = XY[i,0], XY[j,0] y1, y2 = XY[i,1], XY[j,1] plt.plot([x1,x2],[y1,y2], color = colors[k], linestyle = 'dashed', label = 'Vehicle %s (%s)' % (k, dictveh[k]) if i == dictveh[k] else "") plt.legend() plt.title('Vehicles from Satellite') if save: plt.tight_layout() plt.savefig('%s-sat.png' % filename, dpi = 250) plt.show() def RecoverOriginalqValues(data, DictRoutes): DEM = data['DEM'] V_i = data['V_i'] S = data['S'] D = data['D'] F = data['F'] P = data['P'] P_f = data['P_f'] q_subp = {} # vehicles from satellites for s in S: DEM[s] = np.zeros(len(P), dtype=int) for k in V_i[s]: if k in DictRoutes.keys(): if DictRoutes[k]: # Cummulative demand for vehicle sumdemand = np.zeros(len(P), dtype=int) # Last node visited for t in DictRoutes[k][::-1]: i,j = t if j != s: for p in P: sumdemand[p] = sumdemand[p] + DEM[j][p] q_subp[p,i,j,k] = sumdemand[p] DEM[s] = DEM[s] + sumdemand DEM[s] = list(DEM[s]) # vehicles from delivery for d in D: DEM[d] = np.zeros(len(P), dtype=int) for k in V_i[d]: if k in DictRoutes.keys(): if DictRoutes[k]: # Cummulative demand for vehicle sumdemand = np.zeros(len(P), dtype=int) # Last node visited # HERE I NEED TO DELETE THE FREIGHTS FROM PRODUCTS FROM FIRMS WITH VEHICLES for t in DictRoutes[k][::-1]: i,j = t if j != d: if j not in F: for p in P: sumdemand[p] = sumdemand[p] + DEM[j][p] q_subp[p,i,j,k] = sumdemand[p] else: PminPf = [p for p in P if p not in P_f[j]] for p in P_f[j]: q_subp[p,i,j,k] = 0 aux = max([value for key, value in q_subp.items() if key[0] == p and key[3] == k]) sumdemand[p] = sumdemand[p] - aux for p in PminPf: aux = max([value for key, value in q_subp.items() if key[0] == p and key[3] == k]) q_subp[p,i,j,k] = aux DEM[d] = DEM[d] + sumdemand DEM[d] = list(DEM[d]) # vehicles from firms # for f in F: # for k in V_i[f]: # if k in DictRoutes.keys(): # if DictRoutes[k]: # # Cummulative demand for vehicle # sumdemand = np.zeros(len(P), dtype=int) # # Last node visited # for t in DictRoutes[k][::-1]: # i,j = t # if j != f: # for p in P: # sumdemand[p] = sumdemand[p] + DEM[j][p] # q_subp[p,i,j,k] = sumdemand[p] # for p in P return q_subp def SaveSolHeuristic(data, file, dt, soldir, q_final, w_final, u_final, y_final, DictRoutes, Opt): #Create Excell Writter writer = pd.ExcelWriter(os.path.join(soldir, file), engine='xlsxwriter') # Save solutions: q q_final = RecoverOriginalqValues(data, DictRoutes) dfq = [] for key, value in dict(q_final).items(): if value > 0: # #print(key, value) dfq.append([*key, value]) dfq = pd.DataFrame(data=dfq, columns=['p', 'i', 'j', 'k', 'q_final']) dfq.to_excel(writer, index=False, sheet_name = "q") # Save solutions: w dfw = [] for key, value in dict(w_final).items(): if value > 0: dfw.append([*key, value]) dfw =
pd.DataFrame(data=dfw, columns=['i', 'j', 'k', 'w_final'])
pandas.DataFrame
#!/usr/bin/env python import os import sys import pandas as pd from datetime import datetime from distutils.dir_util import mkpath import shutil from collections import defaultdict sys.path.append("..") from model_utils.model import DeepSpeech2Model from utils.yaml_loader import load_yaml_config import model_utils.network as network from data_utils.dataloader import SpecgramGenerator import torch from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import ruamel.yaml as yaml networks = {"network.deepspeech_orig" : network.deepspeech_orig, "network.deepspeech_newbottleneck": network.deepspeech_newbottleneck} def test(config): model=networks[config["basic"]["model"]] pretrained_model_path=config["basic"]["pt_model_path"] device = config["basic"]["device"] exp_root_dir=config["basic"]["exp_root_path"] ds2_model_path=config["basic"]["ds2_model_path"] pt_model_path = config["basic"]["pt_model_path"] use_pt_model = config["basic"]["use_pt_model"] augmentation_config_name=config["basic"]["augmentation_config_name"] language_model_path=config["basic"]["language_model_path"] vocab_filepath=config["basic"]["vocab_filepath"] mean_std_filepath=config["basic"]["mean_std_filepath"] batch_size=config["test"]["batch_size"] max_duration=config["test"]["max_duration"], min_duration=config["test"]["min_duration"], segmented=config["test"]["segmented"] num_workers=config["test"]["num_workers"] test_csv= config["data"]["test_csv"] test_dataset = SpecgramGenerator(manifest=os.path.join(exp_root_dir, "data", test_csv), vocab_filepath=vocab_filepath, mean_std_filepath=mean_std_filepath, augmentation_config="{}", max_duration=max_duration, #20, min_duration=min_duration, # 3 segmented=segmented) # False dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, collate_fn=SpecgramGenerator.padding_batch) vocab_list = ["'", ' ', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] ds2_model = DeepSpeech2Model(model=model, ds2_model_path=ds2_model_path, vocab_list=vocab_list, device=device) if use_pt_model and pretrained_model_path: ds2_model.load_weights(pt_model_path) ds2_model.init_ext_scorer(1.4, 0.35, language_model_path) outputs = defaultdict(list) beam_alpha=1.1 for i_batch, sample_batched in enumerate(dataloader): batch_results = ds2_model.infer_batch_probs(infer_data=sample_batched) batch_transcripts_beam = ds2_model.decode_batch_beam_search( probs_split=batch_results, beam_alpha=beam_alpha, beam_beta=0.35, beam_size=500, cutoff_prob=1.0, cutoff_top_n=40, num_processes=6) outputs["uttid"].extend(sample_batched["uttid"]) outputs["probs"].extend(batch_results) outputs["asr"].extend(batch_transcripts_beam) outputs["text"].extend(sample_batched["trans"]) df =
pd.DataFrame.from_dict(outputs)
pandas.DataFrame.from_dict
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr =
SparseArray(self.arr_data)
pandas.core.sparse.api.SparseArray
import logging logging.basicConfig(level=logging.WARNING) import pytest import numpy import os import pypipegraph as ppg import pandas as pd from pathlib import Path from pandas.testing import assert_frame_equal import dppd import dppd_plotnine # noqa:F401 from mbf_qualitycontrol.testing import assert_image_equal from mbf_sampledata import get_sample_data import mbf_genomics.regions as regions from mbf_genomics.annotator import Constant, Annotator from .shared import ( get_genome, get_genome_chr_length, force_load, inside_ppg, run_pipegraph, RaisesDirectOrInsidePipegraph, MockGenome, ) dp, X = dppd.dppd() @pytest.mark.usefixtures("new_pipegraph") class TestGenomicRegionsLoadingPPGOnly: def test_dependency_passing(self): job = ppg.ParameterInvariant("sha", (None,)) a = regions.GenomicRegions("shu", lambda: None, [job], get_genome()) load_job = a.load() assert job in load_job.lfg.prerequisites def test_dependency_may_be_iterable_instead_of_list(self): job = ppg.ParameterInvariant("shu", (None,)) a = regions.GenomicRegions("shu", lambda: None, (job,), get_genome()) load_job = a.load() assert job in load_job.lfg.prerequisites def test_depenencies_must_be_jobs(self): ppg.ParameterInvariant("shu", (None,)) with pytest.raises(ValueError): regions.GenomicRegions("shu", lambda: None, ["shu"], get_genome()) @pytest.mark.usefixtures("both_ppg_and_no_ppg") class TestGenomicRegionsLoading: def test_raises_on_duplicate_name(self, both_ppg_and_no_ppg): def sample_data(): return pd.DataFrame( {"chr": ["Chromosome"], "start": [1000], "stop": [1100]} ) regions.GenomicRegions("shu", sample_data, [], get_genome()) if inside_ppg(): with pytest.raises(ValueError): regions.GenomicRegions("shu", sample_data, [], get_genome()) both_ppg_and_no_ppg.new_pipegraph() regions.GenomicRegions( "shu", sample_data, [], get_genome() ) # should not raise def test_raises_on_non_iterable_dependencies(self): def sample_data(): return pd.DataFrame( {"chr": ["Chromosome"], "start": [1000], "stop": [1100]} ) with pytest.raises(ValueError): regions.GenomicRegions("shu", sample_data, "aaeu", get_genome()) with pytest.raises(ValueError): regions.GenomicRegions("shu", sample_data, 1, get_genome()) with pytest.raises(ValueError): regions.GenomicRegions("shu", sample_data, iter([]), get_genome()) def test_loading(self): def sample_data(): return pd.DataFrame( {"chr": ["Chromosome"], "start": [1000], "stop": [1100]} ) a = regions.GenomicRegions("sha", sample_data, [], get_genome()) if inside_ppg(): assert not hasattr(a, "df") force_load(a.load()) else: assert hasattr(a, "df") run_pipegraph() assert hasattr(a, "df") assert len(a.df) == 1 assert "chr" in a.df.columns assert "start" in a.df.columns assert "stop" in a.df.columns def test_filtering_copy_anno(self, clear_annotators): import mbf_genomics def sample_data(): return pd.DataFrame( { "chr": "Chromosome", "start": [1000, 1001, 1002], "stop": [1100, 1101, 1102], } ) a = regions.GenomicRegions( "sha", sample_data, [], get_genome(), on_overlap="ignore" ) b = a.filter("filtered", ("start", "==", 1001)) class CopyAnno(mbf_genomics.annotator.Annotator): def __init__(self): self.columns = ["copy"] def calc(self, df): return pd.DataFrame({"copy": df["start"]}) a += CopyAnno() if inside_ppg(): assert not hasattr(a, "df") force_load(a.load()) force_load(b.annotate()) else: assert hasattr(a, "df") run_pipegraph() print(b.df) assert (b.df["start"] == [1001]).all() assert (b.df["copy"] == [1001]).all() def test_raises_on_invalid_on_overlap(self): def inner(): regions.GenomicRegions( "shu", lambda: None, [], get_genome(), on_overlap="run in circles all about", ) with pytest.raises(ValueError): inner() def test_magic(self): def sample_data(): return pd.DataFrame( {"chr": ["Chromosome"], "start": [1000], "stop": [1100]} ) a = regions.GenomicRegions("shu", sample_data, [], get_genome()) hash(a) str(a) repr(a) bool(a) a.load() run_pipegraph() with pytest.raises(TypeError): iter(a) def test_loading_missing_start(self): def sample_data(): return pd.DataFrame({"chr": "1", "stop": [1100]}) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sha", sample_data, [], get_genome()) force_load(a.load) def test_loading_missing_chr(self): def sample_data(): return pd.DataFrame({"start": [1000], "stop": [1100]}) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sha", sample_data, [], get_genome()) force_load(a.load) def test_loading_missing_stop(self): def sample_data(): return pd.DataFrame({"chr": "Chromosome", "start": [1200]}) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sha", sample_data, [], get_genome()) force_load(a.load) def test_loading_raises_on_invalid_chromosome(self): def sample_data(): return pd.DataFrame({"chr": ["1b"], "start": [1200], "stop": [1232]}) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_loading_raises_on_no_int_start(self): def sample_data(): return pd.DataFrame( {"chr": ["Chromosome"], "start": ["shu"], "stop": [1232]} ) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_loading_raises_on_no_int_stop(self): def sample_data(): return pd.DataFrame({"chr": ["Chromosome"], "start": [2], "stop": [20.0]}) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_loading_raises_on_no_str_chr(self): def sample_data(): return pd.DataFrame({"chr": [1], "start": [2], "stop": [20]}) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_loading_raises_on_not_dataframe(self): def sample_data(): return None with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_loading_raises_on_overlapping(self): def sample_data(): return pd.DataFrame( { "chr": ["Chromosome", "Chromosome"], "start": [1000, 1010], "stop": [1100, 1020], } ) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions( "sha", sample_data, [], get_genome(), on_overlap="raise" ) force_load(a.load) def test_raises_on_negative_intervals(self): def sample_data(): return pd.DataFrame( { "chr": [ "Chromosome", "Chromosome", "Chromosome", "Chromosome", "Chromosome", ], "start": [10, 100, 1000, 10000, 100_000], "stop": [8, 110, 1110, 11110, 111_110], } ) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_raises_on_overlapping_intervals(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], } ) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) def test_index_reset(self): def sample_data(): return pd.DataFrame( { "chr": ["Chromosome"], "start": [1000], "stop": [1100], "myindex": ["a"], } ).set_index("myindex") a = regions.GenomicRegions("sharum", sample_data, [], get_genome()) force_load(a.load) run_pipegraph() assert a.df.index == ["a"] assert not "myindex" in a.df.columns def test_merges_overlapping_intervals(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 1110 def test_merge_overlapping_with_function(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], "pick_me": [1, 2, 3, 4, 5], } ) def merge_function(subset_df): row = subset_df.iloc[0].to_dict() row["pick_me"] = numpy.max(subset_df["pick_me"]) return row a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 1110 assert a.df.iloc[0]["pick_me"] == 3 def test_merge_overlapping_with_function2(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], "pick_me": [10, 2, 3, 4, 5], } ) def merge_function(subset_df): row = subset_df.iloc[0].to_dict() row["pick_me"] = numpy.max(subset_df["pick_me"]) return row a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 1110 assert a.df.iloc[0]["pick_me"] == 10 def test_merge_overlapping_with_function_ignores_returned_intervals(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], "pick_me": [1, 2, 3, 4, 5], } ) def merge_function(subset_df): row = subset_df.iloc[0].to_dict() row["start"] = 9000 row["pick_me"] = numpy.max(subset_df["pick_me"]) return row a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 1110 assert a.df.iloc[0]["pick_me"] == 3 def test_merge_overlapping_with_function_raises_on_non_dict(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], "pick_me": [1, 2, 3, 4, 5], } ) def merge_function(subset_df): row = subset_df.iloc[0].copy() row["pick_me"] = numpy.max(subset_df["pick_me"]) return row with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) def test_merge_overlapping_with_function_raises_on_unknown_column(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], "pick_me": [1, 2, 3, 4, 5], } ) def merge_function(subset_df): row = subset_df.iloc[0][:] row["does not exist"] = row["pick_me"] return row with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) def test_merge_overlapping_with_function_raises_on_missing(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], "pick_me": [1, 2, 3, 4, 5], } ) def merge_function(subset_df): row = subset_df.iloc[0] del row["pick_me"] return None with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) def test_merges_overlapping_intervals_next_to_each_other(self): def sample_data(): return pd.DataFrame( { "chr": ["Chromosome", "Chromosome"], "start": [10, 21], "stop": [20, 100], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome(), on_overlap="merge" ) force_load(a.load) run_pipegraph() assert (a.df["start"] == [10, 21]).all() assert (a.df["stop"] == [20, 100]).all() def test_merges_overlapping_earlier_overlaps_later_with_one_in_between(self): def sample_data(): return pd.DataFrame( { "chr": ["Chromosome", "Chromosome", "Chromosome", "Chromosome"], "start": [3100, 3000, 3750, 4910], "stop": [4900, 3500, 4000, 5000], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome(), on_overlap="merge" ) force_load(a.load) run_pipegraph() assert (a.df["start"] == [3000, 4910]).all() assert (a.df["stop"] == [4900, 5000]).all() def test_merges_overlapping_intervals_multiple(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5", "1"], "start": [10, 100, 1000, 10000, 100_000, 1005], "stop": [1010, 110, 1110, 11110, 111_110, 2000], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 2000 def test_merges_overlapping_intervals_multiple_with_function(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5", "1"], "start": [10, 100, 1000, 10000, 100_000, 1005], "stop": [1010, 110, 1110, 11110, 111_110, 2000], "pick_me": [23, 1234, 2, 4, 5, 50], } ) def merge_function(subset_df): row = subset_df.iloc[0].to_dict() row["pick_me"] = numpy.max(subset_df["pick_me"]) return row a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap=("merge", merge_function), ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 2000 assert a.df.iloc[0]["pick_me"] == 50 def test_on_overlap_drop(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5", "1", "5", "5", "5"], "start": [10, 100, 1000, 10000, 100_000, 1005, 5000, 6049, 6000], "stop": [1010, 110, 1110, 11110, 111_110, 2000, 5050, 6051, 6050], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="drop" ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 100 assert a.df.iloc[0]["stop"] == 110 assert a.df.iloc[1]["start"] == 10000 assert a.df.iloc[1]["stop"] == 11110 assert a.df.iloc[2]["start"] == 5000 assert a.df.iloc[2]["stop"] == 5050 assert a.df.iloc[3]["start"] == 100_000 assert a.df.iloc[3]["stop"] == 111_110 def test_on_overlap_drop_nested(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5", "1", "5", "5", "5"], "start": [10, 100, 1000, 10000, 100_000, 1005, 5000, 6049, 6000], "stop": [1010, 110, 1110, 11110, 111_110, 2000, 5050, 6100, 6050], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="drop" ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 100 assert a.df.iloc[0]["stop"] == 110 assert a.df.iloc[1]["start"] == 10000 assert a.df.iloc[1]["stop"] == 11110 assert a.df.iloc[2]["start"] == 5000 assert a.df.iloc[2]["stop"] == 5050 assert a.df.iloc[3]["start"] == 100_000 assert a.df.iloc[3]["stop"] == 111_110 def test_on_overlap_drop_empty(self): def sample_data(): return pd.DataFrame({"chr": [], "start": [], "stop": []}) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="drop" ) force_load(a.load) run_pipegraph() assert len(a.df) == 0 def test_on_overlap_ignore(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5", "1", "5"], "start": [10, 100, 1000, 10000, 100_000, 1005, 5000], "stop": [1010, 110, 1110, 11110, 111_110, 2000, 5050], "index": ["a", "b", "c", "d", "e", "f", "g"], "is_overlapping": 55, } ).set_index("index") a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="ignore" ) force_load(a.load) run_pipegraph() assert len(a.df) == 7 assert (a.df.index == ["a", "c", "f", "b", "d", "g", "e"]).all() assert not (a.df.is_overlapping == 55).any() # make sure we drop the column assert ( a.df.is_overlapping == [True, True, False, False, False, False, False] ).any() def test_merging_apperantly_creating_negative_intervals(self): def sample_data(): return pd.DataFrame( { "start": [ 140_688_139, 140_733_871, 140_773_241, 140_792_022, 141_032_547, 141_045_565, 141_069_938, 141_075_938, 141_098_775, 141_108_518, 141_131_159, -4423, -4352, -3398, -3329, -1770, -1693, -737, 3400, -598, ], "chr": [ str(x) for x in [ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", ] ], "stop": [ 140_767_241, 140_786_022, 141_026_547, 141_039_565, 141_064_437, 141_070_437, 141_092_775, 141_102_518, 141_125_159, 141_145_045, 141_213_431, 1577, 1648, 2602, 2671, 4230, 4307, 5263, 9400, 5402, ], } ) with RaisesDirectOrInsidePipegraph( ValueError, "All starts need to be positive" ): a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) force_load(a.load) def test_merge_test(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "1", "1", "3", "5"], "start": [10, 10, 1000, 10000, 100_000], "stop": [100, 100, 1110, 11110, 111_110], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 100 def test_merge_identical_ok(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "1", "1", "3", "5"], "start": [10, 10, 1000, 10, 100_000], "stop": [100, 100, 1110, 100, 111_110], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge_identical", ) force_load(a.load) run_pipegraph() assert len(a.df) == 4 assert a.df.iloc[0]["start"] == 10 assert a.df.iloc[0]["stop"] == 100 def test_merge_identical_raises(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "1", "1", "3", "5"], "start": [10, 10, 1000, 10000, 100_000], "stop": [100, 120, 1110, 11110, 111_110], } ) with RaisesDirectOrInsidePipegraph(ValueError): a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge_identical", ) force_load(a.load) def test_regions_merge_in_init_does_not_add_strand_if_it_was_missing(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "1", "1", "3", "5"], "start": [10, 10, 1000, 10000, 100_000], "stop": [100, 120, 1110, 11110, 111_110], } ) a = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) force_load(a.load()) run_pipegraph() assert not "strand" in a.df.columns def test_plot_job(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], } ) x = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) pj = x.plot( "shu.png", lambda df: dp(df) .p9() .add_scatter("chr", "start") .pd, # also tests the write-to-result_dir_part ) fn = "results/GenomicRegions/shu/shu.png" if inside_ppg(): assert isinstance(pj[0], ppg.FileGeneratingJob) assert pj[1].absolute() == Path(fn).absolute() else: assert str(pj[1]) == str(Path(fn).absolute()) run_pipegraph() assert_image_equal(fn) def test_plot_job_with_custom_calc_function(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [1010, 110, 1110, 11110, 111_110], } ) x = regions.GenomicRegions( "shu", sample_data, [], get_genome_chr_length(), on_overlap="merge" ) def calc(df): df = df.copy() df = df.assign(shu=["shu"] * len(df)) return df pj = x.plot( Path("shu.png").absolute(), lambda df: dp(df).p9().add_scatter("shu", "start"), calc, ) fn = str(Path("shu.png").absolute()) if inside_ppg(): assert isinstance(pj[0], ppg.FileGeneratingJob) assert str(pj[1].absolute()) == fn else: assert str(pj[1]) == fn run_pipegraph() assert_image_equal(fn) @pytest.mark.usefixtures("new_pipegraph") class TestGenomicRegionsAnnotationDependencyies: def setUp(self): def sample_data(): df = pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [12, 110, 1110, 11110, 111_110], } ) df = df.assign(summit=df["start"] + (df["stop"] - df["start"]) / 2) return df self.a = regions.GenomicRegions("shu", sample_data, [], get_genome_chr_length()) def test_anno_job_depends_on_load(self): self.setUp() if inside_ppg(): assert not hasattr(self.a, "df") else: assert hasattr(self.a, "df") ca = Constant("Constant", 5) anno_job = self.a.add_annotator(ca) assert isinstance(anno_job(), ppg.Job) @pytest.mark.usefixtures("both_ppg_and_no_ppg") class TestGenomicRegionsAnnotation: def setUp(self): def sample_data(): df = pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [12, 110, 1110, 11110, 111_110], } ) df = df.assign(summit=df["start"] + (df["stop"] - df["start"]) / 2) return df self.a = regions.GenomicRegions("shu", sample_data, [], get_genome_chr_length()) def test_anno_jobs_are_singletonic(self): self.setUp() ca = Constant("Constant", 5) assert len(self.a.annotators) == 1 anno_job = self.a.add_annotator(ca) anno_job2 = self.a.add_annotator(ca) assert anno_job is anno_job2 def test_anno_jobs_are_singletonic_across_names(self): self.setUp() ca = Constant("Constant", 5) assert len(self.a.annotators) == 1 anno_job = self.a.add_annotator(ca) cb = Constant("Constant", 5) assert ca is cb anno_job2 = self.a.add_annotator(cb) assert anno_job is anno_job2 def test_has_annotator(self): self.setUp() ca = Constant("Constant", 5) assert not self.a.has_annotator(ca) self.a.add_annotator(ca) assert self.a.has_annotator(ca) def test_annotator_by_name(self): self.setUp() ca = Constant("Constant", 5) assert not self.a.has_annotator(ca) self.a.add_annotator(ca) assert ca == self.a.get_annotator(ca.columns[0]) def test_anno_jobs_add_columns(self): self.setUp() ca = Constant("Constant", 5) assert len(self.a.annotators) == 1 self.a.add_annotator(ca) force_load(self.a.annotate(), "test_anno_jobs_add_columns") run_pipegraph() assert ca.columns[0] in self.a.df.columns @pytest.mark.usefixtures("both_ppg_and_no_ppg") class TestGenomicRegionsWriting: def setUp(self): def sample_data(): return pd.DataFrame( { "chr": ["1", "2", "1", "3", "5"], "start": [10, 100, 1000, 10000, 100_000], "stop": [11, 110, 1110, 11110, 111_110], "name": ["a", "b", "c", "d", "e"], "notname": ["A", "B", "C", "D", "E"], "strand": [1, 1, 1, 1, -1], } ) self.a = regions.GenomicRegions("shu", sample_data, [], get_genome_chr_length()) self.sample_filename = str(Path("sample.dat").absolute()) try: os.unlink(self.sample_filename) except OSError: pass def test_write_bed(self): self.setUp() from mbf_fileformats.bed import read_bed self.a.write_bed(self.sample_filename) run_pipegraph() assert len(self.a.df) > 0 read = read_bed(self.sample_filename) assert len(read) == len(self.a.df) assert read[0].refseq == b"1" assert read[1].refseq == b"1" assert read[2].refseq == b"2" assert read[3].refseq == b"3" assert read[4].refseq == b"5" assert read[0].position == 10 assert read[1].position == 1000 assert read[2].position == 100 assert read[3].position == 10000 assert read[4].position == 100_000 assert read[0].length == 1 assert read[1].length == 110 assert read[2].length == 10 assert read[3].length == 1110 assert read[4].length == 11110 assert read[0].name == b"Noname" def test_write_bed_with_name(self): self.setUp() from mbf_fileformats.bed import read_bed self.a.write_bed(self.sample_filename, region_name="name") run_pipegraph() assert len(self.a.df) > 0 read = read_bed(self.sample_filename) assert len(read) == len(self.a.df) assert read[0].refseq == b"1" assert read[1].refseq == b"1" assert read[2].refseq == b"2" assert read[3].refseq == b"3" assert read[4].refseq == b"5" assert read[0].position == 10 assert read[1].position == 1000 assert read[2].position == 100 assert read[3].position == 10000 assert read[4].position == 100_000 assert read[0].length == 1 assert read[1].length == 110 assert read[2].length == 10 assert read[3].length == 1110 assert read[4].length == 11110 assert read[0].name == b"a" assert read[1].name == b"c" assert read[2].name == b"b" assert read[3].name == b"d" assert read[4].name == b"e" def test_write_bigbed_name_column(self): self.setUp() from mbf_fileformats.bed import read_bigbed self.a.write_bigbed(self.sample_filename, "notname") run_pipegraph() assert len(self.a.df) > 0 read = read_bigbed( self.sample_filename, {"1": 10000, "2": 20000, "3": 30000, "5": 500_000} ) print(read) should = self.a.df.reset_index(drop=True) assert len(read) == len(should) assert (read["chr"] == should["chr"]).all() assert (read["start"] == should["start"]).all() assert (read["stop"] == should["stop"]).all() assert (read["strand"] == should["strand"]).all() assert ( read["name"].str.upper() == should["name"].str.upper() ).all() # bigbed seems to store uprcse names? def test_write_bigbed(self): self.setUp() from mbf_fileformats.bed import read_bigbed self.a.write_bigbed(self.sample_filename) run_pipegraph() assert len(self.a.df) > 0 read = read_bigbed( self.sample_filename, {"1": 10000, "2": 20000, "3": 30000, "5": 500_000} ) should = self.a.df.reset_index(drop=True) print(read) print(should) assert len(read) == len(should) assert (read["chr"] == should["chr"]).all() assert (read["start"] == should["start"]).all() assert (read["stop"] == should["stop"]).all() assert (read["strand"] == should["strand"]).all() def test_write_bed_with_name_column_not_found(self): self.setUp() with RaisesDirectOrInsidePipegraph(KeyError): self.a.write_bed(self.sample_filename, region_name="name_not_found") def test_write(self): self.setUp() self.a.write(self.sample_filename) run_pipegraph() assert len(self.a.df) > 0 df = pd.read_csv(self.sample_filename, sep="\t") df["chr"] = df["chr"].astype(str) assert_frame_equal(df, self.a.df.reset_index(drop=True), check_less_precise=2) def test_write_without_filename(self): self.setUp() self.a.result_dir = Path("") self.a.write() run_pipegraph() assert os.path.exists("shu.tsv") os.unlink("shu.tsv") def test_write_sorted(self): self.setUp() # sorting by chromosome means they would've been equal anyhow, since we # internally sort by chr self.a.write(self.sample_filename, lambda df: df.sort_values("start")) run_pipegraph() assert len(self.a.df) > 0 df =
pd.read_csv(self.sample_filename, sep="\t")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Mar 11 22:14:51 2021 @author: Allectus """ import os import re import copy import pandas as pd import tkinter as tk import plotly.io as pio import plotly.express as px from tkinter import filedialog from lxml import etree #============================================================================== def parse_asset_file(xmlfile, taglist, convert=True, collapse_diffs=True): #Parses X4:Foundations asset xml files # #xmlfile: file path to desired input asset file #taglist: XML asset property tag to collect attributes for #convert: If True attributes will be converted to floats xtree = etree.parse(xmlfile) result = {} for attr in taglist: attr_element = xtree.find('//' + str(attr)) if attr_element is not None: attr_path = xtree.getpath(attr_element) if collapse_diffs: attr_path = re.sub(r'/diff/(replace|add)', '', attr_path) if attr_element is None: attr_dict = {} else: attr_dict = {str(attr_path) + '/' + str(k):v for k,v in attr_element.attrib.items()} if convert: attr_dict = {k:float(v) for k,v in attr_dict.items()} else: attr_dict = {} result.update(attr_dict) return(result) #------------------------------------------------------------------------------ def export_asset_xml_diff(outfilepath, attributes): #Exports X4:Foundations asset diff xml files # #outfilepath: file path to desired output file #attributes: dict of xpath:value to be exported in the diff file attributes outstr = '\n'.join(['<?xml version="1.0" encoding="utf-8"?>', '<diff>', ' <replace sel="' + '\n <replace sel="'.join([str(xpath)[:str(xpath).rfind('/') + 1] + '@' + str(xpath)[str(xpath).rfind('/') + 1:] + '">' + str(round(val,2)) + '</replace>' for xpath,val in attributes.items()]), '</diff>']) os.makedirs(os.path.dirname(outfilepath), exist_ok=True) with open(outfilepath, 'w') as outfile: outfile.write(outstr) return(True) #------------------------------------------------------------------------------ def parse_resources(resources, asset_path, file_pattern, taglist): #Collects and parses relevant X4:Foundations asset files based upon input filters # #resources: pd.DataFrame of available unpacked input directories, contains resources root #asset_path: path to relevant directory for the specific asset, relative to resource root #file_pattern: regex pattern to id files in asset path to retain #taglist: tags to extract from the identied input files loc_resources = copy.deepcopy(resources) #Find game files loc_resources['assetdir'] = loc_resources.root.apply(lambda x: os.path.join(x, asset_path)) loc_resources['filelist'] = loc_resources.assetdir.apply(os.listdir) loc_resources = loc_resources.explode('filelist', ignore_index=True) #Filter out unwanted files (only keep appropriate xml files) loc_resources.rename(columns={'filelist':'basefilename'}, inplace=True) loc_resources['keep'] = loc_resources.basefilename.apply(lambda x: os.path.splitext(x)[1] == '.xml') & loc_resources.basefilename.str.contains(file_pattern) loc_resources = loc_resources[loc_resources.keep].reset_index(drop=True) loc_resources = loc_resources.drop('keep', axis=1) loc_resources['fullpath'] = loc_resources.apply(lambda x: os.path.join(x['assetdir'], x['basefilename']), axis=1) #Parse the discovered files loc_resources = pd.concat([loc_resources, pd.DataFrame(list(loc_resources['fullpath'].apply( lambda x: parse_asset_file(x, taglist=taglist, convert=True, collapse_diffs=True))))], axis=1) return(loc_resources) #------------------------------------------------------------------------------ def update_shields(resources, asset_path = 'assets/props/SurfaceElements/macros', file_pattern=r'^shield.*', taglist = ['recharge']): #Identifies and modified X4: Foundations shield files # #resources: pd.DataFrame of available unpacked input directories, contains resources root #asset_path: path to relevant directory for the specific asset, relative to resource root #file_pattern: regex pattern to id files in asset path to retain #taglist: tags to extract from the identied input files shield_resources = parse_resources(resources=resources, asset_path=asset_path, file_pattern=file_pattern, taglist=taglist) #capture owner/size/type from filename shield_metadata = shield_resources.basefilename.str.extract(r'(shield_)(.*)(_)(s|m|l|xl)(_)(.*)(_.*)(mk.)(.*)', expand=True) shield_metadata = shield_metadata.rename(columns={1:'race', 3:'size', 5:'type', 7:'mk'}) shield_resources = pd.concat([shield_resources, shield_metadata[['race', 'size', 'type', 'mk']]], axis=1) #colname look up table (to retain xpath in colname so we dont have to reshape to long format) #gives 'tag_attrib': xpath modified_cols = {} cnm_init = {} for tag in taglist: colpattern = r'.*(/' + str(tag) + r'/).*' cnm_init.update({str(tag)+'_'+str(c)[str(c).rfind('/')+1:] :c for c in shield_resources.columns if re.match(colpattern, c)}) vro_results = shield_resources[(shield_resources['source'] == 'vro')].reset_index() base_results = shield_resources[(shield_resources['source'] == 'base')].reset_index() modified =
pd.merge(vro_results, base_results, how='left', on=['race', 'size', 'type', 'mk'], suffixes=['_vro', '_base'])
pandas.merge
""" Sumarize results for the train/valid/test splits. # PROGRAM : metrics.py # POURPOSE : compute model metrics on the test datasete # AUTHOR : <NAME> # EMAIL : <EMAIL> # V1.0 : 05/05/2020 [<NAME>] """ import argparse import numpy as np import tensorflow as tf import pandas as pd import pathlib try: import efficientnet.tfkeras as efn except Exception: print(ImportError("\nWarning: run pip install -U --pre efficientnet")) from tensorflow.keras.preprocessing.image import ImageDataGenerator if __name__ == '__main__': print("\nClassifiying wave breaking data, please wait...\n") # Argument parser parser = argparse.ArgumentParser() # input model and history parser.add_argument("--model", "-M", nargs=1, action="store", dest="model", required=True, help="Input model in .h5 format.",) parser.add_argument("--history", "-hist", nargs=1, action="store", dest="history", required=True, help="Input model history in csv format.",) # input test data parser.add_argument("--data", "-data", nargs=1, action="store", dest="data", required=True, help="Input path with image data.",) parser.add_argument("--threshold", "-trx", nargs=1, action="store", dest="TRX", default=[0.5], required=False, help="Probability threshold for classification.") parser.add_argument("--epoch", "-epch", nargs=1, action="store", dest="epoch", default=[-1], required=False, help="Which epoch to use. Default is last epoch.") # output data parser.add_argument("--output", "-o", nargs=1, action="store", dest="output", required=True, help="Output file.",) args = parser.parse_args() # --- test data input --- test_dir = args.data[0] test_dir = pathlib.Path(test_dir) image_count = len(list(test_dir.glob('*/*'))) epoch = int(args.epoch[0]) BATCH_SIZE = int(image_count/10) class_names = np.array([item.name for item in test_dir.glob('*')]) try: nclasses = len(class_names) print(" Found image data, proceeding.\n") print(" - Classes are {}".format(class_names)) except Exception: raise IOError("Check your data!") # --- pre-trained model --- model = tf.keras.models.load_model(args.model[0]) history = pd.read_csv(args.history[0]) # train data accuracy = history.iloc[epoch]["Binary_Accuracy"] tp = history.iloc[epoch]["True_Positives"] fp = history.iloc[epoch]["False_Positives"] tn = history.iloc[epoch]["True_Negatives"] fn = history.iloc[epoch]["False_Negatives"] precision = history.iloc[epoch]["Precision"] recall = history.iloc[epoch]["Recall"] auc = history.iloc[epoch]["AUC"] X = [accuracy, tp, fp, tn, fn, precision, recall, auc] cols = ["Binary_Accuracy", "True_Positives", "False_Positives", "True_Negatives", "False_Negatives", "Precision", "Recall", "AUC"] df_train = pd.DataFrame([X], columns=cols) df_train.index = ["Train"] print(df_train) # validation data accuracy = history.iloc[epoch]["val_Binary_Accuracy"] tp = history.iloc[epoch]["val_True_Positives"] fp = history.iloc[epoch]["val_False_Positives"] tn = history.iloc[epoch]["val_True_Negatives"] fn = history.iloc[epoch]["val_False_Negatives"] precision = history.iloc[epoch]["val_Precision"] recall = history.iloc[epoch]["val_Recall"] auc = history.iloc[epoch]["val_AUC"] X = [accuracy, tp, fp, tn, fn, precision, recall, auc] cols = ["Binary_Accuracy", "True_Positives", "False_Positives", "True_Negatives", "False_Negatives", "Precision", "Recall", "AUC"] df_val = pd.DataFrame([X], columns=cols) df_val.index = ["Validation"] print(df_val) # evaluate the model on test data inp_shape = model.input_shape img_height = inp_shape[1] # image height for all images img_width = inp_shape[2] # image width for all images datagen = ImageDataGenerator(rescale=1./255.) print("\n Fitting the teset data generator:\n") data_gen_test = datagen.flow_from_directory( directory=str(test_dir), batch_size=BATCH_SIZE, shuffle=False, target_size=(img_height, img_width), classes=["0", "1"], class_mode="binary") result = model.evaluate(data_gen_test) metrics = dict(zip(model.metrics_names, result)) # validation data accuracy = metrics["Binary_Accuracy"] tp = metrics["True_Positives"] fp = metrics["False_Positives"] tn = metrics["True_Negatives"] fn = metrics["False_Negatives"] precision = metrics["Precision"] recall = metrics["Recall"] auc = metrics["AUC"] X = [accuracy, tp, fp, tn, fn, precision, recall, auc] cols = ["Binary_Accuracy", "True_Positives", "False_Positives", "True_Negatives", "False_Negatives", "Precision", "Recall", "AUC"] df_test =
pd.DataFrame([X], columns=cols)
pandas.DataFrame
# -*- coding: utf-8 -*- """ dati_selezione.ipynb Extraction of data from ISS weekly covid-19 reports https://www.epicentro.iss.it/coronavirus/aggiornamenti See example pdf: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_12-gennaio-2022.pdf Requirements: Python 3.6+, Ghostscript (ghostscript), Tkinter (python3-tk) numpy, pandas, camelot, PyMuPDF, Beautiful Soup 4 """ import locale import re from datetime import datetime, timedelta from os import chdir, path from urllib import request from urllib.parse import urljoin import camelot import fitz import numpy as np import pandas as pd from bs4 import BeautifulSoup def get_surveillance_reports(): """get_surveillance_reports() -> list return: list of "integrated surveillance of Covid-19 in Italy" reports""" # Source of the ISS reports epicentro_url = "https://www.epicentro.iss.it/coronavirus/aggiornamenti" # Requests URL and get http.client.HTTPResponse object with request.urlopen(epicentro_url) as response: # Parse text obtained soup = BeautifulSoup(response, "html.parser") # Find all hyperlinks present on webpage links = soup.find_all("a") # The table is available since 14/07/2021 # The script has been updated to 2022-01-12 report # for older reports than 2022-01-12 use "dati_selezione_old1.py" and "dati_ISS_complessivi_old1.csv" # for older reports than 2021-11-10 use "dati_selezione_old.py and "dati_ISS_complessivi_old.csv" cut_date = pd.to_datetime("2022-01-12") cut_date_end = pd.to_datetime("2022-01-19") return [urljoin(epicentro_url, link["href"]) for link in links if "Bollettino-sorveglianza-integrata-COVID-19" in link["href"] and date_from_url(link["href"], is_raw=False) >= cut_date and (date_from_url(link["href"], is_raw=False) < cut_date_end)] def page_from_url(sel_url, is_pop=False): """page_from_url(str, boolean) -> int sel_url: url of the report is_pop: choose between populations and general data return: number of the page containing the table""" query = "TABELLA A[0-9] - POPOLAZIONE DI RIFERIMENTO" if is_pop else \ "TABELLA [0-9] – NUMERO DI CASI DI COVID-19" with request.urlopen(sel_url) as response: content = response.read() with fitz.open(stream=content, filetype="pdf") as pdf: print("\nSearching for the selected table...") # Query for string for page in pdf: text = page.get_text() if re.search(query, text, re.IGNORECASE): return page.number + 1 return None def date_from_url(sel_url, is_raw=True): """date_from_url(str, boolean) -> datetime sel_url: url of the report is_raw: choose whether to return raw or translated date return: datetime""" date_ = re.findall(r"\d+[a-z-A-Z]+\d+", sel_url)[0] return date_ if is_raw else datetime.strptime(date_, "%d-%B-%Y") def check_df(sel_df): """check_df(df) -> None sel_df: dataframe return: check if the table has at least 2 columns""" error_msg = "Can't extract the table! DIY!" if len(sel_df.columns) < 3: # Table is incomplete, bye bye print(error_msg) exit() def get_raw_table(sel_url, table): """get_raw_table(str, int) -> df sel_url: url of the report table: the page number of the table return: raw dataframe""" # Read the found page using camelot tables = camelot.read_pdf(sel_url, pages=f"{table}", flavor="stream") df_raw = tables[0].df # Check if there are enough columns if len(df_raw.columns) < 5: if len(tables) >= 1: df_raw = tables[1].df check_df(df_raw) return df_raw def clean_raw_table(sel_df): """clean_raw_table(df) -> df sel_df: raw dataframe return: extract numerical data from the dataframe""" # We are interested in the last 5 columns columns_to_keep = sel_df.columns[-5:] df_raw = sel_df[columns_to_keep] # select rows containing numbers selection = r"[0-9]" df_raw = df_raw[df_raw[df_raw.columns[0]].str.match(selection)] # Remove dots and parentheses to_exclude = r"\((.*)|[^0-9]" df_final = df_raw.replace(to_exclude, "", regex=True).apply(np.int64) df_final.columns = ["non vaccinati", "vaccinati 1 dose", "vaccinati completo < x mesi", "vaccinati completo > x mesi", "vaccinati booster"] # Merge immunized columns ("vaccinati completo < x mesi", # "vaccinati completo > x mesi", "vaccinati booster") into one idx = df_final.columns.tolist().index("vaccinati 1 dose") vaccinati_completo = df_final.iloc[:, 2:].sum(axis=1) df_final.insert(idx+1, "vaccinati completo", vaccinati_completo) # Drop these columns df_final.drop(["vaccinati completo < x mesi", "vaccinati completo > x mesi"], axis=1, inplace=True) df_final.reset_index(inplace=True, drop=True) return df_final def extract_data_from_raw(raw_df, to_df, sel_rows=None): """extract_data_from_raw(df, df, list) -> df, df raw_df: raw dataframe to_df: dataframe to update sel_rows: selected raw df rows return: processed dataframes""" if sel_rows is None: f_pop = "data_iss_età_%s.xlsx" # Align hospitalizations/ti and deaths populations # Get hospitalizations/ti populations from 2nd latest report # Get deaths populations from 3rd latest report date_osp = rep_date - timedelta(days=15) df_hosp = pd.read_excel(f_pop % date_osp.date(), sheet_name="popolazioni") date_dec = rep_date - timedelta(days=22) df_deaths = pd.read_excel(f_pop % date_dec.date(), sheet_name="popolazioni") # Get general data results = np.concatenate((raw_df.iloc[4, :].values, to_df.loc[date_osp].values[0:4], to_df.loc[date_dec].values[0:4])) # Build ages dataframe # Merge df together df_ = pd.concat([raw_df.iloc[:4, :5], df_hosp.iloc[:, 1:5], df_deaths.iloc[:, 1:5]], axis=1) df_.columns = df_deaths.columns[1:] df_.set_index(df_deaths["età"], inplace=True) else: # Get general data results = raw_df.iloc[sel_rows, :].stack().values # Get data by age ages = ["12-39", "40-59", "60-79", "80+"] rows_to_keep = np.arange(0, len(raw_df), 5) results_ = {age: raw_df.iloc[rows_to_keep+i, :].stack().values for i, age in enumerate(ages)} # Build ages dataframe df_ =
pd.DataFrame(results_)
pandas.DataFrame
import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from blocktorch.pipelines.components.transformers.preprocessing import ( DropRowsTransformer, ) def test_drop_rows_transformer_init(): drop_rows_transformer = DropRowsTransformer() assert drop_rows_transformer.indices_to_drop is None drop_rows_transformer = DropRowsTransformer(indices_to_drop=[0, 1]) assert drop_rows_transformer.indices_to_drop == [0, 1] def test_drop_rows_transformer_init_with_duplicate_indices(): with pytest.raises(ValueError, match="All input indices must be unique."): DropRowsTransformer(indices_to_drop=[0, 0]) def test_drop_rows_transformer_fit_transform(): X = pd.DataFrame({"a column": [1, 2, 3], "another col": [4, 5, 6]}) X_expected = X.copy() drop_rows_transformer_none = DropRowsTransformer() drop_rows_transformer_none.fit(X) transformed = drop_rows_transformer_none.transform(X) assert_frame_equal(X, transformed[0]) assert transformed[1] is None indices_to_drop = [1, 2] X_expected = pd.DataFrame({"a column": [1], "another col": [4]}) drop_rows_transformer = DropRowsTransformer(indices_to_drop=indices_to_drop) drop_rows_transformer.fit(X) transformed = drop_rows_transformer.transform(X) assert_frame_equal(X_expected, transformed[0]) assert transformed[1] is None drop_rows_transformer = DropRowsTransformer(indices_to_drop=indices_to_drop) fit_transformed = drop_rows_transformer.fit_transform(X) assert_frame_equal(fit_transformed[0], transformed[0]) assert fit_transformed[1] is None def test_drop_rows_transformer_fit_transform_with_empty_indices_to_drop(): X = pd.DataFrame({"a column": [1, 2, 3], "another col": [4, 5, 6]}) y = pd.Series([1, 0, 1]) drop_rows_transformer = DropRowsTransformer(indices_to_drop=[]) fit_transformed = drop_rows_transformer.fit_transform(X) assert_frame_equal(X, fit_transformed[0]) assert fit_transformed[1] is None fit_transformed = drop_rows_transformer.fit_transform(X, y) assert_frame_equal(X, fit_transformed[0]) assert_series_equal(y, fit_transformed[1]) def test_drop_rows_transformer_fit_transform_with_target(): X = pd.DataFrame({"a column": [1, 2, 3], "another col": [4, 5, 6]}) y = pd.Series([1, 0, 1]) X_expected = pd.DataFrame({"a column": [1], "another col": [4]}) y_expected = pd.Series([1]) drop_rows_transformer_none = DropRowsTransformer() drop_rows_transformer_none.fit(X, y) transformed = drop_rows_transformer_none.transform(X, y) assert_frame_equal(X, transformed[0])
assert_series_equal(y, transformed[1])
pandas.testing.assert_series_equal
#!/usr/bin/python # -*- coding: UTF-8 -*- """ 程序通用函数库 作者:wking [http://wkings.net] """ import os import statistics import time import datetime import requests import numpy as np import pandas as pd import threading from queue import Queue from retry import retry # from rich.progress import track # from rich import print from tqdm import tqdm import user_config as ucfg # debug输出函数 def user_debug(print_str, print_value='', ): """第一个参数为变量名称,第二个参数为变量的值""" if ucfg.debug: if print_value: print(str(print_str) + ' = ' + str(print_value)) else: print(str(print_str)) # 将通达信的日线文件转换成CSV格式保存函数。通达信数据文件32字节为一组。 def day2csv(source_dir, file_name, target_dir): """ 将通达信的日线文件转换成CSV格式保存函数。通达信数据文件32字节为一组 :param source_dir: str 源文件路径 :param file_name: str 文件名 :param target_dir: str 要保存的路径 :return: none """ from struct import unpack from decimal import Decimal # 用于浮点数四舍五入 # 以二进制方式打开源文件 source_path = source_dir + os.sep + file_name # 源文件包含文件名的路径 source_file = open(source_path, 'rb') buf = source_file.read() # 读取源文件保存在变量中 source_file.close() source_size = os.path.getsize(source_path) # 获取源文件大小 source_row_number = int(source_size / 32) # user_debug('源文件行数', source_row_number) # 打开目标文件,后缀名为CSV target_path = target_dir + os.sep + file_name[2:-4] + '.csv' # 目标文件包含文件名的路径 # user_debug('target_path', target_path) if not os.path.isfile(target_path): # 目标文件不存在。写入表头行。begin从0开始转换 target_file = open(target_path, 'w', encoding="utf-8") # 以覆盖写模式打开文件 header = str('date') + ',' + str('code') + ',' + str('open') + ',' + str('high') + ',' + str('low') + ',' \ + str('close') + ',' + str('vol') + ',' + str('amount') target_file.write(header) begin = 0 end = begin + 32 row_number = 0 else: # 不为0,文件有内容。行附加。 # 通达信数据32字节为一组,因此通达信文件大小除以32可算出通达信文件有多少行(也就是多少天)的数据。 # 再用readlines计算出目标文件已有多少行(目标文件多了首行标题行),(行数-1)*32 即begin要开始的字节位置 target_file = open(target_path, 'a+', encoding="gbk") # 以追加读写模式打开文件 # target_size = os.path.getsize(target_path) #获取目标文件大小 # 由于追加读写模式载入文件后指针在文件的结尾,需要先把指针改到文件开头,读取文件行数。 user_debug('当前指针', target_file.tell()) target_file.seek(0, 0) # 文件指针移到文件头 user_debug('移动指针到开头', target_file.seek(0, 0)) target_file_content = target_file.readlines() # 逐行读取文件内容 row_number = len(target_file_content) # 获得文件行数 user_debug('目标文件行数', row_number) user_debug('目标文件最后一行的数据', target_file_content[-1]) target_file.seek(0, 2) # 文件指针移到文件尾 user_debug('移动指针到末尾', target_file.seek(0, 2)) if row_number > source_row_number: user_debug('已是最新数据,跳过for循环') else: user_debug('追加模式,从' + str(row_number + 1) + '行开始') if row_number == 0: # 如果文件出错是0的特殊情况 begin = 0 else: row_number = row_number - 1 # 由于pandas的dataFrame格式索引从0开始,为下面for循环需要减1 begin = row_number * 32 end = begin + 32 for i in range(row_number, source_row_number): # 由于pandas的dataFrame格式首行为标题行,第二行的索引从0开始, # 因此转换出来显示的行数比原本少一行,但实际数据一致 # # 将字节流转换成Python数据格式 # I: unsigned int # f: float # a[5]浮点类型的成交金额,使用decimal类四舍五入为整数 a = unpack('IIIIIfII', buf[begin:end]) # '\n' + str(i) + ',' # a[0] 将’19910404'样式的字符串转为'1991-05-05'格式的字符串。为了统一日期格式 a_date = str(a[0])[0:4] + '-' + str(a[0])[4:6] + '-' + str(a[0])[6:8] file_name[2:-4] line = '\n' + str(a_date) + ',' \ + file_name[2:-4] + ',' \ + str(a[1] / 100.0) + ',' \ + str(a[2] / 100.0) + ',' \ + str(a[3] / 100.0) + ',' \ + str(a[4] / 100.0) + ',' \ + str(a[6]) + ',' \ + str(Decimal(a[5]).quantize(Decimal("1."), rounding="ROUND_HALF_UP")) target_file.write(line) begin += 32 end += 32 target_file.close() def get_TDX_blockfilecontent(filename): """ 读取本机通达信板块文件,获取文件内容 :rtype: object :param filename: 字符串类型。输入的文件名。 :return: DataFrame类型 """ from pytdx.reader import block_reader, TdxFileNotFoundException if ucfg.tdx['tdx_path']: filepath = ucfg.tdx['tdx_path'] + os.sep + 'T0002' + os.sep + 'hq_cache' + os.sep + filename df = block_reader.BlockReader().get_df(filepath) else: print("user_config文件的tdx_path变量未配置,或未找到" + filename + "文件") return df def get_lastest_stocklist(): """ 使用pytdx从网络获取最新券商列表 :return:DF格式,股票清单 """ import pytdx.hq import pytdx.util.best_ip print(f"优选通达信行情服务器 也可直接更改为优选好的 {{'ip': '172.16.58.3', 'port': 7709}}") # ipinfo = pytdx.util.best_ip.select_best_ip() api = pytdx.hq.TdxHq_API() # with api.connect(ipinfo['ip'], ipinfo['port']): with api.connect('172.16.58.3', 7709): data = pd.concat([pd.concat( [api.to_df(api.get_security_list(j, i * 1000)).assign(sse='sz' if j == 0 else 'sh') for i in range(int(api.get_security_count(j) / 1000) + 1)], axis=0) for j in range(2)], axis=0) data = data.reindex(columns=['sse', 'code', 'name', 'pre_close', 'volunit', 'decimal_point']) data.sort_values(by=['sse', 'code'], ascending=True, inplace=True) data.reset_index(drop=True, inplace=True) # 这个方法不行 字符串不能运算大于小于,转成int更麻烦 # df = data.loc[((data['sse'] == 'sh') & ((data['code'] >= '600000') | (data['code'] < '700000'))) | \ # ((data['sse'] == 'sz') & ((data['code'] >= '000001') | (data['code'] < '100000'))) | \ # ((data['sse'] == 'sz') & ((data['code'] >= '300000') | (data['code'] < '309999')))] sh_start_num = data[(data['sse'] == 'sh') & (data['code'] == '600000')].index.tolist()[0] sh_end_num = data[(data['sse'] == 'sh') & (data['code'] == '706070')].index.tolist()[0] sz00_start_num = data[(data['sse'] == 'sz') & (data['code'] == '000001')].index.tolist()[0] sz00_end_num = data[(data['sse'] == 'sz') & (data['code'] == '100303')].index.tolist()[0] sz30_start_num = data[(data['sse'] == 'sz') & (data['code'] == '300001')].index.tolist()[0] sz30_end_num = data[(data['sse'] == 'sz') & (data['code'] == '395001')].index.tolist()[0] df_sh = data.iloc[sh_start_num:sh_end_num] df_sz00 = data.iloc[sz00_start_num:sz00_end_num] df_sz30 = data.iloc[sz30_start_num:sz30_end_num] df = pd.concat([df_sh, df_sz00, df_sz30]) df.reset_index(drop=True, inplace=True) return df def historyfinancialreader(filepath): """ 读取解析通达信目录的历史财务数据 :param filepath: 字符串类型。传入文件路径 :return: DataFrame格式。返回解析出的财务文件内容 """ import struct cw_file = open(filepath, 'rb') header_pack_format = '<1hI1H3L' header_size = struct.calcsize(header_pack_format) stock_item_size = struct.calcsize("<6s1c1L") data_header = cw_file.read(header_size) stock_header = struct.unpack(header_pack_format, data_header) max_count = stock_header[2] report_date = stock_header[1] report_size = stock_header[4] report_fields_count = int(report_size / 4) report_pack_format = '<{}f'.format(report_fields_count) results = [] for stock_idx in range(0, max_count): cw_file.seek(header_size + stock_idx * struct.calcsize("<6s1c1L")) si = cw_file.read(stock_item_size) stock_item = struct.unpack("<6s1c1L", si) code = stock_item[0].decode("utf-8") foa = stock_item[2] cw_file.seek(foa) info_data = cw_file.read(struct.calcsize(report_pack_format)) data_size = len(info_data) cw_info = list(struct.unpack(report_pack_format, info_data)) cw_info.insert(0, code) results.append(cw_info) df = pd.DataFrame(results) return df class ManyThreadDownload: def __init__(self, num=10): self.num = num # 线程数,默认10 self.url = '' # url self.name = '' # 目标地址 self.total = 0 # 文件大小 # 获取每个线程下载的区间 def get_range(self): ranges = [] offset = int(self.total / self.num) for i in range(self.num): if i == self.num - 1: ranges.append((i * offset, '')) else: ranges.append(((i * offset), (i + 1) * offset - 1)) return ranges # [(0,99),(100,199),(200,"")] # 通过传入开始和结束位置来下载文件 def download(self, ts_queue): while not ts_queue.empty(): start_, end_ = ts_queue.get() headers = { 'Range': 'Bytes=%s-%s' % (start_, end_), 'Accept-Encoding': '*' } flag = False while not flag: try: # 设置重连次数 requests.adapters.DEFAULT_RETRIES = 10 # s = requests.session() # 每次都会发起一次TCP握手,性能降低,还可能因发起多个连接而被拒绝 # # 设置连接活跃状态为False # s.keep_alive = False # 默认stream=false,立即下载放到内存,文件过大会内存不足,大文件时用True需改一下码子 res = requests.get(self.url, headers=headers) res.close() # 关闭请求 释放内存 except Exception as e: print((start_, end_, "出错了,连接重试:%s", e,)) time.sleep(1) continue flag = True # print("\n", ("%s-%s download success" % (start_, end_)), end="", flush=True) # with lock: with open(self.name, "rb+") as fd: fd.seek(start_) fd.write(res.content) # self.fd.seek(start_) # 指定写文件的位置,下载的内容放到正确的位置处 # self.fd.write(res.content) # 将下载文件保存到 fd所打开的文件里 def run(self, url, name): self.url = url self.name = name self.total = int(requests.head(url).headers['Content-Length']) # file_size = int(urlopen(self.url).info().get('Content-Length', -1)) file_size = self.total if os.path.exists(name): first_byte = os.path.getsize(name) else: first_byte = 0 if first_byte >= file_size: return file_size self.fd = open(name, "wb") # 续传时直接rb+ 文件不存在时会报错,先wb再rb+ self.fd.truncate(self.total) # 建一个和下载文件一样大的文件,不是必须的,stream=True时会用到 self.fd.close() # self.fd = open(self.name, "rb+") # 续传时ab方式打开时会强制指针指向文件末尾,seek并不管用,应用rb+模式 thread_list = [] ts_queue = Queue() # 用队列的线程安全特性,以列表的形式把开始和结束加到队列 for ran in self.get_range(): start_, end_ = ran ts_queue.put((start_, end_)) for i in range(self.num): t = threading.Thread(target=self.download, name='th-' + str(i), kwargs={'ts_queue': ts_queue}) t.setDaemon(True) thread_list.append(t) for t in thread_list: t.start() for t in thread_list: t.join() # 设置等待,全部线程完事后再继续 self.fd.close() @retry(tries=3, delay=3) # 无限重试装饰性函数 def dowload_url(url): """ :param url:要下载的url :return: request.get实例化对象 """ import requests header = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/87.0.4280.141', } response_obj = requests.get(url, headers=header, timeout=5) # get方式请求 response_obj.raise_for_status() # 检测异常方法。如有异常则抛出,触发retry # print(f'{url} 下载完成') return response_obj def list_localTDX_cwfile(ext_name): """ 列出本地已有的专业财务文件。返回文件列表 :param ext_name: str类型。文件扩展名。返回指定扩展名的文件列表 :return: list类型。财务专业文件列表 """ cw_path = ucfg.tdx['tdx_path'] + os.sep + "vipdoc" + os.sep + "cw" tmplist = os.listdir(cw_path) # 遍历通达信vipdoc/cw目录 cw_filelist = [] for file in tmplist: # 只保留gpcw????????.扩展名 格式文件 if len(file) == 16 and file[:4] == "gpcw" and file[-4:] == "." + ext_name: cw_filelist.append(file) # print(f'检测到{len(cw_filelist)}个专业财务文件') return cw_filelist def readall_local_cwfile(): """ 将全部财报文件读到df_cw字典里。会占用1G内存,但处理速度比遍历CSV方式快很多 :return: 字典形式,所有财报内容。 """ print(f'开始载入所有财报文件到内存') dict = {} cwfile_list = os.listdir(ucfg.tdx['csv_cw']) # cw目录 生成文件名列表 starttime_tick = time.time() for cwfile in cwfile_list: if os.path.getsize(ucfg.tdx['csv_cw'] + os.sep + cwfile) != 0: dict[cwfile[4:-4]] = pd.read_pickle(ucfg.tdx['csv_cw'] + os.sep + cwfile, compression=None) print(f'读取所有财报文件完成 用时{(time.time() - starttime_tick):.2f}秒') return dict def make_fq(code, df_code, df_gbbq, df_cw='', start_date='', end_date='', fqtype='qfq'): """ 股票周期数据复权处理函数 :param code:str格式,具体股票代码 :param df_code:DF格式,未除权的具体股票日线数据。DF自动生成的数字索引,列定义:date,open,high,low,close,vol,amount :param df_gbbq:DF格式,通达信导出的全股票全日期股本变迁数据。DF读取gbbq文件必须加入dtype={'code': str}参数,否则股票代码开头0会忽略 :param df_cw:DF格式,读入内存的全部财务文件 :param start_date:可选,要截取的起始日期。默认为空。格式"2020-10-10" :param end_date:可选,要截取的截止日期。默认为空。格式"2020-10-10" :param fqtype:可选,复权类型。默认前复权。 :return:复权后的DF格式股票日线数据 """ '''以下是从https://github.com/rainx/pytdx/issues/78#issuecomment-335668322 提取学习的前复权代码 import datetime import numpy as np import pandas as pd from pytdx.hq import TdxHq_API # from pypinyin import lazy_pinyin import tushare as ts '除权除息' api = TdxHq_API() with api.connect('172.16.17.32', 7709): # 从服务器获取该股的股本变迁数据 category = { '1': '除权除息', '2': '送配股上市', '3': '非流通股上市', '4': '未知股本变动', '5': '股本变化', '6': '增发新股', '7': '股份回购', '8': '增发新股上市', '9': '转配股上市', '10': '可转债上市', '11': '扩缩股', '12': '非流通股缩股', '13': '送认购权证', '14': '送认沽权证'} data = api.to_df(api.get_xdxr_info(0, '000001')) data = data \ .assign(date=pd.to_datetime(data[['year', 'month', 'day']])) \ .drop(['year', 'month', 'day'], axis=1) \ .assign(category_meaning=data['category'].apply(lambda x: category[str(x)])) \ .assign(code=str('000001')) \ .rename(index=str, columns={'panhouliutong': 'liquidity_after', 'panqianliutong': 'liquidity_before', 'houzongguben': 'shares_after', 'qianzongguben': 'shares_before'}) \ .set_index('date', drop=False, inplace=False) xdxr_data = data.assign(date=data['date'].apply(lambda x: str(x)[0:10])) # 该股的股本变迁DF处理完成 df_gbbq = xdxr_data[xdxr_data['category'] == 1] # 提取只有除权除息的行保存到DF df_gbbq # print(df_gbbq) # 从服务器读取该股的全部历史不复权K线数据,保存到data表, 只包括 日期、开高低收、成交量、成交金额数据 data = pd.concat([api.to_df(api.get_security_bars(9, 0, '000001', (9 - i) * 800, 800)) for i in range(10)], axis=0) # 从data表加工数据,保存到bfq_data表 df_code = data \ .assign(date=pd.to_datetime(data['datetime'].apply(lambda x: x[0:10]))) \ .assign(code=str('000001')) \ .set_index('date', drop=False, inplace=False) \ .drop(['year', 'month', 'day', 'hour', 'minute', 'datetime'], axis=1) df_code['if_trade'] = True # 不复权K线数据处理完成,保存到bfq_data表 # 提取info表的category列的值,按日期一一对应,列拼接到bfq_data表。也就是标识出当日是除权除息日的行 data = pd.concat([df_code, df_gbbq[['category']][df_code.index[0]:]], axis=1) # print(data) data['date'] = data.index data['if_trade'].fillna(value=False, inplace=True) # if_trade列,无效的值填充为False data = data.fillna(method='ffill') # 向下填充无效值 # 提取info表的'fenhong', 'peigu', 'peigujia',‘songzhuangu'列的值,按日期一一对应,列拼接到data表。 # 也就是将当日是除权除息日的行,对应的除权除息数据,写入对应的data表的行。 data = pd.concat([data, df_gbbq[['fenhong', 'peigu', 'peigujia', 'songzhuangu']][df_code.index[0]:]], axis=1) data = data.fillna(0) # 无效值填空0 data['preclose'] = (data['close'].shift(1) * 10 - data['fenhong'] + data['peigu'] * data['peigujia']) / (10 + data['peigu'] + data['songzhuangu']) data['adj'] = (data['preclose'].shift(-1) / data['close']).fillna(1)[::-1].cumprod() # 计算每日复权因子 data['open'] = data['open'] * data['adj'] data['high'] = data['high'] * data['adj'] data['low'] = data['low'] * data['adj'] data['close'] = data['close'] * data['adj'] data['preclose'] = data['preclose'] * data['adj'] data = data[data['if_trade']] result = data \ .drop(['fenhong', 'peigu', 'peigujia', 'songzhuangu', 'if_trade', 'category'], axis=1)[data['open'] != 0] \ .assign(date=data['date'].apply(lambda x: str(x)[0:10])) print(result) ''' # 先进行判断。如果有adj列,且没有NaN值,表示此股票数据已处理完成,无需处理。直接返回。 # 如果没有‘adj'列,表示没进行过复权处理,当作新股处理 if 'adj' in df_code.columns.to_list(): if True in df_code['adj'].isna().to_list(): first_index = np.where(df_code.isna())[0][0] # 有NaN值,设为第一个NaN值所在的行 else: return "" else: first_index = 0 flag_newstock = True flag_attach = False # True=追加数据模式 False=数据全部重新计算 # 设置新股标志。True=新股,False=旧股。新股跳过追加数据部分的代码。如果没定义,默认为False if 'flag_newstock' not in dir(): flag_newstock = False # 提取该股除权除息行保存到DF df_cqcx,提取其他信息行到df_gbbq df_cqcx = df_gbbq.loc[(df_gbbq['code'] == code) & (df_gbbq['类别'] == '除权除息')] df_gbbq = df_gbbq.loc[(df_gbbq['code'] == code) & ( (df_gbbq['类别'] == '股本变化') | (df_gbbq['类别'] == '送配股上市') | (df_gbbq['类别'] == '转配股上市'))] # 清洗df_gbbq,可能出现同一日期有 配股上市、股本变化两行数据。不清洗后面合并会索引冲突。 # 下面的代码可以保证删除多个不连续的重复行,用DF dropdup方法不能确保删除的值是大是小 # 如果Ture在列表里。表示有重复行存在 if True in df_gbbq.duplicated(subset=['权息日'], keep=False).to_list(): # 提取重复行的索引 del_index = [] # 要删除的后流通股的值 tmp_dict = df_gbbq.duplicated(subset=['权息日'], keep=False).to_dict() for k, v in tmp_dict.items(): if v: del_index.append(df_gbbq.at[k, '送转股-后流通盘']) # 如果dup_index有1个以上的值,且K+1的元素是False,或K+1不存在也返回False,表示下一个元素 不是 重复行 if len(del_index) > 1 and (tmp_dict.get(k + 1, False) == False): del_index.remove(max(del_index)) # 删除最大值 # 选择剩余的值,取反,则相当于保留了最大值,删除了其余的值 df_gbbq = df_gbbq[~df_gbbq['送转股-后流通盘'].isin(del_index)] # int64类型储存的日期19910404,转换为dtype: datetime64[ns] 1991-04-04 为了按日期一一对应拼接 df_cqcx = df_cqcx.assign(date=pd.to_datetime(df_cqcx['权息日'], format='%Y%m%d')) # 添加date列,设置为datetime64[ns]格式 df_cqcx.set_index('date', drop=True, inplace=True) # 设置权息日为索引 (字符串表示的日期 "19910101") df_cqcx['category'] = 1.0 # 添加category列 df_gbbq = df_gbbq.assign(date=pd.to_datetime(df_gbbq['权息日'], format='%Y%m%d')) # 添加date列,设置为datetime64[ns]格式 df_gbbq.set_index('date', drop=True, inplace=True) # 设置权息日为索引 (字符串表示的日期 "19910101") if len(df_cqcx) > 0: # =0表示股本变迁中没有该股的除权除息信息。gbbq_lastest_date设置为今天,当作新股处理 cqcx_lastest_date = df_cqcx.index[-1].strftime('%Y-%m-%d') # 提取最新的除权除息日 else: cqcx_lastest_date = str(datetime.date.today()) flag_newstock = True # 判断df_code是否已有历史数据,是追加数据还是重新生成。 # 如果gbbq_lastest_date not in df_code.loc[first_index:, 'date'].to_list(),表示未更新数据中不包括除权除息日 # 由于前复权的特性,除权后历史数据都要变。因此未更新数据中不包括除权除息日,只需要计算未更新数据。否则日线数据需要全部重新计算 # 如果'adj'在df_code的列名单里,表示df_code是已复权过的,只需追加新数据,否则日线数据还是需要全部重新计算 if cqcx_lastest_date not in df_code.loc[first_index:, 'date'].to_list() and not flag_newstock: if 'adj' in df_code.columns.to_list(): flag_attach = True # 确定为追加模式 df_code_original = df_code # 原始code备份为df_code_original,最后合并 df_code = df_code.iloc[first_index:] # 切片df_code,只保留需要处理的行 df_code.reset_index(drop=True, inplace=True) df_code_original.dropna(how='any', inplace=True) # 丢掉缺失数据的行,之后直接append新数据就行。比merge简单。 df_code_original['date'] = pd.to_datetime(df_code_original['date'], format='%Y-%m-%d') # 转为时间格式 df_code_original.set_index('date', drop=True, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并 # 单独提取流通股处理。因为流通股是设置流通股变更时间节点,最后才填充nan值。和其他列的处理会冲突。 # 如果有流通股列,单独复制出来;如果没有流通股列,添加流通股列,赋值为NaN。 # 如果是追加数据模式,则肯定已存在流通股列且数据已处理。因此不需单独提取流通股列。只在前复权前处理缺失的流通股数据即可 # 虽然财报中可能没有流通股的数据,但股本变迁文件中最少也有股票第一天上市时的流通股数据。 # 且后面还会因为送配股上市、股本变化,导致在非财报日之前,流通股就发生变动 if not flag_attach: if '流通股' in df_code.columns.to_list(): df_ltg = pd.DataFrame(index=df_code.index) df_ltg['date'] = df_code['date'] df_ltg['流通股'] = df_code['流通股'] del df_code['流通股'] else: df_ltg = pd.DataFrame(index=df_code.index) df_ltg['date'] = df_code['date'] df_ltg['流通股'] = np.nan else: # 附加模式,此处df_code是已经切片过的,只包括需要更新的数据行。其中也包含流通股列,值全为NaN。 # 类似单独提出处理流通股列,和新股模式的区别是只处理需要更新的数据行。 df_ltg = pd.DataFrame(index=df_code.index) del df_code['流通股'] # 第一个值赋值为df_code_original流通股列第一个NaN值的前一个有效值 ltg_lastest_value = df_code_original.at[df_code_original.index[-1], '流通股'] df_ltg['date'] = df_code['date'] df_ltg['流通股'] = np.nan df_ltg.at[0, '流通股'] = ltg_lastest_value df_gbbq = df_gbbq.rename(columns={'送转股-后流通盘': '流通股'}) # 列改名,为了update可以匹配 # 用df_gbbq update data,由于只有流通股列重复,因此只会更新流通股列对应索引的NaN值 df_ltg['date'] = pd.to_datetime(df_ltg['date'], format='%Y-%m-%d') # 转为时间格式 df_ltg.set_index('date', drop=True, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并 df_ltg.update(df_gbbq, overwrite=False) # 使用update方法更新df_ltg if not flag_attach: # 附加模式则单位已经调整过,无需再调整 # 股本变迁里的流通股单位是万股。转换与财报的单位:股 统一 df_ltg['流通股'] = df_ltg['流通股'] * 10000 # int64类型储存的日期19910404,转换为dtype: datetime64[ns] 1991-04-04 为了按日期一一对应拼接 with pd.option_context('mode.chained_assignment', None): # 临时屏蔽语句警告 df_code['date'] = pd.to_datetime(df_code['date'], format='%Y-%m-%d') df_code.set_index('date', drop=True, inplace=True) df_code.insert(df_code.shape[1], 'if_trade', True) # 插入if_trade列,赋值True # 提取df_cqcx和df_gbbq表的category列的值,按日期一一对应,列拼接到bfq_data表。也就是标识出当日是股本变迁的行 data = pd.concat([df_code, df_cqcx[['category']][df_code.index[0]:]], axis=1) # print(data) data['if_trade'].fillna(value=False, inplace=True) # if_trade列,无效的值填充为False data.fillna(method='ffill', inplace=True) # 向下填充无效值 # 提取info表的'fenhong', 'peigu', 'peigujia',‘songzhuangu'列的值,按日期一一对应,列拼接到data表。 # 也就是将当日是除权除息日的行,对应的除权除息数据,写入对应的data表的行。 data = pd.concat([data, df_cqcx[['分红-前流通盘', '配股-后总股本', '配股价-前总股本', '送转股-后流通盘']][df_code.index[0]:]], axis=1) data = data.fillna(0) # 无效值填空0 data['preclose'] = (data['close'].shift(1) * 10 - data['分红-前流通盘'] + data['配股-后总股本'] * data['配股价-前总股本']) / (10 + data['配股-后总股本'] + data['送转股-后流通盘']) # 计算每日复权因子 前复权最近一次股本变迁的复权因子为1 data['adj'] = (data['preclose'].shift(-1) / data['close']).fillna(1)[::-1].cumprod() data['open'] = data['open'] * data['adj'] data['high'] = data['high'] * data['adj'] data['low'] = data['low'] * data['adj'] data['close'] = data['close'] * data['adj'] # data['preclose'] = data['preclose'] * data['adj'] # 这行没用了 data = data[data['if_trade']] # 重建整个表,只保存if_trade列=true的行 # 抛弃过程处理行,且open值不等于0的行 data = data.drop(['分红-前流通盘', '配股-后总股本', '配股价-前总股本', '送转股-后流通盘', 'if_trade', 'category', 'preclose'], axis=1)[data['open'] != 0] # 复权处理完成 # 如果没有传参进来,就自己读取财务文件,否则用传参的值 if df_cw == '': cw_dict = readall_local_cwfile() else: cw_dict = df_cw # 计算换手率 # 财报数据公开后,股本才变更。因此有效时间是“当前财报日至未来日期”。故将结束日期设置为2099年。每次财报更新后更新对应的日期时间段 e_date = '20990101' for cw_date in cw_dict: # 遍历财报字典 cw_date=财报日期 cw_dict[cw_date]=具体的财报内容 # 如果复权数据表的首行日期>当前要读取的财务报表日期,则表示此财务报表发布时股票还未上市,跳过此次循环。有例外情况:003001 # (cw_dict[cw_date][1] == code).any() 表示当前股票code在财务DF里有数据 if df_ltg.index[0].strftime('%Y%m%d') <= cw_date <= df_ltg.index[-1].strftime('%Y%m%d') \ and len(cw_dict[cw_date]) > 0: if (cw_dict[cw_date][1] == code).any(): # 获取目前股票所在行的索引值,具有唯一性,所以直接[0] code_df_index = cw_dict[cw_date][cw_dict[cw_date][1] == code].index.to_list()[0] # DF格式读取的财报,字段与财务说明文件的序号一一对应,如果是CSV读取的,字段需+1 # print(f'{cwfile_date} 总股本:{cw_dict[cw_date].iat[code_df_index,238]}' # f'流通股本:{cw_dict[cw_date].iat[code_df_index,239]}') # 如果流通股值是0,则进行下一次循环 if int(cw_dict[cw_date].iat[code_df_index, 239]) != 0: # df_ltg[cw_date:e_date].index[0] 表示df_ltg中从cw_date到e_date的第一个索引的值。 # 也就是离cw_date日期最近的下一个有效行 df_ltg.at[df_ltg[cw_date:e_date].index[0], '流通股'] = float(cw_dict[cw_date].iat[code_df_index, 239]) # df_ltg拼接回原DF data = pd.concat([data, df_ltg], axis=1) data = data.fillna(method='ffill') # 向下填充无效值 data = data.fillna(method='bfill') # 向上填充无效值 为了弥补开始几行的空值 data = data.round({'open': 2, 'high': 2, 'low': 2, 'close': 2, }) # 指定列四舍五入 if '流通股' in data.columns.to_list(): data['流通市值'] = data['流通股'] * data['close'] data['换手率'] = data['vol'] / data['流通股'] * 100 data = data.round({'流通市值': 2, '换手率': 2, }) # 指定列四舍五入 if flag_attach: # 追加模式,则附加最新处理的数据 data = df_code_original.append(data) if len(start_date) == 0 and len(end_date) == 0: pass elif len(start_date) != 0 and len(end_date) == 0: data = data[start_date:] elif len(start_date) == 0 and len(end_date) != 0: data = data[:end_date] elif len(start_date) != 0 and len(end_date) != 0: data = data[start_date:end_date] data.reset_index(drop=False, inplace=True) # 重置索引行,数字索引,date列到第1列,保存为str '1991-01-01' 格式 # 最后调整列顺序 # data = data.reindex(columns=['code', 'date', 'open', 'high', 'low', 'close', 'vol', 'amount', 'adj', '流通股', '流通市值', '换手率']) return data def get_tdx_lastestquote(stocklist=None): """ 使用pytdx获取当前实时行情。返回行情的DF列表格式。stocklist为空则获取ucfg.tdx['csv_lday']目录全部股票行情 :param stocklist: 可选,list类型。str类型传入股票列表['000001', '000002','600030'] :return:当前从pytdx服务器获取的最新股票行情 """ # get_security_quotes只允许最大80个股票为一组 数字越大漏掉的股票越多。测试数据: # 数字 获取股票 用时 # 80 3554 2.59 # 40 3874 5.07 # 20 4015 10.12 # 10 4105 17.54 from pytdx.hq import TdxHq_API stocklist_pytdx = [] if stocklist is None: # 如果列表为空,则获取csv_lday目录全部股票 stocklist = [] for i in os.listdir(ucfg.tdx['csv_lday']): stocklist.append(i[:-4]) elif isinstance(stocklist, str): tmp = [] tmp.append(stocklist) stocklist = tmp del tmp elif isinstance(stocklist, tuple): stocklist_pytdx.append(stocklist) if isinstance(stocklist, list): for stock in stocklist: # 构造get_security_quotes所需的元组参数 if stock[:1] == '6': stocklist_pytdx.append(tuple([1, stock])) elif stock[:1] == '0' or stock[:1] == '3': stocklist_pytdx.append(tuple([0, stock])) del stocklist df = pd.DataFrame() api = TdxHq_API(raise_exception=False) starttime_tick = time.time() print(f'请求 {len(stocklist_pytdx)} 只股票实时行情') if api.connect(ucfg.tdx['pytdx_ip'], ucfg.tdx['pytdx_port']): # 第一轮获取股票行情,会有100只股票左右遗漏。pytdx代码问题 if len(stocklist_pytdx) == 1: data = api.to_df(api.get_security_quotes(stocklist_pytdx)) df = pd.concat([df, data], axis=0, ignore_index=True) else: k = 0 tq = tqdm(stocklist_pytdx) for v in tq: if type(v) == tuple: tq.set_description(v[1]) else: tq.set_description(v) if k > 0 and k % 10 == 0: data = api.to_df(api.get_security_quotes(stocklist_pytdx[k - 10:k])) df = pd.concat([df, data], axis=0, ignore_index=True) elif k == len(stocklist_pytdx) - 1: # 循环到最后,少于10个构成一组 data = api.to_df(api.get_security_quotes(stocklist_pytdx[k - (k % 10):k + 1])) df = pd.concat([df, data], axis=0, ignore_index=True) k = k + 1 api.disconnect() df.dropna(how='all', inplace=True) # print(f'已获取{len(df)}只股票行情 用时{(time.time() - starttime_tick):>5.2f}秒') # stocklist_pytdx剔除已获取的股票 for stock in df.loc[(df['market'] == 1)]['code'].to_list(): try: stocklist_pytdx.remove((1, stock)) except ValueError: pass for stock in df.loc[(df['market'] == 0)]['code'].to_list(): try: stocklist_pytdx.remove((0, stock)) except ValueError: pass # 第二轮获取股票行情,剩余的就是今日无交易的股票 if api.connect(ucfg.tdx['pytdx_ip'], ucfg.tdx['pytdx_port']): for i in stocklist_pytdx: data = api.to_df(api.get_security_quotes(i)) df = pd.concat([df, data], axis=0, ignore_index=True) api.disconnect() df.dropna(how='all', inplace=True) df.reset_index(drop=True, inplace=True) # stocklist_pytdx剔除已获取的股票 for stock in df.loc[(df['market'] == 1)]['code'].to_list(): try: stocklist_pytdx.remove((1, stock)) except ValueError: pass for stock in df.loc[(df['market'] == 0)]['code'].to_list(): try: stocklist_pytdx.remove((0, stock)) except ValueError: pass print(f'已获取 {len(df)} 只股票实时行情 用时 {(time.time() - starttime_tick):>.2f} 秒') if len(stocklist_pytdx) > 0: print(f'剩余 {len(stocklist_pytdx)} 只股票今日未交易:') print(stocklist_pytdx) return df def update_stockquote(code, df_history, df_today): """ 使用pytdx获取当前实时行情。合并历史DF和当前行情,返回合并后的DF :param code: str类型。股票代码,'600030' :param df_history: DF类型。该股的历史DF数据 :param df_today: DF类型。该股的当天盘中最新数据 :return:合并后的DF数据 """ now_date = pd.to_datetime(time.strftime("%Y-%m-%d", time.localtime())) # now_time = time.strftime("%H:%M:%S", time.localtime()) # df_history[date]最后一格的日期小于今天 if pd.to_datetime(df_history.at[df_history.index[-1], 'date']) < now_date: df_today = df_today[(df_today['code'] == code)] with pd.option_context('mode.chained_assignment', None): # 临时屏蔽语句警告 df_today['date'] = now_date df_today.set_index('date', drop=False, inplace=True) df_today = df_today.rename(columns={'price': 'close'}) df_today = df_today[{'code', 'date', 'open', 'high', 'low', 'close', 'vol', 'amount'}] result = pd.concat([df_history, df_today], axis=0, ignore_index=False) result = result.fillna(method='ffill') # 向下填充无效值 if '流通市值' and '换手率' in result.columns.tolist(): result['流通市值'] = result['流通股'] * result['close'] result = result.round({'流通市值': 2, }) # 指定列四舍五入 if '换手率' and '换手率' in result.columns.tolist(): result['换手率'] = result['vol'] / result['流通股'] * 100 result = result.round({'换手率': 2, }) # 指定列四舍五入 else: result = df_history return result if __name__ == '__main__': stock_code = '000001' day2csv(ucfg.tdx['tdx_path'] + '/vipdoc/sz/lday', 'sz' + stock_code + '.day', ucfg.tdx['csv_lday']) df_gbbq =
pd.read_csv(ucfg.tdx['csv_gbbq'] + '/gbbq.csv', encoding='gbk', dtype={'code': str})
pandas.read_csv
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import os.path import pkg_resources import tempfile import unittest import numpy as np import pandas as pd from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn, MetadataFileError) def get_data_path(filename): return pkg_resources.resource_filename('qiime2.metadata.tests', 'data/%s' % filename) # NOTE: many of the test files in the `data` directory intentionally have # leading/trailing whitespace characters on some lines, as well as mixed usage # of spaces, tabs, carriage returns, and newlines. When editing these files, # please make sure your code editor doesn't strip these leading/trailing # whitespace characters (e.g. Atom does this by default), nor automatically # modify the files in some other way such as converting Windows-style CRLF # line terminators to Unix-style newlines. # # When committing changes to the files, carefully review the diff to make sure # unintended changes weren't introduced. class TestLoadErrors(unittest.TestCase): def test_path_does_not_exist(self): with self.assertRaisesRegex(MetadataFileError, "Metadata file path doesn't exist"): Metadata.load( '/qiime2/unit/tests/hopefully/this/path/does/not/exist') def test_path_is_directory(self): fp = get_data_path('valid') with self.assertRaisesRegex(MetadataFileError, "path points to something other than a " "file"): Metadata.load(fp) def test_non_utf_8_file(self): fp = get_data_path('invalid/non-utf-8.tsv') with self.assertRaisesRegex(MetadataFileError, 'encoded as UTF-8 or ASCII'): Metadata.load(fp) def test_utf_16_le_file(self): fp = get_data_path('invalid/simple-utf-16le.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_utf_16_be_file(self): fp = get_data_path('invalid/simple-utf-16be.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_empty_file(self): fp = get_data_path('invalid/empty-file') with self.assertRaisesRegex(MetadataFileError, 'locate header.*file may be empty'): Metadata.load(fp) def test_comments_and_empty_rows_only(self): fp = get_data_path('invalid/comments-and-empty-rows-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'locate header.*only of comments or empty ' 'rows'): Metadata.load(fp) def test_header_only(self): fp = get_data_path('invalid/header-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_header_only_with_comments_and_empty_rows(self): fp = get_data_path( 'invalid/header-only-with-comments-and-empty-rows.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_qiime1_empty_mapping_file(self): fp = get_data_path('invalid/qiime1-empty.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_invalid_header(self): fp = get_data_path('invalid/invalid-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'unrecognized ID column name.*' 'invalid_id_header'): Metadata.load(fp) def test_empty_id(self): fp = get_data_path('invalid/empty-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_whitespace_only_id(self): fp = get_data_path('invalid/whitespace-only-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_empty_column_name(self): fp = get_data_path('invalid/empty-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_whitespace_only_column_name(self): fp = get_data_path('invalid/whitespace-only-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_duplicate_ids(self): fp = get_data_path('invalid/duplicate-ids.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_ids_with_whitespace(self): fp = get_data_path('invalid/duplicate-ids-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_column_names(self): fp = get_data_path('invalid/duplicate-column-names.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_duplicate_column_names_with_whitespace(self): fp = get_data_path( 'invalid/duplicate-column-names-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_id_conflicts_with_id_header(self): fp = get_data_path('invalid/id-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "ID 'id' conflicts.*ID column header"): Metadata.load(fp) def test_column_name_conflicts_with_id_header(self): fp = get_data_path( 'invalid/column-name-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "column name 'featureid' conflicts.*ID " "column header"): Metadata.load(fp) def test_column_types_unrecognized_column_name(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'not_a_column.*column_types.*not a column ' 'in the metadata file'): Metadata.load(fp, column_types={'not_a_column': 'numeric'}) def test_column_types_unrecognized_column_type(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*column_types.*unrecognized column ' 'type.*CATEGORICAL'): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'CATEGORICAL'}) def test_column_types_not_convertible_to_numeric(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'categorical', 'col3': 'numeric'}) def test_column_types_override_directive_not_convertible_to_numeric(self): fp = get_data_path('valid/simple-with-directive.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col3': 'numeric'}) def test_directive_before_header(self): fp = get_data_path('invalid/directive-before-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'directive.*#q2:types.*searching for ' 'header'): Metadata.load(fp) def test_unrecognized_directive(self): fp = get_data_path('invalid/unrecognized-directive.tsv') with self.assertRaisesRegex(MetadataFileError, 'Unrecognized directive.*#q2:foo.*' '#q2:types directive is supported'): Metadata.load(fp) def test_duplicate_directives(self): fp = get_data_path('invalid/duplicate-directives.tsv') with self.assertRaisesRegex(MetadataFileError, 'duplicate directive.*#q2:types'): Metadata.load(fp) def test_unrecognized_column_type_in_directive(self): fp = get_data_path('invalid/unrecognized-column-type.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*unrecognized column type.*foo.*' '#q2:types directive'): Metadata.load(fp) def test_column_types_directive_not_convertible_to_numeric(self): fp = get_data_path('invalid/types-directive-non-numeric.tsv') # This error message regex is intentionally verbose because we want to # assert that many different types of non-numeric strings aren't # interpreted as numbers. The error message displays a sorted list of # all values that couldn't be converted to numbers, making it possible # to test a variety of non-numeric strings in a single test case. msg = (r"column 'col2' to numeric.*could not be interpreted as " r"numeric: '\$42', '\+inf', '-inf', '0xAF', '1,000', " r"'1\.000\.0', '1_000_000', '1e3e4', 'Infinity', 'NA', 'NaN', " "'a', 'e3', 'foo', 'inf', 'nan', 'sample-1'") with self.assertRaisesRegex(MetadataFileError, msg): Metadata.load(fp) def test_directive_after_directives_section(self): fp = get_data_path( 'invalid/directive-after-directives-section.tsv') with self.assertRaisesRegex(MetadataFileError, '#q2:types.*outside of the directives ' 'section'): Metadata.load(fp) def test_directive_longer_than_header(self): fp = get_data_path('invalid/directive-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) def test_data_longer_than_header(self): fp = get_data_path('invalid/data-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) class TestLoadSuccess(unittest.TestCase): def setUp(self): self.temp_dir_obj = tempfile.TemporaryDirectory( prefix='qiime2-metadata-tests-temp-') self.temp_dir = self.temp_dir_obj.name # This Metadata object is compared against observed Metadata objects in # many of the tests, so just define it once here. self.simple_md = Metadata( pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) # Basic sanity check to make sure the columns are ordered and typed as # expected. It'd be unfortunate to compare observed results to expected # results that aren't representing what we think they are! obs_columns = [(name, props.type) for name, props in self.simple_md.columns.items()] exp_columns = [('col1', 'numeric'), ('col2', 'categorical'), ('col3', 'categorical')] self.assertEqual(obs_columns, exp_columns) def tearDown(self): self.temp_dir_obj.cleanup() def test_simple(self): # Simple metadata file without comments, empty rows, jaggedness, # missing data, odd IDs or column names, directives, etc. The file has # multiple column types (numeric, categorical, and something that has # mixed numbers and strings, which must be interpreted as categorical). fp = get_data_path('valid/simple.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_bom_simple_txt(self): # This is the encoding that notepad.exe will use most commonly fp = get_data_path('valid/BOM-simple.txt') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_different_file_extension(self): fp = get_data_path('valid/simple.txt') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_no_newline_at_eof(self): fp = get_data_path('valid/no-newline-at-eof.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_unix_line_endings(self): fp = get_data_path('valid/unix-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_windows_line_endings(self): fp = get_data_path('valid/windows-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_mac_line_endings(self): fp = get_data_path('valid/mac-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_no_source_artifacts(self): fp = get_data_path('valid/simple.tsv') metadata = Metadata.load(fp) self.assertEqual(metadata.artifacts, ()) def test_retains_column_order(self): # Explicitly test that the file's column order is retained in the # Metadata object. Many of the test cases use files with column names # in alphabetical order (e.g. "col1", "col2", "col3"), which matches # how pandas orders columns in a DataFrame when supplied with a dict # (many of the test cases use this feature of the DataFrame # constructor when constructing the expected DataFrame). fp = get_data_path('valid/column-order.tsv') obs_md = Metadata.load(fp) # Supply DataFrame constructor with explicit column ordering instead of # a dict. exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_columns = ['z', 'y', 'x'] exp_data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'], [3.0, 'c', '42'] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_leading_trailing_whitespace(self): fp = get_data_path('valid/leading-trailing-whitespace.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_comments(self): fp = get_data_path('valid/comments.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_empty_rows(self): fp = get_data_path('valid/empty-rows.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_qiime1_mapping_file(self): fp = get_data_path('valid/qiime1.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='#SampleID') exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_qiita_sample_information_file(self): fp = get_data_path('valid/qiita-sample-information.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id.1', 'id.2'], name='sample_name') exp_df = pd.DataFrame({ 'DESCRIPTION': ['description 1', 'description 2'], 'TITLE': ['A Title', 'Another Title']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_qiita_preparation_information_file(self): fp = get_data_path('valid/qiita-preparation-information.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id.1', 'id.2'], name='sample_name') exp_df = pd.DataFrame({ 'BARCODE': ['ACGT', 'TGCA'], 'EXPERIMENT_DESIGN_DESCRIPTION': ['longitudinal study', 'longitudinal study']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_biom_observation_metadata_file(self): fp = get_data_path('valid/biom-observation-metadata.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['OTU_1', 'OTU_2'], name='#OTUID') exp_df = pd.DataFrame([['k__Bacteria;p__Firmicutes', 0.890], ['k__Bacteria', 0.9999]], columns=['taxonomy', 'confidence'], index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_supported_id_headers(self): case_insensitive = { 'id', 'sampleid', 'sample id', 'sample-id', 'featureid', 'feature id', 'feature-id' } exact_match = { '#SampleID', '#Sample ID', '#OTUID', '#OTU ID', 'sample_name' } # Build a set of supported headers, including exact matches and headers # with different casing. headers = set() for header in case_insensitive: headers.add(header) headers.add(header.upper()) headers.add(header.title()) for header in exact_match: headers.add(header) fp = os.path.join(self.temp_dir, 'metadata.tsv') count = 0 for header in headers: with open(fp, 'w') as fh: fh.write('%s\tcolumn\nid1\tfoo\nid2\tbar\n' % header) obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2'], name=header) exp_df = pd.DataFrame({'column': ['foo', 'bar']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) count += 1 # Since this test case is a little complicated, make sure that the # expected number of comparisons are happening. self.assertEqual(count, 26) def test_recommended_ids(self): fp = get_data_path('valid/recommended-ids.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'], name='id') exp_df = pd.DataFrame({'col1': ['foo', 'bar']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_non_standard_characters(self): # Test that non-standard characters in IDs, column names, and cells are # handled correctly. The test case isn't exhaustive (e.g. it doesn't # test every Unicode character; that would be a nice additional test # case to have in the future). Instead, this test aims to be more of an # integration test for the robustness of the reader to non-standard # data. Many of the characters and their placement within the data file # are based on use-cases/bugs reported on the forum, Slack, etc. The # data file has comments explaining these test case choices in more # detail. fp = get_data_path('valid/non-standard-characters.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5'], name='id') exp_columns = ['↩c@l1™', 'col(#2)', "#col'3", '"<col_4>"', 'col\t \r\n5'] exp_data = [ ['ƒoo', '(foo)', '#f o #o', 'fo\ro', np.nan], ["''2''", 'b#r', 'ba\nr', np.nan, np.nan], ['b"ar', 'c\td', '4\r\n2', np.nan, np.nan], ['b__a_z', '<42>', '>42', np.nan, np.nan], ['baz', np.nan, '42'] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_missing_data(self): fp = get_data_path('valid/missing-data.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['None', 'nan', 'NA'], name='id') exp_df = pd.DataFrame(collections.OrderedDict([ ('col1', [1.0, np.nan, np.nan]), ('NA', [np.nan, np.nan, np.nan]), ('col3', ['null', 'N/A', 'NA']), ('col4', np.array([np.nan, np.nan, np.nan], dtype=object))]), index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) # Test that column types are correct (mainly for the two empty columns; # one should be numeric, the other categorical). obs_columns = [(name, props.type) for name, props in obs_md.columns.items()] exp_columns = [('col1', 'numeric'), ('NA', 'numeric'), ('col3', 'categorical'), ('col4', 'categorical')] self.assertEqual(obs_columns, exp_columns) def test_minimal_file(self): # Simplest possible metadata file consists of one ID and zero columns. fp = get_data_path('valid/minimal.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['a'], name='id') exp_df = pd.DataFrame({}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_single_id(self): fp = get_data_path('valid/single-id.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1'], name='id') exp_df = pd.DataFrame({'col1': [1.0], 'col2': ['a'], 'col3': ['foo']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_no_columns(self): fp = get_data_path('valid/no-columns.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['a', 'b', 'my-id'], name='id') exp_df = pd.DataFrame({}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_single_column(self): fp = get_data_path('valid/single-column.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_trailing_columns(self): fp = get_data_path('valid/trailing-columns.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_jagged_trailing_columns(self): # Test case based on https://github.com/qiime2/qiime2/issues/335 fp = get_data_path('valid/jagged-trailing-columns.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_padding_rows_shorter_than_header(self): fp = get_data_path('valid/rows-shorter-than-header.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': [1.0, 2.0, np.nan], 'col2': ['a', np.nan, np.nan], 'col3': [np.nan, np.nan, np.nan]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_all_cells_padded(self): fp = get_data_path('valid/all-cells-padded.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': [np.nan, np.nan, np.nan], 'col2': [np.nan, np.nan, np.nan], 'col3': [np.nan, np.nan, np.nan]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_does_not_cast_ids_or_column_names(self): fp = get_data_path('valid/no-id-or-column-name-type-cast.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['0.000001', '0.004000', '0.000000'], dtype=object, name='id') exp_columns = ['42.0', '1000', '-4.2'] exp_data = [ [2.0, 'b', 2.5], [1.0, 'b', 4.2], [3.0, 'c', -9.999] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_numeric_column(self): fp = get_data_path('valid/numeric-column.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8', 'id9', 'id10', 'id11', 'id12'], name='id') exp_df = pd.DataFrame({'col1': [0.0, 2.0, 0.0003, -4.2, 1e-4, 1e4, 1.5e2, np.nan, 1.0, 0.5, 1e-8, -0.0]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_numeric_column_as_categorical(self): fp = get_data_path('valid/numeric-column.tsv') obs_md = Metadata.load(fp, column_types={'col1': 'categorical'}) exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8', 'id9', 'id10', 'id11', 'id12'], name='id') exp_df = pd.DataFrame({'col1': ['0', '2.0', '0.00030', '-4.2', '1e-4', '1e4', '+1.5E+2', np.nan, '1.', '.5', '1e-08', '-0']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_with_complete_types_directive(self): fp = get_data_path('valid/complete-types-directive.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_with_partial_types_directive(self): fp = get_data_path('valid/partial-types-directive.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_with_empty_types_directive(self): fp = get_data_path('valid/empty-types-directive.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_with_case_insensitive_types_directive(self): fp = get_data_path('valid/case-insensitive-types-directive.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': [-5.0, 0.0, 42.0]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_column_types_without_directive(self): fp = get_data_path('valid/simple.tsv') obs_md = Metadata.load(fp, column_types={'col1': 'categorical'}) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_column_types_override_directive(self): fp = get_data_path('valid/simple-with-directive.tsv') obs_md = Metadata.load(fp, column_types={'col1': 'categorical', 'col2': 'categorical'}) exp_index =
pd.Index(['id1', 'id2', 'id3'], name='id')
pandas.Index
"""This is test module for knoema client with test credentials""" import unittest import knoema import pandas class TestKnoemaClient(unittest.TestCase): """This is class with knoema client unit tests with test credentials""" base_host = 'knoema.com' def setUp(self): apicfg = knoema.ApiConfig() apicfg.host = self.base_host apicfg.app_id = 'FzOYqDg' apicfg.app_secret = '<KEY>' def test_getdata_singleseries_by_member_id(self): """The method is testing getting single series by dimension member ids""" data_frame = knoema.get('xmhdwqf', company='c1', indicator='ind_a') self.assertEqual(data_frame.shape[0], 11) self.assertEqual(data_frame.shape[1], 1) self.assertEqual(['Company', 'Indicator', 'Frequency'], data_frame.columns.names) indx = data_frame.first_valid_index() sname = ('BOX', 'Annual', 'A') value = data_frame.at[indx, sname] self.assertEqual(value, 85.50) indx = data_frame.index[10] value = data_frame.at[indx, sname] self.assertEqual(value, 15.62) def test_getdata_multiseries_by_member_id(self): """The method is testing getting multiple series by dimension member ids""" data_frame = knoema.get('xmhdwqf', company='c1;c2', indicator='ind_m;ind_a') self.assertEqual(data_frame.shape[0], 56) self.assertEqual(data_frame.shape[1], 4) self.assertEqual(['Company', 'Indicator', 'Frequency'], data_frame.columns.names) indx = data_frame.index[7] sname = ('BOX', 'Monthly', 'M') value = data_frame.at[indx, sname] self.assertEqual(value, 23.08) indx = data_frame.index[55] value = data_frame.at[indx, sname] self.assertEqual(value, 19.71) def test_getdata_multiseries_by_member_name(self): """The method is testing getting data by dimension member names""" company_names = 'BOX;UBER' indicator_names = 'Monthly;Annual' data_frame = knoema.get('xmhdwqf', company=company_names, indicator=indicator_names) self.assertEqual(data_frame.shape[0], 56) self.assertEqual(data_frame.shape[1], 4) self.assertEqual(['Company', 'Indicator', 'Frequency'], data_frame.columns.names) indx = data_frame.index[7] sname = ('BOX', 'Monthly', 'M') value = data_frame.at[indx, sname] self.assertEqual(value, 23.08) indx = data_frame.index[55] value = data_frame.at[indx, sname] self.assertEqual(value, 19.71) def test_getdata_multiseries_by_member_id_range(self): """The method is testing getting multiple series by dimension member ids and time range""" data_frame = knoema.get('xmhdwqf', company='c1;c2', indicator='ind_a', timerange='2017-2019') self.assertEqual(data_frame.shape[0], 11) self.assertEqual(data_frame.shape[1], 2) indx = data_frame.first_valid_index() sname = ('UBER', 'Annual', 'A') value = data_frame.at[indx, sname] self.assertEqual(value, 53.03) indx = data_frame.last_valid_index() value = data_frame.at[indx, sname] self.assertEqual(value, 99.15) def test_getdata_singleseries_difffrequencies_by_member_id(self): """The method is testing getting single series on different frequencies by dimension member ids""" data_frame = knoema.get('xmhdwqf', company='c1', indicator='ind_multi') self.assertEqual(data_frame.shape[1], 3) indx = data_frame.first_valid_index() sname = ('BOX', 'Multi', 'A') value = data_frame.at[indx, sname] self.assertEqual(value, 60.24) value = data_frame.at[pandas.to_datetime('2018-01-01'), sname] self.assertEqual(value, 80.56) indx = data_frame.first_valid_index() sname = ('BOX', 'Multi', 'Q') value = data_frame.at[indx, sname] self.assertEqual(value, 47.82) value = data_frame.at[pandas.to_datetime('2017-01-01'), sname] self.assertEqual(value, 50.28) def test_getdata_multiseries_singlefrequency_by_member_id(self): """The method is testing getting mulitple series with one frequency by dimension member ids""" data_frame = knoema.get('xmhdwqf', company='c2', indicator='ind_multi', frequency='M') self.assertEqual(data_frame.shape[1], 1) sname = ('UBER', 'Multi', 'M') value = data_frame.at[
pandas.to_datetime('2017-01-01')
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]), duration[1,0], duration[1,1], 1) seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1) seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1) seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1) # Sleep-State Rules idx = {} for k in seq: tmp = [list(range(i,j+1)) for (i,j) in seq[k]] # now idea why this works to flatten a list # idx[k] = sum(tmp, []) # alternative that I understand: if len(tmp) == 0: idx[k] = np.array([]) else: idx[k] = np.array(reduce(lambda x,y: x+y, tmp)) idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg'])) idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta'])) idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta'])) #REM Sleep: thdel up, emg down, delta down a = np.intersect1d(idx['high_theta'], idx['low_delta']) # non high_emg phases b = np.setdiff1d(a, idx['high_emg']) rem = get_sequences(b, duration[0,1]) rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem) # SWS Sleep # delta high, no theta, no emg a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation b = np.setdiff1d(a, idx['high_theta']) # no theta; sws = get_sequences(b) sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws) #print a # Wake # low delta + high emg and not rem a = np.unique(np.union1d(idx['low_delta'], idx['high_emg'])) b = np.setdiff1d(a, rem_idx) wake = get_sequences(b) wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake) # sequences with low delta, high sigma and low emg are NREM a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg']) a = np.setdiff1d(a, rem_idx) sws_idx = np.unique(np.union1d(a, sws_idx)) wake_idx = np.setdiff1d(wake_idx, a) #NREM sequences with high gamma are wake a = np.intersect1d(sws_idx, idx['high_gamma']) sws_idx = np.setdiff1d(sws_idx, a) wake_idx = np.unique(np.union1d(wake_idx,a)) # Wake and Theta wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta']) # Wake w/o Theta wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta']) # Are there overlapping sequences? a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx) # Are there undefined sequences? undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx) # Wake wins over SWS sws_idx = np.setdiff1d(sws_idx, wake_idx) # Special rules # if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM), # this wake sequence goes to SWS # NREM to REM transitions are sometimes mistaken as quite wake periods for rem_seq in rem: if len(rem_seq) > 0: irem_start = rem_seq[0] # is there wake in the preceding bin? if irem_start-1 in wake_idx: # get the closest sws bin in the preceding history isws_end = closest_precessor(sws_idx, irem_start) if (irem_start - isws_end)*dt < PRE_WAKE_REM: new_rem = np.arange(isws_end+1,irem_start) rem_idx = np.union1d(rem_idx, new_rem) wake_idx = np.setdiff1d(wake_idx, new_rem) else: new_wake = rem_seq wake_idx = np.union1d(wake_idx, new_wake) rem_idx = np.setdiff1d(rem_idx, new_wake) # two different representations for the results: S = {} S['rem'] = rem_idx S['nrem'] = sws_idx S['wake'] = wake_idx S['awake'] = wake_motion_idx S['qwake'] = wake_nomotion_idx M = np.zeros((N,)) if len(rem_idx) > 0: M[rem_idx] = 1 if len(wake_idx) > 0: M[wake_idx] = 2 if len(sws_idx) > 0: M[sws_idx] = 3 if len(undef_idx) > 0: M[undef_idx] = 0 # write sleep annotation to file if pwrite: outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') print("writing annotation to %s" % outfile) f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))] f.writelines(s) f.close() # nice plotting plt.ion() if pplot: plt.figure(figsize=(18,9)) axes1=plt.axes([0.1, 0.9, 0.8, 0.05]) A = np.zeros((1,len(M))) A[0,:] = M cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4) #tmp = axes1.imshow(A, vmin=0, vmax=3) tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3) tmp.set_cmap(my_map) axes1.axis('tight') tmp.axes.get_xaxis().set_visible(False) tmp.axes.get_yaxis().set_visible(False) box_off(axes1) # show spectrogram axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1) ifreq = np.where(freq <= 30)[0] med = np.median(SPEEG.max(axis=0)) if pspec_norm: ifreq = np.where(freq <= 80)[0] filt = np.ones((6, 1)) filt = filt / np.sum(filt) SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same') spec_mean = SPEEG.mean(axis=1) SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T) med = np.median(SPEEG.max(axis=0)) axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet') else: axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet') axes2.axis('tight') plt.ylabel('Freq (Hz)') box_off(axes2) # show delta power axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2) axes3.plot(t,p_delta, color='gray') plt.ylabel('Delta (a.u.)') plt.xlim((t[0], t[-1])) seq = get_sequences(S['nrem']) #for s in seq: # plt.plot(t[s],p_delta[s], color='red') s = idx['high_delta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_delta[s], color='red') box_off(axes3) axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3) axes4.plot(t,p_sigma, color='gray') plt.ylabel('Sigma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_sigma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_sigma[s], color='red') box_off(axes4) axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4) axes5.plot(t,th_delta, color='gray') plt.ylabel('Th/Delta (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_theta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],th_delta[s], color='red') box_off(axes5) axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5) axes6.plot(t,p_gamma, color='gray') plt.ylabel('Gamma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_gamma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_gamma[s], color='red') box_off(axes6) axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6) axes7.plot(t,p_mu, color='gray') plt.xlabel('Time (s)') plt.ylabel('EMG (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_emg'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_mu[s], color='red') box_off(axes7) plt.show() # 2nd figure showing distribution of different bands plt.figure(figsize=(20,3)) axes1 = plt.axes([0.05, 0.1, 0.13, 0.8]) plt.hist(p_delta, bins=100) plt.plot(np.nanmean(p_delta), 10, 'ro') plt.title('delta') plt.ylabel('# Occurances') box_off(axes1) axes1 = plt.axes([0.25, 0.1, 0.13, 0.8]) plt.hist(th_delta, bins=100) plt.plot(np.nanmean(th_delta)+th_delta_std*np.nanstd(th_delta), 10, 'ro') plt.title('theta/delta') box_off(axes1) axes1 = plt.axes([0.45, 0.1, 0.13, 0.8]) plt.hist(p_sigma, bins=100) plt.plot(np.nanmean(p_sigma), 10, 'ro') plt.title('sigma') box_off(axes1) axes1 = plt.axes([0.65, 0.1, 0.13, 0.8]) plt.hist(p_gamma, bins=100) plt.plot(np.nanmean(p_gamma), 10, 'ro') plt.title('gamma') box_off(axes1) axes1 = plt.axes([0.85, 0.1, 0.13, 0.8]) plt.hist(p_mu, bins=100) plt.plot(np.nanmean(p_mu)+np.nanstd(p_mu), 10, 'ro') plt.title('EMG') plt.show(block=False) box_off(axes1) plt.show() return M,S def plot_hypnograms(ppath, recordings, tbin=0, unit='h', ma_thr=20, title='', tstart=0, tend=-1): """ plot all hypnograms specified in @recordings :param ppath: base folder :param recordings: list of recordings :param tbin: tbin for xticks :param unit: time unit; h - hour, min - minute, s - second :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param tstart: float, start time point (in seconds!) of hypnograms :param tend: float, last shown time point (in seconds!) :param title: optional title for figure """ recordings = recordings[::-1] sr = get_snr(ppath, recordings[0]) nbin = int(np.round(sr) * 2.5) dt_sec = (1.0 / sr) * nbin istart = int(np.round(tstart/dt_sec)) dt = dt_sec if unit == 'h': dt /= 3600 elif unit == 'min': dt /= 60 rec_len = dict() irec = 0 ny = (1.0-0.2) / len(recordings) dy = ny * 0.75 cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.5, 0, 1], [0.8, 0.8, 0.8]], 4) plt.ion() plt.figure(figsize=(9,4)) axes = [] for rec in recordings: M,K = load_stateidx(ppath, rec) #kcut = np.where(K<0)[0] #M = M[kcut] #M[kcut] = 0 if tend == -1: iend = len(M) else: iend = int(tend/dt_sec) M = M[istart:iend] if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt_sec <= ma_thr: M[s] = 3 rec_len[rec] = len(M)*dt t = np.arange(0, len(M))*dt ax = plt.axes([0.05, ny*irec+0.15, 0.75, dy]) tmp = ax.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3, cmap=my_map) box_off(ax) ax.axis('tight') tmp.axes.get_yaxis().set_visible(False) if irec > 0: tmp.axes.get_xaxis().set_visible(False) if irec == 0: plt.xlabel('Time (%s)' % unit) irec += 1 axes.append(ax) if len(title) > 0: plt.title(title) max_dur = max(rec_len.values()) if tbin > 0: xtick = np.arange(0, max_dur, tbin) for (ax, rec) in zip(axes, recordings): ax.set_xlim([0, max_dur]) if tbin > 0: ax.set_xticks(xtick) ax.text(max_dur+max_dur*0.01, 0.5, rec) plt.show() def plot_swa(ppath, name, delta_win, alpha, band=[0.5, 4.5], swa_yrange=[]): """ plot slow wave (delta) activity during NREM The top plot shows the hynogram. The middle plot shows the delta power (irrespective of brain state) as line plot The bottom plot shows for consecutive $delta_win seconds long bins, the median delta power (SWA) during NREM, if the ration of NREM during the corresponding bin >= $alpha Example call: dm=plot_swa(ppath, name, 30, 0.5, swa_yrange=[0, 0.012]) :param ppath, name: basefolder, recording name :param delta_win: plot median swa value for each consecutive $delta_win seconds long window, if :param alpha: the ratio of NREM in this window is larger than alpha (value between 0 and 1) :param swa_yrange: tuple, minimun and maximum value of yrange for SWA :return df: pd.DataFrame with SWA time points and corresponding median SWA values """ r_delta = band sr = get_snr(ppath, name) nbin = int(np.round(2.5*sr)) dt = nbin*(1.0/sr) M,_ = load_stateidx(ppath, name) t = np.arange(0, len(M))*dt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SP = P['SP'] freq = P['freq'] df = freq[1]-freq[0] idelta = np.where((freq>=r_delta[0]) & (freq<=r_delta[1]))[0] pow_delta = SP[idelta,:].sum(axis=0)*df # get NREM sequences contributing points for fitting iwin = int(delta_win/dt) #seq = get_sequences(nrem_idx, ibreak=int((delta_win/dt)*0.1)) delta_med = [] for j in range(0, len(M)-iwin, iwin): s = range(j, j+iwin) sc = j+int(iwin/2) Mcut = M[s] if (1.0*len(np.where(Mcut==3)[0])) / len(s) >= alpha: i = np.where(Mcut==3)[0] i = i+s[0] a = np.median(pow_delta[i]) delta_med.append((t[sc],a)) df = pd.DataFrame(columns=['time', 'pow'], data=delta_med) # generate figure # show brainstate plt.ion() plt.figure(figsize=(10, 4)) axes_brs = plt.axes([0.1, 0.85, 0.8, 0.1]) cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') axes_brs.axes.get_xaxis().set_visible(False) axes_brs.axes.get_yaxis().set_visible(False) axes_brs.spines["top"].set_visible(False) axes_brs.spines["right"].set_visible(False) axes_brs.spines["bottom"].set_visible(False) axes_brs.spines["left"].set_visible(False) # plot delta power as function of time c = 1000**2 axes_tdelta = plt.axes([0.1, 0.55, 0.8, 0.2], sharex=axes_brs) plt.plot(t, pow_delta/c, 'k') box_off(axes_tdelta) axes_tdelta.axes.get_xaxis().set_visible(False) axes_tdelta.spines["bottom"].set_visible(False) plt.ylabel('SWA (mV$\mathrm{^2}$)') # plot delta power medians axes_delta = plt.axes([0.1, 0.12, 0.8, 0.35], sharex=axes_brs) for (s,delta) in delta_med: plt.plot(s, delta/c, 'ko') print(t) plt.xlim((t[0], t[-1])) box_off(axes_delta) plt.xlabel('Time (s)') plt.ylabel('NREM SWA (mV$\mathrm{^2}$)') if swa_yrange == []: ymax = df['pow'].max()/c plt.ylim([0, ymax+0.1*ymax]) else: plt.ylim(swa_yrange) plt.show() return df def laser_triggered_eeg(ppath, name, pre, post, f_max, pnorm=2, pplot=False, psave=False, tstart=0, tend=-1, peeg2=False, vm=2.5, prune_trials=True, mu=[10, 200], trig_state=0, harmcs=0, iplt_level=1): """ calculate laser triggered, averaged EEG and EMG spectrum :param ppath: base folder containing mouse recordings :param name: recording :param pre: time before laser :param post: time after laser :param f_max: calculate/plot frequencies up to frequency f_max :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param vm: float to set saturation level of colormap :param pplot: plot figure yes=True, no=False :param psave: save the figure, yes=True, no = False :param tstart: float, starting time point. Only lasers trials after tstart will be considered :param tend: float, only laser trials up to tend will be considered; if tend==-1, use whole recording :param peeg2: if True, use EEG channel 2 :param prune_trials: if True, throw out trials with EEG or EMG artifacts :param mu: tuple; range used for EMG amplitude calculation :param trig_state: int; if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 else: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 return SP SR = get_snr(ppath, name) NBIN = np.round(2.5*SR) lsr = load_laser(ppath, name) idxs, idxe = laser_start_end(lsr) laser_dur = np.mean((idxe-idxs)/SR) print('%s: Average laser duration: %f; Number of trials %d' % (name, laser_dur, len(idxs))) # downsample EEG time to spectrogram time idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] #load EEG and EMG P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) if not peeg2: SPEEG = np.squeeze(P['SP']) else: SPEEG = np.squeeze(P['SP2']) SPEMG = np.squeeze(Q['mSP']) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) ifreq = np.where(freq<=f_max)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) speeg_mean = SPEEG.mean(axis=1) spemg_mean = SPEMG.mean(axis=1) # interpolate frequencies corresponding to harmonics of $harmcs if harmcs > 0: SPEEG = _interpolate_harmonics(SPEEG, freq, f_max, harmcs) SPEMG = _interpolate_harmonics(SPEMG, freq, f_max, harmcs) if tend > -1: i = np.where((np.array(idxs)*dt >= tstart) & (np.array(idxs)*dt <= tend))[0] else: i = np.where(np.array(idxs)*dt >= tstart)[0] idxs = [idxs[j] for j in i] idxe = [idxe[j] for j in i] skips = [] skipe = [] if prune_trials: for (i,j) in zip(idxs, idxe): A = SPEEG[0,i-ipre:i+ipost+1] / speeg_mean[0] B = SPEMG[0,i-ipre:i+ipost+1] / spemg_mean[0] k = np.where(A >= np.median(A)*50)[0] l = np.where(B >= np.median(B)*500)[0] if len(k) > 0 or len(l) > 0: skips.append(i) skipe.append(j) print("%s: kicking out %d trials" % (name, len(skips))) idxs_new = [] idxe_new = [] for (i,j) in zip(idxs, idxe): if not i in skips: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # select trials where brain state is right before laser in trig_state if trig_state > 0: idxs_new = [] idxe_new = [] M = load_stateidx(ppath, name)[0] for (i,j) in zip(idxs, idxe): if i < len(M) and M[i] == trig_state: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # Spectrogram for EEG and EMG normalized by average power in each frequency band if pnorm == 1: SPEEG = np.divide(SPEEG, np.repeat(speeg_mean, len(t)).reshape(len(speeg_mean), len(t))) SPEMG = np.divide(SPEMG, np.repeat(spemg_mean, len(t)).reshape(len(spemg_mean), len(t))) speeg_parts = [] spemg_parts = [] for (i,j) in zip(idxs, idxe): if i>=ipre and j+ipost < len(t): eeg_part = SPEEG[ifreq,i-ipre:i+ipost+1] speeg_parts.append(eeg_part) spemg_parts.append(SPEMG[ifreq,i-ipre:i+ipost+1]) EEGLsr = np.array(speeg_parts).mean(axis=0) EMGLsr = np.array(spemg_parts).mean(axis=0) # smooth spectrogram nfilt = 3 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) EEGLsr = scipy.signal.convolve2d(EEGLsr, filt, boundary='symm', mode='same') if pnorm == 2: for i in range(EEGLsr.shape[0]): EEGLsr[i,:] = np.divide(EEGLsr[i,:], np.sum(np.abs(EEGLsr[i,0:ipre]))/(1.0*ipre)) EMGLsr[i,:] = np.divide(EMGLsr[i,:], np.sum(np.abs(EMGLsr[i,0:ipre]))/(1.0*ipre)) # get time axis dt = (1.0/SR)*NBIN t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) f = freq[ifreq] if pplot: # get rid of boxes around matplotlib plots def box_off(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() plt.ion() plt.figure(figsize=(10,8)) ax = plt.axes([0.1, 0.55, 0.4, 0.35]) plt.pcolormesh(t,f,EEGLsr, vmin=0, vmax=np.median(EEGLsr)*vm, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.62, 0.55, 0.35, 0.35]) ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,0:ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.1, 0.4, 0.35]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power (uV^2s)') ax = plt.axes([0.62, 0.1, 0.35, 0.35]) mf = np.where((f>=mu[0]) & (f <= mu[1]))[0] df = f[1]-f[0] # amplitude is square root of (integral over each frequency) avg_emg = np.sqrt(EMGLsr[mf,:].sum(axis=0)*df) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() if psave: img_file = os.path.join(ppath, name, 'fig_'+name+'_spec.png') save_figure(img_file) return EEGLsr, EMGLsr, freq[ifreq], t def laser_triggered_eeg_avg(ppath, recordings, pre, post, f_max, laser_dur, pnorm=1, pplot=1, tstart=0, tend=-1, vm=[], cb_ticks=[], mu=[10, 100], trig_state=0, harmcs=0, iplt_level=1, peeg2=False, fig_file=''): """ calculate average spectrogram for all recordings listed in @recordings; for averaging take mouse identity into account :param ppath: base folder :param recordings: list of recordings :param pre: time before laser onset :param post: time after laser onset :param f_max: maximum frequency shown for EEG spectrogram :param laser_dur: duration of laser stimulation :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param pplot: pplot==0 - no figure; pplot==1 - conventional figure; pplot==2 - pretty figure showing EEG spectrogram along with EMG amplitude note: the errorbar for the EMG amplitude is the S.E.M. :param tstart: only consider laser trials with laser onset after tstart seconds :param tend: only consider laser trials with laser onset before tend seconds :param vm: saturation of heatmap for EEG spectrogram :param cb_ticks: ticks for colorbar (only applies for pplot==2) :param mu: frequencies for EMG amplitude calculation :param trig_state: if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param peeg2: if True, use EEG2 instead of EEG :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively :param fig_file: if specified, save figure to given file :return: t, f, EEGSpec, EMGSpec, EEGLsr t - time axis f - frequency axis EEGSpec - dict with mouse id -> 2D np.array(frequency x time) EMGSpec - dict with mouse id -> 2D np.array(frequency x time) EEGLsr - 2D np.array(frequency x time) """ EEGSpec = {} EMGSpec = {} mice = [] for rec in recordings: idf = re.split('_', rec)[0] if not(idf in mice): mice.append(idf) EEGSpec[idf] = [] EMGSpec[idf] = [] for rec in recordings: idf = re.split('_', rec)[0] EEG, EMG, f, t = laser_triggered_eeg(ppath, rec, pre, post, f_max, mu=mu, pnorm=pnorm, pplot=False, psave=False, tstart=tstart, tend=tend, trig_state=trig_state, peeg2=peeg2, harmcs=harmcs, iplt_level=iplt_level) EEGSpec[idf].append(EEG) EMGSpec[idf].append(EMG) for idf in mice: EEGSpec[idf] = np.array(EEGSpec[idf]).mean(axis=0) EMGSpec[idf] = np.array(EMGSpec[idf]).mean(axis=0) EEGLsr = np.array([EEGSpec[k] for k in mice]).mean(axis=0) EMGLsr = np.array([EMGSpec[k] for k in mice]).mean(axis=0) mf = np.where((f >= mu[0]) & (f <= mu[1]))[0] if harmcs > 0: harm_freq = np.arange(0, f.max(), harmcs) for h in harm_freq: mf = np.setdiff1d(mf, mf[np.where(f[mf]==h)[0]]) df = f[1] - f[0] EMGAmpl = np.zeros((len(mice), EEGLsr.shape[1])) i=0 for idf in mice: # amplitude is square root of (integral over each frequency) if harmcs == 0: EMGAmpl[i,:] = np.sqrt(EMGSpec[idf][mf,:].sum(axis=0)*df) else: tmp = 0 for qf in mf: tmp += EMGSpec[idf][qf,:] * (f[qf] - f[qf-1]) EMGAmpl[i,:] = np.sqrt(tmp) i += 1 avg_emg = EMGAmpl.mean(axis=0) sem_emg = EMGAmpl.std(axis=0) / np.sqrt(len(mice)) if pplot==1: plt.ion() plt.figure(figsize=(12,10)) ax = plt.axes([0.1, 0.55, 0.4, 0.4]) if len(vm) == 2: plt.pcolormesh(t,f,EEGLsr, cmap='jet', vmin=vm[0], vmax=vm[1]) else: plt.pcolormesh(t, f, EEGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG') cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.6, 0.55, 0.3, 0.4]) ipre = np.where(t<0)[0] ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.05, 0.4, 0.4]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG') cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.6, 0.05, 0.3, 0.4]) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) plt.fill_between(t, avg_emg-sem_emg, avg_emg+sem_emg) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() elif pplot==2: # pretty figure plt.figure() if len(vm) > 0: cb_ticks = vm # plot EEG spectrogram axes_cbar = plt.axes([0.8, 0.75, 0.1, 0.2]) ax = plt.axes([0.1, 0.55, 0.75, 0.4]) if len(vm) == 2: im=ax.pcolorfast(t, f, EEGLsr, cmap='jet', vmin=vm[0], vmax=vm[1]) else: im = ax.pcolorfast(t, f, EEGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) # colorbar for EEG spectrogram cb = plt.colorbar(im, ax=axes_cbar, pad=0.0, aspect=10.0, orientation='vertical') if pnorm > 0: cb.set_label('Rel. Power') else: cb.set_label('Power (uV^2s)') cb.ax.xaxis.set_ticks_position("bottom") cb.ax.xaxis.set_label_position('top') if len(cb_ticks) > 0: cb.set_ticks(cb_ticks) axes_cbar.set_alpha(0.0) axes_cbar.spines["top"].set_visible(False) axes_cbar.spines["right"].set_visible(False) axes_cbar.spines["bottom"].set_visible(False) axes_cbar.spines["left"].set_visible(False) axes_cbar.axes.get_xaxis().set_visible(False) axes_cbar.axes.get_yaxis().set_visible(False) # EMG amplitude ax = plt.axes([0.1, 0.1, 0.75, 0.3]) m = np.max(avg_emg) * 1.5 ax.add_patch(patches.Rectangle((0, 0), laser_dur, np.max(avg_emg)*1.5, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) plt.xlim((t[0], t[-1])) plt.ylim((0, m)) plt.fill_between(t, avg_emg-sem_emg, avg_emg+sem_emg, color='gray', zorder=2) plt.plot(t, avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. ($\mathrm{\mu V}$)') plt.show() if len(fig_file) > 0: save_figure(fig_file) return t, f, EEGSpec, EMGSpec, EEGLsr def laser_brainstate(ppath, recordings, pre, post, pplot=True, fig_file='', start_time=0, end_time=-1, ma_thr=0, edge=0, sf=0, cond=0, single_mode=False, ci=95, backup='', csv_file=''): """ calculate laser triggered probability of REM, Wake, NREM ppath - base folder holding all recording recordings - list of recording pre - time before laser onset post - time after laser onset @Optional: pplot - pplot==True: plot figure fig_file - specify filename including ending, if you wish to save figure start_time - in [s], only consider laser onsets starting after $start_time end_time - in [s], only consider laset onsets starting before $end_time sf - smoothing factor for Gaussian kernel; if sf=0, no filtering edge - only use if $sf > 0: to avoid smoothing artifacts, set edge to a value > 0, e.g. 20 ma_thr - if > 0, smooth out microarousals with duration < $ma_thr cond - cond==0: consider all trials; cond==[1,2,3] only plot trials, where mouse was in REM, Wake, or NREM as laser turned on single_mode - if True, plot every single mouse backup - optional backup folder; if specified each single recording folder can be either on $ppath or $backup; if it's on both folders, the version in ppath is used ci - string; possible values: 'sem', 'sd', or value betwen 0 and 100, corresponding to the bootstrapped confidence interval. The default is ci=95 csv_file - if filename (without or including full file path) is provided, save pd.DataFrame df (see @Return) to csv file @Return: df_timecourse: pd.DataFrame with columns: mouse, time, perc, state. df: pd.DataFrame with columns mouse_id, REM, NREM, Wake, Lsr Lsr has three values: 0 - before laser, 1 - during laser, 2 - after laser if laser was on for laser_dur s, then df[df['Lsr'] == 0]['REM'] is the average % of REM sleep during laser stimulation for each mouse df[df['Lsr'] == 0]['REM'] is the average % of REM sleep during the laser_dur s long time interval preceding laser onset. df[df['Lsr'] == 2]['REM'] is the average during the time inverval of duration laser_dur that directly follows laser stimulation """ if type(recordings) != list: recordings = [recordings] rec_paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): rec_paths[rec] = ppath else: rec_paths[rec] = backup pre += edge post += edge BrainstateDict = {} mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] BrainstateDict[idf] = [] if not idf in mouse_order: mouse_order.append(idf) nmice = len(BrainstateDict) for rec in recordings: ppath = rec_paths[rec] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) dt = NBIN * 1.0/SR istart_time = int(np.round(start_time / dt)) M = load_stateidx(ppath, rec)[0] if end_time == -1: iend_time = len(M) else: iend_time = int(np.round(end_time / dt)) seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 (idxs, idxe) = laser_start_end(load_laser(ppath, rec)) idf = re.split('_', rec)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] laser_dur = np.mean((np.array(idxe) - np.array(idxs))) * dt for (i,j) in zip(idxs, idxe): if i>=ipre and i+ipost<=len(M)-1 and i>istart_time and i < iend_time: bs = M[i-ipre:i+ipost+1] BrainstateDict[idf].append(bs) # I assume here that every recording has same dt t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) # first time point where the laser was fully on (during the complete bin). izero = np.where(t>0)[0][0] # the first time bin overlapping with laser is then izero -= 1 # @BS: mouse x time x state BS = np.zeros((nmice, len(t), 3)) Trials = [] imouse = 0 for mouse in mouse_order: if cond==0: M = np.array(BrainstateDict[mouse]) Trials.append(M) for state in range(1,4): C = np.zeros(M.shape) C[np.where(M==state)] = 1 BS[imouse,:,state-1] = C.mean(axis=0) if cond>0: M = BrainstateDict[mouse] Msel = [] for trial in M: if trial[izero] == cond: Msel.append(trial) M = np.array(Msel) Trials.append(M) for state in range(1,4): C = np.zeros(M.shape) C[np.where(M==state)] = 1 BS[imouse,:,state-1] = C.mean(axis=0) imouse += 1 # flatten Trials Trials = reduce(lambda x,y: np.concatenate((x,y), axis=0), Trials) BS = BS*100 if sf > 0: for state in [2, 1, 0]: for i in range(nmice): BS[i, :, state] = smooth_data(BS[i, :, state], sf) df_timecourse = pd.DataFrame() state_map = {1: 'REM', 2: 'Wake', 3: 'NREM'} for s in state_map: df = nparray2df(BS[:, :, s - 1], mouse_order, t, 'perc', 'mouse', 'time') df['state'] = state_map[s] df_timecourse = df_timecourse.append(df) nmice = imouse if pplot: state_label = {0:'REM', 1:'Wake', 2:'NREM'} it = np.where((t >= -pre + edge) & (t <= post - edge))[0] plt.ion() if not single_mode: plt.figure() ax = plt.axes([0.15, 0.15, 0.6, 0.7]) colors = [[0, 1, 1 ],[0.5, 0, 1],[0.6, 0.6, 0.6]] if ci == 'sem': for state in [2,1,0]: tmp = BS[:, :, state].mean(axis=0) plt.plot(t[it], tmp[it], color=colors[state], lw=3, label=state_label[state]) if nmice > 1: smp = BS[:,:,state].std(axis=0) / np.sqrt(nmice) plt.fill_between(t[it], tmp[it]-smp[it], tmp[it]+smp[it], color=colors[state], alpha=0.4, zorder=3) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) ax.add_patch(patches.Rectangle((0,0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('Probability') #plt.legend(bbox_to_anchor=(0., 1.02, 0.5, .102), loc=3, ncol=3, borderaxespad=0.) plt.draw() else: bs_colors = {'REM': [0, 1, 1], 'Wake': [0.5, 0, 1], 'NREM': [0.6, 0.6, 0.6]} dfm = df_timecourse.groupby(['mouse', 'state', 'time']).mean().reset_index() for s in [3, 2, 1]: sns.lineplot(data=dfm[dfm.state == state_map[s]], ci=ci, x='time', y='perc', color=bs_colors[state_map[s]], err_kws={'alpha': 0.8, 'zorder': 3}) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) ax.add_patch(patches.Rectangle((0,0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('Probability') else: plt.figure(figsize=(7,7)) clrs = sns.color_palette("husl", nmice) for state in [2,1,0]: ax = plt.subplot('31' + str(3-state)) for i in range(nmice): plt.plot(t[it], BS[i,it,state], color=clrs[i], label=mouse_order[i]) ax.add_patch(patches.Rectangle((0, 0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1], alpha=0.8)) plt.xlim((t[it][0], t[it][-1])) plt.ylim((0,100)) plt.ylabel('% ' + state_label[state]) if state==0: plt.xlabel('Time (s)') else: ax.set_xticklabels([]) if state==2: ax.legend(mouse_order, bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) # figure showing all trials plt.figure(figsize=(4,6)) set_fontarial() plt.ion() ax = plt.axes([0.15, 0.1, 0.8, 0.8]) cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,1,1],[0.5,0,1], [0.6, 0.6, 0.6]], 3) x = list(range(Trials.shape[0])) plt.pcolormesh(t,np.array(x), np.flipud(Trials), cmap=my_map, vmin=1, vmax=3) plt.plot([0,0], [0, len(x)-1], color='white') plt.plot([laser_dur,laser_dur], [0, len(x)-1], color='white') ax.axis('tight') plt.draw() plt.xlabel('Time (s)') plt.ylabel('Trial No.') box_off(ax) plt.show() if len(fig_file)>0: plt.savefig(fig_file) # compile dataframe with all baseline and laser values ilsr = np.where((t>=0) & (t<=laser_dur))[0] ibase = np.where((t>=-laser_dur) & (t<0))[0] iafter = np.where((t>=laser_dur) & (t<laser_dur*2))[0] df = pd.DataFrame(columns = ['Mouse', 'REM', 'NREM', 'Wake', 'Lsr']) mice = mouse_order + mouse_order + mouse_order lsr = np.concatenate((np.ones((nmice,), dtype='int'), np.zeros((nmice,), dtype='int'), np.ones((nmice,), dtype='int')*2)) df['Mouse'] = mice df['Lsr'] = lsr df['REM'] = np.concatenate((BS[:,ilsr,0].mean(axis=1), BS[:,ibase,0].mean(axis=1), BS[:,iafter,0].mean(axis=1))) df['NREM'] = np.concatenate((BS[:,ilsr,2].mean(axis=1), BS[:,ibase,2].mean(axis=1), BS[:,iafter,2].mean(axis=1))) df['Wake'] = np.concatenate((BS[:,ilsr,1].mean(axis=1), BS[:,ibase,1].mean(axis=1), BS[:,iafter,1].mean(axis=1))) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return df_timecourse, df, Trials def laser_brainstate_bootstrap(ppath, recordings, pre, post, edge=0, sf=0, nboots=1000, alpha=0.05, backup='', start_time=0, ma_thr=20, bootstrap_mode=0, fig_file=''): """ Align brain state with laser stimulation and calculate two-sided 1-$alpha confidence intervals using bootstrapping. :param ppath: base folder :param recordings: list of recordings :param pre: time before laser :param post: time after laser onset :param edge: add $edge seconds add beginning and end (that are not shown in the plot) to avoid filtering artifacts :param sf: smoothing factor for Gaussian filter; better do not use :param nboots: int, how many times the whole data set is resampled for boot-strapping :param alpha: plot shows 1-$alpha confidence interval :param backup: optional backup folder where recordings are stored :param start_time: start time of recordding used for analysis :param ma_thr: sleep periods < ma_thr are thrown away :param bootstrap_mode: default=0 bootstrap_mode == 0: Take inter-mouse variance and inter-trial variance (of each mouse) into account. That is, bootstrapping re-models the variance expected when re-doing the same experimental design (same mouse number and total trial number). To account for potentially different number of trials per mouse, resample the data during each iteration the following way: Assume that there are n laser trials from m mice; randomly select (with replacment) ntrial mice; then select from each mouse randomly one trial. bootstrap_mode == 1: Only take inter-trial variance (of each mouse) into account. That is, bootstrapping models the variance expected when redoing the experiment with exactly the same mice. :param fig_file, if file name is specified, the figure will be saved :return: P - p-values for NREM, REM, Wake Mod - by how much the percentage of NREM, REM, Wake is increased compared to baseline """ pre += edge post += edge rec_paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): rec_paths[rec] = ppath else: rec_paths[rec] = backup # dict: mouse_id --> laser trials, R W N sequence BrainstateDict = {} for rec in recordings: idf = re.split('_', rec)[0] BrainstateDict[idf] = [] mice = list(BrainstateDict.keys()) nmice = len(BrainstateDict) for rec in recordings: ppath = rec_paths[rec] SR = get_snr(ppath, rec) NBIN = np.round(2.5 * SR) dt = NBIN * 1 / SR istart_time = int(np.round(start_time / dt)) M = load_stateidx(ppath, rec)[0] seq = get_sequences(np.where(M == 2)[0]) for s in seq: if len(s) * dt <= ma_thr: M[s] = 3 (idxs, idxe) = laser_start_end(load_laser(ppath, rec)) idf = re.split('_', rec)[0] #SR = get_snr(ppath, rec) #NBIN = np.round(2.5 * SR) ipre = int(np.round(pre / dt)) ipost = int(np.round(post / dt)) idxs = [int(i / NBIN) for i in idxs] idxe = [int(i / NBIN) for i in idxe] laser_dur = np.mean((np.array(idxe) - np.array(idxs))) * dt for (i, j) in zip(idxs, idxe): if i >= ipre and j + ipost <= len(M) - 1 and i > istart_time: bs = M[i - ipre:i + ipost + 1] BrainstateDict[idf].append(bs) for mouse in mice: BrainstateDict[mouse] = np.array(BrainstateDict[mouse]) # I assume here that every recording has same dt t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) Trials = dict() for mouse in BrainstateDict: Trials[mouse] = np.zeros((BrainstateDict[mouse].shape[0], len(t), 3)) # total number of trials: ntrials = 0 for mouse in BrainstateDict: M = np.array(BrainstateDict[mouse]) for state in range(1, 4): C = np.zeros(M.shape) C[np.where(M == state)] = 100. Trials[mouse][:,:,state-1] = C ntrials += Trials[mouse].shape[0] Prob = np.zeros((nboots, len(t), 3)) if bootstrap_mode == 1: for b in range(nboots): # average brain state percentage for each mouse during iteration b mouse_mean_state = np.zeros((nmice, len(t), 3)) i = 0 for mouse in mice: mmouse = Trials[mouse].shape[0] iselect = rand.randint(0, mmouse, (mmouse,)) for s in [1,2,3]: #bBS[s][offset:offset+mmouse,:] = Trials[mouse][iselect,:,s-1] mouse_mean_state[i,:,s-1] = Trials[mouse][iselect,:,s-1].mean(axis=0) i += 1 for s in [1,2,3]: Prob[b,:,s-1] = mouse_mean_state[:,:,s-1].mean(axis=0) else: mx_iter = np.zeros((ntrials, len(t), 3)) for b in range(nboots): # for each iteration select randomly select ntrials mice irand_mice = rand.randint(0, nmice, ntrials) # average brain state percentage for each mouse during iteration b # mouse_mean_state = np.zeros((nmice, len(t), 3)) i = 0 # there are ntrials mice for j in irand_mice: mouse = mice[irand_mice[j]] # we have nmouse trials per mouse mmouse = Trials[mouse].shape[0] # select one random trial from the current mouse iselect = rand.randint(0, mmouse) for s in [1, 2, 3]: mx_iter[i,:,s-1] = Trials[mouse][iselect,:,s-1] i += 1 # mx_iter is the resampled data set for bootstrap iteration b # now we calculate the statistics we're interesting in, which is the mean for s in [1, 2, 3]: Prob[b,:,s-1] = mx_iter[:,:,s-1].mean(axis=0) # simple average for each brainstate across mice (w/o) bootstrapping Prob_mean = np.zeros((nmice, len(t), 3)) for s in [1,2,3]: i = 0 for mouse in mice: Prob_mean[i,:,s-1] = Trials[mouse][:,:,s-1].mean(axis=0) i += 1 usProb = Prob.copy() Prob = np.sort(Prob, axis=0) Bounds = np.zeros((2, len(t), 3)) a = int((nboots * alpha) / 2.0) for s in [1,2,3]: Bounds[0,:,s-1] = Prob[a,:,s-1] Bounds[1,:,s-1] = Prob[-a,:, s-1] # smooth_data if sf > 0: for s in range(3): Bounds[0, :, s] = smooth_data(Bounds[0, :, s], sf) Bounds[1, :, s] = smooth_data(Bounds[1, :, s], sf) for i in range(nmice): for s in range(3): Prob_mean[i, :, s] = smooth_data(Prob_mean[i,:,s], sf) # plot figure colors = np.array([[0, 1, 1], [0.5, 0, 1], [0.6, 0.6, 0.6]]) br_states = {1:'REM', 2:'Wake', 3:'NREM'} #colors = np.array([[55,255,255], [153,255,153],[153,153,153]])/255. it = np.where((t>=-pre+edge) & (t<=post-edge))[0] plt.ion() plt.figure() ax = plt.axes([0.15, 0.15, 0.6, 0.7]) for s in [3,2,1]: ax.fill_between(t[it], Bounds[0,it,s-1], Bounds[1,it,s-1], color=colors[s-1,:], alpha=0.8, zorder=3, edgecolor=None) ax.plot(t[it], Prob_mean[:, it, s-1].mean(axis=0), color=colors[s-1,:], label=br_states[s]) ax.add_patch(patches.Rectangle((0, 0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) plt.xlabel('Time (s)') plt.ylabel('Brain state (%)') plt.legend(bbox_to_anchor = (1.0, 0.7, 1., .102), loc = 3, mode = 'expand', ncol = 1, frameon = False) box_off(ax) plt.draw() # statistics # OLD VERSION # ibase = np.where((t>=-laser_dur) & (t<0))[0] # ilsr = np.where((t>=0) & (t<laser_dur))[0] # P = np.zeros((3,)) # Mod = np.zeros((3,)) # for istate in [1,2,3]: # basel = usProb[:,ibase,istate-1].mean(axis=1) # laser = usProb[:,ilsr, istate-1].mean(axis=1) # d = laser - basel # if np.mean(d) >= 0: # # now we want all values be larger than 0 # p = len(np.where(d>0)[0]) / (1.0*nboots) # sig = 1 - p # if sig == 0: # sig = 1.0/nboots # Mod[istate-1] = (np.mean(laser) / np.mean(basel) - 1) * 100 # else: # p = len(np.where(d<0)[0]) / (1.0*nboots) # sig = 1 - p # if sig == 0: # sig = 1.0/nboots # Mod[istate-1] = -(1 - np.mean(laser) / np.mean(basel)) * 100 # P[istate-1] = sig # NEW VERSION ibase = np.where((t>=-laser_dur) & (t<0))[0] ilsr = np.where((t>=0) & (t<laser_dur))[0] P = np.zeros((3,)) Mod = np.zeros((3,)) for istate in [1,2,3]: basel = usProb[:,ibase,istate-1].mean(axis=1) laser = usProb[:,ilsr, istate-1].mean(axis=1) d = laser - basel p = 2 * np.min([len(np.where(d > 0)[0]) / nboots, len(np.where(d <= 0)[0]) / nboots]) if np.mean(d) >= 0: # now we want all values be larger than 0 #p = len(np.where(d>0)[0]) / (1.0*nboots) sig = p if sig == 0: sig = 1.0/nboots Mod[istate-1] = (np.mean(laser) / np.mean(basel) - 1) * 100 else: # p = len(np.where(d<0)[0]) / (1.0*nboots) sig = p if sig == 0: sig = 1.0/nboots Mod[istate-1] = -(1 - np.mean(laser) / np.mean(basel)) * 100 P[istate-1] = sig labels = {1:'REM', 2:'Wake', 3:'NREM'} for s in [1,2,3]: print('%s is changed by %f perc.; P = %f, bootstrap' % (labels[s], Mod[s-1], P[s-1])) print("n = %d mice" % len(mice)) if len(fig_file) > 0: plt.savefig(fig_file, bbox_inches="tight") return P, Mod def _despine_axes(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) def sleep_example(ppath, name, tlegend, tstart, tend, fmax=30, fig_file='', vm=[], ma_thr=10, fontsize=12, cb_ticks=[], emg_ticks=[], r_mu = [10, 100], fw_color=True, pemg_ampl=False, raw_ex = [], eegemg_legend=[], eegemg_max=[]): """ plot sleep example :param ppath: base folder :param name: recording name :param tstart: start (in seconds) of shown example interval :param tend: end of example interval :param tlegend: length of time legend :param fmax: maximum frequency shown for EEG spectrogram :param fig_file: file name where figure will be saved :param vm: saturation of EEG spectrogram :param fontsize: fontsize :param cb_ticks: ticks for colorbar :param emg_ticks: ticks for EMG amplitude axis (uV) :param r_mu: range of frequencies for EMG amplitude :param fw_color: if True, use standard color scheme for brainstate (gray - NREM, violet - Wake, cyan - REM); otherwise use Shinjae's color scheme :param pemg_ampl: if True, plot EMG amplitude, other EMG raw traces :param raw_ex: list of tuples; e.g. if you wish to show 2 raw examples of length t s at time point i and j s, set raw_ex = [(i,t), (j,t)]. If raw_ex == [], no raw traces are plotted The raw examples are labeled by gray rectangles :param eegemg_legend: list with 2 floats: scale bar (in micro Volts) for EEG and EMG raw example :param eegemg_max: list of 2 floats, the y range (ylim) for EEG and EMG raw examples (in micro Volts) goes from -eegemg_max[0] to eegemg_max[0] (for EEG) and from -eegemg_max[1] to eegemg_max[1] (for EMG) Example call including EEG/EMG raw traces: sleepy.sleep_example(ppath, name2, 300, 1000, 4000, raw_ex=[(2140, 5), (3000, 5)], eegemg_legend=[200, 200], eegemg_max=[200, 200], fig_file='/Users/tortugar/Desktop/example.png') """ set_fontarial() set_fontsize(fontsize) # True, if laser exists, otherwise set to False plaser = True sr = get_snr(ppath, name) nbin = np.round(2.5 * sr) dt = nbin * 1 / sr ddt = 1.0/sr istart = int(np.round(tstart/dt)) iend = int(np.round(tend/dt)) dur = (iend-istart+1)*dt istart_emg = int(istart*nbin) iend_emg = int((iend+1)*nbin) M,K = load_stateidx(ppath, name) #kcut = np.where(K>=0)[0] #M = M[kcut] if tend==-1: iend = len(M) M = M[istart:iend] seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 t = np.arange(0, len(M))*dt t_emg = np.arange(0, iend_emg-istart_emg)*ddt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SPEEG = P['SP'] # calculate median for choosing right saturation for heatmap med = np.median(SPEEG.max(axis=0)) if len(vm) == 0: vm = [0, med*2.5] #t = np.squeeze(P['t']) freq = P['freq'] if pemg_ampl: P = so.loadmat(os.path.join(ppath, name, 'msp_%s.mat' % name), squeeze_me=True) SPEMG = P['mSP']#/1000000.0 else: emg = so.loadmat(os.path.join(ppath, name, 'EMG.mat'), squeeze_me=True)['EMG'] # load laser if not os.path.isfile(os.path.join(ppath, name, 'laser_%s.mat' % name)): plaser = False if plaser: laser = load_laser(ppath, name) idxs, idxe = laser_start_end(laser, SR=sr) idxs = [int(i / nbin) for i in idxs] idxe = [int(i / nbin) for i in idxe] # laser if plaser: laser_start = [] laser_end = [] for (i,j) in zip(idxs, idxe): if i>=istart and j <= iend: laser_start.append(i-istart) laser_end.append(j-istart) # create figure plt.ion() plt.figure(figsize=(8,4)) # axis in the background to draw laser patches axes_back = plt.axes([0.1, .4, 0.8, 0.52]) _despine_axes(axes_back) if plaser: for (i,j) in zip(laser_start, laser_end): axes_back.add_patch(patches.Rectangle((i*dt, 0), (j-i+1)*dt, 1, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) axes_back.text(laser_end[0] * dt + dur * 0.01, 0.94, 'Laser', color=[0.6, 0.6, 1]) plt.ylim((0,1)) plt.xlim([t[0], t[-1]]) # show brainstate axes_brs = plt.axes([0.1, 0.4, 0.8, 0.05]) cmap = plt.cm.jet if fw_color: my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) else: my_map = cmap.from_list('brs', [[0, 0, 0], [153 / 255.0, 76 / 255.0, 9 / 255.0], [120 / 255.0, 120 / 255.0, 120 / 255.0], [1, 0.75, 0]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') _despine_axes(axes_brs) axes_legend = plt.axes([0.1, 0.33, 0.8, 0.05]) plt.ylim((0,1.1)) plt.xlim([t[0], t[-1]]) plt.plot([0, tlegend], [1, 1], color='black', lw=1) plt.text(tlegend/4.0, 0.1, str(tlegend) + ' s') _despine_axes(axes_legend) # show spectrogram ifreq = np.where(freq <= fmax)[0] # axes for colorbar axes_cbar = plt.axes([0.82, 0.68, 0.1, 0.2]) # axes for EEG spectrogram axes_spec = plt.axes([0.1, 0.68, 0.8, 0.2], sharex=axes_brs) im = axes_spec.pcolorfast(t, freq[ifreq], SPEEG[ifreq, istart:iend], cmap='jet', vmin=vm[0], vmax=vm[1]) axes_spec.axis('tight') axes_spec.set_xticklabels([]) axes_spec.set_xticks([]) axes_spec.spines["bottom"].set_visible(False) plt.ylabel('Freq (Hz)') box_off(axes_spec) plt.xlim([t[0], t[-1]]) # colorbar for EEG spectrogram cb = plt.colorbar(im, ax=axes_cbar, pad=0.0, aspect=10.0) cb.set_label('Power ($\mathrm{\mu}$V$^2$s)') if len(cb_ticks) > 0: cb.set_ticks(cb_ticks) axes_cbar.set_alpha(0.0) _despine_axes(axes_cbar) # show EMG axes_emg = plt.axes([0.1, 0.5, 0.8, 0.1], sharex=axes_spec) if pemg_ampl: i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] p_mu = np.sqrt(SPEMG[i_mu, :].sum(axis=0) * (freq[1] - freq[0])) #* 1000.0 # back to muV axes_emg.plot(t, p_mu[istart:iend], color='black') # * 1000: to go from mV to uV if len(emg_ticks) > 0: axes_emg.set_yticks(emg_ticks) plt.ylabel('Ampl. ' + '$\mathrm{(\mu V)}$') plt.xlim((t[0], t[-1] + 1)) else: axes_emg.plot(t_emg, emg[istart_emg:iend_emg], color='black', lw=0.2) plt.xlim((t_emg[0], t_emg[-1] + 1)) box_off(axes_emg) axes_emg.patch.set_alpha(0.0) axes_emg.spines["bottom"].set_visible(False) # axis for raw data example if len(raw_ex) > 0: axes_raw_ex = plt.axes([0.1, .39, 0.8, 0.51]) axes_raw_ex.patch.set_alpha(0) _despine_axes(axes_raw_ex) for (ta, tlen) in raw_ex: ta = ta-tstart axes_raw_ex.add_patch(patches.Rectangle((ta, 0), tlen, 1, fill=False, edgecolor=[0.4, 0.4, 0.4], lw=0.3)) plt.ylim((0,1)) plt.xlim([t[0], t[-1]]) eeg = so.loadmat(os.path.join(ppath, name, 'EEG.mat'), squeeze_me=True)['EEG'] emg = so.loadmat(os.path.join(ppath, name, 'EMG.mat'), squeeze_me=True)['EMG'] # axes to label EEG EMG ax_eeg_label = plt.axes([0.04, 0.18, 0.05, 0.1]) ax_eeg_label.set_xlim([0, 1]) ax_eeg_label.set_ylim([0, 1]) ax_eeg_label.text(0, 0.5, 'EEG', verticalalignment='center') _despine_axes(ax_eeg_label) ax_emg_label = plt.axes([0.04, 0.05, 0.05, 0.1]) ax_emg_label.set_xlim([0, 1]) ax_emg_label.set_ylim([0, 1]) ax_emg_label.text(0, 0.5, 'EMG', verticalalignment='center') _despine_axes(ax_emg_label) # axes for legend ax_eeg_legend = plt.axes([0.92, 0.05, 0.05, 0.1]) ax_emg_legend = plt.axes([0.92, 0.18, 0.05, 0.1]) ax_eeg_legend.set_xlim([0, 1]) ax_emg_legend.set_xlim([0, 1]) ax_eeg_legend.set_ylim([-eegemg_max[0], eegemg_max[0]]) ax_emg_legend.set_ylim([-eegemg_max[1], eegemg_max[1]]) ax_eeg_legend.plot([0., 0.], [-eegemg_legend[0]/2, eegemg_legend[0]/2], color='black') ax_emg_legend.plot([0., 0.], [-eegemg_legend[1]/2, eegemg_legend[1]/2], color='black') ax_eeg_legend.text(0.1, -eegemg_legend[0]/2, str(eegemg_legend[0]/1000) + 'mV', rotation=90, fontsize=8) ax_emg_legend.text(0.1, -eegemg_legend[1]/2, str(eegemg_legend[1]/1000) + 'mV', rotation=90, fontsize=8) _despine_axes(ax_eeg_legend) _despine_axes(ax_emg_legend) nraw_ex = len(raw_ex) raw_axes_eeg = [] raw_axes_emg = [] len_x = 0.8/nraw_ex-0.02 start_x = np.linspace(0.1+len_x, 0.9, nraw_ex) - len_x for i in range(nraw_ex): a = plt.axes([start_x[i], 0.05, (0.8/nraw_ex)-0.02, .1]) raw_axes_emg.append(a) a = plt.axes([start_x[i], 0.18, (0.8/nraw_ex)-0.02, .1]) raw_axes_eeg.append(a) for (ax, i) in zip(raw_axes_eeg, range(len(raw_ex))): ta, tlen = raw_ex[i] idx = range(int(ta*sr), int(ta*sr+tlen*sr)) t_eeg = np.arange(0, len(idx))*ddt ax.plot(t_eeg, eeg[idx], color='k', lw=0.5) ax.set_xlim([t_eeg[0], t_eeg[-1]]) _despine_axes(ax) ax.set_ylim([-eegemg_max[0], eegemg_max[0]]) for (ax, i) in zip(raw_axes_emg, range(len(raw_ex))): ta, tlen = raw_ex[i] idx = range(int(ta*sr), int(ta*sr+tlen*sr)) t_eeg = np.arange(0, len(idx))*ddt ax.plot(t_eeg, emg[idx], color='k', lw=0.5) ax.set_xlim([t_eeg[0], t_eeg[-1]]) _despine_axes(ax) ax.set_ylim([-eegemg_max[1], eegemg_max[1]]) axes_raw_time = plt.axes([0.1, 0.03, len_x, 0.02]) plt.plot([0, tlen/10], [0,0], color='black', lw=0.8) plt.ylim([-1,1]) plt.xlim([t_eeg[0], t_eeg[-1]]) _despine_axes(axes_raw_time) if len(fig_file) > 0: save_figure(fig_file) plt.show() def sleep_stats(ppath, recordings, ma_thr=10.0, tstart=0, tend=-1, pplot=True, csv_file=''): """ Calculate average percentage of each brain state, average duration and average frequency plot histograms for REM, NREM, and Wake durations @PARAMETERS: ppath - base folder recordings - single string specifying recording or list of recordings @OPTIONAL: ma_thr - threshold for wake periods to be considered as microarousals tstart - only consider recorded data starting from time tstart, default 0s tend - only consider data recorded up to tend s, default -1, i.e. everything till the end pplot - generate plot in the end; True or False csv_file - file where data should be saved as csv file (e.g. csv_file = '/home/Users/Franz/Documents/my_data.csv') @RETURN: ndarray of percentages (# mice x [REM,Wake,NREM]) ndarray of state durations ndarray of transition frequency / hour """ if type(recordings) != list: recordings = [recordings] Percentage = {} Duration = {} Frequency = {} mice = [] for rec in recordings: idf = re.split('_', os.path.split(rec)[-1])[0] if not idf in mice: mice.append(idf) Percentage[idf] = {1:[], 2:[], 3:[]} Duration[idf] = {1:[], 2:[], 3:[]} Frequency[idf] = {1:[], 2:[], 3:[]} nmice = len(Frequency) for rec in recordings: idf = re.split('_', os.path.split(rec)[-1])[0] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) dt = NBIN * 1/SR # load brain state M, K = load_stateidx(ppath, rec) kcut = np.where(K >= 0)[0] M = M[kcut] istart = int(np.round((1.0 * tstart) / dt)) if tend==-1: iend = len(M)-1 else: iend = int(np.round((1.0*tend) / dt)) M[np.where(M==5)] = 2 # polish out microarousals seq = get_sequences(np.where(M==2)[0]) for s in seq: if np.round(len(s)*dt) <= ma_thr: M[s] = 3 midx = np.arange(istart,iend+1) Mcut = M[midx] nm = len(Mcut)*1.0 # get percentage of each state for s in [1,2,3]: Percentage[idf][s].append(len(np.where(Mcut==s)[0]) / nm) # get frequency of each state for s in [1,2,3]: Frequency[idf][s].append( len(get_sequences(np.where(Mcut==s)[0])) * (3600. / (nm*dt)) ) # get average duration for each state for s in [1,2,3]: seq = get_sequences(np.where(Mcut==s)[0]) Duration[idf][s] += [len(i)*dt for i in seq] PercMx = np.zeros((nmice,3)) i=0 for k in mice: for s in [1,2,3]: PercMx[i,s-1] = np.array(Percentage[k][s]).mean() i += 1 PercMx *= 100 FreqMx = np.zeros((nmice,3)) i = 0 for k in mice: for s in [1,2,3]: FreqMx[i,s-1] = np.array(Frequency[k][s]).mean() i += 1 DurMx = np.zeros((nmice,3)) i = 0 for k in mice: for s in [1,2,3]: DurMx[i,s-1] = np.array(Duration[k][s]).mean() i += 1 DurHist = {1:[], 2:[], 3:[]} for s in [1,2,3]: DurHist[s] = np.squeeze(np.array(reduce(lambda x,y: x+y, [Duration[k][s] for k in Duration]))) if pplot: clrs = sns.color_palette("husl", nmice) plt.ion() # plot bars summarizing results - Figure 1 plt.figure(figsize=(10, 5)) ax = plt.axes([0.1, 0.15, 0.2, 0.8]) plt.bar([1,2,3], PercMx.mean(axis=0), align='center', color='gray', fill=False) plt.xticks([1,2,3], ['REM', 'Wake', 'NREM'], rotation=60) for i in range(nmice): plt.plot([1,2,3], PercMx[i,:], 'o', label=mice[i], color=clrs[i]) plt.ylabel('Percentage (%)') plt.legend(fontsize=9) plt.xlim([0.2, 3.8]) box_off(ax) ax = plt.axes([0.4, 0.15, 0.2, 0.8]) plt.bar([1,2,3], DurMx.mean(axis=0), align='center', color='gray', fill=False) plt.xticks([1,2,3], ['REM', 'Wake', 'NREM'], rotation=60) for i in range(nmice): plt.plot([1, 2, 3], DurMx[i, :], 'o', label=mice[i], color=clrs[i]) plt.ylabel('Duration (s)') plt.xlim([0.2, 3.8]) box_off(ax) ax = plt.axes([0.7, 0.15, 0.2, 0.8]) plt.bar([1,2,3], FreqMx.mean(axis=0), align='center', color='gray', fill=False) plt.xticks([1,2,3], ['REM', 'Wake', 'NREM'], rotation=60) for i in range(nmice): plt.plot([1, 2, 3], FreqMx[i, :], 'o', label=mice[i], color=clrs[i]) plt.ylabel('Frequency (1/h)') plt.xlim([0.2, 3.8]) box_off(ax) plt.show(block=False) # plot histograms - Figure 2 plt.figure(figsize=(5, 10)) ax = plt.axes([0.2,0.1, 0.7, 0.2]) h, edges = np.histogram(DurHist[1], bins=40, range=(0, 300), density=True) binWidth = edges[1] - edges[0] plt.bar(edges[0:-1], h*binWidth, width=5) plt.xlim((edges[0], edges[-1])) plt.xlabel('Duration (s)') plt.ylabel('Freq. REM') box_off(ax) ax = plt.axes([0.2,0.4, 0.7, 0.2]) h, edges = np.histogram(DurHist[2], bins=40, range=(0, 1200), density=True) binWidth = edges[1] - edges[0] plt.bar(edges[0:-1], h*binWidth, width=20) plt.xlim((edges[0], edges[-1])) plt.xlabel('Duration (s)') plt.ylabel('Freq. Wake') box_off(ax) ax = plt.axes([0.2,0.7, 0.7, 0.2]) h, edges = np.histogram(DurHist[3], bins=40, range=(0, 1200), density=True) binWidth = edges[1] - edges[0] plt.bar(edges[0:-1], h*binWidth, width=20) plt.xlim((edges[0], edges[-1])) plt.xlabel('Duration (s)') plt.ylabel('Freq. NREM') box_off(ax) plt.show() mouse_list = [[m]*3 for m in mice] mouse_list = sum(mouse_list, []) state_list = ['REM', 'Wake', 'NREM']*nmice df = pd.DataFrame({'mouse':mouse_list, 'state':state_list, 'Perc':PercMx.flatten(), 'Dur':DurMx.flatten(), 'Freq':FreqMx.flatten()}) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return PercMx, DurMx, FreqMx, df def sleep_timecourse_list(ppath, recordings, tbin, n, tstart=0, tend=-1, ma_thr=-1, pplot=True, single_mode=False, csv_file=''): """ simplified version of sleep_timecourse plot sleep timecourse for a list of recordings The function does not distinguish between control and experimental mice. It computes/plots the how the percentage, frequency (1/h) of brain states and duration of brain state episodes evolves over time. See also sleep_timecourse @Parameters: ppath Base folder with recordings recordings list of recordings as e.g. generated by &load_recordings tbin duration of single time bin in seconds n number of time bins @Optional: tstart start time of first bin in seconds tend end time of last bin; end of recording if tend==-1 ma_thr set microarousals (wake periods <= ma_thr seconds) to NREM if ma_thr==-1, don't do anything pplot plot figures summarizing results single_mode if True, plot each single mouse csv_file string, if non-empty, write data into file $ppath/$csv_file .csv to load csv file: data = pd.read_csv($csv_file.csv, header=[0,1,2]) @Return: TimeMx, DurMx, FreqMx, df Dict[state][time_bin x mouse_id] df is a pandas DataFrame of the format Perc DUR REM Wake NREM REM Wake etc. bin1 ... binn bin1 ... binn bin1 ... bin2 bin1 ... bin2 etc. mouse1 . . . mousen """ if type(recordings) != list: recordings = [recordings] Mice = {} mouse_order = [] for rec in recordings: idf = re.split('_', os.path.split(rec)[-1])[0] if not idf in mouse_order: mouse_order.append(idf) Mice[idf] = 1 Mice = list(Mice.keys()) TimeCourse = {} FreqCourse = {} DurCourse = {} for rec in recordings: idf = re.split('_', rec)[0] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) # time bin in Fourier time dt = NBIN * 1/SR M,K = load_stateidx(ppath, rec) kcut = np.where(K>=0)[0] #kidx = np.setdiff1d(np.arange(0, M.shape[0]), kcut) M = M[kcut] M[np.where(M)==5] = 2 # polish out microarousals if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 if tend==-1: iend = len(M)-1 else: iend = int(np.round((1.0*tend) / dt)) M = M[0:iend+1] istart = int(np.round((1.0*tstart) / dt)) ibin = int(np.round(tbin / dt)) # how brain state percentage changes over time perc_time = [] for i in range(n): #midx = np.arange(istart+i*ibin, istart+(i+1)*ibin) #midx = np.setdiff1d(midx, kcut) #M_cut = M[np.arange(istart+i*ibin, istart+(i+1)*ibin)] M_cut = M[(istart+i*ibin):(istart+(i+1)*ibin)] perc = [] for s in [1,2,3]: perc.append( len(np.where(M_cut==s)[0]) / (1.0*len(M_cut)) ) perc_time.append(perc) perc_vec = np.zeros((n,3)) for i in range(3): perc_vec[:,i] = np.array([v[i] for v in perc_time]) TimeCourse[rec] = perc_vec # how frequency of sleep stage changes over time freq_time = [] for i in range(n): #midx = np.arange(istart+i*ibin, istart+(i+1)*ibin) #midx = np.setdiff1d(midx, kcut) #M_cut = M[np.arange(istart+i*ibin, istart+(i+1)*ibin)] M_cut = M[(istart+i*ibin):(istart+(i+1)*ibin)] freq = [] for s in [1,2,3]: tmp = len(get_sequences(np.where(M_cut==s)[0])) * (3600. / (len(M_cut)*dt)) freq.append(tmp) freq_time.append(freq) freq_vec = np.zeros((n,3)) for i in range(3): freq_vec[:,i] = np.array([v[i] for v in freq_time]) FreqCourse[rec] = freq_vec # how duration of sleep stage changes over time dur_time = [] for i in range(n): #midx = np.arange(istart+i*ibin, istart+(i+1)*ibin) #midx = np.setdiff1d(midx, kcut) M_cut = M[(istart+i*ibin):(istart+(i+1)*ibin)] dur = [] for s in [1,2,3]: tmp = get_sequences(np.where(M_cut==s)[0]) tmp = np.array([len(j)*dt for j in tmp]).mean() dur.append(tmp) dur_time.append(dur) dur_vec = np.zeros((n,3)) for i in range(3): dur_vec[:,i] = np.array([v[i] for v in dur_time]) DurCourse[rec] = dur_vec # collect all recordings belonging to a Control mouse TimeCourseMouse = {} DurCourseMouse = {} FreqCourseMouse = {} # Dict[mouse_id][time_bin x br_state] for mouse in Mice: TimeCourseMouse[mouse] = [] DurCourseMouse[mouse] = [] FreqCourseMouse[mouse] = [] for rec in recordings: idf = re.split('_', rec)[0] TimeCourseMouse[idf].append(TimeCourse[rec]) DurCourseMouse[idf].append(DurCourse[rec]) FreqCourseMouse[idf].append(FreqCourse[rec]) mx = np.zeros((n, len(Mice))) TimeMx = {1:mx, 2:mx.copy(), 3:mx.copy()} mx = np.zeros((n, len(Mice))) DurMx = {1:mx, 2:mx.copy(), 3:mx.copy()} mx = np.zeros((n, len(Mice))) FreqMx = {1:mx, 2:mx.copy(), 3:mx.copy()} # Dict[R|W|N][time_bin x mouse_id] i = 0 for k in mouse_order: for s in range(1,4): tmp = np.array(TimeCourseMouse[k]).mean(axis=0) TimeMx[s][:,i] = tmp[:,s-1] tmp = np.array(DurCourseMouse[k]).mean(axis=0) DurMx[s][:,i] = tmp[:,s-1] tmp = np.array(FreqCourseMouse[k]).mean(axis=0) FreqMx[s][:,i] = tmp[:,s-1] i += 1 if pplot: clrs = sns.color_palette("husl", len(mouse_order)) label = {1:'REM', 2:'Wake', 3:'NREM'} tlabel = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1) t = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1)[0:-1] + (ibin*dt/2.0) t /= 3600.0 tlabel /= 3600.0 # plot percentage of brain state as function of time plt.ion() plt.figure() for s in range(1,4): ax = plt.axes([0.1, (s-1)*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(TimeMx[s],axis=1), yerr = np.nanstd(TimeMx[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, TimeMx[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==3: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) if s==1: #plt.ylim([0, 0.2]) pass else: plt.ylim([0, 1.0]) plt.ylabel('Perc ' + label[s] + '(%)') plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s == 1: plt.xlabel('Time (h)') plt.draw() # plot duration as function of time plt.figure() for s in range(1,4): ax = plt.axes([0.1, (s-1)*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(DurMx[s],axis=1), yerr = np.nanstd(DurMx[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, DurMx[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==3: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) plt.ylabel('Dur ' + label[s] + '(s)') plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s==1: plt.xlabel('Time (h)') plt.draw() # plot frequency as function of time plt.figure() for s in range(1,4): ax = plt.axes([0.1, (s-1)*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(FreqMx[s],axis=1), yerr = np.nanstd(FreqMx[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, FreqMx[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==3: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) plt.ylabel('Freq ' + label[s] + '(1/h)') plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s==1: plt.xlabel('Time (h)') plt.draw() # write data into dataframe and csv file bins = ['bin' + str(i+1) for i in range(n)] columns = pd.MultiIndex.from_product([['Perc', 'Dur', 'Freq'], ['REM', 'Wake', 'NREM'], bins], names=['stats', 'state', 'bin']) D = np.concatenate((TimeMx[1].T, TimeMx[2].T, TimeMx[3].T, DurMx[1].T, DurMx[2].T, DurMx[3].T, FreqMx[1].T, FreqMx[2].T, FreqMx[3].T), axis=1) df = pd.DataFrame(D, index=mouse_order, columns=columns) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return TimeMx, DurMx, FreqMx, df def ma_timecourse_list(ppath, recordings, tbin, n, tstart=0, tend=-1, ma_thr=20, pplot=True, single_mode=False, csv_file=''): """ Calculate percentage, duration, and frequency of microarousals :param ppath: base folder :param recordings: single recording or list of recordings :param tbin: time bin in seconds :param n: number of time bins :param tstart: start time in recording(s) for analysi :param tend: end time for analysis :param ma_thr: microarousal threshold; any wake period shorter than $ma_thr will be considered as microarousal :param pplot: if True, plot figure :param single_mode: if True, plot each single mouse with different color :param csv_file: string, if non-empty, write data into file "csv_file"; file name should end with ".csv" :return: TimeMX, DurMX, FreqMx, df - np.array(# time bins x mice) TimeMX, DurMX, FreqMx: arrays with shape "time bins x mice" df: DataFrame with columns: mouse, perc, dur, freq, bin For example, to get the first time bins of perc, dur, freq of mouse M1 type df[(df.mouse == 'M1') & (df.bin == 't0')] """ if type(recordings) != list: recordings = [recordings] mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mouse_order: mouse_order.append(idf) TimeCourse = {} FreqCourse = {} DurCourse = {} for rec in recordings: SR = get_snr(ppath, rec) NBIN = np.round(2.5 * SR) # time bin in Fourier time dt = NBIN * 1 / SR M, K = load_stateidx(ppath, rec) kcut = np.where(K >= 0)[0] # kidx = np.setdiff1d(np.arange(0, M.shape[0]), kcut) M = M[kcut] Mnew = np.zeros(M.shape) Mnew[np.where(M) == 5] = 1 # polish out microarousals if ma_thr > 0: seq = get_sequences(np.where(M == 2)[0]) for s in seq: if len(s) * dt <= ma_thr: Mnew[s] = 1 M = Mnew if tend == -1: iend = len(M) - 1 else: iend = int(np.round((1.0 * tend) / dt)) M = M[0:iend + 1] istart = int(np.round((1.0 * tstart) / dt)) ibin = int(np.round(tbin / dt)) # how brain state percentage changes over time perc_time = [] for i in range(n): midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) # midx = np.setdiff1d(midx, kcut) M_cut = M[midx] perc = len(np.where(M_cut == 1)[0]) / (1.0 * len(M_cut)) perc_time.append(perc) TimeCourse[rec] = np.array(perc_time) # how frequency of sleep stage changes over time freq_time = [] for i in range(n): midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) # midx = np.setdiff1d(midx, kcut) M_cut = M[midx] s = 1 freq = len(get_sequences(np.where(M_cut == s)[0])) * (3600. / (len(M_cut) * dt)) freq_time.append(freq) FreqCourse[rec] = np.array(freq_time) # how duration of microarousals changes over time dur_time = [] for i in range(n): midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) # midx = np.setdiff1d(midx, kcut) M_cut = M[midx] s = 1 tmp = get_sequences(np.where(M_cut == s)[0]) dur = np.array([len(j) * dt for j in tmp]).mean() dur_time.append(dur) DurCourse[rec] = np.array(dur_time) # collect all recordings belonging to a Control mouse TimeCourseMouse = {} DurCourseMouse = {} FreqCourseMouse = {} # Dict[mouse_id][time_bin x br_state] for mouse in mouse_order: TimeCourseMouse[mouse] = [] DurCourseMouse[mouse] = [] FreqCourseMouse[mouse] = [] for rec in recordings: idf = re.split('_', rec)[0] TimeCourseMouse[idf].append(TimeCourse[rec]) DurCourseMouse[idf].append(DurCourse[rec]) FreqCourseMouse[idf].append(FreqCourse[rec]) # np.array(time x mouse_id) TimeMx = np.zeros((n, len(mouse_order))) DurMx = np.zeros((n, len(mouse_order))) FreqMx = np.zeros((n, len(mouse_order))) i = 0 for k in mouse_order: tmp = np.array(TimeCourseMouse[k]).mean(axis=0) TimeMx[:,i] = tmp tmp = np.array(DurCourseMouse[k]).mean(axis=0) DurMx[:,i] = tmp tmp = np.array(FreqCourseMouse[k]).mean(axis=0) FreqMx[:,i] = tmp i += 1 # plotting if pplot: plot_dict = {0:TimeMx, 1:DurMx, 2:FreqMx} clrs = sns.color_palette("husl", len(mouse_order)) ylabel = {0:'Perc (%)', 1:'Dur (s)', 2:'Freq ($h^{-1}$)'} tlabel = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1) t = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1)[0:-1] + (ibin*dt/2.0) t /= 3600.0 tlabel /= 3600.0 # plot percentage of brain state as function of time plt.ion() plt.figure() for s in range(0, 3): ax = plt.axes([0.15, s*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(plot_dict[s],axis=1), yerr = np.nanstd(plot_dict[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, plot_dict[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==2: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) plt.ylabel(ylabel[s]) plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s == 0: plt.xlabel('Time (h)') plt.draw() bins = [['t' + str(i)]*len(mouse_order) for i in range(n)] bins = sum(bins, []) cols = ['mouse', 'perc', 'dur', 'freq', 'bin'] mice = mouse_order*n df = pd.DataFrame(columns=cols) df['mouse'] = mice df['bin'] = bins df['perc'] = TimeMx.flatten() df['dur'] = DurMx.flatten() df['freq'] = FreqMx.flatten() if len(csv_file) > 0: df.to_csv(csv_file, index=False) return TimeMx, DurMx, FreqMx, df def transition_timecourse_list(ppath, recordings, tbin, n, tdown=10, tstart=0, tend=-1, ma_thr=-1, pplot=True, single_mode=False, csv_file=''): if type(recordings) != list: recordings = [recordings] mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mouse_order: mouse_order.append(idf) Recordings = {idf:[] for idf in mouse_order} SR = get_snr(ppath, recordings[0]) NBIN = np.round(2.5 * SR) # time bin in Fourier time dt = NBIN * 1 / SR istart = int(np.round((1.0 * tstart) / dt)) ibin = int(np.round(tbin / dt)) idown = int(tdown/dt) for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(ppath, rec)[0] # polish out microarousals if ma_thr > 0: seq = get_sequences(np.where(M == 2)[0]) for s in seq: if len(s) * dt <= ma_thr: M[s] = 1 if tend == -1: iend = len(M) - 1 else: iend = int(np.round((1.0 * tend) / dt)) M = M[0:iend + 1] # how brain state percentage changes over time Recordings[idf].append(M) MX = {idf:[] for idf in mouse_order} for i in range(n): for idf in mouse_order: recs = Recordings[idf] midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) recs = [downsample_states(rec[midx], idown) for rec in recs] recs = np.array(recs, dtype='int') #recs = downsample_states(recs, idown) pmx = complete_transition_matrix(recs, np.array(range(recs.shape[1]))) MX[idf].append(pmx) #transform MX to a DataFrame trans_map = {'11':'RR', '12':'RW', '13':'RN', '21':'WR', '22':'WW', '23':'WN', '31':'NR', '32':'NW', '33':'NN'} data = [] for i in range(n): for si in [1,2,3]: for sj in [1,2,3]: for idf in mouse_order: trans = trans_map[str(si)+str(sj)] data += [[idf, 't'+str(i), MX[idf][i][si-1, sj-1], trans]] df = pd.DataFrame(data=data, columns=['mouse', 'time', 'prob', 'trans']) return df def sleep_through_days(ppath, recordings, tstart=0, tend=-1, stats=0, xticks=[], ma_thr=20, min_dur=[0,0,0], single_mode=True, csv_file = ''): """ Follow sleep quantity (percentage, bout duration, or frequency / hour) over multiple days :param ppath: base folder :param recordings: list of lists of recordings, for example [[F1_010118n1, F2_010118n1], [F1_010218n1, F1_010218n1]] specifies the recordings of F1 and F2 for two days :param tstart: float, quantificiation of sleep starts at $start s :param tend: float, quantification of sleep ends at $tend s :param stats: Measured sleep variable (statistics): 0 - percentage, 1 - episode duration, 2 - episode frequency, 3 - latency to first state occurance REM, Wake, and NREM :param xticks: list of string, specifying the xticks :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param min_dur: list with 3 floats, specifying the minimum duration of the first REM, Wake, and NREM period, only relevant if $stats == 3 :param single_mode: if True, plot each single mouse in different color :param csv_file: string, save pd.DataFrame to file; the actual file name will be "$csv_file + stats + $stats .csv" and will be save in the folder $ppath :return: np.array, mice x [REM,Wake,NREM] x days AND pd.DataFrame the pd.DataFrame has the following format: state REM Wake NREM day Day1 ... Dayn Day1 ... Dayn Day1 ... Dayn mouse1 . . . mousen """ states = {1:'REM', 2:'Wake', 3:'NREM'} stats_label = {0:'(%)', 1:'Dur (s)', 2: 'Freq. (1/h)', 3: 'Lat. (min)'} mice_per_day = {} iday = 0 for day in recordings: mice = [] for rec in day: idf = re.split('_', os.path.split(rec)[-1])[0] if not idf in mice: mice.append(idf) mice_per_day[iday] = mice iday += 1 ndays = len(mice_per_day) nmice = len(mice_per_day[0]) for i in range(ndays): for j in range(i+1, ndays): if mice_per_day[i] != mice_per_day[j]: print("ERROR: mice on day %d and %d not consistent" % (i+1, j+1)) return #DayResults: mice x [R|W|N] x days DayResults = np.zeros((nmice, 3, ndays)) for day in range(ndays): if stats<=2: res = sleep_stats(ppath, recordings[day], tstart=tstart, tend=tend, pplot=False, ma_thr=ma_thr)[stats] else: res = np.zeros((nmice, 3)) for s in range(1,4): res[:,s-1] = state_onset(ppath, recordings[day], s, min_dur=min_dur[s-1], tstart=tstart, tend=tend, pplot=False) DayResults[:,:,day] = res plt.ion() clrs = sns.color_palette("husl", nmice) plt.figure(figsize=(10,6)) for s in range(1, 4): ax = plt.axes([0.1, (s - 1) * 0.3 + 0.1, 0.8, 0.2]) if single_mode: for i in range(nmice): plt.plot(list(range(1,ndays+1)), DayResults[i,s-1,:], 'o-', color=clrs[i], label=mice[i]) else: plt.errorbar(list(range(1, ndays+1)), DayResults[:, s-1, :].mean(axis=0), yerr=DayResults[:, s-1, :].std(axis=0), color='gray', label='avg', linewidth=2) if s == 1: if len(xticks) == 0: plt.xticks(list(range(1,ndays+1))) else: plt.xticks(list(range(1, ndays + 1), xticks)) else: plt.xticks(list(range(1, ndays + 1))) ax.set_xticklabels([]) if s == 3: ax.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=nmice, frameon=False) box_off(ax) if s == 1: plt.xlabel('Day') plt.ylabel(states[s] + ' ' + stats_label[stats]) if len(xticks) > 0: col = xticks else: col = ['Day' + str(i+1) for i in range(ndays)] # put data into pandas dataframe columns = pd.MultiIndex.from_product([['REM', 'Wake', 'NREM'], col], names=['state', 'day']) D = np.concatenate((DayResults[:,0,:], DayResults[:,1,:], DayResults[:,2,:]), axis=1) df = pd.DataFrame(D, index=mice, columns=columns) if len(csv_file) > 0: csv_file += '_stats' + str(stats) + '.csv' df.to_csv(os.path.join(ppath, csv_file), index=False) return DayResults, df def sleep_timecourse(ppath, trace_file, tbin, n, tstart=0, tend=-1, pplot=True, stats='perc', csv_file='', ma_thr=0): """ plot how percentage of REM,Wake,NREM changes over time; compares control with experimental data; experimental recordings can have different "doses" a simpler version is sleep_timecourse_list @Parameters trace_file - text file, specifies control and experimental recordings, the syntax for the file is the same as required for load_dose_recording Example: with one control and two experimental groups (1 or 2 third column) # Comments #Mouse Recording dose C B1_01012020n1 C B2_01012020n1 # no dose value for controls E B1_01022020n1 1 E B2_01022020n1 1 E B1_01032020n1 2 E B2_01032020n1 2 tbin - size of time bin in seconds n - number of time bins @Optional: tstart - beginning of recording (time <tstart is thrown away) tend - end of recording (time >tend is thrown away) pplot - plot figure if True stats - statistics; stats = 'perc': compute percentage of each brain state in each time bin; stats = 'freq': compute frequency of each state for each time bin stats = 'dur': compute average duration of each state sequence for each time bin @Return: TimeMxCtr - Dict[R|W|N][time_bin x mouse_id] TimeMxExp - Dict[R|W|N][dose][time_bin x mouse_id] df - pandas.DataFrame with columns ['mouse', 'dose', 'state', 'time', $stats] How to run 2way anova with repeated measures? to determine with effects for different doses on REM: # extract all REM values from DataFrame df_rem = df[df.state == 'REM'] the within factors are 'time' and 'dose'; the dependent variable is 'perc' using pingouin the anova can be calculated using pg.rm_anova(data=df_rem, dv='perc', within=['time', 'dose'], subject='mouse', correction=True) """ (ctr_rec, exp_rec) = load_dose_recordings(ppath, trace_file) Recordings = [] Recordings += ctr_rec for k in exp_rec.keys(): Recordings += exp_rec[k] CMice = [] for mouse in ctr_rec: idf = re.split('_', mouse)[0] if not idf in CMice: CMice.append(idf) EMice = {} for d in exp_rec: mice = exp_rec[d] EMice[d] = [] for mouse in mice: idf = re.split('_', mouse)[0] if not idf in EMice[d]: EMice[d].append(idf) TimeCourse = {} for rec in Recordings: idf = re.split('_', rec)[0] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) # time bin in Fourier time dt = NBIN * 1/SR M = load_stateidx(ppath, rec)[0] M[np.where(M)==5] = 2 if ma_thr > 0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 if tend==-1: iend = len(M)-1 else: iend = int(np.round((1.0*tend) / dt)) M = M[0:iend+1] istart = int(np.round((1.0*tstart) / dt)) ibin = int(np.round(tbin / dt)) perc_time = [] for i in range(n): # return something even if istart+i+1)*ibin >= len(M) M_cut = M[istart+i*ibin:istart+(i+1)*ibin] #midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) perc = [] for s in [1,2,3]: if stats == 'perc': perc.append( 100 * len(np.where(M_cut==s)[0]) / (1.0*len(M_cut)) ) elif stats == 'freq': tmp = len(get_sequences(np.where(M_cut==s)[0])) * (3600. / (len(M_cut)*dt)) perc.append(tmp) else: tmp = get_sequences(np.where(M_cut==s)[0]) tmp = np.array([len(j)*dt for j in tmp]).mean() perc.append(tmp) perc_time.append(perc) # number of time bins x [REM|Wake|NREM] perc_vec = np.zeros((n,3)) for i in range(3): # for each time bin we have a list of 3 elements for each state. # take from each of these triplets the i-th state, forming a column vector perc_vec[:,i] = np.array([v[i] for v in perc_time]) TimeCourse[rec] = perc_vec # define data frame containing all data #bins = ['t' + str(i) for i in range(n)] cols = ['mouse', 'dose', 'state', 'time', stats] df = pd.DataFrame(columns=cols) state_map = {1: 'REM', 2:'Wake', 3:'NREM'} # collect all recordings belonging to a Control mouse TimeCourseCtr = {} # Dict[mouse_id][time_bin x br_state] for mouse in CMice: TimeCourseCtr[mouse] = [] for rec in Recordings: idf = re.split('_', rec)[0] if rec in ctr_rec: TimeCourseCtr[idf].append(TimeCourse[rec]) mx = np.zeros((n, len(CMice))) TimeMxCtr = {1:mx, 2:mx.copy(), 3:mx.copy()} # Dict[R|W|N][time_bin x mouse_id] i = 0 for k in TimeCourseCtr: for s in range(1,4): # [time_bin x br_state] tmp = np.array(TimeCourseCtr[k]).mean(axis=0) TimeMxCtr[s][:,i] = tmp[:,s-1] #for j in range(n): # df = df.append(pd.Series([k, '0', state_map[s], 't'+str(j), tmp[j,s-1]], index=cols), ignore_index=True) #pdb.set_trace() for j in range(n): for r in range(len(TimeCourseCtr[k])): df = df.append(pd.Series([k, '0', state_map[s], 't'+str(j), TimeCourseCtr[k][r][j,s-1]], index=cols), ignore_index=True) i += 1 # collect all recording belonging to one Exp mouse with a specific dose TimeCourseExp = {} # Dict[dose][mouse_id][time_bin x br_state] for d in EMice: TimeCourseExp[d]={} for mouse in EMice[d]: TimeCourseExp[d][mouse] = [] for rec in Recordings: idf = re.split('_', rec)[0] for d in exp_rec: if rec in exp_rec[d]: TimeCourseExp[d][idf].append(TimeCourse[rec]) # dummy dictionary to initialize TimeMxExp # Dict[R|W|N][dose][time_bin x mouse_id] TimeMxExp = {1:{}, 2:{}, 3:{}} for s in [1,2,3]: TimeMxExp[s] = {} for d in EMice: TimeMxExp[s][d] = np.zeros((n, len(EMice[d]))) for d in TimeCourseExp: i = 0 for k in TimeCourseExp[d]: print(k) tmp = np.array(TimeCourseExp[d][k]).mean(axis=0) for s in [1,2,3]: # [time_bin x br_state] for mouse k #tmp = sum(TimeCourseExp[d][k]) / (1.0*len(TimeCourseExp[d][k])) TimeMxExp[s][d][:,i] = tmp[:,s-1] #for j in range(n): # df = df.append(pd.Series([k, d, state_map[s], 't'+str(j), tmp[j, s-1]], index=cols), ignore_index=True) for j in range(n): for r in range(len(TimeCourseExp[d][k])): df = df.append(pd.Series([k, d, state_map[s], 't'+str(j), TimeCourseExp[d][k][r][j,s-1]], index=cols), ignore_index=True) i += 1 if pplot: tlabel = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1) t = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1)[0:-1] + (ibin*dt/2.0) t /= 3600.0 tlabel /= 3600.0 plt.ion() plt.figure() ndose = len(EMice) ax = plt.axes([0.1, 0.7, 0.8, 0.2]) plt.errorbar(t, TimeMxCtr[1].mean(axis=1), yerr = TimeMxCtr[1].std(axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) box_off(ax) plt.xlim([t[0], t[-1]]) #plt.yticks([0, 0.1, 0.2]) plt.xticks(tlabel) if stats=='perc': plt.ylabel('% REM') elif stats == 'freq': plt.ylabel('Freq. REM (1/h)') else: plt.ylabel('Dur. REM (s)') i = 1 for d in TimeMxExp[1]: c = 1 - 1.0/ndose*i plt.errorbar(t, TimeMxExp[1][d].mean(axis=1), yerr = TimeMxExp[1][d].std(axis=1), color=[c, c, 1], fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) i += 1 ax = plt.axes([0.1, 0.4, 0.8, 0.2]) plt.errorbar(t, TimeMxCtr[2].mean(axis=1), yerr = TimeMxCtr[2].std(axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) box_off(ax) plt.xlim([t[0], t[-1]]) #plt.yticks([0, 0.1, 0.2]) plt.xticks(tlabel) if stats=='perc': plt.ylabel('% Wake') elif stats == 'freq': plt.ylabel('Freq. Wake (1/h)') else: plt.ylabel('Dur. Wake (s)') i = 1 for d in TimeMxExp[2]: c = 1 - 1.0/ndose*i plt.errorbar(t, TimeMxExp[2][d].mean(axis=1), yerr = TimeMxExp[2][d].std(axis=1), color=[c, c, 1], fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) i += 1 ax = plt.axes([0.1, 0.1, 0.8, 0.2]) plt.errorbar(t, TimeMxCtr[3].mean(axis=1), yerr = TimeMxCtr[3].std(axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) box_off(ax) plt.xlim([t[0], t[-1]]) #plt.yticks([0, 0.1, 0.2]) plt.xticks(tlabel) if stats=='perc': plt.ylabel('% NREM') elif stats == 'freq': plt.ylabel('Freq. NREM (1/h)') else: plt.ylabel('Dur. NREM (s)') plt.xlabel('Time (h)') plt.show() i = 1 for d in TimeMxExp[2]: c = 1 - 1.0/ndose*i plt.errorbar(t, TimeMxExp[3][d].mean(axis=1), yerr = TimeMxExp[3][d].std(axis=1), color=[c, c, 1], fmt = 'o', linestyle='-', linewidth=2, elinewidth=2, label=d) i += 1 plt.legend() if len(csv_file) > 0: df.to_csv(os.path.join(csv_file), index=False) return TimeMxCtr, TimeMxExp, df def state_onset(ppath, recordings, istate, min_dur, iseq=0, ma_thr=10, tstart=0, tend=-1, pplot=True): """ calculate time point of first occurance of state $istate in @recordings :param ppath: base folder :param recordings: list of recordings :param istate: 1 = REM, 2 = Wake, 3 = NREM :param min_dur: minimum duration in [s] to be counted as first occurance :param iseq: calculate the $iseq-th occurance state $istate :param ma_thr: microarousal threshould :param tstart: float, quantificiation of sleep starts at $start s :param tend: float, quantification of sleep ends at $tend s :return: np.array, average latency (in minutes) for each mouse. If one mouse contributes several recordings the average latency is computed """ if type(recordings) != list: recordings = [recordings] # get all mice in recordings mice = [] dt = 2.5 for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice.append(idf) latency = {m:[] for m in mice} for rec in recordings: SR = get_snr(ppath, rec) # Number of EEG bins / brainstate bin NBIN = np.round(2.5 * SR) # Precise time bin duration of each brain state: dt = NBIN * 1.0 / SR idf = re.split('_', rec)[0] M,K = load_stateidx(ppath, rec) # flatten out microarousals if istate == 3 and ma_thr > 0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 kcut = np.where(K>=0)[0] M = M[kcut] istart = int(np.round(tstart/dt)) iend = int(np.round(tend/dt)) if tend == -1: iend = len(M) M = M[istart:iend] seq = get_sequences(np.where(M==istate)[0]) seq = [s for s in seq if len(s) * dt >= min_dur] #ifirst = seq[seq[iseq][0]] ifirst = seq[iseq][0] latency[idf].append(ifirst*dt) for m in mice: latency[m] = np.nanmax(np.array(latency[m])) values = np.array([latency[m]/60. for m in mice]) clrs = sns.color_palette("husl", len(mice)) if pplot: # print latencies for m in mice: print("%s - %.2f min" % (m, latency[m] / 60.)) plt.ion() plt.figure() ax = plt.subplot(111) set_fontsize(14) #plt.bar(range(0, len(values)), values, color='gray') for i in range(len(mice)): plt.plot(i, values[i], 'o', color=clrs[i], label=m) #plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mice), frameon=False) plt.xticks(list(range(0, len(values))), mice) plt.ylabel('Onset Latency (min)') box_off(ax) plt.show() return values def sleep_spectrum(ppath, recordings, istate=1, pmode=1, fres=1/3, ma_thr=20.0, f_max=30, pplot=True, sig_type='EEG', mu=[10, 100], tstart=0, tend=-1, sthres=np.inf, peeg2=False, pnorm=False, single_mode=False, conv=1.0, fig_file='', laser_color='blue', ci='sd'): """ calculate power spectrum for brain state i state for the given recordings. The function first calculates for each mouse the powerspectrum for each istate sequence, and then averages across all sequences. Note: If recordings with different sampling rates are combined, set f_max to a frequency value, which exists for all recordings. @Param: ppath - folder containing all recordings recordings - single recording (string) or list of recordings @Optional: istate - state for which to calculate power spectrum; 1=REM, 2=Wake, 3=NREM fres - resolution of frequency axis; i.e. fres = F[i] - F[i-1] ma_thr - short wake periods <= $ma_thr are considered as sleep f_max - maximal frequency, if f_max==-1: f_max is maximally possible frequency pplot - if True, plot figure showing result pmode - mode: pmode == 1, compare state during laser with baseline outside laser interval pmode == 0, just plot power spectrum for state istate and don't care about laser pmode == 2, compare periods of state if they overlap with laser and if the laser precedes the state with state periods w/o laser. That's is we are looking here at "laser induced" periods; the period itself can be longer as laser stimulation (as long as it follows laser onset). tstart - use EEG starting from time point tstart [seconds] sig_type - string, if 'EMG' calculate EMG amplitude (from the EMG spectrum). E.g., sleepy.sleep_spectrum(ppath, E, istate=2, f_max=30, sig_type='EMG') mu - tuple, lower and upper range for EMG frequencies used for amplitude calculation tend - use data up to tend [seconds], if tend == -1, use data till end sthres - maximum length of bout duration of state $istate used for calculation. If bout duration > $sthres, only use the bout up to $sthres seconds after bout onset. peeg2 - if True, use EEG2 channel for spectrum analysis pnorm - if True, normalize powerspectrum by dividing each frequency through each average power over the whole EEG recording single_mode - if True, plot each single mouse fig_file - if specified save to given file ci - parameter for seaborn.lineplot, if ci=='sd' plot standard deviation, for int values plot confidence interval (e.g. ci=95 will plot the 95% confidence interval). Only works, if there are more than one mouse! errorbars: If it's multiple mice make errorbars over mice; if it's multiple recordings of ONE mouse, show errorbars across recordings; if just one recording show now errorbars @Return: Pow - Dict[No loaser = 0|Laser = 1][array], where array: mice x frequencies, if more than one mouse; otherwise, array: recordings x frequencies F - Frequencies """ if type(recordings) != list: recordings = [recordings] Mice = {} for rec in recordings: idf = re.split('_', rec)[0] if not idf in Mice: Mice[idf] = Mouse(idf, rec, 'E') else: Mice[idf].add(rec) mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mouse_order: mouse_order.append(idf) # Spectra: Dict[mouse_id][laser_on|laser_off][list of powerspectrum_arrays] Spectra = {} Ids = list(Mice.keys()) for i in Ids: Spectra[i] = {0:[], 1:[]} Spectra[i] = {0:[], 1:[]} for idf in mouse_order: for rec in Mice[idf].recordings: # load EEG if sig_type =='EEG': if not peeg2: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EEG.mat'))['EEG']).astype('float')*conv else: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EEG2.mat'))['EEG2']).astype('float')*conv elif sig_type == 'EMG': if not peeg2: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EMG.mat'))['EMG']).astype('float')*conv else: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EMG2.mat'))['EMG2']).astype('float')*conv else: pass # load brain state M,K = load_stateidx(ppath, rec) # set brain states where K<0 to zero; # this whay they are effectively discarded M[K<0] = 0 sr = get_snr(ppath, rec) # calculate time window #twin = int(np.round(sr * (1/fres))) * (1/sr) twin = sr * (1/fres) * (1/sr) # number of time bins for each time bin in spectrogram nbin = int(np.round(sr) * 2.5) # duration of time bin in spectrogram / brainstate dt = nbin * 1/sr nwin = np.round(twin*sr) istart = int(np.round(tstart/dt)) if tend==-1: iend = M.shape[0] else: iend = int(np.round(tend/dt)) istart_eeg = istart*nbin iend_eeg = (iend-1)*nbin+1 M[np.where(M==5)]=2 # flatten out microarousals seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 # get all sequences of state $istate M = M[istart:iend] seq = get_sequences(np.where(M==istate)[0]) EEG = EEG[istart_eeg:iend_eeg] if pnorm: pow_norm = power_spectrum(EEG, nwin, 1 / sr)[0] if pmode == 1 or pmode == 2: laser = load_laser(ppath, rec)[istart_eeg:iend_eeg] (idxs, idxe) = laser_start_end(laser, SR=sr) # downsample EEG time to spectrogram time idxs = [int(i/nbin) for i in idxs] idxe = [int(i/nbin) for i in idxe] laser_idx = [] for (i,j) in zip(idxs, idxe): laser_idx += list(range(i,j+1)) laser_idx = np.array(laser_idx) if pmode == 1 or pmode == 2: # first analyze frequencies not overlapping with laser seq_nolsr = [] for s in seq: s = np.setdiff1d(s, laser_idx) if len(s) > 0: q = get_sequences(s) seq_nolsr += q for s in seq_nolsr: if len(s)*nbin >= nwin: drn = (s[-1]-s[0])*dt if drn > sthres: # b is the end of segment used for power spectrum calculation; # that is, the last index (in raw EEG) of the segment b = (s[0] + int(np.round(sthres/dt)))*nbin else: b = int((s[-1]+1)*nbin) sup = list(range(int(s[0]*nbin), b)) if sup[-1]>len(EEG): sup = list(range(int(s[0]*nbin), len(EEG))) if len(sup) >= nwin: Pow, F = power_spectrum(EEG[sup], nwin, 1/sr) if pnorm: Pow = np.divide(Pow, pow_norm) Spectra[idf][0].append(Pow) # now analyze sequences overlapping with laser seq_lsr = [] for s in seq: if pmode == 1: s = np.intersect1d(s, laser_idx) if len(s) > 0: q = get_sequences(s) seq_lsr += q if pmode == 2: r = np.intersect1d(s, laser_idx) if len(r) > 0 and s[0] in laser_idx: seq_lsr += [s] for s in seq_lsr: # should not be necessary any more... #if pmode == 1: # s = np.intersect1d(s, laser_idx) if len(s)*nbin >= nwin: # calculate power spectrum # upsample indices # brain state time 0 1 2 # EEG time 0-999 1000-1999 2000-2999 drn = (s[-1]-s[0])*dt if drn > sthres: b = (s[0] + int(np.round(sthres/dt)))*nbin else: b = int((s[-1]+1)*nbin) sup = list(range(int(s[0]*nbin), b)) if sup[-1]>len(EEG): sup = list(range(int(s[0]*nbin), len(EEG))) # changed line on 02/08/2019 if len(sup) >= nwin: Pow, F = power_spectrum(EEG[sup], nwin, 1/sr) if pnorm: Pow = np.divide(Pow, pow_norm) Spectra[idf][1].append(Pow) # don't care about laser if pmode == 0: for s in seq: if len(s)*nbin >= nwin: drn = (s[-1]-s[0])*dt if drn > sthres: b = (s[0] + int(np.round(sthres/dt)))*nbin else: b = int((s[-1]+1)*nbin) sup = list(range(int(s[0]*nbin), b)) if sup[-1]>len(EEG): sup = list(range(int(s[0]*nbin), len(EEG))) # changed line on 02/08/2019 if len(sup) >= nwin: Pow, F = power_spectrum(EEG[sup], nwin, 1/sr) if pnorm: Pow = np.divide(Pow, pow_norm) Spectra[idf][0].append(Pow) mF = F.copy() if sig_type == 'EEG': if f_max > -1: ifreq = np.where(F<=f_max)[0] F = F[ifreq] else: f_max = F[-1] else: f_max = F[-1] ifreq = range(0, F.shape[0]) Pow = {0:[], 1:[]} if len(Ids)==1: # only one mouse #Pow[0] = np.array(Spectra[Ids[0]][0]) #Pow[1] = np.array(Spectra[Ids[0]][1]) Pow[0] = np.array([s[ifreq] for s in Spectra[Ids[0]][0]]) Pow[1] = np.array([s[ifreq] for s in Spectra[Ids[0]][1]]) else: # several mice Pow[0] = np.zeros((len(Ids),len(F))) Pow[1] = np.zeros((len(Ids),len(F))) i = 0 for m in Ids: #Pow[0][i,:] = np.array(Spectra[m][0]).mean(axis=0) tmp = [s[ifreq] for s in Spectra[m][0]] Pow[0][i,:] = np.array(tmp).mean(axis=0) if pmode == 1 or pmode == 2: #Pow[1][i,:] = np.array(Spectra[m][1]).mean(axis=0) tmp = [s[ifreq] for s in Spectra[m][1]] Pow[1][i,:] = np.array(tmp).mean(axis=0) i += 1 if pplot: plt.ion() plt.figure() if sig_type == 'EEG': ax = plt.axes([0.2, 0.15, 0.6, 0.7]) n = Pow[0].shape[0] clrs = sns.color_palette("husl", len(mouse_order)) if pmode==1 or pmode==2: if not single_mode: a = Pow[1].mean(axis=0) - Pow[1].std(axis=0) / np.sqrt(n) b = Pow[1].mean(axis=0) + Pow[1].std(axis=0) / np.sqrt(n) plt.fill_between(F, a, b, alpha=0.5, color=laser_color) plt.plot(F, Pow[1].mean(axis=0), color=laser_color, lw=2, label='With laser') else: for i in range(len(mouse_order)): plt.plot(F, Pow[1][i,:], '--', color=clrs[i]) if not single_mode: a = Pow[0].mean(axis=0)-Pow[0].std(axis=0)/np.sqrt(n) b = Pow[0].mean(axis=0)+Pow[0].std(axis=0)/np.sqrt(n) plt.fill_between(F, a, b, alpha=0.5, color='gray') plt.plot(F, Pow[0].mean(axis=0), color='gray', lw=2, alpha=0.5, label='W/o laser') else: for i in range(len(mouse_order)): plt.plot(F, Pow[0][i, :], label=mouse_order[i], color=clrs[i]) plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) if pmode>=1 and not single_mode: plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', frameon=False) box_off(ax) plt.xlim([0, f_max]) plt.xlabel('Freq. (Hz)') plt.ylabel('Power ($\mathrm{\mu V^2}$)') plt.show() else: # plot EMG amplitude nmice = len(mouse_order) clrs = sns.color_palette("husl", nmice) # plot EMG Ampl = {0:[], 1:[]} # range of frequencies mfreq = np.where((mF >= mu[0]) & (mF <= mu[1]))[0] df = mF[1] - mF[0] if pmode>=1: for i in [0, 1]: Ampl[i] = np.sqrt(Pow[i][:,mfreq].sum(axis=1)*df) else: Ampl[0] = np.sqrt(Pow[0][:,mfreq].sum(axis=1)*df) if pmode>=1: ax = plt.axes([0.2, 0.15, 0.4, 0.7]) ax.bar([0], Ampl[0].mean(), color='gray', label='w/o laser') ax.bar([1], Ampl[1].mean(), color='blue', label='laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', frameon=False) if len(Ids) == 1: i=0 plt.plot([0,1], [np.mean(Ampl[0]), np.mean(Ampl[1])], color=clrs[i], label=mouse_order[i]) else: for i in range(nmice): plt.plot([0,1], [Ampl[0][i], Ampl[1][i]], color=clrs[i], label=mouse_order[i]) box_off(ax) plt.ylabel('EMG Ampl. ($\mathrm{\mu V}$)') ax.set_xticks([0,1]) ax.set_xticklabels(['', '']) # some basic stats #[tstats, p] = stats.ttest_rel(Ampl[0], Ampl[1]) #print("Stats for EMG amplitude: t-statistics: %.3f, p-value: %.3f" % (tstats, p)) if len(fig_file) > 0: save_figure(fig_file) # Use seaborn to plot powerspectra with confidence intervals across mice: # At some point I will make this the standard code vals = [] if len(mouse_order) > 0: mi = 0 for m in mouse_order: for i in range(len(F)): if len(mouse_order) > 1: vals.append([0, m, Pow[0][mi][i], F[i]]) else: vals.append([0, m, Pow[0][:,i].mean(), F[i]]) if pmode >= 1: if len(mouse_order) > 1: vals.append([1, m, Pow[1][mi][i], F[i]]) else: vals.append([1, m, Pow[1][:,i].mean(), F[i]]) mi += 1 df = pd.DataFrame(columns=['Lsr', 'Idf', 'Pow', 'Freq'], data=vals) if pplot: plt.figure() ax = plt.subplot(111) if pmode >= 1: sns.lineplot(x='Freq', y='Pow', hue='Lsr', data=df, ci=ci, palette={0:'gray', 1:'blue'}) else: sns.lineplot(x='Freq', y='Pow', data=df, ci=ci, palette=['gray']) box_off(ax) plt.xlim([0, f_max]) return Pow, F, df def set_awake(M, MSP, freq, mu=[10, 100]): imu = np.where((freq>=mu[0]) & (freq<=mu[1]))[0] df = freq[1]-freq[0] widx = np.where(M==2)[0] ampl = np.sqrt(MSP[imu, :].sum(axis=0)*df) wampl = ampl[widx] thr = wampl.mean() + 1*wampl.std() awk_idx = widx[np.where(wampl>thr)[0]] #qwk_idx = np.setdiff1d(widx, awk_idx) M[awk_idx] = 5 return M def sleep_spectrum_simple(ppath, recordings, istate=1, tstart=0, tend=-1, fmax=-1, mu=[10,100], ci='sd', pmode=1, pnorm = False, pplot=True, harmcs=0, harmcs_mode='iplt', iplt_level=0, peeg2=False, pemg2=False, exclusive_mode=0, csv_files=[]): """ caluclate EEG power spectrum using pre-calculate spectogram save in ppath/sp_"name".mat :param ppath: base folder :param recordings: list of recordings :param istate: brain state for which power spectrum is computed. 1-REM, 2-Wake, 3-NREM, 5-"active wake" :param tstart: use EEG/EMG starting from time point tstart [seconds] :param tend: use EEG/EMG up to time point tend [seconds]; if tend=-1, use EEG/EMG till the end :param fmax: maximum frequency shown on x-axis :param ci: 'sd' | int between 0 and 100 specificing confidence interval :param pmode: mode: pmode == 0, just plot power spectrum for state istate and don't care about laser pmode == 1, compare state during laser with baseline outside laser interval :param pnorm: if True, normalize spectrogram by dividing each frequency band by its average power :param pplot: if True, plot figure # What do to with episodes partially overlapping with laser :param exclusive_mode: if > 0, apply some exception for episodes of state $istate, that overlap with laser. Say there's a REM period that only partially overlaps with laser. If $exclusive_mode == 1, then do not use the part w/o laser for the 'no laser' condition; This can be relevant for closed-loop stimulation: The laser turns on after the spontaneous onset of REM sleep. So, the initial part of REM sleep would be interpreted as 'no laser', potentially inducing a bias, because at the very beginning the REM spectrum looks different than later on. If $exclusive_mode == 2, then add the part w/o laser to the 'with laser' condition. If $exclusive_mode == 0, then interprete the part w/o laser as 'w/o laser'. # interpolating/discarding harmonics :param harmcs, harmcs_mode, iplt_level: if $harmcs > 0 and $harmcs_mode == 'emg', remove all harmonics of base frequency $harmcs, from the frequencies used for EMG amplitude calculation; do nothing for harmonics in EEG if $harmcs > 0 and $harmcs_mode == 'iplt', interpolate all harmonics by substituting the power at the harmonic by a sum of the neighboring frequencies. If $iplt_level == 1, only take one neighboring frequency below and above the harmonic, if $iplt_level == 2, use the two neighboring frequencies above and below for the interpolation :parm peeg2: if True, use EEG2.mat instead of EEG.mat for EEG powerspectrum calculation :param pemg2: if True, use EMG2 for EMG amplitude calcuation :param csv_files: if two file names are provided, the results for EEG power spectrum and EMG amplitude are saved to the csv files. The EEG powerspectrum is saved to the first file. :return (ps_mx, freq, df, df_amp) ps_mx: dict: 0|1 -> np.array(no. mice x frequencies) freq: vector with frequencies df: DataFrame with EEG powerspectrum; columns: 'Idf', 'Freq', 'Pow', 'Lsr' df_amp: DataFrame with EMG amplitude; columns: 'Idf', 'Amp', 'Lsr' """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 elif iplt_level == 1: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 else: pass return SP # def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): # df = freq[2]-freq[1] # for h in np.arange(harmcs, f_max, harmcs): # i = np.argmin(np.abs(freq - h)) # if np.abs(freq[i] - h) < df and h != 60: # SP[i,:] = (SP[i-iplt_level:i,:] + SP[i+1:i+1+iplt_level,:]).mean(axis=0) * 0.5 # return SP mice = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice.append(idf) ps_mice = {0: {m:[] for m in mice}, 1: {m:[] for m in mice}} amp_mice = {0: {m:0 for m in mice}, 1: {m:0 for m in mice}} count_mice = {0: {m:0 for m in mice}, 1: {m:0 for m in mice}} data = [] for rec in recordings: print(rec) emg_loaded = False # load brain state idf = re.split('_', rec)[0] M = load_stateidx(ppath, rec)[0] sr = get_snr(ppath, rec) # number of time bins for each time bin in spectrogram nbin = int(np.round(sr) * 2.5) dt = nbin * (1/sr) # determine start and end of time frame used for calculation istart = int(np.round(tstart / dt)) if tend > -1: iend = int(np.round(tend / dt)) else: iend = len(M) istart_eeg = istart*nbin #iend_eeg = (iend-1)*nbin+1 iend_eeg = iend*nbin M = M[istart:iend] if istate == 5: tmp = so.loadmat(os.path.join(ppath, rec, 'msp_%s.mat' % rec), squeeze_me=True) if not pemg2: MSP = tmp['mSP'][:,istart:iend] freq_emg = tmp['freq'] else: MSP = tmp['mSP2'][:,istart:iend] freq_emg = tmp['freq'] emg_loaded = True M = set_awake(M[istart:iend], MSP[istart:iend], freq_emg, mu=mu) if type(istate) == int: idx = np.where(M==istate)[0] else: idx = np.array([], dtype='int') for s in istate: idx = np.concatenate((idx, np.where(M==s)[0])) # load laser if pmode == 1: lsr = load_laser(ppath, rec) idxs, idxe = laser_start_end(lsr[istart_eeg:iend_eeg]) # downsample EEG time to spectrogram time idxs = [int(i/nbin) for i in idxs] idxe = [int(i/nbin) for i in idxe] laser_idx = [] for (i,j) in zip(idxs, idxe): laser_idx += range(i,j+1) laser_idx = np.array(laser_idx) idx_lsr = np.intersect1d(idx, laser_idx) idx_nolsr = np.setdiff1d(idx, laser_idx) if exclusive_mode > 0 and exclusive_mode < 3: #rm_idx = [] rem_seq = get_sequences(np.where(M==1)[0]) for s in rem_seq: d = np.intersect1d(s, idx_lsr) if len(d) > 0: # that's the part of the REM period with laser # that does not overlap with laser drm = np.setdiff1d(s, d) idx_nolsr = np.setdiff1d(idx_nolsr, drm) if exclusive_mode == 2: idx_lsr = np.union1d(idx_lsr, drm) if exclusive_mode == 3: rem_trig = so.loadmat(os.path.join(ppath, rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 trig_idx = np.where(rem_trig==1)[0] idx_lsr = np.intersect1d(trig_idx, idx_lsr) idx_nolsr = np.intersect1d(trig_idx, idx_nolsr) ###################################################################### # load EEG spectrogram tmp = so.loadmat(os.path.join(ppath, rec, 'sp_%s.mat' % rec), squeeze_me=True) if not peeg2: SP = tmp['SP'][:,istart:iend] else: SP = tmp['SP2'][:, istart:iend] if pnorm: sp_mean = np.mean(SP, axis=1) SP = np.divide(SP, np.tile(sp_mean, (SP.shape[1], 1)).T) freq = tmp['freq'] df = freq[1]-freq[0] if fmax > -1: ifreq = np.where(freq <= fmax)[0] freq = freq[ifreq] SP = SP[ifreq,:] # load EMG spectrogram if not emg_loaded: tmp = so.loadmat(os.path.join(ppath, rec, 'msp_%s.mat' % rec), squeeze_me=True) if not pemg2: MSP = tmp['mSP'][:,istart:iend] freq_emg = tmp['freq'] else: MSP = tmp['mSP2'][:,istart:iend] freq_emg = tmp['freq'] imu = np.where((freq_emg>=mu[0]) & (freq_emg<=mu[-1]))[0] if harmcs > 0 and harmcs_mode == 'iplt': SP = _interpolate_harmonics(SP, freq, fmax, harmcs, iplt_level) MSP = _interpolate_harmonics(MSP, freq, fmax, harmcs, iplt_level) if harmcs > 0 and harmcs_mode == 'emg': harm_freq = np.arange(0, freq_emg.max(), harmcs) for h in harm_freq: imu = np.setdiff1d(imu, imu[np.where(np.round(freq_emg[imu], decimals=1)==h)[0]]) tmp = 0 for i in imu: tmp += MSP[i,:] * (freq_emg[i]-freq_emg[i-1]) emg_ampl = np.sqrt(tmp) else: emg_ampl = np.sqrt(MSP[imu,:].sum(axis=0)*df) ################################################### if pmode == 1: count_mice[0][idf] += len(idx_nolsr) count_mice[1][idf] += len(idx_lsr) ps_lsr = SP[:,idx_lsr].sum(axis=1) ps_nolsr = SP[:,idx_nolsr].sum(axis=1) ps_mice[1][idf].append(ps_lsr) ps_mice[0][idf].append(ps_nolsr) amp_mice[1][idf] += emg_ampl[idx_lsr].sum() amp_mice[0][idf] += emg_ampl[idx_nolsr].sum() else: count_mice[0][idf] += len(idx) ps_nolsr = SP[:,idx].sum(axis=1) ps_mice[0][idf].append(ps_nolsr) amp_mice[0][idf] += emg_ampl[idx].sum() lsr_cond = [] if pmode == 0: lsr_cond = [0] else: lsr_cond = [0,1] ps_mx = {0:[], 1:[]} amp_mx = {0:[], 1:[]} for l in lsr_cond: mx = np.zeros((len(mice), len(freq))) amp = np.zeros((len(mice),)) for (i,idf) in zip(range(len(mice)), mice): mx[i,:] = np.array(ps_mice[l][idf]).sum(axis=0) / count_mice[l][idf] amp[i] = amp_mice[l][idf] / count_mice[l][idf] ps_mx[l] = mx amp_mx[l] = amp # transform data arrays to pandas dataframe data_nolsr = list(np.reshape(ps_mx[0], (len(mice)*len(freq),))) amp_freq = list(freq)*len(mice) amp_idf = reduce(lambda x,y: x+y, [[b]*len(freq) for b in mice]) if pmode == 1: data_lsr = list(np.reshape(ps_mx[1], (len(mice)*len(freq),))) list_lsr = ['yes']*len(freq)*len(mice) + ['no']*len(freq)*len(mice) data = [[a,b,c,d] for (a,b,c,d) in zip(amp_idf*2, amp_freq*2, data_lsr+data_nolsr, list_lsr)] else: list_lsr = ['no']*len(freq)*len(mice) data = [[a,b,c,d] for (a,b,c,d) in zip(amp_idf, amp_freq, data_nolsr, list_lsr)] df = pd.DataFrame(columns=['Idf', 'Freq', 'Pow', 'Lsr'], data=data) df_amp = pd.DataFrame(columns=['Idf', 'Amp', 'Lsr']) if pmode == 1: df_amp['Idf'] = mice*2 df_amp['Amp'] = list(amp_mx[0]) + list(amp_mx[1]) df_amp['Lsr'] = ['no'] * len(mice) + ['yes'] * len(mice) else: df_amp['Idf'] = mice df_amp['Amp'] = list(amp_mx[0]) df_amp['Lsr'] = ['no'] * len(mice) # plot figure if pplot: plt.ion() plt.figure() sns.set_style('ticks') #sns.lineplot(data=df, x='Freq', y='Pow', hue='Lsr', ci=ci, palette={'yes':'blue', 'no':'gray'}) if ci == 'sem': c = np.nanstd(ps_mx[0], axis=0) / np.sqrt(ps_mx[0].shape[0]) m = np.nanmean(ps_mx[0], axis=0) plt.plot(freq, m, color='gray') plt.fill_between(freq, m-c, m+c, color='gray', alpha=0.2) c = np.nanstd(ps_mx[1], axis=0) / np.sqrt(ps_mx[1].shape[0]) m = np.nanmean(ps_mx[1], axis=0) plt.plot(freq, m, color='blue') plt.fill_between(freq, m-c, m+c, color='blue', alpha=0.2) else: sns.lineplot(data=df, x='Freq', y='Pow', hue='Lsr', ci=ci, palette={'yes': 'blue', 'no': 'gray'}) sns.despine() plt.xlim([freq[0], freq[-1]]) plt.xlabel('Freq. (Hz)') if not pnorm: plt.ylabel('Spectral density ($\mathrm{\mu V^2/Hz}$)') else: plt.ylabel('Norm. power') plt.show() plt.figure() plt.axes([0.1, 0.1, 0.4, 0.8]) if ci == 'sem': ci = 68 sns.barplot(data=df_amp, x='Lsr', y='Amp', palette={'yes':'blue', 'no':'gray'}, ci=ci) #sns.swarmplot(data=df_amp, x='Lsr', y='Amp', hue='Idf', palette='husl') sns.lineplot(data=df_amp, x='Lsr', y='Amp', hue='Idf', palette='husl') plt.ylabel('Amp ($\mathrm{\mu V}$)') sns.despine() plt.show() if len(csv_files) > 0: df.to_csv(csv_files[0], index=False) df.to_csv(csv_files[1], index=False) return ps_mx, freq, df, df_amp def _detect_troughs(signal, thr): lidx = np.where(signal[0:-2] > signal[1:-1])[0] ridx = np.where(signal[1:-1] <= signal[2:])[0] thidx = np.where(signal[1:-1] < thr)[0] sidx = np.intersect1d(lidx, np.intersect1d(ridx, thidx))+1 return sidx def phasic_rem(ppath, name, min_dur=2.5, pplot=False, plaser=False, nfilt=11): """ Detect phasic REM episodes using the algorithm described in <NAME> et al. 2021, which comes from https://www.nature.com/articles/nn.2894 Mizuseki et al. 2011 Parameters ---------- ppath : TYPE DESCRIPTION. name : TYPE DESCRIPTION. min_dur : TYPE, optional DESCRIPTION. The default is 2.5. plaser : bool, optional if True, only use REM states w/o laser to set thresholds for the algorithm Returns ------- phrem : dict dict: start index of each REM episode in hypnogram --> all sequences of phasic REM episodes; note that phREM sequences are represented as indices in the raw EEG """ from scipy.signal import hilbert M = load_stateidx(ppath, name)[0] EEG = so.loadmat(os.path.join(ppath, name, 'EEG.mat'), squeeze_me=True)['EEG'] neeg = EEG.shape[0] seq = get_sequences(np.where(M == 1)[0]) rem_idx = [] for s in seq: rem_idx += list(s) sr = get_snr(ppath, name) nbin = int(np.round(2.5*sr)) sdt = nbin*(1/sr) laser_idx_bs = [] if plaser: # get laser indices as list lsr = load_laser(ppath, name) idxs, idxe = laser_start_end(lsr) idxs = [int(i/nbin) for i in idxs] idxe = [int(i/nbin) for i in idxe] for (si,sj) in zip(idxs, idxe): laser_idx_bs += list(range(si,sj+1)) w1 = 5.0 / (sr/2) w2 = 12.0 / (sr/2) filt = np.ones((nfilt,)) filt = filt / filt.sum() trdiff_list = [] tridx_list = [] rem_eeg = np.array([]) eeg_seq = {} sdiff_seq = {} tridx_seq = {} # Collect for each REM sequence the smoothed inter-trough intervals # and EEG amplitudes as well as the indices of the troughs. seq = [s for s in seq if len(s)*sdt>=min_dur] for s in seq: ta = s[0]*nbin #[0 1 2 3] #[0-2500 2500-5000 5000-7500 7500 9999] tb = (s[-1]+1)*nbin tb = np.min((tb, neeg)) eeg_idx = np.arange(ta, tb) eeg = EEG[eeg_idx] if len(eeg)*(1/sr) <= min_dur: continue eegh = my_bpfilter(eeg, w1, w2) res = hilbert(eegh) instantaneous_phase = np.angle(res) amp = np.abs(res) # trough indices tridx = _detect_troughs(instantaneous_phase, -3) # Alternative that does not seems to work that well: #tridx = np.where(np.diff(np.sign(np.diff(eegh))))[0]+1 # differences between troughs trdiff = np.diff(tridx) # smoothed trough differences sdiff_seq[s[0]] = np.convolve(trdiff, filt, 'same') # dict of trough differences for each REM period tridx_seq[s[0]] = tridx eeg_seq[s[0]] = amp rem_idx = [] for s in seq: rem_idx += list(s) if plaser: rem_idx = np.setdiff1d(rem_idx, laser_idx_bs) seq = get_sequences(rem_idx) seq = [s for s in seq if len(s)*sdt>=min_dur] # collect again smoothed inter-trough differences and amplitude; # but this time concat the data to one long vector each (@trdiff_sm and rem_eeg) for s in seq: ta = s[0]*nbin #tb = s[-1]*(nbin+1) tb = (s[-1]+1) * nbin tb = np.min((tb, neeg)) eeg_idx = np.arange(ta, tb) eeg = EEG[eeg_idx] if len(eeg)*(1/sr) <= min_dur: continue eegh = my_bpfilter(eeg, w1, w2) res = hilbert(eegh) instantaneous_phase = np.angle(res) amp = np.abs(res) # trough indices tridx = _detect_troughs(instantaneous_phase, -3) # alternative version: #tridx = np.where(np.diff(np.sign(np.diff(eegh))))[0]+1 # differences between troughs tridx_list.append(tridx+ta) trdiff = np.diff(tridx) trdiff_list += list(trdiff) rem_eeg = np.concatenate((rem_eeg, amp)) trdiff = np.array(trdiff_list) trdiff_sm = np.convolve(trdiff, filt, 'same') # potential candidates for phasic REM: # the smoothed difference between troughs is less than # the 10th percentile: thr1 = np.percentile(trdiff_sm, 10) # the minimum difference in the candidate phREM is less than # the 5th percentile thr2 = np.percentile(trdiff_sm, 5) # the peak amplitude is larger than the mean of the amplitude # of the REM EEG. thr3 = rem_eeg.mean() phrem = {} for si in tridx_seq: offset = nbin*si tridx = tridx_seq[si] sdiff = sdiff_seq[si] eegh = eeg_seq[si] idx = np.where(sdiff <= thr1)[0] cand = get_sequences(idx) #thr4 = np.mean(eegh) for q in cand: dur = ( (tridx[q[-1]]-tridx[q[0]]+1)/sr ) * 1000 if dur > 900 and np.min(sdiff[q]) < thr2 and np.mean(eegh[tridx[q[0]]:tridx[q[-1]]+1]) > thr3: a = tridx[q[0]] + offset b = tridx[q[-1]] + offset idx = range(a,b+1) if si in phrem: phrem[si].append(idx) else: phrem[si] = [idx] # make plot: if pplot: nsr_seg = 1 # before 1 # overlap of consecutive FFT windows perc_overlap = 0.8 file_sp = os.path.join(ppath, name, 'sp_fine_%s.mat' % name) if (not os.path.isfile(file_sp)): freq, t, SP = scipy.signal.spectrogram(EEG, fs=sr, window='hann', nperseg=int(nsr_seg * sr), noverlap=int(nsr_seg * sr * perc_overlap)) # for nsr_seg=1 and perc_overlap = 0.9, # t = [0.5, 0.6, 0.7 ...] dt = t[1]-t[0] # Note: sp_name.mat includes keys: SP, SP2, freq, dt, t so.savemat(file_sp, {'SP':SP, 'SP2':[], 'dt':dt, 'freq':freq, 't':t}) tmp = so.loadmat(file_sp, squeeze_me=True) SP = tmp['SP'] freq = tmp['freq'] tbs = tmp['t'] dt = tmp['dt'] plt.figure() # plot spectrogram ax = plt.subplot(512) ifreq = np.where(freq <= 20)[0] ax.pcolorfast(tbs, freq[ifreq], SP[ifreq,:], vmin=0, vmax=5000, cmap='jet') plt.ylabel('Freq. (Hz)') # plot hypnogram axes_brs = plt.subplot(511, sharex=ax) cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) tmp = axes_brs.pcolorfast(tbs, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') _despine_axes(axes_brs) plt.xlim([tbs[0], tbs[-1]]) # plot gamma power plt.subplot(513, sharex=ax) gamma = [50, 90] df = freq[1] - freq[0] igamma = np.where((freq >= gamma[0]) & (freq <= gamma[1]))[0] pow_gamma = SP[igamma,:].sum(axis=0) * df plt.plot(tbs, pow_gamma) plt.xlim([tbs[0], tbs[-1]]) plt.ylabel(r'$\gamma$') # plot theta/delta #plt.subplot(514, sharex=ax) # theta = [6, 12] # delta = [0.5, 4.5] # itheta = np.where((freq >= theta[0]) & (freq <= theta[1]))[0] # idelta = np.where((freq >= delta[0]) & (freq <= delta[1]))[0] # pow_theta = SP[itheta,:].sum(axis=0) * df # pow_delta = SP[idelta,:].sum(axis=0) * df # plt.plot(tbs, np.divide(pow_theta, pow_delta)) # plt.xlim([tbs[0], tbs[-1]]) # plot raw EEG; downsample for faster plotting plt.subplot(515, sharex=axes_brs) EEGdn = downsample_vec(EEG, 4) teeg = np.arange(0, len(EEG)) * (1/sr) teeg_dn = np.arange(0, len(EEGdn)) * ((1/sr)*4) for tr in tridx_list: idx = range(tr[0], tr[-1]+1) idx_dn = [int(i/4) for i in idx] eeg = EEGdn[idx_dn] plt.plot(teeg_dn[idx_dn], eeg, 'k') plt.xlim([0, teeg[-1]]) for si in phrem: ta = si*nbin idx_list = phrem[si] eegh = eeg_seq[si] sdiff = sdiff_seq[si] # plot amplitude plt.plot(teeg[ta:ta+len(eegh)], eegh, 'g') # plot threshold for amplitude plt.plot([teeg[ta], teeg[ta+len(eegh)-1]], [thr3, thr3], 'r--') for idx in idx_list: a = idx[0] b = idx[-1] a = int(a/4) b = int(b/4) plt.plot(teeg_dn[range(a,b+1)], EEGdn[a:b+1], 'r') plt.ylabel('EEG') # plot smoothed inter-through intervals plt.subplot(514, sharex=ax) for si in phrem: ta = si*nbin tridx = tridx_seq[si] + ta sdiff = sdiff_seq[si] plt.plot(teeg[tridx[:-1]], sdiff, 'k') plt.plot(teeg[[tridx[0], tridx[-1]]], [thr2, thr2], 'r') plt.plot(teeg[[tridx[0], tridx[-1]]], [thr1, thr1], 'b') plt.ylabel('ITIs') return phrem # PLOTTING FUNCTIONALITY ##################################################### def plt_lineplot(df, subject, xcol, ycol, ax=-1, color='blue', xlabel='', ylabel='', lw=1): subjects = list(df[subject].unique()) data = [] for s in subjects: x = df[df[subject]==s][xcol] y = df[df[subject]==s][ycol] data.append(list(y)) data = np.array(data) if ax == -1: plt.figure() ax = plt.subplot(111) m = np.nanmean(data, axis=0) s = np.nanstd(data, axis=0)/np.sqrt(len(subjects)) ax.plot(x, m, color=color, lw=lw) ax.fill_between(x, m+s, m-s, color=color, alpha=0.2) if len(ylabel) > 0: plt.ylabel(ylabel) else: plt.ylabel(str(ycol)) if len(xlabel) > 0: plt.xlabel(xlabel) else: plt.xlabel(str(xcol)) def plt_lineplot_byhue(df, subject, xcol, ycol, hue, ax=-1, color='blue', xlabel='', ylabel='', lw=1): subjects = list(df[subject].unique()) data = [] for s in subjects: x = df[df[subject]==s][xcol] y = df[df[subject]==s][ycol] data.append(list(y)) data = np.array(data) if ax == -1: plt.figure() ax = plt.subplot(111) m = np.nanmean(data, axis=0) s = np.nanstd(data, axis=0)/np.sqrt(len(subjects)) ax.plot(x, m, color=color, lw=lw) ax.fill_between(x, m+s, m-s, color=color, alpha=0.2) plt.ylabel(ylabel) plt.xlabel(xlabel) ### TRANSITION ANALYSIS ######################################################### def transition_analysis(ppath, rec_file, pre, laser_tend, tdown, large_bin, backup='', stats_mode=0, after_laser=0, tstart=0, tend=-1, bootstrap_mode=0, paired_stats=True, ma_thr=0, ma_rem_exception=True, bsl_shading=False, overlap_mode=False, fig_file='', fontsize=12, nboot=1000, seed=-1): """ Transition analysis Example call: sleepy.transition_analysis(ppath, rec_list, 120, 120, 20, 60, bootstrap_mode=0) :param ppath: base recording folder :param rec_file: file OR list of recordings :param pre: time before laser onset [s] :param laser_tend: duration of laser stimulation :param tdown: time bin for brainstate (>= 2.5 s) :param large_bin: >= tdown; average large_bin/tdown consecutive transition probabilities :param backup: possible backup base folder, e.g. on an external hard drive :param stats_mode: int; The transition probability during the baseline period is calculated either by averaging over individual transition probabilities during laser and baseline period (stats_mode == 1); or by calculating a markov matrix on its own (at large_bin resolution) for laser and baseline period (state_mode == 0) :param after_laser: float, exclude $after_laser seconds after laser offset for baseline calculation :param tstart only consider laser trials starting after tstart seconds :param tend only consider laser trials starting before tend seconds :param bootstrap_mode: default=0 bootstrap_mode == 0: Take inter-mouse variance and inter-trial variance (of each mouse) into account. That is, bootstrapping re-models the variance expected when re-doing the same experimental design (same mouse number and total trial number). To account for potentially different number of trials per mouse, resample the data during each iteration the following way: Assume that there are n laser trials from m mice; randomly select (with replacment) ntrial mice; then select from each mouse randomly one trial. bootstrap_mode == 1: Only take inter-trial variance (of each mouse) into account; That is, bootstrapping models the variance expected when redoing the experiment with exactly the same mice. :param paired_stats, boolean; if True, perform paired test between baseline and laser interval. :param ma_thr: if > 0, set wake periods < ma_thr to NREM. :param ma_rem_exception: if True, leave a MA after REM as wake. :param bsl_shading: if True, plot error shading for red baseline :param overlap_mode, if True alo include the last fine bin within a large bin for the transition probability calculation. Say 1 large bin contains 3 time bins: |b1 b2 b3 | b4 b5 b6 Then if overlap_mode == False, the transition probability for the first large bin will only include pairs of time bin b1 to b2, b2 to b3, but not b3 to b4. If overlap_mode == True, then transition probability for the first bin will include also the 3rd fine bin, so b1 to b2, b2 to b3, and b3 to b4. :param fig_file, if file name specified, save figure :param fontsize, if specified, set fontsize to given value :param nboot, number of bootstrap iterations :param seed, if >-1 re-set the random generator using the given seed :return: dict, transitions id --> 3 x 3 x time bins np.array """ if seed > -1: rand = np.random.RandomState(seed) print('set seed') else: import numpy.random as rand if type(rec_file) == str: E = load_recordings(ppath, rec_file)[1] else: E = rec_file post = pre + laser_tend # set path for each recording: either ppath or backup rec_paths = {} mouse_ids = {} for m in E: idf = re.split('_', m)[0] if len(backup) == 0: rec_paths[m] = ppath else: if os.path.isdir(os.path.join(ppath, m)): rec_paths[m] = ppath else: rec_paths[m] = backup if not idf in mouse_ids: mouse_ids[idf] = 1 mouse_ids = list(mouse_ids.keys()) # Dict: Mouse_id --> all trials of this mouse MouseMx = {idf:[] for idf in mouse_ids} for m in E: trials = _whole_mx(rec_paths[m], m, pre, post, tdown, tstart=tstart, tend=tend, ma_thr=ma_thr, ma_rem_exception=True) idf = re.split('_', m)[0] MouseMx[idf] += trials ntdown = len(trials[0]) for idf in mouse_ids: MouseMx[idf] = np.array(MouseMx[idf]) # dict mouse_id --> number of trials num_trials = {k:len(MouseMx[k]) for k in MouseMx} # number of all trials ntrials = sum(list(num_trials.values())) # number of mice nmice = len(mouse_ids) # Markov Computation & Bootstrap # time axis: t = np.linspace(-pre, post-large_bin, int((pre+post)/large_bin)) # to make sure that the bar for block 0 to $large_bin is centered around $large_bin/2 # such that the bars left end touches 0 s t += large_bin/2.0 dt = t[1]-t[0] if tdown == large_bin: # the first bin that includes 0s (i.e. that touches the laser), # should be centered around 0s t += dt/2 tfine = np.linspace(-pre, post-tdown, int((pre+post)/tdown)) ilsr_fine = np.where((tfine>=0) & (tfine<laser_tend))[0] tmp = np.where((tfine >= 0) & (tfine < (laser_tend + after_laser)))[0] ibase_fine = np.setdiff1d(np.arange(0, len(tfine)), tmp) ### indices during and outside laser stimulation # indices of large bins during laser ilsr = np.where((t>=0) & (t<laser_tend))[0] tmp = np.where((t>=0) & (t<(laser_tend+after_laser)))[0] # indices of large bins outsize laser (and $after_laser) ibase = np.setdiff1d(np.arange(0, len(t)), tmp) # number of large time bins nseq = len(t) # states M = dict() Base = dict() Laser = dict() states = {1:'R', 2:'W', 3:'N'} for si in range(1,4): for sj in range(1,4): id = states[si] + states[sj] M[id] = np.zeros((nboot, nseq)) Base[id] = np.zeros((nboot,)) Laser[id] = np.zeros((nboot,)) # that's the matrix used for computation in each bootstrap iteration if bootstrap_mode == 1: # each mouse contributes the same number of trials mouse_trials = int(np.mean(list(num_trials.values()))) MXsel = np.zeros((mouse_trials*len(mouse_ids), ntdown)) else: MXsel = np.zeros((ntrials, ntdown)) for b in range(nboot): if bootstrap_mode == 1: i = 0 for idf in mouse_ids: num = num_trials[idf] itrials = rand.randint(0, num, (mouse_trials,)) sel = MouseMx[idf][itrials,:] MXsel[i*mouse_trials:(i+1)*mouse_trials,:] = sel i += 1 else: irand_mice = rand.randint(0, nmice, ntrials) i=0 for j in irand_mice: idf = mouse_ids[j] itrial = rand.randint(0, num_trials[idf]) MXsel[i,:] = MouseMx[idf][itrial,:] i+=1 # calculate average laser and baseline transition probability to have two values to compare # for statistics if stats_mode == 0: baseline = complete_transition_matrix(MXsel, ibase_fine) lsr = complete_transition_matrix(MXsel, ilsr_fine) # caluclate actual transition probilities if not int(large_bin/tdown) == 1: MXb = build_markov_matrix_blocks(MXsel, tdown, large_bin, overlap_mode=overlap_mode) else: MXb = build_markov_matrix_seq(MXsel) for si in states: for sj in states: id = states[si] + states[sj] M[id][b,:] = np.squeeze(MXb[si-1, sj-1,:]) if stats_mode == 0: Base[id][b] = baseline[si-1, sj-1] Laser[id][b] = lsr[si-1, sj-1] if stats_mode == 1: for si in states: for sj in states: id = states[si] + states[sj] Base[id] = np.mean(M[id][:,ibase], axis=1) Laser[id] = np.mean(M[id][:, ilsr], axis=1) # plotting # M_us stores the non-sorted transition probability matrix M M_us = {} for si in states.keys(): for sj in states.keys(): id = states[si] + states[sj] M_us[id] = M[id].copy() alpha = 0.05 plt.ion() set_fontsize(fontsize) plt.figure(figsize=(8,6)) for si in states.keys(): for sj in states.keys(): id = states[si] + states[sj] pi = (si - 1) * 3 + sj ax = plt.subplot(int('33'+str(pi))) ax.add_patch(patches.Rectangle((0, 0), laser_tend, 1, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) plt.xlim([t[0]-dt, t[-1]]) box_off(ax) P = M[id] for i in range(P.shape[1]): P[:,i].sort() Bounds = np.zeros((2, P.shape[1])) Bounds[0,:] = -1.0 * P[int(nboot*(alpha/2)),:] + np.nanmean(P, axis=0) Bounds[1,:] = P[-int(nboot * (alpha / 2)),:] - np.nanmean(P, axis=0) baseline = Base[id] baseline.sort() Bounds_baseline = np.zeros((2,)) basel_mean = np.nanmean(baseline) Bounds_baseline[0] = -baseline[int(nboot*(alpha / 2))] + basel_mean Bounds_baseline[1] = baseline[-int(nboot*(alpha / 2))] - basel_mean aa = (basel_mean-Bounds_baseline[0]) * np.ones((nseq,)) bb = (basel_mean+Bounds_baseline[1]) * np.ones((nseq,)) ax.bar(t, np.nanmean(P, axis=0), yerr=Bounds, width=large_bin-large_bin*0.05, color='gray') if bsl_shading: plt.fill_between(t, aa, bb, alpha=0.5, lw=0, color='red', zorder=2) else: plt.plot(t, basel_mean * np.ones((nseq,)), 'r') # set title if si == 1 and sj == 1: plt.ylabel('REM') plt.title('REM', fontsize=fontsize) if si == 1 and sj == 2: plt.title('Wake', fontsize=fontsize) if si == 1 and sj == 3: plt.title('NREM', fontsize=fontsize) if si == 2 and sj == 1: plt.ylabel('Wake') if si == 3 and sj == 1: plt.ylabel('NREM') if si == 3 and sj == 1: plt.ylim([0, 0.5]) ax.set_xticks([-pre, 0, laser_tend, laser_tend+pre]) if si != 3: ax.set_xticklabels([]) if si==3: plt.xlabel('Time (s)') # Statistics summary Mod = np.zeros((3,3)) Sig = np.zeros((3,3)) for si in states: for sj in states: id = states[si] + states[sj] # probabilities during laser stimulation laser = Laser[id] # probabilities outside laser stimulation basel = Base[id] Mod[si-1, sj-1] = np.nanmean(laser) / np.nanmean(basel) if paired_stats: d = laser - basel else: irand = random.sample(range(laser.shape[0]), laser.shape[0]) d = laser[irand] - basel # "2 *" to make the test two sided. The different d can be either >0 or <0; # see also http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1127.pdf if len(d) == np.where(d==0)[0].shape[0]: p = np.nan (cil, cih) = (np.nan, np.nan) md = np.nanmean(d) else: p = 2 * np.min([len(np.where(d > 0)[0]) / (1.0 * len(d)), len(np.where(d <= 0)[0]) / (1.0 * len(d))]) (cil, cih) = np.percentile(d, (2.5, 97.5)) md = d.mean() s = '=' if Mod[si-1, sj-1] > 1: val = p if val == 1: s = '>' val = 1 - 1.0 / nboot if val == 0: s = '<' val = 1.0 / nboot Sig[si-1, sj-1] = val # division by 2.0 to make the test two-sided! if val < alpha:#/2.0: print('%s -> %s: Trans. prob. is INCREASED by a factor of %.4f; P %s %f, MD = %f, CI(%f, %f)' % (states[si], states[sj], Mod[si-1, sj-1], s, val, md, cil, cih)) else: print('%s -> %s: Trans. prob. is increased by a factor of %.4f; P %s %f, MD = %f, CI(%f, %f)' % (states[si], states[sj], Mod[si-1, sj-1], s, val, md, cil, cih)) else: val = p if val == 1: s = '>' val = 1 - 1.0 / nboot if val == 0: s = '<' val = 1.0 / nboot Sig[si-1, sj-1] = val # division by 2.0 to make the test two-sided! if val < alpha:#/2.0: print('%s -> %s: Trans. prob. is DECREASED by a factor of %.4f; P %s %f, MD = %f, CI(%f, %f)' % (states[si], states[sj], Mod[si - 1, sj - 1], s, val, md, cil, cih)) else: print('%s -> %s: Trans. prob. is decreased by a factor of %.4f; P %s %f, MD = %f, CI(%f, %F)' % (states[si], states[sj], Mod[si - 1, sj - 1], s, val, md, cil, cih)) ############################################################################################################ if len(fig_file) > 0: save_figure(fig_file) return M_us, Laser, Base def build_markov_matrix_blocks(MX, tdown, large_bin, overlap_mode=False): """ pMX = build_markov_matrix_blocks(MX, down, large_bin) build sequence of Markov matrices; build one Matrix for each large bin (block) of duration $large_bin by using smaller bins of duration $down; i.e. $down <= $large_bin :param MX, np.array, with time bins on fine (tdown) time scale :param tdown: fine time scale :param large_bin: coarse time scale :param overlap_mode: if True, include the last fine time, bordering the next large bin :return: pMX, 3x3xtime np.array, series of markov matrices; time is the third dimension """ nbins = MX.shape[1] # number of time bins on fine time scale ndown = int(large_bin/tdown) # number of fine bins in large bin nstep = int(nbins/ndown) # number of large time bins nrows = MX.shape[0] pMX = np.zeros((3, 3, nstep)) for s in range(0, nstep): if not overlap_mode: mx = MX[:, s*ndown:(s+1)*ndown] else: mx = MX[:, s*ndown:((s+1)*ndown+1)] pmx = np.zeros((3,3)) c = np.zeros((3,)) for i in range(0, nrows): seq = mx[i,:] m = mx.shape[1] for j in range(0, m-1): pmx[int(seq[j])-1, int(seq[j+1])-1] += 1 c[int(seq[j])-1] += 1 for i in range(3): pmx[i,:] = pmx[i,:] / c[i] pMX[:,:, s] = pmx return pMX def transition_markov_strength(ppath, rec_file, laser_tend, tdown, dur, bootstrap_mode=0, backup='', pstationary=False, stats_lastpoint=True, paired_stats=True, nboot=1000, ma_thr=0): """ Cumulative transition probabilities: How likely is is that a specific brain state transitions happens within a given time interval? The function compares the cumulative probabilities during baseline (including time points from -$pre till laser onset) with those during the laser stimulation interval (of duratin $laser_tend) The brainstate is downsampled to time bins of duration $tdown. See also function &quantify_transition() NOTE: The CDF for a transition from si -> sj within time interval X is defined as P(si -> sj, t <= X) I define the CDF for the discrete timepoint tdown as P(si -> sj, t <= tdown). and count whether a brain state change happened between bin [-todown, 0[ and bin [0, tdown]. In other words the brain state right before the laser serves as si P(si -> sj, t <= X) Example call: sleepy.transition_markov_strength(ppath, recs, 120, 120, 20, np.arange(0, 121, 20)) :param ppath: base folder with sleep recordings :param rec_file: file OR list of recordings :param pre: time before laser onset [s] :param laser_tend: duration of laser stimulation :param tdown: downsample brainstate sequence to $tdown time bins; same as parameter tdown in sleepy.transition_analysis() :param dur: list/vector with cumulative (=increasing) time intervals for each the cum. probabilities are computed :param bootstrap_mode: bootstrap_mode == 0: Take inter-mouse variance and inter-trial variance (of each mouse) into account. That is, bootstrapping re-models the variance expected when re-doing the same experimental design (same mouse number and total trial number). To account for potentially different number of trials per mouse, resample the data during each iteration the following way: Assume that there are n laser trials from m mice; randomly select (with replacment) ntrial mice; then select from each mouse randomly one trial. bootstrap_mode == 1: Only take inter-trial variance (of each mouse) into account; That is, bootstrapping models the variance expected when redoing the experiment with exactly the same mice. If unsure, use bootstrap_mode = 0 :param backup: if a recording is not located in $ppath, the function looks for it in folder $backup :param pstationary: if True, we assume that the laser induced changes in transition probabilities are stationary; i.e. they are constant acorss the laser stimulation interval. :param stats_lastpoint: if True, test whether the laser time point during laser (at laser_tend) is significantly different from the corresponding time point in the baseline interval; if False, compare the averages of the cumulative distributions to each other. :param paired_stats: if True, treat baseline interval and following laser interval as paired statistics. If False, treat baseline and laser interval as independent. :param nboot: number of bootstrap iterations; >1000 recommended; but for a quick check just set to ~100 :param ma_thr: if > 0, set wake periods < $ma_thr to NREM. :return: """ alpha = 0.05 fontsize = 12 # Note: We increase the preceding baseline period by one bin, to account for the # fact that for the laser period, we also use one bin right before the laser as starting point. pre = laser_tend + tdown if type(rec_file) == str: E = load_recordings(ppath, rec_file)[1] else: E = rec_file post = pre + laser_tend # set path for each recording: either ppath or backup rec_paths = {} mouse_ids = {} for m in E: idf = re.split('_', m)[0] if len(backup) == 0: rec_paths[m] = ppath else: if os.path.isdir(os.path.join(ppath, m)): rec_paths[m] = ppath else: rec_paths[m] = backup if not idf in mouse_ids: mouse_ids[idf] = 1 mouse_ids = list(mouse_ids.keys()) # Dict: Mouse_id --> all trials of this mouse MouseMx = {idf:[] for idf in mouse_ids} for m in E: trials = _whole_mx(rec_paths[m], m, pre, post, tdown, tstart=0, tend=-1, ma_thr=ma_thr) idf = re.split('_', m)[0] MouseMx[idf] += trials ntdown = len(trials[0]) for idf in mouse_ids: MouseMx[idf] = np.array(MouseMx[idf]) # dict mouse_id --> number of trials num_trials = {k:len(MouseMx[k]) for k in MouseMx} # number of all trials ntrials = sum(list(num_trials.values())) # number of mice nmice = len(mouse_ids) # states cum_base = dict() cum_laser = dict() bounds_bsl = dict() bounds_lsr = dict() states = {1:'R', 2:'W', 3:'N'} for si in range(1,4): for sj in range(1,4): id = states[si] + states[sj] cum_base[id] = np.zeros((nboot,len(dur))) cum_laser[id] = np.zeros((nboot,len(dur))) bounds_bsl[id] = np.zeros((2, len(dur))) bounds_lsr[id] = np.zeros((2,len(dur))) # that's the matrix used for computation in each bootstrap iteration if bootstrap_mode == 1: # each mouse contributes the same number of trials mouse_trials = int(np.mean(list(num_trials.values()))) MXsel = np.zeros((mouse_trials*len(mouse_ids), ntdown), dtype='int') else: MXsel = np.zeros((ntrials, ntdown), dtype='int') for b in range(nboot): if (b % 100) == 0: print('done with iteration %d' % b) if bootstrap_mode == 1: i = 0 for idf in mouse_ids: num = num_trials[idf] itrials = rand.randint(0, num, (mouse_trials,)) sel = MouseMx[idf][itrials,:] MXsel[i*mouse_trials:(i+1)*mouse_trials,:] = sel i += 1 else: irand_mice = rand.randint(0, nmice, ntrials) i=0 for j in irand_mice: idf = mouse_ids[j] itrial = rand.randint(0, num_trials[idf]) MXsel[i,:] = MouseMx[idf][itrial,:] i+=1 base_boot = np.zeros((3,3, len(dur))) lsr_boot = np.zeros((3,3, len(dur))) k=0 for d in dur: base_boot[:,:,k] = quantify_transition(MXsel.astype('int'), pre, laser_tend, tdown, False, d, pstationary=pstationary) lsr_boot[:,:,k] = quantify_transition(MXsel.astype('int'), pre, laser_tend, tdown, True, d, pstationary=pstationary) k+=1 for si in states: for sj in states: id = states[si] + states[sj] cum_base[id][b,:] = base_boot[si-1, sj-1,:] cum_laser[id][b,:] = lsr_boot[si-1, sj-1,:] # bounds_bsl[id][0,:] is the lower bounds for si in states: for sj in states: id = states[si] + states[sj] bounds_bsl[id][0,:] = np.sort(cum_base[id], axis=0)[int(nboot*(alpha / 2)),:] bounds_bsl[id][1,:] = np.sort(cum_base[id], axis=0)[-int(nboot * (alpha / 2)), :] bounds_lsr[id][0,:] = np.sort(cum_laser[id], axis=0)[int(nboot*(alpha / 2)),:] bounds_lsr[id][1,:] = np.sort(cum_laser[id], axis=0)[-int(nboot * (alpha / 2)), :] plt.ion() plt.figure(figsize=(8,6)) for si in states: for sj in states: id = states[si] + states[sj] pi = (si - 1) * 3 + sj ax = plt.subplot(int('33'+str(pi))) plt.plot(dur, np.nanmean(cum_laser[id], axis=0), color='blue') plt.plot(dur, np.nanmean(cum_base[id], axis=0), color='gray') plt.fill_between(dur, bounds_bsl[id][0,:], bounds_bsl[id][1,:], alpha=0.4, zorder=3, color='gray') plt.fill_between(dur, bounds_lsr[id][0,:], bounds_lsr[id][1,:], alpha=0.4, zorder=3, color='blue') plt.ylim([0, 1]) plt.xlim([dur[0], dur[-1]]) box_off(ax) # set title if si == 1 and sj == 1: plt.ylabel('REM') plt.title('REM', fontsize=fontsize) if si == 1 and sj == 2: plt.title('Wake', fontsize=fontsize) if si == 1 and sj == 3: plt.title('NREM', fontsize=fontsize) if si == 2 and sj == 1: plt.ylabel('Wake') if si == 3 and sj == 1: plt.ylabel('NREM') if si != 3: ax.set_xticklabels([]) if sj != 1: ax.set_yticklabels([]) if si==3: plt.xlabel('Time (s)') # stats P = {} Mod = {} data = [] S = {} irand = random.sample(range(nboot), nboot) for si in states: for sj in states: id_trans = states[si] + states[sj] # old version #d = cum_base[id_trans].mean(axis=1) - cum_laser[id_trans].mean(axis=1) #d = d.mean(axis=1) if stats_lastpoint: # here, we test whether the probability to observe transition id_trans during a time interval of duration # $laster_tend was significantly changed by laser. a = cum_base[id_trans][:,-1] b = cum_laser[id_trans][:,-1] else: #a = np.nanmean(cum_base[id_trans], axis=1) #b = np.nanmean(cum_laser[id_trans], axis=1) #NEW: a = np.nansum(cum_base[id_trans], axis=1) * tdown b = np.nansum(cum_laser[id_trans], axis=1) * tdown if not paired_stats: d = b-a[irand] else: d = b-a p = 2 * np.min([len(np.where(d > 0)[0]) / (1.0 * len(d)), len(np.where(d <= 0)[0]) / (1.0 * len(d))]) #NEW: (cil, cih) = np.percentile(d, (2.5, 97.5)) md = d.mean() # if np.mean(d) >= 0: # # now we want all values be larger than 0 # p = len(np.where(d>0)[0]) / (1.0*nboot) # sig = 1 - p # if sig == 0: # sig = 1.0/nboot # else: # p = len(np.where(d<0)[0]) / (1.0*nboot) # sig = 1 - p # if sig == 0: # sig = 1.0/nboot if p == 1 or p == 0: p = 1.0 / nboot P[id_trans] = p if p < alpha: S[id_trans] = 'yes' else: S[id_trans] = 'no' Mod[id_trans] = np.nanmean(b) / np.nanmean(a) print('Transition %s was changed by a factor of %f; MD = %f CI(%f, %f)' % (id_trans, Mod[id_trans], md, cil, cih)) data.append([id_trans, P[id_trans], Mod[id_trans], S[id_trans], md, cil, cih]) df = pd.DataFrame(data=data, columns=['trans', 'p-value', 'change', 'sig', 'md', 'cil', 'cih']) print(df) return df def quantify_transition(MX, pre, laser_tend, tdown, plaser, win, pstationary=False): """ Calculate probability to observe a transition for a given pair of brain states with time interval $win. P( si -> sj, t <= $win ) :param MX: Matrix with all laser stimulation trials :param pre: Duration of baseline interval preceding laser onset :param laser_tend: duration of laser stimulation interval :param tdown: duration of downsampled brain state bins :param plaser: if True, compute cum. probabilities for laser interval; otherwise for baseline :param win: time interval [s] for which we test whether there was a given brain state transition :param pstationary: boolean; if True, we assume that the transition probabilities are constant during laser stimulation :return: pmx, np.array(3 x 3) pmx[i,j] holds the cumulative probability of a transition from state i to j """ ipre = int(np.round(pre / tdown)) ipost = int(np.round((pre+laser_tend) / tdown)) #HERE nwin = int(np.round(win / tdown)) nrows = MX.shape[0] pmx = np.zeros((3, 3)) c = np.zeros((3,)) idx = [0] if plaser: for i in range(nrows): # I'm starting with one bin before the laser! seq = MX[i,ipre-1:ipost] if pstationary: idx = range(0, len(seq)-nwin) for j in idx: p = seq[j:j+nwin+1] si = p[0] c[si-1] += 1 res = np.where(p != si)[0] if len(res) == 0: pmx[si-1, si-1] += 1 else: sj = p[res[0]] pmx[si-1, sj-1] += 1 # no laser else: for i in range(nrows): seq = MX[i,0:ipre+1] if pstationary: idx = range(0, len(seq)-nwin) for j in idx: p = seq[j:j+nwin+1] si = p[0] c[si-1] += 1 res = np.where(p != si)[0] if len(res) == 0: pmx[si-1, si-1] += 1 else: sj = p[res[0]] pmx[si-1, sj-1] += 1 #for i in range(nrows): # seq = MX[i,ipost:] # for j in range(0, len(seq)-nwin): # p = seq[j:j+nwin+1] # si = p[0] # c[si-1] += 1 # res = np.where(p != si)[0] # if len(res) == 0: # pmx[si-1, si-1] += 1 # else: # sj = p[res[0]] # pmx[si-1, sj-1] += 1 for i in range(0, 3): pmx[i,:] = pmx[i,:] / c[i] return pmx def build_markov_matrix_seq(MX): """ build Markov matrix from hypnogram sequences. Parameters ---------- MX : 2D np.array rows are trials (e.g. laser stimulation trials), columns refer to time bins Returns ------- pMX : 3 x 3 np.array pMX[i,j] is the probability to transition from state i to j """ nseq = MX.shape[1] nrows = MX.shape[0] MX[np.where(MX==4)] = 3 pMX = np.zeros((3,3,nseq)) C = np.zeros((3,nseq)) for i in range (0, nrows): seq = MX[i,:] for j in range (0, nseq-1): pMX[int(seq[j])-1,int(seq[j+1])-1,j] += 1 C[int(seq[j]-1),j] +=1 for t in range(0, nseq): for s in range(3): pMX[s,:,t] = pMX[s,:,t] / C[s,t] return pMX def complete_transition_matrix(MX, idx): idx_list = get_sequences(idx) nrows = MX.shape[0] pmx = np.zeros((3, 3)) c = np.zeros((3,)) #cwr = 0 for idx in idx_list: for i in range(0, nrows): seq = MX[i, idx] for j in range(0, len(seq)-1): pmx[int(seq[j])-1, int(seq[j+1])-1] += 1 c[int(seq[j])-1] += 1 #if seq[j] == 2 and seq[j+1] == 1: # cwr += 1 #print ('We found %d W2R transitions' % cwr) for i in range(3): pmx[i, :] = pmx[i, :] / c[i] return pmx def _whole_mx(ppath, name, pre, post, tdown, ptie_break=True, tstart=0, tend=-1, ma_thr=0, ma_rem_exception=True): """ get all laser trials (brain state sequences) discretized in $tdown second bins Note: the first ipre = int(pre/tdown) columns are before the laser. The first bin with laser corresponds to column ipre (starting counting with 0). :param tdown: time bin for downsampled brain state annotation; ideally a multiple of the time bin for the originial annotation as saved in remidx_*.txt (typically 2.5s) @Return: List of all laser stimulation trials of recording ppath/name """ SR = get_snr(ppath, name) # Number of EEG bins / brainstate bin NBIN = np.round(2.5*SR) # Precise time bin duration of each brain state: dt = NBIN * 1.0/SR # ds - number how often dt fits into coarse brain state bin tdown: ds = int(np.round(tdown/dt)) NBIN *= ds ipre = int(np.round(pre/tdown)) ipost = int(np.round(post/tdown)) # load brain state M = load_stateidx(ppath, name)[0] # NEED CORRECTION!! - corrected on 8/9/21 if ma_thr > 0: wake_seq = get_sequences(np.where(M==2)[0]) for seq in wake_seq: if np.round(len(seq)*dt) <= ma_thr: if ma_rem_exception: if (seq[0]>1) and (M[seq[0] - 1] != 1): M[seq] = 3 else: M[seq] = 3 if tend == -1: iend = M.shape[0] - 1 istart = np.round(tstart/dt) # downsample brain states M = downsample_states(M, ds, ptie_break) len_rec = len(M) (idxs, idxe) = laser_start_end(load_laser(ppath, name)) idxs = [s for s in idxs if s >= istart*(NBIN/ds) and s<= iend*(NBIN/ds)] idxs = [int(i/NBIN) for i in idxs] trials = [] for s in idxs: # i.e. element ii+1 is the first overlapping with laser if s>=ipre-1 and s+ipost < len_rec: trials.append(M[s-ipre:s+ipost]) return trials def downsample_states(M, nbin, ptie_break=True): """ downsample brain state sequency by replacing $nbin consecutive bins by the most frequent state ptie_break - tie break rule: if 1, wake wins over NREM which wins over REM (Wake>NREM>REM) in case of tie """ n = int(np.floor(len(M))/(1.0*nbin)) Mds = np.zeros((n,)) for i in range(n): m = M[i*nbin:(i+1)*nbin] S = np.array([len(np.where(m==s)[0]) for s in [1,2,3]]) if not ptie_break: Mds[i] = np.argmax(S)+1 else: tmp = S[[1,2,0]] ii = np.argmax(tmp) ii = [1,2,0][ii] Mds[i] = ii+1 return Mds ### END Transition Analysis #################################### def infraslow_rhythm(ppath, recordings, ma_thr=20, min_dur = 180, band=[10,15], state=3, win=64, pplot=True, pflipx=True, pnorm='mean', spec_norm=True, spec_filt=False, box=[1,4], tstart=0, tend=-1, peeg2=False): """ calculate powerspectrum of EEG spectrogram to identify oscillations in sleep activity within different frequency bands; only contineous NREM periods are considered for @PARAMETERS: ppath - base folder of recordings recordings - single recording name or list of recordings @OPTIONAL: ma_thr - microarousal threshold; wake periods <= $min_dur are transferred to NREM min_dur - minimal duration [s] of a NREM period band - frequency band used for calculation win - window (number of indices) for FFT calculation pplot - if True, plot window showing result pflipx - if True, plot wavelength instead of frequency on x-axis pnorm - string, if pnorm == 'mean', normalize spectrum by the mean power, if pnorm == 'area', normalize by area under spectrogram if pnorm == 'no', perform no normalization @RETURN: SpecMx, f - ndarray [mice x frequencies], vector [frequencies] """ # for downwards compatability if type(pnorm) == bool: pnorm = 'mean' #import scipy.linalg as LA print('Greetings from infraslow_rhythm') min_dur = np.max([win*2.5, min_dur]) if type(recordings) != list: recordings = [recordings] Spec = {} for rec in recordings: idf = re.split('_', rec)[0] Spec[idf] = [] mice = list(Spec.keys()) for rec in recordings: idf = re.split('_', rec)[0] # sampling rate and time bin for spectrogram SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) dt = NBIN * 1/SR dt = 2.5 istart = int(np.round(tstart/dt)) if tend > -1: iend = int(np.round(tend/dt)) # load sleep state M = load_stateidx(ppath, rec)[0] if tend == -1: iend = M.shape[0] M = M[istart:iend] # load frequency band P = so.loadmat(os.path.join(ppath, rec, 'sp_' + rec + '.mat')) if not peeg2: SP = np.squeeze(P['SP'])[:,istart:iend] else: SP = np.squeeze(P['SP2'])[:, istart:iend] freq = np.squeeze(P['freq']) ifreq = np.where((freq>=band[0]) & (freq<=band[1]))[0] mmin = np.min((SP.shape[1], len(M))) M=M[0:mmin] if spec_filt: filt = np.ones(box) filt = np.divide(filt, filt.sum()) SP = scipy.signal.convolve2d(SP, filt, boundary='symm', mode='same') if spec_norm: sp_mean = SP.mean(axis=1) SP = np.divide(SP, np.tile(sp_mean, (SP.shape[1], 1)).T) pow_band = SP[ifreq,:].mean(axis=0) else: pow_band = SP[ifreq,:].sum(axis=0) * (freq[2]-freq[1]) nidx = np.where(M==3)[0] pow_band = pow_band / np.mean(pow_band[nidx]) seq = get_sequences(np.where(M==state)[0], int(np.round(ma_thr/dt))+1) seq = [list(range(s[0], s[-1]+1)) for s in seq] seq = [s for s in seq if len(s)*dt >= min_dur] for s in seq: y,f = power_spectrum(pow_band[s], win, dt) Spec[idf].append(y) # Transform %Spec to ndarray SpecMx = np.zeros((len(Spec), len(f))) i=0 data = [] for idf in Spec: SpecMx[i,:] = np.array(Spec[idf]).mean(axis=0) if len(pnorm) > 0: if pnorm == 'mean': SpecMx[i,:] = SpecMx[i,:]/SpecMx[i,:].mean() elif pnorm == 'area': SpecMx[i,:] = SpecMx[i,:]/(SpecMx[i,:].sum()*(f[1]-f[0])) else: # no normalization pass data += zip([idf]*len(f), SpecMx[i,:], f) i += 1 if pplot: plt.figure() ax = plt.axes([0.1, 0.1, 0.8, 0.8]) if pflipx: x = f[1:] x = 1.0/f[1:] y = SpecMx[:,1:] if len(mice) <= 1: ax.plot(x, y.mean(axis=0), color='gray', lw=2) else: ax.errorbar(x, y.mean(axis=0), yerr=y.std(axis=0), color='gray', fmt='-o') else: y = SpecMx if len(mice) <= 1: ax.plot(f, y.mean(axis=0), color='gray', lw=2) else: ax.errorbar(f, y.mean(axis=0), yerr=y.std(axis=0), color='gray', fmt='-o') box_off(ax) if pflipx: plt.xlabel('Wavelength (s)') else: plt.xlabel('Frequency (Hz)') plt.ylabel('Power (uV^2)') plt.show() df = pd.DataFrame(data=data, columns=['mouse', 'pow', 'freq']) return SpecMx, f, df, Spec def ma_rhythm(ppath, recordings, ma_thr=20.0, min_dur = 160, band=[10,15], state=3, win=64, pplot=True, pflipx=True, pnorm=False): """ calculate powerspectrum of EEG spectrogram to identify oscillations in sleep activity within different frequency bands; only contineous NREM periods are considered for @PARAMETERS: ppath - base folder of recordings recordings - single recording name or list of recordings @OPTIONAL: ma_thr - microarousal threshold; wake periods <= $min_dur are transferred to NREM min_dur - minimal duration [s] of a NREM period band - frequency band used for calculation win - window (number of indices) for FFT calculation pplot - if True, plot window showing result pflipx - if True, plot wavelength instead of frequency on x-axis pnorm - if True, normalize spectrum (for each mouse) by its total power @RETURN: SpecMx, f - ndarray [mice x frequencies], vector [frequencies] """ import scipy.linalg as LA min_dur = np.max([win*2.5, min_dur]) if type(recordings) != list: recordings = [recordings] Spec = {} for rec in recordings: idf = re.split('_', rec)[0] Spec[idf] = [] mice = list(Spec.keys()) for rec in recordings: idf = re.split('_', rec)[0] # sampling rate and time bin for spectrogram #SR = get_snr(ppath, rec) #NBIN = np.round(2.5*SR) #dt = NBIN * 1/SR dt = 2.5 # load sleep state M = load_stateidx(ppath, "", ann_name=rec)[0] Mseq = M.copy() Mseq[np.where(M != 2)] = 0 Mseq[np.where(M == 2)] = 1 seq = get_sequences(np.where(M==state)[0], ibreak=int(np.round(ma_thr/dt))+1) seq = [range(s[0], s[-1]+1) for s in seq] # load frequency band #P = so.loadmat(os.path.join(ppath, rec, 'sp_' + rec + '.mat')); #SP = np.squeeze(P['SP']) #freq = np.squeeze(P['freq']) #ifreq = np.where((freq>=band[0]) & (freq<=band[1])) #pow_band = SP[ifreq,:].mean(axis=0) seq = [s for s in seq if len(s)*dt >= min_dur] for s in seq: y,f = power_spectrum(Mseq[s], win, dt) #y = y.mean(axis=0) Spec[idf].append(y) # Transform %Spec to ndarray SpecMx = np.zeros((len(Spec), len(f))) i=0 for idf in Spec: SpecMx[i,:] = np.array(Spec[idf]).mean(axis=0) if pnorm==True: SpecMx[i,:] = SpecMx[i,:]/LA.norm(SpecMx[i,:]) i += 1 if pplot: plt.figure() ax = plt.axes([0.1, 0.1, 0.8, 0.8]) x = f[1:] if pflipx == True: x = 1.0/f[1:] y = SpecMx[:,1:] if len(mice) <= 1: ax.plot(x, y.mean(axis=0), color='gray', lw=2) else: ax.errorbar(x, y.mean(axis=0), yerr=y.std(axis=0), color='gray', fmt='-o') box_off(ax) if pflipx == True: plt.xlabel('Wavelength (s)') else: plt.xlabel('Frequency (Hz)') plt.ylabel('Power (uV^2)') plt.show() return SpecMx, f ### pandas support functions ################################################## def nparray2df(mx, rows, cols, mx_label='', row_label='', column_label=''): """ transform a 2D np.array to pandas DataFrame. :param mx: 2D np.array :param rows: list or vector of row labels :param cols: list or vector of columns labels :param mx_label, row_label, column_label: label (string) for values in matrix, name for rows and columns """ nx = mx.shape[0] ny = mx.shape[1] vals = [] for i in range(nx): for j in range(ny): vals.append([mx[i,j], rows[i], cols[j]]) columns = ['val', 'row', 'col'] if len(row_label) > 0: columns[1] = row_label if len(column_label) > 0: columns[2] = column_label if len(mx_label) > 0: columns[0] = mx_label df =
pd.DataFrame(columns=columns, data=vals)
pandas.DataFrame
import numpy as np import argparse from pathlib import Path import re import glob import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True, style="white", context="talk", font_scale=1) PALETTE = sns.color_palette("Set1") name_dict = { "Gradients 0": "Gradient 1", "Gradients 1": "Gradient 2", "Gradients 2": "Gradient 3", "Gradients (0, 1)": "Gradients 1,2", "Gradients (1, 2)": "Gradients 2,3", "Gradients (2, 0)": "Gradients 1,3", "Gradients (0, 1, 2)": "Gradients 1,2,3", "Gradients 0": "Gradient 1", "Gradients 1": "Gradient 2", "Gradients 2": "Gradient 3", "Gradients (0, 1)": "Gradients 1,2", "Gradients (1, 2)": "Gradients 2,3", "Gradients (2, 0)": "Gradients 1,3", "Gradients (0, 1, 2)": "Gradients 1,2,3", "Experts Resting vs. Experts Compassion": ["EXP", "res", "EXP", "com"], "Experts Resting vs. Experts Open Monitoring": ["EXP", "res", "EXP", "o m"], "Experts Open Monitoring vs. Experts Compassion": ["EXP", "o m", "EXP", "com"], "Experts Resting vs. Experts Meditating": ["EXP", "res", "EXP", "med"], "Novices Resting vs. Novices Compassion": ["NOV", "res", "NOV", "com"], "Novices Resting vs. Novices Open Monitoring": ["NOV", "res", "NOV", "o m"], "Novices Open Monitoring vs. Novices Compassion": ["NOV", "o m", "NOV", "com"], "Novices Resting vs. Novices Meditating": ["NOV", "res", "NOV", "med"], "Experts Resting vs. Novices Resting": ["EXP", "res", "NOV", "res"], "Experts Compassion vs. Novices Compassion": ["EXP", "com", "NOV", "com"], "Experts Open Monitoring vs. Novices Open Monitoring": ["EXP", "o m", "NOV", "o m"], "Experts Meditating vs. Novices Meditating": ["EXP", "med", "NOV", "med"], "Experts All vs. Novices All": ["EXP", "all", "NOV", "all"], "Experts Resting vs. Novices Compassion": ["EXP", "res", "NOV", "com"], "Experts Resting vs. Novices Open Monitoring": ["EXP", "res", "NOV", "o m"], "Experts Compassion vs. Novices Resting": ["EXP", "com", "NOV", "res"], "Experts Compassion vs. Novices Open Monitoring": ["EXP", "com", "NOV", "o m"], "Experts Open Monitoring vs. Novices Resting": ["EXP", "o m", "NOV", "res"], "Experts Open Monitoring vs. Novices Compassion": ["EXP", "o m", "NOV", "com"], "Resting vs. Compassion": ["ALL", "res", "ALL", "com"], "Resting vs. Open Monitoring": ["ALL", "res", "ALL", "o m"], "Compassion vs. Open Monitoring": ["ALL", "com", "ALL", "o m"], "Resting vs. Meditating": ["ALL", "res", "ALL", "med"], } label_dict = { "EXP": "EXP", "NOV": "NOV", "ALL": "ALL", "o m": "open", "med": "med ", "res": "rest", "com": "comp", "all": "all ", } def make_heatmap(source_dir, save_path): files = glob.glob(str(Path(source_dir) / "2-*.csv")) pvalues = pd.read_csv(files[0], index_col=0) pvalues.columns = [name_dict[v].split(" ")[-1] for v in pvalues.columns] index = [ ["2", "X" if name_dict[v][0] == name_dict[v][2] else "", ""] + [label_dict[vv] for vv in name_dict[v]] for v in pvalues.index ] fmt_index = [ "{:^1s} | {:^1s} | {:^1s} | {:^3s} {:<3s}, {:^3s} {:<3s}".format(*v) for v in index ] pvalues.index = fmt_index # Add pvalues from k-sample tests k_sample_paths = ["6-*.csv", "3E-*.csv", "3N-*.csv"] files = [glob.glob(str(Path(source_dir) / path))[0] for path in k_sample_paths] kpvals = np.vstack([pd.read_csv(f, index_col=0).values for f in files]) # Scale kpvals = np.asarray(kpvals) * 7 kpvals[1:, :] = kpvals[1:, :] * 2 df = pd.DataFrame(kpvals, columns=pvalues.columns) df.index = [ "6 | X | X | All states, traits", "3 | X | | EXP states ", "3 | X | | NOV states ", ] df[df > 1] = 1 pvalues =
pd.concat([df, pvalues])
pandas.concat
''' __author__=<NAME> MIT License Copyright (c) 2020 crewml Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import pandas as pd import logging from crewml.common import DATA_DIR from sklearn.preprocessing import LabelEncoder from category_encoders import TargetEncoder class FlightFeatureGenerator: ''' This class creates new features for the flights based on following criteria 1. All flgiths that departs and arrives within a base city is marked as "1" with new feature BASE_FL 2. All flights with CRS_ELAPSED_TIME <=900 grouped together with new feature GROUP=1,2,3, etc. ''' def __init__(self, pairing_month, feature_file, feature_gen_file, fa_bases, fa_non_bases): self.logger = logging.getLogger(__name__) self.pairing_month = pairing_month self.feature_file = feature_file self.fa_bases = fa_bases self.fa_non_bases = fa_non_bases self.feature_gen_file = feature_gen_file self.flights_df = pd.read_csv( DATA_DIR+self.pairing_month+"/"+self.feature_file) self.flights_df.drop(self.flights_df.filter( regex="Unname"), axis=1, inplace=True) self.flights_df.dropna() self.flights_df['ORIGIN_UTC'] = pd.to_datetime( self.flights_df['ORIGIN_UTC']) self.flights_df['DEST_UTC'] = pd.to_datetime( self.flights_df['DEST_UTC']) self.group_id = 1 self.final_df = pd.DataFrame() def process(self): self.timestamp2_epoch() #self.time2_int() # self.generate_base_indicator() # self.generate_pairing_group() self.label_encode_categories() # self.target_encode_categories() # self.onehot_encode_categories() # self.origin_dest_diff() # self.combine_origin_dest() self.convert_fl_date() self.flights_df.to_csv( DATA_DIR+self.pairing_month+"/"+self.feature_gen_file) def generate_base_indicator(self): self.flights_df['BASE_FL'] = self.flights_df.apply( lambda x: "1" if x['ORIGIN'] and x['DEST'] in self.fa_bases else '0', axis=1) def origin_dest_diff(self): self.flights_df["DEST_ARR_DIFF"] = self.flights_df['DEST_UTC'] - \ self.flights_df['ORIGIN_UTC'] def combine_origin_dest(self): ''' Create a new feature=DEST_ARR_DIFF ^ (ORIGIN+DEST) Returns ------- None. ''' self.flights_df["ORIGIN"] = self.flights_df["ORIGIN"].astype(int) self.flights_df["DEST"] = self.flights_df["DEST"].astype(int) temp = self.flights_df["ORIGIN"]+self.flights_df["DEST"] self.flights_df["DEST_ARR_DIFF_SQR"] = \ self.flights_df["DEST_ARR_DIFF"] * ( self.flights_df["ORIGIN"]-self.flights_df["DEST"]) def generate_pairing_group(self): origin_dest = list( zip(self.flights_df.ORIGIN, self.flights_df.DEST)) # use set to remove duplicates b2b = [x for x in origin_dest if x[0] in self.fa_bases and x[1] in self.fa_bases] b2b = list(set(b2b)) for i in b2b: df = self.group_flights(i) if len(df) is None: continue df = df.sort_values('ORIGIN_UTC') total_elapsed_time = 0 fl_ids = [] self.flights_df['GROUP'] = "" for index, row in df.iterrows(): total_elapsed_time += row["CRS_ELAPSED_TIME"] fl_ids.append(int(row["FL_ID"])) if total_elapsed_time <= 900 or len(fl_ids) % 2 == 0: continue else: self.flights_df.loc[self.flights_df.FL_ID.isin(fl_ids), 'GROUP'] = str(self.group_id) self.final_df = self.final_df.append( self.flights_df[self.flights_df['FL_ID'].isin(fl_ids)]) self.flights_df = \ self.flights_df[~self.flights_df.FL_ID.isin(fl_ids)] total_elapsed_time = 0 fl_ids.clear() self.group_id += 1 self.final_df = self.final_df.append(self.flights_df) nb2nb = [x for x in origin_dest if x[0] in self.fa_non_bases and x[1] in self.fa_non_bases] nb2nb = list(set(nb2nb)) b2nb = [x for x in origin_dest if x[0] in self.fa_bases and x[1] in self.fa_non_bases] b2nb = list(set(b2nb)) nb2b = [x for x in origin_dest if x[0] in self.fa_non_bases and x[1] in self.fa_bases] nb2b = list(set(nb2b)) self.flights_df = self.final_df ''' The fl_pairs contain all combinations of tuple like ('CVG', 'MSP'), ('EWR', 'DTW'), etc for B2B flights. Similiarly it will have for NB2NB flights. This method extract B2B, B2NB, NB2B, NB2NB flights from the flight list based on fl_pairs ''' def group_flights(self, fl_pairs): df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 import h5py import pandas as pd import numpy as np import matplotlib.pyplot as plt from pprint import pprint def main(): show_h5() # show_evts() # test_bool() write_h5() def show_h5(): """ simple LEGEND data viewer function. shows the group structure, attributes, units, wfs, etc. can also do a lot of this from the cmd line with: $ h5ls -vlr [file] """ hf = h5py.File("daq_testdata2.h5") for path, dset in h5iter(hf): print(path) # skip bool columns for now (see test_bool below) if any(x in path for x in ["inverted", "muveto"]): print(" skipping bool dataset:", path) continue dt = dset.dtype ds = dset.size at = dset.attrs ldtype = get_legend_dtype(dset.attrs['datatype']) print(f" type: {dt} size: {ds}") for name in dset.attrs: print(f" attr: {name} value: {dset.attrs[name]}") for d in ldtype: print(f" {d} : {ldtype[d]}") print("") def h5iter(g, prefix=''): """ simple iterator to expose groups and attributes of everything in a given hdf5 file. can also start at [prefix]-level. """ for key in g.keys(): item = g[key] path = '{}/{}'.format(prefix, key) if isinstance(item, h5py.Dataset): # test for dataset yield (path, item) elif isinstance(item, h5py.Group): # test for group (goes down a level) yield from h5iter (item, path) def get_legend_dtype(dtstr): """ the 'datatype' attribute is specific to LEGEND HDF5 files. reference: http://legend-exp.org/legend-data-format-specs/dev/ right now, this fills an output dict by string splitting. there is probably a better way to read the Julia-formatted string. also, think about changing enums to numpy named tuples for faster lookups. """ dt = {} # TODO: oliver gave me these, we should update the function below # to use them instead of all that messy string splitting # datatype_regexp = r"""^(([A-Za-z_]*)(<([0-9,]*)>)?)(\{(.*)\})?$""" # arraydims_regexp = r"""^<([0-9,]*)>$""" sp1 = dtstr.split("{")[0] dt["format"] = sp1 # scalar, array, struct, or table if "array" in dt["format"]: dt["ndim"] = int(sp1.split("<")[1].split(">")[0]) sp2 = dtstr.split("{")[1:] if "enum" in sp2: dt["dtype"] = "enum" sp3 = sp2[1].split(",") for tmp in sp3: tmp = tmp.rstrip("}").split("=") dt[int(tmp[1])] = tmp[0] else: dt["dtype"] = sp2[0].rstrip("}") # pprint(dt) return dt def show_evts(): """ look at events (make a small pandas dataframe). this is specific to Oliver's test file. *** Let's worry about making this fast LATER. *** """ hf = h5py.File("daq_testdata2.h5") data = hf['daqdata'] nevt = data['evtno'].size cols = list(data.keys()) # handle single-valued stuff tmp = [] for c in cols: # skip bool columns for now (see test_bool below) if any(x in c for x in ["inverted", "muveto"]): continue # waveform data is handled below if not isinstance(data[c], h5py.Dataset): continue # for now, slice into the whole array and turn into pd.Series ser =
pd.Series(data[c][...], name=c)
pandas.Series
#!/usr/bin/python from xml.dom.minidom import parse import numpy as np import zipfile import tempfile import sys if sys.version_info.major == 3: import urllib.request as request else: import urllib2 as request import io import os.path from impactutils.extern.openquake.geodetic import geodetic_distance import pandas as pd from .dataset import DataSetException,DataSetWarning GEONAME_URL = 'http://download.geonames.org/export/dump/cities1000.zip' def _fetchGeoNames(): """ Internal method to retrieve a cities1000.txt file from GeoNames. :returns: Path to local cities1000.txt file. """ fh = request.urlopen(GEONAME_URL) data = fh.read() fh.close() f = io.BytesIO(data) myzip = zipfile.ZipFile(f) fdir = tempfile.mkdtemp() myzip.extract('cities1000.txt',fdir) myzip.close() return os.path.join(fdir,'cities1000.txt') class Cities(object): """ Handles loading and searching for cities. """ REQFIELDS = ['name','lat','lon'] #class variable def __init__(self,dataframe): """Construct a Cities object from a pandas DataFrame. :param dataframe: pandas DataFrame, where each row represents a city. Columns include: - name Name of the city (required). - lat Latitude of city (required). - lon Longitude of city (required). - pop Population of city (optional). - iscap Boolean indicating capital status (optional). - placement String indicating where city label should be placed relative to city coordinates, one of: E,W,N,S,NE,SE,SW,NW (optional). -xoff Longitude offset for label relative to city coordinates (optional). -yoff Latitude offset for label relative to city coordinates (optional). :raises DataSetException: When any of required columns are missing. :returns: Cities instance. """ if len(set(dataframe.columns).intersection(set(self.REQFIELDS))) < 3: raise DataSetException('Missing some of required keys: %s' % self.REQFIELDS) self._dataframe = dataframe.copy() #"magic" methods def __len__(self): """Return the number of cities in the Cities object. :returns: Number of cities in the Cities object. """ return len(self._dataframe) def __repr__(self): """ Return the string to represent the Cities instance. :returns: String representing Cities instance. """ return str(self._dataframe) @classmethod def loadFromGeoNames(cls,cityfile=None): """Load a cities data set from a GeoNames cities1000.txt file or by downloading it from GeoNames, then loading it. :param cityfile: Path to cities1000.txt file from GeoNames, or None (file will be downloaded). :returns: Cities instance. """ CAPFLAG1 = 'PPLC' CAPFLAG2 = 'PPLA' delete_folder = False if cityfile is None: cityfile = _fetchGeoNames() delete_folder = True mydict = {'name':[], 'ccode':[], 'lat':[], 'lon':[], 'iscap':[], 'pop':[]} f = open(cityfile,'rb') for line in f.readlines(): line = line.decode('utf-8') parts = line.split('\t') tname = parts[2].strip() if not tname: continue myvals = np.array([ord(c) for c in tname]) if len((myvals > 127).nonzero()[0]): continue mydict['name'].append(tname) mydict['ccode'].append(parts[8].strip()) mydict['lat'].append(float(parts[4].strip())) mydict['lon'].append(float(parts[5].strip())) capfield = parts[7].strip() iscap = (capfield == CAPFLAG1) or (capfield == CAPFLAG2) mydict['iscap'].append(iscap) mydict['pop'].append(int(parts[14].strip())) f.close() if delete_folder: fdir,bname = os.path.split(cityfile) os.remove(cityfile) os.rmdir(fdir) df =
pd.DataFrame.from_dict(mydict)
pandas.DataFrame.from_dict
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Biota Technology. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import division from unittest import TestCase, main import numpy as np import pandas as pd import matplotlib.pyplot as plt from sourcetracker._sourcetracker import (intersect_and_sort_samples, collapse_source_data, subsample_dataframe, validate_gibbs_input, validate_gibbs_parameters, collate_gibbs_results, get_samples, generate_environment_assignments, cumulative_proportions, single_sink_feature_table, ConditionalProbability, gibbs_sampler, gibbs) from sourcetracker._plot import plot_heatmap class TestValidateGibbsInput(TestCase): def setUp(self): self.index = ['s%s' % i for i in range(5)] self.columns = ['f%s' % i for i in range(4)] def test_no_errors_(self): # A table where nothing is wrong, no changes expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) exp_sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) obs = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs, sources) # Sources and sinks. sinks = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sinks = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) pd.util.testing.assert_frame_equal(obs_sinks, exp_sinks) def test_float_data(self): # Data is float, expect rounding. data = np.random.uniform(0, 1, size=20).reshape(5, 4) sources = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sources = pd.DataFrame(np.zeros(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) data = np.random.uniform(0, 1, size=20).reshape(5, 4) + 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sources = pd.DataFrame(np.ones(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) # Sources and sinks. data = np.random.uniform(0, 1, size=20).reshape(5, 4) + 5 sinks = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sinks = \ pd.DataFrame(5 * np.ones(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks)
pd.util.testing.assert_frame_equal(obs_sources, exp_sources)
pandas.util.testing.assert_frame_equal
import numpy as np import matplotlib.pyplot as plt import pandas as pd def hello(): return 'hello world' def sample_from_finite_probability_space(finite_prob_space): """ Produces a random outcome from a given finite probability space. Input ----- - finite_prob_space: finite probability space encoded as a dictionary Output ------ - random outcome, which is one of the keys in the finite_probability_space dictionary's set of keys (remember: these keys form the sample space) """ # first produce a list of pairs of the form (outcome, outcome probability) outcome_probability_pairs = list(finite_prob_space.items()) # convert the pairs into two lists "outcomes" and "outcome_probabilities": # - outcomes: list of outcomes # - outcome_probabilities: i-th element is the probability of the i-th # outcome in the "outcomes" list # (note that this step is needed because NumPy wants these lists # separately) outcomes, outcome_probabilities = zip(*outcome_probability_pairs) # use NumPy to randomly sample random_outcome = np.random.choice(outcomes, p=outcome_probabilities) return random_outcome def flip_fair_coin(): """ Returns a fair coin flip. Output ------ - either the string 'heads' or 'tails' """ finite_prob_space = {'heads': 0.5, 'tails': 0.5} return sample_from_finite_probability_space(finite_prob_space) def flip_fair_coins(number_of_coins): """ Returns a list of fair coin flip results. Input ----- - number_of_coins: number of coin flips Output ------ - list of length <number_of_coins> consisting of strings 'heads'/'tails' """ finite_prob_space = {'heads': 0.5, 'tails': 0.5} return [sample_from_finite_probability_space(finite_prob_space) for i in range(number_of_coins)] def plot_discrete_histogram(array, frequency=False, figsize=(5, 4)): """ Plots a discrete histogram given a 1D array of values. Input ----- - array: 1D array consisting of data - frequency: boolean (True => plot frequencies, False => plot counts) - figsize: tuple (width, height) of how large to make the plotted figure """ array_as_series = pd.Series(array) counts = array_as_series.value_counts().sort_index() if frequency: counts /= counts.sum() plt.figure(figsize=figsize) plt.xlabel('Value') if frequency: plt.ylabel('Frequency') else: plt.ylabel('Count') axis = counts.plot(kind='bar') figure = axis.get_figure() figure.autofmt_xdate() # rotates x-axis labels to be more readable plt.tight_layout() # tidy up and remove some margins def print_prob_table_array(probabilities, outcomes): """ Prints a probability table that is stored as a 1D array. Input ----- - probabilities: a 1D array of nonnegative entries that add to 1 - outcomes: list of labels; i-th label is for the i-th entry in <probabilities> """ if len(probabilities) != len(outcomes): raise Exception("The number of outcomes and number of probabilities " + "must match.") print(pd.Series(probabilities, outcomes)) def print_joint_prob_table_dict(dicts_in_dict): """ Prints a joint probability table that is stored using the dictionaries within a dictionary representation. Input ----- - dicts_in_dict: joint probability table stored as dictionaries within a dictionary """ print(pd.DataFrame(dicts_in_dict).T) def print_joint_prob_table_array(array, row_labels, col_labels): """ Prints a joint probability table that is stored using the 2D array representation. Input ----- - array: 2D array for the joint probability table (doesn't have label info) - row_labels: list of labels; i-th label is for the i-th row in <array> - col_labels: list of labels; i-th label is for the i-th column in <array> """ if len(array.shape) != 2: raise Exception("The array specified must be two-dimensional.") print(
pd.DataFrame(array, row_labels, col_labels)
pandas.DataFrame
# Copyright (C) 2022 National Center for Atmospheric Research and National Oceanic and Atmospheric Administration # SPDX-License-Identifier: Apache-2.0 # #Code to create plots for surface observations import os import monetio as mio import monet as monet import seaborn as sns from monet.util.tools import calc_8hr_rolling_max, calc_24hr_ave import xarray as xr import pandas as pd import numpy as np import cartopy.crs as ccrs import matplotlib as mpl import matplotlib.pyplot as plt from numpy import corrcoef sns.set_context('paper') from monet.plots.taylordiagram import TaylorDiagram as td from matplotlib.colors import ListedColormap from monet.util.tools import get_epa_region_bounds as get_epa_bounds import math from ..plots import savefig # from util import write_ncf def make_24hr_regulatory(df, col=None): """Calculates 24-hour averages Parameters ---------- df : dataframe Model/obs pair of hourly data col : str Column label of observation variable to apply the calculation Returns ------- dataframe dataframe with applied calculation """ return calc_24hr_ave(df, col) def make_8hr_regulatory(df, col=None): """Calculates 8-hour rolling average daily Parameters ---------- df : dataframe Model/obs pair of hourly data col : str Column label of observation variable to apply the calculation Returns ------- dataframe dataframe with applied calculation """ return calc_8hr_rolling_max(df, col, window=8) def calc_default_colors(p_index): """List of default colors, lines, and markers to use if user does not specify them in the input yaml file. Parameters ---------- p_index : integer Number of pairs in analysis class Returns ------- list List of dictionaries containing default colors, lines, and markers to use for plotting for the number of pairs in analysis class """ x = [dict(color='b', linestyle='--',marker='x'), dict(color='g', linestyle='-.',marker='o'), dict(color='r', linestyle=':',marker='v'), dict(color='c', linestyle='--',marker='^'), dict(color='m', linestyle='-.',marker='s')] #Repeat these 5 instances over and over if more than 5 lines. return x[p_index % 5] def new_color_map(): """Creates new color map for difference plots Returns ------- colormap Orange and blue color map """ top = mpl.cm.get_cmap('Blues_r', 128) bottom = mpl.cm.get_cmap('Oranges', 128) newcolors = np.vstack((top(np.linspace(0, 1, 128)), bottom(np.linspace(0, 1, 128)))) return ListedColormap(newcolors, name='OrangeBlue') def map_projection(f): """Defines map projection. This needs updating to make it more generic. Parameters ---------- f : class model class Returns ------- cartopy projection projection to be used by cartopy in plotting """ import cartopy.crs as ccrs if f.model.lower() == 'cmaq': proj = ccrs.LambertConformal( central_longitude=f.obj.XCENT, central_latitude=f.obj.YCENT) elif f.model.lower() == 'wrfchem' or f.model.lower() == 'rapchem': if f.obj.MAP_PROJ == 1: proj = ccrs.LambertConformal( central_longitude=f.obj.CEN_LON, central_latitude=f.obj.CEN_LAT) elif f.MAP_PROJ == 6: #Plate Carree is the equirectangular or equidistant cylindrical proj = ccrs.PlateCarree( central_longitude=f.obj.CEN_LON) else: raise NotImplementedError('WRFChem projection not supported. Please add to surfplots.py') #Need to add the projections you want to use for the other models here. elif f.model.lower() == 'rrfs': proj = ccrs.LambertConformal( central_longitude=f.obj.cen_lon, central_latitude=f.obj.cen_lat) elif f.model.lower() in ['cesm_fv','cesm_se']: proj = ccrs.PlateCarree() elif f.model.lower() == 'random': proj = ccrs.PlateCarree() else: #Let's change this tomorrow to just plot as lambert conformal if nothing provided. raise NotImplementedError('Projection not defined for new model. Please add to surfplots.py') return proj def make_spatial_bias(df, column_o=None, label_o=None, column_m=None, label_m=None, ylabel = None, vdiff=None, outname = 'plot', domain_type=None, domain_name=None, fig_dict=None, text_dict=None,debug=False): """Creates surface spatial bias plot. Parameters ---------- df : dataframe model/obs pair data to plot column_o : str Column label of observation variable to plot label_o : str Name of observation variable to use in plot title column_m : str Column label of model variable to plot label_m : str Name of model variable to use in plot title ylabel : str Title of colorbar axis vdiff : real number Min and max value to use on colorbar axis outname : str file location and name of plot (do not include .png) domain_type : str Domain type specified in input yaml file domain_name : str Domain name specified in input yaml file fig_dict : dictionary Dictionary containing information about figure text_dict : dictionary Dictionary containing information about text debug : boolean Whether to plot interactively (True) or not (False). Flag for submitting jobs to supercomputer turn off interactive mode. Returns ------- plot surface bias plot """ if debug == False: plt.ioff() def_map = dict(states=True,figsize=[10, 5]) if fig_dict is not None: map_kwargs = {**def_map, **fig_dict} else: map_kwargs = def_map #If not specified use the PlateCarree projection if 'crs' not in map_kwargs: map_kwargs['crs'] = ccrs.PlateCarree() #set default text size def_text = dict(fontsize=20) if text_dict is not None: text_kwargs = {**def_text, **text_dict} else: text_kwargs = def_text # set ylabel to column if not specified. if ylabel is None: ylabel = column_o #Take the mean for each siteid df_mean=df.groupby(['siteid'],as_index=False).mean() #Specify val_max = vdiff. the sp_scatter_bias plot in MONET only uses the val_max value #and then uses -1*val_max value for the minimum. ax = monet.plots.sp_scatter_bias( df_mean, col1=column_o, col2=column_m, map_kwargs=map_kwargs,val_max=vdiff, cmap=new_color_map(), edgecolor='k',linewidth=.8) if domain_type == 'all': latmin= 25.0 lonmin=-130.0 latmax= 50.0 lonmax=-60.0 plt.title(domain_name + ': ' + label_m + ' - ' + label_o,fontweight='bold',**text_kwargs) elif domain_type == 'epa_region' and domain_name is not None: latmin,lonmin,latmax,lonmax,acro = get_epa_bounds(index=None,acronym=domain_name) plt.title('EPA Region ' + domain_name + ': ' + label_m + ' - ' + label_o,fontweight='bold',**text_kwargs) else: latmin= math.floor(min(df.latitude)) lonmin= math.floor(min(df.longitude)) latmax= math.ceil(max(df.latitude)) lonmax= math.ceil(max(df.longitude)) plt.title(domain_name + ': ' + label_m + ' - ' + label_o,fontweight='bold',**text_kwargs) if 'extent' not in map_kwargs: map_kwargs['extent'] = [lonmin,lonmax,latmin,latmax] ax.axes.set_extent(map_kwargs['extent'],crs=ccrs.PlateCarree()) #Update colorbar f = plt.gcf() model_ax = f.get_axes()[0] cax = f.get_axes()[1] #get the position of the plot axis and use this to rescale nicely the color bar to the height of the plot. position_m = model_ax.get_position() position_c = cax.get_position() cax.set_position([position_c.x0, position_m.y0, position_c.x1 - position_c.x0, (position_m.y1-position_m.y0)*1.1]) cax.set_ylabel(ylabel,fontweight='bold',**text_kwargs) cax.tick_params(labelsize=text_kwargs['fontsize']*0.8,length=10.0,width=2.0,grid_linewidth=2.0) #plt.tight_layout(pad=0) savefig(outname + '.png', loc=4, logo_height=120) def make_timeseries(df, column=None, label=None, ax=None, avg_window=None, ylabel=None, vmin = None, vmax = None, domain_type=None, domain_name=None, plot_dict=None, fig_dict=None, text_dict=None,debug=False): """Creates timeseries plot. Parameters ---------- df : dataframe model/obs pair data to plot column : str Column label of variable to plot label : str Name of variable to use in plot legend ax : ax matplotlib ax from previous occurrence so can overlay obs and model results on the same plot avg_window : rule Pandas resampling rule (e.g., 'H', 'D') ylabel : str Title of y-axis vmin : real number Min value to use on y-axis vmax : real number Max value to use on y-axis domain_type : str Domain type specified in input yaml file domain_name : str Domain name specified in input yaml file plot_dict : dictionary Dictionary containing information about plotting for each pair (e.g., color, linestyle, markerstyle) fig_dict : dictionary Dictionary containing information about figure text_dict : dictionary Dictionary containing information about text debug : boolean Whether to plot interactively (True) or not (False). Flag for submitting jobs to supercomputer turn off interactive mode. Returns ------- ax matplotlib ax such that driver.py can iterate to overlay multiple models on the same plot """ if debug == False: plt.ioff() #First define items for all plots #set default text size def_text = dict(fontsize=14) if text_dict is not None: text_kwargs = {**def_text, **text_dict} else: text_kwargs = def_text # set ylabel to column if not specified. if ylabel is None: ylabel = column if label is not None: plot_dict['label'] = label if vmin is not None and vmax is not None: plot_dict['ylim'] = [vmin,vmax] #scale the fontsize for the x and y labels by the text_kwargs plot_dict['fontsize'] = text_kwargs['fontsize']*0.8 #Then, if no plot has been created yet, create a plot and plot the obs. if ax is None: #First define the colors for the observations. obs_dict = dict(color='k', linestyle='-',marker='*', linewidth=1.2, markersize=6.) if plot_dict is not None: #Whatever is not defined in the yaml file is filled in with the obs_dict here. plot_kwargs = {**obs_dict, **plot_dict} else: plot_kwargs = obs_dict # create the figure if fig_dict is not None: f,ax = plt.subplots(**fig_dict) else: f,ax = plt.subplots(figsize=(10,6)) # plot the line if avg_window is None: ax = df[column].plot(ax=ax, **plot_kwargs) else: ax = df[column].resample(avg_window).mean().plot(ax=ax, legend=True, **plot_kwargs) # If plot has been created add to the current axes. else: # this means that an axis handle already exists and use it to plot the model output. if avg_window is None: ax = df[column].plot(ax=ax, legend=True, **plot_dict) else: ax = df[column].resample(avg_window).mean().plot(ax=ax, legend=True, **plot_dict) #Set parameters for all plots ax.set_ylabel(ylabel,fontweight='bold',**text_kwargs) ax.set_xlabel(df.index.name,fontweight='bold',**text_kwargs) ax.legend(frameon=False,fontsize=text_kwargs['fontsize']*0.8) ax.tick_params(axis='both',length=10.0,direction='inout') ax.tick_params(axis='both',which='minor',length=5.0,direction='out') ax.legend(frameon=False,fontsize=text_kwargs['fontsize']*0.8, bbox_to_anchor=(1.0, 0.9), loc='center left') if domain_type is not None and domain_name is not None: if domain_type == 'epa_region': ax.set_title('EPA Region ' + domain_name,fontweight='bold',**text_kwargs) else: ax.set_title(domain_name,fontweight='bold',**text_kwargs) return ax def make_taylor(df, column_o=None, label_o='Obs', column_m=None, label_m='Model', dia=None, ylabel=None, ty_scale=1.5, domain_type=None, domain_name=None, plot_dict=None, fig_dict=None, text_dict=None,debug=False): """Creates taylor plot. Note sometimes model values are off the scale on this plot. This will be fixed soon. Parameters ---------- df : dataframe model/obs pair data to plot column_o : str Column label of observational variable to plot label_o : str Name of observational variable to use in plot legend column_m : str Column label of model variable to plot label_m : str Name of model variable to use in plot legend dia : dia matplotlib ax from previous occurrence so can overlay obs and model results on the same plot ylabel : str Title of x-axis ty_scale : real Scale to apply to taylor plot to control the plotting range domain_type : str Domain type specified in input yaml file domain_name : str Domain name specified in input yaml file plot_dict : dictionary Dictionary containing information about plotting for each pair (e.g., color, linestyle, markerstyle) fig_dict : dictionary Dictionary containing information about figure text_dict : dictionary Dictionary containing information about text debug : boolean Whether to plot interactively (True) or not (False). Flag for submitting jobs to supercomputer turn off interactive mode. Returns ------- class Taylor diagram class defined in MONET """ #First define items for all plots if debug == False: plt.ioff() #set default text size def_text = dict(fontsize=14.0) if text_dict is not None: text_kwargs = {**def_text, **text_dict} else: text_kwargs = def_text # set ylabel to column if not specified. if ylabel is None: ylabel = column_o #Then, if no plot has been created yet, create a plot and plot the first pair. if dia is None: # create the figure if fig_dict is not None: f = plt.figure(**fig_dict) else: f = plt.figure(figsize=(12,10)) sns.set_style('ticks') # plot the line dia = td(df[column_o].std(), scale=ty_scale, fig=f, rect=111, label=label_o) plt.grid(linewidth=1, alpha=.5) cc = corrcoef(df[column_o].values, df[column_m].values)[0, 1] dia.add_sample(df[column_m].std(), cc, zorder=9, label=label_m, **plot_dict) # If plot has been created add to the current axes. else: # this means that an axis handle already exists and use it to plot another model cc = corrcoef(df[column_o].values, df[column_m].values)[0, 1] dia.add_sample(df[column_m].std(), cc, zorder=9, label=label_m, **plot_dict) #Set parameters for all plots contours = dia.add_contours(colors='0.5') plt.clabel(contours, inline=1, fontsize=text_kwargs['fontsize']*0.8) plt.grid(alpha=.5) plt.legend(frameon=False,fontsize=text_kwargs['fontsize']*0.8, bbox_to_anchor=(0.75, 0.93), loc='center left') if domain_type is not None and domain_name is not None: if domain_type == 'epa_region': plt.title('EPA Region ' + domain_name,fontweight='bold',**text_kwargs) else: plt.title(domain_name,fontweight='bold',**text_kwargs) ax = plt.gca() ax.axis["left"].label.set_text('Standard Deviation: '+ylabel) ax.axis["top"].label.set_text('Correlation') ax.axis["left"].label.set_fontsize(text_kwargs['fontsize']) ax.axis["top"].label.set_fontsize(text_kwargs['fontsize']) ax.axis["left"].label.set_fontweight('bold') ax.axis["top"].label.set_fontweight('bold') ax.axis["top"].major_ticklabels.set_fontsize(text_kwargs['fontsize']*0.8) ax.axis["left"].major_ticklabels.set_fontsize(text_kwargs['fontsize']*0.8) ax.axis["right"].major_ticklabels.set_fontsize(text_kwargs['fontsize']*0.8) return dia def make_spatial_overlay(df, vmodel, column_o=None, label_o=None, column_m=None, label_m=None, ylabel = None, vmin=None, vmax = None, nlevels = None, proj = None, outname = 'plot', domain_type=None, domain_name=None, fig_dict=None, text_dict=None,debug=False): """Creates spatial overlay plot. Parameters ---------- df : dataframe model/obs pair data to plot vmodel: dataarray slice of model data to plot column_o : str Column label of observation variable to plot label_o : str Name of observation variable to use in plot title column_m : str Column label of model variable to plot label_m : str Name of model variable to use in plot title ylabel : str Title of colorbar axis vmin : real number Min value to use on colorbar axis vmax : real number Max value to use on colorbar axis nlevels: integer Number of levels used in colorbar axis proj: cartopy projection cartopy projection to use in plot outname : str file location and name of plot (do not include .png) domain_type : str Domain type specified in input yaml file domain_name : str Domain name specified in input yaml file fig_dict : dictionary Dictionary containing information about figure text_dict : dictionary Dictionary containing information about text debug : boolean Whether to plot interactively (True) or not (False). Flag for submitting jobs to supercomputer turn off interactive mode. Returns ------- plot spatial overlay plot """ if debug == False: plt.ioff() def_map = dict(states=True,figsize=[15, 8]) if fig_dict is not None: map_kwargs = {**def_map, **fig_dict} else: map_kwargs = def_map #set default text size def_text = dict(fontsize=20) if text_dict is not None: text_kwargs = {**def_text, **text_dict} else: text_kwargs = def_text # set ylabel to column if not specified. if ylabel is None: ylabel = column_o #Take the mean for each siteid df_mean=df.groupby(['siteid'],as_index=False).mean() #Take the mean over time for the model output vmodel_mean = vmodel[column_m].mean(dim='time').squeeze() #Determine the domain if domain_type == 'all': latmin= 25.0 lonmin=-130.0 latmax= 50.0 lonmax=-60.0 title_add = domain_name + ': ' elif domain_type == 'epa_region' and domain_name is not None: latmin,lonmin,latmax,lonmax,acro = get_epa_bounds(index=None,acronym=domain_name) title_add = 'EPA Region ' + domain_name + ': ' else: latmin= math.floor(min(df.latitude)) lonmin= math.floor(min(df.longitude)) latmax= math.ceil(max(df.latitude)) lonmax= math.ceil(max(df.longitude)) title_add = domain_name + ': ' #Map the model output first. cbar_kwargs = dict(aspect=15,shrink=.8) #Add options that this could be included in the fig_kwargs in yaml file too. if 'extent' not in map_kwargs: map_kwargs['extent'] = [lonmin,lonmax,latmin,latmax] if 'crs' not in map_kwargs: map_kwargs['crs'] = proj #With pcolormesh, a Warning shows because nearest interpolation may not work for non-monotonically increasing regions. #Because I do not want to pull in the edges of the lat lon for every model I switch to contourf. #First determine colorbar, so can use the same for both contourf and scatter if vmin == None and vmax == None: vmin = np.min((vmodel_mean.quantile(0.01), df_mean[column_o].quantile(0.01))) vmax = np.max((vmodel_mean.quantile(0.99), df_mean[column_o].quantile(0.99))) if nlevels == None: nlevels = 21 clevel = np.linspace(vmin,vmax,nlevels) cmap = mpl.cm.get_cmap('Spectral_r',nlevels-1) norm = mpl.colors.BoundaryNorm(clevel, ncolors=cmap.N, clip=False) # For unstructured grid, we need a more advanced plotting code # Call an external funtion (Plot_2D) if vmodel.attrs.get('mio_has_unstructured_grid',False): from .Plot_2D import Plot_2D fig = plt.figure( figsize=fig_dict['figsize'] ) ax = fig.add_subplot(1,1,1,projection=proj) p2d = Plot_2D( vmodel_mean, scrip_file=vmodel.mio_scrip_file, cmap=cmap, #colorticks=clevel, colorlabels=clevel, cmin=vmin, cmax=vmax, lon_range=[lonmin,lonmax], lat_range=[latmin,latmax], ax=ax, state=fig_dict['states'] ) else: #I add extend='both' here because the colorbar is setup to plot the values outside the range ax = vmodel_mean.monet.quick_contourf(cbar_kwargs=cbar_kwargs, figsize=map_kwargs['figsize'], map_kws=map_kwargs, robust=True, norm=norm, cmap=cmap, levels=clevel, extend='both') plt.gcf().canvas.draw() plt.tight_layout(pad=0) plt.title(title_add + label_o + ' overlaid on ' + label_m,fontweight='bold',**text_kwargs) ax.axes.scatter(df_mean.longitude.values, df_mean.latitude.values,s=30,c=df_mean[column_o], transform=ccrs.PlateCarree(), edgecolor='b', linewidth=.50, norm=norm, cmap=cmap) ax.axes.set_extent(map_kwargs['extent'],crs=ccrs.PlateCarree()) #Uncomment these lines if you update above just to verify colorbars are identical. #Also specify plot above scatter = ax.axes.scatter etc. #cbar = ax.figure.get_axes()[1] #plt.colorbar(scatter,ax=ax) #Update colorbar # Call below only for structured grid cases if not vmodel.attrs.get('mio_has_unstructured_grid',False): f = plt.gcf() model_ax = f.get_axes()[0] cax = f.get_axes()[1] #get the position of the plot axis and use this to rescale nicely the color bar to the height of the plot. position_m = model_ax.get_position() position_c = cax.get_position() cax.set_position([position_c.x0, position_m.y0, position_c.x1 - position_c.x0, (position_m.y1-position_m.y0)*1.1]) cax.set_ylabel(ylabel,fontweight='bold',**text_kwargs) cax.tick_params(labelsize=text_kwargs['fontsize']*0.8,length=10.0,width=2.0,grid_linewidth=2.0) #plt.tight_layout(pad=0) savefig(outname + '.png', loc=4, logo_height=100, dpi=150) return ax def calculate_boxplot(df, column=None, label=None, plot_dict=None, comb_bx = None, label_bx = None): """Combines data into acceptable format for box-plot Parameters ---------- df : dataframe Model/obs pair object column : str Column label of variable to plot label : str Name of variable to use in plot legend comb_bx: dataframe dataframe containing information to create box-plot from previous occurrence so can overlay multiple model results on plot label_bx: list list of string labels to use in box-plot from previous occurrence so can overlay multiple model results on plot Returns ------- dataframe, list dataframe containing information to create box-plot list of string labels to use in box-plot """ if comb_bx is None and label_bx is None: comb_bx =
pd.DataFrame()
pandas.DataFrame
import csv import itertools import math import re from pathlib import Path from typing import * import pandas from loguru import logger NumericType = Union[int, float] IterableValues = Union[List[NumericType], pandas.Series] NUMERIC_REGEX = re.compile("^.?(?P<number>[\d]+)") def _coerce_to_series(item:Any)->pandas.Series: if not isinstance(item, pandas.Series): item =
pandas.Series(item)
pandas.Series
#!/usr/bin/python3 # coding: utf-8 import sys import os.path import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import LogNorm # get_ipython().run_line_magic('matplotlib', 'inline') # plt.close('all') # dpi = 300 # figsize = (1920 / dpi, 1080 / dpi) from plotHitMissUnkRate import plotHitMissUnkRate def getExamplesDf(path): assert os.path.isfile(path), "file '%s' not found." % path df = pd.read_csv(filepath_or_buffer=path, header=None) df['id'] = df.index df['class'] = df[22] return df def getOriginalMatchesDf(path): assert os.path.isfile(path), "file '%s' not found." % path df = pd.read_table(filepath_or_buffer=path, header=None) df.columns = ['id', 'class', 'label'] df = df[df['id'].str.startswith('Ex:')] def cleanLabel(text): label = text.replace('Classe MINAS:', '').strip() if label == 'Unk': return '-' if label.startswith('C '): return label.replace('C ', '') return label return pd.DataFrame({ 'id': df['id'].apply(lambda x: x.replace('Ex:', '').strip()).astype(int) - 1, 'label': df['label'].apply(cleanLabel), }) def getMatchesDf(path): assert os.path.isfile(path), "file '%s' not found." % path df = pd.read_csv(filepath_or_buffer=path) df['id'] = df['#pointId'].astype(int) return df def merge(exDf, maDf): def checkCols(df, cols): return pd.Series(cols).isin(df.columns).all() assert checkCols(exDf, ['id', 'class']) assert checkCols(maDf, ['id', 'label']) return
pd.merge(exDf[['id', 'class']], maDf[['id', 'label']], on='id', how='left')
pandas.merge
import io import os import time import re import string from PIL import Image, ImageFilter import requests import numpy as np import pandas as pd from scipy.fftpack import fft from sklearn.cluster import KMeans from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA # import sklearn.metrics as sm from keras.preprocessing import image from keras.applications.inception_v3 \ import decode_predictions, preprocess_input from keras.applications.inception_v3 import InceptionV3 class Unicorn(): def __init__(self, weights_path): self.cnn_features = True self.target_size = (299, 299) self.alpha_fill = '#ffffff' self.prep_func = preprocess_input self.scale_features = True self.n_clusters = 4 self.n_pca_comps = 10 self.model = InceptionV3(weights=weights_path) def load_image(self, img_path): ''' load image given path and convert to an array ''' img = image.load_img(img_path, target_size=self.target_size) x = image.img_to_array(img) return self.prep_func(x) def load_image_from_web(self, image_url): ''' load an image from a provided hyperlink ''' # get image response = requests.get(image_url) with Image.open(io.BytesIO(response.content)) as img: # fill transparency if needed if img.mode in ('RGBA', 'LA'): img = self.strip_alpha_channel(img) # convert to jpeg if img.format is not 'jpeg': img = img.convert('RGB') img.save('target_img.jpg') def validate_url(self, url): ''' takes input string and returns True if string is a url. ''' url_validator = re.compile( r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return bool(url_validator.match(url)) def featurize_image(self, image_array): ''' Returns binary array with ones where the model predicts that the image contains an instance of one of the target classes (specified by wordnet id) ''' predictions = self.model.predict(image_array) return predictions def strip_alpha_channel(self, image): ''' Strip the alpha channel of an image and fill with fill color ''' background = Image.new(image.mode[:-1], image.size, self.alpha_fill) background.paste(image, image.split()[-1]) return background def fft_images(self, image_paths): ''' Returns the fft transform of images from paths provided as a list ''' num_images = len(image_paths) feature_data = pd.DataFrame() for i, image_path in enumerate(image_paths): try: if self.validate_url(image_path): filename = 'target_img.jpg' self.load_image_from_web(image_path) else: filename = image_path if i % 10 == 0: print('processing image {}/{}'.format(i + 1, num_images)) X = np.array([self.load_image(filename)]) # # # flatten and apply fft image_features = fft(X.flatten()) if filename == 'target_img.jpg': os.remove('target_img.jpg') feature_data = feature_data.append( pd.Series(image_features), ignore_index=True) # feature_data = feature_data.append( # pd.Series(image_features.flatten()), # ignore_index=True) except Exception as e: print(e) feature_data = feature_data.append( pd.Series([np.nan]), ignore_index=True) feature_data = feature_data.set_index( pd.Series( [i.split('/')[-1] for i in image_paths] ) ) return feature_data def get_net_features(self, image_paths): ''' Returns features of images (defaults to inception V3:imagenet wts) from paths provided as a list ''' # from keras.applications.inception_v3 import InceptionV3 # self.model = InceptionV3(weights='imagenet', include_top=False) num_images = len(image_paths) feature_data = pd.DataFrame() for i, image_path in enumerate(image_paths): try: if self.validate_url(image_path): filename = 'target_img.jpg' self.load_image_from_web(image_path) else: filename = image_path if i % 10 == 0: print('processing image {}/{}'.format(i + 1, num_images)) X = np.array([self.load_image(filename)]) # # # flatten and get image_features = self.featurize_image(X) if filename == 'target_img.jpg': os.remove('target_img.jpg') feature_data = feature_data.append( pd.Series(image_features.flatten()), ignore_index=True) except Exception as e: print(e) feature_data = feature_data.append( pd.Series([0]), ignore_index=True) feature_data = feature_data.set_index( pd.Series( [i.split('/')[-1] for i in image_paths] ) ) feature_data = feature_data.dropna(how='any') return feature_data def haar_wavelet_features(): pass def pca_image_features(self, feature_data): ''' Runs PCA on images in dataframe where rows are images and columns are features. ''' if self.scale_features: # # # standardize features? eg for PCA feature_data = pd.DataFrame( data=StandardScaler().fit_transform(feature_data) ) # # # apply PCA feature matrix pca = PCA(n_components=self.n_pca_comps) pca_features = pca.fit_transform( feature_data ) pca_feature_data = pd.DataFrame( data=pca_features, columns=['pc' + str(i) for i in range(0, self.n_pca_comps)]) pca_feature_data.set_index(feature_data.index) return pca_feature_data def calc_distance(self, feature_data): ''' Calculate pairwise feature distance between images in a dataframe where rows are images and columns are features ''' from scipy.spatial.distance import squareform, pdist pwise_dist_df = pd.DataFrame( squareform( pdist(feature_data) ), columns=feature_data.index, index=feature_data.index ) return pwise_dist_df def run_kmeans(self, feature_data, target_data): model = KMeans(n_clusters=self.n_clusters) model.fit(target_data) output_data = pd.concat( {'label': pd.Series(feature_data.index), 'pred_class': pd.Series(model.labels_)}, axis=1 ) return output_data def run_knn(self, target_data): nbrs = NearestNeighbors( n_neighbors=2, algorithm='ball_tree' ).fit(target_data) distances, indices = nbrs.kneighbors(target_data) output_data = pd.concat( {'indices_0': pd.Series(target_data.index[indices[:, 0]]), 'indices_1':
pd.Series(target_data.index[indices[:, 1]])
pandas.Series
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from datetime import time from os.path import abspath, dirname, join from unittest import TestCase import typing import re import functools import itertools import pathlib from collections import abc import pytest import numpy as np import pandas as pd import pandas.testing as tm from pandas import Timedelta, read_csv from parameterized import parameterized import pytz from pytz import UTC from toolz import concat from exchange_calendars import get_calendar from exchange_calendars.calendar_utils import ( ExchangeCalendarDispatcher, _default_calendar_aliases, _default_calendar_factories, ) from exchange_calendars.errors import ( CalendarNameCollision, InvalidCalendarName, NoSessionsError, ) from exchange_calendars.exchange_calendar import ExchangeCalendar, days_at_time from .test_utils import T class FakeCalendar(ExchangeCalendar): name = "DMY" tz = "Asia/Ulaanbaatar" open_times = ((None, time(11, 13)),) close_times = ((None, time(11, 49)),) class CalendarRegistrationTestCase(TestCase): def setup_method(self, method): self.dummy_cal_type = FakeCalendar self.dispatcher = ExchangeCalendarDispatcher({}, {}, {}) def teardown_method(self, method): self.dispatcher.clear_calendars() def test_register_calendar(self): # Build a fake calendar dummy_cal = self.dummy_cal_type() # Try to register and retrieve the calendar self.dispatcher.register_calendar("DMY", dummy_cal) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(dummy_cal, retr_cal) # Try to register again, expecting a name collision with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) # Deregister the calendar and ensure that it is removed self.dispatcher.deregister_calendar("DMY") with self.assertRaises(InvalidCalendarName): self.dispatcher.get_calendar("DMY") def test_register_calendar_type(self): self.dispatcher.register_calendar_type("DMY", self.dummy_cal_type) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(self.dummy_cal_type, type(retr_cal)) def test_both_places_are_checked(self): dummy_cal = self.dummy_cal_type() # if instance is registered, can't register type with same name self.dispatcher.register_calendar("DMY", dummy_cal) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) self.dispatcher.deregister_calendar("DMY") # if type is registered, can't register instance with same name self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) def test_force_registration(self): self.dispatcher.register_calendar("DMY", self.dummy_cal_type()) first_dummy = self.dispatcher.get_calendar("DMY") # force-register a new instance self.dispatcher.register_calendar("DMY", self.dummy_cal_type(), force=True) second_dummy = self.dispatcher.get_calendar("DMY") self.assertNotEqual(first_dummy, second_dummy) class DefaultsTestCase(TestCase): def test_default_calendars(self): dispatcher = ExchangeCalendarDispatcher( calendars={}, calendar_factories=_default_calendar_factories, aliases=_default_calendar_aliases, ) # These are ordered aliases first, so that we can deregister the # canonical factories when we're done with them, and we'll be done with # them after they've been used by all aliases and by canonical name. for name in concat([_default_calendar_aliases, _default_calendar_factories]): self.assertIsNotNone( dispatcher.get_calendar(name), "get_calendar(%r) returned None" % name ) dispatcher.deregister_calendar(name) class DaysAtTimeTestCase(TestCase): @parameterized.expand( [ # NYSE standard day ( "2016-07-19", 0, time(9, 31), pytz.timezone("America/New_York"), "2016-07-19 9:31", ), # CME standard day ( "2016-07-19", -1, time(17, 1), pytz.timezone("America/Chicago"), "2016-07-18 17:01", ), # CME day after DST start ( "2004-04-05", -1, time(17, 1), pytz.timezone("America/Chicago"), "2004-04-04 17:01", ), # ICE day after DST start ( "1990-04-02", -1, time(19, 1), pytz.timezone("America/Chicago"), "1990-04-01 19:01", ), ] ) def test_days_at_time(self, day, day_offset, time_offset, tz, expected): days = pd.DatetimeIndex([pd.Timestamp(day, tz=tz)]) result = days_at_time(days, time_offset, tz, day_offset)[0] expected = pd.Timestamp(expected, tz=tz).tz_convert(UTC) self.assertEqual(result, expected) class ExchangeCalendarTestBase(object): # Override in subclasses. answer_key_filename = None calendar_class = None # Affects test_start_bound. Should be set to earliest date for which # calendar can be instantiated, or None if no start bound. START_BOUND: pd.Timestamp | None = None # Affects test_end_bound. Should be set to latest date for which # calendar can be instantiated, or None if no end bound. END_BOUND: pd.Timestamp | None = None # Affects tests that care about the empty periods between sessions. Should # be set to False for 24/7 calendars. GAPS_BETWEEN_SESSIONS = True # Affects tests that care about early closes. Should be set to False for # calendars that don't have any early closes. HAVE_EARLY_CLOSES = True # Affects tests that care about late opens. Since most do not, defaulting # to False. HAVE_LATE_OPENS = False # Affects test_for_breaks. True if one or more calendar sessions has a # break. HAVE_BREAKS = False # Affects test_session_has_break. SESSION_WITH_BREAK = None # None if no session has a break SESSION_WITHOUT_BREAK = T("2011-06-15") # None if all sessions have breaks # Affects test_sanity_check_session_lengths. Should be set to the largest # number of hours that ever appear in a single session. MAX_SESSION_HOURS = 0 # Affects test_minute_index_to_session_labels. # Change these if the start/end dates of your test suite don't contain the # defaults. MINUTE_INDEX_TO_SESSION_LABELS_START = pd.Timestamp("2011-01-04", tz=UTC) MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp("2011-04-04", tz=UTC) # Affects tests around daylight savings. If possible, should contain two # dates that are not both in the same daylight savings regime. DAYLIGHT_SAVINGS_DATES = ["2004-04-05", "2004-11-01"] # Affects test_start_end. Change these if your calendar start/end # dates between 2010-01-03 and 2010-01-10 don't match the defaults. TEST_START_END_FIRST = pd.Timestamp("2010-01-03", tz=UTC) TEST_START_END_LAST = pd.Timestamp("2010-01-10", tz=UTC) TEST_START_END_EXPECTED_FIRST = pd.Timestamp("2010-01-04", tz=UTC) TEST_START_END_EXPECTED_LAST = pd.Timestamp("2010-01-08", tz=UTC) @staticmethod def load_answer_key(filename): """ Load a CSV from tests/resources/{filename}.csv """ fullpath = join( dirname(abspath(__file__)), "./resources", filename + ".csv", ) return read_csv( fullpath, index_col=0, # NOTE: Merely passing parse_dates=True doesn't cause pandas to set # the dtype correctly, and passing all reasonable inputs to the # dtype kwarg cause read_csv to barf. parse_dates=[0, 1, 2], date_parser=lambda x: pd.Timestamp(x, tz=UTC), ) @classmethod def setup_class(cls): cls.answers = cls.load_answer_key(cls.answer_key_filename) cls.start_date = cls.answers.index[0] cls.end_date = cls.answers.index[-1] cls.calendar = cls.calendar_class(cls.start_date, cls.end_date) cls.one_minute = pd.Timedelta(1, "T") cls.one_hour = pd.Timedelta(1, "H") cls.one_day = pd.Timedelta(1, "D") cls.today = pd.Timestamp.now(tz="UTC").floor("D") @classmethod def teardown_class(cls): cls.calendar = None cls.answers = None def test_bound_start(self): if self.START_BOUND is not None: cal = self.calendar_class(self.START_BOUND, self.today) self.assertIsInstance(cal, ExchangeCalendar) start = self.START_BOUND - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): self.calendar_class(start, self.today) else: # verify no bound imposed cal = self.calendar_class(pd.Timestamp("1902-01-01", tz="UTC"), self.today) self.assertIsInstance(cal, ExchangeCalendar) def test_bound_end(self): if self.END_BOUND is not None: cal = self.calendar_class(self.today, self.END_BOUND) self.assertIsInstance(cal, ExchangeCalendar) end = self.END_BOUND + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): self.calendar_class(self.today, end) else: # verify no bound imposed cal = self.calendar_class(self.today, pd.Timestamp("2050-01-01", tz="UTC")) self.assertIsInstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self): # make sure that no session is longer than self.MAX_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.MAX_SESSION_HOURS) def test_calculated_against_csv(self): tm.assert_index_equal(self.calendar.schedule.index, self.answers.index) def test_adhoc_holidays_specification(self): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(self.calendar.adhoc_holidays) assert dti.tz is None def test_is_open_on_minute(self): one_minute = pd.Timedelta(minutes=1) m = self.calendar.is_open_on_minute for market_minute in self.answers.market_open[1:]: market_minute_utc = market_minute # The exchange should be classified as open on its first minute self.assertTrue(m(market_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # Decrement minute by one, to minute where the market was not # open pre_market = market_minute_utc - one_minute self.assertFalse(m(pre_market, _parse=False)) for market_minute in self.answers.market_close[:-1]: close_minute_utc = market_minute # should be open on its last minute self.assertTrue(m(close_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # increment minute by one minute, should be closed post_market = close_minute_utc + one_minute self.assertFalse(m(post_market, _parse=False)) def _verify_minute( self, calendar, minute, next_open_answer, prev_open_answer, next_close_answer, prev_close_answer, ): next_open = calendar.next_open(minute, _parse=False) self.assertEqual(next_open, next_open_answer) prev_open = self.calendar.previous_open(minute, _parse=False) self.assertEqual(prev_open, prev_open_answer) next_close = self.calendar.next_close(minute, _parse=False) self.assertEqual(next_close, next_close_answer) prev_close = self.calendar.previous_close(minute, _parse=False) self.assertEqual(prev_close, prev_close_answer) def test_next_prev_open_close(self): # for each session, check: # - the minute before the open (if gaps exist between sessions) # - the first minute of the session # - the second minute of the session # - the minute before the close # - the last minute of the session # - the first minute after the close (if gaps exist between sessions) opens = self.answers.market_open.iloc[1:-2] closes = self.answers.market_close.iloc[1:-2] previous_opens = self.answers.market_open.iloc[:-1] previous_closes = self.answers.market_close.iloc[:-1] next_opens = self.answers.market_open.iloc[2:] next_closes = self.answers.market_close.iloc[2:] for ( open_minute, close_minute, previous_open, previous_close, next_open, next_close, ) in zip( opens, closes, previous_opens, previous_closes, next_opens, next_closes ): minute_before_open = open_minute - self.one_minute # minute before open if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, minute_before_open, open_minute, previous_open, close_minute, previous_close, ) # open minute self._verify_minute( self.calendar, open_minute, next_open, previous_open, close_minute, previous_close, ) # second minute of session self._verify_minute( self.calendar, open_minute + self.one_minute, next_open, open_minute, close_minute, previous_close, ) # minute before the close self._verify_minute( self.calendar, close_minute - self.one_minute, next_open, open_minute, close_minute, previous_close, ) # the close self._verify_minute( self.calendar, close_minute, next_open, open_minute, next_close, previous_close, ) # minute after the close if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, close_minute + self.one_minute, next_open, open_minute, next_close, close_minute, ) def test_next_prev_minute(self): all_minutes = self.calendar.all_minutes # test 20,000 minutes because it takes too long to do the rest. for idx, minute in enumerate(all_minutes[1:20000]): self.assertEqual( all_minutes[idx + 2], self.calendar.next_minute(minute, _parse=False) ) self.assertEqual( all_minutes[idx], self.calendar.previous_minute(minute, _parse=False) ) # test a couple of non-market minutes if self.GAPS_BETWEEN_SESSIONS: for open_minute in self.answers.market_open[1:]: hour_before_open = open_minute - self.one_hour self.assertEqual( open_minute, self.calendar.next_minute(hour_before_open, _parse=False), ) for close_minute in self.answers.market_close[1:]: hour_after_close = close_minute + self.one_hour self.assertEqual( close_minute, self.calendar.previous_minute(hour_after_close, _parse=False), ) def test_date_to_session_label(self): m = self.calendar.date_to_session_label sessions = self.answers.index[:30] # first 30 sessions # test for error if request session prior to first calendar session. date = self.answers.index[0] - self.one_day error_msg = ( "Cannot get a session label prior to the first calendar" f" session ('{self.answers.index[0]}'). Consider passing" " `direction` as 'next'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "previous", _parse=False) # direction as "previous" dates = pd.date_range(sessions[0], sessions[-1], freq="D") last_session = None for date in dates: session_label = m(date, "previous", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # direction as "next" last_session = None for date in dates.sort_values(ascending=False): session_label = m(date, "next", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # test for error if request session after last calendar session. date = self.answers.index[-1] + self.one_day error_msg = ( "Cannot get a session label later than the last calendar" f" session ('{self.answers.index[-1]}'). Consider passing" " `direction` as 'previous'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "next", _parse=False) if self.GAPS_BETWEEN_SESSIONS: not_sessions = dates[~dates.isin(sessions)][:5] for not_session in not_sessions: error_msg = ( f"`date` '{not_session}' does not represent a session. Consider" " passing a `direction`." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "none", _parse=False) # test default behaviour with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, _parse=False) # non-valid direction (can only be thrown if gaps between sessions) error_msg = ( "'not a direction' is not a valid `direction`. Valid `direction`" ' values are "next", "previous" and "none".' ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "not a direction", _parse=False) def test_minute_to_session_label(self): m = self.calendar.minute_to_session_label # minute is prior to first session's open minute_before_first_open = self.answers.iloc[0].market_open - self.one_minute session_label = self.answers.index[0] minutes_that_resolve_to_this_session = [ m(minute_before_first_open, _parse=False), m(minute_before_first_open, direction="next", _parse=False), ] unique_session_labels = set(minutes_that_resolve_to_this_session) self.assertTrue(len(unique_session_labels) == 1) self.assertIn(session_label, unique_session_labels) with self.assertRaises(ValueError): m(minute_before_first_open, direction="previous", _parse=False) with self.assertRaises(ValueError): m(minute_before_first_open, direction="none", _parse=False) # minute is between first session's open and last session's close for idx, (session_label, open_minute, close_minute, _, _) in enumerate( self.answers.iloc[1:-2].itertuples(name=None) ): hour_into_session = open_minute + self.one_hour minute_before_session = open_minute - self.one_minute minute_after_session = close_minute + self.one_minute next_session_label = self.answers.index[idx + 2] previous_session_label = self.answers.index[idx] # verify that minutes inside a session resolve correctly minutes_that_resolve_to_this_session = [ m(open_minute, _parse=False), m(open_minute, direction="next", _parse=False), m(open_minute, direction="previous", _parse=False), m(open_minute, direction="none", _parse=False), m(hour_into_session, _parse=False), m(hour_into_session, direction="next", _parse=False), m(hour_into_session, direction="previous", _parse=False), m(hour_into_session, direction="none", _parse=False), m(close_minute), m(close_minute, direction="next", _parse=False), m(close_minute, direction="previous", _parse=False), m(close_minute, direction="none", _parse=False), session_label, ] if self.GAPS_BETWEEN_SESSIONS: minutes_that_resolve_to_this_session.append( m(minute_before_session, _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_before_session, direction="next", _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_after_session, direction="previous", _parse=False) ) self.assertTrue( all( x == minutes_that_resolve_to_this_session[0] for x in minutes_that_resolve_to_this_session ) ) minutes_that_resolve_to_next_session = [ m(minute_after_session, _parse=False), m(minute_after_session, direction="next", _parse=False), next_session_label, ] self.assertTrue( all( x == minutes_that_resolve_to_next_session[0] for x in minutes_that_resolve_to_next_session ) ) self.assertEqual( m(minute_before_session, direction="previous", _parse=False), previous_session_label, ) if self.GAPS_BETWEEN_SESSIONS: # Make sure we use the cache correctly minutes_that_resolve_to_different_sessions = [ m(minute_after_session, direction="next", _parse=False), m(minute_after_session, direction="previous", _parse=False), m(minute_after_session, direction="next", _parse=False), ] self.assertEqual( minutes_that_resolve_to_different_sessions, [next_session_label, session_label, next_session_label], ) # make sure that exceptions are raised at the right time with self.assertRaises(ValueError): m(open_minute, "asdf", _parse=False) if self.GAPS_BETWEEN_SESSIONS: with self.assertRaises(ValueError): m(minute_before_session, direction="none", _parse=False) # minute is later than last session's close minute_after_last_close = self.answers.iloc[-1].market_close + self.one_minute session_label = self.answers.index[-1] minute_that_resolves_to_session_label = m( minute_after_last_close, direction="previous", _parse=False ) self.assertEqual(session_label, minute_that_resolves_to_session_label) with self.assertRaises(ValueError): m(minute_after_last_close, _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="next", _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="none", _parse=False) @parameterized.expand( [ (1, 0), (2, 0), (2, 1), ] ) def test_minute_index_to_session_labels(self, interval, offset): minutes = self.calendar.minutes_for_sessions_in_range( self.MINUTE_INDEX_TO_SESSION_LABELS_START, self.MINUTE_INDEX_TO_SESSION_LABELS_END, ) minutes = minutes[range(offset, len(minutes), interval)] np.testing.assert_array_equal( pd.DatetimeIndex(minutes.map(self.calendar.minute_to_session_label)), self.calendar.minute_index_to_session_labels(minutes), ) def test_next_prev_session(self): session_labels = self.answers.index[1:-2] max_idx = len(session_labels) - 1 # the very first session first_session_label = self.answers.index[0] with self.assertRaises(ValueError): self.calendar.previous_session_label(first_session_label, _parse=False) # all the sessions in the middle for idx, session_label in enumerate(session_labels): if idx < max_idx: self.assertEqual( self.calendar.next_session_label(session_label, _parse=False), session_labels[idx + 1], ) if idx > 0: self.assertEqual( self.calendar.previous_session_label(session_label, _parse=False), session_labels[idx - 1], ) # the very last session last_session_label = self.answers.index[-1] with self.assertRaises(ValueError): self.calendar.next_session_label(last_session_label, _parse=False) @staticmethod def _find_full_session(calendar): for session_label in calendar.schedule.index: if session_label not in calendar.early_closes: return session_label return None def test_minutes_for_period(self): # full session # find a session that isn't an early close. start from the first # session, should be quick. full_session_label = self._find_full_session(self.calendar) if full_session_label is None: raise ValueError("Cannot find a full session to test!") minutes = self.calendar.minutes_for_session(full_session_label) _open, _close = self.calendar.open_and_close_for_session(full_session_label) _break_start, _break_end = self.calendar.break_start_and_end_for_session( full_session_label ) if not pd.isnull(_break_start): constructed_minutes = np.concatenate( [ pd.date_range(start=_open, end=_break_start, freq="min"), pd.date_range(start=_break_end, end=_close, freq="min"), ] ) else: constructed_minutes = pd.date_range(start=_open, end=_close, freq="min") np.testing.assert_array_equal( minutes, constructed_minutes, ) # early close period if self.HAVE_EARLY_CLOSES: early_close_session_label = self.calendar.early_closes[0] minutes_for_early_close = self.calendar.minutes_for_session( early_close_session_label ) _open, _close = self.calendar.open_and_close_for_session( early_close_session_label ) np.testing.assert_array_equal( minutes_for_early_close, pd.date_range(start=_open, end=_close, freq="min"), ) # late open period if self.HAVE_LATE_OPENS: late_open_session_label = self.calendar.late_opens[0] minutes_for_late_open = self.calendar.minutes_for_session( late_open_session_label ) _open, _close = self.calendar.open_and_close_for_session( late_open_session_label ) np.testing.assert_array_equal( minutes_for_late_open, pd.date_range(start=_open, end=_close, freq="min"), ) def test_sessions_in_range(self): # pick two sessions session_count = len(self.calendar.schedule.index) first_idx = session_count // 3 second_idx = 2 * first_idx first_session_label = self.calendar.schedule.index[first_idx] second_session_label = self.calendar.schedule.index[second_idx] answer_key = self.calendar.schedule.index[first_idx : second_idx + 1] rtrn = self.calendar.sessions_in_range( first_session_label, second_session_label, _parse=False ) np.testing.assert_array_equal(answer_key, rtrn) def get_session_block(self): """ Get an "interesting" range of three sessions in a row. By default this tries to find and return a (full session, early close session, full session) block. """ if not self.HAVE_EARLY_CLOSES: # If we don't have any early closes, just return a "random" chunk # of three sessions. return self.calendar.all_sessions[10:13] shortened_session = self.calendar.early_closes[0] shortened_session_idx = self.calendar.schedule.index.get_loc(shortened_session) session_before = self.calendar.schedule.index[shortened_session_idx - 1] session_after = self.calendar.schedule.index[shortened_session_idx + 1] return [session_before, shortened_session, session_after] def test_minutes_in_range(self): sessions = self.get_session_block() first_open, first_close = self.calendar.open_and_close_for_session(sessions[0]) minute_before_first_open = first_open - self.one_minute middle_open, middle_close = self.calendar.open_and_close_for_session( sessions[1] ) last_open, last_close = self.calendar.open_and_close_for_session(sessions[-1]) minute_after_last_close = last_close + self.one_minute # get all the minutes between first_open and last_close minutes1 = self.calendar.minutes_in_range(first_open, last_close, _parse=False) minutes2 = self.calendar.minutes_in_range( minute_before_first_open, minute_after_last_close, _parse=False ) if self.GAPS_BETWEEN_SESSIONS: np.testing.assert_array_equal(minutes1, minutes2) else: # if no gaps, then minutes2 should have 2 extra minutes np.testing.assert_array_equal(minutes1, minutes2[1:-1]) # manually construct the minutes ( first_break_start, first_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[0]) ( middle_break_start, middle_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[1]) ( last_break_start, last_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[-1]) intervals = [ (first_open, first_break_start, first_break_end, first_close), (middle_open, middle_break_start, middle_break_end, middle_close), (last_open, last_break_start, last_break_end, last_close), ] all_minutes = [] for _open, _break_start, _break_end, _close in intervals: if pd.isnull(_break_start): all_minutes.append( pd.date_range(start=_open, end=_close, freq="min"), ) else: all_minutes.append( pd.date_range(start=_open, end=_break_start, freq="min"), ) all_minutes.append( pd.date_range(start=_break_end, end=_close, freq="min"), ) all_minutes = np.concatenate(all_minutes) np.testing.assert_array_equal(all_minutes, minutes1) def test_minutes_for_sessions_in_range(self): sessions = self.get_session_block() minutes = self.calendar.minutes_for_sessions_in_range(sessions[0], sessions[-1]) # do it manually session0_minutes = self.calendar.minutes_for_session(sessions[0]) session1_minutes = self.calendar.minutes_for_session(sessions[1]) session2_minutes = self.calendar.minutes_for_session(sessions[2]) concatenated_minutes = np.concatenate( [session0_minutes.values, session1_minutes.values, session2_minutes.values] ) np.testing.assert_array_equal(concatenated_minutes, minutes.values) def test_sessions_window(self): sessions = self.get_session_block() np.testing.assert_array_equal( self.calendar.sessions_window(sessions[0], len(sessions) - 1, _parse=False), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) np.testing.assert_array_equal( self.calendar.sessions_window( sessions[-1], -1 * (len(sessions) - 1), _parse=False ), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) def test_session_distance(self): sessions = self.get_session_block() forward_distance = self.calendar.session_distance( sessions[0], sessions[-1], _parse=False, ) self.assertEqual(forward_distance, len(sessions)) backward_distance = self.calendar.session_distance( sessions[-1], sessions[0], _parse=False, ) self.assertEqual(backward_distance, -len(sessions)) one_day_distance = self.calendar.session_distance( sessions[0], sessions[0], _parse=False, ) self.assertEqual(one_day_distance, 1) def test_open_and_close_for_session(self): for session_label, open_answer, close_answer, _, _ in self.answers.itertuples( name=None ): found_open, found_close = self.calendar.open_and_close_for_session( session_label, _parse=False ) # Test that the methods for just session open and close produce the # same values as the method for getting both. alt_open = self.calendar.session_open(session_label, _parse=False) self.assertEqual(alt_open, found_open) alt_close = self.calendar.session_close(session_label, _parse=False) self.assertEqual(alt_close, found_close) self.assertEqual(open_answer, found_open) self.assertEqual(close_answer, found_close) def test_session_opens_in_range(self): found_opens = self.calendar.session_opens_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_opens.index.freq = None tm.assert_series_equal(found_opens, self.answers["market_open"]) def test_session_closes_in_range(self): found_closes = self.calendar.session_closes_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_closes.index.freq = None tm.assert_series_equal(found_closes, self.answers["market_close"]) def test_daylight_savings(self): # 2004 daylight savings switches: # Sunday 2004-04-04 and Sunday 2004-10-31 # make sure there's no weirdness around calculating the next day's # session's open time. m = dict(self.calendar.open_times) m[pd.Timestamp.min] = m.pop(None) open_times = pd.Series(m) for date in self.DAYLIGHT_SAVINGS_DATES: next_day = pd.Timestamp(date, tz=UTC) open_date = next_day + Timedelta(days=self.calendar.open_offset) the_open = self.calendar.schedule.loc[next_day].market_open localized_open = the_open.tz_localize(UTC).tz_convert(self.calendar.tz) self.assertEqual( (open_date.year, open_date.month, open_date.day), (localized_open.year, localized_open.month, localized_open.day), ) open_ix = open_times.index.searchsorted(pd.Timestamp(date), side="right") if open_ix == len(open_times): open_ix -= 1 self.assertEqual(open_times.iloc[open_ix].hour, localized_open.hour) self.assertEqual(open_times.iloc[open_ix].minute, localized_open.minute) def test_start_end(self): """ Check ExchangeCalendar with defined start/end dates. """ calendar = self.calendar_class( start=self.TEST_START_END_FIRST, end=self.TEST_START_END_LAST, ) self.assertEqual( calendar.first_trading_session, self.TEST_START_END_EXPECTED_FIRST, ) self.assertEqual( calendar.last_trading_session, self.TEST_START_END_EXPECTED_LAST, ) def test_has_breaks(self): has_breaks = self.calendar.has_breaks() self.assertEqual(has_breaks, self.HAVE_BREAKS) def test_session_has_break(self): if self.SESSION_WITHOUT_BREAK is not None: self.assertFalse( self.calendar.session_has_break(self.SESSION_WITHOUT_BREAK) ) if self.SESSION_WITH_BREAK is not None: self.assertTrue(self.calendar.session_has_break(self.SESSION_WITH_BREAK)) # TODO remove this class when all calendars migrated. No longer requried as # `minute_index_to_session_labels` comprehensively tested under new suite. class OpenDetectionTestCase(TestCase): # This is an extra set of unit tests that were added during a rewrite of # `minute_index_to_session_labels` to ensure that the existing # calendar-generic test suite correctly covered edge cases around # non-market minutes. def test_detect_non_market_minutes(self): cal = get_calendar("NYSE") # NOTE: This test is here instead of being on the base class for all # calendars because some of our calendars are 24/7, which means there # aren't any non-market minutes to find. day0 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-03", tz=UTC), pd.Timestamp("2013-07-03", tz=UTC), ) for minute in day0: self.assertTrue(cal.is_open_on_minute(minute)) day1 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-05", tz=UTC), pd.Timestamp("2013-07-05", tz=UTC), ) for minute in day1: self.assertTrue(cal.is_open_on_minute(minute)) def NYSE_timestamp(s): return pd.Timestamp(s, tz="America/New_York").tz_convert(UTC) non_market = [ # After close. NYSE_timestamp("2013-07-03 16:01"), # Holiday. NYSE_timestamp("2013-07-04 10:00"), # Before open. NYSE_timestamp("2013-07-05 9:29"), ] for minute in non_market: self.assertFalse(cal.is_open_on_minute(minute), minute) input_ = pd.to_datetime( np.hstack([day0.values, minute.asm8, day1.values]), utc=True, ) with self.assertRaises(ValueError) as e: cal.minute_index_to_session_labels(input_) exc_str = str(e.exception) self.assertIn("First Bad Minute: {}".format(minute), exc_str) # TODO remove this class when all calendars migrated. No longer requried as # this case is handled by new test base internally. class NoDSTExchangeCalendarTestBase(ExchangeCalendarTestBase): def test_daylight_savings(self): """ Several countries in Africa / Asia do not observe DST so we need to skip over this test for those markets """ pass def get_csv(name: str) -> pd.DataFrame: """Get csv file as DataFrame for given calendar `name`.""" filename = name.replace("/", "-").lower() + ".csv" path = pathlib.Path(__file__).parent.joinpath("resources", filename) df = pd.read_csv( path, index_col=0, parse_dates=[0, 1, 2, 3, 4], infer_datetime_format=True, ) df.index = df.index.tz_localize("UTC") for col in df: df[col] = df[col].dt.tz_localize("UTC") return df class Answers: """Inputs and expected output for testing a given calendar and side. Inputs and expected outputs are provided by public instance methods and properties. These either read directly from the corresponding .csv file or are evaluated from the .csv file contents. NB Properites / methods MUST NOT make evaluations by way of repeating the code of the ExchangeCalendar method they are intended to test! Parameters ---------- calendar_name Canonical name of calendar for which require answer info. For example, 'XNYS'. side {'both', 'left', 'right', 'neither'} Side of sessions to treat as trading minutes. """ ONE_MIN = pd.Timedelta(1, "T") TWO_MIN = pd.Timedelta(2, "T") ONE_DAY = pd.Timedelta(1, "D") LEFT_SIDES = ["left", "both"] RIGHT_SIDES = ["right", "both"] def __init__( self, calendar_name: str, side: str, ): self._name = calendar_name.upper() self._side = side # --- Exposed constructor arguments --- @property def name(self) -> str: """Name of corresponding calendar.""" return self._name @property def side(self) -> str: """Side of calendar for which answers valid.""" return self._side # --- Properties read (indirectly) from csv file --- @functools.lru_cache(maxsize=4) def _answers(self) -> pd.DataFrame: return get_csv(self.name) @property def answers(self) -> pd.DataFrame: """Answers as correspoding csv.""" return self._answers() @property def sessions(self) -> pd.DatetimeIndex: """Session labels.""" return self.answers.index @property def opens(self) -> pd.Series: """Market open time for each session.""" return self.answers.market_open @property def closes(self) -> pd.Series: """Market close time for each session.""" return self.answers.market_close @property def break_starts(self) -> pd.Series: """Break start time for each session.""" return self.answers.break_start @property def break_ends(self) -> pd.Series: """Break end time for each session.""" return self.answers.break_end # --- get and helper methods --- def get_next_session(self, session: pd.Timestamp) -> pd.Timestamp: """Get session that immediately follows `session`.""" assert ( session != self.last_session ), "Cannot get session later than last answers' session." idx = self.sessions.get_loc(session) + 1 return self.sessions[idx] def session_has_break(self, session: pd.Timestamp) -> bool: """Query if `session` has a break.""" return session in self.sessions_with_break @staticmethod def get_sessions_sample(sessions: pd.DatetimeIndex): """Return sample of given `sessions`. Sample includes: All sessions within first two years of `sessions`. All sessions within last two years of `sessions`. All sessions falling: within first 3 days of any month. from 28th of any month. from 14th through 16th of any month. """ if sessions.empty: return sessions mask = ( (sessions < sessions[0] + pd.DateOffset(years=2)) | (sessions > sessions[-1] - pd.DateOffset(years=2)) | (sessions.day <= 3) | (sessions.day >= 28) | (14 <= sessions.day) & (sessions.day <= 16) ) return sessions[mask] def get_sessions_minutes( self, start: pd.Timestamp, end: pd.Timestamp | int = 1 ) -> pd.DatetimeIndex: """Get trading minutes for 1 or more consecutive sessions. Parameters ---------- start Session from which to get trading minutes. end Session through which to get trading mintues. Can be passed as: pd.Timestamp: return will include trading minutes for `end` session. int: where int represents number of consecutive sessions inclusive of `start`, for which require trading minutes. Default is 1, such that by default will return trading minutes for only `start` session. """ idx = self.sessions.get_loc(start) stop = idx + end if isinstance(end, int) else self.sessions.get_loc(end) + 1 indexer = slice(idx, stop) dtis = [] for first, last, last_am, first_pm in zip( self.first_minutes[indexer], self.last_minutes[indexer], self.last_am_minutes[indexer], self.first_pm_minutes[indexer], ): if pd.isna(last_am): dtis.append(pd.date_range(first, last, freq="T")) else: dtis.append(pd.date_range(first, last_am, freq="T")) dtis.append(pd.date_range(first_pm, last, freq="T")) return dtis[0].union_many(dtis[1:]) # --- Evaluated general calendar properties --- @functools.lru_cache(maxsize=4) def _has_a_session_with_break(self) -> pd.DatetimeIndex: return self.break_starts.notna().any() @property def has_a_session_with_break(self) -> bool: """Does any session of answers have a break.""" return self._has_a_session_with_break() @property def has_a_session_without_break(self) -> bool: """Does any session of answers not have a break.""" return self.break_starts.isna().any() # --- Evaluated properties for first and last sessions --- @property def first_session(self) -> pd.Timestamp: """First session covered by answers.""" return self.sessions[0] @property def last_session(self) -> pd.Timestamp: """Last session covered by answers.""" return self.sessions[-1] @property def sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last sessions covered by answers.""" return self.first_session, self.last_session @property def first_session_open(self) -> pd.Timestamp: """Open time of first session covered by answers.""" return self.opens[0] @property def last_session_close(self) -> pd.Timestamp: """Close time of last session covered by answers.""" return self.closes[-1] @property def first_trading_minute(self) -> pd.Timestamp: open_ = self.first_session_open return open_ if self.side in self.LEFT_SIDES else open_ + self.ONE_MIN @property def last_trading_minute(self) -> pd.Timestamp: close = self.last_session_close return close if self.side in self.RIGHT_SIDES else close - self.ONE_MIN @property def trading_minutes_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last trading minutes covered by answers.""" return self.first_trading_minute, self.last_trading_minute # --- out-of-bounds properties --- @property def minute_too_early(self) -> pd.Timestamp: """Minute earlier than first trading minute.""" return self.first_trading_minute - self.ONE_MIN @property def minute_too_late(self) -> pd.Timestamp: """Minute later than last trading minute.""" return self.last_trading_minute + self.ONE_MIN @property def session_too_early(self) -> pd.Timestamp: """Date earlier than first session.""" return self.first_session - self.ONE_DAY @property def session_too_late(self) -> pd.Timestamp: """Date later than last session.""" return self.last_session + self.ONE_DAY # --- Evaluated properties covering every session. --- @functools.lru_cache(maxsize=4) def _first_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.opens.copy() else: minutes = self.opens + self.ONE_MIN minutes.name = "first_minutes" return minutes @property def first_minutes(self) -> pd.Series: """First trading minute of each session (UTC).""" return self._first_minutes() @property def first_minutes_plus_one(self) -> pd.Series: """First trading minute of each session plus one minute.""" return self.first_minutes + self.ONE_MIN @property def first_minutes_less_one(self) -> pd.Series: """First trading minute of each session less one minute.""" return self.first_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.closes.copy() else: minutes = self.closes - self.ONE_MIN minutes.name = "last_minutes" return minutes @property def last_minutes(self) -> pd.Series: """Last trading minute of each session.""" return self._last_minutes() @property def last_minutes_plus_one(self) -> pd.Series: """Last trading minute of each session plus one minute.""" return self.last_minutes + self.ONE_MIN @property def last_minutes_less_one(self) -> pd.Series: """Last trading minute of each session less one minute.""" return self.last_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_am_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.break_starts.copy() else: minutes = self.break_starts - self.ONE_MIN minutes.name = "last_am_minutes" return minutes @property def last_am_minutes(self) -> pd.Series: """Last pre-break trading minute of each session. NaT if session does not have a break. """ return self._last_am_minutes() @property def last_am_minutes_plus_one(self) -> pd.Series: """Last pre-break trading minute of each session plus one minute.""" return self.last_am_minutes + self.ONE_MIN @property def last_am_minutes_less_one(self) -> pd.Series: """Last pre-break trading minute of each session less one minute.""" return self.last_am_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _first_pm_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.break_ends.copy() else: minutes = self.break_ends + self.ONE_MIN minutes.name = "first_pm_minutes" return minutes @property def first_pm_minutes(self) -> pd.Series: """First post-break trading minute of each session. NaT if session does not have a break. """ return self._first_pm_minutes() @property def first_pm_minutes_plus_one(self) -> pd.Series: """First post-break trading minute of each session plus one minute.""" return self.first_pm_minutes + self.ONE_MIN @property def first_pm_minutes_less_one(self) -> pd.Series: """First post-break trading minute of each session less one minute.""" return self.first_pm_minutes - self.ONE_MIN # --- Evaluated session sets and ranges that meet a specific condition --- @property def _mask_breaks(self) -> pd.Series: return self.break_starts.notna() @functools.lru_cache(maxsize=4) def _sessions_with_break(self) -> pd.DatetimeIndex: return self.sessions[self._mask_breaks] @property def sessions_with_break(self) -> pd.DatetimeIndex: return self._sessions_with_break() @functools.lru_cache(maxsize=4) def _sessions_without_break(self) -> pd.DatetimeIndex: return self.sessions[~self._mask_breaks] @property def sessions_without_break(self) -> pd.DatetimeIndex: return self._sessions_without_break() @property def sessions_without_break_run(self) -> pd.DatetimeIndex: """Longest run of consecutive sessions without a break.""" s = self.break_starts.isna() if s.empty: return pd.DatetimeIndex([], tz="UTC") trues_grouped = (~s).cumsum()[s] group_sizes = trues_grouped.value_counts() max_run_size = group_sizes.max() max_run_group_id = group_sizes[group_sizes == max_run_size].index[0] run_without_break = trues_grouped[trues_grouped == max_run_group_id].index return run_without_break @property def sessions_without_break_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest session range that does not include a session with a break. Returns None if all sessions have a break. """ sessions = self.sessions_without_break_run if sessions.empty: return None return sessions[0], sessions[-1] @property def _mask_sessions_without_gap_after(self) -> pd.Series: if self.side == "neither": # will always have gap after if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if next open is one minute after previous close closes_plus_min = self.closes + pd.Timedelta(1, "T") return self.opens.shift(-1) == closes_plus_min else: return self.opens.shift(-1) == self.closes @property def _mask_sessions_without_gap_before(self) -> pd.Series: if self.side == "neither": # will always have gap before if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if previous close is one minute before next open opens_minus_one = self.opens - pd.Timedelta(1, "T") return self.closes.shift(1) == opens_minus_one else: return self.closes.shift(1) == self.opens @functools.lru_cache(maxsize=4) def _sessions_without_gap_after(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_after return self.sessions[mask][:-1] @property def sessions_without_gap_after(self) -> pd.DatetimeIndex: """Sessions not followed by a non-trading minute. Rather, sessions immediately followed by first trading minute of next session. """ return self._sessions_without_gap_after() @functools.lru_cache(maxsize=4) def _sessions_with_gap_after(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_after return self.sessions[~mask][:-1] @property def sessions_with_gap_after(self) -> pd.DatetimeIndex: """Sessions followed by a non-trading minute.""" return self._sessions_with_gap_after() @functools.lru_cache(maxsize=4) def _sessions_without_gap_before(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_before return self.sessions[mask][1:] @property def sessions_without_gap_before(self) -> pd.DatetimeIndex: """Sessions not preceeded by a non-trading minute. Rather, sessions immediately preceeded by last trading minute of previous session. """ return self._sessions_without_gap_before() @functools.lru_cache(maxsize=4) def _sessions_with_gap_before(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_before return self.sessions[~mask][1:] @property def sessions_with_gap_before(self) -> pd.DatetimeIndex: """Sessions preceeded by a non-trading minute.""" return self._sessions_with_gap_before() # times are changing... @functools.lru_cache(maxsize=16) def _get_sessions_with_times_different_to_next_session( self, column: str, # typing.Literal["opens", "closes", "break_starts", "break_ends"] ) -> list[pd.DatetimeIndex]: """For a given answers column, get session labels where time differs from time of next session. Where `column` is a break time ("break_starts" or "break_ends"), return will not include sessions when next session has a different `has_break` status. For example, if session_0 has a break and session_1 does not have a break, or vice versa, then session_0 will not be included to return. For sessions followed by a session with a different `has_break` status, see `_get_sessions_with_has_break_different_to_next_session`. Returns ------- list of pd.Datetimeindex [0] sessions with earlier next session [1] sessions with later next session """ # column takes string to allow lru_cache (Series not hashable) is_break_col = column[0] == "b" column_ = getattr(self, column) if is_break_col: if column_.isna().all(): return [pd.DatetimeIndex([], tz="UTC")] * 4 column_ = column_.fillna(method="ffill").fillna(method="bfill") diff = (column_.shift(-1) - column_)[:-1] remainder = diff % pd.Timedelta(hours=24) mask = remainder != pd.Timedelta(0) sessions = self.sessions[:-1][mask] next_session_earlier_mask = remainder[mask] > pd.Timedelta(hours=12) next_session_earlier = sessions[next_session_earlier_mask] next_session_later = sessions[~next_session_earlier_mask] if is_break_col: mask = next_session_earlier.isin(self.sessions_without_break) next_session_earlier = next_session_earlier.drop(next_session_earlier[mask]) mask = next_session_later.isin(self.sessions_without_break) next_session_later = next_session_later.drop(next_session_later[mask]) return [next_session_earlier, next_session_later] @property def _sessions_with_opens_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("opens") @property def _sessions_with_closes_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("closes") @property def _sessions_with_break_start_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("break_starts") @property def _sessions_with_break_end_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("break_ends") @property def sessions_next_open_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_opens_different_to_next_session[0] @property def sessions_next_open_later(self) -> pd.DatetimeIndex: return self._sessions_with_opens_different_to_next_session[1] @property def sessions_next_open_different(self) -> pd.DatetimeIndex: return self.sessions_next_open_earlier.union(self.sessions_next_open_later) @property def sessions_next_close_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_closes_different_to_next_session[0] @property def sessions_next_close_later(self) -> pd.DatetimeIndex: return self._sessions_with_closes_different_to_next_session[1] @property def sessions_next_close_different(self) -> pd.DatetimeIndex: return self.sessions_next_close_earlier.union(self.sessions_next_close_later) @property def sessions_next_break_start_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_break_start_different_to_next_session[0] @property def sessions_next_break_start_later(self) -> pd.DatetimeIndex: return self._sessions_with_break_start_different_to_next_session[1] @property def sessions_next_break_start_different(self) -> pd.DatetimeIndex: earlier = self.sessions_next_break_start_earlier later = self.sessions_next_break_start_later return earlier.union(later) @property def sessions_next_break_end_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_break_end_different_to_next_session[0] @property def sessions_next_break_end_later(self) -> pd.DatetimeIndex: return self._sessions_with_break_end_different_to_next_session[1] @property def sessions_next_break_end_different(self) -> pd.DatetimeIndex: earlier = self.sessions_next_break_end_earlier later = self.sessions_next_break_end_later return earlier.union(later) @functools.lru_cache(maxsize=4) def _get_sessions_with_has_break_different_to_next_session( self, ) -> tuple[pd.DatetimeIndex, pd.DatetimeIndex]: """Get sessions with 'has_break' different to next session. Returns ------- tuple[pd.DatetimeIndex, pd.DatetimeIndex] [0] Sessions that have a break and are immediately followed by a session which does not have a break. [1] Sessions that do not have a break and are immediately followed by a session which does have a break. """ mask = (self.break_starts.notna() & self.break_starts.shift(-1).isna())[:-1] sessions_with_break_next_session_without_break = self.sessions[:-1][mask] mask = (self.break_starts.isna() & self.break_starts.shift(-1).notna())[:-1] sessions_without_break_next_session_with_break = self.sessions[:-1][mask] return ( sessions_with_break_next_session_without_break, sessions_without_break_next_session_with_break, ) @property def sessions_with_break_next_session_without_break(self) -> pd.DatetimeIndex: return self._get_sessions_with_has_break_different_to_next_session()[0] @property def sessions_without_break_next_session_with_break(self) -> pd.DatetimeIndex: return self._get_sessions_with_has_break_different_to_next_session()[1] @functools.lru_cache(maxsize=4) def _sessions_next_time_different(self) -> pd.DatetimeIndex: return self.sessions_next_open_different.union_many( [ self.sessions_next_close_different, self.sessions_next_break_start_different, self.sessions_next_break_end_different, self.sessions_with_break_next_session_without_break, self.sessions_without_break_next_session_with_break, ] ) @property def sessions_next_time_different(self) -> pd.DatetimeIndex: """Sessions where next session has a different time for any column. Includes sessions where next session has a different `has_break` status. """ return self._sessions_next_time_different() # session blocks... def _create_changing_times_session_block( self, session: pd.Timestamp ) -> pd.DatetimeIndex: """Create block of sessions with changing times. Given a `session` known to have at least one time (open, close, break_start or break_end) different from the next session, returns a block of consecutive sessions ending with the first session after `session` that has the same times as the session that immediately preceeds it (i.e. the last two sessions of the block will have the same times), or the last calendar session. """ start_idx = self.sessions.get_loc(session) end_idx = start_idx + 1 while self.sessions[end_idx] in self.sessions_next_time_different: end_idx += 1 end_idx += 2 # +1 to include session with same times, +1 to serve as end index return self.sessions[start_idx:end_idx] def _get_normal_session_block(self) -> pd.DatetimeIndex: """Block of 3 sessions with unchanged timings.""" start_idx = len(self.sessions) // 3 end_idx = start_idx + 21 for i in range(start_idx, end_idx): times_1 = self.answers.iloc[i].dt.time times_2 = self.answers.iloc[i + 1].dt.time times_3 = self.answers.iloc[i + 2].dt.time one_and_two_equal = (times_1 == times_2) | (times_1.isna() & times_2.isna()) one_and_three_equal = (times_1 == times_3) | ( times_1.isna() & times_3.isna() ) if (one_and_two_equal & one_and_three_equal).all(): break assert i < (end_idx - 1), "Unable to evaluate a normal session block!" return self.sessions[i : i + 3] def _get_session_block( self, from_session_of: pd.DatetimeIndex, to_session_of: pd.DatetimeIndex ) -> pd.DatetimeIndex: """Get session block with bounds defined by sessions of given indexes. Block will start with middle session of `from_session_of`. Block will run to the nearest subsequent session of `to_session_of` (or `self.final_session` if this comes first). Block will end with the session that immedidately follows this session. """ i = len(from_session_of) // 2 start_session = from_session_of[i] start_idx = self.sessions.get_loc(start_session) end_idx = start_idx + 1 end_session = self.sessions[end_idx] while end_session not in to_session_of and end_session != self.last_session: end_idx += 1 end_session = self.sessions[end_idx] return self.sessions[start_idx : end_idx + 2] @functools.lru_cache(maxsize=4) def _session_blocks(self) -> dict[str, pd.DatetimeIndex]: blocks = {} blocks["normal"] = self._get_normal_session_block() blocks["first_three"] = self.sessions[:3] blocks["last_three"] = self.sessions[-3:] # blocks here include where: # session 1 has at least one different time from session 0 # session 0 has a break and session 1 does not (and vice versa) sessions_indexes = ( ("next_open_earlier", self.sessions_next_open_earlier), ("next_open_later", self.sessions_next_open_later), ("next_close_earlier", self.sessions_next_close_earlier), ("next_close_later", self.sessions_next_close_later), ("next_break_start_earlier", self.sessions_next_break_start_earlier), ("next_break_start_later", self.sessions_next_break_start_later), ("next_break_end_earlier", self.sessions_next_break_end_earlier), ("next_break_end_later", self.sessions_next_break_end_later), ( "with_break_to_without_break", self.sessions_with_break_next_session_without_break, ), ( "without_break_to_with_break", self.sessions_without_break_next_session_with_break, ), ) for name, index in sessions_indexes: if index.empty: blocks[name] = pd.DatetimeIndex([], tz="UTC") else: session = index[0] blocks[name] = self._create_changing_times_session_block(session) # blocks here move from session with gap to session without gap and vice versa if (not self.sessions_with_gap_after.empty) and ( not self.sessions_without_gap_after.empty ): without_gap_to_with_gap = self._get_session_block( self.sessions_without_gap_after, self.sessions_with_gap_after ) with_gap_to_without_gap = self._get_session_block( self.sessions_with_gap_after, self.sessions_without_gap_after ) else: without_gap_to_with_gap = pd.DatetimeIndex([], tz="UTC") with_gap_to_without_gap = pd.DatetimeIndex([], tz="UTC") blocks["without_gap_to_with_gap"] = without_gap_to_with_gap blocks["with_gap_to_without_gap"] = with_gap_to_without_gap # blocks that adjoin or contain a non_session date follows_non_session = pd.DatetimeIndex([], tz="UTC") preceeds_non_session = pd.DatetimeIndex([], tz="UTC") contains_non_session = pd.DatetimeIndex([], tz="UTC") if len(self.non_sessions) > 1: diff = self.non_sessions[1:] - self.non_sessions[:-1] mask = diff != pd.Timedelta( 1, "D" ) # non_session dates followed by a session valid_non_sessions = self.non_sessions[:-1][mask] if len(valid_non_sessions) > 1: slce = self.sessions.slice_indexer( valid_non_sessions[0], valid_non_sessions[1] ) sessions_between_non_sessions = self.sessions[slce] block_length = min(2, len(sessions_between_non_sessions)) follows_non_session = sessions_between_non_sessions[:block_length] preceeds_non_session = sessions_between_non_sessions[-block_length:] # take session before and session after non-session contains_non_session = self.sessions[slce.stop - 1 : slce.stop + 1] blocks["follows_non_session"] = follows_non_session blocks["preceeds_non_session"] = preceeds_non_session blocks["contains_non_session"] = contains_non_session return blocks @property def session_blocks(self) -> dict[str, pd.DatetimeIndex]: """Dictionary of session blocks of a particular behaviour. A block comprises either a single session or multiple contiguous sessions. Keys: "normal" - three sessions with unchanging timings. "first_three" - answers' first three sessions. "last_three" - answers's last three sessions. "next_open_earlier" - session 1 open is earlier than session 0 open. "next_open_later" - session 1 open is later than session 0 open. "next_close_earlier" - session 1 close is earlier than session 0 close. "next_close_later" - session 1 close is later than session 0 close. "next_break_start_earlier" - session 1 break_start is earlier than session 0 break_start. "next_break_start_later" - session 1 break_start is later than session 0 break_start. "next_break_end_earlier" - session 1 break_end is earlier than session 0 break_end. "next_break_end_later" - session 1 break_end is later than session 0 break_end. "with_break_to_without_break" - session 0 has a break, session 1 does not have a break. "without_break_to_with_break" - session 0 does not have a break, session 1 does have a break. "without_gap_to_with_gap" - session 0 is not followed by a gap, session -2 is followed by a gap, session -1 is preceeded by a gap. "with_gap_to_without_gap" - session 0 is followed by a gap, session -2 is not followed by a gap, session -1 is not preceeded by a gap. "follows_non_session" - one or two sessions where session 0 is preceeded by a date that is a non-session. "follows_non_session" - one or two sessions where session -1 is followed by a date that is a non-session. "contains_non_session" = two sessions with at least one non-session date in between. If no such session block exists for any key then value will take an empty DatetimeIndex (UTC). """ return self._session_blocks() def session_block_generator(self) -> abc.Iterator[tuple[str, pd.DatetimeIndex]]: """Generator of session blocks of a particular behaviour.""" for name, block in self.session_blocks.items(): if not block.empty: yield (name, block) @functools.lru_cache(maxsize=4) def _session_block_minutes(self) -> dict[str, pd.DatetimeIndex]: d = {} for name, block in self.session_blocks.items(): if block.empty: d[name] = pd.DatetimeIndex([], tz="UTC") continue d[name] = self.get_sessions_minutes(block[0], len(block)) return d @property def session_block_minutes(self) -> dict[str, pd.DatetimeIndex]: """Trading minutes for each `session_block`. Key: Session block name as documented to `session_blocks`. Value: Trading minutes of corresponding session block. """ return self._session_block_minutes() @property def sessions_sample(self) -> pd.DatetimeIndex: """Sample of normal and unusual sessions. Sample comprises set of sessions of all `session_blocks` (see `session_blocks` doc). In this way sample includes at least one sample of every indentified unique circumstance. """ dtis = list(self.session_blocks.values()) return dtis[0].union_many(dtis[1:]) # non-sessions... @functools.lru_cache(maxsize=4) def _non_sessions(self) -> pd.DatetimeIndex: all_dates = pd.date_range( start=self.first_session, end=self.last_session, freq="D" ) return all_dates.difference(self.sessions) @property def non_sessions(self) -> pd.DatetimeIndex: """Dates (UTC midnight) within answers range that are not sessions.""" return self._non_sessions() @property def sessions_range_defined_by_non_sessions( self, ) -> tuple[tuple[pd.Timestamp, pd.Timestamp], pd.Datetimeindex] | None: """Range containing sessions although defined with non-sessions. Returns ------- tuple[tuple[pd.Timestamp, pd.Timestamp], pd.Datetimeindex]: [0] tuple[pd.Timestamp, pd.Timestamp]: [0] range start as non-session date. [1] range end as non-session date. [1] pd.DatetimeIndex: Sessions in range. """ non_sessions = self.non_sessions if len(non_sessions) <= 1: return None limit = len(self.non_sessions) - 2 i = 0 start, end = non_sessions[i], non_sessions[i + 1] while (end - start) < pd.Timedelta(4, "D"): i += 1 start, end = non_sessions[i], non_sessions[i + 1] if i == limit: # Unable to evaluate range from consecutive non-sessions # that covers >= 3 sessions. Just go with max range... start, end = non_sessions[0], non_sessions[-1] slice_start, slice_end = self.sessions.searchsorted((start, end)) return (start, end), self.sessions[slice_start:slice_end] @property def non_sessions_run(self) -> pd.DatetimeIndex: """Longest run of non_sessions.""" ser = self.sessions.to_series() diff = ser.shift(-1) - ser max_diff = diff.max() if max_diff == pd.Timedelta(1, "D"): return pd.DatetimeIndex([]) session_before_run = diff[diff == max_diff].index[-1] run = pd.date_range( start=session_before_run + pd.Timedelta(1, "D"), periods=(max_diff // pd.Timedelta(1, "D")) - 1, freq="D", ) assert run.isin(self.non_sessions).all() assert run[0] > self.first_session assert run[-1] < self.last_session return run @property def non_sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest range covering a period without a session.""" non_sessions_run = self.non_sessions_run if non_sessions_run.empty: return None else: return self.non_sessions_run[0], self.non_sessions_run[-1] # --- Evaluated sets of minutes --- @functools.lru_cache(maxsize=4) def _evaluate_trading_and_break_minutes(self) -> tuple[tuple, tuple]: sessions = self.sessions_sample first_mins = self.first_minutes[sessions] first_mins_plus_one = first_mins + self.ONE_MIN last_mins = self.last_minutes[sessions] last_mins_less_one = last_mins - self.ONE_MIN trading_mins = [] break_mins = [] for session, mins_ in zip( sessions, zip(first_mins, first_mins_plus_one, last_mins, last_mins_less_one), ): trading_mins.append((mins_, session)) if self.has_a_session_with_break: last_am_mins = self.last_am_minutes[sessions] last_am_mins = last_am_mins[last_am_mins.notna()] first_pm_mins = self.first_pm_minutes[last_am_mins.index] last_am_mins_less_one = last_am_mins - self.ONE_MIN last_am_mins_plus_one = last_am_mins + self.ONE_MIN last_am_mins_plus_two = last_am_mins + self.TWO_MIN first_pm_mins_plus_one = first_pm_mins + self.ONE_MIN first_pm_mins_less_one = first_pm_mins - self.ONE_MIN first_pm_mins_less_two = first_pm_mins - self.TWO_MIN for session, mins_ in zip( last_am_mins.index, zip( last_am_mins, last_am_mins_less_one, first_pm_mins, first_pm_mins_plus_one, ), ): trading_mins.append((mins_, session)) for session, mins_ in zip( last_am_mins.index, zip( last_am_mins_plus_one, last_am_mins_plus_two, first_pm_mins_less_one, first_pm_mins_less_two, ), ): break_mins.append((mins_, session)) return (tuple(trading_mins), tuple(break_mins)) @property def trading_minutes(self) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp]]: """Edge trading minutes of `sessions_sample`. Returns ------- tuple of tuple[tuple[trading_minutes], session] tuple[trading_minutes] includes: first two trading minutes of a session. last two trading minutes of a session. If breaks: last two trading minutes of session's am subsession. first two trading minutes of session's pm subsession. session Session of trading_minutes """ return self._evaluate_trading_and_break_minutes()[0] def trading_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of trading minutes of `self.trading_minutes`.""" for mins, _ in self.trading_minutes: for minute in mins: yield minute @property def trading_minute(self) -> pd.Timestamp: """A single trading minute.""" return self.trading_minutes[0][0][0] @property def break_minutes(self) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp]]: """Sample of break minutes of `sessions_sample`. Returns ------- tuple of tuple[tuple[break_minutes], session] tuple[break_minutes]: first two minutes of a break. last two minutes of a break. session Session of break_minutes """ return self._evaluate_trading_and_break_minutes()[1] def break_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of break minutes of `self.break_minutes`.""" for mins, _ in self.break_minutes: for minute in mins: yield minute @functools.lru_cache(maxsize=4) def _non_trading_minutes( self, ) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp, pd.Timestamp]]: non_trading_mins = [] sessions = self.sessions_sample sessions = prev_sessions = sessions[sessions.isin(self.sessions_with_gap_after)] next_sessions = self.sessions[self.sessions.get_indexer(sessions) + 1] last_mins_plus_one = self.last_minutes[sessions] + self.ONE_MIN first_mins_less_one = self.first_minutes[next_sessions] - self.ONE_MIN for prev_session, next_session, mins_ in zip( prev_sessions, next_sessions, zip(last_mins_plus_one, first_mins_less_one) ): non_trading_mins.append((mins_, prev_session, next_session)) return tuple(non_trading_mins) @property def non_trading_minutes( self, ) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp, pd.Timestamp]]: """non_trading_minutes that edge `sessions_sample`. NB. Does not include break minutes. Returns ------- tuple of tuple[tuple[non-trading minute], previous session, next session] tuple[non-trading minute] Two non-trading minutes. [0] first non-trading minute to follow a session. [1] last non-trading minute prior to the next session. previous session Session that preceeds non-trading minutes. next session Session that follows non-trading minutes. See Also -------- break_minutes """ return self._non_trading_minutes() def non_trading_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of non-trading minutes of `self.non_trading_minutes`.""" for mins, _, _ in self.non_trading_minutes: for minute in mins: yield minute # --- method-specific inputs/outputs --- def prev_next_open_close_minutes( self, ) -> abc.Iterator[ tuple[ pd.Timestamp, tuple[ pd.Timestamp | None, pd.Timestamp | None, pd.Timestamp | None, pd.Timestamp | None, ], ] ]: """Generator of test parameters for prev/next_open/close methods. Inputs include following minutes of each session: open one minute prior to open (not included for first session) one minute after open close one minute before close one minute after close (not included for last session) NB Assumed that minutes prior to first open and after last close will be handled via parse_timestamp. Yields ------ 2-tuple: [0] Input a minute sd pd.Timestamp [1] 4 tuple of expected output of corresponding method: [0] previous_open as pd.Timestamp | None [1] previous_close as pd.Timestamp | None [2] next_open as pd.Timestamp | None [3] next_close as pd.Timestamp | None NB None indicates that corresponding method is expected to raise a ValueError for this input. """ close_is_next_open_bv = self.closes == self.opens.shift(-1) open_was_prev_close_bv = self.opens == self.closes.shift(+1) close_is_next_open = close_is_next_open_bv[0] # minutes for session 0 minute = self.opens[0] yield (minute, (None, None, self.opens[1], self.closes[0])) minute = minute + self.ONE_MIN yield (minute, (self.opens[0], None, self.opens[1], self.closes[0])) minute = self.closes[0] next_open = self.opens[2] if close_is_next_open else self.opens[1] yield (minute, (self.opens[0], None, next_open, self.closes[1])) minute += self.ONE_MIN prev_open = self.opens[1] if close_is_next_open else self.opens[0] yield (minute, (prev_open, self.closes[0], next_open, self.closes[1])) minute = self.closes[0] - self.ONE_MIN yield (minute, (self.opens[0], None, self.opens[1], self.closes[0])) # minutes for sessions over [1:-1] except for -1 close and 'close + one_min' opens = self.opens[1:-1] closes = self.closes[1:-1] prev_opens = self.opens[:-2] prev_closes = self.closes[:-2] next_opens = self.opens[2:] next_closes = self.closes[2:] opens_after_next = self.opens[3:] # add dummy row to equal lengths (won't be used) _ = pd.Series(pd.Timestamp("2200-01-01", tz="UTC")) opens_after_next = opens_after_next.append(_) stop = closes[-1] for ( open_, close, prev_open, prev_close, next_open, next_close, open_after_next, close_is_next_open, open_was_prev_close, ) in zip( opens, closes, prev_opens, prev_closes, next_opens, next_closes, opens_after_next, close_is_next_open_bv[1:-2], open_was_prev_close_bv[1:-2], ): if not open_was_prev_close: # only include open minutes if not otherwise duplicating # evaluations already made for prior close. yield (open_, (prev_open, prev_close, next_open, close)) yield (open_ - self.ONE_MIN, (prev_open, prev_close, open_, close)) yield (open_ + self.ONE_MIN, (open_, prev_close, next_open, close)) yield (close - self.ONE_MIN, (open_, prev_close, next_open, close)) if close != stop: next_open_ = open_after_next if close_is_next_open else next_open yield (close, (open_, prev_close, next_open_, next_close)) open_ = next_open if close_is_next_open else open_ yield (close + self.ONE_MIN, (open_, close, next_open_, next_close)) # close and 'close + one_min' for session -2 minute = self.closes[-2] next_open = None if close_is_next_open_bv[-2] else self.opens[-1] yield (minute, (self.opens[-2], self.closes[-3], next_open, self.closes[-1])) minute += self.ONE_MIN prev_open = self.opens[-1] if close_is_next_open_bv[-2] else self.opens[-2] yield (minute, (prev_open, self.closes[-2], next_open, self.closes[-1])) # minutes for session -1 if not open_was_prev_close_bv[-1]: open_ = self.opens[-1] prev_open = self.opens[-2] prev_close = self.closes[-2] next_open = None close = self.closes[-1] yield (open_, (prev_open, prev_close, next_open, close)) yield (open_ - self.ONE_MIN, (prev_open, prev_close, open_, close)) yield (open_ + self.ONE_MIN, (open_, prev_close, next_open, close)) minute = self.closes[-1] next_open = self.opens[2] if close_is_next_open_bv[-1] else self.opens[1] yield (minute, (self.opens[-1], self.closes[-2], None, None)) minute -= self.ONE_MIN yield (minute, (self.opens[-1], self.closes[-2], None, self.closes[-1])) # dunder def __repr__(self) -> str: return f"<Answers: calendar {self.name}, side {self.side}>" def no_parsing(f: typing.Callable): """Wrap a method under test so that it skips input parsing.""" return lambda *args, **kwargs: f(*args, _parse=False, **kwargs) class ExchangeCalendarTestBaseNew: """Test base for an ExchangeCalendar. Notes ----- === Fixtures === In accordance with the pytest framework, whilst methods are requried to have `self` as their first argument, no method should use `self`. All required inputs should come by way of fixtures received to the test method's arguments. Methods that are directly or indirectly dependent on the evaluation of trading minutes should be tested against the parameterized `all_calendars_with_answers` fixture. This fixture will execute the test against multiple calendar instances, one for each viable `side`. The following methods directly evaluate trading minutes: all_minutes _last_minute_nanos() _last_am_minute_nanos() _first_minute_nanos() _first_pm_minute_nanos() NB this list does not include methods that indirectly evaluate methods by way of calling (directly or indirectly) one of the above methods. Methods that are not dependent on the evaluation of trading minutes should only be tested against only the `default_calendar_with_answers` or `default_calendar` fixture. Calendar instances provided by fixtures should be used exclusively to call the method being tested. NO TEST INPUT OR EXPECTED OUTPUT SHOULD BE EVALUATED BY WAY OF CALLING A CALENDAR METHOD. Rather, test inputs and expected output should be taken directly, or evaluated from, properties/methods of the corresponding Answers fixture. Subclasses are required to override a limited number of fixtures and may be required to override others. Refer to the block comments. """ # subclass must override the following fixtures @pytest.fixture(scope="class") def calendar_cls(self) -> abc.Iterator[typing.Type[ExchangeCalendar]]: """ExchangeCalendar class to be tested. Examples: XNYSExchangeCalendar AlwaysOpenCalendar """ raise NotImplementedError("fixture must be implemented on subclass") @pytest.fixture def max_session_hours(self) -> abc.Iterator[int | float]: """Largest number of hours that can comprise a single session. Examples: 8 6.5 """ raise NotImplementedError("fixture must be implemented on subclass") # if subclass has a 24h session then subclass must override this fixture. # Define on subclass as is here with only difference being passing # ["left", "right"] to decorator's 'params' arg (24h calendars cannot # have a side defined as 'both' or 'neither'.). @pytest.fixture(scope="class", params=["both", "left", "right", "neither"]) def all_calendars_with_answers( self, request, calendars, answers ) -> abc.Iterator[tuple[ExchangeCalendar, Answers]]: """Parameterized calendars and answers for each side.""" yield (calendars[request.param], answers[request.param]) # subclass should override the following fixtures in the event that the # default defined here does not apply. @pytest.fixture def start_bound(self) -> abc.Iterator[pd.Timestamp | None]: """Earliest date for which calendar can be instantiated, or None if there is no start bound.""" yield None @pytest.fixture def end_bound(self) -> abc.Iterator[pd.Timestamp | None]: """Latest date for which calendar can be instantiated, or None if there is no end bound.""" yield None # Subclass can optionally override the following fixtures. By overriding # a fixture the associated test will be executed with input as yielded # by the fixture. Where fixtures are not overriden the associated tests # will be skipped. @pytest.fixture def regular_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of known regular calendar holidays. Empty list if no holidays. `test_regular_holidays_sample` will check that each date does not represent a calendar session. Example return: ["2020-12-25", "2021-01-01", ...] """ yield [] @pytest.fixture def adhoc_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of adhoc calendar holidays. Empty list if no adhoc holidays. `test_adhoc_holidays_sample` will check that each date does not represent a calendar session. Example return: ["2015-04-17", "2021-09-12", ...] """ yield [] @pytest.fixture def non_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of known dates that are not holidays. `test_non_holidays_sample` will check that each date represents a calendar session. Subclass should use this fixture if wishes to test edge cases, for example where a session is an exception to a rule, or where session preceeds/follows a holiday that is an exception to a rule. Example return: ["2019-12-27", "2020-01-02", ...] """ yield [] @pytest.fixture def late_opens_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with late opens. `test_late_opens_sample` will check that each date represents a session with a late open. Example returns: ["2022-01-03", "2022-04-22", ...] """ yield [] @pytest.fixture def early_closes_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with early closes. `test_early_closes_sample` will check that each date represents a session with an early close. Example returns: ["2019-12-24", "2019-12-31", ...] """ yield [] @pytest.fixture def early_closes_sample_time(self) -> abc.Iterator[pd.Timedelta | None]: """Local close time of sessions of `early_closes_sample` fixture. `test_early_closes_sample_time` will check all sessions of `early_closes_sample` have this close time. Only override fixture if: - `early_closes_sample` is overriden by subclass - ALL sessions of `early_closes_sample` have the same local close time (if sessions of `early_closes_sample` have different local close times then the subclass should instead check close times with a test defined on the subclass). Example returns: pd.Timedelta(14, "H") # 14:00 local time pd.Timedelta(hours=13, minutes=15) # 13:15 local time """ yield None @pytest.fixture def non_early_closes_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with normal close times. `test_non_early_closes_sample` will check each date does not represent a calendar session with an early close. Subclass should use this fixture to test edge cases, for example where an otherwise early close is an exception to a rule. Example return: ["2022-12-23", "2022-12-30] """ yield [] @pytest.fixture def non_early_closes_sample_time(self) -> abc.Iterator[pd.Timedelta | None]: """Local close time of sessions of `non_early_closes_sample` fixture. `test_non_early_closes_sample_time` will check all sessions of `non_early_closes_sample` have this close time. Only override fixture if: - `non_early_closes_sample` is overriden by subclass. - ALL sessions of `non_early_closes_sample` have the same local close time (if sessions of `non_early_closes_sample` have different local close times then the subclass should instead check close times with a test defined on the subclass). Example returns: pd.Timedelta(17, "H") # 17:00 local time pd.Timedelta(hours=16, minutes=30) # 16:30 local time """ yield None # --- NO FIXTURE BELOW THIS LINE SHOULD BE OVERRIDEN ON A SUBCLASS --- def test_testbase_integrity(self): """Ensure integrity of TestBase. Raises error if a reserved fixture is overriden by the subclass. """ cls = self.__class__ for fixture in [ "test_testbase_integrity", "name", "has_24h_session", "default_side", "sides", "answers", "default_answers", "calendars", "default_calendar", "calendars_with_answers", "default_calendar_with_answers", "one_minute", "today", "all_directions", "valid_overrides", "non_valid_overrides", "daylight_savings_dates", "late_opens", "early_closes", ]: if getattr(cls, fixture) != getattr(ExchangeCalendarTestBaseNew, fixture): raise RuntimeError(f"fixture '{fixture}' should not be overriden!") # Base class fixtures @pytest.fixture(scope="class") def name(self, calendar_cls) -> abc.Iterator[str]: """Calendar name.""" yield calendar_cls.name @pytest.fixture(scope="class") def has_24h_session(self, name) -> abc.Iterator[bool]: df = get_csv(name) yield (df.market_close == df.market_open.shift(-1)).any() @pytest.fixture(scope="class") def default_side(self, has_24h_session) -> abc.Iterator[str]: """Default calendar side.""" if has_24h_session: yield "left" else: yield "both" @pytest.fixture(scope="class") def sides(self, has_24h_session) -> abc.Iterator[list[str]]: """All valid sides options for calendar.""" if has_24h_session: yield ["left", "right"] else: yield ["both", "left", "right", "neither"] # Calendars and answers @pytest.fixture(scope="class") def answers(self, name, sides) -> abc.Iterator[dict[str, Answers]]: """Dict of answers, key as side, value as corresoponding answers.""" yield {side: Answers(name, side) for side in sides} @pytest.fixture(scope="class") def default_answers(self, answers, default_side) -> abc.Iterator[Answers]: yield answers[default_side] @pytest.fixture(scope="class") def calendars( self, calendar_cls, default_answers, sides ) -> abc.Iterator[dict[str, ExchangeCalendar]]: """Dict of calendars, key as side, value as corresoponding calendar.""" start = default_answers.first_session end = default_answers.last_session yield {side: calendar_cls(start, end, side) for side in sides} @pytest.fixture(scope="class") def default_calendar( self, calendars, default_side ) -> abc.Iterator[ExchangeCalendar]: yield calendars[default_side] @pytest.fixture(scope="class") def calendars_with_answers( self, calendars, answers, sides ) -> abc.Iterator[dict[str, tuple[ExchangeCalendar, Answers]]]: """Dict of calendars and answers, key as side.""" yield {side: (calendars[side], answers[side]) for side in sides} @pytest.fixture(scope="class") def default_calendar_with_answers( self, calendars_with_answers, default_side ) -> abc.Iterator[tuple[ExchangeCalendar, Answers]]: yield calendars_with_answers[default_side] # General use fixtures. @pytest.fixture(scope="class") def one_minute(self) -> abc.Iterator[pd.Timedelta]: yield pd.Timedelta(1, "T") @pytest.fixture(scope="class") def today(self) -> abc.Iterator[pd.Timedelta]: yield pd.Timestamp.now(tz="UTC").floor("D") @pytest.fixture(scope="class", params=["next", "previous", "none"]) def all_directions(self, request) -> abc.Iterator[str]: """Parameterised fixture of direction to go if minute is not a trading minute""" yield request.param @pytest.fixture(scope="class") def valid_overrides(self) -> abc.Iterator[list[str]]: """Names of methods that can be overriden by a subclass.""" yield [ "name", "bound_start", "bound_end", "_bound_start_error_msg", "_bound_end_error_msg", "default_start", "default_end", "tz", "open_times", "break_start_times", "break_end_times", "close_times", "weekmask", "open_offset", "close_offset", "regular_holidays", "adhoc_holidays", "special_opens", "special_opens_adhoc", "special_closes", "special_closes_adhoc", "special_weekmasks", "special_offsets", "special_offsets_adhoc", ] @pytest.fixture(scope="class") def non_valid_overrides(self, valid_overrides) -> abc.Iterator[list[str]]: """Names of methods that cannot be overriden by a subclass.""" yield [ name for name in dir(ExchangeCalendar) if name not in valid_overrides and not name.startswith("__") and not name == "_abc_impl" ] @pytest.fixture(scope="class") def daylight_savings_dates( self, default_calendar ) -> abc.Iterator[list[pd.Timestamp]]: """All dates in a specific year that mark the first day of a new time regime. Yields empty list if timezone's UCT offset does not change. Notes ----- NB Any test that employs this fixture assumes the accuarcy of the default calendar's `tz` property. """ cal = default_calendar year = cal.last_session.year - 1 days = pd.date_range(str(year), str(year + 1), freq="D") tzinfo = pytz.timezone(cal.tz.zone) prev_offset = tzinfo.utcoffset(days[0]) dates = [] for day in days[1:]: try: offset = tzinfo.utcoffset(day) except pytz.NonExistentTimeError: offset = tzinfo.utcoffset(day + pd.Timedelta(1, "H")) if offset != prev_offset: dates.append(day) if len(dates) == 2: break prev_offset = offset yield dates @pytest.fixture(scope="class") def late_opens( self, default_calendar_with_answers ) -> abc.Iterator[pd.DatetimeIndex]: """Calendar sessions with a late open. Late opens evaluated as those that are later than the prevailing open time as defined by `default_calendar.open_times`. Notes ----- NB Any test that employs this fixture ASSUMES the accuarcy of the following calendar properties: `open_times` `tz` """ cal, ans = default_calendar_with_answers d = dict(cal.open_times) d[pd.Timestamp.min] = d.pop(None) s = pd.Series(d).sort_index(ascending=False) date_to = pd.Timestamp.max dtis: list[pd.DatetimeIndex] = [] # For each period over which a distinct open time prevails... for date_from, time_ in s.iteritems(): opens = ans.opens.tz_convert(None)[date_from:date_to] # index to tz-naive sessions = opens.index td = pd.Timedelta(hours=time_.hour, minutes=time_.minute) # Evaluate session opens as if were all normal open time. normal_opens = sessions + pd.Timedelta(cal.open_offset, "D") + td normal_opens_utc = normal_opens.tz_localize(cal.tz).tz_convert("UTC") # Append those sessions with opens (according to answers) later than # what would be normal. dtis.append(sessions[opens > normal_opens_utc]) if date_from != pd.Timestamp.min: date_to = date_from - pd.Timedelta(1, "D") late_opens = dtis[0].union_many(dtis[1:]).tz_localize("UTC") yield late_opens @pytest.fixture(scope="class") def early_closes( self, default_calendar_with_answers ) -> abc.Iterator[pd.DatetimeIndex]: """Calendar sessions with a late open. Early closes evaluated as those that are earlier than the prevailing close time as defined by `default_calendar.close_times`. Notes ----- NB Any test that employs this fixture ASSUMES the accuarcy of the following calendar properties: `close_times` `tz` """ cal, ans = default_calendar_with_answers d = dict(cal.close_times) d[pd.Timestamp.min] = d.pop(None) s = pd.Series(d).sort_index(ascending=False) date_to = pd.Timestamp.max dtis: list[pd.DatetimeIndex] = [] for date_from, time_ in s.iteritems(): closes = ans.closes.tz_convert(None)[date_from:date_to] # index to tz-naive sessions = closes.index td = pd.Timedelta(hours=time_.hour, minutes=time_.minute) normal_closes = sessions + pd.Timedelta(cal.close_offset, "D") + td normal_closes_utc = normal_closes.tz_localize(cal.tz).tz_convert("UTC") dtis.append(sessions[closes < normal_closes_utc]) if date_from != pd.Timestamp.min: date_to = date_from - pd.Timedelta(1, "D") early_closes = dtis[0].union_many(dtis[1:]).tz_localize("UTC") yield early_closes # --- TESTS --- # Tests for calendar definition and construction methods. def test_base_integrity(self, calendar_cls, non_valid_overrides): cls = calendar_cls for name in non_valid_overrides: assert getattr(cls, name) == getattr(ExchangeCalendar, name) def test_calculated_against_csv(self, default_calendar_with_answers): calendar, ans = default_calendar_with_answers tm.assert_index_equal(calendar.schedule.index, ans.sessions) def test_start_end(self, default_answers, calendar_cls): ans = default_answers sessions = ans.session_blocks["normal"] start, end = sessions[0], sessions[-1] cal = calendar_cls(start, end) assert cal.first_session == start assert cal.last_session == end if len(ans.non_sessions) > 1: # start and end as non-sessions (start, end), sessions = ans.sessions_range_defined_by_non_sessions cal = calendar_cls(start, end) assert cal.first_session == sessions[0] assert cal.last_session == sessions[-1] def test_invalid_input(self, calendar_cls, sides, default_answers, name): ans = default_answers invalid_side = "both" if "both" not in sides else "invalid_side" error_msg = f"`side` must be in {sides} although received as {invalid_side}." with pytest.raises(ValueError, match=re.escape(error_msg)): calendar_cls(side=invalid_side) start = ans.sessions[1] end_same_as_start = ans.sessions[1] error_msg = ( "`start` must be earlier than `end` although `start` parsed as" f" '{start}' and `end` as '{end_same_as_start}'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): calendar_cls(start=start, end=end_same_as_start) end_before_start = ans.sessions[0] error_msg = ( "`start` must be earlier than `end` although `start` parsed as" f" '{start}' and `end` as '{end_before_start}'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): calendar_cls(start=start, end=end_before_start) if len(ans.non_sessions) > 1: start, end = ans.non_sessions_range error_msg = ( f"The requested ExchangeCalendar, {name.upper()}, cannot be created as" f" there would be no sessions between the requested `start` ('{start}')" f" and `end` ('{end}') dates." ) with pytest.raises(NoSessionsError, match=re.escape(error_msg)): calendar_cls(start=start, end=end) def test_bound_start(self, calendar_cls, start_bound, today): if start_bound is not None: cal = calendar_cls(start_bound, today) assert isinstance(cal, ExchangeCalendar) start = start_bound - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): calendar_cls(start, today) else: # verify no bound imposed cal = calendar_cls(pd.Timestamp("1902-01-01", tz="UTC"), today) assert isinstance(cal, ExchangeCalendar) def test_bound_end(self, calendar_cls, end_bound, today): if end_bound is not None: cal = calendar_cls(today, end_bound) assert isinstance(cal, ExchangeCalendar) end = end_bound + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): calendar_cls(today, end) else: # verify no bound imposed cal = calendar_cls(today, pd.Timestamp("2050-01-01", tz="UTC")) assert isinstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self, default_calendar, max_session_hours): cal = default_calendar cal_max_secs = (cal.market_closes_nanos - cal.market_opens_nanos).max() assert cal_max_secs / 3600000000000 <= max_session_hours def test_adhoc_holidays_specification(self, default_calendar): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(default_calendar.adhoc_holidays) assert dti.tz is None def test_daylight_savings(self, default_calendar, daylight_savings_dates): # make sure there's no weirdness around calculating the next day's # session's open time. if not daylight_savings_dates: pytest.skip() cal = default_calendar d = dict(cal.open_times) d[pd.Timestamp.min] = d.pop(None) open_times = pd.Series(d) for date in daylight_savings_dates: # where `next day` is first session of new daylight savings regime next_day = cal.date_to_session_label(T(date), "next") open_date = next_day + Timedelta(days=cal.open_offset) the_open = cal.schedule.loc[next_day].market_open localized_open = the_open.tz_localize(UTC).tz_convert(cal.tz) assert open_date.year == localized_open.year assert open_date.month == localized_open.month assert open_date.day == localized_open.day open_ix = open_times.index.searchsorted(date, side="right") if open_ix == len(open_times): open_ix -= 1 open_time = open_times.iloc[open_ix] assert open_time.hour == localized_open.hour assert open_time.minute == localized_open.minute # Tests for properties covering all sessions. def test_all_sessions(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers ans_sessions = ans.sessions cal_sessions = cal.all_sessions tm.assert_index_equal(ans_sessions, cal_sessions) def test_opens_closes_break_starts_ends(self, default_calendar_with_answers): """Test `opens`, `closes, `break_starts` and `break_ends` properties.""" cal, ans = default_calendar_with_answers for prop in ( "opens", "closes", "break_starts", "break_ends", ): ans_series = getattr(ans, prop).dt.tz_convert(None) cal_series = getattr(cal, prop) tm.assert_series_equal(ans_series, cal_series, check_freq=False) def test_minutes_properties(self, all_calendars_with_answers): """Test minute properties. Tests following calendar properties: all_first_minutes all_last_minutes all_last_am_minutes all_first_pm_minutes """ cal, ans = all_calendars_with_answers for prop in ( "first_minutes", "last_minutes", "last_am_minutes", "first_pm_minutes", ): ans_minutes = getattr(ans, prop) cal_minutes = getattr(cal, "all_" + prop) tm.assert_series_equal(ans_minutes, cal_minutes, check_freq=False) # Tests for properties covering all minutes. def test_all_minutes(self, all_calendars_with_answers, one_minute): """Test trading minutes at sessions' bounds.""" calendar, ans = all_calendars_with_answers side = ans.side mins = calendar.all_minutes assert isinstance(mins, pd.DatetimeIndex) assert not mins.empty mins_plus_1 = mins + one_minute mins_less_1 = mins - one_minute if side in ["left", "neither"]: # Test that close and break_start not in mins, # but are in mins_plus_1 (unless no gap after) # do not test here for sessions with no gap after as for "left" these # sessions' close IS a trading minute as it's the same as next session's # open. # NB For "neither" all sessions will have gap after. closes = ans.closes[ans.sessions_with_gap_after] # closes should not be in minutes assert not mins.isin(closes).any() # all closes should be in minutes plus 1 # for speed, use only subset of mins that are of interest mins_plus_1_on_close = mins_plus_1[mins_plus_1.isin(closes)] assert closes.isin(mins_plus_1_on_close).all() # as noted above, if no gap after then close should be a trading minute # as will be first minute of next session. closes = ans.closes[ans.sessions_without_gap_after] mins_on_close = mins[mins.isin(closes)] assert closes.isin(mins_on_close).all() if ans.has_a_session_with_break: # break start should not be in minutes assert not mins.isin(ans.break_starts).any() # break start should be in minutes plus 1 break_starts = ans.break_starts[ans.sessions_with_break] mins_plus_1_on_start = mins_plus_1[mins_plus_1.isin(break_starts)] assert break_starts.isin(mins_plus_1_on_start).all() if side in ["left", "both"]: # Test that open and break_end are in mins, # but not in mins_plus_1 (unless no gap before) mins_on_open = mins[mins.isin(ans.opens)] assert ans.opens.isin(mins_on_open).all() opens = ans.opens[ans.sessions_with_gap_before] assert not mins_plus_1.isin(opens).any() opens = ans.opens[ans.sessions_without_gap_before] mins_plus_1_on_open = mins_plus_1[mins_plus_1.isin(opens)] assert opens.isin(mins_plus_1_on_open).all() if ans.has_a_session_with_break: break_ends = ans.break_ends[ans.sessions_with_break] mins_on_end = mins[mins.isin(ans.break_ends)] assert break_ends.isin(mins_on_end).all() if side in ["right", "neither"]: # Test that open and break_end are not in mins, # but are in mins_less_1 (unless no gap before) opens = ans.opens[ans.sessions_with_gap_before] assert not mins.isin(opens).any() mins_less_1_on_open = mins_less_1[mins_less_1.isin(opens)] assert opens.isin(mins_less_1_on_open).all() opens = ans.opens[ans.sessions_without_gap_before] mins_on_open = mins[mins.isin(opens)] assert opens.isin(mins_on_open).all() if ans.has_a_session_with_break: assert not mins.isin(ans.break_ends).any() break_ends = ans.break_ends[ans.sessions_with_break] mins_less_1_on_end = mins_less_1[mins_less_1.isin(break_ends)] assert break_ends.isin(mins_less_1_on_end).all() if side in ["right", "both"]: # Test that close and break_start are in mins, # but not in mins_less_1 (unless no gap after) mins_on_close = mins[mins.isin(ans.closes)] assert ans.closes.isin(mins_on_close).all() closes = ans.closes[ans.sessions_with_gap_after] assert not mins_less_1.isin(closes).any() closes = ans.closes[ans.sessions_without_gap_after] mins_less_1_on_close = mins_less_1[mins_less_1.isin(closes)] assert closes.isin(mins_less_1_on_close).all() if ans.has_a_session_with_break: break_starts = ans.break_starts[ans.sessions_with_break] mins_on_start = mins[mins.isin(ans.break_starts)] assert break_starts.isin(mins_on_start).all() # Tests for calendar properties. def test_calendar_bounds_properties(self, all_calendars_with_answers): """Test calendar properties that define a calendar bound. Tests following calendar properties: first_session last_session first_session_open last_session_close first_trading_minute last_trading_minute """ cal, ans = all_calendars_with_answers assert ans.first_session == cal.first_session assert ans.last_session == cal.last_session assert ans.first_session_open.tz_convert(None) == cal.first_session_open assert ans.last_session_close.tz_convert(None) == cal.last_session_close assert ans.first_trading_minute == cal.first_trading_minute assert ans.last_trading_minute == cal.last_trading_minute def test_has_breaks(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers f = no_parsing(cal.has_breaks) has_a_break = ans.has_a_session_with_break assert f() == has_a_break if ans.has_a_session_without_break: assert not f(*ans.sessions_without_break_range) if has_a_break: # i.e. mixed, some sessions have a break, some don't block = ans.session_blocks["with_break_to_without_break"] if not block.empty: # guard against starting with no breaks, then an introduction # of breaks to every session after a certain date # (i.e. there would be no with_break_to_without_break) assert f(block[0], block[-1]) block = ans.session_blocks["without_break_to_with_break"] if not block.empty: # ...guard against opposite case (e.g. XKRX) assert f(block[0], block[-1]) else: # in which case all sessions must have a break. Make sure... assert cal.break_starts.notna().all() def test_regular_holidays_sample(self, default_calendar, regular_holidays_sample): """Test that calendar-specific sample of holidays are not sessions.""" if not regular_holidays_sample: pytest.skip() for holiday in regular_holidays_sample: assert T(holiday) not in default_calendar.all_sessions def test_adhoc_holidays_sample(self, default_calendar, adhoc_holidays_sample): """Test that calendar-specific sample of holidays are not sessions.""" if not adhoc_holidays_sample: pytest.skip() for holiday in adhoc_holidays_sample: assert T(holiday) not in default_calendar.all_sessions def test_non_holidays_sample(self, default_calendar, non_holidays_sample): """Test that calendar-specific sample of non-holidays are sessions.""" if not non_holidays_sample: pytest.skip() for date in non_holidays_sample: assert T(date) in default_calendar.all_sessions # NOTE: As of Oct 21 no calendar tests late opens (indeed, believe that no # calendar defines late opens). Test commented out to prevent skip tests littering # output. REINSTATE TEST IF any calendar defines and test late opens. # def test_late_opens_sample(self, default_calendar, late_opens_sample): # """Test calendar-specific sample of sessions are included to late opens.""" # if not late_opens_sample: # pytest.skip() # for date in late_opens_sample: # assert T(date) in default_calendar.late_opens def test_early_closes_sample(self, default_calendar, early_closes_sample): """Test calendar-specific sample of sessions are included to early closes.""" if not early_closes_sample: pytest.skip() for date in early_closes_sample: assert T(date) in default_calendar.early_closes def test_early_closes_sample_time( self, default_calendar, early_closes_sample, early_closes_sample_time ): """Test close time of calendar-specific sample of early closing sessions. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `closes`, `tz` and `close_offset`. """ if early_closes_sample_time is None: pytest.skip() cal, tz = default_calendar, default_calendar.tz offset = pd.Timedelta(cal.close_offset, "D") + early_closes_sample_time for date in early_closes_sample: early_close = cal.closes[date].tz_localize(UTC).tz_convert(tz) expected = pd.Timestamp(date, tz=tz) + offset assert early_close == expected def test_non_early_closes_sample(self, default_calendar, non_early_closes_sample): """Test calendar-specific sample of sessions are not early closes.""" if not non_early_closes_sample: pytest.skip() for date in non_early_closes_sample: assert T(date) not in default_calendar.early_closes def test_non_early_closes_sample_time( self, default_calendar, non_early_closes_sample, non_early_closes_sample_time ): """Test close time of calendar-specific sample of sessions with normal closes. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `closes`, `tz` and `close_offset`. """ if non_early_closes_sample_time is None: pytest.skip() cal, tz = default_calendar, default_calendar.tz offset = pd.Timedelta(cal.close_offset, "D") + non_early_closes_sample_time for date in non_early_closes_sample: close = cal.closes[date].tz_localize(UTC).tz_convert(tz) expected_close = pd.Timestamp(date, tz=tz) + offset assert close == expected_close def test_late_opens(self, default_calendar, late_opens): """Test late opens. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `open_times` and `tz`. See `late_opens` fixture. """ tm.assert_index_equal(late_opens, default_calendar.late_opens) def test_early_closes(self, default_calendar, early_closes): """Test early closes. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `close_times` and `tz`. See `early_closes` fixture. """ tm.assert_index_equal(early_closes, default_calendar.early_closes) # Tests for methods that interrogate a given session. def test_session_open_close_break_start_end(self, default_calendar_with_answers): """Test methods that get session open, close, break_start, break_end. Tests following calendar methods: session_open session_close open_and_close_for_session session_break_start session_break_end break_start_and_end_for_session """ # considered sufficient to limit test to sessions of session blocks. cal, ans = default_calendar_with_answers for _, block in ans.session_block_generator(): for session in block: ans_open = ans.opens[session] ans_close = ans.closes[session] assert cal.session_open(session, _parse=False) == ans_open assert cal.session_close(session, _parse=False) == ans_close assert cal.open_and_close_for_session(session, _parse=False) == ( ans_open, ans_close, ) break_start = cal.session_break_start(session, _parse=False) break_end = cal.session_break_end(session, _parse=False) break_start_and_end = cal.break_start_and_end_for_session( session, _parse=False ) ans_break_start = ans.break_starts[session] ans_break_end = ans.break_ends[session] if pd.isna(ans_break_start): assert pd.isna(break_start) and pd.isna(break_end) assert pd.isna(break_start_and_end[0]) assert pd.isna(break_start_and_end[1]) else: assert break_start == ans_break_start assert break_end == ans_break_end assert break_start_and_end[0] == ans_break_start assert break_start_and_end[1] == ans_break_end def test_session_minute_methods(self, all_calendars_with_answers): """Test methods that get a minute bound of a session or subsession. Tests following calendar methods: session_first_minute session_last_minute session_last_am_minute session_first_pm_minute session_first_and_last_minute """ # considered sufficient to limit test to sessions of session blocks. cal, ans = all_calendars_with_answers for _, block in ans.session_block_generator(): for session in block: ans_first_minute = ans.first_minutes[session] ans_last_minute = ans.last_minutes[session] assert ( cal.session_first_minute(session, _parse=False) == ans_first_minute ) assert cal.session_last_minute(session, _parse=False) == ans_last_minute assert cal.session_first_and_last_minute(session, _parse=False) == ( ans_first_minute, ans_last_minute, ) last_am_minute = cal.session_last_am_minute(session, _parse=False) first_pm_minute = cal.session_first_pm_minute(session, _parse=False) ans_last_am_minute = ans.last_am_minutes[session] ans_first_pm_minute = ans.first_pm_minutes[session] if pd.isna(ans_last_am_minute): assert pd.isna(last_am_minute) and pd.isna(first_pm_minute) else: assert last_am_minute == ans_last_am_minute assert first_pm_minute == ans_first_pm_minute def test_session_has_break(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers f = no_parsing(cal.session_has_break) # test every 10th session... for session in ans.sessions_with_break[::10]: assert f(session) for session in ans.sessions_without_break[::10]: assert not f(session) def test_next_prev_session(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers f_prev = no_parsing(cal.previous_session_label) f_next = no_parsing(cal.next_session_label) # NB non-sessions handled by methods via parse_session # first session with pytest.raises(ValueError): f_prev(ans.first_session) # middle sessions (and m_prev for last session) for session, next_session in zip(ans.sessions[:-1], ans.sessions[1:]): assert f_next(session) == next_session assert f_prev(next_session) == session # last session with pytest.raises(ValueError): f_next(ans.last_session) def test_minutes_for_session(self, all_calendars_with_answers): cal, ans = all_calendars_with_answers f = no_parsing(cal.minutes_for_session) # Limit test to every session of each session block. for _, block in ans.session_block_generator(): for session in block: tm.assert_index_equal(f(session), ans.get_sessions_minutes(session)) # Tests for methods that interrogate a date. def test_is_session(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers f = no_parsing(cal.is_session) for session in ans.sessions: assert f(session) for session in ans.non_sessions: assert not f(session) def test_date_to_session_label(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers f = no_parsing(cal.date_to_session_label) # test for error if request session prior to first calendar session. error_msg = ( "Cannot get a session label prior to the first calendar" f" session ('{ans.first_session}'). Consider passing" " `direction` as 'next'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): f(ans.session_too_early, "previous") sessions = ans.sessions # direction as "previous" dates = pd.date_range(sessions[0], sessions[-1], freq="D") date_is_session = dates.isin(sessions) last_session = None for date, is_session in zip(dates, date_is_session): session_label = f(date, "previous") if is_session: assert session_label == date last_session = session_label else: assert session_label == last_session # direction as "next" last_session = None for date, is_session in zip( dates.sort_values(ascending=False), date_is_session[::-1] ): session_label = f(date, "next") if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # test for error if request session after last calendar session. error_msg = ( "Cannot get a session label later than the last calendar" f" session ('{ans.last_session}'). Consider passing" " `direction` as 'previous'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): f(ans.session_too_late, "next") # test for non_sessions without direction if not ans.non_sessions.empty: for non_session in ans.non_sessions[0 : None : len(ans.non_sessions) // 9]: error_msg = ( f"`date` '{non_session}' does not represent a session. Consider" " passing a `direction`." ) with pytest.raises(ValueError, match=re.escape(error_msg)): f(non_session, "none") # test default behaviour with pytest.raises(ValueError, match=re.escape(error_msg)): f(non_session) # non-valid direction (only raised if pass a date that is not a session) error_msg = ( "'not a direction' is not a valid `direction`. Valid `direction`" ' values are "next", "previous" and "none".' ) with pytest.raises(ValueError, match=re.escape(error_msg)): f(non_session, "not a direction") # Tests for methods that interrogate a given minute (trading or non-trading) def test_is_trading_minute(self, all_calendars_with_answers): calendar, ans = all_calendars_with_answers f = no_parsing(calendar.is_trading_minute) for non_trading_min in ans.non_trading_minutes_only(): assert f(non_trading_min) is False for trading_min in ans.trading_minutes_only(): assert f(trading_min) is True for break_min in ans.break_minutes_only(): assert f(break_min) is False def test_is_break_minute(self, all_calendars_with_answers): calendar, ans = all_calendars_with_answers f = no_parsing(calendar.is_break_minute) for non_trading_min in ans.non_trading_minutes_only(): assert f(non_trading_min) is False for trading_min in ans.trading_minutes_only(): assert f(trading_min) is False for break_min in ans.break_minutes_only(): assert f(break_min) is True def test_is_open_on_minute(self, all_calendars_with_answers): calendar, ans = all_calendars_with_answers f = no_parsing(calendar.is_open_on_minute) # minimal test as is_open_on_minute delegates evaluation to is_trading_minute # and is_break_minute, both of which are comprehensively tested. for non_trading_min in itertools.islice(ans.non_trading_minutes_only(), 50): assert f(non_trading_min) is False for trading_min in itertools.islice(ans.trading_minutes_only(), 50): assert f(trading_min) is True for break_min in ans.break_minutes_only(): rtrn = f(break_min, ignore_breaks=True) assert rtrn is True rtrn = f(break_min) assert rtrn is False def test_prev_next_open_close(self, default_calendar_with_answers): """Test methods that return previous/next open/close. Tests methods: previous_open previous_close next_open next_close """ cal, ans = default_calendar_with_answers generator = ans.prev_next_open_close_minutes() for minute, (prev_open, prev_close, next_open, next_close) in generator: if prev_open is None: with pytest.raises(ValueError): cal.previous_open(minute, _parse=False) else: assert cal.previous_open(minute, _parse=False) == prev_open if prev_close is None: with pytest.raises(ValueError): cal.previous_close(minute, _parse=False) else: assert cal.previous_close(minute, _parse=False) == prev_close if next_open is None: with pytest.raises(ValueError): cal.next_open(minute, _parse=False) else: assert cal.next_open(minute, _parse=False) == next_open if next_close is None: with pytest.raises(ValueError): cal.next_close(minute, _parse=False) else: assert cal.next_close(minute, _parse=False) == next_close def test_prev_next_minute(self, all_calendars_with_answers, one_minute): """Test methods that return previous/next minute. Test focuses on and inside of edge cases. Tests methods: next_minute previous_minute """ cal, ans = all_calendars_with_answers f_next = no_parsing(cal.next_minute) f_prev = no_parsing(cal.previous_minute) # minutes of first session first_min = ans.first_minutes[0] first_min_plus_one = ans.first_minutes_plus_one[0] first_min_less_one = ans.first_minutes_less_one[0] last_min = ans.last_minutes[0] last_min_plus_one = ans.last_minutes_plus_one[0] last_min_less_one = ans.last_minutes_less_one[0] with pytest.raises(ValueError): f_prev(first_min) # minutes earlier than first_trading_minute assumed handled via parse_timestamp assert f_next(first_min) == first_min_plus_one assert f_next(first_min_plus_one) == first_min_plus_one + one_minute assert f_prev(first_min_plus_one) == first_min assert f_prev(last_min) == last_min_less_one assert f_prev(last_min_less_one) == last_min_less_one - one_minute assert f_next(last_min_less_one) == last_min assert f_prev(last_min_plus_one) == last_min prev_last_min = last_min for ( first_min, first_min_plus_one, first_min_less_one, last_min, last_min_plus_one, last_min_less_one, gap_before, ) in zip( ans.first_minutes[1:], ans.first_minutes_plus_one[1:], ans.first_minutes_less_one[1:], ans.last_minutes[1:], ans.last_minutes_plus_one[1:], ans.last_minutes_less_one[1:], ~ans._mask_sessions_without_gap_before[1:], ): assert f_next(prev_last_min) == first_min assert f_prev(first_min) == prev_last_min assert f_next(first_min) == first_min_plus_one assert f_prev(first_min_plus_one) == first_min assert f_next(first_min_less_one) == first_min assert f_prev(last_min) == last_min_less_one assert f_next(last_min_less_one) == last_min assert f_prev(last_min_plus_one) == last_min if gap_before: assert f_next(prev_last_min + one_minute) == first_min assert f_prev(first_min_less_one) == prev_last_min else: assert f_next(prev_last_min + one_minute) == first_min_plus_one assert f_next(prev_last_min + one_minute) == first_min_plus_one prev_last_min = last_min with pytest.raises(ValueError): f_next(last_min) # minutes later than last_trading_minute assumed handled via parse_timestamp if ans.has_a_session_with_break: for ( last_am_min, last_am_min_less_one, last_am_min_plus_one, first_pm_min, first_pm_min_less_one, first_pm_min_plus_one, ) in zip( ans.last_am_minutes, ans.last_am_minutes_less_one, ans.last_am_minutes_plus_one, ans.first_pm_minutes, ans.first_pm_minutes_less_one, ans.first_pm_minutes_plus_one, ): if pd.isna(last_am_min): continue assert f_next(last_am_min_less_one) == last_am_min assert f_next(last_am_min) == first_pm_min assert f_prev(last_am_min) == last_am_min_less_one assert f_next(last_am_min_plus_one) == first_pm_min assert f_prev(last_am_min_plus_one) == last_am_min assert f_prev(first_pm_min_less_one) == last_am_min assert f_next(first_pm_min_less_one) == first_pm_min assert f_prev(first_pm_min) == last_am_min assert f_next(first_pm_min) == first_pm_min_plus_one assert f_prev(first_pm_min_plus_one) == first_pm_min def test_minute_to_session_label(self, all_calendars_with_answers, all_directions): direction = all_directions calendar, ans = all_calendars_with_answers f = no_parsing(calendar.minute_to_session_label) for non_trading_mins, prev_session, next_session in ans.non_trading_minutes: for non_trading_min in non_trading_mins: if direction == "none": with pytest.raises(ValueError): f(non_trading_min, direction) else: session = f(non_trading_min, direction) if direction == "next": assert session == next_session else: assert session == prev_session for trading_minutes, session in ans.trading_minutes: for trading_minute in trading_minutes: rtrn = f(trading_minute, direction) assert rtrn == session if ans.has_a_session_with_break: for break_minutes, session in ans.break_minutes[:15]: for break_minute in break_minutes: rtrn = f(break_minute, direction) assert rtrn == session oob_minute = ans.minute_too_early if direction in ["previous", "none"]: error_msg = ( f"Received `minute` as '{oob_minute}' although this is earlier than" f" the calendar's first trading minute ({ans.first_trading_minute})" ) with pytest.raises(ValueError, match=re.escape(error_msg)): f(oob_minute, direction) else: session = f(oob_minute, direction) assert session == ans.first_session oob_minute = ans.minute_too_late if direction in ["next", "none"]: error_msg = ( f"Received `minute` as '{oob_minute}' although this is later" f" than the calendar's last trading minute ({ans.last_trading_minute})" ) with pytest.raises(ValueError, match=re.escape(error_msg)): f(oob_minute, direction) else: session = f(oob_minute, direction) assert session == ans.last_session # Tests for methods that evaluate or interrogate a range of minutes. def test_minutes_in_range(self, all_calendars_with_answers, one_minute): cal, ans = all_calendars_with_answers f = no_parsing(cal.minutes_in_range) block_minutes = ans.session_block_minutes for name, block in ans.session_block_generator(): ans_dti = block_minutes[name] from_ = ans.first_minutes[block[0]] to = ans.last_minutes[block[-1]] cal_dti = f(from_, to) tm.assert_index_equal(ans_dti, cal_dti) # test consequence of getting range from one minute before/after the # block's first/last trading minute. if name in ["first_three", "last_three"]: continue cal_dti = f(from_ - one_minute, to + one_minute) start_idx = 1 if block[0] in ans.sessions_without_gap_before else 0 end_idx = -1 if block[-1] in ans.sessions_without_gap_after else None tm.assert_index_equal(ans_dti, cal_dti[start_idx:end_idx]) # intra-session from_ = ans.first_minutes[ans.first_session] + pd.Timedelta(15, "T") to = ans.first_minutes[ans.first_session] + pd.Timedelta(45, "T") expected = pd.date_range(from_, to, freq="T") rtrn = f(from_, to) tm.assert_index_equal(expected, rtrn) # inter-session if not ans.sessions_with_gap_after.empty: session = ans.sessions_with_gap_after[0] next_session = ans.get_next_session(session) from_ = ans.last_minutes[session] + one_minute to = ans.first_minutes[next_session] - one_minute assert f(from_, to).empty def test_minutes_window(self, all_calendars_with_answers): cal, ans = all_calendars_with_answers f = no_parsing(cal.minutes_window) block_minutes = ans.session_block_minutes for name, block in ans.session_block_generator(): start = ans.first_minutes[block[0]] ans_dti = block_minutes[name] count = len(ans_dti) - 1 cal_dti = f(start, count)
tm.assert_index_equal(ans_dti, cal_dti)
pandas.testing.assert_index_equal
from __future__ import annotations from datetime import timedelta import operator from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Hashable, List, cast, ) import warnings import numpy as np from pandas._libs import index as libindex from pandas._libs.lib import no_default from pandas._typing import Dtype from pandas.compat.numpy import function as nv from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.util._exceptions import rewrite_exception from pandas.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCTimedeltaIndex from pandas.core import ops import pandas.core.common as com from pandas.core.construction import extract_array import pandas.core.indexes.base as ibase from pandas.core.indexes.base import maybe_extract_name from pandas.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from pandas import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by DataFrame and Series when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. copy : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base pandas Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, copy: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if isinstance(start, RangeIndex): return start.copy(name=name) elif isinstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.all_none(start, stop, step): raise TypeError("RangeIndex(...) must be called with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range( cls, data: range, name=None, dtype: Dtype | None = None ) -> RangeIndex: """ Create RangeIndex from a range object. Returns ------- RangeIndex """ if not isinstance(data, range): raise TypeError( f"{cls.__name__}(...) must be called with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: range, name: Hashable = None) -> RangeIndex: result = object.__new__(cls) assert isinstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() return result # -------------------------------------------------------------------- @cache_readonly def _constructor(self) -> type[Int64Index]: """ return the class to use for construction """ return Int64Index @cache_readonly def _data(self) -> np.ndarray: """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) @cache_readonly def _cached_int64index(self) -> Int64Index: return Int64Index._simple_new(self._data, name=self.name) @property def _int64index(self) -> Int64Index: # wrap _cached_int64index so we can be sure its name matches self.name res = self._cached_int64index res._name = self._name return res def _get_data_as_items(self): """ return a list of tuples of start, stop, step """ rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = self._get_attributes_dict() d.update(dict(self._get_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _format_attrs(self): """ Return a list of tuples of the (attr, formatted_value) """ attrs = self._get_data_as_items() if self.name is not None: attrs.append(("name", ibase.default_pprint(self.name))) return attrs def _format_data(self, name=None): # we are formatting thru the attributes return None def _format_with_header(self, header: list[str], na_rep: str = "NaN") -> list[str]: if not len(self._range): return header first_val_str = str(self._range[0]) last_val_str = str(self._range[-1]) max_length = max(len(first_val_str), len(last_val_str)) return header + [f"{x:<{max_length}}" for x in self._range] # -------------------------------------------------------------------- _deprecation_message = ( "RangeIndex.{} is deprecated and will be " "removed in a future version. Use RangeIndex.{} " "instead" ) @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). """ # GH 25710 return self._range.start @property def _start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). .. deprecated:: 0.25.0 Use ``start`` instead. """ warnings.warn( self._deprecation_message.format("_start", "start"), FutureWarning, stacklevel=2, ) return self.start @property def stop(self) -> int: """ The value of the `stop` parameter. """ return self._range.stop @property def _stop(self) -> int: """ The value of the `stop` parameter. .. deprecated:: 0.25.0 Use ``stop`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.format("_stop", "stop"), FutureWarning, stacklevel=2, ) return self.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). """ # GH 25710 return self._range.step @property def _step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). .. deprecated:: 0.25.0 Use ``step`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.format("_step", "step"), FutureWarning, stacklevel=2, ) return self.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return getsizeof(rng) + sum( getsizeof(getattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return np.dtype(np.int64) @property def is_unique(self) -> bool: """ return if the index has unique values """ return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or len(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or len(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Int64Index.get_loc) def get_loc(self, key, method=None, tolerance=None): if method is None and tolerance is None: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err raise KeyError(key) return super().get_loc(key, method=method, tolerance=tolerance) def _get_indexer( self, target: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # -> np.ndarray[np.intp] if com.any_not_none(method, tolerance, limit): return super()._get_indexer( target, method=method, tolerance=tolerance, limit=limit ) if self.step > 0: start, stop, step = self.start, self.stop, self.step else: # GH 28678: work on reversed range for simplicity reverse = self._range[::-1] start, stop, step = reverse.start, reverse.stop, reverse.step if not is_signed_integer_dtype(target): # checks/conversions/roundings are delegated to general method return super()._get_indexer(target, method=method, tolerance=tolerance) target_array = np.asarray(target) locs = target_array - start valid = (locs % step == 0) & (locs >= 0) & (target_array < stop) locs[~valid] = -1 locs[valid] = locs[valid] / step if step != self.step: # We reversed this range: transform to original locs locs[valid] = len(self) - 1 - locs[valid] return ensure_platform_int(locs) # -------------------------------------------------------------------- def repeat(self, repeats, axis=None) -> Int64Index: return self._int64index.repeat(repeats, axis=axis) def delete(self, loc) -> Int64Index: # type: ignore[override] return self._int64index.delete(loc) def take( self, indices, axis: int = 0, allow_fill: bool = True, fill_value=None, **kwargs ) -> Int64Index: with rewrite_exception("Int64Index", type(self).__name__): return self._int64index.take( indices, axis=axis, allow_fill=allow_fill, fill_value=fill_value, **kwargs, ) def tolist(self) -> list[int]: return list(self._range) @doc(Int64Index.__iter__) def __iter__(self): yield from self._range @doc(Int64Index._shallow_copy) def _shallow_copy(self, values, name: Hashable = no_default): name = self.name if name is no_default else name if values.dtype.kind == "f": return Float64Index(values, name=name) return Int64Index._simple_new(values, name=name) def _view(self: RangeIndex) -> RangeIndex: result = type(self)._simple_new(self._range, name=self._name) result._cache = self._cache return result @doc(Int64Index.copy) def copy( self, name: Hashable = None, deep: bool = False, dtype: Dtype | None = None, names=None, ): name = self._validate_names(name=name, names=names, deep=deep)[0] new_index = self._rename(name=name) if dtype: warnings.warn( "parameter dtype is deprecated and will be removed in a future " "version. Use the astype method instead.", FutureWarning, stacklevel=2, ) new_index = new_index.astype(dtype) return new_index def _minmax(self, meth: str): no_steps = len(self) - 1 if no_steps == -1: return np.nan elif (meth == "min" and self.step > 0) or (meth == "max" and self.step < 0): return self.start return self.start + self.step * no_steps def min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The minimum value of the RangeIndex""" nv.validate_minmax_axis(axis) nv.validate_min(args, kwargs) return self._minmax("min") def max(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The maximum value of the RangeIndex""" nv.validate_minmax_axis(axis) nv.validate_max(args, kwargs) return self._minmax("max") def argsort(self, *args, **kwargs) -> np.ndarray: """ Returns the indices that would sort the index and its underlying data. Returns ------- np.ndarray[np.intp] See Also -------- numpy.ndarray.argsort """ ascending = kwargs.pop("ascending", True) # EA compat nv.validate_argsort(args, kwargs) if self._range.step > 0: result = np.arange(len(self), dtype=np.intp) else: result = np.arange(len(self) - 1, -1, -1, dtype=np.intp) if not ascending: result = result[::-1] return result def factorize( self, sort: bool = False, na_sentinel: int | None = -1 ) -> tuple[np.ndarray, RangeIndex]: codes = np.arange(len(self), dtype=np.intp) uniques = self if sort and self.step < 0: codes = codes[::-1] uniques = uniques[::-1] return codes, uniques def equals(self, other: object) -> bool: """ Determines if two Index objects contain the same elements. """ if isinstance(other, RangeIndex): return self._range == other._range return super().equals(other) # -------------------------------------------------------------------- # Set Operations def _intersection(self, other: Index, sort=False): if not isinstance(other, RangeIndex): # Int64Index return super()._intersection(other, sort=sort) if not len(self) or not len(other): return self._simple_new(_empty_range) first = self._range[::-1] if self.step < 0 else self._range second = other._range[::-1] if other.step < 0 else other._range # check whether intervals intersect # deals with in- and decreasing ranges int_low = max(first.start, second.start) int_high = min(first.stop, second.stop) if int_high <= int_low: return self._simple_new(_empty_range) # Method hint: linear Diophantine equation # solve intersection problem # performance hint: for identical step sizes, could use # cheaper alternative gcd, s, _ = self._extended_gcd(first.step, second.step) # check whether element sets intersect if (first.start - second.start) % gcd: return self._simple_new(_empty_range) # calculate parameters for the RangeIndex describing the # intersection disregarding the lower bounds tmp_start = first.start + (second.start - first.start) * first.step // gcd * s new_step = first.step * second.step // gcd new_range = range(tmp_start, int_high, new_step) new_index = self._simple_new(new_range) # adjust index to limiting interval new_start = new_index._min_fitting_element(int_low) new_range = range(new_start, new_index.stop, new_index.step) new_index = self._simple_new(new_range) if (self.step < 0 and other.step < 0) is not (new_index.step < 0): new_index = new_index[::-1] if sort is None: new_index = new_index.sort_values() return new_index def _min_fitting_element(self, lower_limit: int) -> int: """Returns the smallest element greater than or equal to the limit""" no_steps = -(-(lower_limit - self.start) // abs(self.step)) return self.start + abs(self.step) * no_steps def _max_fitting_element(self, upper_limit: int) -> int: """Returns the largest element smaller than or equal to the limit""" no_steps = (upper_limit - self.start) // abs(self.step) return self.start + abs(self.step) * no_steps def _extended_gcd(self, a: int, b: int) -> tuple[int, int, int]: """ Extended Euclidean algorithms to solve Bezout's identity: a*x + b*y = gcd(x, y) Finds one particular solution for x, y: s, t Returns: gcd, s, t """ s, old_s = 0, 1 t, old_t = 1, 0 r, old_r = b, a while r: quotient = old_r // r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t return old_r, old_s, old_t def _union(self, other: Index, sort): """ Form the union of two Index objects and sorts if possible Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort resulting index. ``sort=None`` returns a monotonically increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not. ``sort=False`` always returns an unsorted ``Int64Index`` .. versionadded:: 0.25.0 Returns ------- union : Index """ if isinstance(other, RangeIndex) and sort is None: start_s, step_s = self.start, self.step end_s = self.start + self.step * (len(self) - 1) start_o, step_o = other.start, other.step end_o = other.start + other.step * (len(other) - 1) if self.step < 0: start_s, step_s, end_s = end_s, -step_s, start_s if other.step < 0: start_o, step_o, end_o = end_o, -step_o, start_o if len(self) == 1 and len(other) == 1: step_s = step_o = abs(self.start - other.start) elif len(self) == 1: step_s = step_o elif len(other) == 1: step_o = step_s start_r = min(start_s, start_o) end_r = max(end_s, end_o) if step_o == step_s: if ( (start_s - start_o) % step_s == 0 and (start_s - end_o) <= step_s and (start_o - end_s) <= step_s ): return type(self)(start_r, end_r + step_s, step_s) if ( (step_s % 2 == 0) and (abs(start_s - start_o) <= step_s / 2) and (abs(end_s - end_o) <= step_s / 2) ): return type(self)(start_r, end_r + step_s / 2, step_s / 2) elif step_o % step_s == 0: if ( (start_o - start_s) % step_s == 0 and (start_o + step_s >= start_s) and (end_o - step_s <= end_s) ): return type(self)(start_r, end_r + step_s, step_s) elif step_s % step_o == 0: if ( (start_s - start_o) % step_o == 0 and (start_s + step_o >= start_o) and (end_s - step_o <= end_o) ): return type(self)(start_r, end_r + step_o, step_o) return self._int64index._union(other, sort=sort) def _difference(self, other, sort=None): # optimized set operation if we have another RangeIndex self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name = self._convert_can_do_setop(other) if not isinstance(other, RangeIndex): return super()._difference(other, sort=sort) res_name = ops.get_op_result_name(self, other) first = self._range[::-1] if self.step < 0 else self._range overlap = self.intersection(other) if overlap.step < 0: overlap = overlap[::-1] if len(overlap) == 0: return self.rename(name=res_name) if len(overlap) == len(self): return self[:0].rename(res_name) if not isinstance(overlap, RangeIndex): # We won't end up with RangeIndex, so fall back return super()._difference(other, sort=sort) if overlap.step != first.step: # In some cases we might be able to get a RangeIndex back, # but not worth the effort. return super()._difference(other, sort=sort) if overlap[0] == first.start: # The difference is everything after the intersection new_rng = range(overlap[-1] + first.step, first.stop, first.step) elif overlap[-1] == first[-1]: # The difference is everything before the intersection new_rng = range(first.start, overlap[0], first.step) else: # The difference is not range-like return super()._difference(other, sort=sort) new_index = type(self)._simple_new(new_rng, name=res_name) if first is not self._range: new_index = new_index[::-1] return new_index def symmetric_difference(self, other, result_name: Hashable = None, sort=None): if not isinstance(other, RangeIndex) or sort is not None: return super().symmetric_difference(other, result_name, sort) left = self.difference(other) right = other.difference(self) result = left.union(right) if result_name is not None: result = result.rename(result_name) return result # -------------------------------------------------------------------- def _concat(self, indexes: list[Index], name: Hashable) -> Index: """ Overriding parent method for the case of all RangeIndex instances. When all members of "indexes" are of type RangeIndex: result will be RangeIndex if possible, Int64Index otherwise. E.g.: indexes = [RangeIndex(3), RangeIndex(3, 6)] -> RangeIndex(6) indexes = [RangeIndex(3), RangeIndex(4, 6)] -> Int64Index([0,1,2,4,5]) """ if not all(isinstance(x, RangeIndex) for x in indexes): return super()._concat(indexes, name) elif len(indexes) == 1: return indexes[0] rng_indexes = cast(List[RangeIndex], indexes) start = step = next_ = None # Filter the empty indexes non_empty_indexes = [obj for obj in rng_indexes if len(obj)] for obj in non_empty_indexes: rng = obj._range if start is None: # This is set by the first non-empty index start = rng.start if step is None and len(rng) > 1: step = rng.step elif step is None: # First non-empty index had only one element if rng.start == start: values = np.concatenate([x._values for x in rng_indexes]) result = Int64Index(values) return result.rename(name) step = rng.start - start non_consecutive = (step != rng.step and len(rng) > 1) or ( next_ is not None and rng.start != next_ ) if non_consecutive: result = Int64Index(np.concatenate([x._values for x in rng_indexes])) return result.rename(name) if step is not None: next_ = rng[-1] + step if non_empty_indexes: # Get the stop value from "next" or alternatively # from the last non-empty index stop = non_empty_indexes[-1].stop if next_ is None else next_ return RangeIndex(start, stop, step).rename(name) # Here all "indexes" had 0 length, i.e. were empty. # In this case return an empty range index. return RangeIndex(0, 0).rename(name) def __len__(self) -> int: """ return the length of the RangeIndex """ return len(self._range) @property def size(self) -> int: return len(self) def __getitem__(self, key): """ Conserve RangeIndex type for scalar and slice keys. """ if isinstance(key, slice): new_range = self._range[key] return self._simple_new(new_range, name=self._name) elif is_integer(key): new_key = int(key) try: return self._range[new_key] except IndexError as err: raise IndexError( f"index {key} is out of bounds for axis 0 with size {len(self)}" ) from err elif is_scalar(key): raise IndexError( "only integers, slices (`:`), " "ellipsis (`...`), numpy.newaxis (`None`) " "and integer or boolean " "arrays are valid indices" ) # fall back to Int64Index return super().__getitem__(key) def _getitem_slice(self: RangeIndex, slobj: slice) -> RangeIndex: """ Fastpath for __getitem__ when we know we have a slice. """ res = self._range[slobj] return type(self)._simple_new(res, name=self._name) @unpack_zerodim_and_defer("__floordiv__") def __floordiv__(self, other): if is_integer(other) and other != 0: if len(self) == 0 or self.start % other == 0 and self.step % other == 0: start = self.start // other step = self.step // other stop = start + len(self) * step new_range = range(start, stop, step or 1) return self._simple_new(new_range, name=self.name) if len(self) == 1: start = self.start // other new_range = range(start, start + 1, 1) return self._simple_new(new_range, name=self.name) return self._int64index // other # -------------------------------------------------------------------- # Reductions def all(self, *args, **kwargs) -> bool: return 0 not in self._range def any(self, *args, **kwargs) -> bool: return any(self._range) # -------------------------------------------------------------------- def _cmp_method(self, other, op): if isinstance(other, RangeIndex) and self._range == other._range: # Both are immutable so if ._range attr. are equal, shortcut is possible return super()._cmp_method(self, op) return super()._cmp_method(other, op) def _arith_method(self, other, op): """ Parameters ---------- other : Any op : callable that accepts 2 params perform the binary op """ if isinstance(other, ABCTimedeltaIndex): # Defer to TimedeltaIndex implementation return NotImplemented elif isinstance(other, (timedelta, np.timedelta64)): # GH#19333 is_integer evaluated True on timedelta64, # so we need to catch these explicitly return op(self._int64index, other) elif is_timedelta64_dtype(other): # Must be an np.ndarray; GH#22390 return op(self._int64index, other) if op in [ operator.pow, ops.rpow, operator.mod, ops.rmod, ops.rfloordiv, divmod, ops.rdivmod, ]: return op(self._int64index, other) step: Callable | None = None if op in [operator.mul, ops.rmul, operator.truediv, ops.rtruediv]: step = op # TODO: if other is a RangeIndex we may have more efficient options other = extract_array(other, extract_numpy=True, extract_range=True) attrs = self._get_attributes_dict() left, right = self, other try: # apply if we have an override if step: with np.errstate(all="ignore"): rstep = step(left.step, right) # we don't have a representable op # so return a base index if not is_integer(rstep) or not rstep: raise ValueError else: rstep = left.step with np.errstate(all="ignore"): rstart = op(left.start, right) rstop = op(left.stop, right) result = type(self)(rstart, rstop, rstep, **attrs) # for compat with numpy / Int64Index # even if we can represent as a RangeIndex, return # as a Float64Index if we have float-like descriptors if not all(
is_integer(x)
pandas.core.dtypes.common.is_integer
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # License: BSD 3 clause """ Unitary tests for bigfish.stack.utils module. """ import os import pytest import tempfile import bigfish.stack as stack import numpy as np import pandas as pd from bigfish.stack.utils import fit_recipe from bigfish.stack.utils import get_path_from_recipe from bigfish.stack.utils import get_nb_element_per_dimension from bigfish.stack.utils import count_nb_fov # TODO add test for bigfish.stack.load_and_save_url # TODO add test for bigfish.stack.check_hash # TODO add test for bigfish.stack.compute_hash # ### Test sanity check functions ### def test_check_parameter(): # define a function with different parameters to check def foo(a, b, c, d, e, f, g, h): stack.check_parameter(a=(list, type(None)), b=str, c=int, d=float, e=np.ndarray, f=bool, g=(pd.DataFrame, pd.Series), h=pd.DataFrame) return True # test the consistency of the check function when it works... assert foo(a=[], b="bar", c=5, d=2.5, e=np.array([3, 6, 9]), f=True, g=pd.DataFrame(), h=pd.DataFrame()) assert foo(a=None, b="", c=10, d=2.0, e=np.array([3, 6, 9]), f=False, g=pd.Series(), h=pd.DataFrame()) # ... and when it should raise an error with pytest.raises(TypeError): foo(a=(), b="bar", c=5, d=2.5, e=np.array([3, 6, 9]), f=True, g=
pd.DataFrame()
pandas.DataFrame
""" 本地数据查询及预处理,适用于zipline ingest写入 读取本地数据 1. 元数据所涉及的时间列 其tz为UTC 2. 数据框datetime-index.tz为None 注:只选A股股票。注意股票总体在`ingest`及`fundamental`必须保持一致。 """ import re import warnings from concurrent.futures.thread import ThreadPoolExecutor from functools import lru_cache, partial from trading_calendars import get_calendar import numpy as np import pandas as pd from cnswd.mongodb import get_db from cnswd.setting.constants import MAX_WORKER from cnswd.utils import sanitize_dates import akshare as ak warnings.filterwarnings('ignore') WY_DAILY_COL_MAPS = { '日期': 'date', '股票代码': 'symbol', '收盘价': 'close', '最高价': 'high', '最低价': 'low', '开盘价': 'open', '前收盘': 'prev_close', '涨跌幅': 'change_pct', '换手率': 'turnover', '成交量': 'volume', '成交金额': 'amount', '总市值': 'total_cap', '流通市值': 'market_cap', } WY_ADJUSTMENT_COLS = { '股票代码': 'symbol', '分红年度': 'date', '送股(每10股)': 's_ratio', '转增(每10股)': 'z_ratio', '派息(每10股)': 'amount', '公告日期': 'declared_date', '股权登记日': 'record_date', '除权除息日': 'ex_date', '红股上市日': 'pay_date' } def encode_index_code(x, offset=1000000): i = int(x) + offset return str(i).zfill(7) def decode_index_code(x, offset=1000000): i = int(x) - offset return str(i).zfill(6) def get_exchange(code): """股票所在交易所编码""" # https://www.iso20022.org/10383/iso-10383-market-identifier-codes if len(code) == 7: return '指数' if code.startswith('688'): return "上交所科创板" elif code.startswith('002'): return "深交所中小板" elif code.startswith('6'): return "上交所" elif code.startswith('3'): return "深交所创业板" elif code.startswith('0'): return "深交所主板" elif code.startswith('2'): return "深证B股" elif code.startswith('9'): return "上海B股" else: raise ValueError(f'股票代码:{code}错误') def _select_only_a(df, code_col): """选择A股数据 Arguments: df {DataFrame} -- 数据框 code_col {str} -- 代表股票代码的列名称 Returns: DataFrame -- 筛选出来的a股数据 """ cond1 = df[code_col].str.startswith('2') cond2 = df[code_col].str.startswith('9') df = df.loc[~(cond1 | cond2), :] return df def _gen_index_metadata(db, code): collection = db[code] name = collection.find_one(projection={ '_id': 0, '名称': 1, }, sort=[('日期', -1)]) if name is None: return pd.DataFrame() first = collection.find_one(projection={ '_id': 0, '日期': 1, }, sort=[('日期', 1)]) last = collection.find_one(projection={ '_id': 0, '日期': 1, }, sort=[('日期', -1)]) start_date = pd.Timestamp(first['日期'], tz='UTC') end_date = pd.Timestamp(last['日期'], tz='UTC') return pd.DataFrame( { 'symbol': encode_index_code(code), 'exchange': '指数', 'asset_name': name['名称'], # 简称 'start_date': start_date, 'end_date': end_date, 'first_traded': start_date, # 适应于分钟级别的数据 'last_traded': end_date, 'auto_close_date': end_date + pd.Timedelta(days=1), }, index=[0]) def gen_index_metadata(): db = get_db('wy_index_daily') codes = db.list_collection_names() dfs = [_gen_index_metadata(db, code) for code in codes] return pd.concat(dfs) def _stock_first_and_last(code, db=None): """ 日线交易数据开始交易及结束交易日期 Examples -------- >>> _stock_first_and_last('000333') symbol asset_name first_traded last_traded 0 000333 美的集团 2020-04-02 00:00:00+00:00 2020-04-04 00:00:00+00:00 """ if db is None: db = get_db('wy_stock_daily') if code not in db.list_collection_names(): return
pd.DataFrame()
pandas.DataFrame
from directional import * import pandas as pd import numpy as np demo_sin_cos_matrix = pd.read_csv("sample_data/sin-cos.csv") demo_sin_cos_mean = pd.read_csv("sample_data/sin-cos-mean.csv") demo_angle_matrix = pd.read_csv("sample_data/degrees.csv") demo_radian_matrix = pd.read_csv("sample_data/radians.csv") demo_radian_mean =
pd.read_csv("sample_data/radians-mean.csv")
pandas.read_csv
import pandas as pd from pandas.io.json import json_normalize def venues_explore(client,lat,lng, limit=100, verbose=0, sort='popular', radius=2000, offset=1, day='any',query=''): '''funtion to get n-places using explore in foursquare, where n is the limit when calling the function. This returns a pandas dataframe with name, city ,country, lat, long, address and main category as columns Arguments: *client, *lat, *long, limit (defaults to 100), radius (defaults to 2000), verbose (defaults to 0), offset (defaults to 1), day (defaults to any)''' # create a dataframe df_a = pd.DataFrame(columns=['Name', 'City', 'Latitude', 'Longitude', 'Category', 'Address']) ll=lat+','+lng if offset<=50: for i_offset in range(0,offset): #get venues using client https://github.com/mLewisLogic/foursquare venues = client.venues.explore(params={'ll':ll, 'limit':limit, 'intent' : 'browse', 'sort':sort, 'radius':radius, 'offset':i_offset, 'day':day, 'query':query }) venues=venues['groups'][0]['items'] df_venues = pd.DataFrame.from_dict(venues) df_venues['venue'][0] #print('limit', limit, 'sort', sort, 'radius', radius) for i, value in df_venues['venue'].items(): if verbose==1: print('i', i, 'name', value['name']) venueName=value['name'] try: venueCity=value['location']['city'] except: venueCity='' venueCountry=value['location']['country'] venueLat=value['location']['lat'] venueLng=value['location']['lng'] venueCountry=value['location']['country'] try: venueAddress=value['location']['address'] except: venueAddress='' venueCategory=value['categories'][0]['name'] df_a=df_a.append([{'Name':venueName, 'City':venueCity, 'Country':venueCountry, 'Latitude':venueLat, 'Longitude':venueLng, 'Category':venueCategory, 'Address':venueAddress }]) else: print('ERROR: offset value per Foursquare API is up to 50. Please use a lower value.') return df_a.reset_index() def venues_explore_near(client,near, limit=100, verbose=0, sort='popular', radius=100000, offset=1, day='any',query=''): '''funtion to get n-places using explore in foursquare, where n is the limit when calling the function. This returns a pandas dataframe with name, city ,country, near, address and main category as columns. "near" argument searches within the bounds of the geocode for a string naming a place in the world. Arguments: *client, *near, limit (defaults to 100), radius (defaults to 100000, max according to api docs), verbose (defaults to 0), offset (defaults to 1), day (defaults to any)''' # create a dataframe df_a = pd.DataFrame(columns=['Name', 'City', 'Latitude', 'Longitude', 'Category', 'Address']) if offset<=50: for i_offset in range(0,offset): #get venues using client https://github.com/mLewisLogic/foursquare venues = client.venues.explore(params={'near':near, 'limit':limit, 'intent' : 'browse', 'sort':sort, 'radius':radius, 'offset':i_offset, 'day':day, 'query':query }) venues=venues['groups'][0]['items'] df_venues = pd.DataFrame.from_dict(venues) df_venues['venue'][0] #print('limit', limit, 'sort', sort, 'radius', radius) for i, value in df_venues['venue'].items(): if verbose==1: print('i', i, 'name', value['name']) venueName=value['name'] try: venueCity=value['location']['city'] except: venueCity='' venueCountry=value['location']['country'] venueLat=value['location']['lat'] venueLng=value['location']['lng'] venueCountry=value['location']['country'] try: venueAddress=value['location']['address'] except: venueAddress='' venueCategory=value['categories'][0]['name'] df_a=df_a.append([{'Name':venueName, 'City':venueCity, 'Country':venueCountry, 'Latitude':venueLat, 'Longitude':venueLng, 'Category':venueCategory, 'Address':venueAddress }]) else: print('ERROR: offset value according to Foursquare API is up to 50. Please use a lower value.') return df_a.reset_index() def get_categories(): '''Function to get a Pandas DataFrame of all categories in Foursquare as listed in https://developer.foursquare.com/docs/resources/categories It uses json_normalize to get nested information and return a DataFrame with main, sub and sub-sub categories name and ID''' df1 = pd.read_json('https://api.foursquare.com/v2/venues/categories?v=20170211&oauth_token=QEJ4AQPTMMNB413HGNZ5YDMJSHTOHZHMLZCAQCCLXIX41OMP&includeSupportedCC=true') df1=df1.iloc[0,1] df1 = json_normalize(df1) #json_normalize(df1.iloc[0,0]) i=0 df_size=df1.shape[0] df_cat=pd.DataFrame() for i in range(i,df_size): #print('print',df1.iloc[i,0]) #normalize subcategories new_cats=json_normalize(df1.iloc[i,0]) #get new df size new_size=new_cats.shape[0] #print('new_size',new_size) #new vars i_sub=0 new_sub_cat=pd.DataFrame() #new df for sub sub cats #iterate to get sub sub categories for i_sub in range(i_sub,new_size): sub_cats=
json_normalize(new_cats.iloc[i_sub,0])
pandas.io.json.json_normalize
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(self, all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(self, all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s = pd.Series(mixed) msg = r"cannot convert to .*-dtype NumPy array with missing values.*" with pytest.raises(ValueError, match=msg): s.astype(all_data.dtype.numpy_dtype) # coerce to object s = pd.Series(mixed) result = s.astype("object") expected = pd.Series(np.asarray(mixed)) tm.assert_series_equal(result, expected) def test_astype_to_larger_numpy(self): a = pd.array([1, 2], dtype="Int32") result = a.astype("int64") expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result, expected) a = pd.array([1, 2], dtype="UInt32") result = a.astype("uint64") expected = np.array([1, 2], dtype="uint64") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"]) def test_astype_specific_casting(self, dtype): s = pd.Series([1, 2, 3], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) s = pd.Series([1, 2, 3, None], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3, None], dtype=dtype) tm.assert_series_equal(result, expected) def test_construct_cast_invalid(self, dtype): msg = "cannot safely" arr = [1.2, 2.3, 3.7] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) arr = [1.2, 2.3, 3.7, np.nan] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) @pytest.mark.parametrize("in_series", [True, False]) def test_to_numpy_na_nan(self, in_series): a = pd.array([0, 1, None], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([0.0, 1.0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="int64", na_value=-1) expected = np.array([0, 1, -1], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="bool", na_value=False) expected = np.array([False, True, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("in_series", [True, False]) @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"]) def test_to_numpy_dtype(self, dtype, in_series): a = pd.array([0, 1], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype=dtype) expected = np.array([0, 1], dtype=dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", ["float64", "int64", "bool"]) def test_to_numpy_na_raises(self, dtype): a = pd.array([0, 1, None], dtype="Int64") with pytest.raises(ValueError, match=dtype): a.to_numpy(dtype=dtype) def test_astype_str(self): a = pd.array([1, 2, None], dtype="Int64") expected = np.array(["1", "2", "<NA>"], dtype=object) tm.assert_numpy_array_equal(a.astype(str), expected) tm.assert_numpy_array_equal(a.astype("str"), expected) def test_astype_boolean(self): # https://github.com/pandas-dev/pandas/issues/31102 a = pd.array([1, 0, -1, 2, None], dtype="Int64") result = a.astype("boolean") expected = pd.array([True, False, True, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_frame_repr(data_missing): df = pd.DataFrame({"A": data_missing}) result = repr(df) expected = " A\n0 <NA>\n1 1" assert result == expected def test_conversions(data_missing): # astype to object series df = pd.DataFrame({"A": data_missing}) result = df["A"].astype("object") expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A") tm.assert_series_equal(result, expected) # convert to object ndarray # we assert that we are exactly equal # including type conversions of scalars result = df["A"].astype("object").values expected = np.array([pd.NA, 1], dtype=object) tm.assert_numpy_array_equal(result, expected) for r, e in zip(result, expected): if pd.isnull(r): assert pd.isnull(e) elif is_integer(r): assert r == e assert is_integer(e) else: assert r == e assert type(r) == type(e) def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype="int64") tm.assert_extension_array_equal(result, expected) msg = r".* should be .* numpy array. Use the 'integer_array' function instead" with pytest.raises(TypeError, match=msg): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError, match=msg): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError, match=msg): IntegerArray(values.astype(float), mask) msg = r"__init__\(\) missing 1 required positional argument: 'mask'" with pytest.raises(TypeError, match=msg): IntegerArray(values) @pytest.mark.parametrize( "a, b", [ ([1, None], [1, np.nan]), ([None], [np.nan]), ([None, np.nan], [np.nan, np.nan]), ([np.nan, np.nan], [np.nan, np.nan]), ], ) def test_integer_array_constructor_none_is_nan(a, b): result = integer_array(a) expected = integer_array(b) tm.assert_extension_array_equal(result, expected) def test_integer_array_constructor_copy(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) assert result._data is values assert result._mask is mask result = IntegerArray(values, mask, copy=True) assert result._data is not values assert result._mask is not mask @pytest.mark.parametrize( "values", [ ["foo", "bar"], ["1", "2"], "foo", 1, 1.0, pd.date_range("20130101", periods=2), np.array(["foo"]), [[1, 2], [3, 4]], [np.nan, {"a": 1}], ], ) def test_to_integer_array_error(values): # error in converting existing arrays to IntegerArrays msg = ( r"(:?.* cannot be converted to an IntegerDtype)" r"|(:?values must be a 1D list-like)" ) with pytest.raises(TypeError, match=msg): integer_array(values) def test_to_integer_array_inferred_dtype(): # if values has dtype -> respect it result = integer_array(np.array([1, 2], dtype="int8")) assert result.dtype == Int8Dtype() result = integer_array(np.array([1, 2], dtype="int32")) assert result.dtype == Int32Dtype() # if values have no dtype -> always int64 result = integer_array([1, 2]) assert result.dtype == Int64Dtype() def test_to_integer_array_dtype_keyword(): result = integer_array([1, 2], dtype="int8") assert result.dtype == Int8Dtype() # if values has dtype -> override it result = integer_array(np.array([1, 2], dtype="int8"), dtype="int32") assert result.dtype == Int32Dtype() def test_to_integer_array_float(): result = integer_array([1.0, 2.0]) expected = integer_array([1, 2]) tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError, match="cannot safely cast non-equivalent"): integer_array([1.5, 2.0]) # for float dtypes, the itemsize is not preserved result = integer_array(np.array([1.0, 2.0], dtype="float32")) assert result.dtype == Int64Dtype() @pytest.mark.parametrize( "bool_values, int_values, target_dtype, expected_dtype", [ ([False, True], [0, 1], Int64Dtype(), Int64Dtype()), ([False, True], [0, 1], "Int64", Int64Dtype()), ([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()), ], ) def test_to_integer_array_bool(bool_values, int_values, target_dtype, expected_dtype): result = integer_array(bool_values, dtype=target_dtype) assert result.dtype == expected_dtype expected = integer_array(int_values, dtype=target_dtype) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "values, to_dtype, result_dtype", [ (np.array([1], dtype="int64"), None, Int64Dtype), (np.array([1, np.nan]), None, Int64Dtype), (np.array([1, np.nan]), "int8", Int8Dtype), ], ) def test_to_integer_array(values, to_dtype, result_dtype): # convert existing arrays to IntegerArrays result = integer_array(values, dtype=to_dtype) assert result.dtype == result_dtype() expected = integer_array(values, dtype=result_dtype()) tm.assert_extension_array_equal(result, expected) def test_cross_type_arithmetic(): df = pd.DataFrame( { "A": pd.Series([1, 2, np.nan], dtype="Int64"), "B": pd.Series([1, np.nan, 3], dtype="UInt8"), "C": [1, 2, 3], } ) result = df.A + df.C expected = pd.Series([2, 4, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) result = (df.A + df.C) * 3 == 12 expected = pd.Series([False, True, None], dtype="boolean") tm.assert_series_equal(result, expected) result = df.A + df.B expected = pd.Series([2, np.nan, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"]) def test_preserve_dtypes(op): # TODO(#22346): preserve Int64 dtype # for ops that enable (mean would actually work here # but generally it is a float return value) df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() assert isinstance(result, int) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", ["mean"]) def test_reduce_to_float(op): # some reduce ops always return float, even if the result # is a rounded number df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() assert isinstance(result, float) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) def test_astype_nansafe(): # see gh-22343 arr = integer_array([np.nan, 1, 2], dtype="Int8") msg = "cannot convert to 'uint32'-dtype NumPy array with missing values." with pytest.raises(ValueError, match=msg): arr.astype("uint32") @pytest.mark.parametrize("ufunc", [np.abs, np.sign]) # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127> @pytest.mark.filterwarnings("ignore:invalid value encountered in sign") def test_ufuncs_single_int(ufunc): a = integer_array([1, 2, -3, np.nan]) result = ufunc(a) expected = integer_array(ufunc(a.astype(float))) tm.assert_extension_array_equal(result, expected) s = pd.Series(a) result = ufunc(s) expected = pd.Series(integer_array(ufunc(a.astype(float)))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt]) def test_ufuncs_single_float(ufunc): a = integer_array([1, 2, -3, np.nan]) with np.errstate(invalid="ignore"): result = ufunc(a) expected = ufunc(a.astype(float)) tm.assert_numpy_array_equal(result, expected) s = pd.Series(a) with np.errstate(invalid="ignore"): result = ufunc(s) expected = ufunc(s.astype(float)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.add, np.subtract]) def test_ufuncs_binary_int(ufunc): # two IntegerArrays a = integer_array([1, 2, -3, np.nan]) result = ufunc(a, a) expected = integer_array(ufunc(a.astype(float), a.astype(float))) tm.assert_extension_array_equal(result, expected) # IntegerArray with numpy array arr = np.array([1, 2, 3, 4]) result = ufunc(a, arr) expected = integer_array(ufunc(a.astype(float), arr)) tm.assert_extension_array_equal(result, expected) result = ufunc(arr, a) expected = integer_array(ufunc(arr, a.astype(float))) tm.assert_extension_array_equal(result, expected) # IntegerArray with scalar result = ufunc(a, 1) expected = integer_array(ufunc(a.astype(float), 1)) tm.assert_extension_array_equal(result, expected) result = ufunc(1, a) expected = integer_array(ufunc(1, a.astype(float))) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("values", [[0, 1], [0, None]]) def test_ufunc_reduce_raises(values): a = integer_array(values) msg = r"The 'reduce' method is not supported." with pytest.raises(NotImplementedError, match=msg): np.add.reduce(a) @td.skip_if_no("pyarrow", min_version="0.15.0") def test_arrow_array(data): # protocol added in 0.15.0 import pyarrow as pa arr = pa.array(data) expected = np.array(data, dtype=object) expected[data.isna()] = None expected = pa.array(expected, type=data.dtype.name.lower(), from_pandas=True) assert arr.equals(expected) @td.skip_if_no("pyarrow", min_version="0.16.0") def test_arrow_roundtrip(data): # roundtrip possible from arrow 0.16.0 import pyarrow as pa df = pd.DataFrame({"a": data}) table = pa.table(df) assert table.field("a").type == str(data.dtype.numpy_dtype) result = table.to_pandas() tm.assert_frame_equal(result, df) @td.skip_if_no("pyarrow", min_version="0.16.0") def test_arrow_from_arrow_uint(): # https://github.com/pandas-dev/pandas/issues/31896 # possible mismatch in types import pyarrow as pa dtype = pd.UInt32Dtype() result = dtype.__from_arrow__(pa.array([1, 2, 3, 4, None], type="int64")) expected = pd.array([1, 2, 3, 4, None], dtype="UInt32") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "pandasmethname, kwargs", [ ("var", {"ddof": 0}), ("var", {"ddof": 1}), ("kurtosis", {}), ("skew", {}), ("sem", {}), ], ) def test_stat_method(pandasmethname, kwargs): s = pd.Series(data=[1, 2, 3, 4, 5, 6, np.nan, np.nan], dtype="Int64") pandasmeth = getattr(s, pandasmethname) result = pandasmeth(**kwargs) s2 = pd.Series(data=[1, 2, 3, 4, 5, 6], dtype="Int64") pandasmeth = getattr(s2, pandasmethname) expected = pandasmeth(**kwargs) assert expected == result def test_value_counts_na(): arr = pd.array([1, 2, 1, pd.NA], dtype="Int64") result = arr.value_counts(dropna=False) expected = pd.Series([2, 1, 1], index=[1, 2, pd.NA], dtype="Int64") tm.assert_series_equal(result, expected) result = arr.value_counts(dropna=True) expected =
pd.Series([2, 1], index=[1, 2], dtype="Int64")
pandas.Series
# This chart export activity series in pandas format import pandas as pd import datetime import numpy as np act = GC.activity() dd = {} for k, v in act.items(): dd[k] = np.array(v) df =
pd.DataFrame(dd)
pandas.DataFrame
import pandas as pd import os import pickle import logging from tqdm import tqdm import sys from flashtext import KeywordProcessor import joblib import multiprocessing import numpy as np import urllib.request import zipfile import numpy as np import hashlib import json from .flags import flags logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)-5.5s] [%(name)-12.12s]: %(message)s') log = logging.getLogger(__name__) class Geocode(): def __init__(self, min_population_cutoff=30000, large_city_population_cutoff=200000, location_types=None): self.kp = None self.geo_data = None self.min_population_cutoff = min_population_cutoff self.large_city_population_cutoff = large_city_population_cutoff self.geo_data_field_names = ['name', 'official_name', 'country_code', 'longitude', 'latitude', 'geoname_id', 'location_type', 'population'] self.default_location_types = ['city', 'place', 'country', 'admin1', 'admin2', 'admin3', 'admin4', 'admin5', 'admin6', 'admin_other', 'continent', 'region'] self.location_types = self._get_location_types(location_types) self.argument_hash = self.get_arguments_hash() def load(self, recompute=False): if recompute or not (os.path.isfile(self.geonames_pickle_path) and os.path.isfile(self.keyword_processor_pickle_path)): # geonames data log.info('Recomputing pickle files...') if os.path.isfile(self.geonames_pickle_path) and not recompute: log.info('Pickled geonames file is already present!') else: self.create_geonames_pickle() # keyword processor if os.path.isfile(self.keyword_processor_pickle_path) and not recompute: log.info('Pickled keyword processor file is already present!') else: self.create_keyword_processor_pickle() # load data into memory self.kp = self.get_keyword_processor_pickle() self.geo_data = self.get_geonames_pickle() def get_geonames_data(self): geonames_data_path = self.get_cache_path('allCountries.txt') if not os.path.isfile(geonames_data_path): # download file url = 'https://download.geonames.org/export/dump/allCountries.zip' log.info(f'Downloading data from {url}') geonames_data_path_zip = self.get_cache_path('allCountries.zip') urllib.request.urlretrieve(url, geonames_data_path_zip) log.info(f'... done') log.info('Extracting data...') # extract with zipfile.ZipFile(geonames_data_path_zip, 'r') as f: f.extractall(self.data_dir) log.info('...done') # remove zip file os.remove(geonames_data_path_zip) log.info(f'Reading data from {geonames_data_path}...') dtypes = {'name': str, 'latitude': float, 'longitude': float, 'country_code': str, 'population': int, 'feature_code': str, 'alternatenames': str, 'geoname_id': str} geonames_columns = ['geoname_id', 'name', 'asciiname', 'alternatenames', 'latitude', 'longitude', 'feature_class', 'feature_code', 'country_code', 'cc2', 'admin1', 'admin2', 'admin3', 'admin4', 'population', 'elevation', 'dem', 'timezone', 'modification_date'] df = pd.read_csv(geonames_data_path, names=geonames_columns, sep='\t', dtype=dtypes, usecols=dtypes.keys()) # remove data file os.remove(geonames_data_path) return df def get_feature_names_data(self): feature_code_path = self.get_cache_path('featureCodes_en.txt') if not os.path.isfile(feature_code_path): # download file url = 'https://download.geonames.org/export/dump/featureCodes_en.txt' log.info(f'Downloading data from {url}') urllib.request.urlretrieve(url, feature_code_path) log.info(f'... done') log.info(f'Reading data from {feature_code_path}...') df_features =
pd.read_csv(feature_code_path, sep='\t', names=['feature_code', 'description-short', 'description-long'])
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) tm.assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) tm.assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi =
tm.box_expected(tdi, box_with_array)
pandas.util.testing.box_expected
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @version: 1.4.0 @file: GSP_main.py @time: 2021/1/26 10:50 @functions: graph signal processing main script @update: support Yeo-ICN definition @update: support ICN-level brain activity and connecitivty strength saving """ import numpy as np import glob import os import time import matplotlib.pyplot as plt from pygsp import graphs, filters, plotting from GSP_utilities import surrogate_BOLD_create, save_variable, load_variable import pandas as pd from dppd import dppd dp, X = dppd() # 1. path locations and parameters start = time.time() deriv_path = '/home/amax/data/cye/MScohort_BIDS_clean/derivatives' connectome_path = os.path.join(deriv_path, 'mrtrix') xcpengine_path = os.path.join(deriv_path, 'xcpengine') network_assign_path = 'CAB-NP_v1.1_Labels-ReorderedbyNetworks_Yeo.csv' num_BOLD_timepoints = 180 num_rand = 100 # number of surrogates functional_type = 'BOLD' tract_type = 'meanlength' # one of the following: invlength, invnodevol, level-participant_connectome, meanlength ICN_type = 'Yeo' # one of the following: 'Yeo', 'Cole' normalize_type = 'both' # 'W': normalize W; 'L': normalize Laplacian (Preti method); 'both': normalize both W and Laplacian # 2. read network assignment for hcpmmp network_assign_csv = pd.read_csv(network_assign_path) network_assign_csv = dp(network_assign_csv).mutate(NETWORK=X.Yeo_NETWORK).pd network_assign_csv = dp(network_assign_csv).mutate(NETWORKKEY=X.Yeo_NETWORKKEY).pd num_network_df = dp(network_assign_csv).summarise((X.NETWORKKEY, np.max, 'hp_max')).pd num_network = num_network_df.iloc[0,0] network_rowindex_ls = [] for network_i in range(1,num_network+1): df_network = dp(network_assign_csv).filter_by(X.NETWORKKEY == network_i).pd network_rowindex_ls.append(df_network.index.values) network_unique_df = dp(network_assign_csv).distinct('NETWORKKEY').pd network_unique_df = network_unique_df.sort_values(by='NETWORKKEY',ascending = True) network_unique_df = dp(network_unique_df).filter_by(-X.NETWORK.isin(['Undefine'])).pd # remove undefined ICN network_unique_df = network_unique_df.reset_index() # 3. define group of interests cohort1 = 'ms' cohort2 = 'nc' cohort3 = 'nmo' cohort4 = 'cis' cohort1_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort1 + '*')) cohort2_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort2 + '*')) cohort3_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort3 + '*')) cohort4_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort4 + '*')) cohort_connectome_ls = cohort1_connectome_ls + cohort2_connectome_ls + cohort3_connectome_ls + cohort4_connectome_ls cohort_connectome_ls.sort() cohort1_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort1 + '*')) cohort2_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort2 + '*')) cohort3_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort3 + '*')) cohort4_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort4 + '*')) cohort_fmri_ls = cohort1_fmri_ls + cohort2_fmri_ls + cohort3_fmri_ls + cohort4_fmri_ls cohort_name_ls = [os.path.basename(item) for item in cohort_connectome_ls] remove_name_ls = ['sub-nc011','sub-nc039', 'sub-nmo002', 'sub-nmo019', 'sub-cis002','sub-cis015', 'sub-ms015'] # problematic cases cohort_name_ls = list(set(cohort_name_ls) - set(remove_name_ls)) # remove problematic cases for i in remove_name_ls: # remove problematic cases cohort_connectome_ls = [x for x in cohort_connectome_ls if i not in x] cohort_fmri_ls = [x for x in cohort_fmri_ls if i not in x] cohort_name_ls.sort() cohort_connectome_ls.sort() cohort_fmri_ls.sort() if len(cohort_connectome_ls) != len(cohort_fmri_ls): print('Number of connectome and xcpengine results not matched') # 4. create a dataframe to store individual filepath path_dict = {'subname':cohort_name_ls, 'mrtrix_path': cohort_connectome_ls, 'xcp_path':cohort_fmri_ls} path_df = pd.DataFrame(path_dict, columns=['subname','mrtrix_path','xcp_path']) path_df = dp(path_df).mutate(connectome_path=X.mrtrix_path + '/connectome/' + X.subname +'_parc-hcpmmp1_' + tract_type + '.csv').pd path_df = dp(path_df).mutate(BOLD_series_path=X.xcp_path + '/fcon/hcpmmp/hcpmmp.1D').pd path_df = dp(path_df).mutate(fmri_map_path=X.xcp_path + '/roiquant/hcpmmp/' + X.subname +'_hcpmmp_mean.csv').pd print('finished step 4') # 5. load individual connectome as ndarray num_parcels = len(network_assign_csv) num_sub = len(path_df) path_df_nc = dp(path_df).filter_by(X.subname.str.contains('nc')).pd num_nc = len(path_df_nc) nc_idx = path_df_nc.index connectome_array = np.zeros(shape=(num_parcels, num_parcels, num_sub)) for sub_idx in range(len(path_df)): indiviudal_connectome = np.genfromtxt(path_df.loc[sub_idx, 'connectome_path'], delimiter=',') connectome_array[:,:,sub_idx] = indiviudal_connectome # 6. load individual BOLD series and fill missing part according to /fcon/hcpmmp/missing.txt BOLD_series_3D = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) for sub_idx in range(len(path_df)): BOLD_series = np.genfromtxt(path_df.loc[sub_idx, 'BOLD_series_path']) BOLD_series = BOLD_series.T missing_path = os.path.join(path_df.loc[sub_idx, 'xcp_path'], 'fcon', 'hcpmmp', 'hcpmmp_missing.txt') if os.path.exists(missing_path): missing_parcel_id = np.genfromtxt(missing_path, dtype=int) if missing_parcel_id.size == 1: # only one parcel missing if BOLD_series[missing_parcel_id-1,:].sum() != 0: print("missing parcel not match for subject {}".format(sub_idx)) network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] BOLD_series[missing_parcel_id-1,:] = np.mean(BOLD_series[network_parcel_idx,:]) else: # multiple parcels missing for missing_idx in missing_parcel_id: network_key = network_assign_csv.loc[missing_idx-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] BOLD_series[missing_idx-1,:] = np.mean(BOLD_series[network_parcel_idx,:]) BOLD_series_3D[:,:,sub_idx] = BOLD_series print('finished loading individual BOLD series and filling missing part') # 7. load fmri parametric map and fill missing part according to /fcon/hcpmmp/missing.txt fmri_paramap = np.zeros(shape=(num_parcels, num_sub)) paramap_str = 'mean_alffZ' for sub_idx in range(len(path_df)): fmri_map = pd.read_csv(path_df.loc[sub_idx, 'fmri_map_path'],index_col=0) fmri_map = fmri_map.loc[:,paramap_str] missing_path = os.path.join(path_df.loc[sub_idx, 'xcp_path'], 'fcon', 'hcpmmp', 'hcpmmp_missing.txt') if os.path.exists(missing_path): missing_parcel_id = np.genfromtxt(missing_path, dtype=int) if missing_parcel_id.size == 1: # only one parcel missing if not np.isnan(fmri_map[missing_parcel_id]): print("missing parcel not match for subject {}".format(sub_idx)) network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] fmri_map[int(missing_parcel_id)] = np.mean(fmri_map[network_parcel_idx]) fmri_map = fmri_map.to_numpy() else: # multiple parcels missing network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_rowindex_ls = np.array(network_rowindex_ls, dtype=object) network_parcel_idx = network_rowindex_ls[network_key-1] for parcel_i in range(missing_parcel_id.size): fmri_map[int(missing_parcel_id[parcel_i])] = np.mean(fmri_map[network_parcel_idx[parcel_i]]) fmri_map = fmri_map.to_numpy() fmri_paramap[:,sub_idx] = fmri_map print('finished loading fmri parametric map and fill missing part') # 8. load connectome and functional signal and do GSP if functional_type == 'BOLD': # func_sig is BOLD_series_3D func_sig = BOLD_series_3D s_head_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) s_rand_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub, num_rand)) else: raise ValueError('undefined functional signal') G_U_cohort = np.zeros(shape=(num_parcels, num_parcels, num_sub)) for sub_idx in range(len(path_df)): W = np.genfromtxt(path_df.loc[sub_idx, 'connectome_path'], delimiter=',') # Symmetric Normalization of adjacency matrix D = np.diag(np.sum(W,1)) #degree D_power = np.power(D, (-1/2)) D_power[np.isinf(D_power)] = 0 Wsymm = D_power @ W @ D_power #The eigenvector matrix G.U is used to define the Graph Fourier Transform of the graph signal S if normalize_type == 'W': G = graphs.Graph(Wsymm) G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U elif normalize_type == 'L': G = graphs.Graph(W, lap_type = 'normalized') G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U elif normalize_type == 'both': Wsymm = np.triu(Wsymm) + np.triu(Wsymm).T - np.diag(np.triu(Wsymm).diagonal()) # force symmetric G = graphs.Graph(Wsymm, lap_type = 'normalized') G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U # L = np.eye(len(Wsymm)) - Wsymm # lamda, U = np.linalg.eig(L) # U = U[:, np.argsort(lamda)] if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_head = U.T @ func_sig[:,:,sub_idx] s_head_cohort[:,:,sub_idx] = s_head # calcualte surrogate for individual s_rand_cohort[:,:,sub_idx,:] = surrogate_BOLD_create(U, func_sig[:,:,sub_idx], num_rand) print('finished Graph Fourier Transform') # save_variable(G_U_cohort, 'G_U_cohort.pkl') # save_variable(s_head_cohort, 's_head_cohort.pkl') # save_variable(s_rand_cohort, 's_rand_cohort.pkl') # G_U_cohort = load_variable('G_U_cohort.pkl') # s_head_cohort = load_variable('s_head_cohort.pkl') # s_rand_cohort = load_variable('s_rand_cohort.pkl') # 8.5(optional). plot Sihag2020 plot # take nc001 as example nc001_idx = path_df.subname[path_df.subname == 'sub-nc001'].index.tolist()[0] s_low = G_U_cohort[:,0:4, nc001_idx] @ s_head_cohort[0:4,:,nc001_idx] s_high = G_U_cohort[:,-55:-51, nc001_idx] @ s_head_cohort[-55:-51,:,nc001_idx] np.savetxt("nc001_s_low_both.csv", s_low, delimiter=",") np.savetxt("nc001_s_high_both.csv", s_high, delimiter=",") # 9. calculate the median-split threshold NC_index = [cohort_name_ls.index(x) for x in cohort_name_ls if 'nc' in x] if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_head_NC = s_head_cohort[:,:,NC_index] s_head_NC_square = np.power(s_head_NC, 2) #s_head_NC_square = np.power(s_head_NC_square, 1/2) s_head_NC_square_mean = np.mean(s_head_NC_square, (1,2)) # average for each timepoint and each subject s_head_NC_AUCTOT = np.trapz(s_head_NC_square_mean) i=0 AUC=0 while AUC < s_head_NC_AUCTOT/2: AUC = np.trapz(s_head_NC_square_mean[:i]) i = i + 1 cutoff = i-1 print('finished calculating the median-split threshold') print('cutoff = {}'.format(cutoff)) # 10. calculate decoupling index for empirical data if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_aligned_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) s_liberal_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) for sub_idx in range(len(path_df)): s_aligned_cohort[:,:,sub_idx] = G_U_cohort[:,0:cutoff, sub_idx] @ s_head_cohort[0:cutoff,:,sub_idx] s_liberal_cohort[:,:,sub_idx] = G_U_cohort[:,cutoff-1:-1, sub_idx] @ s_head_cohort[cutoff-1:-1,:,sub_idx] s_aligned_individual = np.linalg.norm(s_aligned_cohort, ord=2, axis=1) s_liberal_individual = np.linalg.norm(s_liberal_cohort, ord=2, axis=1) s_deCoupIdx_individual = s_liberal_individual / s_aligned_individual s_aligned = np.mean(s_aligned_individual[:,nc_idx], axis=1) s_liberal = np.mean(s_liberal_individual[:,nc_idx], axis=1) s_deCoupIdx_node = s_liberal/s_aligned # only for NC print('finished calculating decoupling index for empirical data') # 11. calculate decoupling index for surrogate data only for NC if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_aligned_cohort_rand = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_nc, num_rand)) s_liberal_cohort_rand = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_nc, num_rand)) for i, sub_idx in enumerate(nc_idx): for rand_idx in range(num_rand): s_aligned_cohort_rand[:,:,i,rand_idx] = G_U_cohort[:,0:cutoff, sub_idx] @ s_rand_cohort[0:cutoff,:,sub_idx,rand_idx] s_liberal_cohort_rand[:,:,i,rand_idx] = G_U_cohort[:,cutoff-1:-1, sub_idx] @ s_rand_cohort[cutoff-1:-1,:,sub_idx,rand_idx] # norm for BOLD timepoints s_aligned_norm_rand = np.linalg.norm(s_aligned_cohort_rand, ord=2, axis=1) s_liberal_norm_rand = np.linalg.norm(s_liberal_cohort_rand, ord=2, axis=1) # average for cohorts s_aligned_rand = np.mean(s_aligned_norm_rand, axis=1) s_liberal_rand = np.mean(s_liberal_norm_rand, axis=1) # decoupling index s_deCoupIdx_node_rand = s_liberal_rand/s_aligned_rand print('finished calculating decoupling index for surrogate data') # 12. network-level harmonics for emperical and surrogate data s_aligned_network = np.zeros(shape=(num_network)) s_liberal_network = np.zeros(shape=(num_network)) s_aligned_network_individual = np.zeros(shape=(num_network, num_sub)) s_liberal_network_individual = np.zeros(shape=(num_network, num_sub)) s_aligned_network_rand = np.zeros(shape=(num_network, num_rand)) s_liberal_network_rand = np.zeros(shape=(num_network, num_rand)) for i in range(num_network): s_aligned_network[i] = np.mean(s_aligned[network_rowindex_ls[i]]) s_liberal_network[i] = np.mean(s_liberal[network_rowindex_ls[i]]) s_aligned_network_individual[i,:] = np.mean(s_aligned_individual[network_rowindex_ls[i],:], axis=0) s_liberal_network_individual[i,:] = np.mean(s_liberal_individual[network_rowindex_ls[i],:], axis=0) s_aligned_network_rand[i,:] = np.mean(s_aligned_rand[network_rowindex_ls[i],:], axis=0) s_liberal_network_rand[i,:] = np.mean(s_liberal_rand[network_rowindex_ls[i],:], axis=0) s_deCoupIdx_network = s_liberal_network/s_aligned_network s_deCoupIdx_network_individual = s_liberal_network_individual/s_aligned_network_individual s_deCoupIdx_network_rand = s_liberal_network_rand/s_aligned_network_rand # 13. brain-level harmonics for emperical and surrogate data s_aligned_brain = np.mean(s_aligned) s_liberal_brain = np.mean(s_liberal) s_deCoupIdx_brain = s_liberal_brain/s_aligned_brain s_aligned_brain_individual = np.mean(s_aligned_individual, axis=0) s_liberal_brain_individual = np.mean(s_liberal_individual, axis=0) s_deCoupIdx_brain_individual = s_liberal_brain_individual/s_aligned_brain_individual s_aligned_brain_rand = np.mean(s_aligned_rand, axis=0) s_liberal_brain_rand = np.mean(s_liberal_rand, axis=0) s_deCoupIdx_brain_rand = s_liberal_brain_rand/s_aligned_brain_rand print('s_deCoupIdx_brain = {}'.format(s_deCoupIdx_brain)) # 14. significance of surrogate for plot # node-level s_deCoupIdx_node_significance = np.logical_or((np.percentile(s_deCoupIdx_node_rand, 5, axis=1) >= s_deCoupIdx_node), (np.percentile(s_deCoupIdx_node_rand, 95, axis=1) <= s_deCoupIdx_node)) s_deCoupIdx_node_significance = s_deCoupIdx_node_significance.astype(np.int) # network-level s_deCoupIdx_network_significance = np.logical_or((np.percentile(s_deCoupIdx_network_rand, 5, axis=1) >= s_deCoupIdx_network), (np.percentile(s_deCoupIdx_network_rand, 95, axis=1) <= s_deCoupIdx_network)) s_deCoupIdx_network_significance = s_deCoupIdx_network_significance.astype(np.int) # brain-level s_deCoupIdx_brain_significance = np.logical_or((np.percentile(s_deCoupIdx_brain_rand, 5, axis=0) >= s_deCoupIdx_brain), (np.percentile(s_deCoupIdx_brain_rand, 95, axis=0) <= s_deCoupIdx_brain)) # 15. save results to csv if normalize_type == 'W': normalize_str = '_W' elif normalize_type == 'L': normalize_str = '_L' elif normalize_type == 'both': normalize_str = '_both' if functional_type == 'BOLD': # func_sig is BOLD_series_3D csv_folder = 'BOLD_4D_' + tract_type + '_' + normalize_str if not os.path.exists(os.path.abspath(csv_folder)): os.mkdir(os.path.abspath(csv_folder)) # save surrogate (ndarray with num_rand × num_region) s_deCoupIdx_node_rand_df = pd.DataFrame(data = s_deCoupIdx_node_rand.T, columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_rand_df = pd.DataFrame(data = s_deCoupIdx_network_rand.T, columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_brain_rand_df = pd.DataFrame(data = s_deCoupIdx_brain_rand) s_deCoupIdx_node_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_rand_df.csv')) s_deCoupIdx_network_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_rand_df.csv')) s_deCoupIdx_brain_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_rand_df.csv')) # save surrogate significance (ndarray with 1 × num_region) s_deCoupIdx_node_significance_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_node_significance, axis=0), columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_significance_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_network_significance, axis=0), columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_node_significance_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_significance_df.csv')) s_deCoupIdx_network_significance_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_significance_df.csv')) with open(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_significance.txt'), 'w') as output_file: output_file.write(str(s_deCoupIdx_brain_significance)) # save empirical harmonics for NC cohort (for plot usage, ndarray with 1 × num_region) s_deCoupIdx_node_empirical_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_node, axis=0), columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_empirical_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_network, axis=0), columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_node_empirical_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_empirical_df.csv')) s_deCoupIdx_network_empirical_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' +'-network_empirical_df.csv')) with open(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_empirical.txt'), 'w') as output_file: output_file.write(str(s_deCoupIdx_brain)) # save subject-level harmonics (ndarray with num_sub × num_region) s_deCoupIdx_node_individual_df =
pd.DataFrame(data = s_deCoupIdx_individual.T, columns = network_assign_csv.loc[:,'LABEL'])
pandas.DataFrame
import json import logging import os import pandas as pd from .TfidfModel import TFIDFModel logging.basicConfig(format='%(filename)s:%(lineno)d %(message)s') log = logging.getLogger(__name__) log.setLevel('INFO') # print(CONFIG['dataset']) if 'DATA_DIR' in os.environ.keys(): CONFIG = json.load(open('../config.json')) data_folder = os.path.join(os.environ['DATA_DIR'], CONFIG['dataset']) else: data_folder = os.path.join('/data/tripadvisor_hotel') class ReviewDB(): def __init__(self, data_folder=data_folder): self.entity_db_dict = { "all": EntityDB("all", data_folder) } self.tfidf_dict = { name: TFIDFModel(db) for name, db in self.entity_db_dict.items() } self.tfidf_bigram_dict = { name: TFIDFModel(db, 2) for name, db in self.entity_db_dict.items() } def _add_ent(self, entity_id): log.info("entity_id is: " + entity_id) db = EntityDB(entity_id, data_folder) self.entity_db_dict[entity_id] = db self.tfidf_dict[entity_id] = TFIDFModel(db) self.tfidf_bigram_dict[entity_id] = TFIDFModel(db, 2) def _db(self, entity_id): if not entity_id in self.entity_db_dict: self._add_ent(entity_id) return self.entity_db_dict[entity_id] def get_reviews(self, entity_id, reviews_id): db = self._db(entity_id) return db.get_review_from_id(reviews_id) def get_cluster(self, entity_id, cluster_id): db = self._db(entity_id) return db.get_cluster_from_id(cluster_id) def get_centroids(self, entity_id, cluster_id): db = self._db(entity_id) log.info('cluster_id is ' + str(cluster_id)) return db.get_centroids_from_id(cluster_id) def get_topwords(self, entity_id, cluster_id, k=1): if not entity_id in self.entity_db_dict: self._add_ent(entity_id) if k == 1: return self.tfidf_dict[entity_id].top_k(cluster_id) elif k == 2: return self.tfidf_bigram_dict[entity_id].top_k(cluster_id) else: return Exception("Invalid value {} for k. There is only support for k=1 and k=2".format(k)) class EntityDB(): def __init__(self, entity_id, data_folder): if entity_id != "all": old_data_folder = data_folder data_folder = os.path.join(os.path.join(data_folder, 'hotel-clusters'), entity_id) if not os.path.exists(data_folder) and os.path.exists(data_folder): raise FileNotFoundError("business_id {0} not found in file {1}".format(entity_id, old_data_folder)) try: cluster_file=os.path.join(data_folder, 'clusters.csv') log.info(cluster_file) clusters_df =
pd.read_csv(cluster_file, index_col=0)
pandas.read_csv
# -- coding: utf-8 --' import pandas as pd import numpy as np import os import textwrap import string import unicodedata import sys import sqlite3 import easygui import re import copy import json import xlsxwriter # import pyanx MAX_TAM_LABEL = 100 # nro máximo de caracteres nos labels PALETA = {'vermelho':'#e82f4c', 'laranja':'#ea7e16', 'amarelo':'#f5d516', 'verde': '14bd11', 'azul':'#0b67d0', 'roxo':'#6460aa'} PALE_TAB = { 'laranja' :['#FF6D00','#FF9800','#FFB74D','#FFECB3'], 'verde' :['#00C853','#8BC34A','#AED581','#DCEDC8'], 'azul' :['#2962FF','#2196F3','#64B5F6','#BBDEFB'], 'rosa' :['#7B1FA2','#9C27B0','#BA68C8','#E1BEE7'], 'ciano' :['#00B8D4','#00BCD4','#4DD0E1','#B2EBF2'], 'roxo' :['#6200EA','#673AB7','#9575CD','#D1C4E9'], 'amarelo' :['#FFD600','#FFEB3B','#FFF176','#FFF9C4'], 'vermelho':['#d50000','#f44336','#e57373','#ffcdd2'], 'marrom' :['#5D4037','#795548','#A1887F','#D7CCC8'], 'cinza' :['#455A64','#607D8B','#90A4AE','#CFD8DC'] } PALE_TAB_CORES = [cor for cor in PALE_TAB.keys()] TAM_PALETA_CORES = len(PALE_TAB_CORES) - 3 # ultimos 3 sao reservados def definir_cor(nro: int) -> str: nro_cor = nro % (len(PALE_TAB) - 3) # 'vermelho, marrom e cinza são reservados return (PALE_TAB_CORES[nro_cor]) class estrutura: # especificações das planilhas def __init__(self, nome="", estr=[], pasta="./"): self.nome = nome self.estr = estr self.pasta = pasta self.nome_rif = '' def mudar_pasta(self, pasta): self.pasta = pasta def xlsx(self): return self.nome + ".xlsx" def csv(self): return 'RIF'+self.nome_rif+'_'+self.nome + ".csv" def estr_upper(self): result = [] for elem in self.estr: result.append(elem.upper()) return result def nomearq(self): return os.path.join(self.pasta, self.xlsx()) def nomearqcsv(self): return os.path.join(self.pasta, self.csv()) def arquivo_existe(self): if ( self.nome.upper() == "grupos".upper() or self.nome.upper() == "vinculos".upper() ): # um novo é criado vazio, uma vez que não vem do COAF return True else: return os.path.isfile(self.nomearq()) def estr_compativel(self, outra_estr=[]): ok = all(elem.upper() in self.estr_upper() for elem in outra_estr) if not ok: print(self.estr) print(outra_estr) return ok def exibir(self): strestr = ",".join(self.estr) return self.nome + ": " + strestr def csv2xlsx(self): nomecsv = self.nomearqcsv() df = pd.read_csv(nomecsv, sep=';', header=0, dtype=str, encoding='latin1',index_col=False ) try: df.to_excel(self.nomearq(),index=False) except: print('Erro gerando XLSX de entrada') def help_estruturas(estruturas): print("Estruturas esperadas das planilhas:") for e in estruturas: print(" " + e.exibir()) class log: def __init__(self): self.logs = u"" def gravalog(self, linha): print(linha) self.logs += linha + "\n" def lelog(self): return self.logs class nodo: def __init__(self, id, label, tipo="ENT", tooltip="", fonte="RIF"): self.id = id self.tipo = tipo self.label = label self.cor = "Silver" self.sexo = 0 self.m1 = 0 self.m2 = 0 self.situacao = "" self.dataOperacao = "" self.texto_tooltip = tooltip self.fonte = fonte self.camada = 5 if self.fonte == "RIF" else 5 def todict(self): return { "id": self.id, "tipo": self.tipo, "sexo": self.sexo, "label": self.label, "camada": self.camada, "situacao": self.situacao, "cor": self.cor, "texto_tooltip": self.texto_tooltip, "m1": self.m1, "m2": self.m2, "m3": 0, "m4": 0, "m5": 0, "m6": 0, "m7": 0, "m8": 0, "m9": 0, "m10": 0, "m11": 0, "dataoperacao": self.dataOperacao, } class noPF(nodo): def __init__(self, id, label="", cor="Silver", sexo=0, fonte="RIF"): nodo.__init__(self, id, label, "PF") self.cor = cor self.sexo = sexo def todict(self): return nodo.todict(self) class noPJ(nodo): def __init__(self, id, label="", cor="Silver", fonte="RIF"): nodo.__init__(self, id, label, "PJ") self.cor = cor self.sexo = 1 class noConta(nodo): def __init__(self, id, label="CONTA", cor=PALE_TAB['verde'][0]): nodo.__init__(self, id, label, "CCR") self.cor = cor class noGrupo(nodo): def __init__(self, id, label="GRUPO", cor=PALE_TAB['azul'][0]): nodo.__init__(self, id, label, "GR") self.cor = cor self.fonte = "grupos" class noComunicacao(nodo): def __init__(self, id, label="COMUNICACAO", cor=PALE_TAB['marrom'][1], dataOperacao=None): nodo.__init__(self, id, label, "COM") self.cor = cor # self.dataOperacao=dataOperacao class aresta: def __init__(self, origem, destino, descricao="", cor="Silver", fonte="RIF"): self.origem = origem self.destino = destino self.descricao = descricao self.cor = cor self.fonte = fonte self.camada = 5 if self.fonte == "RIF" else 5 def todict(self): return { "origem": self.origem, "destino": self.destino, "cor": self.cor, "camada": self.camada, "tipoDescricao": {"0": self.descricao}, } lg = log() com = estrutura( "Comunicacoes", [ "Indexador", "idComunicacao", "NumeroOcorrenciaBC", "Data_do_Recebimento", "Data_da_operacao", "DataFimFato", "cpfCnpjComunicante", "nomeComunicante", "CidadeAgencia", "UFAgencia", "NomeAgencia", "NumeroAgencia", "informacoesAdicionais", "CampoA", "CampoB", "CampoC", "CampoD", "CampoE", "CodigoSegmento", ], ) env = estrutura( "Envolvidos", [ "Indexador", "cpfCnpjEnvolvido", "nomeEnvolvido", "tipoEnvolvido", "agenciaEnvolvido", "contaEnvolvido", "DataAberturaConta", "DataAtualizacaoConta", "bitPepCitado", "bitPessoaObrigadaCitado", "intServidorCitado", ], ) oco = estrutura("Ocorrencias", ["Indexador", "idOcorrencia", "Ocorrencia"]) # opcionais gru = estrutura("Grupos", ["cpfCnpjEnvolvido", "nome_Envolvido", "Grupo", "Detalhe", "Analise"]) vin = estrutura( "Vinculos", [ "cpfCnpjEnvolvido", "nome_Envolvido", "cpfCnpjVinculado", "nome_Vinculado", "Descricao", ], ) estruturas = [com, env, oco, gru, vin] # help_estruturas(estruturas) def removeAcentos(data): if data is None: return u"" # if isinstance(data,str): # data = unicode(data,'latin-1','ignore') return "".join( x for x in unicodedata.normalize("NFKD", data) if x in string.printable ) def gerar_planilha(arquivo, df, nome, indice=False): def formatar_cabecalho(cor): return arquivo.book.add_format( { "bold": True, "text_wrap": True, "valign": "top", "fg_color": cor, "border": 1, } ) # Palette URL: http://paletton.com/#uid=43K0I0kw0w0jyC+oRxVy4oIDfjr PALETA = [ "#5778C0", "#a4b3b6", "#FF8D63", "#FFE700", "#FFA900", "#000000", ] # azul, cinza, verm, amarelo, lara, preto COR_PRINCIPAL = PALETA[0] COR_NEUTRA_CLARA = PALETA[1] COR_SECUNDARIA = PALETA[2] COR_TERCIARIA = PALETA[4] COR_NEUTRA_ESCURA = PALETA[5] df.style.bar(color=COR_PRINCIPAL) print("antes " + nome) df.to_excel(arquivo, sheet_name=nome, index=indice) print("depois " + nome) # Write the column headers with the defined format. # print(df.index.names) if len(arquivo.sheets) > 6: cor_basica = COR_SECUNDARIA elif len(arquivo.sheets) < 3: cor_basica = COR_PRINCIPAL else: cor_basica = COR_NEUTRA_CLARA if not indice: for col_num, value in enumerate(df.columns.values): arquivo.sheets[nome].write( 0, col_num, value, formatar_cabecalho(cor_basica) ) arquivo.sheets[nome].set_tab_color(cor_basica) else: for col_num, value in enumerate(df.index.names): arquivo.sheets[nome].write( 0, col_num, value, formatar_cabecalho(cor_basica if value != 'Analise' else COR_SECUNDARIA) ) for col_num, value in enumerate(df.columns.values): arquivo.sheets[nome].write( 0, col_num + len(df.index.names), value, formatar_cabecalho(COR_NEUTRA_CLARA), ) arquivo.sheets[nome].set_tab_color(cor_basica) def gerar_planilhaXLS(arquivo, df, nome, indice=False): df.style.bar(color="#99ccff") df.to_excel(arquivo, sheet_name=nome, index=indice) def tipoi2F(umou2=1, linha=None, carJuncao="\r "): print("linha= ", linha) descricao = linha[1 if umou2 == 1 else 3] # if descricao == '': #telefone ou endereco # descricao = carJuncao.join(node[4:].split('__')) # else: # if self.GNX.node[node]['tipo'] !='TEL': # descricao = Obj.parseCPFouCNPJ(node) + carJuncao + carJuncao.join(textwrap.wrap(descricao,30)) # dicTipo = {'TEL':u'Telefone', 'END':u'Local', 'PF':u'PF', 'PJ':u'PJ', 'PE':u'Edifício', 'ES':u'Edifício', 'CC':u'Conta','INF':u'Armário' } tipo = linha[7 if umou2 == 1 else 8] # tipoi2 = dicTipo[tipo] tipoi2 = u"Escritório" if tipo in ("TEL", "END", "CC"): descricao = "" else: descricao = carJuncao.join(textwrap.wrap(descricao, 30)) sexo = 1 if tipo == "PF": # if self.GNX.node[node]['sexo']==1: if not sexo or sexo == 1: tipoi2 = u"Profissional (masculino)" elif sexo == 2: tipoi2 = u"Profissional (feminino)" elif tipo == "PJ": # if node[8:12]!='0001': # if sexo != 1: #1=matriz if sexo % 2 == 0: # 1=matriz tipoi2 = u"Apartamento" # filial de empresa else: tipoi2 = u"Escritório" elif tipo == "PE": tipoi2 = u"Oficina" corSituacao = linha[9 if umou2 == 1 else 10] if linha[4 if umou2 == 1 else 5] == 0: corSituacao = "Vermelho" return (tipoi2, descricao, corSituacao) def to_i2(df, arquivo=None): dicTiposIngles = { u"Profissional (masculino)": u"Person", u"Profissional (feminino)": u"Woman", u"Escritório": u"Office", u"Apartamento": u"Workshop", u"Governo": u"House", u"Casa": u"House", u"Loja": u"Office", u"Oficina": u"Office", u"Telefone": u"Phone", u"Local": u"Place", u"Conta": u"Account", u"Armário": u"Cabinet", u"Edifício": u"Office", } # chart = Pyanx_macros() noi2origem = {} noi2destino = {} for idc, campos in df.iterrows(): # print('campos= ',campos) tipo, descricao, corSituacao = tipoi2F(linha=campos, umou2=1, carJuncao=" ") noi2origem[idc] = chart.add_node( entity_type=dicTiposIngles.get(tipo, ""), label=(campos["cpfcnpj1"]) + u"-" + (descricao), ) tipo, descricao, corSituacao = tipoi2F(linha=campos, umou2=2, carJuncao=" ") noi2destino[idc] = chart.add_node( entity_type=dicTiposIngles.get(tipo, ""), label=(campos["cpfcnpj1"]) + u"-" + (descricao), ) nomeLigacao = campos["descrição"] chart.add_edge(noi2origem[idc], noi2destino[idc], removeAcentos(nomeLigacao)) # idc += 1 fstream = chart.createStream( layout="spring_layout", iterations=0 ) # não calcula posição retorno = fstream.getvalue() fstream.close() if arquivo is not None: f = open(arquivo, "w") f.write(retorno) f.close() return retorno def soDigitos(texto): return re.sub("[^0-9]", "", texto) def estimarFluxoDoDinheiro(tInformacoesAdicionais): # normalmente aparece algo como R$ 20,8 Mil enviada para Jardim Indústria e Comércio - CNPJ 606769xxx # inicialmente quebramos o texto por R$ e verifica quais são seguidos por CPF ou CNPJ # pega o texto da coluna InformacoesAdicionais do arquivo Comunicacoes.csv e tenta estimar o valor para cada cpf/cnpj # normalmente aparece algo como R$ 20,8 Mil enviada para Indústria e Comércio - CNPJ 6067xxxxxx # inicialmente quebramos o texto por R$ e verifica quais são seguidos por CPF ou CNPJ # retorna dicionário # como {'26106949xx': 'R$420 MIL RECEBIDOS, R$131 MIL POR', '68360088xxx': 'R$22 MIL, RECEBIDAS'} # lista = re.sub(' +', ' ',tInformacoesAdicionais).upper().split('R$') t = re.sub(" +", " ", tInformacoesAdicionais).upper() lista = t.split("R$") listaComTermoCPFCNPJ = [] for item in lista: if "CPF" in item or "CNPJ" in item: listaComTermoCPFCNPJ.append(item.strip()) listaValores = [] valoresDict = {} for item in listaComTermoCPFCNPJ: valorPara = "" cpn = "" le = item.split(" ") valor = "R$" + le[0] # + ' ' + le[1] # + ' ' + le[2] if le[1].upper().rstrip(",").rstrip("S").rstrip(",") in ( "MIL", "MI", "RECEBIDO", "RECEBIDA", "ENVIADA", "RETIRADO", "DEPOSITADO", "CHEQUE", ): valor += " " + le[1] if le[2].upper().rstrip(",").rstrip("S") in ( "MIL", "MI", "RECEBIDO", "RECEBIDA", "ENVIADA", "RETIRADO", "DEPOSITADO", "CHEQUE", ): valor += " " + le[2] if "CPF" in item: aux1 = item.split("CPF ") try: aux2 = aux1[1].split(" ") cpn = soDigitos(aux2[0]) except: pass elif "CNPJ" in item: aux1 = item.split("CNPJ ") try: aux2 = aux1[1].split(" ") cpn = soDigitos(aux2[0]) except: pass if cpn: listaValores.append(valorPara) if cpn in valoresDict: v = valoresDict[cpn] v.add(valor) valoresDict[cpn] = v else: valoresDict[cpn] = set([valor]) d = {} for k, v in valoresDict.items(): d[k] = ", ".join(v) return d # .def estimaFluxoDoDinheiro(t): def consolidar_pd(pasta): """Processa as planilhas comunicacoes, envolvidos, ocorrencias e grupo em planilhas com agrupamento """ arq = com.nomearq() # Comunicacoes nome_rif = com.nome_rif try: df_com = pd.read_excel( arq, options={"strings_to_numbers": False}, converters={"Indexador": str} ) df_com["Indexador"] = pd.to_numeric(df_com["Indexador"], errors="coerce") df_com["Data_da_operacao"] = pd.to_datetime(df_com["Data_da_operacao"]) if not com.estr_compativel(df_com.columns): print(com.estr_upper()) mostra_erro("O arquivo " + arq + " contém colunas incompatíveis: ") raise ("Estrutura incompatível") lg.gravalog("Arquivo " + arq + " lido.") except Exception as exc: print("Erro ao ler o arquivo " + arq + "\n" + str(type(exc))) arq = env.nomearq() # Envolvidos try: df_env = pd.read_excel( arq, options={"strings_to_numbers": False}, converters={"Indexador": str} ) df_env["Indexador"] = pd.to_numeric(df_env["Indexador"], errors="coerce") df_env = df_env[pd.notnull(df_env["Indexador"])] if not env.estr_compativel(df_env.columns): print(env.estr_upper()) mostra_erro("O arquivo " + arq + " contém colunas incompatíveis: ") raise ("Estrutura incompatível") lg.gravalog("Arquivo " + arq + " lido.") except Exception as exc: lg.gravalog("Erro ao ler o arquivo " + arq + "\n" + str(type(exc))) arq = oco.nomearq() # Ocorrencias try: df_oco = pd.read_excel(arq, options={"strings_to_numbers": False}) df_oco["Indexador"] = pd.to_numeric(df_oco["Indexador"], errors="coerce") df_oco = df_oco[pd.notnull(df_oco["Indexador"])] dictOco = {} dictOco2 = {} for r in df_oco.itertuples(index=False): if r.Indexador in dictOco: s = dictOco[r.Indexador] s += "; " + r.Ocorrencia dictOco[r.Indexador] = s else: dictOco[r.Indexador] = r.Ocorrencia dictOco2["Indexador"] = [] dictOco2["Ocorrencia"] = [] for k, v in dictOco.items(): dictOco2["Indexador"].append(k) dictOco2["Ocorrencia"].append(v) df_oco2 = pd.DataFrame.from_dict(dictOco2) if not oco.estr_compativel(df_oco.columns): print(oco.estr_upper()) mostra_erro("O arquivo " + arq + " contém colunas incompatíveis: ") raise ("Estrutura incompatível") lg.gravalog("Arquivo " + arq + " lido.") except Exception as exc: lg.gravalog("Erro ao ler o arquivo " + arq + "\n" + str(type(exc))) arq = gru.nomearq() # Grupos/detalhes if not os.path.isfile(arq): # criar arquivo vazio consolidado = pd.ExcelWriter( arq, engine="xlsxwriter", options={"strings_to_numbers": False}, datetime_format="dd/mm/yyyy", date_format="dd/mm/yyyy", ) gerar_planilha( consolidado, pd.DataFrame(columns=gru.estr), gru.nome, indice=False ) consolidado.save() lg.gravalog( "O arquivo " + arq + " não foi encontrado. Um novo foi criado com as colunas " + gru.exibir() ) try: df_gru = pd.read_excel(arq, options={"strings_to_numbers": False}) df_gru = df_gru.fillna("-") if not gru.estr_compativel(df_gru.columns): print(gru.estr_upper()) mostra_erro("O arquivo " + arq + " contém colunas incompatíveis: ") raise ("Estrutura incompatível") lg.gravalog("Arquivo " + arq + " lido.") except Exception as exc: lg.gravalog("Erro ao ler o arquivo " + arq + "\n" + str(type(exc))) arq = vin.nomearq() # Vinculos if not os.path.isfile(arq): # criar arquivo vazio consolidado = pd.ExcelWriter( arq, engine="xlsxwriter", options={"strings_to_numbers": False}, datetime_format="dd/mm/yyyy", date_format="dd/mm/yyyy", ) gerar_planilha( consolidado, pd.DataFrame(columns=vin.estr), vin.nome, indice=False ) consolidado.save() lg.gravalog( "O arquivo " + arq + " não foi encontrado. Um novo foi criado com as colunas " + vin.exibir() ) try: df_vin = pd.read_excel(arq, options={"strings_to_numbers": False}) if not vin.estr_compativel(df_vin.columns): print(vin.estr_upper()) mostra_erro("O arquivo " + arq + " contém colunas incompatíveis: ") raise ("Estrutura incompatível") lg.gravalog("Arquivo " + arq + " lido.") except Exception as exc: lg.gravalog("Erro ao ler o arquivo " + arq + "\n" + str(type(exc))) nenhumgrupo = len(df_gru["Grupo"].unique())==0 if nenhumgrupo: grupos_selecionados = None else: grupos_selecionados = gui_grupos(df_gru["Grupo"].unique()) # selecao if grupos_selecionados == None : grupos_selecionados = df_gru["Grupo"].unique() # nenhum = todos print("Consolidando") if nome_rif == '': nome_rif = os.path.basename(pasta) arq = os.path.join(pasta, "RIF_consolidados"+"_"+nome_rif+".xlsx") porGrupo = len(df_gru["Grupo"].unique()) > 1 try: for df in [df_com, df_env, df_gru]: df.dropna(how='all',inplace=True) # limpa as linhas sem nada #print("antes merge") df_consolida = pd.merge(df_com, df_env, how="left", on="Indexador") df_indexador = df_env.groupby(['Indexador'], as_index=False).agg({'cpfCnpjEnvolvido': '#'.join}) df_indexador.loc[:,'IndexadorTXT'] = df_indexador.loc[:,'Indexador'].fillna(0).astype(np.int64).astype(np.str) df_indexador.rename(columns={'cpfCnpjEnvolvido': 'cpfCnpjEnvolvido_todos'}, inplace=True) df_consolida =
pd.merge(df_consolida, df_oco2, how="left", on="Indexador")
pandas.merge
""" Utilities that help with the building of tensorflow keras models """ import io from muti import chu, genu import tensorflow as tf import numpy as np import pandas as pd import plotly.graph_objs as go import plotly.io as pio from plotly.subplots import make_subplots import warnings import os import math import multiprocessing def polynomial_decay_learning_rate(step: int, learning_rate_start: float, learning_rate_final: float, decay_steps: int, power: float): """ Manual implementation of polynomial decay for learning rate :param step: which step we're on :param learning_rate_start: learning rate for epoch 0 :param learning_rate_final: learning rate for epoch decay_steps :param decay_steps: epoch at which learning rate stops changing :param power: exponent :return: """ if step <= decay_steps: delta = float(learning_rate_start - learning_rate_final) lr = delta * (1.0 - float(step) / float(decay_steps)) ** power + learning_rate_final return lr return learning_rate_final def get_pred(yh, column=None, wts=None): """ Returns an array of predicted values from a keras predict method. If column is None, then this assumes the output has one column and it returns a flattened array. If column is an int, it returns that column from the prediction matrix. If column is a list of int, it returns the column sums :param yh: keras model prediction :param column: which column(s) to return, int or list of int :param wts: array of weights. if yh is n x p, wts has length p. nd.array if specified :return: prediction array :rtype nd.array """ if wts is not None: yh = yh * wts if column is None: return np.array(yh).flatten() if not isinstance(column, list): return yh[:, column] # sum up columns return np.sum(yh[:, column], axis=1) def model_predictions(df: pd.DataFrame, specs: list, in_place = True, log_odds=False): """ find the predicted values for a keras model :param: df - data frame to run the model over :param specs - specifications of model. list elements [0] - location [1] - features_dict [2] - target of model [3] - column(s) [4] - output name :param log_odds: if true, take log-odds of result :return: """ modl = tf.keras.models.load_model(specs[0]) ds = get_tf_dataset(specs[1], specs[2], df, 1000, 1) yh = get_pred(modl.predict(ds), specs[3]) if log_odds: i = yh == 1.0 yh[i] = .999999 i = yh == 0.0 yh[i] = 0.000001 yh = np.log(yh / (1.0 - yh)) if in_place: df[specs[4]] = yh return else: return yh def plot_history(history: dict, groups=['loss'], metric='loss', first_epoch=0, title=None, plot_dir=None, in_browser=False): """ plot the history of metrics from a keras model tf build :param history: history returned from keras fit :param groups: groups to plot :param metric: metric to plot :param first_epoch: first element to plot :param title: title for plot :param plot_dir: directory to plot to :param in_browser: if True display in browser :return: """ fig = [] for g in groups: x = np.arange(first_epoch, len(history[g]) - first_epoch) y = history[g][first_epoch:len(history[metric])] fig += [go.Scatter(x=x, y=y, name=g)] if title is None: title = 'TensorFlow Model Build<br>' + metric layout = go.Layout(title=title, xaxis=dict(title='Epoch'), yaxis=dict(title=metric)) figx = go.Figure(fig, layout=layout) if in_browser: pio.renderers.default = 'browser' figx.show() if plot_dir is not None: os.makedirs(plot_dir, exist_ok=True) plot_file = plot_dir + metric + '.png' figx.write_image(plot_file) plot_file = plot_dir + metric + '.html' figx.write_html(plot_file) def build_column(feature_name: str, feature_params: list, out_path=None, print_details=True): """ Returns a tensorflow feature columns and, optionally, the vocabulary for categorical and embedded features. Optionally creates files of the vocabularies for use in TensorBoard. :param feature_name: name of the feature :param feature_params: Element 0: type of feature ('cts'/'spl', 'cat', 'emb'). Element 1: ('cat', 'emb') vocabulary list (list of levels) Element 2: ('cat', 'emb') default index. If None, 0 is used Element 3: ('emb') embedding dimension :param out_path: path to write files containing levels of 'cat' and 'emb' variables :param print_details: print info about each feature :return: tf feature column and (for 'cat' and 'emb') a list of levels (vocabulary) """ if feature_params[0] == 'cts' or feature_params[0] == 'spl': if print_details: print('col {0} is numeric'.format(feature_name)) return tf.feature_column.numeric_column(feature_name) # categorical and embedded features if feature_params[0] in ['cat', 'emb']: vocab = feature_params[1] # save vocabulary for TensorBoard if out_path is not None: if out_path[-1] != '/': out_path += '/' if not os.path.isdir(out_path): os.makedirs(out_path) f = open(out_path + feature_name + '.txt', 'w') f.write('label\tId\n') for j, s in enumerate(vocab): f.write(str(s) + '\t' + str(j) + '\n') f.close() dv = [j for j in range(len(vocab)) if vocab[j] == feature_params[2]][0] col_cat = tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab, default_value=dv) # go with 1-hot encoding if feature_params[0] == 'cat': col_ind = tf.feature_column.indicator_column(col_cat) if print_details: print('col {0} is categorical with {1} levels'.format(feature_name, len(vocab))) return col_ind # for embedded features, the third element of feature_params input is the dimension of the # embedding levels = feature_params[3] col_emb = tf.feature_column.embedding_column(col_cat, levels) if print_details: print('col {0} is embedded with {1} levels'.format(feature_name, levels)) return col_emb def build_model_cols(feature_dict: dict, out_vocab_dir=None, print_details=True): """ Builds inputs needed to specify a tf.keras.Model. The tf_cols_* are TensorFlow feature_columns. The inputs_* are dictionaries of tf.keras.Inputs. The tf_cols_* are used to specify keras.DenseFeatures methods and the inputs_* are the inputs to those layers. :param feature_dict: dictionary of features to build columns for. The key is the feature name. The entry is a list: feature type (str) 'cts'/'spl', 'cat', 'emb' list of unique levels for 'cat' and 'emb' embedding dimension for 'emb' :param out_vocab_dir: directory to write out unique levels :return: 4 lists: - tf_cols_cts: tf.feature_column defining each continuous feature - inputs_cts: list of tf.keras.Inputs for each continuous column - tf_cols_cat: tf.feature_column defining each categorical ('cat','emb') feature - inputs_cat: list of tf.keras.Inputs for each categorical ('cat', 'emb') column The tf_cols_* are used in tf.keras.layers.DenseFeatures the inputs_* are used to define the inputs to those tensors """ tf_cols_cts = [] tf_cols_cat = [] inputs_cts = {} inputs_cat = {} for feature in feature_dict.keys(): if feature_dict[feature][0] == 'cts' or feature_dict[feature][0] == 'spl': feat = build_column(feature, feature_dict[feature], print_details=print_details) tf_cols_cts += [feat] inputs_cts[feature] = tf.keras.Input(shape=(1,), name=feature) else: feat = build_column(feature, feature_dict[feature], out_vocab_dir, print_details=print_details) tf_cols_cat += [feat] inputs_cat[feature] = tf.keras.Input(shape=(1,), name=feature, dtype=tf.string) return tf_cols_cts, inputs_cts, tf_cols_cat, inputs_cat def get_tf_dataset(feature_dict: dict, target: str, df: pd.DataFrame, batch_size: int, repeats=0): """ build a tf dataset from a pandas DataFrame :param feature_dict: dictionary whose keys are the features :param target: target var :param df: pandas DataFrame to work on :param batch_size: Batch size :param repeats: how many repeats of the dataset (None = infinite) :return: tf dataset """ buffer_size = df.shape[0] tf_ds = tf.data.Dataset.from_tensor_slices((dict(df[feature_dict.keys()]), df[target])) # tf_ds = tf_ds.batch(batch_size, drop_remainder=True, deterministic=False, num_parallel_calls=tf.data.AUTOTUNE).repeat().prefetch(buffer_size) if repeats == 0: tf_ds = tf_ds.shuffle(reshuffle_each_iteration=True, buffer_size=buffer_size) tf_ds = tf_ds.batch(batch_size, drop_remainder=True, deterministic=False, num_parallel_calls=tf.data.AUTOTUNE) tf_ds = tf_ds.prefetch(buffer_size=buffer_size) tf_ds = tf_ds.cache() else: tf_ds = tf_ds.batch(batch_size, deterministic=False, num_parallel_calls=tf.data.AUTOTUNE).repeat(repeats).prefetch(buffer_size) return tf_ds def incr_build(model, by_var, start_list, add_list, get_data_fn, sample_size, feature_dict, target_var, batch_size, epochs_list, global_valid_df_in, model_dir=None, plot=False, verbose=0, output_size = 1, **kwargs): """ This function builds a sequence of models. The get_data_fn takes a list of values as contained in start_list and add_list and returns data subset to those values. The initial model is built on the values of start_list and then evaluated on the data subset to the first value of add_list. At the next step, the data in the first element of add_list is added to the start_list data, the model is updated and the evaluation is conducted on the second element of add_list :param model: input model structure :type model: tf keras model :param start_list: list of (general) time periods for model build for the first model build :type start_list: list :param add_list: list of out-of-time periods to evaluate :type add_list: list :param get_data_fn: function to get a pandas DataFrame of data to work on :type get_data_fn: function :param sample_size: size of pandas DataFrames to get :type sample_size: int :param feature_dict: dictionary of features in the model :type feature_dict: dict :param target_var: target variable of model build :type target_var: str :param batch_size: size of batches for model build :type batch_size: int :param epochs_list: list (length 2) of epochs for model fit; entry 0 is initial model, entry 1 is subsequent models :type epochs_list: list :param global_valid_df_in: DataFrame that includes all the segments in add_list -- for validation :type global_valid_df_in: pandas DataFrame :param model_dir: directory to save models :type model_dir: str :param plot: if True, plot history :type plot: bool :param verbose: print verobisity for keras.fit (0 = quiet, 1 = normal level, 2=talkative) :type verbose int :param output_size: the number of columns returned by keras model predict :type output_size: int :return: lists of out-of-sample values: add_list rmse root mean squared error corr correlation """ if model_dir is not None: if model_dir[-1] != '/': model_dir += '/' if os.path.isdir(model_dir): os.system('rm -r ' + model_dir) os.makedirs(model_dir) build_list = start_list epochs = epochs_list[0] segs = [] global_valid_df = global_valid_df_in.copy() # validation data if output_size == 1: global_valid_df['model_dnn_inc'] = np.full((global_valid_df.shape[0]), 0.0) else: for c in range(output_size): global_valid_df['model_dnn_inc' + str(c)] = np.full((global_valid_df.shape[0]), 0.0) global_valid_ds = get_tf_dataset(feature_dict, target_var, global_valid_df, 10000, 1) for j, valid in enumerate(add_list): segs += [valid] model_df = get_data_fn(build_list, sample_size, **kwargs) steps_per_epoch = int(model_df.shape[0] / batch_size) model_ds = get_tf_dataset(feature_dict, target_var, model_df, batch_size=batch_size) valid_df = get_data_fn([valid], sample_size, **kwargs) valid_ds = get_tf_dataset(feature_dict, target_var, valid_df, batch_size=batch_size, repeats=1) print('Data sizes for out-of-sample value {0}: build {1}, validate {2}'.format(valid, model_df.shape[0], valid_df.shape[0])) history = model.fit(model_ds, epochs=epochs, steps_per_epoch=steps_per_epoch, validation_data=valid_ds, verbose=verbose) gyh = model.predict(global_valid_ds) i = global_valid_df[by_var] == valid if output_size == 1: global_valid_df.loc[i, 'model_dnn_inc'] = gyh[i] else: for c in range(output_size): global_valid_df.loc[i, 'model_dnn_inc' + str(c)] = gyh[i][:,c] build_list += [valid] # NOTE Accumulates # build_list = [valid] # NOTE Accumulates NOT if model_dir is not None: out_m = model_dir + "before_" + valid + '.h5' model.save(out_m, overwrite=True, save_format='h5') if plot: title = 'model loss\n' + 'Training up to ' + valid plot_history(history, ['loss', 'val_loss'], 'loss', title=title) epochs = epochs_list[1] return segs, global_valid_df def _marginal_cts(model: tf.keras.Model, column, features_dict: dict, sample_df: pd.DataFrame, target: str, num_grp: int, num_sample: int, title: str, sub_titles: str, cols: list): """ Build a Marginal Effects plot for a continuous feature :param model: model :param column: column(s) of model output, either an int or list of ints :param features_dict: features in the model :param sample_df: DataFrame operating on :param target: target feature :param num_grp: # of groups model output is sliced into :param num_sample: # of obs to take from sample_df to build graph :param title: title for graph :param sub_titles: titles for subplots :param cols: colors to use: list of str :return: plotly_fig and importance metric """ sub_titles[6] = 'Box Plots' # 't' is top spacing, 'b' is bottom, 'None' means there is no graph in that cell. We make # 2 x 7 -- eliminating the (2,7) graph and putting the RHS graph in the (1,7) position fig = make_subplots(rows=2, cols=num_grp + 1, subplot_titles=sub_titles, row_heights=[1, .5], specs=[[{'t': 0.07, 'b': -.1}, {'t': 0.07, 'b': -.10}, {'t': 0.07, 'b': -.10}, {'t': 0.07, 'b': -.10}, {'t': 0.07, 'b': -.10}, {'t': 0.07, 'b': -.10}, {'t': 0.35, 'b': -0.35}], [{'t': -0.07}, {'t': -.07}, {'t': -.07}, {'t': -0.07}, {'t': -.07}, {'t': -.07}, None]]) # start with top row graphs # find ranges by MOG and merge lows = sample_df.groupby('grp')[target].quantile(.01) highs = sample_df.groupby('grp')[target].quantile(.99) both = pd.merge(left=lows, right=highs, left_index=True, right_index=True) both.rename(columns={target + '_x': 'low', target + '_y': 'high'}, inplace=True) # repeat these to accomodate the range of the feature we're going to build next to_join = pd.concat([both] * 11).sort_index() # range of the feature xval = np.arange(11) / 10 xval = np.concatenate([xval] * num_grp) to_join['steps'] = xval to_join[target] = to_join['low'] + (to_join['high'] - to_join['low']) * to_join['steps'] # now sample the DataFrame samps = sample_df.groupby('grp').sample(num_sample, replace=True) samp_num = pd.Series(np.arange(samps.shape[0])) samps.index = samp_num samp_num.name = 'samp_num' samps = pd.concat([samps, samp_num], axis=1) # samps['samp_num'] = np.arange(samps.shape[0]) # drop the target column -- we're going to replace it with our grid of values samps.pop(target) # join in our grid score_df =
pd.merge(samps, to_join[target], on='grp')
pandas.merge
# coding: utf8 """ Utils to convert AIBL dataset in BIDS """ def listdir_nohidden(path): """ This method lists all the subdirectories of path except the hidden folders' :param path: path whose subdirectories are needed :return: list of all the subdirectories of path """ from os import listdir return [result for result in listdir(path) if not result.startswith('.')] def find_T1_folder(subdirectory, path_to_T1_1): """ This method checks if the subdirectory contains a T1 image, and it returns the h :param subdirectory: name of the folder :return: previous path to arrive to the T1 image """ import os path_to_convert = {'MPRAGE_ADNI_confirmed', 'MPRAGE', 'MPRAGE_ADNI_confirmed_RPT', 'MPRAGE_ADNI_confirmed_REPEATX2', 'MPRAGE_ADNI_confirmed_repeat', 'MPRAGE_ADNI_confirmed_REPEAT', 'MPRAGE_ADNI_conf_REPEAT'} for j in path_to_convert: path = [] # if conditions which checks if the subfolder contain a T1 image if j == subdirectory: path = os.path.join(path_to_T1_1, subdirectory) return path if path == []: return 'NaN' # there are no more folders which could contain T1 images def find_T1_folder_nodata(subdirectory, path_to_T1_1): """ This method checks if the subdirectory contains a T1 image, and it returns the path. This method differs from the find_T1_folder since for these folders the exame_date is not present in the clinical excel file and we will not check if the exame_date corresponds to the date stored in the path to the image, but they will be converted anyway :param subdirectory: name of the folder :return: previous path to arrive to the T1 image """ import os path_to_convert = {'MPRAGESAGISOp2ND', 'MPRAGE_SAG_ISO_p2_ND', 'MPRAGE_SAG_ISO_p2'} for j in path_to_convert: path = [] # if conditions which checks if the subfolder contain a T1 image if j == subdirectory: path = os.path.join(path_to_T1_1, subdirectory) return path if path == []: return 'NaN' # there are no more folders which could contain T1 images def find_correspondance_index(i, csv_file): """ This method gives as output the index of the csv file analysed which correspond to the 'i' subject :param i: subject_ID :param csv_file: csv file where all the information are listed :return: index """ index = [] for x in csv_file.RID: if i == str(x): index = csv_file.RID[csv_file.RID == x].index.tolist() return index def find_correspondance_date(index, csv_file): """ The method returns the dates reported in the csv_file for the i-subject :param index: index corresponding to the subject analysed :param csv_file: csv file where all the information are listed :return date """ return csv_file.EXAMDATE[index] def match_data(exame_date, i, csv_file): """ This method returns the session_ID. It controls if the dates corresponding to the image (from the name of the subdirectory) correspond to one of the dates listed from the csv_file for the subject analysed. The session_ID is the corresponding session for that patient in that date. It returns -4 if there are no information. :param exame_date: date where the image has been taken, it is saved from the name of the corresponding subdirector :param i: subject_ID :param csv_file: csv file where all the information are listed :return session_id of the patient """ import re session_ID = [] index = find_correspondance_index(i, csv_file) csv_date = find_correspondance_date(index, csv_file) for xx in index: if str(csv_date[xx]) != '-4': # check is the date is not '-4' m = re.search('([0-9].*)-(.*)-(.*)_(.*)_(.*)_(.*)', str(exame_date)) # string from image directory p = re.search('(.*)/(.*)/(.*)', str(csv_date[xx])) # string from the date of the csv_file if (p.group(1) == m.group(2)) & (p.group(2) == m.group(3)) & (p.group(3) == m.group(1)): session_ID = csv_file.VISCODE[xx] if session_ID == []: session_ID = '-4' return session_ID def list_of_paths(): """ It lists all the folders which not contain PET images """ return ['.DS_Store', 'localizer', 'Space_3D_T2_FLAIR_sag_p2', 'AXIAL_FLAIR', 'MPRAGE_ADNI_confirmed_REPEATX2', 'Axial_PD-T2_TSE', 'Axial_PD-T2_TSE_repeat', 'MPRAGE_SAG_ISO_p2_ND', 'Axial_PD-T2_TSE_confirmed', 'MPRAGESAGISOp2ND', 'MPRAGE_ADNI_confirmed', 'MPRAGE_ADNI_confirmed_repeat', 'MPRAGE_SAG_ISO_p2', 'MPRAGE', 'MPRAGE_ADNI_confirmed_REPEAT', 'Axial_PD-T2_TSE_confirmed_repeat', 'MPRAGE_ADNI_conf_REPEAT', 'Space_3D_T2_FLAIR_sag_p2_REPEAT', 'MPRAGE_ADNI_confirmed_RPT', 'Brain_256_1.6_zoom_4_x_4_iter', 'Space_3D_T2_FLAIR_sag_REPEAT', 'Axial_PD-T2_TSE_RPTconfirmed', 'Axial_PD-T2_TSE_RPT_confirmed', 'Axial_PD-T2_TSE_confirmed_REPEAT', 'flair_t2_spc_irprep_ns_sag_p2_1mm_iso', 'localiser'] def check_subdirectories_pet(subdirectories, sub, no_pet): """ It returns the correct subdirectories for the PET images, they should belong to the list where there all the possible names of the PET images :param subdirectories: :param sub: all the possible subdirectories which need to be checked :param no pet: list of names of folders which not contain PET images :return subdirectory which is containing a PET image which needs to be converted """ for j in range(len(sub)): if (sub[j] not in no_pet) & (sub[j] != '.DS_Store'): subdirectories.append(sub[j]) subdirectories = list(set(subdirectories)) return subdirectories def dicom_to_nii(subject, output_path, output_filename, image_path): """ From dicom to nifti converts the dicom images in a nifti files using dicom2nii or mri_convert :param subject: :param output_path: where nifti image is stored :param output_filename: name of the nifti image :param image_path: where dicom files are stored :return: Image in a nifti format """ import os import subprocess from clinica.utils.stream import cprint from os.path import exists import shutil from colorama import Fore try: os.makedirs(output_path) except OSError: if not os.path.isdir(output_path): raise # if image.Is_Dicom: command = 'dcm2niix -b n -z y -o ' + output_path + ' -f ' + output_filename + ' ' + image_path subprocess.run(command, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) nifti_file = os.path.join(output_path, output_filename + '.nii.gz') # Check if conversion worked (output file exists?) if not exists(nifti_file): command = 'dcm2nii -a n -d n -e n -i y -g y -p n -m n -r n -x n -o ' + output_path + ' ' + image_path subprocess.run(command, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) nifti_file_dcm2nii = os.path.join(output_path, 'DE-IDENTIFIED.nii.gz') if os.path.isfile(nifti_file_dcm2nii): shutil.move(nifti_file_dcm2nii, nifti_file) if not exists(nifti_file): # if the conversion dcm2nii has not worked, freesurfer utils # mri_convert is used dicom_image = listdir_nohidden(image_path) dicom_image = [dcm for dcm in dicom_image if dcm.endswith('.dcm')] try: dicom_image = os.path.join(image_path, dicom_image[0]) except IndexError: cprint(Fore.RED + 'We did not found the dicom files associated with the following directory: ' + image_path + Fore.RESET) # it requires the installation of Freesurfer (checked at the beginning) command = 'mri_convert ' + dicom_image + ' ' + nifti_file if exists(os.path.expandvars('$FREESURFER_HOME/bin/mri_convert')): subprocess.run(command, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) else: cprint('mri_convert (from Freesurfer) not detected. ' + nifti_file + ' not created...') if not exists(nifti_file): cprint(nifti_file + ' should have been created but this did not happen') return nifti_file def viscode_to_session(viscode): """ Replace the session label 'bl' with 'M00' or capitalize the session name passed as input. :param viscode: session name :return: M00 if is the baseline session or the original session name capitalized """ if viscode == 'bl': return 'M00' else: return viscode.capitalize() def find_path_to_pet_modality(path_to_dataset, csv_file): """ This method creates a Dataframe which contains all the paths to the PET image of a modality (for example AV45 or PIB) :param path_to_dataset: path to AIBL dataset :param csv_file: file which correspond to the modality :return: A dataframe which contains the path for PET images for a single modality and subject_ID and session_ID are reported for each path """ import os import pandas # TODO # exclude_subjects = get_exclude_subject(file.txt) no_pet = list_of_paths() subjects_ID = listdir_nohidden(path_to_dataset) # selection of the subjects_ID from the folder downloaded # this subject must be discarded since it is only a sample and not a patient if '0151083' in subjects_ID: del subjects_ID[subjects_ID.index('0151083')] sub_ID = [] ses_ID = [] path_pet = [] # Iteration through all the subjects_ID def is_int(x): for i in x: if int(i) in list(csv_file.RID): yield i # def append_path(image_ID): for i in is_int(subjects_ID): # check if the subject is present in the csv_file for the modality selected subdirectories = [] path_to_pet_1 = os.path.join(path_to_dataset, str(i)) # subdirectory_all = os.listdir(path_to_pet_1) subdirectory_all = listdir_nohidden(path_to_pet_1) subdirectories = check_subdirectories_pet(subdirectories, subdirectory_all, no_pet) # selection only of the folders which contain PET image for j in range(len(subdirectories)): path_to_pet_2 = os.path.join(path_to_pet_1, subdirectories[j]) exame_date = listdir_nohidden(path_to_pet_2) # exame date of the image which is going to be converted for x in range(len(exame_date)): # selection of the session_ID matching the data in the csv_file with the one of the image session_ID = match_data(exame_date[x], i, csv_file) if session_ID != '-4': path_to_pet_3 = os.path.join(path_to_pet_2, str(exame_date[x])) # For the RID 1607 there are two PET images of the flute modality, and we select the first if i == '1607': if subdirectories[j] == 'Flute_256_1.6_Zoom_plain_4_x_4_Iter': image_ID = ['I442930'] else: image_ID = listdir_nohidden(path_to_pet_3) else: image_ID = listdir_nohidden(path_to_pet_3) for y in range(len(image_ID)): # final path to find the image we want to convert path_to_pet = os.path.join(path_to_pet_3, image_ID[y]) # sub_ID.append(i) ses_ID.append(session_ID) path_pet.append(path_to_pet) data = pandas.DataFrame({'Subjects_ID': sub_ID, 'Session_ID': ses_ID, 'Path_to_pet': path_pet}) # data=final dataframe return data def find_path_to_T1_ADNI(file_mri, subjects_ID, path_to_dataset): """ This method creates a Dataframe which contains all the paths to the T1 images which are ADNI compliant (as explained in the AIBL website). This images differ from the others T1 of the dataset since in the cvs_file is reported the exame date. :param file_mri: in the clinical data there are two files which describe the parameters of the T1 images (MRI 1.5 T and MRI 3T) :param subjects_ID: subjects_id in the dataset dowloaded :param path_to_dataset: path to AIBL dataset :return: A dataframe which contains the path for T1 images and subject_ID and session_ID are reported for each path """ import os sub_ID = [] ses_ID = [] path_T1 = [] for i in subjects_ID: for jj in file_mri: # it checks all the file_mri if int(i) in list(jj.RID): # check if the information of the subject are present in the csv_file path_to_T1_1 = os.path.join(path_to_dataset, str(i)) # subdirectories = os.listdir(path_to_T1_1) subdirectories = listdir_nohidden(path_to_T1_1) for j in range(len(subdirectories)): # check if the subdirectory can contain a T1 image path_to_T1_2 = find_T1_folder(subdirectories[j], path_to_T1_1) if path_to_T1_2 != 'NaN': exame_date = listdir_nohidden(path_to_T1_2) # this is the string I need to compare with the csv for x in range(len(exame_date)): # check if the corresponding session_ID can be found in the csv_file session_ID = match_data(exame_date[x], i, jj) if session_ID != '-4': path_to_T1_3 = os.path.join(path_to_T1_2, str(exame_date[x])) image_ID = listdir_nohidden(path_to_T1_3) for y in range(len(image_ID)): # compute the final path path_to_T1 = os.path.join(path_to_T1_3, image_ID[y]) sub_ID.append(i) ses_ID.append(session_ID) path_T1.append(path_to_T1) return [sub_ID, ses_ID, path_T1] def find_path_to_T1_SAG(path_to_dataset, subjects_ID, sub_ID, ses_ID, path_T1): """ This method creates a Dataframe which contains all the paths to the T1 images which are not ADNI compliant, they contain the word "SAG" in their name :param path_to_dataset: path to AIBL dataset :param subjects_ID: subjects_id in the dataset dowloaded :param sub_ID: the previous list (from T1_ADNI) where new subjects ID will be appended :param ses_ID: the previous list (from T1_ADNI) where new session ID will be appended :param path_T1:the previous list (from T1_ADNI) where new paths will be appended :return: it completes the list of all the T1 paths including all the images where we didn't find the exame-data but we can fix it with a further analysis """ import os for i in subjects_ID: subdirectory_for_subject = [] path_to_T1_1 = os.path.join(path_to_dataset, str(i)) # subdirectories = os.listdir(path_to_T1_1) subdirectories = listdir_nohidden(path_to_T1_1) for j in range(len(subdirectories)): # we convert only the images which are in this list and we take only one of them for subject if subdirectories[j] in ['MPRAGESAGISOp2ND', 'MPRAGE_SAG_ISO_p2_ND', 'MPRAGE_SAG_ISO_p2']: subdirectory_for_subject.append(subdirectories[j]) if not subdirectory_for_subject: pass else: path_to_T1_2 = os.path.join(path_to_T1_1, subdirectory_for_subject[0]) exame_date = listdir_nohidden(path_to_T1_2) if i in [342, 557]: session_ID = 'M54' else: session_ID = 'M00' if (i in sub_ID and session_ID != ses_ID[sub_ID.index(i)]) or (i not in sub_ID): # if for a subject in the same session we have both this image and the "ADNI" compliant we are converting the second one since the exame-date is more precise path_to_T1_3 = os.path.join(path_to_T1_2, str(exame_date[0])) image_ID = listdir_nohidden(path_to_T1_3) path_to_T1 = os.path.join(path_to_T1_3, image_ID[0]) # we append the result to the list sub_ID.append(i) ses_ID.append(session_ID) path_T1.append(path_to_T1) return [sub_ID, ses_ID, path_T1] def find_path_to_T1(path_to_dataset, path_to_csv): """ This method creates a DataFrame for the T1 images, where for each of them the subject ID, the session ID and the path to the image are reported :param path_to_dataset: path to AIBL dataset :param path_to_csv: path to the csv files downloaded :return: pandas dataframe which contains all the paths for the T1 images, and the correisponding subject_ID and session_ID """ import os import pandas import glob # two csv_files contain information regarding the T1w MRI images mri_meta = pandas.read_csv(glob.glob(os.path.join(path_to_csv, "aibl_mrimeta_*.csv"))[0]) mri_3meta = pandas.read_csv(glob.glob(os.path.join(path_to_csv, "aibl_mri3meta_*.csv"))[0]) file_mri = [mri_meta, mri_3meta] subjects_ID = listdir_nohidden(path_to_dataset) # list of all the folders which correspond to the subject_ID # all the subjects downloaded are taken into account for the conversion, except this sample if '0151083' in subjects_ID: del subjects_ID[subjects_ID.index('0151083')] [sub_ID, ses_ID, path_T1] = find_path_to_T1_ADNI(file_mri, subjects_ID, path_to_dataset) [sub_ID, ses_ID, path_T1] = find_path_to_T1_SAG(path_to_dataset, subjects_ID, sub_ID, ses_ID, path_T1) data = pandas.DataFrame({'Subjects_ID': sub_ID, 'Session_ID': ses_ID, 'Path_to_T1': path_T1}) # data= final dataframe return data # Covert the AIBL PET images into the BIDS specification. # There are three pet modalities: av45, pib, flute. All of them are converted # in BIDS def paths_to_bids(path_to_dataset, path_to_csv, bids_dir, modality): """ This method converts all the T1 images found in the AIBL dataset downloaded in BIDS :param path_to_dataset: path_to_dataset :param path_to_csv: path to the csv file containing clinical data :param bids_dir: path to save the AIBL-T1-dataset converted in a BIDS format :param modality: string 't1', 'av45', 'flute' or 'pib' :return: list of all the images that are potentially converted in a BIDS format and saved in the bids_dir. This does not guarantee existence """ from os.path import join, exists from numpy import nan import pandas as pds from clinica.utils.stream import cprint from multiprocessing.dummy import Pool from multiprocessing import cpu_count, Value import glob if modality.lower() not in ['t1', 'av45', 'flute', 'pib']: # This should never be reached raise RuntimeError(modality.lower() + ' is not supported for conversion') counter = None def init(args): """ store the counter for later use """ global counter counter = args def create_file(image): global counter subject = image.Subjects_ID session = image.Session_ID name_of_path = {'t1': 'Path_to_T1', 'av45': 'Path_to_pet', 'flute': 'Path_to_pet', 'pib': 'Path_to_pet'} # depending on the dataframe, there is different way of accessing # the iage object image_path = image[name_of_path[modality]] with counter.get_lock(): counter.value += 1 if image_path is nan: cprint('No path specified for ' + subject + ' in session ' + session) return nan cprint('[' + modality.upper() + '] Processing subject ' + str(subject) + ' - session ' + session + ', ' + str(counter.value) + ' / ' + str(total)) session = viscode_to_session(session) # creation of the path if modality == 't1': output_path = join(bids_dir, 'sub-AIBL' + subject, 'ses-' + session, 'anat') output_filename = 'sub-AIBL' + subject + '_ses-' + session + '_T1w' elif modality in ['flute', 'pib', 'av45']: output_path = join(bids_dir, 'sub-AIBL' + subject, 'ses-' + session, 'pet') output_filename = 'sub-AIBL' + subject + '_ses-' + session \ + '_task-rest_acq-' + modality + '_pet' # image is saved following BIDS specifications if exists(join(output_path, output_filename + '.nii.gz')): cprint('Subject ' + str(subject) + ' - session ' + session + ' already processed.') output_image = join(output_path, output_filename + '.nii.gz') else: output_image = dicom_to_nii(subject, output_path, output_filename, image_path) return output_image # it reads the dataframe where subject_ID, session_ID and path are saved if modality == 't1': images = find_path_to_T1(path_to_dataset, path_to_csv) else: path_to_csv_pet_modality = glob.glob(join( path_to_csv, 'aibl_' + modality + 'meta_*.csv') )[0] if not exists(path_to_csv_pet_modality): raise FileNotFoundError(path_to_csv_pet_modality + ' file not found in clinical data folder') # Latest version of Flutemetamol CSV file (aibl_flutemeta_01-Jun-2018.csv) # has an extra column for some rows. However, each CSV file (regarding PET tracers) # contains the same columns. The usecols fixes this issue. df_pet = pds.read_csv(path_to_csv_pet_modality, sep=',|;', usecols=list(range(0, 36))) images = find_path_to_pet_modality(path_to_dataset, df_pet) images.to_csv(join(bids_dir, modality + '_paths_aibl.tsv'), index=False, sep='\t', encoding='utf-8') counter = Value('i', 0) total = images.shape[0] # Reshape inputs to give it as a list to the workers images_list = [] for i in range(total): images_list.append(images.iloc[i]) # intializer are used with the counter variable to keep track of how many # files have been processed poolrunner = Pool(cpu_count(), initializer=init, initargs=(counter,)) output_file_treated = poolrunner.map(create_file, images_list) del counter return output_file_treated # -- Methods for the clinical data -- def create_participants_df_AIBL(input_path, clinical_spec_path, clinical_data_dir, delete_non_bids_info=True): """ This methods create a participants file for the AIBL dataset where information regarding the patients are reported :param input_path: path to the input directory :param clinical_spec_path: path to the clinical file :param clinical_data_dir: directory to the clinical data files :param delete_non_bids_info: if True delete all the rows of the subjects that are not available in the BIDS dataset :return: a pandas dataframe that contains the participants data and it is saved in a tsv file """ import pandas as pd import os from os import path import re import numpy as np import glob fields_bids = ['participant_id'] fields_dataset = [] prev_location = '' index_to_drop = [] location_name = 'AIBL location' if not os.path.exists(clinical_spec_path): raise FileNotFoundError(clinical_spec_path + ' not found in clinical data.') participants_specs = pd.read_excel(clinical_spec_path, sheet_name='participant.tsv') participant_fields_db = participants_specs['AIBL'] field_location = participants_specs[location_name] participant_fields_bids = participants_specs['BIDS CLINICA'] # Extract the list of the available fields for the dataset (and the corresponding BIDS version) for i in range(0, len(participant_fields_db)): if not pd.isnull(participant_fields_db[i]): fields_bids.append(participant_fields_bids[i]) fields_dataset.append(participant_fields_db[i]) # Init the dataframe that will be saved in the file participant.tsv participant_df = pd.DataFrame(columns=fields_bids) csv_files = [] for i in range(0, len(participant_fields_db)): # If a field not empty is found if not pd.isnull(participant_fields_db[i]): # Extract the file location of the field and read the value from the file tmp = field_location[i].split('/') location = tmp[0] # If a sheet is available if len(tmp) > 1: sheet = tmp[1] else: sheet = '' # Check if the file to open for a certain field it's the same of the previous field if location == prev_location and sheet == prev_sheet: pass else: file_ext = os.path.splitext(location)[1] file_to_read_path = path.join(clinical_data_dir, location) if file_ext == '.xlsx': file_to_read = pd.read_excel(glob.glob(file_to_read_path)[0], sheet_name=sheet) elif file_ext == '.csv': file_to_read = pd.read_csv(glob.glob(file_to_read_path)[0]) prev_location = location prev_sheet = sheet field_col_values = [] # For each field in fields_dataset extract all the column values for j in range(0, len(file_to_read)): # Convert the alternative_id_1 to string if is an integer/float if participant_fields_bids[i] == 'alternative_id_1' and \ (file_to_read[participant_fields_db[i]].dtype == np.float64 or file_to_read[ participant_fields_db[i]].dtype == np.int64): if not pd.isnull(file_to_read.at[j, participant_fields_db[i]]): # value_to_append = str(file_to_read.get_value(j, participant_fields_db[i])).rstrip('.0') value_to_append = str(file_to_read.at[j, participant_fields_db[i]]) else: value_to_append = np.NaN else: value_to_append = file_to_read.at[j, participant_fields_db[i]] field_col_values.append(value_to_append) # Add the extracted column to the participant_df participant_df[participant_fields_bids[i]] =
pd.Series(field_col_values)
pandas.Series
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import decimal from datetime import datetime from distutils.version import LooseVersion import inspect import sys import unittest from io import StringIO from typing import List import numpy as np import pandas as pd from pandas.tseries.offsets import DateOffset from pyspark import StorageLevel from pyspark.ml.linalg import SparseVector from pyspark.sql.types import StructType from pyspark import pandas as ps from pyspark.pandas.config import option_context from pyspark.pandas.exceptions import PandasNotImplementedError from pyspark.pandas.frame import CachedDataFrame from pyspark.pandas.missing.frame import _MissingPandasLikeDataFrame from pyspark.pandas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) from pyspark.testing.pandasutils import ( have_tabulate, PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED, tabulate_requirement_message, ) from pyspark.testing.sqlutils import SQLTestUtils from pyspark.pandas.utils import name_like_string class DataFrameTest(PandasOnSparkTestCase, SQLTestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=np.random.rand(9), ) @property def psdf(self): return ps.from_pandas(self.pdf) @property def df_pair(self): pdf = self.pdf psdf = ps.from_pandas(pdf) return pdf, psdf def test_dataframe(self): pdf, psdf = self.df_pair self.assert_eq(psdf["a"] + 1, pdf["a"] + 1) self.assert_eq(psdf.columns, pd.Index(["a", "b"])) self.assert_eq(psdf[psdf["b"] > 2], pdf[pdf["b"] > 2]) self.assert_eq(-psdf[psdf["b"] > 2], -pdf[pdf["b"] > 2]) self.assert_eq(psdf[["a", "b"]], pdf[["a", "b"]]) self.assert_eq(psdf.a, pdf.a) self.assert_eq(psdf.b.mean(), pdf.b.mean()) self.assert_eq(psdf.b.var(), pdf.b.var()) self.assert_eq(psdf.b.std(), pdf.b.std()) pdf, psdf = self.df_pair self.assert_eq(psdf[["a", "b"]], pdf[["a", "b"]]) self.assertEqual(psdf.a.notnull().rename("x").name, "x") # check ps.DataFrame(ps.Series) pser = pd.Series([1, 2, 3], name="x", index=np.random.rand(3)) psser = ps.from_pandas(pser) self.assert_eq(pd.DataFrame(pser), ps.DataFrame(psser)) # check psdf[pd.Index] pdf, psdf = self.df_pair column_mask = pdf.columns.isin(["a", "b"]) index_cols = pdf.columns[column_mask] self.assert_eq(psdf[index_cols], pdf[index_cols]) def _check_extension(self, psdf, pdf): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(psdf, pdf, check_exact=False) for dtype in psdf.dtypes: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assert_eq(psdf, pdf) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_extension_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series([1, 2, None, 4], dtype="Int8"), "b": pd.Series([1, None, None, 4], dtype="Int16"), "c": pd.Series([1, 2, None, None], dtype="Int32"), "d": pd.Series([None, 2, None, 4], dtype="Int64"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) self._check_extension(psdf + psdf, pdf + pdf) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_astype_extension_dtypes(self): pdf = pd.DataFrame( { "a": [1, 2, None, 4], "b": [1, None, None, 4], "c": [1, 2, None, None], "d": [None, 2, None, 4], } ) psdf = ps.from_pandas(pdf) astype = {"a": "Int8", "b": "Int16", "c": "Int32", "d": "Int64"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_extension_object_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series(["a", "b", None, "c"], dtype="string"), "b": pd.Series([True, None, False, True], dtype="boolean"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_astype_extension_object_dtypes(self): pdf = pd.DataFrame({"a": ["a", "b", None, "c"], "b": [True, None, False, True]}) psdf = ps.from_pandas(pdf) astype = {"a": "string", "b": "boolean"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_extension_float_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, None, 4.0], dtype="Float32"), "b": pd.Series([1.0, None, 3.0, 4.0], dtype="Float64"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) self._check_extension(psdf + 1, pdf + 1) self._check_extension(psdf + psdf, pdf + pdf) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_astype_extension_float_dtypes(self): pdf = pd.DataFrame({"a": [1.0, 2.0, None, 4.0], "b": [1.0, None, 3.0, 4.0]}) psdf = ps.from_pandas(pdf) astype = {"a": "Float32", "b": "Float64"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) def test_insert(self): # # Basic DataFrame # pdf = pd.DataFrame([1, 2, 3]) psdf = ps.from_pandas(pdf) psdf.insert(1, "b", 10) pdf.insert(1, "b", 10) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(2, "c", 0.1) pdf.insert(2, "c", 0.1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(3, "d", psdf.b + 1) pdf.insert(3, "d", pdf.b + 1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psser = ps.Series([4, 5, 6]) self.assertRaises(ValueError, lambda: psdf.insert(0, "y", psser)) self.assertRaisesRegex( ValueError, "cannot insert b, already exists", lambda: psdf.insert(1, "b", 10) ) self.assertRaisesRegex( TypeError, '"column" should be a scalar value or tuple that contains scalar values', lambda: psdf.insert(0, list("abc"), psser), ) self.assertRaisesRegex( TypeError, "loc must be int", lambda: psdf.insert((1,), "b", 10), ) self.assertRaisesRegex( NotImplementedError, "Assigning column name as tuple is only supported for MultiIndex columns for now.", lambda: psdf.insert(0, ("e",), 10), ) self.assertRaises(ValueError, lambda: psdf.insert(0, "e", [7, 8, 9, 10])) self.assertRaises(ValueError, lambda: psdf.insert(0, "f", ps.Series([7, 8]))) self.assertRaises(AssertionError, lambda: psdf.insert(100, "y", psser)) self.assertRaises(AssertionError, lambda: psdf.insert(1, "y", psser, allow_duplicates=True)) # # DataFrame with MultiIndex as columns # pdf = pd.DataFrame({("x", "a", "b"): [1, 2, 3]}) psdf = ps.from_pandas(pdf) psdf.insert(1, "b", 10) pdf.insert(1, "b", 10) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(2, "c", 0.1) pdf.insert(2, "c", 0.1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(3, "d", psdf.b + 1) pdf.insert(3, "d", pdf.b + 1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) self.assertRaisesRegex( ValueError, "cannot insert d, already exists", lambda: psdf.insert(4, "d", 11) ) self.assertRaisesRegex( ValueError, r"cannot insert \('x', 'a', 'b'\), already exists", lambda: psdf.insert(4, ("x", "a", "b"), 11), ) self.assertRaisesRegex( ValueError, '"column" must have length equal to number of column levels.', lambda: psdf.insert(4, ("e",), 11), ) def test_inplace(self): pdf, psdf = self.df_pair pser = pdf.a psser = psdf.a pdf["a"] = pdf["a"] + 10 psdf["a"] = psdf["a"] + 10 self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) def test_assign_list(self): pdf, psdf = self.df_pair pser = pdf.a psser = psdf.a pdf["x"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] psdf["x"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser, pser) with self.assertRaisesRegex(ValueError, "Length of values does not match length of index"): psdf["z"] = [10, 20, 30, 40, 50, 60, 70, 80] def test_dataframe_multiindex_columns(self): pdf = pd.DataFrame( { ("x", "a", "1"): [1, 2, 3], ("x", "b", "2"): [4, 5, 6], ("y.z", "c.d", "3"): [7, 8, 9], ("x", "b", "4"): [10, 11, 12], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf["x"], pdf["x"]) self.assert_eq(psdf["y.z"], pdf["y.z"]) self.assert_eq(psdf["x"]["b"], pdf["x"]["b"]) self.assert_eq(psdf["x"]["b"]["2"], pdf["x"]["b"]["2"]) self.assert_eq(psdf.x, pdf.x) self.assert_eq(psdf.x.b, pdf.x.b) self.assert_eq(psdf.x.b["2"], pdf.x.b["2"]) self.assertRaises(KeyError, lambda: psdf["z"]) self.assertRaises(AttributeError, lambda: psdf.z) self.assert_eq(psdf[("x",)], pdf[("x",)]) self.assert_eq(psdf[("x", "a")], pdf[("x", "a")]) self.assert_eq(psdf[("x", "a", "1")], pdf[("x", "a", "1")]) def test_dataframe_column_level_name(self): column = pd.Index(["A", "B", "C"], name="X") pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=column, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.columns.names, pdf.columns.names) self.assert_eq(psdf.to_pandas().columns.names, pdf.columns.names) def test_dataframe_multiindex_names_level(self): columns = pd.MultiIndex.from_tuples( [("X", "A", "Z"), ("X", "B", "Z"), ("Y", "C", "Z"), ("Y", "D", "Z")], names=["lvl_1", "lvl_2", "lv_3"], ) pdf = pd.DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20]], columns=columns, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.columns.names, pdf.columns.names) self.assert_eq(psdf.to_pandas().columns.names, pdf.columns.names) psdf1 = ps.from_pandas(pdf) self.assert_eq(psdf1.columns.names, pdf.columns.names) self.assertRaises( AssertionError, lambda: ps.DataFrame(psdf1._internal.copy(column_label_names=("level",))), ) self.assert_eq(psdf["X"], pdf["X"]) self.assert_eq(psdf["X"].columns.names, pdf["X"].columns.names) self.assert_eq(psdf["X"].to_pandas().columns.names, pdf["X"].columns.names) self.assert_eq(psdf["X"]["A"], pdf["X"]["A"]) self.assert_eq(psdf["X"]["A"].columns.names, pdf["X"]["A"].columns.names) self.assert_eq(psdf["X"]["A"].to_pandas().columns.names, pdf["X"]["A"].columns.names) self.assert_eq(psdf[("X", "A")], pdf[("X", "A")]) self.assert_eq(psdf[("X", "A")].columns.names, pdf[("X", "A")].columns.names) self.assert_eq(psdf[("X", "A")].to_pandas().columns.names, pdf[("X", "A")].columns.names) self.assert_eq(psdf[("X", "A", "Z")], pdf[("X", "A", "Z")]) def test_itertuples(self): pdf = pd.DataFrame({"num_legs": [4, 2], "num_wings": [0, 2]}, index=["dog", "hawk"]) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip( pdf.itertuples(index=False, name="Animal"), psdf.itertuples(index=False, name="Animal") ): self.assert_eq(ptuple, ktuple) for ptuple, ktuple in zip(pdf.itertuples(name=None), psdf.itertuples(name=None)): self.assert_eq(ptuple, ktuple) pdf.index = pd.MultiIndex.from_arrays( [[1, 2], ["black", "brown"]], names=("count", "color") ) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="Animal"), psdf.itertuples(name="Animal")): self.assert_eq(ptuple, ktuple) pdf.columns = pd.MultiIndex.from_arrays( [["CA", "WA"], ["age", "children"]], names=("origin", "info") ) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="Animal"), psdf.itertuples(name="Animal")): self.assert_eq(ptuple, ktuple) pdf = pd.DataFrame([1, 2, 3]) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip( (pdf + 1).itertuples(name="num"), (psdf + 1).itertuples(name="num") ): self.assert_eq(ptuple, ktuple) # DataFrames with a large number of columns (>254) pdf = pd.DataFrame(np.random.random((1, 255))) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="num"), psdf.itertuples(name="num")): self.assert_eq(ptuple, ktuple) def test_iterrows(self): pdf = pd.DataFrame( { ("x", "a", "1"): [1, 2, 3], ("x", "b", "2"): [4, 5, 6], ("y.z", "c.d", "3"): [7, 8, 9], ("x", "b", "4"): [10, 11, 12], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) for (pdf_k, pdf_v), (psdf_k, psdf_v) in zip(pdf.iterrows(), psdf.iterrows()): self.assert_eq(pdf_k, psdf_k) self.assert_eq(pdf_v, psdf_v) def test_reset_index(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index().index, pdf.reset_index().index) self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) pdf.index.name = "a" psdf.index.name = "a" with self.assertRaisesRegex(ValueError, "cannot insert a, already exists"): psdf.reset_index() self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) # inplace pser = pdf.a psser = psdf.a pdf.reset_index(drop=True, inplace=True) psdf.reset_index(drop=True, inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) pdf.columns = ["index", "b"] psdf.columns = ["index", "b"] self.assert_eq(psdf.reset_index(), pdf.reset_index()) def test_reset_index_with_default_index_types(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) with ps.option_context("compute.default_index_type", "sequence"): self.assert_eq(psdf.reset_index(), pdf.reset_index()) with ps.option_context("compute.default_index_type", "distributed-sequence"): self.assert_eq(psdf.reset_index(), pdf.reset_index()) with ps.option_context("compute.default_index_type", "distributed"): # the index is different. self.assert_eq(psdf.reset_index().to_pandas().reset_index(drop=True), pdf.reset_index()) def test_reset_index_with_multiindex_columns(self): index = pd.MultiIndex.from_tuples( [("bird", "falcon"), ("bird", "parrot"), ("mammal", "lion"), ("mammal", "monkey")], names=["class", "name"], ) columns = pd.MultiIndex.from_tuples([("speed", "max"), ("species", "type")]) pdf = pd.DataFrame( [(389.0, "fly"), (24.0, "fly"), (80.5, "run"), (np.nan, "jump")], index=index, columns=columns, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index(level="class"), pdf.reset_index(level="class")) self.assert_eq( psdf.reset_index(level="class", col_level=1), pdf.reset_index(level="class", col_level=1), ) self.assert_eq( psdf.reset_index(level="class", col_level=1, col_fill="species"), pdf.reset_index(level="class", col_level=1, col_fill="species"), ) self.assert_eq( psdf.reset_index(level="class", col_level=1, col_fill="genus"), pdf.reset_index(level="class", col_level=1, col_fill="genus"), ) with self.assertRaisesRegex(IndexError, "Index has only 2 levels, not 3"): psdf.reset_index(col_level=2) pdf.index.names = [("x", "class"), ("y", "name")] psdf.index.names = [("x", "class"), ("y", "name")] self.assert_eq(psdf.reset_index(), pdf.reset_index()) with self.assertRaisesRegex(ValueError, "Item must have length equal to number of levels."): psdf.reset_index(col_level=1) def test_index_to_frame_reset_index(self): def check(psdf, pdf): self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) pdf.reset_index(drop=True, inplace=True) psdf.reset_index(drop=True, inplace=True) self.assert_eq(psdf, pdf) pdf, psdf = self.df_pair check(psdf.index.to_frame(), pdf.index.to_frame()) check(psdf.index.to_frame(index=False), pdf.index.to_frame(index=False)) check(psdf.index.to_frame(name="a"), pdf.index.to_frame(name="a")) check(psdf.index.to_frame(index=False, name="a"), pdf.index.to_frame(index=False, name="a")) check(psdf.index.to_frame(name=("x", "a")), pdf.index.to_frame(name=("x", "a"))) check( psdf.index.to_frame(index=False, name=("x", "a")), pdf.index.to_frame(index=False, name=("x", "a")), ) def test_multiindex_column_access(self): columns = pd.MultiIndex.from_tuples( [ ("a", "", "", "b"), ("c", "", "d", ""), ("e", "", "f", ""), ("e", "g", "", ""), ("", "", "", "h"), ("i", "", "", ""), ] ) pdf = pd.DataFrame( [ (1, "a", "x", 10, 100, 1000), (2, "b", "y", 20, 200, 2000), (3, "c", "z", 30, 300, 3000), ], columns=columns, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf["a"], pdf["a"]) self.assert_eq(psdf["a"]["b"], pdf["a"]["b"]) self.assert_eq(psdf["c"], pdf["c"]) self.assert_eq(psdf["c"]["d"], pdf["c"]["d"]) self.assert_eq(psdf["e"], pdf["e"]) self.assert_eq(psdf["e"][""]["f"], pdf["e"][""]["f"]) self.assert_eq(psdf["e"]["g"], pdf["e"]["g"]) self.assert_eq(psdf[""], pdf[""]) self.assert_eq(psdf[""]["h"], pdf[""]["h"]) self.assert_eq(psdf["i"], pdf["i"]) self.assert_eq(psdf[["a", "e"]], pdf[["a", "e"]]) self.assert_eq(psdf[["e", "a"]], pdf[["e", "a"]]) self.assert_eq(psdf[("a",)], pdf[("a",)]) self.assert_eq(psdf[("e", "g")], pdf[("e", "g")]) # self.assert_eq(psdf[("i",)], pdf[("i",)]) self.assert_eq(psdf[("i", "")], pdf[("i", "")]) self.assertRaises(KeyError, lambda: psdf[("a", "b")]) def test_repr_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. df = ps.range(10) df.__repr__() df["a"] = df["id"] self.assertEqual(df.__repr__(), df.to_pandas().__repr__()) def test_repr_html_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. df = ps.range(10) df._repr_html_() df["a"] = df["id"] self.assertEqual(df._repr_html_(), df.to_pandas()._repr_html_()) def test_empty_dataframe(self): pdf = pd.DataFrame({"a": pd.Series([], dtype="i1"), "b": pd.Series([], dtype="str")}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_all_null_dataframe(self): pdf = pd.DataFrame( { "a": [None, None, None, "a"], "b": [None, None, None, 1], "c": [None, None, None] + list(np.arange(1, 2).astype("i1")), "d": [None, None, None, 1.0], "e": [None, None, None, True], "f": [None, None, None] + list(pd.date_range("20130101", periods=1)), }, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.iloc[:-1], pdf.iloc[:-1]) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): self.assert_eq(psdf.iloc[:-1], pdf.iloc[:-1]) pdf = pd.DataFrame( { "a": pd.Series([None, None, None], dtype="float64"), "b": pd.Series([None, None, None], dtype="str"), }, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_nullable_object(self): pdf = pd.DataFrame( { "a": list("abc") + [np.nan, None], "b": list(range(1, 4)) + [np.nan, None], "c": list(np.arange(3, 6).astype("i1")) + [np.nan, None], "d": list(np.arange(4.0, 7.0, dtype="float64")) + [np.nan, None], "e": [True, False, True, np.nan, None], "f": list(pd.date_range("20130101", periods=3)) + [np.nan, None], }, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_assign(self): pdf, psdf = self.df_pair psdf["w"] = 1.0 pdf["w"] = 1.0 self.assert_eq(psdf, pdf) psdf.w = 10.0 pdf.w = 10.0 self.assert_eq(psdf, pdf) psdf[1] = 1.0 pdf[1] = 1.0 self.assert_eq(psdf, pdf) psdf = psdf.assign(a=psdf["a"] * 2) pdf = pdf.assign(a=pdf["a"] * 2) self.assert_eq(psdf, pdf) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "w"), ("y", "v")]) pdf.columns = columns psdf.columns = columns psdf[("a", "c")] = "def" pdf[("a", "c")] = "def" self.assert_eq(psdf, pdf) psdf = psdf.assign(Z="ZZ") pdf = pdf.assign(Z="ZZ") self.assert_eq(psdf, pdf) psdf["x"] = "ghi" pdf["x"] = "ghi" self.assert_eq(psdf, pdf) def test_head(self): pdf, psdf = self.df_pair self.assert_eq(psdf.head(2), pdf.head(2)) self.assert_eq(psdf.head(3), pdf.head(3)) self.assert_eq(psdf.head(0), pdf.head(0)) self.assert_eq(psdf.head(-3), pdf.head(-3)) self.assert_eq(psdf.head(-10), pdf.head(-10)) with option_context("compute.ordered_head", True): self.assert_eq(psdf.head(), pdf.head()) def test_attributes(self): psdf = self.psdf self.assertIn("a", dir(psdf)) self.assertNotIn("foo", dir(psdf)) self.assertRaises(AttributeError, lambda: psdf.foo) psdf = ps.DataFrame({"a b c": [1, 2, 3]}) self.assertNotIn("a b c", dir(psdf)) psdf = ps.DataFrame({"a": [1, 2], 5: [1, 2]}) self.assertIn("a", dir(psdf)) self.assertNotIn(5, dir(psdf)) def test_column_names(self): pdf, psdf = self.df_pair self.assert_eq(psdf.columns, pdf.columns) self.assert_eq(psdf[["b", "a"]].columns, pdf[["b", "a"]].columns) self.assert_eq(psdf["a"].name, pdf["a"].name) self.assert_eq((psdf["a"] + 1).name, (pdf["a"] + 1).name) self.assert_eq((psdf.a + psdf.b).name, (pdf.a + pdf.b).name) self.assert_eq((psdf.a + psdf.b.rename("a")).name, (pdf.a + pdf.b.rename("a")).name) self.assert_eq((psdf.a + psdf.b.rename()).name, (pdf.a + pdf.b.rename()).name) self.assert_eq((psdf.a.rename() + psdf.b).name, (pdf.a.rename() + pdf.b).name) self.assert_eq( (psdf.a.rename() + psdf.b.rename()).name, (pdf.a.rename() + pdf.b.rename()).name ) def test_rename_columns(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) psdf.columns = ["x", "y"] pdf.columns = ["x", "y"] self.assert_eq(psdf.columns, pd.Index(["x", "y"])) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["x", "y"]) self.assert_eq(psdf.to_spark().columns, ["x", "y"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "x", "y"]) columns = pdf.columns columns.name = "lvl_1" psdf.columns = columns self.assert_eq(psdf.columns.names, ["lvl_1"]) self.assert_eq(psdf, pdf) msg = "Length mismatch: Expected axis has 2 elements, new values have 4 elements" with self.assertRaisesRegex(ValueError, msg): psdf.columns = [1, 2, 3, 4] # Multi-index columns pdf = pd.DataFrame( {("A", "0"): [1, 2, 2, 3], ("B", "1"): [1, 2, 3, 4]}, index=np.random.rand(4) ) psdf = ps.from_pandas(pdf) columns = pdf.columns self.assert_eq(psdf.columns, columns) self.assert_eq(psdf, pdf) pdf.columns = ["x", "y"] psdf.columns = ["x", "y"] self.assert_eq(psdf.columns, pd.Index(["x", "y"])) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["x", "y"]) self.assert_eq(psdf.to_spark().columns, ["x", "y"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "x", "y"]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.columns, columns) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark().columns, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "(A, 0)", "(B, 1)"]) columns.names = ["lvl_1", "lvl_2"] psdf.columns = columns self.assert_eq(psdf.columns.names, ["lvl_1", "lvl_2"]) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark().columns, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "(A, 0)", "(B, 1)"]) def test_rename_dataframe(self): pdf1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) psdf1 = ps.from_pandas(pdf1) self.assert_eq( psdf1.rename(columns={"A": "a", "B": "b"}), pdf1.rename(columns={"A": "a", "B": "b"}) ) result_psdf = psdf1.rename(index={1: 10, 2: 20}) result_pdf = pdf1.rename(index={1: 10, 2: 20}) self.assert_eq(result_psdf, result_pdf) # inplace pser = result_pdf.A psser = result_psdf.A result_psdf.rename(index={10: 100, 20: 200}, inplace=True) result_pdf.rename(index={10: 100, 20: 200}, inplace=True) self.assert_eq(result_psdf, result_pdf) self.assert_eq(psser, pser) def str_lower(s) -> str: return str.lower(s) self.assert_eq( psdf1.rename(str_lower, axis="columns"), pdf1.rename(str_lower, axis="columns") ) def mul10(x) -> int: return x * 10 self.assert_eq(psdf1.rename(mul10, axis="index"), pdf1.rename(mul10, axis="index")) self.assert_eq( psdf1.rename(columns=str_lower, index={1: 10, 2: 20}), pdf1.rename(columns=str_lower, index={1: 10, 2: 20}), ) idx = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Y", "D")]) pdf2 = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=idx) psdf2 = ps.from_pandas(pdf2) self.assert_eq(psdf2.rename(columns=str_lower), pdf2.rename(columns=str_lower)) self.assert_eq( psdf2.rename(columns=str_lower, level=0), pdf2.rename(columns=str_lower, level=0) ) self.assert_eq( psdf2.rename(columns=str_lower, level=1), pdf2.rename(columns=str_lower, level=1) ) pdf3 = pd.DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=idx, columns=list("ab")) psdf3 = ps.from_pandas(pdf3) self.assert_eq(psdf3.rename(index=str_lower), pdf3.rename(index=str_lower)) self.assert_eq( psdf3.rename(index=str_lower, level=0), pdf3.rename(index=str_lower, level=0) ) self.assert_eq( psdf3.rename(index=str_lower, level=1), pdf3.rename(index=str_lower, level=1) ) pdf4 = pdf2 + 1 psdf4 = psdf2 + 1 self.assert_eq(psdf4.rename(columns=str_lower), pdf4.rename(columns=str_lower)) pdf5 = pdf3 + 1 psdf5 = psdf3 + 1 self.assert_eq(psdf5.rename(index=str_lower), pdf5.rename(index=str_lower)) msg = "Either `index` or `columns` should be provided." with self.assertRaisesRegex(ValueError, msg): psdf1.rename() msg = "`mapper` or `index` or `columns` should be either dict-like or function type." with self.assertRaisesRegex(ValueError, msg): psdf1.rename(mapper=[str_lower], axis=1) msg = "Mapper dict should have the same value type." with self.assertRaisesRegex(ValueError, msg): psdf1.rename({"A": "a", "B": 2}, axis=1) msg = r"level should be an integer between \[0, column_labels_level\)" with self.assertRaisesRegex(ValueError, msg): psdf2.rename(columns=str_lower, level=2) def test_rename_axis(self): index = pd.Index(["A", "B", "C"], name="index") columns = pd.Index(["numbers", "values"], name="cols") pdf = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], index=index, columns=columns) psdf = ps.from_pandas(pdf) for axis in [0, "index"]: self.assert_eq( pdf.rename_axis("index2", axis=axis).sort_index(), psdf.rename_axis("index2", axis=axis).sort_index(), ) self.assert_eq( pdf.rename_axis(["index2"], axis=axis).sort_index(), psdf.rename_axis(["index2"], axis=axis).sort_index(), ) for axis in [1, "columns"]: self.assert_eq( pdf.rename_axis("cols2", axis=axis).sort_index(), psdf.rename_axis("cols2", axis=axis).sort_index(), ) self.assert_eq( pdf.rename_axis(["cols2"], axis=axis).sort_index(), psdf.rename_axis(["cols2"], axis=axis).sort_index(), ) pdf2 = pdf.copy() psdf2 = psdf.copy() pdf2.rename_axis("index2", axis="index", inplace=True) psdf2.rename_axis("index2", axis="index", inplace=True) self.assert_eq(pdf2.sort_index(), psdf2.sort_index()) self.assertRaises(ValueError, lambda: psdf.rename_axis(["index2", "index3"], axis=0)) self.assertRaises(ValueError, lambda: psdf.rename_axis(["cols2", "cols3"], axis=1)) self.assertRaises(TypeError, lambda: psdf.rename_axis(mapper=["index2"], index=["index3"])) self.assert_eq( pdf.rename_axis(index={"index": "index2"}, columns={"cols": "cols2"}).sort_index(), psdf.rename_axis(index={"index": "index2"}, columns={"cols": "cols2"}).sort_index(), ) self.assert_eq( pdf.rename_axis(index={"missing": "index2"}, columns={"missing": "cols2"}).sort_index(), psdf.rename_axis( index={"missing": "index2"}, columns={"missing": "cols2"} ).sort_index(), ) self.assert_eq( pdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), psdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), ) index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] ) columns = pd.MultiIndex.from_tuples( [("numbers", "first"), ("values", "second")], names=["cols1", "cols2"] ) pdf = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], index=index, columns=columns) psdf = ps.from_pandas(pdf) for axis in [0, "index"]: self.assert_eq( pdf.rename_axis(["index3", "index4"], axis=axis).sort_index(), psdf.rename_axis(["index3", "index4"], axis=axis).sort_index(), ) for axis in [1, "columns"]: self.assert_eq( pdf.rename_axis(["cols3", "cols4"], axis=axis).sort_index(), psdf.rename_axis(["cols3", "cols4"], axis=axis).sort_index(), ) self.assertRaises( ValueError, lambda: psdf.rename_axis(["index3", "index4", "index5"], axis=0) ) self.assertRaises(ValueError, lambda: psdf.rename_axis(["cols3", "cols4", "cols5"], axis=1)) self.assert_eq( pdf.rename_axis(index={"index1": "index3"}, columns={"cols1": "cols3"}).sort_index(), psdf.rename_axis(index={"index1": "index3"}, columns={"cols1": "cols3"}).sort_index(), ) self.assert_eq( pdf.rename_axis(index={"missing": "index3"}, columns={"missing": "cols3"}).sort_index(), psdf.rename_axis( index={"missing": "index3"}, columns={"missing": "cols3"} ).sort_index(), ) self.assert_eq( pdf.rename_axis( index={"index1": "index3", "index2": "index4"}, columns={"cols1": "cols3", "cols2": "cols4"}, ).sort_index(), psdf.rename_axis( index={"index1": "index3", "index2": "index4"}, columns={"cols1": "cols3", "cols2": "cols4"}, ).sort_index(), ) self.assert_eq( pdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), psdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), ) def test_dot(self): psdf = self.psdf with self.assertRaisesRegex(TypeError, "Unsupported type DataFrame"): psdf.dot(psdf) def test_dot_in_column_name(self): self.assert_eq( ps.DataFrame(ps.range(1)._internal.spark_frame.selectExpr("1L as `a.b`"))["a.b"], ps.Series([1], name="a.b"), ) def test_aggregate(self): pdf = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=["A", "B", "C"] ) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.agg(["sum", "min"])[["A", "B", "C"]].sort_index(), # TODO?: fix column order pdf.agg(["sum", "min"])[["A", "B", "C"]].sort_index(), ) self.assert_eq( psdf.agg({"A": ["sum", "min"], "B": ["min", "max"]})[["A", "B"]].sort_index(), pdf.agg({"A": ["sum", "min"], "B": ["min", "max"]})[["A", "B"]].sort_index(), ) self.assertRaises(KeyError, lambda: psdf.agg({"A": ["sum", "min"], "X": ["min", "max"]})) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.agg(["sum", "min"])[[("X", "A"), ("X", "B"), ("Y", "C")]].sort_index(), pdf.agg(["sum", "min"])[[("X", "A"), ("X", "B"), ("Y", "C")]].sort_index(), ) self.assert_eq( psdf.agg({("X", "A"): ["sum", "min"], ("X", "B"): ["min", "max"]})[ [("X", "A"), ("X", "B")] ].sort_index(), pdf.agg({("X", "A"): ["sum", "min"], ("X", "B"): ["min", "max"]})[ [("X", "A"), ("X", "B")] ].sort_index(), ) self.assertRaises(TypeError, lambda: psdf.agg({"X": ["sum", "min"], "Y": ["min", "max"]})) # non-string names pdf = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=[10, 20, 30] ) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.agg(["sum", "min"])[[10, 20, 30]].sort_index(), pdf.agg(["sum", "min"])[[10, 20, 30]].sort_index(), ) self.assert_eq( psdf.agg({10: ["sum", "min"], 20: ["min", "max"]})[[10, 20]].sort_index(), pdf.agg({10: ["sum", "min"], 20: ["min", "max"]})[[10, 20]].sort_index(), ) columns = pd.MultiIndex.from_tuples([("X", 10), ("X", 20), ("Y", 30)]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.agg(["sum", "min"])[[("X", 10), ("X", 20), ("Y", 30)]].sort_index(), pdf.agg(["sum", "min"])[[("X", 10), ("X", 20), ("Y", 30)]].sort_index(), ) self.assert_eq( psdf.agg({("X", 10): ["sum", "min"], ("X", 20): ["min", "max"]})[ [("X", 10), ("X", 20)] ].sort_index(), pdf.agg({("X", 10): ["sum", "min"], ("X", 20): ["min", "max"]})[ [("X", 10), ("X", 20)] ].sort_index(), ) pdf = pd.DataFrame( [datetime(2019, 2, 2, 0, 0, 0, 0), datetime(2019, 2, 3, 0, 0, 0, 0)], columns=["timestamp"], ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.timestamp.min(), pdf.timestamp.min()) self.assert_eq(psdf.timestamp.max(), pdf.timestamp.max()) self.assertRaises(ValueError, lambda: psdf.agg(("sum", "min"))) def test_droplevel(self): pdf = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) pdf.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) psdf = ps.from_pandas(pdf) self.assertRaises(ValueError, lambda: psdf.droplevel(["a", "b"])) self.assertRaises(ValueError, lambda: psdf.droplevel([1, 1, 1, 1, 1])) self.assertRaises(IndexError, lambda: psdf.droplevel(2)) self.assertRaises(IndexError, lambda: psdf.droplevel(-3)) self.assertRaises(KeyError, lambda: psdf.droplevel({"a"})) self.assertRaises(KeyError, lambda: psdf.droplevel({"a": 1})) self.assertRaises(ValueError, lambda: psdf.droplevel(["level_1", "level_2"], axis=1)) self.assertRaises(IndexError, lambda: psdf.droplevel(2, axis=1)) self.assertRaises(IndexError, lambda: psdf.droplevel(-3, axis=1)) self.assertRaises(KeyError, lambda: psdf.droplevel({"level_1"}, axis=1)) self.assertRaises(KeyError, lambda: psdf.droplevel({"level_1": 1}, axis=1)) self.assert_eq(pdf.droplevel("a"), psdf.droplevel("a")) self.assert_eq(pdf.droplevel(["a"]), psdf.droplevel(["a"])) self.assert_eq(pdf.droplevel(("a",)), psdf.droplevel(("a",))) self.assert_eq(pdf.droplevel(0), psdf.droplevel(0)) self.assert_eq(pdf.droplevel(-1), psdf.droplevel(-1)) self.assert_eq(pdf.droplevel("level_1", axis=1), psdf.droplevel("level_1", axis=1)) self.assert_eq(pdf.droplevel(["level_1"], axis=1), psdf.droplevel(["level_1"], axis=1)) self.assert_eq(pdf.droplevel(("level_1",), axis=1), psdf.droplevel(("level_1",), axis=1)) self.assert_eq(pdf.droplevel(0, axis=1), psdf.droplevel(0, axis=1)) self.assert_eq(pdf.droplevel(-1, axis=1), psdf.droplevel(-1, axis=1)) # Tupled names pdf.columns.names = [("level", 1), ("level", 2)] pdf.index.names = [("a", 10), ("x", 20)] psdf = ps.from_pandas(pdf) self.assertRaises(KeyError, lambda: psdf.droplevel("a")) self.assertRaises(KeyError, lambda: psdf.droplevel(("a", 10))) self.assert_eq(pdf.droplevel([("a", 10)]), psdf.droplevel([("a", 10)])) self.assert_eq( pdf.droplevel([("level", 1)], axis=1), psdf.droplevel([("level", 1)], axis=1) ) # non-string names pdf = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis([10.0, 20.0]) ) pdf.columns = pd.MultiIndex.from_tuples([("c", "e"), ("d", "f")], names=[100.0, 200.0]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.droplevel(10.0), psdf.droplevel(10.0)) self.assert_eq(pdf.droplevel([10.0]), psdf.droplevel([10.0])) self.assert_eq(pdf.droplevel((10.0,)), psdf.droplevel((10.0,))) self.assert_eq(pdf.droplevel(0), psdf.droplevel(0)) self.assert_eq(pdf.droplevel(-1), psdf.droplevel(-1)) self.assert_eq(pdf.droplevel(100.0, axis=1), psdf.droplevel(100.0, axis=1)) self.assert_eq(pdf.droplevel(0, axis=1), psdf.droplevel(0, axis=1)) def test_drop(self): pdf = pd.DataFrame({"x": [1, 2], "y": [3, 4], "z": [5, 6]}, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) # Assert 'labels' or 'columns' parameter is set expected_error_message = "Need to specify at least one of 'labels' or 'columns'" with self.assertRaisesRegex(ValueError, expected_error_message): psdf.drop() # # Drop columns # # Assert using a str for 'labels' works self.assert_eq(psdf.drop("x", axis=1), pdf.drop("x", axis=1)) self.assert_eq((psdf + 1).drop("x", axis=1), (pdf + 1).drop("x", axis=1)) # Assert using a list for 'labels' works self.assert_eq(psdf.drop(["y", "z"], axis=1), pdf.drop(["y", "z"], axis=1)) self.assert_eq(psdf.drop(["x", "y", "z"], axis=1), pdf.drop(["x", "y", "z"], axis=1)) # Assert using 'columns' instead of 'labels' produces the same results self.assert_eq(psdf.drop(columns="x"), pdf.drop(columns="x")) self.assert_eq(psdf.drop(columns=["y", "z"]), pdf.drop(columns=["y", "z"])) self.assert_eq(psdf.drop(columns=["x", "y", "z"]), pdf.drop(columns=["x", "y", "z"])) self.assert_eq(psdf.drop(columns=[]), pdf.drop(columns=[])) columns = pd.MultiIndex.from_tuples([(1, "x"), (1, "y"), (2, "z")]) pdf.columns = columns psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(columns=1), pdf.drop(columns=1)) self.assert_eq(psdf.drop(columns=(1, "x")), pdf.drop(columns=(1, "x"))) self.assert_eq(psdf.drop(columns=[(1, "x"), 2]), pdf.drop(columns=[(1, "x"), 2])) self.assert_eq( psdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), pdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), ) self.assertRaises(KeyError, lambda: psdf.drop(columns=3)) self.assertRaises(KeyError, lambda: psdf.drop(columns=(1, "z"))) pdf.index = pd.MultiIndex.from_tuples([("i", 0), ("j", 1)]) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), pdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), ) # non-string names pdf = pd.DataFrame({10: [1, 2], 20: [3, 4], 30: [5, 6]}, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(10, axis=1), pdf.drop(10, axis=1)) self.assert_eq(psdf.drop([20, 30], axis=1), pdf.drop([20, 30], axis=1)) # # Drop rows # pdf = pd.DataFrame({"X": [1, 2, 3], "Y": [4, 5, 6], "Z": [7, 8, 9]}, index=["A", "B", "C"]) psdf = ps.from_pandas(pdf) # Given labels (and axis = 0) self.assert_eq(psdf.drop(labels="A", axis=0), pdf.drop(labels="A", axis=0)) self.assert_eq(psdf.drop(labels="A"), pdf.drop(labels="A")) self.assert_eq((psdf + 1).drop(labels="A"), (pdf + 1).drop(labels="A")) self.assert_eq(psdf.drop(labels=["A", "C"], axis=0), pdf.drop(labels=["A", "C"], axis=0)) self.assert_eq( psdf.drop(labels=["A", "B", "C"], axis=0), pdf.drop(labels=["A", "B", "C"], axis=0) ) with ps.option_context("compute.isin_limit", 2): self.assert_eq( psdf.drop(labels=["A", "B", "C"], axis=0), pdf.drop(labels=["A", "B", "C"], axis=0) ) # Given index self.assert_eq(psdf.drop(index="A"), pdf.drop(index="A")) self.assert_eq(psdf.drop(index=["A", "C"]), pdf.drop(index=["A", "C"])) self.assert_eq(psdf.drop(index=["A", "B", "C"]), pdf.drop(index=["A", "B", "C"])) self.assert_eq(psdf.drop(index=[]), pdf.drop(index=[])) with ps.option_context("compute.isin_limit", 2): self.assert_eq(psdf.drop(index=["A", "B", "C"]), pdf.drop(index=["A", "B", "C"])) # Non-string names pdf.index = [10, 20, 30] psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(labels=10, axis=0), pdf.drop(labels=10, axis=0)) self.assert_eq(psdf.drop(labels=[10, 30], axis=0), pdf.drop(labels=[10, 30], axis=0)) self.assert_eq( psdf.drop(labels=[10, 20, 30], axis=0), pdf.drop(labels=[10, 20, 30], axis=0) ) with ps.option_context("compute.isin_limit", 2): self.assert_eq( psdf.drop(labels=[10, 20, 30], axis=0), pdf.drop(labels=[10, 20, 30], axis=0) ) # MultiIndex pdf.index = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assertRaises(NotImplementedError, lambda: psdf.drop(labels=[("a", "x")])) # # Drop rows and columns # pdf = pd.DataFrame({"X": [1, 2, 3], "Y": [4, 5, 6], "Z": [7, 8, 9]}, index=["A", "B", "C"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(index="A", columns="X"), pdf.drop(index="A", columns="X")) self.assert_eq( psdf.drop(index=["A", "C"], columns=["X", "Z"]), pdf.drop(index=["A", "C"], columns=["X", "Z"]), ) self.assert_eq( psdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), pdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), ) with ps.option_context("compute.isin_limit", 2): self.assert_eq( psdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), pdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), ) self.assert_eq( psdf.drop(index=[], columns=["X", "Z"]), pdf.drop(index=[], columns=["X", "Z"]), ) self.assert_eq( psdf.drop(index=["A", "B", "C"], columns=[]), pdf.drop(index=["A", "B", "C"], columns=[]), ) self.assert_eq( psdf.drop(index=[], columns=[]), pdf.drop(index=[], columns=[]), ) self.assertRaises( ValueError, lambda: psdf.drop(labels="A", axis=0, columns="X"), ) def _test_dropna(self, pdf, axis): psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(axis=axis), pdf.dropna(axis=axis)) self.assert_eq(psdf.dropna(axis=axis, how="all"), pdf.dropna(axis=axis, how="all")) self.assert_eq(psdf.dropna(axis=axis, subset=["x"]), pdf.dropna(axis=axis, subset=["x"])) self.assert_eq(psdf.dropna(axis=axis, subset="x"), pdf.dropna(axis=axis, subset=["x"])) self.assert_eq( psdf.dropna(axis=axis, subset=["y", "z"]), pdf.dropna(axis=axis, subset=["y", "z"]) ) self.assert_eq( psdf.dropna(axis=axis, subset=["y", "z"], how="all"), pdf.dropna(axis=axis, subset=["y", "z"], how="all"), ) self.assert_eq(psdf.dropna(axis=axis, thresh=2), pdf.dropna(axis=axis, thresh=2)) self.assert_eq( psdf.dropna(axis=axis, thresh=1, subset=["y", "z"]), pdf.dropna(axis=axis, thresh=1, subset=["y", "z"]), ) pdf2 = pdf.copy() psdf2 = psdf.copy() pser = pdf2[pdf2.columns[0]] psser = psdf2[psdf2.columns[0]] pdf2.dropna(inplace=True, axis=axis) psdf2.dropna(inplace=True, axis=axis) self.assert_eq(psdf2, pdf2) self.assert_eq(psser, pser) # multi-index columns = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) if axis == 0: pdf.columns = columns else: pdf.index = columns psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(axis=axis), pdf.dropna(axis=axis)) self.assert_eq(psdf.dropna(axis=axis, how="all"), pdf.dropna(axis=axis, how="all")) self.assert_eq( psdf.dropna(axis=axis, subset=[("a", "x")]), pdf.dropna(axis=axis, subset=[("a", "x")]) ) self.assert_eq( psdf.dropna(axis=axis, subset=("a", "x")), pdf.dropna(axis=axis, subset=[("a", "x")]) ) self.assert_eq( psdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")]), pdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")]), ) self.assert_eq( psdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")], how="all"), pdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")], how="all"), ) self.assert_eq(psdf.dropna(axis=axis, thresh=2), pdf.dropna(axis=axis, thresh=2)) self.assert_eq( psdf.dropna(axis=axis, thresh=1, subset=[("a", "y"), ("b", "z")]), pdf.dropna(axis=axis, thresh=1, subset=[("a", "y"), ("b", "z")]), ) def test_dropna_axis_index(self): pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self._test_dropna(pdf, axis=0) # empty pdf = pd.DataFrame(index=np.random.rand(6)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(), pdf.dropna()) self.assert_eq(psdf.dropna(how="all"), pdf.dropna(how="all")) self.assert_eq(psdf.dropna(thresh=0), pdf.dropna(thresh=0)) self.assert_eq(psdf.dropna(thresh=1), pdf.dropna(thresh=1)) with self.assertRaisesRegex(ValueError, "No axis named foo"): psdf.dropna(axis="foo") self.assertRaises(KeyError, lambda: psdf.dropna(subset="1")) with self.assertRaisesRegex(ValueError, "invalid how option: 1"): psdf.dropna(how=1) with self.assertRaisesRegex(TypeError, "must specify how or thresh"): psdf.dropna(how=None) def test_dropna_axis_column(self): pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=[str(r) for r in np.random.rand(6)], ).T self._test_dropna(pdf, axis=1) psdf = ps.from_pandas(pdf) with self.assertRaisesRegex( ValueError, "The length of each subset must be the same as the index size." ): psdf.dropna(subset=(["x", "y"]), axis=1) # empty pdf = pd.DataFrame({"x": [], "y": [], "z": []}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(axis=1), pdf.dropna(axis=1)) self.assert_eq(psdf.dropna(axis=1, how="all"), pdf.dropna(axis=1, how="all")) self.assert_eq(psdf.dropna(axis=1, thresh=0), pdf.dropna(axis=1, thresh=0)) self.assert_eq(psdf.dropna(axis=1, thresh=1), pdf.dropna(axis=1, thresh=1)) def test_dtype(self): pdf = pd.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("i1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assertTrue((psdf.dtypes == pdf.dtypes).all()) # multi-index columns columns = pd.MultiIndex.from_tuples(zip(list("xxxyyz"), list("abcdef"))) pdf.columns = columns psdf.columns = columns self.assertTrue((psdf.dtypes == pdf.dtypes).all()) def test_fillna(self): pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq( psdf.fillna({"x": -1, "y": -2, "z": -5}), pdf.fillna({"x": -1, "y": -2, "z": -5}) ) self.assert_eq(pdf.fillna(method="ffill"), psdf.fillna(method="ffill")) self.assert_eq(pdf.fillna(method="ffill", limit=2), psdf.fillna(method="ffill", limit=2)) self.assert_eq(pdf.fillna(method="bfill"), psdf.fillna(method="bfill")) self.assert_eq(pdf.fillna(method="bfill", limit=2), psdf.fillna(method="bfill", limit=2)) pdf = pdf.set_index(["x", "y"]) psdf = ps.from_pandas(pdf) # check multi index self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq(pdf.fillna(method="bfill"), psdf.fillna(method="bfill")) self.assert_eq(pdf.fillna(method="ffill"), psdf.fillna(method="ffill")) pser = pdf.z psser = psdf.z pdf.fillna({"x": -1, "y": -2, "z": -5}, inplace=True) psdf.fillna({"x": -1, "y": -2, "z": -5}, inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) s_nan = pd.Series([-1, -2, -5], index=["x", "y", "z"], dtype=int) self.assert_eq(psdf.fillna(s_nan), pdf.fillna(s_nan)) with self.assertRaisesRegex(NotImplementedError, "fillna currently only"): psdf.fillna(-1, axis=1) with self.assertRaisesRegex(NotImplementedError, "fillna currently only"): psdf.fillna(-1, axis="columns") with self.assertRaisesRegex(ValueError, "limit parameter for value is not support now"): psdf.fillna(-1, limit=1) with self.assertRaisesRegex(TypeError, "Unsupported.*DataFrame"): psdf.fillna(pd.DataFrame({"x": [-1], "y": [-1], "z": [-1]})) with self.assertRaisesRegex(TypeError, "Unsupported.*int64"): psdf.fillna({"x": np.int64(-6), "y": np.int64(-4), "z": -5}) with self.assertRaisesRegex(ValueError, "Expecting 'pad', 'ffill', 'backfill' or 'bfill'."): psdf.fillna(method="xxx") with self.assertRaisesRegex( ValueError, "Must specify a fillna 'value' or 'method' parameter." ): psdf.fillna() # multi-index columns pdf = pd.DataFrame( { ("x", "a"): [np.nan, 2, 3, 4, np.nan, 6], ("x", "b"): [1, 2, np.nan, 4, np.nan, np.nan], ("y", "c"): [1, 2, 3, 4, np.nan, np.nan], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq( psdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), pdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), ) self.assert_eq(pdf.fillna(method="ffill"), psdf.fillna(method="ffill")) self.assert_eq(pdf.fillna(method="ffill", limit=2), psdf.fillna(method="ffill", limit=2)) self.assert_eq(pdf.fillna(method="bfill"), psdf.fillna(method="bfill")) self.assert_eq(pdf.fillna(method="bfill", limit=2), psdf.fillna(method="bfill", limit=2)) self.assert_eq(psdf.fillna({"x": -1}), pdf.fillna({"x": -1})) self.assert_eq( psdf.fillna({"x": -1, ("x", "b"): -2}), pdf.fillna({"x": -1, ("x", "b"): -2}) ) self.assert_eq( psdf.fillna({("x", "b"): -2, "x": -1}), pdf.fillna({("x", "b"): -2, "x": -1}) ) # check multi index pdf = pdf.set_index([("x", "a"), ("x", "b")]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq( psdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), pdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), ) def test_isnull(self): pdf = pd.DataFrame( {"x": [1, 2, 3, 4, None, 6], "y": list("abdabd")}, index=np.random.rand(6) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.notnull(), pdf.notnull()) self.assert_eq(psdf.isnull(), pdf.isnull()) def test_to_datetime(self): pdf = pd.DataFrame( {"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}, index=np.random.rand(2) ) psdf = ps.from_pandas(pdf) self.assert_eq(pd.to_datetime(pdf), ps.to_datetime(psdf)) def test_nunique(self): pdf = pd.DataFrame({"A": [1, 2, 3], "B": [np.nan, 3, np.nan]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) # Assert NaNs are dropped by default self.assert_eq(psdf.nunique(), pdf.nunique()) # Assert including NaN values self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False)) # Assert approximate counts self.assert_eq( ps.DataFrame({"A": range(100)}).nunique(approx=True), pd.Series([103], index=["A"]), ) self.assert_eq( ps.DataFrame({"A": range(100)}).nunique(approx=True, rsd=0.01), pd.Series([100], index=["A"]), ) # Assert unsupported axis value yet msg = 'axis should be either 0 or "index" currently.' with self.assertRaisesRegex(NotImplementedError, msg): psdf.nunique(axis=1) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("Y", "B")], names=["1", "2"]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.nunique(), pdf.nunique()) self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False)) def test_sort_values(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, None, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_values("b"), pdf.sort_values("b")) for ascending in [True, False]: for na_position in ["first", "last"]: self.assert_eq( psdf.sort_values("a", ascending=ascending, na_position=na_position), pdf.sort_values("a", ascending=ascending, na_position=na_position), ) self.assert_eq(psdf.sort_values(["a", "b"]), pdf.sort_values(["a", "b"])) self.assert_eq( psdf.sort_values(["a", "b"], ascending=[False, True]), pdf.sort_values(["a", "b"], ascending=[False, True]), ) self.assertRaises(ValueError, lambda: psdf.sort_values(["b", "a"], ascending=[False])) self.assert_eq( psdf.sort_values(["a", "b"], na_position="first"), pdf.sort_values(["a", "b"], na_position="first"), ) self.assertRaises(ValueError, lambda: psdf.sort_values(["b", "a"], na_position="invalid")) pserA = pdf.a psserA = psdf.a self.assert_eq(psdf.sort_values("b", inplace=True), pdf.sort_values("b", inplace=True)) self.assert_eq(psdf, pdf) self.assert_eq(psserA, pserA) # multi-index columns pdf = pd.DataFrame( {("X", 10): [1, 2, 3, 4, 5, None, 7], ("X", 20): [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_values(("X", 20)), pdf.sort_values(("X", 20))) self.assert_eq( psdf.sort_values([("X", 20), ("X", 10)]), pdf.sort_values([("X", 20), ("X", 10)]) ) self.assertRaisesRegex( ValueError, "For a multi-index, the label must be a tuple with elements", lambda: psdf.sort_values(["X"]), ) # non-string names pdf = pd.DataFrame( {10: [1, 2, 3, 4, 5, None, 7], 20: [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_values(20), pdf.sort_values(20)) self.assert_eq(psdf.sort_values([20, 10]), pdf.sort_values([20, 10])) def test_sort_index(self): pdf = pd.DataFrame( {"A": [2, 1, np.nan], "B": [np.nan, 0, np.nan]}, index=["b", "a", np.nan] ) psdf = ps.from_pandas(pdf) # Assert invalid parameters self.assertRaises(NotImplementedError, lambda: psdf.sort_index(axis=1)) self.assertRaises(NotImplementedError, lambda: psdf.sort_index(kind="mergesort")) self.assertRaises(ValueError, lambda: psdf.sort_index(na_position="invalid")) # Assert default behavior without parameters self.assert_eq(psdf.sort_index(), pdf.sort_index()) # Assert sorting descending self.assert_eq(psdf.sort_index(ascending=False), pdf.sort_index(ascending=False)) # Assert sorting NA indices first self.assert_eq(psdf.sort_index(na_position="first"), pdf.sort_index(na_position="first")) # Assert sorting descending and NA indices first self.assert_eq( psdf.sort_index(ascending=False, na_position="first"), pdf.sort_index(ascending=False, na_position="first"), ) # Assert sorting inplace pserA = pdf.A psserA = psdf.A self.assertEqual(psdf.sort_index(inplace=True), pdf.sort_index(inplace=True)) self.assert_eq(psdf, pdf) self.assert_eq(psserA, pserA) # Assert multi-indices pdf = pd.DataFrame( {"A": range(4), "B": range(4)[::-1]}, index=[["b", "b", "a", "a"], [1, 0, 1, 0]] ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psdf.sort_index(level=[1, 0]), pdf.sort_index(level=[1, 0])) self.assert_eq(psdf.reset_index().sort_index(), pdf.reset_index().sort_index()) # Assert with multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.sort_index(), pdf.sort_index()) def test_swaplevel(self): # MultiIndex with two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame({"x1": ["a", "b", "c", "d"], "x2": ["a", "b", "c", "d"]}, index=pidx) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.swaplevel(), psdf.swaplevel()) self.assert_eq(pdf.swaplevel(0, 1), psdf.swaplevel(0, 1)) self.assert_eq(pdf.swaplevel(1, 1), psdf.swaplevel(1, 1)) self.assert_eq(pdf.swaplevel("number", "color"), psdf.swaplevel("number", "color")) # MultiIndex with more than two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"], ["l", "m", "s", "xs"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color", "size")) pdf = pd.DataFrame({"x1": ["a", "b", "c", "d"], "x2": ["a", "b", "c", "d"]}, index=pidx) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.swaplevel(), psdf.swaplevel()) self.assert_eq(pdf.swaplevel(0, 1), psdf.swaplevel(0, 1)) self.assert_eq(pdf.swaplevel(0, 2), psdf.swaplevel(0, 2)) self.assert_eq(pdf.swaplevel(1, 2), psdf.swaplevel(1, 2)) self.assert_eq(pdf.swaplevel(1, 1), psdf.swaplevel(1, 1)) self.assert_eq(pdf.swaplevel(-1, -2), psdf.swaplevel(-1, -2)) self.assert_eq(pdf.swaplevel("number", "color"), psdf.swaplevel("number", "color")) self.assert_eq(pdf.swaplevel("number", "size"), psdf.swaplevel("number", "size")) self.assert_eq(pdf.swaplevel("color", "size"), psdf.swaplevel("color", "size")) self.assert_eq( pdf.swaplevel("color", "size", axis="index"), psdf.swaplevel("color", "size", axis="index"), ) self.assert_eq( pdf.swaplevel("color", "size", axis=0), psdf.swaplevel("color", "size", axis=0) ) pdf = pd.DataFrame( { "x1": ["a", "b", "c", "d"], "x2": ["a", "b", "c", "d"], "x3": ["a", "b", "c", "d"], "x4": ["a", "b", "c", "d"], } ) pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color", "size")) pdf.columns = pidx psdf = ps.from_pandas(pdf) self.assert_eq(pdf.swaplevel(axis=1), psdf.swaplevel(axis=1)) self.assert_eq(pdf.swaplevel(0, 1, axis=1), psdf.swaplevel(0, 1, axis=1)) self.assert_eq(pdf.swaplevel(0, 2, axis=1), psdf.swaplevel(0, 2, axis=1)) self.assert_eq(pdf.swaplevel(1, 2, axis=1), psdf.swaplevel(1, 2, axis=1)) self.assert_eq(pdf.swaplevel(1, 1, axis=1), psdf.swaplevel(1, 1, axis=1)) self.assert_eq(pdf.swaplevel(-1, -2, axis=1), psdf.swaplevel(-1, -2, axis=1)) self.assert_eq( pdf.swaplevel("number", "color", axis=1), psdf.swaplevel("number", "color", axis=1) ) self.assert_eq( pdf.swaplevel("number", "size", axis=1), psdf.swaplevel("number", "size", axis=1) ) self.assert_eq( pdf.swaplevel("color", "size", axis=1), psdf.swaplevel("color", "size", axis=1) ) self.assert_eq( pdf.swaplevel("color", "size", axis="columns"), psdf.swaplevel("color", "size", axis="columns"), ) # Error conditions self.assertRaises(AssertionError, lambda: ps.DataFrame([1, 2]).swaplevel()) self.assertRaises(IndexError, lambda: psdf.swaplevel(0, 9, axis=1)) self.assertRaises(KeyError, lambda: psdf.swaplevel("not_number", "color", axis=1)) self.assertRaises(ValueError, lambda: psdf.swaplevel(axis=2)) def test_swapaxes(self): pdf = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["x", "y", "z"], columns=["a", "b", "c"] ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.swapaxes(0, 1), pdf.swapaxes(0, 1)) self.assert_eq(psdf.swapaxes(1, 0), pdf.swapaxes(1, 0)) self.assert_eq(psdf.swapaxes("index", "columns"), pdf.swapaxes("index", "columns")) self.assert_eq(psdf.swapaxes("columns", "index"), pdf.swapaxes("columns", "index")) self.assert_eq((psdf + 1).swapaxes(0, 1), (pdf + 1).swapaxes(0, 1)) self.assertRaises(AssertionError, lambda: psdf.swapaxes(0, 1, copy=False)) self.assertRaises(ValueError, lambda: psdf.swapaxes(0, -1)) def test_nlargest(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, None, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.nlargest(n=5, columns="a"), pdf.nlargest(5, columns="a")) self.assert_eq(psdf.nlargest(n=5, columns=["a", "b"]), pdf.nlargest(5, columns=["a", "b"])) def test_nsmallest(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, None, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.nsmallest(n=5, columns="a"), pdf.nsmallest(5, columns="a")) self.assert_eq( psdf.nsmallest(n=5, columns=["a", "b"]), pdf.nsmallest(5, columns=["a", "b"]) ) def test_xs(self): d = { "num_legs": [4, 4, 2, 2], "num_wings": [0, 0, 2, 2], "class": ["mammal", "mammal", "mammal", "bird"], "animal": ["cat", "dog", "bat", "penguin"], "locomotion": ["walks", "walks", "flies", "walks"], } pdf = pd.DataFrame(data=d) pdf = pdf.set_index(["class", "animal", "locomotion"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.xs("mammal"), pdf.xs("mammal")) self.assert_eq(psdf.xs(("mammal",)), pdf.xs(("mammal",))) self.assert_eq(psdf.xs(("mammal", "dog", "walks")), pdf.xs(("mammal", "dog", "walks"))) self.assert_eq( ps.concat([psdf, psdf]).xs(("mammal", "dog", "walks")), pd.concat([pdf, pdf]).xs(("mammal", "dog", "walks")), ) self.assert_eq(psdf.xs("cat", level=1), pdf.xs("cat", level=1)) self.assert_eq(psdf.xs("flies", level=2), pdf.xs("flies", level=2)) self.assert_eq(psdf.xs("mammal", level=-3), pdf.xs("mammal", level=-3)) msg = 'axis should be either 0 or "index" currently.' with self.assertRaisesRegex(NotImplementedError, msg): psdf.xs("num_wings", axis=1) with self.assertRaises(KeyError): psdf.xs(("mammal", "dog", "walk")) msg = r"'Key length \(4\) exceeds index depth \(3\)'" with self.assertRaisesRegex(KeyError, msg): psdf.xs(("mammal", "dog", "walks", "foo")) msg = "'key' should be a scalar value or tuple that contains scalar values" with self.assertRaisesRegex(TypeError, msg): psdf.xs(["mammal", "dog", "walks", "foo"]) self.assertRaises(IndexError, lambda: psdf.xs("foo", level=-4)) self.assertRaises(IndexError, lambda: psdf.xs("foo", level=3)) self.assertRaises(KeyError, lambda: psdf.xs(("dog", "walks"), level=1)) # non-string names pdf = pd.DataFrame(data=d) pdf = pdf.set_index(["class", "animal", "num_legs", "num_wings"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.xs(("mammal", "dog", 4)), pdf.xs(("mammal", "dog", 4))) self.assert_eq(psdf.xs(2, level=2), pdf.xs(2, level=2)) self.assert_eq((psdf + "a").xs(("mammal", "dog", 4)), (pdf + "a").xs(("mammal", "dog", 4))) self.assert_eq((psdf + "a").xs(2, level=2), (pdf + "a").xs(2, level=2)) def test_missing(self): psdf = self.psdf missing_functions = inspect.getmembers(_MissingPandasLikeDataFrame, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*DataFrame.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psdf, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*DataFrame.*{}.*is deprecated".format(name) ): getattr(psdf, name)() missing_properties = inspect.getmembers( _MissingPandasLikeDataFrame, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*DataFrame.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psdf, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*DataFrame.*{}.*is deprecated".format(name) ): getattr(psdf, name) def test_to_numpy(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 9, 4, 2, 4], "c": ["one", "three", "six", "seven", "one", "5"], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.to_numpy(), pdf.values) def test_to_pandas(self): pdf, psdf = self.df_pair self.assert_eq(psdf.to_pandas(), pdf) def test_isin(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 9, 4, 2, 4], "c": ["one", "three", "six", "seven", "one", "5"], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.isin([4, "six"]), pdf.isin([4, "six"])) # Seems like pandas has a bug when passing `np.array` as parameter self.assert_eq(psdf.isin(np.array([4, "six"])), pdf.isin([4, "six"])) self.assert_eq( psdf.isin({"a": [2, 8], "c": ["three", "one"]}), pdf.isin({"a": [2, 8], "c": ["three", "one"]}), ) self.assert_eq( psdf.isin({"a": np.array([2, 8]), "c": ["three", "one"]}), pdf.isin({"a": np.array([2, 8]), "c": ["three", "one"]}), ) msg = "'DataFrame' object has no attribute {'e'}" with self.assertRaisesRegex(AttributeError, msg): psdf.isin({"e": [5, 7], "a": [1, 6]}) msg = "DataFrame and Series are not supported" with self.assertRaisesRegex(NotImplementedError, msg): psdf.isin(pdf) msg = "Values should be iterable, Series, DataFrame or dict." with self.assertRaisesRegex(TypeError, msg): psdf.isin(1) pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, None, 9, 4, None, 4], "c": [None, 5, None, 3, 2, 1], }, ) psdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq(psdf.isin([4, 3, 1, 1, None]), pdf.isin([4, 3, 1, 1, None])) else: expected = pd.DataFrame( { "a": [True, False, True, True, False, False], "b": [True, False, False, True, False, True], "c": [False, False, False, True, False, True], } ) self.assert_eq(psdf.isin([4, 3, 1, 1, None]), expected) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq( psdf.isin({"b": [4, 3, 1, 1, None]}), pdf.isin({"b": [4, 3, 1, 1, None]}) ) else: expected = pd.DataFrame( { "a": [False, False, False, False, False, False], "b": [True, False, False, True, False, True], "c": [False, False, False, False, False, False], } ) self.assert_eq(psdf.isin({"b": [4, 3, 1, 1, None]}), expected) def test_merge(self): left_pdf = pd.DataFrame( { "lkey": ["foo", "bar", "baz", "foo", "bar", "l"], "value": [1, 2, 3, 5, 6, 7], "x": list("abcdef"), }, columns=["lkey", "value", "x"], ) right_pdf = pd.DataFrame( { "rkey": ["baz", "foo", "bar", "baz", "foo", "r"], "value": [4, 5, 6, 7, 8, 9], "y": list("efghij"), }, columns=["rkey", "value", "y"], ) right_ps = pd.Series(list("defghi"), name="x", index=[5, 6, 7, 8, 9, 10]) left_psdf = ps.from_pandas(left_pdf) right_psdf = ps.from_pandas(right_pdf) right_psser = ps.from_pandas(right_ps) def check(op, right_psdf=right_psdf, right_pdf=right_pdf): k_res = op(left_psdf, right_psdf) k_res = k_res.to_pandas() k_res = k_res.sort_values(by=list(k_res.columns)) k_res = k_res.reset_index(drop=True) p_res = op(left_pdf, right_pdf) p_res = p_res.sort_values(by=list(p_res.columns)) p_res = p_res.reset_index(drop=True) self.assert_eq(k_res, p_res) check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on="value")) check(lambda left, right: left.merge(right, on=("value",))) check(lambda left, right: left.merge(right, left_on="lkey", right_on="rkey")) check(lambda left, right: left.set_index("lkey").merge(right.set_index("rkey"))) check( lambda left, right: left.set_index("lkey").merge( right, left_index=True, right_on="rkey" ) ) check( lambda left, right: left.merge( right.set_index("rkey"), left_on="lkey", right_index=True ) ) check( lambda left, right: left.set_index("lkey").merge( right.set_index("rkey"), left_index=True, right_index=True ) ) # MultiIndex check( lambda left, right: left.merge( right, left_on=["lkey", "value"], right_on=["rkey", "value"] ) ) check( lambda left, right: left.set_index(["lkey", "value"]).merge( right, left_index=True, right_on=["rkey", "value"] ) ) check( lambda left, right: left.merge( right.set_index(["rkey", "value"]), left_on=["lkey", "value"], right_index=True ) ) # TODO: when both left_index=True and right_index=True with multi-index # check(lambda left, right: left.set_index(['lkey', 'value']).merge( # right.set_index(['rkey', 'value']), left_index=True, right_index=True)) # join types for how in ["inner", "left", "right", "outer"]: check(lambda left, right: left.merge(right, on="value", how=how)) check(lambda left, right: left.merge(right, left_on="lkey", right_on="rkey", how=how)) # suffix check( lambda left, right: left.merge( right, left_on="lkey", right_on="rkey", suffixes=["_left", "_right"] ) ) # Test Series on the right check(lambda left, right: left.merge(right), right_psser, right_ps) check( lambda left, right: left.merge(right, left_on="x", right_on="x"), right_psser, right_ps ) check( lambda left, right: left.set_index("x").merge(right, left_index=True, right_on="x"), right_psser, right_ps, ) # Test join types with Series for how in ["inner", "left", "right", "outer"]: check(lambda left, right: left.merge(right, how=how), right_psser, right_ps) check( lambda left, right: left.merge(right, left_on="x", right_on="x", how=how), right_psser, right_ps, ) # suffix with Series check( lambda left, right: left.merge( right, suffixes=["_left", "_right"], how="outer", left_index=True, right_index=True, ), right_psser, right_ps, ) # multi-index columns left_columns = pd.MultiIndex.from_tuples([(10, "lkey"), (10, "value"), (20, "x")]) left_pdf.columns = left_columns left_psdf.columns = left_columns right_columns = pd.MultiIndex.from_tuples([(10, "rkey"), (10, "value"), (30, "y")]) right_pdf.columns = right_columns right_psdf.columns = right_columns check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on=[(10, "value")])) check( lambda left, right: (left.set_index((10, "lkey")).merge(right.set_index((10, "rkey")))) ) check( lambda left, right: ( left.set_index((10, "lkey")).merge( right.set_index((10, "rkey")), left_index=True, right_index=True ) ) ) # TODO: when both left_index=True and right_index=True with multi-index columns # check(lambda left, right: left.merge(right, # left_on=[('a', 'lkey')], right_on=[('a', 'rkey')])) # check(lambda left, right: (left.set_index(('a', 'lkey')) # .merge(right, left_index=True, right_on=[('a', 'rkey')]))) # non-string names left_pdf.columns = [10, 100, 1000] left_psdf.columns = [10, 100, 1000] right_pdf.columns = [20, 100, 2000] right_psdf.columns = [20, 100, 2000] check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on=[100])) check(lambda left, right: (left.set_index(10).merge(right.set_index(20)))) check( lambda left, right: ( left.set_index(10).merge(right.set_index(20), left_index=True, right_index=True) ) ) def test_merge_same_anchor(self): pdf = pd.DataFrame( { "lkey": ["foo", "bar", "baz", "foo", "bar", "l"], "rkey": ["baz", "foo", "bar", "baz", "foo", "r"], "value": [1, 1, 3, 5, 6, 7], "x": list("abcdef"), "y": list("efghij"), }, columns=["lkey", "rkey", "value", "x", "y"], ) psdf = ps.from_pandas(pdf) left_pdf = pdf[["lkey", "value", "x"]] right_pdf = pdf[["rkey", "value", "y"]] left_psdf = psdf[["lkey", "value", "x"]] right_psdf = psdf[["rkey", "value", "y"]] def check(op, right_psdf=right_psdf, right_pdf=right_pdf): k_res = op(left_psdf, right_psdf) k_res = k_res.to_pandas() k_res = k_res.sort_values(by=list(k_res.columns)) k_res = k_res.reset_index(drop=True) p_res = op(left_pdf, right_pdf) p_res = p_res.sort_values(by=list(p_res.columns)) p_res = p_res.reset_index(drop=True) self.assert_eq(k_res, p_res) check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on="value")) check(lambda left, right: left.merge(right, left_on="lkey", right_on="rkey")) check(lambda left, right: left.set_index("lkey").merge(right.set_index("rkey"))) check( lambda left, right: left.set_index("lkey").merge( right, left_index=True, right_on="rkey" ) ) check( lambda left, right: left.merge( right.set_index("rkey"), left_on="lkey", right_index=True ) ) check( lambda left, right: left.set_index("lkey").merge( right.set_index("rkey"), left_index=True, right_index=True ) ) def test_merge_retains_indices(self): left_pdf = pd.DataFrame({"A": [0, 1]}) right_pdf = pd.DataFrame({"B": [1, 2]}, index=[1, 2]) left_psdf = ps.from_pandas(left_pdf) right_psdf = ps.from_pandas(right_pdf) self.assert_eq( left_psdf.merge(right_psdf, left_index=True, right_index=True), left_pdf.merge(right_pdf, left_index=True, right_index=True), ) self.assert_eq( left_psdf.merge(right_psdf, left_on="A", right_index=True), left_pdf.merge(right_pdf, left_on="A", right_index=True), ) self.assert_eq( left_psdf.merge(right_psdf, left_index=True, right_on="B"), left_pdf.merge(right_pdf, left_index=True, right_on="B"), ) self.assert_eq( left_psdf.merge(right_psdf, left_on="A", right_on="B"), left_pdf.merge(right_pdf, left_on="A", right_on="B"), ) def test_merge_how_parameter(self): left_pdf = pd.DataFrame({"A": [1, 2]}) right_pdf = pd.DataFrame({"B": ["x", "y"]}, index=[1, 2]) left_psdf = ps.from_pandas(left_pdf) right_psdf = ps.from_pandas(right_pdf) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True) pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True) self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True, how="left") pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True, how="left") self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True, how="right") pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True, how="right") self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True, how="outer") pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True, how="outer") self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) def test_merge_raises(self): left = ps.DataFrame( {"value": [1, 2, 3, 5, 6], "x": list("abcde")}, columns=["value", "x"], index=["foo", "bar", "baz", "foo", "bar"], ) right = ps.DataFrame( {"value": [4, 5, 6, 7, 8], "y": list("fghij")}, columns=["value", "y"], index=["baz", "foo", "bar", "baz", "foo"], ) with self.assertRaisesRegex(ValueError, "No common columns to perform merge on"): left[["x"]].merge(right[["y"]]) with self.assertRaisesRegex(ValueError, "not a combination of both"): left.merge(right, on="value", left_on="x") with self.assertRaisesRegex(ValueError, "Must pass right_on or right_index=True"): left.merge(right, left_on="x") with self.assertRaisesRegex(ValueError, "Must pass right_on or right_index=True"): left.merge(right, left_index=True) with self.assertRaisesRegex(ValueError, "Must pass left_on or left_index=True"): left.merge(right, right_on="y") with self.assertRaisesRegex(ValueError, "Must pass left_on or left_index=True"): left.merge(right, right_index=True) with self.assertRaisesRegex( ValueError, "len\\(left_keys\\) must equal len\\(right_keys\\)" ): left.merge(right, left_on="value", right_on=["value", "y"]) with self.assertRaisesRegex( ValueError, "len\\(left_keys\\) must equal len\\(right_keys\\)" ): left.merge(right, left_on=["value", "x"], right_on="value") with self.assertRaisesRegex(ValueError, "['inner', 'left', 'right', 'full', 'outer']"): left.merge(right, left_index=True, right_index=True, how="foo") with self.assertRaisesRegex(KeyError, "id"): left.merge(right, on="id") def test_append(self): pdf = pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")) psdf = ps.from_pandas(pdf) other_pdf = pd.DataFrame([[3, 4], [5, 6]], columns=list("BC"), index=[2, 3]) other_psdf = ps.from_pandas(other_pdf) self.assert_eq(psdf.append(psdf), pdf.append(pdf)) self.assert_eq(psdf.append(psdf, ignore_index=True), pdf.append(pdf, ignore_index=True)) # Assert DataFrames with non-matching columns self.assert_eq(psdf.append(other_psdf), pdf.append(other_pdf)) # Assert appending a Series fails msg = "DataFrames.append() does not support appending Series to DataFrames" with self.assertRaises(TypeError, msg=msg): psdf.append(psdf["A"]) # Assert using the sort parameter raises an exception msg = "The 'sort' parameter is currently not supported" with self.assertRaises(NotImplementedError, msg=msg): psdf.append(psdf, sort=True) # Assert using 'verify_integrity' only raises an exception for overlapping indices self.assert_eq( psdf.append(other_psdf, verify_integrity=True), pdf.append(other_pdf, verify_integrity=True), ) msg = "Indices have overlapping values" with self.assertRaises(ValueError, msg=msg): psdf.append(psdf, verify_integrity=True) # Skip integrity verification when ignore_index=True self.assert_eq( psdf.append(psdf, ignore_index=True, verify_integrity=True), pdf.append(pdf, ignore_index=True, verify_integrity=True), ) # Assert appending multi-index DataFrames multi_index_pdf = pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[[2, 3], [4, 5]]) multi_index_psdf = ps.from_pandas(multi_index_pdf) other_multi_index_pdf = pd.DataFrame( [[5, 6], [7, 8]], columns=list("AB"), index=[[2, 3], [6, 7]] ) other_multi_index_psdf = ps.from_pandas(other_multi_index_pdf) self.assert_eq( multi_index_psdf.append(multi_index_psdf), multi_index_pdf.append(multi_index_pdf) ) # Assert DataFrames with non-matching columns self.assert_eq( multi_index_psdf.append(other_multi_index_psdf), multi_index_pdf.append(other_multi_index_pdf), ) # Assert using 'verify_integrity' only raises an exception for overlapping indices self.assert_eq( multi_index_psdf.append(other_multi_index_psdf, verify_integrity=True), multi_index_pdf.append(other_multi_index_pdf, verify_integrity=True), ) with self.assertRaises(ValueError, msg=msg): multi_index_psdf.append(multi_index_psdf, verify_integrity=True) # Skip integrity verification when ignore_index=True self.assert_eq( multi_index_psdf.append(multi_index_psdf, ignore_index=True, verify_integrity=True), multi_index_pdf.append(multi_index_pdf, ignore_index=True, verify_integrity=True), ) # Assert trying to append DataFrames with different index levels msg = "Both DataFrames have to have the same number of index levels" with self.assertRaises(ValueError, msg=msg): psdf.append(multi_index_psdf) # Skip index level check when ignore_index=True self.assert_eq( psdf.append(multi_index_psdf, ignore_index=True), pdf.append(multi_index_pdf, ignore_index=True), ) columns = pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.append(psdf), pdf.append(pdf)) def test_clip(self): pdf = pd.DataFrame( {"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3) ) psdf = ps.from_pandas(pdf) # Assert list-like values are not accepted for 'lower' and 'upper' msg = "List-like value are not supported for 'lower' and 'upper' at the moment" with self.assertRaises(TypeError, msg=msg): psdf.clip(lower=[1]) with self.assertRaises(TypeError, msg=msg): psdf.clip(upper=[1]) # Assert no lower or upper self.assert_eq(psdf.clip(), pdf.clip()) # Assert lower only self.assert_eq(psdf.clip(1), pdf.clip(1)) # Assert upper only self.assert_eq(psdf.clip(upper=3), pdf.clip(upper=3)) # Assert lower and upper self.assert_eq(psdf.clip(1, 3), pdf.clip(1, 3)) pdf["clip"] = pdf.A.clip(lower=1, upper=3) psdf["clip"] = psdf.A.clip(lower=1, upper=3) self.assert_eq(psdf, pdf) # Assert behavior on string values str_psdf = ps.DataFrame({"A": ["a", "b", "c"]}, index=np.random.rand(3)) self.assert_eq(str_psdf.clip(1, 3), str_psdf) def test_binary_operators(self): pdf = pd.DataFrame( {"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf + psdf.copy(), pdf + pdf.copy()) self.assert_eq(psdf + psdf.loc[:, ["A", "B"]], pdf + pdf.loc[:, ["A", "B"]]) self.assert_eq(psdf.loc[:, ["A", "B"]] + psdf, pdf.loc[:, ["A", "B"]] + pdf) self.assertRaisesRegex( ValueError, "it comes from a different dataframe", lambda: ps.range(10).add(ps.range(10)), ) self.assertRaisesRegex( TypeError, "add with a sequence is currently not supported", lambda: ps.range(10).add(ps.range(10).id), ) psdf_other = psdf.copy() psdf_other.columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")]) self.assertRaisesRegex( ValueError, "cannot join with no overlapping index names", lambda: psdf.add(psdf_other), ) def test_binary_operator_add(self): # Positive pdf = pd.DataFrame({"a": ["x"], "b": ["y"], "c": [1], "d": [2]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] + psdf["b"], pdf["a"] + pdf["b"]) self.assert_eq(psdf["c"] + psdf["d"], pdf["c"] + pdf["d"]) # Negative ks_err_msg = "Addition can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] + psdf["c"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["c"] + psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["c"] + "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" + psdf["c"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 + psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] + 1) def test_binary_operator_sub(self): # Positive pdf = pd.DataFrame({"a": [2], "b": [1]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] - psdf["b"], pdf["a"] - pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "Subtraction can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] - psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] - "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" - psdf["b"]) ks_err_msg = "Subtraction can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 - psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - 1) psdf = ps.DataFrame({"a": ["x"], "b": ["y"]}) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - psdf["b"]) def test_binary_operator_truediv(self): # Positive pdf = pd.DataFrame({"a": [3], "b": [2]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "True division can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] / psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] / "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" / psdf["b"]) ks_err_msg = "True division can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] / psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 / psdf["a"]) def test_binary_operator_floordiv(self): psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "Floor division can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] // psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 // psdf["a"]) ks_err_msg = "Floor division can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] // psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] // "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" // psdf["b"]) def test_binary_operator_mod(self): # Positive pdf = pd.DataFrame({"a": [3], "b": [2]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] % psdf["b"], pdf["a"] % pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "Modulo can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] % psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] % "literal") ks_err_msg = "Modulo can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] % psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 % psdf["a"]) def test_binary_operator_multiply(self): # Positive pdf = pd.DataFrame({"a": ["x", "y"], "b": [1, 2], "c": [3, 4]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["b"] * psdf["c"], pdf["b"] * pdf["c"]) self.assert_eq(psdf["c"] * psdf["b"], pdf["c"] * pdf["b"]) self.assert_eq(psdf["a"] * psdf["b"], pdf["a"] * pdf["b"]) self.assert_eq(psdf["b"] * psdf["a"], pdf["b"] * pdf["a"]) self.assert_eq(psdf["a"] * 2, pdf["a"] * 2) self.assert_eq(psdf["b"] * 2, pdf["b"] * 2) self.assert_eq(2 * psdf["a"], 2 * pdf["a"]) self.assert_eq(2 * psdf["b"], 2 * pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [2]}) ks_err_msg = "Multiplication can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] * "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" * psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * 0.1) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 0.1 * psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" * psdf["a"]) def test_sample(self): pdf = pd.DataFrame({"A": [0, 2, 4]}) psdf = ps.from_pandas(pdf) # Make sure the tests run, but we can't check the result because they are non-deterministic. psdf.sample(frac=0.1) psdf.sample(frac=0.2, replace=True) psdf.sample(frac=0.2, random_state=5) psdf["A"].sample(frac=0.2) psdf["A"].sample(frac=0.2, replace=True) psdf["A"].sample(frac=0.2, random_state=5) with self.assertRaises(ValueError): psdf.sample() with self.assertRaises(NotImplementedError): psdf.sample(n=1) def test_add_prefix(self): pdf = pd.DataFrame({"A": [1, 2, 3, 4], "B": [3, 4, 5, 6]}, index=np.random.rand(4)) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.add_prefix("col_"), psdf.add_prefix("col_")) columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.add_prefix("col_"), psdf.add_prefix("col_")) def test_add_suffix(self): pdf = pd.DataFrame({"A": [1, 2, 3, 4], "B": [3, 4, 5, 6]}, index=np.random.rand(4)) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.add_suffix("first_series"), psdf.add_suffix("first_series")) columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.add_suffix("first_series"), psdf.add_suffix("first_series")) def test_join(self): # check basic function pdf1 = pd.DataFrame( {"key": ["K0", "K1", "K2", "K3"], "A": ["A0", "A1", "A2", "A3"]}, columns=["key", "A"] ) pdf2 = pd.DataFrame( {"key": ["K0", "K1", "K2"], "B": ["B0", "B1", "B2"]}, columns=["key", "B"] ) psdf1 = ps.from_pandas(pdf1) psdf2 = ps.from_pandas(pdf2) join_pdf = pdf1.join(pdf2, lsuffix="_left", rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2, lsuffix="_left", rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf, join_psdf) # join with duplicated columns in Series with self.assertRaisesRegex(ValueError, "columns overlap but no suffix specified"): ks1 = ps.Series(["A1", "A5"], index=[1, 2], name="A") psdf1.join(ks1, how="outer") # join with duplicated columns in DataFrame with self.assertRaisesRegex(ValueError, "columns overlap but no suffix specified"): psdf1.join(psdf2, how="outer") # check `on` parameter join_pdf = pdf1.join(pdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) join_pdf = pdf1.set_index("key").join( pdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right" ) join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.set_index("key").join( psdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right" ) join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) # multi-index columns columns1 = pd.MultiIndex.from_tuples([("x", "key"), ("Y", "A")]) columns2 = pd.MultiIndex.from_tuples([("x", "key"), ("Y", "B")]) pdf1.columns = columns1 pdf2.columns = columns2 psdf1.columns = columns1 psdf2.columns = columns2 join_pdf = pdf1.join(pdf2, lsuffix="_left", rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2, lsuffix="_left", rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf, join_psdf) # check `on` parameter join_pdf = pdf1.join( pdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join( psdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) join_pdf = pdf1.set_index(("x", "key")).join( pdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.set_index(("x", "key")).join( psdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) # multi-index midx1 = pd.MultiIndex.from_tuples( [("w", "a"), ("x", "b"), ("y", "c"), ("z", "d")], names=["index1", "index2"] ) midx2 = pd.MultiIndex.from_tuples( [("w", "a"), ("x", "b"), ("y", "c")], names=["index1", "index2"] ) pdf1.index = midx1 pdf2.index = midx2 psdf1 = ps.from_pandas(pdf1) psdf2 = ps.from_pandas(pdf2) join_pdf = pdf1.join(pdf2, on=["index1", "index2"], rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2, on=["index1", "index2"], rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf, join_psdf) with self.assertRaisesRegex( ValueError, r'len\(left_on\) must equal the number of levels in the index of "right"' ): psdf1.join(psdf2, on=["index1"], rsuffix="_right") def test_replace(self): pdf = pd.DataFrame( { "name": ["Ironman", "Captain America", "Thor", "Hulk"], "weapon": ["Mark-45", "Shield", "Mjolnir", "Smash"], }, index=np.random.rand(4), ) psdf = ps.from_pandas(pdf) with self.assertRaisesRegex( NotImplementedError, "replace currently works only for method='pad" ): psdf.replace(method="bfill") with self.assertRaisesRegex( NotImplementedError, "replace currently works only when limit=None" ): psdf.replace(limit=10) with self.assertRaisesRegex( NotImplementedError, "replace currently doesn't supports regex" ): psdf.replace(regex="") with self.assertRaisesRegex(ValueError, "Length of to_replace and value must be same"): psdf.replace(to_replace=["Ironman"], value=["Spiderman", "Doctor Strange"]) with self.assertRaisesRegex(TypeError, "Unsupported type function"): psdf.replace("Ironman", lambda x: "Spiderman") with self.assertRaisesRegex(TypeError, "Unsupported type function"): psdf.replace(lambda x: "Ironman", "Spiderman") self.assert_eq(psdf.replace("Ironman", "Spiderman"), pdf.replace("Ironman", "Spiderman")) self.assert_eq( psdf.replace(["Ironman", "Captain America"], ["Rescue", "Hawkeye"]), pdf.replace(["Ironman", "Captain America"], ["Rescue", "Hawkeye"]), ) self.assert_eq( psdf.replace(("Ironman", "Captain America"), ("Rescue", "Hawkeye")), pdf.replace(("Ironman", "Captain America"), ("Rescue", "Hawkeye")), ) # inplace pser = pdf.name psser = psdf.name pdf.replace("Ironman", "Spiderman", inplace=True) psdf.replace("Ironman", "Spiderman", inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) pdf = pd.DataFrame( {"A": [0, 1, 2, 3, np.nan], "B": [5, 6, 7, 8, np.nan], "C": ["a", "b", "c", "d", None]}, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.replace([0, 1, 2, 3, 5, 6], 4), pdf.replace([0, 1, 2, 3, 5, 6], 4)) self.assert_eq( psdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), pdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), ) self.assert_eq(psdf.replace({0: 10, 1: 100, 7: 200}), pdf.replace({0: 10, 1: 100, 7: 200})) self.assert_eq( psdf.replace({"A": [0, np.nan], "B": [5, np.nan]}, 100), pdf.replace({"A": [0, np.nan], "B": [5, np.nan]}, 100), ) self.assert_eq( psdf.replace({"A": {0: 100, 4: 400, np.nan: 700}}), pdf.replace({"A": {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq( psdf.replace({"X": {0: 100, 4: 400, np.nan: 700}}), pdf.replace({"X": {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq(psdf.replace({"C": ["a", None]}, "e"), pdf.replace({"C": ["a", None]}, "e")) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.replace([0, 1, 2, 3, 5, 6], 4), pdf.replace([0, 1, 2, 3, 5, 6], 4)) self.assert_eq( psdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), pdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), ) self.assert_eq(psdf.replace({0: 10, 1: 100, 7: 200}), pdf.replace({0: 10, 1: 100, 7: 200})) self.assert_eq( psdf.replace({("X", "A"): [0, np.nan], ("X", "B"): 5}, 100), pdf.replace({("X", "A"): [0, np.nan], ("X", "B"): 5}, 100), ) self.assert_eq( psdf.replace({("X", "A"): {0: 100, 4: 400, np.nan: 700}}), pdf.replace({("X", "A"): {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq( psdf.replace({("X", "B"): {0: 100, 4: 400, np.nan: 700}}), pdf.replace({("X", "B"): {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq( psdf.replace({("Y", "C"): ["a", None]}, "e"), pdf.replace({("Y", "C"): ["a", None]}, "e"), ) def test_update(self): # check base function def get_data(left_columns=None, right_columns=None): left_pdf = pd.DataFrame( {"A": ["1", "2", "3", "4"], "B": ["100", "200", np.nan, np.nan]}, columns=["A", "B"] ) right_pdf = pd.DataFrame( {"B": ["x", np.nan, "y", np.nan], "C": ["100", "200", "300", "400"]}, columns=["B", "C"], ) left_psdf = ps.DataFrame( {"A": ["1", "2", "3", "4"], "B": ["100", "200", None, None]}, columns=["A", "B"] ) right_psdf = ps.DataFrame( {"B": ["x", None, "y", None], "C": ["100", "200", "300", "400"]}, columns=["B", "C"] ) if left_columns is not None: left_pdf.columns = left_columns left_psdf.columns = left_columns if right_columns is not None: right_pdf.columns = right_columns right_psdf.columns = right_columns return left_psdf, left_pdf, right_psdf, right_pdf left_psdf, left_pdf, right_psdf, right_pdf = get_data() pser = left_pdf.B psser = left_psdf.B left_pdf.update(right_pdf) left_psdf.update(right_psdf) self.assert_eq(left_pdf.sort_values(by=["A", "B"]), left_psdf.sort_values(by=["A", "B"])) self.assert_eq(psser.sort_index(), pser.sort_index()) left_psdf, left_pdf, right_psdf, right_pdf = get_data() left_pdf.update(right_pdf, overwrite=False) left_psdf.update(right_psdf, overwrite=False) self.assert_eq(left_pdf.sort_values(by=["A", "B"]), left_psdf.sort_values(by=["A", "B"])) with self.assertRaises(NotImplementedError): left_psdf.update(right_psdf, join="right") # multi-index columns left_columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) right_columns = pd.MultiIndex.from_tuples([("X", "B"), ("Y", "C")]) left_psdf, left_pdf, right_psdf, right_pdf = get_data( left_columns=left_columns, right_columns=right_columns ) left_pdf.update(right_pdf) left_psdf.update(right_psdf) self.assert_eq( left_pdf.sort_values(by=[("X", "A"), ("X", "B")]), left_psdf.sort_values(by=[("X", "A"), ("X", "B")]), ) left_psdf, left_pdf, right_psdf, right_pdf = get_data( left_columns=left_columns, right_columns=right_columns ) left_pdf.update(right_pdf, overwrite=False) left_psdf.update(right_psdf, overwrite=False) self.assert_eq( left_pdf.sort_values(by=[("X", "A"), ("X", "B")]), left_psdf.sort_values(by=[("X", "A"), ("X", "B")]), ) right_columns = pd.MultiIndex.from_tuples([("Y", "B"), ("Y", "C")]) left_psdf, left_pdf, right_psdf, right_pdf = get_data( left_columns=left_columns, right_columns=right_columns ) left_pdf.update(right_pdf) left_psdf.update(right_psdf) self.assert_eq( left_pdf.sort_values(by=[("X", "A"), ("X", "B")]), left_psdf.sort_values(by=[("X", "A"), ("X", "B")]), ) def test_pivot_table_dtypes(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 2, 4, 2, 4], "e": [1, 2, 2, 4, 2, 4], "c": [1, 2, 9, 4, 7, 4], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) # Skip columns comparison by reset_index res_df = psdf.pivot_table( index=["c"], columns="a", values=["b"], aggfunc={"b": "mean"} ).dtypes.reset_index(drop=True) exp_df = pdf.pivot_table( index=["c"], columns="a", values=["b"], aggfunc={"b": "mean"} ).dtypes.reset_index(drop=True) self.assert_eq(res_df, exp_df) # Results don't have the same column's name # Todo: self.assert_eq(psdf.pivot_table(columns="a", values="b").dtypes, # pdf.pivot_table(columns="a", values="b").dtypes) # Todo: self.assert_eq(psdf.pivot_table(index=['c'], columns="a", values="b").dtypes, # pdf.pivot_table(index=['c'], columns="a", values="b").dtypes) # Todo: self.assert_eq(psdf.pivot_table(index=['e', 'c'], columns="a", values="b").dtypes, # pdf.pivot_table(index=['e', 'c'], columns="a", values="b").dtypes) # Todo: self.assert_eq(psdf.pivot_table(index=['e', 'c'], # columns="a", values="b", fill_value=999).dtypes, pdf.pivot_table(index=['e', 'c'], # columns="a", values="b", fill_value=999).dtypes) def test_pivot_table(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 2, 4, 2, 4], "e": [10, 20, 20, 40, 20, 40], "c": [1, 2, 9, 4, 7, 4], "d": [-1, -2, -3, -4, -5, -6], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) # Checking if both DataFrames have the same results self.assert_eq( psdf.pivot_table(columns="a", values="b").sort_index(), pdf.pivot_table(columns="a", values="b").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["c"], columns="a", values="b").sort_index(), pdf.pivot_table(index=["c"], columns="a", values="b").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["c"], columns="a", values="b", aggfunc="sum").sort_index(), pdf.pivot_table(index=["c"], columns="a", values="b", aggfunc="sum").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["c"], columns="a", values=["b"], aggfunc="sum").sort_index(), pdf.pivot_table(index=["c"], columns="a", values=["b"], aggfunc="sum").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc="sum" ).sort_index(), pdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc="sum" ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["c"], columns="a", values=["b", "e", "d"], aggfunc="sum" ).sort_index(), pdf.pivot_table( index=["c"], columns="a", values=["b", "e", "d"], aggfunc="sum" ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"} ).sort_index(), pdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"} ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["e", "c"], columns="a", values="b").sort_index(), pdf.pivot_table(index=["e", "c"], columns="a", values="b").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["e", "c"], columns="a", values="b", fill_value=999 ).sort_index(), pdf.pivot_table(index=["e", "c"], columns="a", values="b", fill_value=999).sort_index(), almost=True, ) # multi-index columns columns = pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "e"), ("z", "c"), ("w", "d")] ) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.pivot_table(columns=("x", "a"), values=("x", "b")).sort_index(), pdf.pivot_table(columns=[("x", "a")], values=[("x", "b")]).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b")] ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b")] ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b"), ("y", "e")] ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b"), ("y", "e")] ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b"), ("y", "e"), ("w", "d")] ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b"), ("y", "e"), ("w", "d")], ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b"), ("y", "e")], aggfunc={("x", "b"): "mean", ("y", "e"): "sum"}, ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b"), ("y", "e")], aggfunc={("x", "b"): "mean", ("y", "e"): "sum"}, ).sort_index(), almost=True, ) def test_pivot_table_and_index(self): # https://github.com/databricks/koalas/issues/805 pdf = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], }, columns=["A", "B", "C", "D", "E"], index=np.random.rand(9), ) psdf = ps.from_pandas(pdf) ptable = pdf.pivot_table( values="D", index=["A", "B"], columns="C", aggfunc="sum", fill_value=0 ).sort_index() ktable = psdf.pivot_table( values="D", index=["A", "B"], columns="C", aggfunc="sum", fill_value=0 ).sort_index() self.assert_eq(ktable, ptable) self.assert_eq(ktable.index, ptable.index) self.assert_eq(repr(ktable.index), repr(ptable.index)) def test_stack(self): pdf_single_level_cols = pd.DataFrame( [[0, 1], [2, 3]], index=["cat", "dog"], columns=["weight", "height"] ) psdf_single_level_cols = ps.from_pandas(pdf_single_level_cols) self.assert_eq( psdf_single_level_cols.stack().sort_index(), pdf_single_level_cols.stack().sort_index() ) multicol1 = pd.MultiIndex.from_tuples( [("weight", "kg"), ("weight", "pounds")], names=["x", "y"] ) pdf_multi_level_cols1 = pd.DataFrame( [[1, 2], [2, 4]], index=["cat", "dog"], columns=multicol1 ) psdf_multi_level_cols1 = ps.from_pandas(pdf_multi_level_cols1) self.assert_eq( psdf_multi_level_cols1.stack().sort_index(), pdf_multi_level_cols1.stack().sort_index() ) multicol2 = pd.MultiIndex.from_tuples([("weight", "kg"), ("height", "m")]) pdf_multi_level_cols2 = pd.DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=["cat", "dog"], columns=multicol2 ) psdf_multi_level_cols2 = ps.from_pandas(pdf_multi_level_cols2) self.assert_eq( psdf_multi_level_cols2.stack().sort_index(), pdf_multi_level_cols2.stack().sort_index() ) pdf = pd.DataFrame( { ("y", "c"): [True, True], ("x", "b"): [False, False], ("x", "c"): [True, False], ("y", "a"): [False, True], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.stack().sort_index(), pdf.stack().sort_index()) self.assert_eq(psdf[[]].stack().sort_index(), pdf[[]].stack().sort_index(), almost=True) def test_unstack(self): pdf = pd.DataFrame( np.random.randn(3, 3), index=pd.MultiIndex.from_tuples([("rg1", "x"), ("rg1", "y"), ("rg2", "z")]), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.unstack().sort_index(), pdf.unstack().sort_index(), almost=True) self.assert_eq( psdf.unstack().unstack().sort_index(), pdf.unstack().unstack().sort_index(), almost=True ) def test_pivot_errors(self): psdf = ps.range(10) with self.assertRaisesRegex(ValueError, "columns should be set"): psdf.pivot(index="id") with self.assertRaisesRegex(ValueError, "values should be set"): psdf.pivot(index="id", columns="id") def test_pivot_table_errors(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 2, 4, 2, 4], "e": [1, 2, 2, 4, 2, 4], "c": [1, 2, 9, 4, 7, 4], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assertRaises(KeyError, lambda: psdf.pivot_table(index=["c"], columns="a", values=5)) msg = "index should be a None or a list of columns." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(index="c", columns="a", values="b") msg = "pivot_table doesn't support aggfunc as dict and without index." with self.assertRaisesRegex(NotImplementedError, msg): psdf.pivot_table(columns="a", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"}) msg = "columns should be one column name." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(columns=["a"], values=["b"], aggfunc={"b": "mean", "e": "sum"}) msg = "Columns in aggfunc must be the same as values." with self.assertRaisesRegex(ValueError, msg): psdf.pivot_table( index=["e", "c"], columns="a", values="b", aggfunc={"b": "mean", "e": "sum"} ) msg = "values can't be a list without index." with self.assertRaisesRegex(NotImplementedError, msg): psdf.pivot_table(columns="a", values=["b", "e"]) msg = "Wrong columns A." with self.assertRaisesRegex(ValueError, msg): psdf.pivot_table( index=["c"], columns="A", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"} ) msg = "values should be one column or list of columns." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(columns="a", values=(["b"], ["c"])) msg = "aggfunc must be a dict mapping from column name to aggregate functions" with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(columns="a", values="b", aggfunc={"a": lambda x: sum(x)}) psdf = ps.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], }, columns=["A", "B", "C", "D", "E"], index=np.random.rand(9), ) msg = "values should be a numeric type." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table( index=["C"], columns="A", values=["B", "E"], aggfunc={"B": "mean", "E": "sum"} ) msg = "values should be a numeric type." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(index=["C"], columns="A", values="B", aggfunc={"B": "mean"}) def test_transpose(self): # TODO: what if with random index? pdf1 = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}, columns=["col1", "col2"]) psdf1 = ps.from_pandas(pdf1) pdf2 = pd.DataFrame( data={"score": [9, 8], "kids": [0, 0], "age": [12, 22]}, columns=["score", "kids", "age"], ) psdf2 = ps.from_pandas(pdf2) self.assert_eq(pdf1.transpose().sort_index(), psdf1.transpose().sort_index()) self.assert_eq(pdf2.transpose().sort_index(), psdf2.transpose().sort_index()) with option_context("compute.max_rows", None): self.assert_eq(pdf1.transpose().sort_index(), psdf1.transpose().sort_index()) self.assert_eq(pdf2.transpose().sort_index(), psdf2.transpose().sort_index()) pdf3 = pd.DataFrame( { ("cg1", "a"): [1, 2, 3], ("cg1", "b"): [4, 5, 6], ("cg2", "c"): [7, 8, 9], ("cg3", "d"): [9, 9, 9], }, index=pd.MultiIndex.from_tuples([("rg1", "x"), ("rg1", "y"), ("rg2", "z")]), ) psdf3 = ps.from_pandas(pdf3) self.assert_eq(pdf3.transpose().sort_index(), psdf3.transpose().sort_index()) with option_context("compute.max_rows", None): self.assert_eq(pdf3.transpose().sort_index(), psdf3.transpose().sort_index()) def _test_cummin(self, pdf, psdf): self.assert_eq(pdf.cummin(), psdf.cummin()) self.assert_eq(pdf.cummin(skipna=False), psdf.cummin(skipna=False)) self.assert_eq(pdf.cummin().sum(), psdf.cummin().sum()) def test_cummin(self): pdf = pd.DataFrame( [[2.0, 1.0], [5, None], [1.0, 0.0], [2.0, 4.0], [4.0, 9.0]], columns=list("AB"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cummin(pdf, psdf) def test_cummin_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cummin(pdf, psdf) def _test_cummax(self, pdf, psdf): self.assert_eq(pdf.cummax(), psdf.cummax()) self.assert_eq(pdf.cummax(skipna=False), psdf.cummax(skipna=False)) self.assert_eq(pdf.cummax().sum(), psdf.cummax().sum()) def test_cummax(self): pdf = pd.DataFrame( [[2.0, 1.0], [5, None], [1.0, 0.0], [2.0, 4.0], [4.0, 9.0]], columns=list("AB"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cummax(pdf, psdf) def test_cummax_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cummax(pdf, psdf) def _test_cumsum(self, pdf, psdf): self.assert_eq(pdf.cumsum(), psdf.cumsum()) self.assert_eq(pdf.cumsum(skipna=False), psdf.cumsum(skipna=False)) self.assert_eq(pdf.cumsum().sum(), psdf.cumsum().sum()) def test_cumsum(self): pdf = pd.DataFrame( [[2.0, 1.0], [5, None], [1.0, 0.0], [2.0, 4.0], [4.0, 9.0]], columns=list("AB"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cumsum(pdf, psdf) def test_cumsum_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cumsum(pdf, psdf) def _test_cumprod(self, pdf, psdf): self.assert_eq(pdf.cumprod(), psdf.cumprod(), almost=True) self.assert_eq(pdf.cumprod(skipna=False), psdf.cumprod(skipna=False), almost=True) self.assert_eq(pdf.cumprod().sum(), psdf.cumprod().sum(), almost=True) def test_cumprod(self): pdf = pd.DataFrame( [[2.0, 1.0, 1], [5, None, 2], [1.0, -1.0, -3], [2.0, 0, 4], [4.0, 9.0, 5]], columns=list("ABC"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cumprod(pdf, psdf) def test_cumprod_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.rand(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cumprod(pdf, psdf) def test_drop_duplicates(self): pdf = pd.DataFrame( {"a": [1, 2, 2, 2, 3], "b": ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) # inplace is False for keep in ["first", "last", False]: with self.subTest(keep=keep): self.assert_eq( pdf.drop_duplicates(keep=keep).sort_index(), psdf.drop_duplicates(keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates("a", keep=keep).sort_index(), psdf.drop_duplicates("a", keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates(["a", "b"], keep=keep).sort_index(), psdf.drop_duplicates(["a", "b"], keep=keep).sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).drop_duplicates(keep=keep).sort_index(), psdf.set_index("a", append=True).drop_duplicates(keep=keep).sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).drop_duplicates("b", keep=keep).sort_index(), psdf.set_index("a", append=True).drop_duplicates("b", keep=keep).sort_index(), ) columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns # inplace is False for keep in ["first", "last", False]: with self.subTest("multi-index columns", keep=keep): self.assert_eq( pdf.drop_duplicates(keep=keep).sort_index(), psdf.drop_duplicates(keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates(("x", "a"), keep=keep).sort_index(), psdf.drop_duplicates(("x", "a"), keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates([("x", "a"), ("y", "b")], keep=keep).sort_index(), psdf.drop_duplicates([("x", "a"), ("y", "b")], keep=keep).sort_index(), ) # inplace is True subset_list = [None, "a", ["a", "b"]] for subset in subset_list: pdf = pd.DataFrame( {"a": [1, 2, 2, 2, 3], "b": ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) pser = pdf.a psser = psdf.a pdf.drop_duplicates(subset=subset, inplace=True) psdf.drop_duplicates(subset=subset, inplace=True) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser.sort_index(), pser.sort_index()) # multi-index columns, inplace is True subset_list = [None, ("x", "a"), [("x", "a"), ("y", "b")]] for subset in subset_list: pdf = pd.DataFrame( {"a": [1, 2, 2, 2, 3], "b": ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns pser = pdf[("x", "a")] psser = psdf[("x", "a")] pdf.drop_duplicates(subset=subset, inplace=True) psdf.drop_duplicates(subset=subset, inplace=True) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser.sort_index(), pser.sort_index()) # non-string names pdf = pd.DataFrame( {10: [1, 2, 2, 2, 3], 20: ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.drop_duplicates(10, keep=keep).sort_index(), psdf.drop_duplicates(10, keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates([10, 20], keep=keep).sort_index(), psdf.drop_duplicates([10, 20], keep=keep).sort_index(), ) def test_reindex(self): index = pd.Index(["A", "B", "C", "D", "E"]) columns = pd.Index(["numbers"]) pdf = pd.DataFrame([1.0, 2.0, 3.0, 4.0, None], index=index, columns=columns) psdf = ps.from_pandas(pdf) columns2 = pd.Index(["numbers", "2", "3"], name="cols2") self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) columns = pd.Index(["numbers"], name="cols") pdf.columns = columns psdf.columns = columns self.assert_eq( pdf.reindex(["A", "B", "C"], columns=["numbers", "2", "3"]).sort_index(), psdf.reindex(["A", "B", "C"], columns=["numbers", "2", "3"]).sort_index(), ) self.assert_eq( pdf.reindex(["A", "B", "C"], index=["numbers", "2", "3"]).sort_index(), psdf.reindex(["A", "B", "C"], index=["numbers", "2", "3"]).sort_index(), ) self.assert_eq( pdf.reindex(index=["A", "B"]).sort_index(), psdf.reindex(index=["A", "B"]).sort_index() ) self.assert_eq( pdf.reindex(index=["A", "B", "2", "3"]).sort_index(), psdf.reindex(index=["A", "B", "2", "3"]).sort_index(), ) self.assert_eq( pdf.reindex(index=["A", "E", "2", "3"], fill_value=0).sort_index(), psdf.reindex(index=["A", "E", "2", "3"], fill_value=0).sort_index(), ) self.assert_eq( pdf.reindex(columns=["numbers"]).sort_index(), psdf.reindex(columns=["numbers"]).sort_index(), ) self.assert_eq( pdf.reindex(columns=["numbers"], copy=True).sort_index(), psdf.reindex(columns=["numbers"], copy=True).sort_index(), ) # Using float as fill_value to avoid int64/32 clash self.assert_eq( pdf.reindex(columns=["numbers", "2", "3"], fill_value=0.0).sort_index(), psdf.reindex(columns=["numbers", "2", "3"], fill_value=0.0).sort_index(), ) columns2 = pd.Index(["numbers", "2", "3"]) self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) columns2 = pd.Index(["numbers", "2", "3"], name="cols2") self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) # Reindexing single Index on single Index pindex2 = pd.Index(["A", "C", "D", "E", "0"], name="index2") kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) pindex2 = pd.DataFrame({"index2": ["A", "C", "D", "E", "0"]}).set_index("index2").index kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) # Reindexing MultiIndex on single Index pindex = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("F", "G")], names=["name1", "name2"] ) kindex = ps.from_pandas(pindex) self.assert_eq( pdf.reindex(index=pindex, fill_value=0.0).sort_index(), psdf.reindex(index=kindex, fill_value=0.0).sort_index(), ) self.assertRaises(TypeError, lambda: psdf.reindex(columns=["numbers", "2", "3"], axis=1)) self.assertRaises(TypeError, lambda: psdf.reindex(columns=["numbers", "2", "3"], axis=2)) self.assertRaises(TypeError, lambda: psdf.reindex(columns="numbers")) self.assertRaises(TypeError, lambda: psdf.reindex(index=["A", "B", "C"], axis=1)) self.assertRaises(TypeError, lambda: psdf.reindex(index=123)) # Reindexing MultiIndex on MultiIndex pdf = pd.DataFrame({"numbers": [1.0, 2.0, None]}, index=pindex) psdf = ps.from_pandas(pdf) pindex2 = pd.MultiIndex.from_tuples( [("A", "G"), ("C", "D"), ("I", "J")], names=["name1", "name2"] ) kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) pindex2 = ( pd.DataFrame({"index_level_1": ["A", "C", "I"], "index_level_2": ["G", "D", "J"]}) .set_index(["index_level_1", "index_level_2"]) .index ) kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) columns = pd.MultiIndex.from_tuples([("X", "numbers")], names=["cols1", "cols2"]) pdf.columns = columns psdf.columns = columns # Reindexing MultiIndex index on MultiIndex columns and MultiIndex index for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) index = pd.Index(["A", "B", "C", "D", "E"]) pdf = pd.DataFrame(data=[1.0, 2.0, 3.0, 4.0, None], index=index, columns=columns) psdf = ps.from_pandas(pdf) pindex2 = pd.Index(["A", "C", "D", "E", "0"], name="index2") kindex2 = ps.from_pandas(pindex2) # Reindexing single Index on MultiIndex columns and single Index for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex( columns=[("X", "numbers"), ("Y", "2"), ("Y", "3")], fill_value=fill_value ).sort_index(), psdf.reindex( columns=[("X", "numbers"), ("Y", "2"), ("Y", "3")], fill_value=fill_value ).sort_index(), ) columns2 = pd.MultiIndex.from_tuples( [("X", "numbers"), ("Y", "2"), ("Y", "3")], names=["cols3", "cols4"] ) self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) self.assertRaises(TypeError, lambda: psdf.reindex(columns=["X"])) self.assertRaises(ValueError, lambda: psdf.reindex(columns=[("X",)])) def test_reindex_like(self): data = [[1.0, 2.0], [3.0, None], [None, 4.0]] index = pd.Index(["A", "B", "C"], name="index") columns = pd.Index(["numbers", "values"], name="cols") pdf = pd.DataFrame(data=data, index=index, columns=columns) psdf = ps.from_pandas(pdf) # Reindexing single Index on single Index data2 = [[5.0, None], [6.0, 7.0], [8.0, None]] index2 = pd.Index(["A", "C", "D"], name="index2") columns2 = pd.Index(["numbers", "F"], name="cols2") pdf2 = pd.DataFrame(data=data2, index=index2, columns=columns2) psdf2 = ps.from_pandas(pdf2) self.assert_eq( pdf.reindex_like(pdf2).sort_index(), psdf.reindex_like(psdf2).sort_index(), ) pdf2 = pd.DataFrame({"index_level_1": ["A", "C", "I"]}) psdf2 = ps.from_pandas(pdf2) self.assert_eq( pdf.reindex_like(pdf2.set_index(["index_level_1"])).sort_index(), psdf.reindex_like(psdf2.set_index(["index_level_1"])).sort_index(), ) # Reindexing MultiIndex on single Index index2 = pd.MultiIndex.from_tuples( [("A", "G"), ("C", "D"), ("I", "J")], names=["name3", "name4"] ) pdf2 = pd.DataFrame(data=data2, index=index2) psdf2 = ps.from_pandas(pdf2) self.assert_eq( pdf.reindex_like(pdf2).sort_index(), psdf.reindex_like(psdf2).sort_index(), ) self.assertRaises(TypeError, lambda: psdf.reindex_like(index2)) self.assertRaises(AssertionError, lambda: psdf2.reindex_like(psdf)) # Reindexing MultiIndex on MultiIndex columns2 = pd.MultiIndex.from_tuples( [("numbers", "third"), ("values", "second")], names=["cols3", "cols4"] ) pdf2.columns = columns2 psdf2.columns = columns2 columns = pd.MultiIndex.from_tuples( [("numbers", "first"), ("values", "second")], names=["cols1", "cols2"] ) index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["name1", "name2"] ) pdf = pd.DataFrame(data=data, index=index, columns=columns) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.reindex_like(pdf2).sort_index(), psdf.reindex_like(psdf2).sort_index(), ) def test_melt(self): pdf = pd.DataFrame( {"A": [1, 3, 5], "B": [2, 4, 6], "C": [7, 8, 9]}, index=np.random.rand(3) ) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.melt().sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt().sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars="A").sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars="A").sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=["A", "B"]).sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars=["A", "B"]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=("A", "B")).sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars=("A", "B")).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=["A"], value_vars=["C"]) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=["A"], value_vars=["C"]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=["A"], value_vars=["B"], var_name="myVarname", value_name="myValname") .sort_values(["myVarname", "myValname"]) .reset_index(drop=True), pdf.melt( id_vars=["A"], value_vars=["B"], var_name="myVarname", value_name="myValname" ).sort_values(["myVarname", "myValname"]), ) self.assert_eq( psdf.melt(value_vars=("A", "B")) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(value_vars=("A", "B")).sort_values(["variable", "value"]), ) self.assertRaises(KeyError, lambda: psdf.melt(id_vars="Z")) self.assertRaises(KeyError, lambda: psdf.melt(value_vars="Z")) # multi-index columns TEN = 10.0 TWELVE = 20.0 columns = pd.MultiIndex.from_tuples([(TEN, "A"), (TEN, "B"), (TWELVE, "C")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.melt().sort_values(["variable_0", "variable_1", "value"]).reset_index(drop=True), pdf.melt().sort_values(["variable_0", "variable_1", "value"]), ) self.assert_eq( psdf.melt(id_vars=[(TEN, "A")]) .sort_values(["variable_0", "variable_1", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[(TEN, "A")]) .sort_values(["variable_0", "variable_1", "value"]) .rename(columns=name_like_string), ) self.assert_eq( psdf.melt(id_vars=[(TEN, "A")], value_vars=[(TWELVE, "C")]) .sort_values(["variable_0", "variable_1", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[(TEN, "A")], value_vars=[(TWELVE, "C")]) .sort_values(["variable_0", "variable_1", "value"]) .rename(columns=name_like_string), ) self.assert_eq( psdf.melt( id_vars=[(TEN, "A")], value_vars=[(TEN, "B")], var_name=["myV1", "myV2"], value_name="myValname", ) .sort_values(["myV1", "myV2", "myValname"]) .reset_index(drop=True), pdf.melt( id_vars=[(TEN, "A")], value_vars=[(TEN, "B")], var_name=["myV1", "myV2"], value_name="myValname", ) .sort_values(["myV1", "myV2", "myValname"]) .rename(columns=name_like_string), ) columns.names = ["v0", "v1"] pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.melt().sort_values(["v0", "v1", "value"]).reset_index(drop=True), pdf.melt().sort_values(["v0", "v1", "value"]), ) self.assertRaises(ValueError, lambda: psdf.melt(id_vars=(TEN, "A"))) self.assertRaises(ValueError, lambda: psdf.melt(value_vars=(TEN, "A"))) self.assertRaises(KeyError, lambda: psdf.melt(id_vars=[TEN])) self.assertRaises(KeyError, lambda: psdf.melt(id_vars=[(TWELVE, "A")])) self.assertRaises(KeyError, lambda: psdf.melt(value_vars=[TWELVE])) self.assertRaises(KeyError, lambda: psdf.melt(value_vars=[(TWELVE, "A")])) # non-string names pdf.columns = [10.0, 20.0, 30.0] psdf.columns = [10.0, 20.0, 30.0] self.assert_eq( psdf.melt().sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt().sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=10.0).sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars=10.0).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=[10.0, 20.0]) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[10.0, 20.0]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=(10.0, 20.0)) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=(10.0, 20.0)).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=[10.0], value_vars=[30.0]) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[10.0], value_vars=[30.0]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(value_vars=(10.0, 20.0)) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(value_vars=(10.0, 20.0)).sort_values(["variable", "value"]), ) def test_all(self): pdf = pd.DataFrame( { "col1": [False, False, False], "col2": [True, False, False], "col3": [0, 0, 1], "col4": [0, 1, 2], "col5": [False, False, None], "col6": [True, False, None], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.all(), pdf.all()) columns = pd.MultiIndex.from_tuples( [ ("a", "col1"), ("a", "col2"), ("a", "col3"), ("b", "col4"), ("b", "col5"), ("c", "col6"), ] ) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.all(), pdf.all()) columns.names = ["X", "Y"] pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.all(), pdf.all()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psdf.all(axis=1) def test_any(self): pdf = pd.DataFrame( { "col1": [False, False, False], "col2": [True, False, False], "col3": [0, 0, 1], "col4": [0, 1, 2], "col5": [False, False, None], "col6": [True, False, None], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.any(), pdf.any()) columns = pd.MultiIndex.from_tuples( [ ("a", "col1"), ("a", "col2"), ("a", "col3"), ("b", "col4"), ("b", "col5"), ("c", "col6"), ] ) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.any(), pdf.any()) columns.names = ["X", "Y"] pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.any(), pdf.any()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psdf.any(axis=1) def test_rank(self): pdf = pd.DataFrame( data={"col1": [1, 2, 3, 1], "col2": [3, 4, 3, 1]}, columns=["col1", "col2"], index=np.random.rand(4), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index()) self.assert_eq(pdf.rank().sum(), psdf.rank().sum()) self.assert_eq( pdf.rank(ascending=False).sort_index(), psdf.rank(ascending=False).sort_index() ) self.assert_eq(pdf.rank(method="min").sort_index(), psdf.rank(method="min").sort_index()) self.assert_eq(pdf.rank(method="max").sort_index(), psdf.rank(method="max").sort_index()) self.assert_eq( pdf.rank(method="first").sort_index(), psdf.rank(method="first").sort_index() ) self.assert_eq( pdf.rank(method="dense").sort_index(), psdf.rank(method="dense").sort_index() ) msg = "method must be one of 'average', 'min', 'max', 'first', 'dense'" with self.assertRaisesRegex(ValueError, msg): psdf.rank(method="nothing") # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "col1"), ("y", "col2")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index()) def test_round(self): pdf = pd.DataFrame( { "A": [0.028208, 0.038683, 0.877076], "B": [0.992815, 0.645646, 0.149370], "C": [0.173891, 0.577595, 0.491027], }, columns=["A", "B", "C"], index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) pser = pd.Series([1, 0, 2], index=["A", "B", "C"]) psser = ps.Series([1, 0, 2], index=["A", "B", "C"]) self.assert_eq(pdf.round(2), psdf.round(2)) self.assert_eq(pdf.round({"A": 1, "C": 2}), psdf.round({"A": 1, "C": 2})) self.assert_eq(pdf.round({"A": 1, "D": 2}), psdf.round({"A": 1, "D": 2})) self.assert_eq(pdf.round(pser), psdf.round(psser)) msg = "decimals must be an integer, a dict-like or a Series" with self.assertRaisesRegex(TypeError, msg): psdf.round(1.5) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns psdf.columns = columns pser = pd.Series([1, 0, 2], index=columns) psser = ps.Series([1, 0, 2], index=columns) self.assert_eq(pdf.round(2), psdf.round(2)) self.assert_eq( pdf.round({("X", "A"): 1, ("Y", "C"): 2}), psdf.round({("X", "A"): 1, ("Y", "C"): 2}) ) self.assert_eq(pdf.round({("X", "A"): 1, "Y": 2}), psdf.round({("X", "A"): 1, "Y": 2})) self.assert_eq(pdf.round(pser), psdf.round(psser)) # non-string names pdf = pd.DataFrame( { 10: [0.028208, 0.038683, 0.877076], 20: [0.992815, 0.645646, 0.149370], 30: [0.173891, 0.577595, 0.491027], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.round({10: 1, 30: 2}), psdf.round({10: 1, 30: 2})) def test_shift(self): pdf = pd.DataFrame( { "Col1": [10, 20, 15, 30, 45], "Col2": [13, 23, 18, 33, 48], "Col3": [17, 27, 22, 37, 52], }, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.shift(3), psdf.shift(3)) self.assert_eq(pdf.shift().shift(-1), psdf.shift().shift(-1)) self.assert_eq(pdf.shift().sum().astype(int), psdf.shift().sum()) # Need the expected result since pandas 0.23 does not support `fill_value` argument. pdf1 = pd.DataFrame( {"Col1": [0, 0, 0, 10, 20], "Col2": [0, 0, 0, 13, 23], "Col3": [0, 0, 0, 17, 27]}, index=pdf.index, ) self.assert_eq(pdf1, psdf.shift(periods=3, fill_value=0)) msg = "should be an int" with self.assertRaisesRegex(TypeError, msg): psdf.shift(1.5) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "Col1"), ("x", "Col2"), ("y", "Col3")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.shift(3), psdf.shift(3)) self.assert_eq(pdf.shift().shift(-1), psdf.shift().shift(-1)) def test_diff(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]}, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.diff(), psdf.diff()) self.assert_eq(pdf.diff().diff(-1), psdf.diff().diff(-1)) self.assert_eq(pdf.diff().sum().astype(int), psdf.diff().sum()) msg = "should be an int" with self.assertRaisesRegex(TypeError, msg): psdf.diff(1.5) msg = 'axis should be either 0 or "index" currently.' with self.assertRaisesRegex(NotImplementedError, msg): psdf.diff(axis=1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "Col1"), ("x", "Col2"), ("y", "Col3")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.diff(), psdf.diff()) def test_duplicated(self): pdf = pd.DataFrame( {"a": [1, 1, 2, 3], "b": [1, 1, 1, 4], "c": [1, 1, 1, 5]}, index=np.random.rand(4) ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) self.assert_eq( pdf.duplicated(keep="last").sort_index(), psdf.duplicated(keep="last").sort_index(), ) self.assert_eq( pdf.duplicated(keep=False).sort_index(), psdf.duplicated(keep=False).sort_index(), ) self.assert_eq( pdf.duplicated(subset="b").sort_index(), psdf.duplicated(subset="b").sort_index(), ) self.assert_eq( pdf.duplicated(subset=["b"]).sort_index(), psdf.duplicated(subset=["b"]).sort_index(), ) with self.assertRaisesRegex(ValueError, "'keep' only supports 'first', 'last' and False"): psdf.duplicated(keep="false") with self.assertRaisesRegex(KeyError, "'d'"): psdf.duplicated(subset=["d"]) pdf.index.name = "x" psdf.index.name = "x" self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) # multi-index self.assert_eq( pdf.set_index("a", append=True).duplicated().sort_index(), psdf.set_index("a", append=True).duplicated().sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).duplicated(keep=False).sort_index(), psdf.set_index("a", append=True).duplicated(keep=False).sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).duplicated(subset=["b"]).sort_index(), psdf.set_index("a", append=True).duplicated(subset=["b"]).sort_index(), ) # mutli-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) self.assert_eq( pdf.duplicated(subset=("x", "b")).sort_index(), psdf.duplicated(subset=("x", "b")).sort_index(), ) self.assert_eq( pdf.duplicated(subset=[("x", "b")]).sort_index(), psdf.duplicated(subset=[("x", "b")]).sort_index(), ) # non-string names pdf = pd.DataFrame( {10: [1, 1, 2, 3], 20: [1, 1, 1, 4], 30: [1, 1, 1, 5]}, index=np.random.rand(4) ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) self.assert_eq( pdf.duplicated(subset=10).sort_index(), psdf.duplicated(subset=10).sort_index(), ) def test_ffill(self): idx = np.random.rand(6) pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=idx, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.ffill(), pdf.ffill()) self.assert_eq(psdf.ffill(limit=1), pdf.ffill(limit=1)) pser = pdf.y psser = psdf.y psdf.ffill(inplace=True) pdf.ffill(inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) self.assert_eq(psser[idx[2]], pser[idx[2]]) def test_bfill(self): idx = np.random.rand(6) pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=idx, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.bfill(), pdf.bfill()) self.assert_eq(psdf.bfill(limit=1), pdf.bfill(limit=1)) pser = pdf.x psser = psdf.x psdf.bfill(inplace=True) pdf.bfill(inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) self.assert_eq(psser[idx[0]], pser[idx[0]]) def test_filter(self): pdf = pd.DataFrame( { "aa": ["aa", "bd", "bc", "ab", "ce"], "ba": [1, 2, 3, 4, 5], "cb": [1.0, 2.0, 3.0, 4.0, 5.0], "db": [1.0, np.nan, 3.0, np.nan, 5.0], } ) pdf = pdf.set_index("aa") psdf = ps.from_pandas(pdf) self.assert_eq( psdf.filter(items=["ab", "aa"], axis=0).sort_index(), pdf.filter(items=["ab", "aa"], axis=0).sort_index(), ) with option_context("compute.isin_limit", 0): self.assert_eq( psdf.filter(items=["ab", "aa"], axis=0).sort_index(), pdf.filter(items=["ab", "aa"], axis=0).sort_index(), ) self.assert_eq( psdf.filter(items=["ba", "db"], axis=1).sort_index(), pdf.filter(items=["ba", "db"], axis=1).sort_index(), ) self.assert_eq(psdf.filter(like="b", axis="index"), pdf.filter(like="b", axis="index")) self.assert_eq(psdf.filter(like="c", axis="columns"), pdf.filter(like="c", axis="columns")) self.assert_eq( psdf.filter(regex="b.*", axis="index"), pdf.filter(regex="b.*", axis="index") ) self.assert_eq( psdf.filter(regex="b.*", axis="columns"), pdf.filter(regex="b.*", axis="columns") ) pdf = pdf.set_index("ba", append=True) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.filter(items=[("aa", 1), ("bd", 2)], axis=0).sort_index(), pdf.filter(items=[("aa", 1), ("bd", 2)], axis=0).sort_index(), ) with self.assertRaisesRegex(TypeError, "Unsupported type list"): psdf.filter(items=[["aa", 1], ("bd", 2)], axis=0) with self.assertRaisesRegex(ValueError, "The item should not be empty."): psdf.filter(items=[(), ("bd", 2)], axis=0) self.assert_eq(psdf.filter(like="b", axis=0), pdf.filter(like="b", axis=0)) self.assert_eq(psdf.filter(regex="b.*", axis=0), pdf.filter(regex="b.*", axis=0)) with self.assertRaisesRegex(ValueError, "items should be a list-like object"): psdf.filter(items="b") with self.assertRaisesRegex(ValueError, "No axis named"): psdf.filter(regex="b.*", axis=123) with self.assertRaisesRegex(TypeError, "Must pass either `items`, `like`"): psdf.filter() with self.assertRaisesRegex(TypeError, "mutually exclusive"): psdf.filter(regex="b.*", like="aaa") # multi-index columns pdf = pd.DataFrame( { ("x", "aa"): ["aa", "ab", "bc", "bd", "ce"], ("x", "ba"): [1, 2, 3, 4, 5], ("y", "cb"): [1.0, 2.0, 3.0, 4.0, 5.0], ("z", "db"): [1.0, np.nan, 3.0, np.nan, 5.0], } ) pdf = pdf.set_index(("x", "aa")) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.filter(items=["ab", "aa"], axis=0).sort_index(), pdf.filter(items=["ab", "aa"], axis=0).sort_index(), ) self.assert_eq( psdf.filter(items=[("x", "ba"), ("z", "db")], axis=1).sort_index(), pdf.filter(items=[("x", "ba"), ("z", "db")], axis=1).sort_index(), ) self.assert_eq(psdf.filter(like="b", axis="index"), pdf.filter(like="b", axis="index")) self.assert_eq(psdf.filter(like="c", axis="columns"), pdf.filter(like="c", axis="columns")) self.assert_eq( psdf.filter(regex="b.*", axis="index"), pdf.filter(regex="b.*", axis="index") ) self.assert_eq( psdf.filter(regex="b.*", axis="columns"), pdf.filter(regex="b.*", axis="columns") ) def test_pipe(self): psdf = ps.DataFrame( {"category": ["A", "A", "B"], "col1": [1, 2, 3], "col2": [4, 5, 6]}, columns=["category", "col1", "col2"], ) self.assertRaisesRegex( ValueError, "arg is both the pipe target and a keyword argument", lambda: psdf.pipe((lambda x: x, "arg"), arg="1"), ) def test_transform(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) self.assert_eq( psdf.transform(lambda x, y: x + y, y=2).sort_index(), pdf.transform(lambda x, y: x + y, y=2).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) self.assert_eq( psdf.transform(lambda x, y: x + y, y=1).sort_index(), pdf.transform(lambda x, y: x + y, y=1).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.transform(1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) def test_apply(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) self.assert_eq( psdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), pdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), ) self.assert_eq( psdf.apply(lambda x, b: x + b, b=1).sort_index(), pdf.apply(lambda x, b: x + b, b=1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) self.assert_eq( psdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), pdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), ) self.assert_eq( psdf.apply(lambda x, b: x + b, b=1).sort_index(), pdf.apply(lambda x, b: x + b, b=1).sort_index(), ) # returning a Series self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) self.assert_eq( psdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), pdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) self.assert_eq( psdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), pdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.apply(1) with self.assertRaisesRegex(TypeError, "The given function.*1 or 'column'; however"): def f1(_) -> ps.DataFrame[int]: pass psdf.apply(f1, axis=0) with self.assertRaisesRegex(TypeError, "The given function.*0 or 'index'; however"): def f2(_) -> ps.Series[int]: pass psdf.apply(f2, axis=1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) # returning a Series self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) def test_apply_with_type(self): pdf = self.pdf psdf = ps.from_pandas(pdf) def identify1(x) -> ps.DataFrame[int, int]: return x # Type hints set the default column names, and we use default index for # pandas API on Spark. Here we ignore both diff. actual = psdf.apply(identify1, axis=1) expected = pdf.apply(identify1, axis=1) self.assert_eq(sorted(actual["c0"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["c1"].to_numpy()), sorted(expected["b"].to_numpy())) def identify2(x) -> ps.DataFrame[slice("a", int), slice("b", int)]: # noqa: F405 return x actual = psdf.apply(identify2, axis=1) expected = pdf.apply(identify2, axis=1) self.assert_eq(sorted(actual["a"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["b"].to_numpy()), sorted(expected["b"].to_numpy())) def test_apply_batch(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf, a: pdf + a, args=(1,)).sort_index(), (pdf + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf: pdf + 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf, b: pdf + b, b=1).sort_index(), (pdf + 1).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.pandas_on_spark.apply_batch(1) with self.assertRaisesRegex(TypeError, "The given function.*frame as its type hints"): def f2(_) -> ps.Series[int]: pass psdf.pandas_on_spark.apply_batch(f2) with self.assertRaisesRegex(ValueError, "The given function should return a frame"): psdf.pandas_on_spark.apply_batch(lambda pdf: 1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index() ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index(), ) def test_apply_batch_with_type(self): pdf = self.pdf psdf = ps.from_pandas(pdf) def identify1(x) -> ps.DataFrame[int, int]: return x # Type hints set the default column names, and we use default index for # pandas API on Spark. Here we ignore both diff. actual = psdf.pandas_on_spark.apply_batch(identify1) expected = pdf self.assert_eq(sorted(actual["c0"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["c1"].to_numpy()), sorted(expected["b"].to_numpy())) def identify2(x) -> ps.DataFrame[slice("a", int), slice("b", int)]: # noqa: F405 return x actual = psdf.pandas_on_spark.apply_batch(identify2) expected = pdf self.assert_eq(sorted(actual["a"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["b"].to_numpy()), sorted(expected["b"].to_numpy())) pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [[e] for e in [4, 5, 6, 3, 2, 1, 0, 0, 0]]}, index=np.random.rand(9), ) psdf = ps.from_pandas(pdf) def identify3(x) -> ps.DataFrame[float, [int, List[int]]]: return x actual = psdf.pandas_on_spark.apply_batch(identify3) actual.columns = ["a", "b"] self.assert_eq(actual, pdf) # For NumPy typing, NumPy version should be 1.21+ and Python version should be 3.8+ if sys.version_info >= (3, 8) and LooseVersion(np.__version__) >= LooseVersion("1.21"): import numpy.typing as ntp psdf = ps.from_pandas(pdf) def identify4( x, ) -> ps.DataFrame[float, [int, ntp.NDArray[int]]]: # type: ignore[name-defined] return x actual = psdf.pandas_on_spark.apply_batch(identify4) actual.columns = ["a", "b"] self.assert_eq(actual, pdf) arrays = [[1, 2, 3, 4, 5, 6, 7, 8, 9], ["a", "b", "c", "d", "e", "f", "g", "h", "i"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [[e] for e in [4, 5, 6, 3, 2, 1, 0, 0, 0]]}, index=idx, ) psdf = ps.from_pandas(pdf) def identify4(x) -> ps.DataFrame[[int, str], [int, List[int]]]: return x actual = psdf.pandas_on_spark.apply_batch(identify4) actual.index.names = ["number", "color"] actual.columns = ["a", "b"] self.assert_eq(actual, pdf) def identify5( x, ) -> ps.DataFrame[ [("number", int), ("color", str)], [("a", int), ("b", List[int])] # noqa: F405 ]: return x actual = psdf.pandas_on_spark.apply_batch(identify5) self.assert_eq(actual, pdf) def test_transform_batch(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.c + 1).sort_index(), (pdf.c + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf + a, 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf.c + a, a=1).sort_index(), (pdf.c + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf + 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.b + 1).sort_index(), (pdf.b + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf + a, 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf.c + a, a=1).sort_index(), (pdf.c + 1).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.pandas_on_spark.transform_batch(1) with self.assertRaisesRegex(ValueError, "The given function should return a frame"): psdf.pandas_on_spark.transform_batch(lambda pdf: 1) with self.assertRaisesRegex( ValueError, "transform_batch cannot produce aggregated results" ): psdf.pandas_on_spark.transform_batch(lambda pdf: pd.Series(1)) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index(), ) def test_transform_batch_with_type(self): pdf = self.pdf psdf = ps.from_pandas(pdf) def identify1(x) -> ps.DataFrame[int, int]: return x # Type hints set the default column names, and we use default index for # pandas API on Spark. Here we ignore both diff. actual = psdf.pandas_on_spark.transform_batch(identify1) expected = pdf self.assert_eq(sorted(actual["c0"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["c1"].to_numpy()), sorted(expected["b"].to_numpy())) def identify2(x) -> ps.DataFrame[slice("a", int), slice("b", int)]: # noqa: F405 return x actual = psdf.pandas_on_spark.transform_batch(identify2) expected = pdf self.assert_eq(sorted(actual["a"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["b"].to_numpy()), sorted(expected["b"].to_numpy())) def test_transform_batch_same_anchor(self): psdf = ps.range(10) psdf["d"] = psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.id + 1) self.assert_eq( psdf, pd.DataFrame({"id": list(range(10)), "d": list(range(1, 11))}, columns=["id", "d"]), ) psdf = ps.range(10) def plus_one(pdf) -> ps.Series[np.int64]: return pdf.id + 1 psdf["d"] = psdf.pandas_on_spark.transform_batch(plus_one) self.assert_eq( psdf, pd.DataFrame({"id": list(range(10)), "d": list(range(1, 11))}, columns=["id", "d"]), ) psdf = ps.range(10) def plus_one(ser) -> ps.Series[np.int64]: return ser + 1 psdf["d"] = psdf.id.pandas_on_spark.transform_batch(plus_one) self.assert_eq( psdf, pd.DataFrame({"id": list(range(10)), "d": list(range(1, 11))}, columns=["id", "d"]), ) def test_empty_timestamp(self): pdf = pd.DataFrame( { "t": [ datetime(2019, 1, 1, 0, 0, 0), datetime(2019, 1, 2, 0, 0, 0), datetime(2019, 1, 3, 0, 0, 0), ] }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf[psdf["t"] != psdf["t"]], pdf[pdf["t"] != pdf["t"]]) self.assert_eq(psdf[psdf["t"] != psdf["t"]].dtypes, pdf[pdf["t"] != pdf["t"]].dtypes) def test_to_spark(self): psdf = ps.from_pandas(self.pdf) with self.assertRaisesRegex(ValueError, "'index_col' cannot be overlapped"): psdf.to_spark(index_col="a") with self.assertRaisesRegex(ValueError, "length of index columns.*1.*3"): psdf.to_spark(index_col=["x", "y", "z"]) def test_keys(self): pdf = pd.DataFrame( [[1, 2], [4, 5], [7, 8]], index=["cobra", "viper", "sidewinder"], columns=["max_speed", "shield"], ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.keys(), pdf.keys()) def test_quantile(self): pdf, psdf = self.df_pair self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) self.assert_eq(psdf.loc[[]].quantile(0.5), pdf.loc[[]].quantile(0.5)) self.assert_eq( psdf.loc[[]].quantile([0.25, 0.5, 0.75]), pdf.loc[[]].quantile([0.25, 0.5, 0.75]) ) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psdf.quantile(0.5, axis=1) with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): psdf.quantile(accuracy="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): psdf.quantile(q="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): psdf.quantile(q=["a"]) with self.assertRaisesRegex( ValueError, r"percentiles should all be in the interval \[0, 1\]" ): psdf.quantile(q=[1.1]) self.assert_eq( psdf.quantile(0.5, numeric_only=False), pdf.quantile(0.5, numeric_only=False) ) self.assert_eq( psdf.quantile([0.25, 0.5, 0.75], numeric_only=False), pdf.quantile([0.25, 0.5, 0.75], numeric_only=False), ) # multi-index column columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) pdf = pd.DataFrame({"x": ["a", "b", "c"]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): psdf.quantile(0.5, numeric_only=False) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): psdf.quantile([0.25, 0.5, 0.75], numeric_only=False) def test_pct_change(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 2], "b": [4.0, 2.0, 3.0, 1.0], "c": [300, 200, 400, 200]}, index=np.random.rand(4), ) pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.pct_change(2), pdf.pct_change(2), check_exact=False) self.assert_eq(psdf.pct_change().sum(), pdf.pct_change().sum(), check_exact=False) def test_where(self): pdf, psdf = self.df_pair # pandas requires `axis` argument when the `other` is Series. # `axis` is not fully supported yet in pandas-on-Spark. self.assert_eq( psdf.where(psdf > 2, psdf.a + 10, axis=0), pdf.where(pdf > 2, pdf.a + 10, axis=0) ) with self.assertRaisesRegex(TypeError, "type of cond must be a DataFrame or Series"): psdf.where(1) def test_mask(self): psdf = ps.from_pandas(self.pdf) with self.assertRaisesRegex(TypeError, "type of cond must be a DataFrame or Series"): psdf.mask(1) def test_query(self): pdf = pd.DataFrame({"A": range(1, 6), "B": range(10, 0, -2), "C": range(10, 5, -1)}) psdf = ps.from_pandas(pdf) exprs = ("A > B", "A < C", "C == B") for expr in exprs: self.assert_eq(psdf.query(expr), pdf.query(expr)) # test `inplace=True` for expr in exprs: dummy_psdf = psdf.copy() dummy_pdf = pdf.copy() pser = dummy_pdf.A psser = dummy_psdf.A dummy_pdf.query(expr, inplace=True) dummy_psdf.query(expr, inplace=True) self.assert_eq(dummy_psdf, dummy_pdf) self.assert_eq(psser, pser) # invalid values for `expr` invalid_exprs = (1, 1.0, (exprs[0],), [exprs[0]]) for expr in invalid_exprs: with self.assertRaisesRegex( TypeError, "expr must be a string to be evaluated, {} given".format(type(expr).__name__), ): psdf.query(expr) # invalid values for `inplace` invalid_inplaces = (1, 0, "True", "False") for inplace in invalid_inplaces: with self.assertRaisesRegex( TypeError, 'For argument "inplace" expected type bool, received type {}.'.format( type(inplace).__name__ ), ): psdf.query("a < b", inplace=inplace) # doesn't support for MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")]) psdf.columns = columns with self.assertRaisesRegex(TypeError, "Doesn't support for MultiIndex columns"): psdf.query("('A', 'Z') > ('B', 'X')") def test_take(self): pdf = pd.DataFrame( {"A": range(0, 50000), "B": range(100000, 0, -2), "C": range(100000, 50000, -1)} ) psdf = ps.from_pandas(pdf) # axis=0 (default) self.assert_eq(psdf.take([1, 2]).sort_index(), pdf.take([1, 2]).sort_index()) self.assert_eq(psdf.take([-1, -2]).sort_index(), pdf.take([-1, -2]).sort_index()) self.assert_eq( psdf.take(range(100, 110)).sort_index(), pdf.take(range(100, 110)).sort_index() ) self.assert_eq( psdf.take(range(-110, -100)).sort_index(), pdf.take(range(-110, -100)).sort_index() ) self.assert_eq( psdf.take([10, 100, 1000, 10000]).sort_index(), pdf.take([10, 100, 1000, 10000]).sort_index(), ) self.assert_eq( psdf.take([-10, -100, -1000, -10000]).sort_index(), pdf.take([-10, -100, -1000, -10000]).sort_index(), ) # axis=1 self.assert_eq( psdf.take([1, 2], axis=1).sort_index(), pdf.take([1, 2], axis=1).sort_index() ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index() ) self.assert_eq( psdf.take(range(1, 3), axis=1).sort_index(), pdf.take(range(1, 3), axis=1).sort_index(), ) self.assert_eq( psdf.take(range(-1, -3), axis=1).sort_index(), pdf.take(range(-1, -3), axis=1).sort_index(), ) self.assert_eq( psdf.take([2, 1], axis=1).sort_index(), pdf.take([2, 1], axis=1).sort_index(), ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index(), ) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")]) psdf.columns = columns pdf.columns = columns # MultiIndex columns with axis=0 (default) self.assert_eq(psdf.take([1, 2]).sort_index(), pdf.take([1, 2]).sort_index()) self.assert_eq(psdf.take([-1, -2]).sort_index(), pdf.take([-1, -2]).sort_index()) self.assert_eq( psdf.take(range(100, 110)).sort_index(), pdf.take(range(100, 110)).sort_index() ) self.assert_eq( psdf.take(range(-110, -100)).sort_index(), pdf.take(range(-110, -100)).sort_index() ) self.assert_eq( psdf.take([10, 100, 1000, 10000]).sort_index(), pdf.take([10, 100, 1000, 10000]).sort_index(), ) self.assert_eq( psdf.take([-10, -100, -1000, -10000]).sort_index(), pdf.take([-10, -100, -1000, -10000]).sort_index(), ) # axis=1 self.assert_eq( psdf.take([1, 2], axis=1).sort_index(), pdf.take([1, 2], axis=1).sort_index() ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index() ) self.assert_eq( psdf.take(range(1, 3), axis=1).sort_index(), pdf.take(range(1, 3), axis=1).sort_index(), ) self.assert_eq( psdf.take(range(-1, -3), axis=1).sort_index(), pdf.take(range(-1, -3), axis=1).sort_index(), ) self.assert_eq( psdf.take([2, 1], axis=1).sort_index(), pdf.take([2, 1], axis=1).sort_index(), ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index(), ) # Checking the type of indices. self.assertRaises(TypeError, lambda: psdf.take(1)) self.assertRaises(TypeError, lambda: psdf.take("1")) self.assertRaises(TypeError, lambda: psdf.take({1, 2})) self.assertRaises(TypeError, lambda: psdf.take({1: None, 2: None})) def test_axes(self): pdf = self.pdf psdf = ps.from_pandas(pdf) self.assert_eq(pdf.axes, psdf.axes) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.axes, psdf.axes) def test_udt(self): sparse_values = {0: 0.1, 1: 1.1} sparse_vector = SparseVector(len(sparse_values), sparse_values) pdf = pd.DataFrame({"a": [sparse_vector], "b": [10]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_eval(self): pdf = pd.DataFrame({"A": range(1, 6), "B": range(10, 0, -2)}) psdf = ps.from_pandas(pdf) # operation between columns (returns Series) self.assert_eq(pdf.eval("A + B"), psdf.eval("A + B")) self.assert_eq(pdf.eval("A + A"), psdf.eval("A + A")) # assignment (returns DataFrame) self.assert_eq(pdf.eval("C = A + B"), psdf.eval("C = A + B")) self.assert_eq(pdf.eval("A = A + A"), psdf.eval("A = A + A")) # operation between scalars (returns scalar) self.assert_eq(pdf.eval("1 + 1"), psdf.eval("1 + 1")) # complicated operations with assignment self.assert_eq( pdf.eval("B = A + B // (100 + 200) * (500 - B) - 10.5"), psdf.eval("B = A + B // (100 + 200) * (500 - B) - 10.5"), ) # inplace=True (only support for assignment) pdf.eval("C = A + B", inplace=True) psdf.eval("C = A + B", inplace=True) self.assert_eq(pdf, psdf) pser = pdf.A psser = psdf.A pdf.eval("A = B + C", inplace=True) psdf.eval("A = B + C", inplace=True) self.assert_eq(pdf, psdf) self.assert_eq(pser, psser) # doesn't support for multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b"), ("z", "c")]) psdf.columns = columns self.assertRaises(TypeError, lambda: psdf.eval("x.a + y.b")) @unittest.skipIf(not have_tabulate, tabulate_requirement_message) def test_to_markdown(self): pdf = pd.DataFrame(data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.to_markdown(), psdf.to_markdown()) def test_cache(self): pdf = pd.DataFrame( [(0.2, 0.3), (0.0, 0.6), (0.6, 0.0), (0.2, 0.1)], columns=["dogs", "cats"] ) psdf = ps.from_pandas(pdf) with psdf.spark.cache() as cached_df: self.assert_eq(isinstance(cached_df, CachedDataFrame), True) self.assert_eq( repr(cached_df.spark.storage_level), repr(StorageLevel(True, True, False, True)) ) def test_persist(self): pdf = pd.DataFrame( [(0.2, 0.3), (0.0, 0.6), (0.6, 0.0), (0.2, 0.1)], columns=["dogs", "cats"] ) psdf = ps.from_pandas(pdf) storage_levels = [ StorageLevel.DISK_ONLY, StorageLevel.MEMORY_AND_DISK, StorageLevel.MEMORY_ONLY, StorageLevel.OFF_HEAP, ] for storage_level in storage_levels: with psdf.spark.persist(storage_level) as cached_df: self.assert_eq(isinstance(cached_df, CachedDataFrame), True) self.assert_eq(repr(cached_df.spark.storage_level), repr(storage_level)) self.assertRaises(TypeError, lambda: psdf.spark.persist("DISK_ONLY")) def test_squeeze(self): axises = [None, 0, 1, "rows", "index", "columns"] # Multiple columns pdf = pd.DataFrame([[1, 2], [3, 4]], columns=["a", "b"], index=["x", "y"]) psdf = ps.from_pandas(pdf) for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Multiple columns with MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X")]) pdf.columns = columns psdf.columns = columns for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with single value pdf = pd.DataFrame([[1]], columns=["a"], index=["x"]) psdf = ps.from_pandas(pdf) for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with single value with MultiIndex column columns = pd.MultiIndex.from_tuples([("A", "Z")]) pdf.columns = columns psdf.columns = columns for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with multiple values pdf = pd.DataFrame([1, 2, 3, 4], columns=["a"]) psdf = ps.from_pandas(pdf) for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with multiple values with MultiIndex column pdf.columns = columns psdf.columns = columns for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) def test_rfloordiv(self): pdf = pd.DataFrame( {"angles": [0, 3, 4], "degrees": [360, 180, 360]}, index=["circle", "triangle", "rectangle"], columns=["angles", "degrees"], ) psdf = ps.from_pandas(pdf) expected_result = pdf.rfloordiv(10) self.assert_eq(psdf.rfloordiv(10), expected_result) def test_truncate(self): pdf1 = pd.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[-500, -20, -1, 0, 400, 550, 1000], ) psdf1 = ps.from_pandas(pdf1) pdf2 = pd.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[1000, 550, 400, 0, -1, -20, -500], ) psdf2 = ps.from_pandas(pdf2) self.assert_eq(psdf1.truncate(), pdf1.truncate()) self.assert_eq(psdf1.truncate(before=-20), pdf1.truncate(before=-20)) self.assert_eq(psdf1.truncate(after=400), pdf1.truncate(after=400)) self.assert_eq(psdf1.truncate(copy=False), pdf1.truncate(copy=False)) self.assert_eq(psdf1.truncate(-20, 400, copy=False), pdf1.truncate(-20, 400, copy=False)) # The bug for these tests has been fixed in pandas 1.1.0. if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): self.assert_eq(psdf2.truncate(0, 550), pdf2.truncate(0, 550)) self.assert_eq(psdf2.truncate(0, 550, copy=False), pdf2.truncate(0, 550, copy=False)) else: expected_psdf = ps.DataFrame( {"A": ["b", "c", "d"], "B": ["i", "j", "k"], "C": ["p", "q", "r"]}, index=[550, 400, 0], ) self.assert_eq(psdf2.truncate(0, 550), expected_psdf) self.assert_eq(psdf2.truncate(0, 550, copy=False), expected_psdf) # axis = 1 self.assert_eq(psdf1.truncate(axis=1), pdf1.truncate(axis=1)) self.assert_eq(psdf1.truncate(before="B", axis=1), pdf1.truncate(before="B", axis=1)) self.assert_eq(psdf1.truncate(after="A", axis=1), pdf1.truncate(after="A", axis=1)) self.assert_eq(psdf1.truncate(copy=False, axis=1), pdf1.truncate(copy=False, axis=1)) self.assert_eq(psdf2.truncate("B", "C", axis=1), pdf2.truncate("B", "C", axis=1)) self.assert_eq( psdf1.truncate("B", "C", copy=False, axis=1), pdf1.truncate("B", "C", copy=False, axis=1), ) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "Z")]) pdf1.columns = columns psdf1.columns = columns pdf2.columns = columns psdf2.columns = columns self.assert_eq(psdf1.truncate(), pdf1.truncate()) self.assert_eq(psdf1.truncate(before=-20), pdf1.truncate(before=-20)) self.assert_eq(psdf1.truncate(after=400), pdf1.truncate(after=400)) self.assert_eq(psdf1.truncate(copy=False), pdf1.truncate(copy=False)) self.assert_eq(psdf1.truncate(-20, 400, copy=False), pdf1.truncate(-20, 400, copy=False)) # The bug for these tests has been fixed in pandas 1.1.0. if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): self.assert_eq(psdf2.truncate(0, 550), pdf2.truncate(0, 550)) self.assert_eq(psdf2.truncate(0, 550, copy=False), pdf2.truncate(0, 550, copy=False)) else: expected_psdf.columns = columns self.assert_eq(psdf2.truncate(0, 550), expected_psdf) self.assert_eq(psdf2.truncate(0, 550, copy=False), expected_psdf) # axis = 1 self.assert_eq(psdf1.truncate(axis=1), pdf1.truncate(axis=1)) self.assert_eq(psdf1.truncate(before="B", axis=1), pdf1.truncate(before="B", axis=1)) self.assert_eq(psdf1.truncate(after="A", axis=1), pdf1.truncate(after="A", axis=1)) self.assert_eq(psdf1.truncate(copy=False, axis=1), pdf1.truncate(copy=False, axis=1)) self.assert_eq(psdf2.truncate("B", "C", axis=1), pdf2.truncate("B", "C", axis=1)) self.assert_eq( psdf1.truncate("B", "C", copy=False, axis=1), pdf1.truncate("B", "C", copy=False, axis=1), ) # Exceptions psdf = ps.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[-500, 100, 400, 0, -1, 550, -20], ) msg = "truncate requires a sorted index" with self.assertRaisesRegex(ValueError, msg): psdf.truncate() psdf = ps.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[-500, -20, -1, 0, 400, 550, 1000], ) msg = "Truncate: -20 must be after 400" with self.assertRaisesRegex(ValueError, msg): psdf.truncate(400, -20) msg = "Truncate: B must be after C" with self.assertRaisesRegex(ValueError, msg): psdf.truncate("C", "B", axis=1) def test_explode(self): pdf = pd.DataFrame({"A": [[-1.0, np.nan], [0.0, np.inf], [1.0, -np.inf]], "B": 1}) pdf.index.name = "index" pdf.columns.name = "columns" psdf = ps.from_pandas(pdf) expected_result1 = pdf.explode("A") expected_result2 = pdf.explode("B") self.assert_eq(psdf.explode("A"), expected_result1, almost=True) self.assert_eq(psdf.explode("B"), expected_result2) self.assert_eq(psdf.explode("A").index.name, expected_result1.index.name) self.assert_eq(psdf.explode("A").columns.name, expected_result1.columns.name) self.assertRaises(TypeError, lambda: psdf.explode(["A", "B"])) # MultiIndex midx = pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "c")], names=["index1", "index2"] ) pdf.index = midx psdf = ps.from_pandas(pdf) expected_result1 = pdf.explode("A") expected_result2 = pdf.explode("B") self.assert_eq(psdf.explode("A"), expected_result1, almost=True) self.assert_eq(psdf.explode("B"), expected_result2) self.assert_eq(psdf.explode("A").index.names, expected_result1.index.names) self.assert_eq(psdf.explode("A").columns.name, expected_result1.columns.name) self.assertRaises(TypeError, lambda: psdf.explode(["A", "B"])) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X")], names=["column1", "column2"]) pdf.columns = columns psdf.columns = columns expected_result1 = pdf.explode(("A", "Z")) expected_result2 = pdf.explode(("B", "X")) expected_result3 = pdf.A.explode("Z") self.assert_eq(psdf.explode(("A", "Z")), expected_result1, almost=True) self.assert_eq(psdf.explode(("B", "X")), expected_result2) self.assert_eq(psdf.explode(("A", "Z")).index.names, expected_result1.index.names) self.assert_eq(psdf.explode(("A", "Z")).columns.names, expected_result1.columns.names) self.assert_eq(psdf.A.explode("Z"), expected_result3, almost=True) self.assertRaises(TypeError, lambda: psdf.explode(["A", "B"])) self.assertRaises(ValueError, lambda: psdf.explode("A")) def test_spark_schema(self): psdf = ps.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("i1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), }, columns=["a", "b", "c", "d", "e", "f"], ) actual = psdf.spark.schema() expected = ( StructType() .add("a", "string", False) .add("b", "long", False) .add("c", "byte", False) .add("d", "double", False) .add("e", "boolean", False) .add("f", "timestamp", False) ) self.assertEqual(actual, expected) actual = psdf.spark.schema("index") expected = ( StructType() .add("index", "long", False) .add("a", "string", False) .add("b", "long", False) .add("c", "byte", False) .add("d", "double", False) .add("e", "boolean", False) .add("f", "timestamp", False) ) self.assertEqual(actual, expected) def test_print_schema(self): psdf = ps.DataFrame( {"a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("i1")}, columns=["a", "b", "c"], ) prev = sys.stdout try: out = StringIO() sys.stdout = out psdf.spark.print_schema() actual = out.getvalue().strip() self.assertTrue("a: string" in actual, actual) self.assertTrue("b: long" in actual, actual) self.assertTrue("c: byte" in actual, actual) out = StringIO() sys.stdout = out psdf.spark.print_schema(index_col="index") actual = out.getvalue().strip() self.assertTrue("index: long" in actual, actual) self.assertTrue("a: string" in actual, actual) self.assertTrue("b: long" in actual, actual) self.assertTrue("c: byte" in actual, actual) finally: sys.stdout = prev def test_explain_hint(self): psdf1 = ps.DataFrame( {"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 5]}, columns=["lkey", "value"], ) psdf2 = ps.DataFrame( {"rkey": ["foo", "bar", "baz", "foo"], "value": [5, 6, 7, 8]}, columns=["rkey", "value"], ) merged = psdf1.merge(psdf2.spark.hint("broadcast"), left_on="lkey", right_on="rkey") prev = sys.stdout try: out = StringIO() sys.stdout = out merged.spark.explain() actual = out.getvalue().strip() self.assertTrue("Broadcast" in actual, actual) finally: sys.stdout = prev def test_mad(self): pdf = pd.DataFrame( { "A": [1, 2, None, 4, np.nan], "B": [-0.1, 0.2, -0.3, np.nan, 0.5], "C": ["a", "b", "c", "d", "e"], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.mad(), pdf.mad()) self.assert_eq(psdf.mad(axis=1), pdf.mad(axis=1)) with self.assertRaises(ValueError): psdf.mad(axis=2) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("A", "Z")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.mad(), pdf.mad()) self.assert_eq(psdf.mad(axis=1), pdf.mad(axis=1)) pdf = pd.DataFrame({"A": [True, True, False, False], "B": [True, False, False, True]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.mad(), pdf.mad()) self.assert_eq(psdf.mad(axis=1), pdf.mad(axis=1)) def test_abs(self): pdf = pd.DataFrame({"a": [-2, -1, 0, 1]}) psdf = ps.from_pandas(pdf) self.assert_eq(abs(psdf), abs(pdf)) self.assert_eq(np.abs(psdf), np.abs(pdf)) def test_iteritems(self): pdf = pd.DataFrame( {"species": ["bear", "bear", "marsupial"], "population": [1864, 22000, 80000]}, index=["panda", "polar", "koala"], columns=["species", "population"], ) psdf = ps.from_pandas(pdf) for (p_name, p_items), (k_name, k_items) in zip(pdf.iteritems(), psdf.iteritems()): self.assert_eq(p_name, k_name) self.assert_eq(p_items, k_items) def test_tail(self): pdf = pd.DataFrame({"x": range(1000)}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.tail(), psdf.tail()) self.assert_eq(pdf.tail(10), psdf.tail(10)) self.assert_eq(pdf.tail(-990), psdf.tail(-990)) self.assert_eq(pdf.tail(0), psdf.tail(0)) self.assert_eq(pdf.tail(-1001), psdf.tail(-1001)) self.assert_eq(pdf.tail(1001), psdf.tail(1001)) self.assert_eq((pdf + 1).tail(), (psdf + 1).tail()) self.assert_eq((pdf + 1).tail(10), (psdf + 1).tail(10)) self.assert_eq((pdf + 1).tail(-990), (psdf + 1).tail(-990)) self.assert_eq((pdf + 1).tail(0), (psdf + 1).tail(0)) self.assert_eq((pdf + 1).tail(-1001), (psdf + 1).tail(-1001)) self.assert_eq((pdf + 1).tail(1001), (psdf + 1).tail(1001)) with self.assertRaisesRegex(TypeError, "bad operand type for unary -: 'str'"): psdf.tail("10") def test_last_valid_index(self): pdf = pd.DataFrame( {"a": [1, 2, 3, None], "b": [1.0, 2.0, 3.0, None], "c": [100, 200, 400, None]}, index=["Q", "W", "E", "R"], ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.last_valid_index(), psdf.last_valid_index()) self.assert_eq(pdf[[]].last_valid_index(), psdf[[]].last_valid_index()) # MultiIndex columns pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.last_valid_index(), psdf.last_valid_index()) # Empty DataFrame pdf = pd.Series([]).to_frame() psdf = ps.Series([]).to_frame() self.assert_eq(pdf.last_valid_index(), psdf.last_valid_index()) def test_last(self): index = pd.date_range("2018-04-09", periods=4, freq="2D") pdf = pd.DataFrame([1, 2, 3, 4], index=index) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.last("1D"), psdf.last("1D")) self.assert_eq(pdf.last(DateOffset(days=1)), psdf.last(DateOffset(days=1))) with self.assertRaisesRegex(TypeError, "'last' only supports a DatetimeIndex"): ps.DataFrame([1, 2, 3, 4]).last("1D") def test_first(self): index = pd.date_range("2018-04-09", periods=4, freq="2D") pdf = pd.DataFrame([1, 2, 3, 4], index=index) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.first("1D"), psdf.first("1D")) self.assert_eq(pdf.first(DateOffset(days=1)), psdf.first(DateOffset(days=1))) with self.assertRaisesRegex(TypeError, "'first' only supports a DatetimeIndex"): ps.DataFrame([1, 2, 3, 4]).first("1D") def test_first_valid_index(self): pdf = pd.DataFrame( {"a": [None, 2, 3, 2], "b": [None, 2.0, 3.0, 1.0], "c": [None, 200, 400, 200]}, index=["Q", "W", "E", "R"], ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.first_valid_index(), psdf.first_valid_index()) self.assert_eq(pdf[[]].first_valid_index(), psdf[[]].first_valid_index()) # MultiIndex columns pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.first_valid_index(), psdf.first_valid_index()) # Empty DataFrame pdf = pd.Series([]).to_frame() psdf = ps.Series([]).to_frame() self.assert_eq(pdf.first_valid_index(), psdf.first_valid_index()) pdf = pd.DataFrame( {"a": [None, 2, 3, 2], "b": [None, 2.0, 3.0, 1.0], "c": [None, 200, 400, 200]}, index=[ datetime(2021, 1, 1), datetime(2021, 2, 1), datetime(2021, 3, 1), datetime(2021, 4, 1), ], ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.first_valid_index(), psdf.first_valid_index()) def test_product(self): pdf = pd.DataFrame( {"A": [1, 2, 3, 4, 5], "B": [10, 20, 30, 40, 50], "C": ["a", "b", "c", "d", "e"]} ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index()) # Named columns pdf.columns.name = "Koalas" psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index()) # MultiIndex columns pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index()) # Named MultiIndex columns pdf.columns.names = ["Hello", "Koalas"] psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index()) # No numeric columns pdf = pd.DataFrame({"key": ["a", "b", "c"], "val": ["x", "y", "z"]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index()) # No numeric named columns pdf.columns.name = "Koalas" psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), almost=True) # No numeric MultiIndex columns pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y")]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), almost=True) # No numeric named MultiIndex columns pdf.columns.names = ["Hello", "Koalas"] psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), almost=True) # All NaN columns pdf = pd.DataFrame( { "A": [np.nan, np.nan, np.nan, np.nan, np.nan], "B": [10, 20, 30, 40, 50], "C": ["a", "b", "c", "d", "e"], } ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), check_exact=False) # All NaN named columns pdf.columns.name = "Koalas" psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), check_exact=False) # All NaN MultiIndex columns pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), check_exact=False) # All NaN named MultiIndex columns pdf.columns.names = ["Hello", "Koalas"] psdf = ps.from_pandas(pdf) self.assert_eq(pdf.prod(), psdf.prod().sort_index(), check_exact=False) def test_from_dict(self): data = {"row_1": [3, 2, 1, 0], "row_2": [10, 20, 30, 40]} pdf = pd.DataFrame.from_dict(data) psdf = ps.DataFrame.from_dict(data) self.assert_eq(pdf, psdf) pdf = pd.DataFrame.from_dict(data, dtype="int8") psdf = ps.DataFrame.from_dict(data, dtype="int8") self.assert_eq(pdf, psdf) pdf = pd.DataFrame.from_dict(data, orient="index", columns=["A", "B", "C", "D"]) psdf = ps.DataFrame.from_dict(data, orient="index", columns=["A", "B", "C", "D"]) self.assert_eq(pdf, psdf) def test_pad(self): pdf = pd.DataFrame( { "A": [None, 3, None, None], "B": [2, 4, None, 3], "C": [None, None, None, 1], "D": [0, 1, 5, 4], }, columns=["A", "B", "C", "D"], ) psdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self.assert_eq(pdf.pad(), psdf.pad()) # Test `inplace=True` pdf.pad(inplace=True) psdf.pad(inplace=True) self.assert_eq(pdf, psdf) else: expected = ps.DataFrame( { "A": [None, 3, 3, 3], "B": [2.0, 4.0, 4.0, 3.0], "C": [None, None, None, 1], "D": [0, 1, 5, 4], }, columns=["A", "B", "C", "D"], ) self.assert_eq(expected, psdf.pad()) # Test `inplace=True` psdf.pad(inplace=True) self.assert_eq(expected, psdf) def test_backfill(self): pdf = pd.DataFrame( { "A": [None, 3, None, None], "B": [2, 4, None, 3], "C": [None, None, None, 1], "D": [0, 1, 5, 4], }, columns=["A", "B", "C", "D"], ) psdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self.assert_eq(pdf.backfill(), psdf.backfill()) # Test `inplace=True` pdf.backfill(inplace=True) psdf.backfill(inplace=True) self.assert_eq(pdf, psdf) else: expected = ps.DataFrame( { "A": [3.0, 3.0, None, None], "B": [2.0, 4.0, 3.0, 3.0], "C": [1.0, 1.0, 1.0, 1.0], "D": [0, 1, 5, 4], }, columns=["A", "B", "C", "D"], ) self.assert_eq(expected, psdf.backfill()) # Test `inplace=True` psdf.backfill(inplace=True) self.assert_eq(expected, psdf) def test_align(self): pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}, index=[10, 20, 30]) psdf1 = ps.from_pandas(pdf1) for join in ["outer", "inner", "left", "right"]: for axis in [None, 0, 1]: psdf_l, psdf_r = psdf1.align(psdf1[["b"]], join=join, axis=axis) pdf_l, pdf_r = pdf1.align(pdf1[["b"]], join=join, axis=axis) self.assert_eq(psdf_l, pdf_l) self.assert_eq(psdf_r, pdf_r) psdf_l, psdf_r = psdf1[["a"]].align(psdf1[["b", "a"]], join=join, axis=axis) pdf_l, pdf_r = pdf1[["a"]].align(pdf1[["b", "a"]], join=join, axis=axis) self.assert_eq(psdf_l, pdf_l) self.assert_eq(psdf_r, pdf_r) psdf_l, psdf_r = psdf1[["b", "a"]].align(psdf1[["a"]], join=join, axis=axis) pdf_l, pdf_r = pdf1[["b", "a"]].align(pdf1[["a"]], join=join, axis=axis) self.assert_eq(psdf_l, pdf_l) self.assert_eq(psdf_r, pdf_r) psdf_l, psdf_r = psdf1.align(psdf1["b"], axis=0) pdf_l, pdf_r = pdf1.align(pdf1["b"], axis=0) self.assert_eq(psdf_l, pdf_l) self.assert_eq(psdf_r, pdf_r) psdf_l, psser_b = psdf1[["a"]].align(psdf1["b"], axis=0) pdf_l, pser_b = pdf1[["a"]].align(pdf1["b"], axis=0) self.assert_eq(psdf_l, pdf_l) self.assert_eq(psser_b, pser_b) self.assertRaises(ValueError, lambda: psdf1.align(psdf1, join="unknown")) self.assertRaises(ValueError, lambda: psdf1.align(psdf1["b"])) self.assertRaises(TypeError, lambda: psdf1.align(["b"])) self.assertRaises(NotImplementedError, lambda: psdf1.align(psdf1["b"], axis=1)) pdf2 = pd.DataFrame({"a": [4, 5, 6], "d": ["d", "e", "f"]}, index=[10, 11, 12]) psdf2 = ps.from_pandas(pdf2) for join in ["outer", "inner", "left", "right"]: psdf_l, psdf_r = psdf1.align(psdf2, join=join, axis=1) pdf_l, pdf_r = pdf1.align(pdf2, join=join, axis=1) self.assert_eq(psdf_l.sort_index(), pdf_l.sort_index()) self.assert_eq(psdf_r.sort_index(), pdf_r.sort_index()) def test_between_time(self): idx = pd.date_range("2018-04-09", periods=4, freq="1D20min") pdf = pd.DataFrame({"A": [1, 2, 3, 4]}, index=idx) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.between_time("0:15", "0:45").sort_index(), psdf.between_time("0:15", "0:45").sort_index(), ) pdf.index.name = "ts" psdf = ps.from_pandas(pdf) self.assert_eq( pdf.between_time("0:15", "0:45").sort_index(), psdf.between_time("0:15", "0:45").sort_index(), ) # Column label is 'index' pdf.columns = pd.Index(["index"]) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.between_time("0:15", "0:45").sort_index(), psdf.between_time("0:15", "0:45").sort_index(), ) # Both index name and column label are 'index' pdf.index.name = "index" psdf = ps.from_pandas(pdf) self.assert_eq( pdf.between_time("0:15", "0:45").sort_index(), psdf.between_time("0:15", "0:45").sort_index(), ) # Index name is 'index', column label is ('X', 'A') pdf.columns = pd.MultiIndex.from_arrays([["X"], ["A"]]) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.between_time("0:15", "0:45").sort_index(), psdf.between_time("0:15", "0:45").sort_index(), ) with self.assertRaisesRegex( NotImplementedError, "between_time currently only works for axis=0" ): psdf.between_time("0:15", "0:45", axis=1) psdf = ps.DataFrame({"A": [1, 2, 3, 4]}) with self.assertRaisesRegex(TypeError, "Index must be DatetimeIndex"): psdf.between_time("0:15", "0:45") def test_at_time(self): idx = pd.date_range("2018-04-09", periods=4, freq="1D20min") pdf = pd.DataFrame({"A": [1, 2, 3, 4]}, index=idx) psdf = ps.from_pandas(pdf) psdf.at_time("0:20") self.assert_eq( pdf.at_time("0:20").sort_index(), psdf.at_time("0:20").sort_index(), ) # Index name is 'ts' pdf.index.name = "ts" psdf = ps.from_pandas(pdf) self.assert_eq( pdf.at_time("0:20").sort_index(), psdf.at_time("0:20").sort_index(), ) # Index name is 'ts', column label is 'index' pdf.columns = pd.Index(["index"]) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.at_time("0:40").sort_index(), psdf.at_time("0:40").sort_index(), ) # Both index name and column label are 'index' pdf.index.name = "index" psdf = ps.from_pandas(pdf) self.assert_eq( pdf.at_time("0:40").sort_index(), psdf.at_time("0:40").sort_index(), ) # Index name is 'index', column label is ('X', 'A') pdf.columns = pd.MultiIndex.from_arrays([["X"], ["A"]]) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.at_time("0:40").sort_index(), psdf.at_time("0:40").sort_index(), ) with self.assertRaisesRegex(NotImplementedError, "'asof' argument is not supported"): psdf.at_time("0:15", asof=True) with self.assertRaisesRegex(NotImplementedError, "at_time currently only works for axis=0"): psdf.at_time("0:15", axis=1) psdf = ps.DataFrame({"A": [1, 2, 3, 4]}) with self.assertRaisesRegex(TypeError, "Index must be DatetimeIndex"): psdf.at_time("0:15") def test_astype(self): psdf = self.psdf msg = "Only a column name can be used for the key in a dtype mappings argument." with self.assertRaisesRegex(KeyError, msg): psdf.astype({"c": float}) def test_describe(self): pdf, psdf = self.df_pair # numeric columns self.assert_eq(psdf.describe(), pdf.describe()) psdf.a += psdf.a pdf.a += pdf.a self.assert_eq(psdf.describe(), pdf.describe()) # string columns psdf = ps.DataFrame({"A": ["a", "b", "b", "c"], "B": ["d", "e", "f", "f"]}) pdf = psdf.to_pandas() self.assert_eq(psdf.describe(), pdf.describe().astype(str)) psdf.A += psdf.A pdf.A += pdf.A self.assert_eq(psdf.describe(), pdf.describe().astype(str)) # timestamp columns psdf = ps.DataFrame( { "A": [ pd.Timestamp("2020-10-20"), pd.Timestamp("2021-06-02"), pd.Timestamp("2021-06-02"), pd.Timestamp("2022-07-11"), ], "B": [ pd.Timestamp("2021-11-20"), pd.Timestamp("2023-06-02"),
pd.Timestamp("2026-07-11")
pandas.Timestamp
#!/usr/bin/env python """ fnPersistence, a class which provides a storage layer for meta-data and snv distances from the findneighbour4 system in mongodb A component of the findNeighbour4 system for bacterial relatedness monitoring Copyright (C) 2021 <NAME> <EMAIL> repo: https://github.com/davidhwyllie/findNeighbour4 This program is free software: you can redistribute it and/or modify it under the terms of the MIT License as published by the Free Software Foundation. See <https://opensource.org/licenses/MIT>, and the LICENSE file. """ import bson # type: ignore import datetime import json import uuid import pandas as pd # type: ignore import logging import pymongo # type: ignore import gridfs # type: ignore import pickle import psutil # type: ignore import io import statistics import numpy as np from typing import ( Any, Dict, Iterable, List, NoReturn, Optional, Set, Tuple, TypedDict, Union, ) Guid2NeighboursFormat1 = List[Union[str, int]] Guid2NeighboursFormat3 = Union[str] Guid2NeighboursFormat4 = Dict[str, Union[str, int]] Guid2NeighboursFormats = Union[ Guid2NeighboursFormat1, Guid2NeighboursFormat3, Guid2NeighboursFormat4 ] class RecentDatabaseMonitoringRet(TypedDict, total=False): recompression_data: bool latest_stats: Dict[str, Union[int, np.float64]] trend_stats: List[Dict[str, Any]] class NPEncoder(json.JSONEncoder): """encodes Numpy types as jsonisable equivalents""" def default(self, obj: Any) -> Any: if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NPEncoder, self).default(obj) class fn3persistence: """System for persisting results from large numbers of sequences stored in FindNeighbour 3+. Uses Mongodb. in the current schema there are the following collections: -'config', containing configuration information -'refcompressedseq' contains reference compressed sequences. note that this is a gridfs 'filesystem'. Keys are guids. -'clusters' contains a graph of inter-guid links. note that this is a gridfs 'filesystem'. Keys are names of clustering algorithms. -'guid2meta', contains guid -> metadata -'guid2neighbour', contains links between guids, including snv Here, individuals documents are identified by mongo assigned unique ids. Each document contains three keys: {'guid':'a1234', 'rstat':'s', 'neighbours':{}} Up to max_neighbours_per_document neighbours can be stored per document. *max_neighbours_per_document* should be less than 5,000, because there is a max. document size in mongodb. In debug mode, it is automatically set to 3. if max_neighbours_per_document exist in the document, 'rstat' is set to 'f' (full). If there is a single item only, rstat is set to 's' (single); if there are multiple items, it is set to 'm'. Indices exist on (i) guid - allowing you to find all the documents contains guid X's neighbours and (ii) guid/rstat combination- allowing one to find guid X's most recent document, useful for addition. This class provides methods to access these four entities. NOTE: regarding sharding, the most important collection is guid2neighbour. A hashed sharding based on guid should work well when ensuring database scalability. """ # code handling startup and shutdown. def __init__( self, connString: str, dbname: str = "fn3_unittesting", debug: int = 0, config_settings: dict = {}, max_neighbours_per_document: int = 100000, server_monitoring_min_interval_msec: int = 0, ) -> None: """Creates a connection to a MongoDb database. connString : the mongoDb connection string dbname: the name of the mongoDb database to use. if debug = 0 or 1, the database is opened or created. if debug = 2, any existing collections are deleted. config_settings: only used on db creation; optional dictionary to note items in the database's config collection. """ self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) # client calling mongostore should trap for connection errors etc self.connString = connString self.dbname = dbname self.debug = debug self._connect() # will raise ConnectionError if fails # can check what exists with connection.database_names() self.expected_collections = [ "server_monitoring", "guid2meta", "guid2neighbour", "config", "refcompressedseq.chunks", "refcompressedseq.files", "clusters.chunks", "clusters.files", "msa.chunks", "msa.files", "tree.chunks", "tree.files", "fnlock", ] self.expected_clustering_collections = [ "clusters.chunks", "clusters.files", "msa.chunks", "msa.files", "tree.chunks", "tree.files", ] self.storage_technology = "mongodb" self.using_sqlite = False self.max_neighbours_per_document = max_neighbours_per_document self.server_monitoring_min_interval_msec = server_monitoring_min_interval_msec self.previous_server_monitoring_data: Dict[str, Any] = {} self.previous_server_monitoring_time = None # delete any pre-existing data if we are in debug mode. if debug == 2: self.logger.warning( "Debug mode operational [DEBUG={0}]; deleting all data from collections.".format( debug ) ) self._delete_existing_clustering_data() self._delete_existing_data() self.max_neighbours_per_document = 3 # used for unittests else: self.logger.info("Using stored data in mongostore") # create indices on guid2neighbours; note will do nothing if index already exists ix1 = pymongo.IndexModel( [("guid", pymongo.ASCENDING), ("rstat", pymongo.ASCENDING)], name="by_guid_full", ) ix2 = pymongo.IndexModel([("rstat", pymongo.ASCENDING)], name="by_rstat") self.db["guid2neighbour"].create_indexes([ix1, ix2]) # create indices on msa and trees; note will do nothing if index already exists ix3 = pymongo.IndexModel( [("filename", pymongo.ASCENDING), ("uploadDate", pymongo.ASCENDING)], name="filename_date", ) self.db["msa.files"].create_indexes([ix3]) ix3b = pymongo.IndexModel( [("filename", pymongo.ASCENDING), ("uploadDate", pymongo.ASCENDING)], name="filename_date", ) self.db["tree.files"].create_indexes([ix3b]) # create indices on guid2meta, allowing recovery of valid and invalid specimens rapidly. ix4 = pymongo.IndexModel( [('"sequence_meta.DNAQuality.invalid"', pymongo.ASCENDING)], name="guid_validity", ) ix5 = pymongo.IndexModel( [('"sequence_meta.DNAQuality.propACTG"', pymongo.ASCENDING)], name="guid_quality", ) ix5b = pymongo.IndexModel( [('"sequence_meta.DNAQuality.examinationDate"', pymongo.ASCENDING)], name="examinationDate", ) # note: if additional metadata is added, such as sequence names etc which might be searched for, then we need to add additional indices here. self.db["guid2meta"].create_indexes([ix4, ix5, ix5b]) # create index on server_monitoring insert times ix6 = pymongo.IndexModel([("context|time|time_now", pymongo.ASCENDING)]) self.db["server_monitoring"].create_indexes([ix6]) def delete_server_monitoring_entries(self, before_seconds: int) -> None: """deletes server monitoring entries more than before_seconds ago""" now = datetime.datetime.now() earliest_allowed = now - datetime.timedelta(seconds=before_seconds) earliest_allowed_str = str(earliest_allowed.isoformat()) self.db["server_monitoring"].delete_many( {"context|time|time_now": {"$lt": earliest_allowed_str}} ) def summarise_stored_items(self) -> Dict[str, Any]: """counts how many sequences exist of various types""" retVal = {} collections_present = self.db.list_collection_names() for this_collection in self.expected_collections: if this_collection in collections_present: res = self.db.command("collstats", this_collection) for relevant_metric in [ "totalIndexSize", "storageSize", "count", "avgObjSize", ]: if relevant_metric in res.keys(): target_key = "dstats|{0}|{1}".format( this_collection.replace(".", "-"), relevant_metric ) retVal[target_key] = res[relevant_metric] return retVal def connect(self) -> None: """test whether the database is connected, and if not, tries to connect. if the connection fails, raises pymongo.errors.ConnectionFailure""" if not self.is_connected(): self._connect() def _connect(self) -> None: """connect to the database""" # try to close any existing session, if it exists self.closedown() # open new client self.client = pymongo.MongoClient(self.connString, retryWrites=True) self.db = self.client[self.dbname] # open gridfs systems self.rcs = gridfs.GridFS(self.db, collection="refcompressedseq") self.clusters = gridfs.GridFS(self.db, collection="clusters") self.monitor = gridfs.GridFS(self.db, collection="monitor") self.msa = gridfs.GridFS(self.db, collection="msa") self.tree = gridfs.GridFS(self.db, collection="tree") # enable sharding at database level # self.client.admin.command('enableSharding', self.dbname) def is_connected(self) -> bool: """Tests whether db is connected cf http://api.mongodb.com/python/current/api/pymongo/mongo_client.html""" try: # The ismaster command is cheap and does not require auth. self.client.admin.command("ismaster") # success return True except pymongo.errors.ConnectionFailure: return False def rotate_log(self) -> None: """forces rotation of the mongo log file""" self.client.admin.command("logRotate") def raise_error(self, token: str) -> NoReturn: """raises a ZeroDivisionError, with token as the message. useful for unit tests of error logging""" raise ZeroDivisionError(token) def _delete_existing_data(self) -> None: """deletes existing data from the databases""" for collection in self.expected_collections: self.db[collection].delete_many({}) def _delete_existing_clustering_data(self) -> None: """deletes any clustering data from the databases""" for collection in self.expected_clustering_collections: self.db[collection].delete_many({}) def first_run(self) -> bool: """if there is no config entry, it is a first-run situation""" if self.db.config.find_one({"_id": "config"}) is None: return True else: return False def __del__(self) -> None: """closes any existing session""" self.closedown() def closedown(self) -> None: """closes any session""" # client object has already been destroyed on reaching here pass # generic routines to handle insertion and read from standard mongodb stores def _store(self, collection: str, key: str, object: Dict[str, Any]) -> Any: """stores key:object in collection. It is assumed object is a dictionary. Updates if appropriate.""" if not isinstance(object, dict): raise TypeError(" object{0} passed must be a dictionary".format(object)) object["_id"] = key res = self.db[collection].replace_one({"_id": key}, object, upsert=True) if res.acknowledged is not True: raise IOError( "Mongo {0} did not acknowledge write of data: {1}".format( self.db, object ) ) return res def _load(self, collection: str, key: str) -> Any: """loads object from collection[key]""" return self.db[collection].find_one({"_id": key}) def _load_ids(self, collection: str) -> Set[str]: """loads guids from collection""" retVal: Set[str] = set() for item in self.db[collection].find({}): retVal.add(item["_id"]) return retVal def memory_usage(self) -> Dict[str, Union[int, float]]: """returns memory usage by current python3 process Uses the psutil module, as the resource module is not available in windows. """ memdict = psutil.virtual_memory()._asdict() sm = {"server|mstat|" + k: v for k, v in memdict.items()} return sm # methods for the config collection def config_store(self, key: str, object: Dict[str, Any]) -> Any: """stores object into config collection It is assumed object is a dictionary """ # if "excluded" in object.keys(): # del object["excluded"] return self._store("config", key, object) def config_read(self, key: str) -> Any: """loads object from config. It is assumed object is a dictionary""" return self._load("config", key) # methods for the server and database monitoring def recent_database_monitoring( self, max_reported: int = 100 ) -> RecentDatabaseMonitoringRet: """computes trends in the number of records holding pairs (guid2neighbours) vs. records. This ratio is a measure of database health. Ratios > 100 indicate the database may become very large, and query slowly""" db_data = self.recent_server_monitoring( selection_field="content|activity|whatprocess", selection_string="dbManager", max_reported=max_reported, ) res_df = pd.DataFrame.from_dict(db_data) retDict: RecentDatabaseMonitoringRet if len(res_df.index > 0): res_df["storage_ratio"] = res_df["dstats|guid2neighbour|count"] / ( 1 + res_df["dstats|guid2meta|count"] ) res_df["context|time|time_now_dt"] = pd.to_datetime( res_df["context|time|time_now"] ) res_df["latest_time"] = max(res_df["context|time|time_now_dt"]) res_df["interval_seconds"] = ( res_df["context|time|time_now_dt"] - res_df["latest_time"] ).dt.total_seconds() desired_cols = set( [ "_id", "storage_ratio", "dstats|guid2neighbour|count", "dstats|guid2meta|count", "context|time|time_now", "interval_seconds", ] ) available_cols = set(res_df.columns.to_list()) select_cols = desired_cols.intersection(available_cols) res_df = res_df[list(select_cols)] # select what we want if len(res_df.index > 0): retDict = { "recompression_data": True, "latest_stats": {"storage_ratio": res_df.at[0, "storage_ratio"]}, "trend_stats": res_df.to_dict(orient="records"), } else: retDict = { "recompression_data": False, "latest_stats": {"storage_ratio": 1}, } # if there's no data, record as 1 (optimal) # store the ratio as 1 if we can't compute it if "dstats|guid2meta|count" not in res_df.columns.tolist(): retDict["latest_stats"]["storage_ratio"] = 1 elif res_df.at[0, "dstats|guid2meta|count"] == 0: retDict["latest_stats"]["storage_ratio"] = 1 return retDict def recent_server_monitoring( self, max_reported: int = 100, selection_field: Optional[str] = None, selection_string: Optional[str] = None, ) -> List[dict]: """returns a list containing recent server monitoring, in reverse order (i.e. tail first). The _id field is an integer reflecting the order added. Lowest numbers are most recent. Inputs max_reported - return this number of lines, at most. selection_field - if not None, will only return lines containing selection_string in the 'selection_field' key of the returned dictionary. selection_string -if selection_field is not None, only returns rows if selection_string is present in the 'selection_field' key of the monitoring element. If None, this constraint is ignored. """ if not isinstance(max_reported, int): raise TypeError( "limit must be an integer, but it is a {0}".format(type(max_reported)) ) if not max_reported >= 0: raise ValueError("limit must be more than or equal to zero") if max_reported == 0: return [] n = 0 retVal = [] if selection_field is None: formerly_cursor = ( self.db["server_monitoring"] .find({}) .sort("_id", pymongo.DESCENDING) .limit(max_reported) ) else: formerly_cursor = ( self.db["server_monitoring"] .find({selection_field: selection_string}) .sort("_id", pymongo.DESCENDING) .limit(max_reported) ) for formerly in formerly_cursor: n += 1 formerly["_id"] = n retVal.append(formerly) return retVal def server_monitoring_store( self, message: str = "No message provided", what: Optional[str] = None, guid: Optional[str] = None, content: Dict[str, Any] = {}, ) -> bool: """stores content, a dictionary, into the server monitoring log""" now = dict(**content) if what is not None: now["content|activity|whatprocess"] = what if guid is not None: now["content|activity|guid"] = guid now["context|info|message"] = message current_time = datetime.datetime.now() now["context|time|time_now"] = str(current_time.isoformat()) now["context|time|time_boot"] = datetime.datetime.fromtimestamp( psutil.boot_time() ).strftime("%Y-%m-%d %H:%M:%S") # should we write this data? We have the option not to log all messages, to prevent the store getting very full. write_content = False if self.previous_server_monitoring_time is None: write_content = True # yes if this is the first record written. else: time_since_last_write = ( current_time - self.previous_server_monitoring_time ) # yes if it's after the server_moni t = ( 1000 * float(time_since_last_write.seconds) + float(time_since_last_write.microseconds) / 1000 ) if t >= self.server_monitoring_min_interval_msec: write_content = True if write_content: self.db["server_monitoring"].insert_one(now) self.previous_server_monitoring_time = current_time self.previous_server_monitoring_data = now return True else: return False # methods for monitor, which store the contents of an html file # in a gridFS store. def monitor_store(self, monitoring_id: str, html: str) -> str: """stores the monitor output string html. Overwrites any prior object.""" self.monitor.delete(monitoring_id) with io.BytesIO(html.encode("utf-8")) as f: id = self.monitor.put(f, _id=monitoring_id, filename=monitoring_id) return id def monitor_read(self, monitoring_id: str) -> Optional[str]: """loads stored string (e.g. html object) from the monitor collection.""" try: res = self.monitor.get(monitoring_id) except gridfs.errors.NoFile: return None if res is None: return None else: return res.read().decode("utf-8") # methods for multisequence alignments def msa_store(self, msa_token: str, msa: dict) -> Optional[str]: """stores the msa object msa under token msa_token.""" if not isinstance(msa, dict): raise TypeError( "Can only store dictionary objects, not {0}".format(type(msa)) ) res = self.msa.find_one({"_id": msa_token}) if res is None: json_repr = json.dumps(msa).encode("utf-8") with io.BytesIO(json_repr) as f: self.msa.put(f, _id=msa_token, filename=msa_token) return msa_token else: return None def msa_read(self, msa_token: str) -> Optional[dict]: """loads object from msa collection. It is assumed object is a dictionary""" res = self.msa.find_one({"_id": msa_token}) if res is None: return None json_repr = json.loads(res.read().decode("utf-8")) return json_repr def msa_delete(self, msa_token: str) -> None: """deletes the msa with token msa_token""" self.msa.delete(msa_token) def msa_stored_ids(self) -> List[str]: """returns a list of msa tokens of all objects stored""" return [stored_msa._id for stored_msa in self.msa.find({})] def msa_delete_unless_whitelisted(self, whitelist: Iterable[str]) -> None: """deletes the msa unless the id is in whitelist""" to_delete: Set[str] = set() for id in self.msa_stored_ids(): if id not in whitelist: to_delete.add(id) for msa_token in to_delete: self.msa.delete(msa_token) # methods for trees def tree_store(self, tree_token: str, tree: dict) -> Optional[str]: """stores the tree object tree under token tree_token.""" if not isinstance(tree, dict): raise TypeError( "Can only store dictionary objects, not {0}".format(type(tree)) ) res = self.tree.find_one({"_id": tree_token}) if res is None: json_repr = json.dumps(tree).encode("utf-8") with io.BytesIO(json_repr) as f: self.tree.put(f, _id=tree_token, filename=tree_token) return tree_token else: return None def tree_read(self, tree_token: str) -> Optional[dict]: """loads object from tree collection. It is assumed object is a dictionary""" res = self.tree.find_one({"_id": tree_token}) if res is None: return None json_repr = json.loads(res.read().decode("utf-8")) return json_repr def tree_delete(self, tree_token: str) -> None: """deletes the tree with token tree_token""" self.tree.delete(tree_token) def tree_stored_ids(self) -> List[str]: """returns a list of tree tokens of all objects stored""" return [stored_tree._id for stored_tree in self.tree.find({})] def tree_delete_unless_whitelisted(self, whitelist: Iterable[str]) -> None: """deletes the tree unless the id is in whitelist""" to_delete: Set[str] = set() for id in self.tree_stored_ids(): if id not in whitelist: to_delete.add(id) for tree_token in to_delete: self.tree.delete(tree_token) # methods for clusters def cluster_store(self, clustering_key: str, obj: dict) -> str: """stores the clustering object obj. retains previous version. To clean these up, call cluster_delete_legacy. obj: a dictionary to store clustering_key: the name of the clustering, e.g. TBSNP12-graph Returns: current cluster version Note; does not replace previous version, but stores a new one. cf. warning in Mongo docs: Do not use GridFS if you need to update the content of the entire file atomically. As an alternative you can store multiple versions of each file and specify the current version of the file in the metadata. You can update the metadata field that indicates “latest” status in an atomic update after uploading the new version of the file, and later remove previous versions if needed. """ if not isinstance(obj, dict): raise TypeError( "Can only store dictionary objects, not {0}".format(type(obj)) ) json_repr = json.dumps(obj, cls=NPEncoder).encode("utf-8") with io.BytesIO(json_repr) as f: id = self.clusters.put(f, filename=clustering_key) return id # this is the current cluster version def cluster_read(self, clustering_key: str) -> Optional[dict]: """loads object from clusters collection corresponding to the most recent version of the clustering, saved with filename = 'clustering_key'. """ cursor = ( self.clusters.find({"filename": clustering_key}) .sort("uploadDate", -1) .limit(1) ) for res in cursor: json_repr = json.loads(res.read().decode("utf-8")) return json_repr # nothing there return None def cluster_read_update( self, clustering_key: str, current_cluster_version: bson.objectid.ObjectId ) -> Optional[dict]: """loads object from clusters collection corresponding to the most recent version of the clustering, saved with filename = 'clustering_key'. it will read only if the current version is different from current_cluster_version; other wise, it returns None It is assumed object is a dictionary""" latest_version = self.cluster_latest_version(clustering_key) if latest_version == current_cluster_version: # no update return None else: return self.cluster_read(clustering_key) def cluster_latest_version(self, clustering_key: str) -> bson.objectid.ObjectId: """returns id of latest version""" cursor = ( self.clusters.find({"filename": clustering_key}) .sort("uploadDate", -1) .limit(1) ) for res in cursor: return res._id return None def cluster_keys(self, clustering_name: Optional[str] = None) -> List[str]: """lists clustering keys beginning with clustering_name. If clustering_name is none, all clustering keys are returned.""" cursor = self.clusters.find({}) filenames = set() retVal = [] for res in cursor: filenames.add(res.filename) if ( clustering_name is not None ): # only report keys starting with clustering_name retVal = [x for x in sorted(filenames) if x.startswith(clustering_name)] else: retVal = list(sorted(filenames)) return retVal def cluster_versions(self, clustering_key: str) -> List[bson.objectid.ObjectId]: """lists ids and storage dates corresponding to versions of clustering identifed by clustering_key. the newest version is first. """ cursor = self.clusters.find({"filename": clustering_key}).sort("uploadDate", -1) retVal = [] for res in cursor: retVal.append(res._id) return retVal def cluster_delete_all(self, clustering_key: str) -> None: """delete all clustering objects, including the latest version, stored under clustering_key""" ids = self.cluster_versions(clustering_key) for this_id in ids: self.clusters.delete(this_id) def cluster_delete_legacy_by_key(self, clustering_key: str) -> None: """delete all clustering objects, except latest version, stored with key clustering_key""" ids = self.cluster_versions(clustering_key) ids = ids[1:] for i, this_id in enumerate(ids): logging.info( "Removing historical data for {0} {1} / {2}".format( clustering_key, i, len(ids) ) ) self.clusters.delete(this_id) def cluster_delete_legacy(self, clustering_name: str) -> None: """delete all clustering objects, except latest version, stored with clustering_name""" clustering_keys = self.cluster_keys(clustering_name=clustering_name) for clustering_key in clustering_keys: self.cluster_delete_legacy_by_key(clustering_key) def refcompressedseq_store(self, guid: str, obj: Any) -> str: """stores the sequence object obj with guid guid. Issues an error FileExistsError if the guid already exists.""" pickled_obj = pickle.dumps(obj, protocol=2) res = self.db.refcompressedseq.files.find_one({"_id": guid}, {"_id": 1}) if res is not None: # it exists raise FileExistsError("Attempting to overwrite {0}".format(guid)) id = self.rcs.put(pickled_obj, _id=guid, filename=guid) # do a functional test to verify write recovered_obj = self.refcompressedsequence_read(guid) if not recovered_obj == obj: raise IOError( "Integrity check failed on reference compressed item write/read for {0}".format( guid ) ) return id def refcompressedsequence_read(self, guid: str) -> Any: """loads object from refcompressedseq collection. It is assumed object stored is a dictionary""" res = self.rcs.find_one({"_id": guid}) if res is None: return None return pickle.loads(res.read()) def refcompressedsequence_read_many(self, guids: Iterable) -> Any: """loads objects identified by any of guids from refcompressedseq collection. It is assumed object stored is a dictionary returns: generator, which yields a tuple (guid, referencecompressedsequence) raises: ValueError, if length of guids is > 1000 """ if len(guids) > 1000: raise ValueError("Maximum number of samples which can be sought is 1000") results = self.rcs.find({"_id": {"$in": guids}}) for result in results: yield (result._id, pickle.loads(result.read())) def refcompressedsequence_read_all(self, internal_batch_size = 1000) -> Any: """loads object from refcompressedseq collection. The objects loaded are guids. It is assumed object stored is a dictionary parameters: internal_batch_size: how many samples are loaded into ram at a time. Default should be fine unless low memory returns: generator, which yields a tuple (guid, referencecompressedsequence) """ # sanity check if internal_batch_size < 1: raise ValueError("Internal batch size must be >= 1") all_guids = self.refcompressedsequence_guids() batches = [] this_batch = [] for i, guid in enumerate(all_guids): if i % internal_batch_size == 0 and i > 0: batches.append(this_batch) this_batch = [] this_batch.append(guid) if len(this_batch) > 0: batches.append(this_batch) for this_batch in batches: results = self.rcs.find({"_id": {"$in": this_batch}}) for result in results: yield (result._id, pickle.loads(result.read())) def refcompressedsequence_guids(self) -> Set[str]: """loads guids from refcompressedseq collection.""" # altered syntax because the .load() syntax previously used loaded > 16MB data and failed with > 600k samples res = self.db.refcompressedseq.files.find({}, {"_id": 1}) guids = list() for item in res: guids.append(item["_id"]) return set(guids) # methods for guid2meta def guid_annotate(self, guid: str, nameSpace: str, annotDict: dict) -> None: """adds multiple annotations of guid from a dictionary; all annotations go into a namespace. creates the record if it does not exist""" # check whethere there is an existing metadata object for this metadataObj = self.db.guid2meta.find_one({"_id": guid}) if metadataObj is None: # it doesn't exist. we create a new one. metadataObj = {"_id": guid, "sequence_meta": {nameSpace: annotDict}} if ( "sequence_meta" not in metadataObj.keys() ): # this is key is mandatory and is always present metadataObj["sequence_meta"] = {} # if the namespace does not exist as a subsidiary of sequence_meta, then we create it if nameSpace not in metadataObj["sequence_meta"].keys(): metadataObj["sequence_meta"][nameSpace] = {} # we add any annotations to the existing data metadataObj["sequence_meta"][nameSpace] = { **metadataObj["sequence_meta"][nameSpace], **annotDict, } res = self.db.guid2meta.replace_one({"_id": guid}, metadataObj, upsert=True) if res.acknowledged is not True: raise IOError( "Mongo {0} did not acknowledge write of data: {1}".format( self.db, metadataObj ) ) def guids(self) -> Set[str]: """returns all registered guids""" retVal = [x["_id"] for x in self.db.guid2meta.find({}, {"_id": 1})] return set(retVal) def guids_added_after_sample(self, guid: str) -> Set[str]: """returns all guids added after a sample""" print("*** SEARCHING FOR ", guid) this_examination_time = self.guid_examination_time(guid) if this_examination_time is None: return None return self.guids_considered_after(addition_datetime=this_examination_time) def guids_considered_after(self, addition_datetime: datetime.datetime) -> Set[str]: """returns all registered guid added after addition_datetime addition_datetime: a date of datetime class.""" if not isinstance(addition_datetime, datetime.datetime): raise TypeError( "addition_datetime must be a datetime.datetime value. It is {0}. Value = {1}".format( type(addition_datetime), addition_datetime ) ) retVal = [ x["_id"] for x in self.db.guid2meta.find( { "sequence_meta.DNAQuality.examinationDate": { "$gt": addition_datetime } }, {"_id": 1}, ) ] return set(retVal) def _guids_selected_by_validity(self, validity: int) -> Set[str]: """returns registered guids, selected on their validity 0 = guid is valid 1 = guid is invalid """ if validity not in [0, 1]: raise ValueError("Validity must be 0 or 1, not {0}".format(validity)) retVal = [ x["_id"] for x in self.db.guid2meta.find( {"sequence_meta.DNAQuality.invalid": validity} ) ] return set(retVal) def singletons( self, method: str = "approximate", return_top: int = 1000 ) -> pd.DataFrame: """returns guids and the number of singleton records, which (if high numbers are present) indicates repacking is needed. Inclusion of max_records is important for very large datasets, or the query is slow. Parameters: method: either 'approximate' or 'exact'. For ranking samples for repacking, the approximate method is recommended. return_top: the number of results to return. Set > number of samples to return all records. If method = 'exact', return_top is ignored and all records are returned. The approximate method is much faster than the exact one if large numbers of singletons are present; it randomly downsamples the guid-neighbour pairs in the guid2neighbour collection, taking 100k samples only, and the counts the number of singletons in the downsample. This is therefore a method of ranking samples which may benefit from repacking. This sampling method returns queries in a few milliseconds in testing on large tables. This method is not deterministic. In the event of failure to successfully generate a sample of sufficient size (set to 100k at present), which can happen if there are fewer than singletons, then the exact method will be used as a fallback. If fallback of this kind occurs, only return_top samples will be returned. The exact method computes the exact non-zero number of singletons for each sample. This requires an index scan which can be surprisingly slow, with the query taking > 30 seconds with > table size ~ 3 x10^7. This method is deterministic. Returns: a set of sample identifiers ('guids') which contain > min_number_records singleton entries. """ # input validation if not isinstance(return_top, int): raise TypeError( "return_top is {0}; this must be an integer not a {1}".format( return_top, type(return_top) ) ) if not return_top > 0: raise TypeError( "return_top is {0}; this must be a non zero positive integer".format( return_top ) ) if method not in ["exact", "approximate"]: raise ValueError( "Method must be either 'exact' or 'approximate', not {0}".format(method) ) # use mongodb pipeline # shell example: db.guid2neighbour.aggregate([ {$sample: {size: 100000}}, { $match: {rstat:'s'}}, { $sortByCount: "$guid"}, {$limit: 1000} ] ) approximate_pipeline = [ {"$sample": {"size": 100000}}, {"$match": {"rstat": "s"}}, {"$sortByCount": "$guid"}, {"$limit": return_top}, ] exact_pipeline = [{"$match": {"rstat": "s"}}, {"$sortByCount": "$guid"}] fallback = False if method == "approximate": try: results = self.db.guid2neighbour.aggregate( approximate_pipeline, allowDiskUse=True ) except pymongo.errors.OperationFailure: # occurs if there are very few samples left; a random sample of the required size (in this case 100k) cannot be generated method = "exact" logging.info( "mongoStore.singletons | unable to generate a random sample of the required size, due to a small numbers of singletons. Falling back to an exact method." ) fallback = True if method == "exact": results = self.db.guid2neighbour.aggregate( exact_pipeline, allowDiskUse=True ) ret_list = [] for item in results: ret_list.append(item) if fallback is True and len(ret_list) > return_top: logging.info( "Fallback prcesses in place; restricting to top {0}. Exact search examined {1} samples with singletons".format( return_top, len(ret_list) ) ) ret_list = ret_list[:return_top] ret_df = pd.DataFrame.from_records(ret_list) ret_df.rename(columns={"_id": "guid"}, inplace=True) if ( ret_df.empty ): # if empty, the '_id' column is not there, and the rename fails ret_df = pd.DataFrame(columns=("guid", "count")) ret_df.set_index("guid", drop=True, inplace=True) return ret_df def guids_valid(self) -> set: """return all registered valid guids. Validity is determined by the contents of the DNAQuality.invalid field, on which there is an index""" return self._guids_selected_by_validity(0) def guids_invalid(self) -> set: """return all invalid guids Validity is determined by the contents of the DNAQuality.invalid field, on which there is an index""" return self._guids_selected_by_validity(1) def guid_exists(self, guid: str) -> bool: """checks the presence of a single guid""" res = self.db.guid2meta.find_one({"_id": guid}) if res is None: return False else: return True def guid_valid(self, guid: str) -> int: """checks the validity of a single guid Parameters: guid: the sequence identifier Returns -1 The guid does not exist 0 The guid exists and the sequence is valid 1 The guid exists and the sequence is invalid -2 The guid exists, but there is no DNAQuality.valid key""" res = self.db.guid2meta.find_one({"_id": guid}) if res is None: return -1 else: try: return int(res["sequence_meta"]["DNAQuality"]["invalid"]) except KeyError: return -2 def guid_examination_time(self, guid: str) -> Optional[datetime.datetime]: """returns the examination time for a single guid Parameters: guid: the sequence identifier Returns either The examination datetime value for this guid OR None if the guid does not exist, or the sequence_meta.DNAQuality.examinationTime key does not exist. """ res = self.db.guid2meta.find_one( {"_id": guid}, {"sequence_meta.DNAQuality.examinationDate": 1} ) if res is None: return None try: return res["sequence_meta"]["DNAQuality"]["examinationDate"] except KeyError: return None def guids_considered_after_guid(self, guid: str) -> Set[str]: """returns all registered guids added after guid guid: a sequence identifier""" addition_datetime = self.guid_examination_time(guid) if addition_datetime is None: raise ValueError("guid is not valid: {0}".format(guid)) else: return self.guids_considered_after(addition_datetime) def guid_quality_check( self, guid: str, cutoff: Union[float, int] ) -> Optional[bool]: """Checks whether the quality of one guid exceeds the cutoff. If the guid does not exist, returns None. If the guid does exist and has quality< cutoff, returns False. Otherwise, returns True. """ # test input if not type(cutoff) in [float, int]: raise TypeError( "Cutoff should be either floating point or integer, but it is %s" % type(cutoff) ) if not type(guid) == str: raise TypeError("The guid passed should be as string, not %s" % str(guid)) # recover record, compare with quality res = self.db.guid2meta.find_one({"_id": guid}, {"sequence_meta": 1}) if res is None: # no entry for this guid return None else: try: dnaq = res["sequence_meta"]["DNAQuality"] except KeyError: raise KeyError( "DNA quality is not present in the sequence metadata {0}: {1}".format( guid, res ) ) # check the DNA quality metric expected is present if "propACTG" not in dnaq.keys(): raise KeyError( "propACTG is not present in DNAQuality namespace of guid {0}: {1}".format( guid, dnaq ) ) # report whether it is larger or smaller than cutoff return dnaq["propACTG"] >= cutoff def guid2item( self, guidList: Optional[List[str]], namespace: str, tag: str ) -> Optional[dict]: """returns the annotation (such as sequence quality, which is stored as an annotation) in namespace:tag for all guids in guidlist. If guidList is None, all items are returned. An error is raised if namespace and tag is not present in each record. """ retDict = {} if guidList is None: results = self.db.guid2meta.find({}, {"sequence_meta": 1}) else: results = self.db.guid2meta.find( {"_id": {"$in": guidList}}, {"sequence_meta": 1} ) if results is None: # nothing found return None for res in results: try: namespace_content = res["sequence_meta"][namespace] except KeyError: raise KeyError( "{2} is not present in the sequence metadata {0}: {1}".format( guidList, res, namespace ) ) # check the DNA quality metric expected is present if tag not in namespace_content.keys(): raise KeyError( "{2} is not present in {3} namespace of guid {0}: {1}".format( guidList, namespace_content, tag, namespace ) ) # return property retDict[res["_id"]] = namespace_content[tag] return retDict def guid2ExaminationDateTime( self, guidList: Optional[List[str]] = None ) -> Optional[dict]: """returns quality scores and examinationDate for all guids in guidlist. If guidList is None, all results are returned.""" return self.guid2item(guidList, "DNAQuality", "examinationDate") def guid2quality(self, guidList: Optional[List[str]] = None) -> Optional[dict]: """returns quality scores for all guids in guidlist (or all samples if guidList is None) potentially expensive query if guidList is None.""" return self.guid2item(guidList, "DNAQuality", "propACTG") def guid2propACTG_filtered(self, cutoff: Union[int, float] = 0) -> Dict[str, float]: """recover guids which have good quality, > cutoff. These are in the majority, so we run a table scan to find these. This query is potentially very inefficient- best avoided """ allresults = self.db.guid2meta.find( {"sequence_meta.DNAQuality.propACTG": {"$gte": cutoff}}, {"_id": 1, "sequence_meta.DNAQuality.propACTG": 1}, ) retDict = {} for item in allresults: retDict[item["_id"]] = item["sequence_meta"]["DNAQuality"]["propACTG"] return retDict # note: slightly different from previous api def guid2items( self, guidList: Optional[List[str]], namespaces: Optional[Set[str]] ) -> Optional[Dict[Any, Dict[str, Any]]]: """returns all annotations in namespaces, which is a list, as a pandas dataframe. If namespaces is None, all namespaces are returned. If guidList is None, all items are returned. To do this, a table scan is performed - indices are not used. """ retDict = {} if guidList is None: results = self.db.guid2meta.find({}, {"sequence_meta": 1}) else: results = self.db.guid2meta.find( {"_id": {"$in": guidList}}, {"sequence_meta": 1} ) if results is None: # nothing found return None for res in results: row = {} sought_namespaces = set(res["sequence_meta"].keys()) if namespaces is not None: # we only want a subset sought_namespaces = sought_namespaces.intersection( namespaces ) # what we want, intersect what we've got for sought_namespace in sought_namespaces: for tag in res["sequence_meta"][sought_namespace].keys(): col_name = "{0}:{1}".format(sought_namespace, tag) row[col_name] = res["sequence_meta"][sought_namespace][tag] retDict[res["_id"]] = row return retDict def guid_annotations(self) -> Optional[Dict[Any, Dict[str, Any]]]: """return all annotations of all guids""" return self.guid2items(None, None) # no restriction by namespace or by guid. def guid_annotation(self, guid: str) -> Optional[Dict[Any, Dict[str, Any]]]: """return all annotations of one guid""" return self.guid2items([guid], None) # restriction by guid. def guid2neighbour_add_links( self, guid: str, targetguids: Dict[str, Dict[str, int]], use_update: bool = False, ) -> Dict[str, int]: """adds links between guid and their neighbours ('targetguids') Parameters: guid: the 'source' guid for the matches eg 'guid1' targetguids: what is guid linked to, eg { 'guid2':{'dist':12}, 'guid3':{'dist':2} } use_update - currently ignored, always False. Setting True yields NotImplementedError This stores links in the guid2neighbour collection. If use_update = True, will update target documents, adding a new link to the targetguid document. {targetguid -> {previousguid: distance1, previousguid2: distance2}} --> {targetguid -> {previousguid: distance1, previousguid2: distance2, guid: distance} This approach has many disadvantages - multiple database accesses: one to find a document to update, and one to update it - may be hundreds or thousands of database connections for each insert operation - approach is (with Mongodb) not inherently atomic. If failure occurs in the middle of the process, database can be left in an inconsistent state, requiring use of transactions (slower) - by contrast, the no_update method (default) requires a single insert_many operation, which is much cleaner and is atomic. - the use_update approach is not implemented If use_update = False (default), for each new link from targetguid -> guid, a new document will be inserted linking {targetguid -> {guid: distance}} The function guid2neighbour_repack() reduces the number of documents required to store the same information. if annotation is not None, will additionally write an annotation dictionary Returns: The number of records written """ # find guid2neighbour entry for guid. to_insert: List[Dict[str, Any]] = [] current_m: Optional[ Dict[str, Any] ] = None # no target record for guid -> multiple targets. We made a new one. for targetguid in targetguids.keys(): payload = targetguids[targetguid] # a distance ## ADD REVERSE LINK # NOTE: for the (new) guid --> targetguids, we can write a single record with many entries # however, the other way round, we have to add multiple single samples # targetguid --> guid (reverse link) (singleton) if ( use_update ): # slower: multiple update operations against the database on insert, not atomic see above raise NotImplementedError( "Updating method for adding links is not implemented" ) else: # insert a new record, which can be processed by update_many to_insert.append( {"guid": targetguid, "rstat": "s", "neighbours": {guid: payload}} ) # Now add one record containing many target guids # guid --> {many targetguids } (forward link) if current_m is not None: if ( len(current_m["neighbours"].keys()) >= self.max_neighbours_per_document ): # need to make another one current_m["rstat"] = "f" # full to_insert.append(current_m) current_m = None # if we don't have a current_m, which is a data structure containing what we're going to write to disc, # either because this is the first pass through the loop, or becuase our previous current_m was full (see above) # then we make one if current_m is None: current_m = {"guid": guid, "rstat": "m", "neighbours": {}} # make one # add the element to current_m current_m["neighbours"][targetguid] = payload # now we've covered all the elements to write # do we have a current m with data in it? if current_m is not None: if len(current_m["neighbours"].keys()) > 0: # check if it's full if ( len(current_m["neighbours"].keys()) >= self.max_neighbours_per_document ): current_m["rstat"] = "f" # full # check if it's actually a singleton if len(current_m["neighbours"].keys()) == 1: current_m["rstat"] = "s" # just one # add to to_insert to_insert.append(current_m) # when complete, do update if len(to_insert) > 0: res = self.db.guid2neighbour.insert_many(to_insert, ordered=False) if res.acknowledged is not True: raise IOError( "Mongo {0} did not acknowledge write of data: {1}".format( self.db, to_insert ) ) # check there is a metadata object for the guid metadataObj = self.db.guid2meta.find_one({"_id": guid}) if metadataObj is None: # it doesn't exist. we create a new one. metadataObj = { "_id": guid, "created": {"created_at": datetime.datetime.now().isoformat()}, } res = self.db.guid2meta.insert_one({"_id": guid}, metadataObj) if res.acknowledged is not True: raise IOError( "Mongo {0} did not acknowledge write of data: {1}".format( self.db, metadataObj ) ) return {"records_written": len(to_insert)} def _audit_storage(self, guid: str) -> Tuple[set, pd.DataFrame, dict]: """returns a pandas data frame containing all neighbours of guid, as stored in mongo, as well as a summary of storage statistics and a list of _ids which could be optimised Parameters: guid : the identifier of a sample to repack Returns: A tuple containing three elements: to_optimise: a set of mongodb record _ids which are either single, not full (m) or contain duplicate guids and so could be optimised content_df: a dataframe containing all record _ids, the neighbouring guid, and the snp distance. audit_stats: a dictionary containing the following: singletons: number of singleton records m_records: number of records which are not completely full f_records: number of full records f_records_with_duplicates: number of full records containing the same guid twice neighbouring_guids: the number of neighbouring guids neighbouring_guids_recordings: number of times a neighbouring guid is recorded. Maybe larger than neighbouring_guids. Designed for internal use """ ## audit the storage of neighbours # read all occurrences of each neighbour and its distances into a pandas dataframe # note that its is OK for a neighbour to be present more than once bytes_per_record: Dict[str, List[int]] = {"s": [], "m": [], "f": []} contents = [] for res in self.db.guid2neighbour.find({"guid": guid}): bytes_per_record[res["rstat"]].append(len(str(res))) location = res.copy() del location["neighbours"] for neighbouring_guid in res["neighbours"].keys(): storage_element = location.copy() storage_element["guid"] = neighbouring_guid storage_element["dist"] = res["neighbours"][neighbouring_guid]["dist"] contents.append(storage_element) content_df =
pd.DataFrame.from_records(contents)
pandas.DataFrame.from_records
import abc import asyncio import concurrent.futures import datetime import glob import json import logging import os import shutil import socket import time from concurrent.futures import ThreadPoolExecutor from contextlib import suppress from pathlib import Path from typing import Any, Callable, Coroutine, Dict, List, Optional, Set, Tuple, Union import adaptive import cloudpickle import jinja2 import pandas as pd import structlog import zmq import zmq.asyncio import zmq.ssh from tinydb import Query, TinyDB from adaptive_scheduler.scheduler import BaseScheduler from adaptive_scheduler.utils import ( _deserialize, _progress, _remove_or_move_files, _serialize, load_parallel, maybe_lst, ) from adaptive_scheduler.widgets import log_explorer ctx = zmq.asyncio.Context() logger = logging.getLogger("adaptive_scheduler.server") logger.setLevel(logging.INFO) log = structlog.wrap_logger(logger) class MaxRestartsReached(Exception): """Jobs can fail instantly because of a error in your Python code which results jobs being started indefinitely.""" class _BaseManager(metaclass=abc.ABCMeta): def __init__(self) -> None: self.ioloop: Optional[asyncio.events.AbstractEventLoop] = None self._coro: Optional[Coroutine] = None self.task: Optional[asyncio.Task] = None def start(self): if self.is_started: raise Exception(f"{self.__class__} is already started!") self._setup() self.ioloop = asyncio.get_event_loop() self._coro = self._manage() self.task = self.ioloop.create_task(self._coro) return self @property def is_started(self) -> bool: return self.task is not None def cancel(self) -> Optional[bool]: if self.is_started: return self.task.cancel() def _setup(self): """Is run in the beginning of `self.start`.""" pass @abc.abstractmethod async def _manage(self) -> None: pass class DatabaseManager(_BaseManager): """Database manager. Parameters ---------- url : str The url of the database manager, with the format ``tcp://ip_of_this_machine:allowed_port.``. Use `get_allowed_url` to get a `url` that will work. scheduler : `~adaptive_scheduler.scheduler.BaseScheduler` A scheduler instance from `adaptive_scheduler.scheduler`. db_fname : str Filename of the database, e.g. 'running.json'. learners : list of `adaptive.BaseLearner` isinstances List of `learners` corresponding to `fnames`. fnames : list List of `fnames` corresponding to `learners`. overwrite_db : bool, default: True Overwrite the existing database upon starting. Attributes ---------- failed : list A list of entries that have failed and have been removed from the database. """ def __init__( self, url: str, scheduler: BaseScheduler, db_fname: str, learners: List[adaptive.BaseLearner], fnames: Union[List[str], List[List[str]]], overwrite_db: bool = True, ): super().__init__() self.url = url self.scheduler = scheduler self.db_fname = db_fname self.learners = learners self.fnames = fnames self.overwrite_db = overwrite_db self.defaults = dict( job_id=None, is_done=False, log_fname=None, job_name=None, output_logs=[] ) self._last_reply: Union[str, Exception, None] = None self._last_request: Optional[Tuple[str, ...]] = None self.failed: List[Dict[str, Any]] = [] def _setup(self) -> None: if os.path.exists(self.db_fname) and not self.overwrite_db: return self.create_empty_db() def update(self, queue: Optional[Dict[str, Dict[str, str]]] = None) -> None: """If the ``job_id`` isn't running anymore, replace it with None.""" if queue is None: queue = self.scheduler.queue(me_only=True) with TinyDB(self.db_fname) as db: failed = [ entry for entry in db.all() if (entry["job_id"] is not None) and (entry["job_id"] not in queue) ] self.failed.extend(failed) doc_ids = [e.doc_id for e in failed] db.update({"job_id": None, "job_name": None}, doc_ids=doc_ids) def n_done(self) -> int: Entry = Query() with TinyDB(self.db_fname) as db: return db.count(Entry.is_done == True) # noqa: E711 def create_empty_db(self) -> None: """Create an empty database that keeps track of ``fname -> (job_id, is_done, log_fname, job_name)``. """ entries = [dict(fname=fname, **self.defaults) for fname in self.fnames] if os.path.exists(self.db_fname): os.remove(self.db_fname) with TinyDB(self.db_fname) as db: db.insert_multiple(entries) def as_dicts(self) -> List[Dict[str, str]]: with TinyDB(self.db_fname) as db: return db.all() def _output_logs(self, job_id: str, job_name: str): job_id = self.scheduler.sanatize_job_id(job_id) output_fnames = self.scheduler.output_fnames(job_name) return [ f.replace(self.scheduler._JOB_ID_VARIABLE, job_id) for f in output_fnames ] def _start_request( self, job_id: str, log_fname: str, job_name: str ) -> Optional[str]: Entry = Query() with TinyDB(self.db_fname) as db: if db.contains(Entry.job_id == job_id): entry = db.get(Entry.job_id == job_id) fname = entry["fname"] # already running raise Exception( f"The job_id {job_id} already exists in the database and " f"runs {fname}. You might have forgotten to use the " "`if __name__ == '__main__': ...` idom in your code. Read the " "warning in the [mpi4py](https://bit.ly/2HAk0GG) documentation." ) entry = db.get( (Entry.job_id == None) & (Entry.is_done == False) ) # noqa: E711 log.debug("choose fname", entry=entry) if entry is None: return None db.update( { "job_id": job_id, "log_fname": log_fname, "job_name": job_name, "output_logs": self._output_logs(job_id, job_name), }, doc_ids=[entry.doc_id], ) return entry["fname"] def _stop_request(self, fname: Union[str, List[str]]) -> None: fname = maybe_lst(fname) # if a BalancingLearner Entry = Query() with TinyDB(self.db_fname) as db: reset = dict(job_id=None, is_done=True, job_name=None) assert ( db.get(Entry.fname == fname) is not None ) # make sure the entry exists db.update(reset, Entry.fname == fname) def _stop_requests(self, fnames: List[Union[str, List[str]]]) -> None: # Same as `_stop_request` but optimized for processing many `fnames` at once fnames = {str(maybe_lst(fname)) for fname in fnames} with TinyDB(self.db_fname) as db: reset = dict(job_id=None, is_done=True, job_name=None) doc_ids = [e.doc_id for e in db.all() if str(e["fname"]) in fnames] db.update(reset, doc_ids=doc_ids) def _dispatch(self, request: Tuple[str, ...]) -> Union[str, Exception, None]: request_type, *request_arg = request log.debug("got a request", request=request) try: if request_type == "start": # workers send us their slurm ID for us to fill in job_id, log_fname, job_name = request_arg kwargs = dict(job_id=job_id, log_fname=log_fname, job_name=job_name) # give the worker a job and send back the fname to the worker fname = self._start_request(**kwargs) if fname is None: raise RuntimeError("No more learners to run in the database.") learner = next( l for l, f in zip(self.learners, self.fnames) if maybe_lst(f) == fname ) log.debug("choose a fname", fname=fname, **kwargs) return learner, fname elif request_type == "stop": fname = request_arg[0] # workers send us the fname they were given log.debug("got a stop request", fname=fname) self._stop_request(fname) # reset the job_id to None return None except Exception as e: return e async def _manage(self) -> None: """Database manager co-routine. Returns ------- coroutine """ log.debug("started database") socket = ctx.socket(zmq.REP) socket.bind(self.url) try: while True: self._last_request = await socket.recv_serialized(_deserialize) self._last_reply = self._dispatch(self._last_request) await socket.send_serialized(self._last_reply, _serialize) finally: socket.close() class JobManager(_BaseManager): """Job manager. Parameters ---------- job_names : list List of unique names used for the jobs with the same length as `learners`. Note that a job name does not correspond to a certain specific learner. database_manager : `DatabaseManager` A `DatabaseManager` instance. scheduler : `~adaptive_scheduler.scheduler.BaseScheduler` A scheduler instance from `adaptive_scheduler.scheduler`. interval : int, default: 30 Time in seconds between checking and starting jobs. max_simultaneous_jobs : int, default: 5000 Maximum number of simultaneously running jobs. By default no more than 5000 jobs will be running. Keep in mind that if you do not specify a ``runner.goal``, jobs will run forever, resulting in the jobs that were not initially started (because of this `max_simultaneous_jobs` condition) to not ever start. max_fails_per_job : int, default: 40 Maximum number of times that a job can fail. This is here as a fail switch because a job might fail instantly because of a bug inside `run_script`. The job manager will stop when ``n_jobs * total_number_of_jobs_failed > max_fails_per_job`` is true. Attributes ---------- n_started : int Total number of jobs started by the `JobManager`. """ def __init__( self, job_names: List[str], database_manager: DatabaseManager, scheduler: BaseScheduler, interval: int = 30, *, max_simultaneous_jobs: int = 5000, max_fails_per_job: int = 100, ): super().__init__() self.job_names = job_names self.database_manager = database_manager self.scheduler = scheduler self.interval = interval self.max_simultaneous_jobs = max_simultaneous_jobs self.max_fails_per_job = max_fails_per_job self.n_started = 0 @property def max_job_starts(self) -> int: """Equivalent to ``self.max_fails_per_job * len(self.job_names)``""" return self.max_fails_per_job * len(self.job_names) def _queued(self, queue) -> Set[str]: return { job["job_name"] for job in queue.values() if job["job_name"] in self.job_names } async def _manage(self) -> None: with concurrent.futures.ProcessPoolExecutor() as ex: while True: try: running = self.scheduler.queue(me_only=True) self.database_manager.update(running) # in case some jobs died queued = self._queued(running) # running `job_name`s not_queued = set(self.job_names) - queued n_done = self.database_manager.n_done() if n_done == len(self.job_names): # we are finished! return else: n_to_schedule = max(0, len(not_queued) - n_done) not_queued = set(list(not_queued)[:n_to_schedule]) while not_queued: # start new jobs if len(queued) <= self.max_simultaneous_jobs: job_name = not_queued.pop() queued.add(job_name) await self.ioloop.run_in_executor( ex, self.scheduler.start_job, job_name ) self.n_started += 1 else: break if self.n_started > self.max_job_starts: raise MaxRestartsReached( "Too many jobs failed, your Python code probably has a bug." ) await asyncio.sleep(self.interval) except concurrent.futures.CancelledError: log.info("task was cancelled because of a CancelledError") raise except MaxRestartsReached as e: log.exception( "too many jobs have failed, cancelling the job manager", n_started=self.n_started, max_fails_per_job=self.max_fails_per_job, max_job_starts=self.max_job_starts, exception=str(e), ) raise except Exception as e: log.exception("got exception when starting a job", exception=str(e)) await asyncio.sleep(5) def logs_with_string_or_condition( error: Union[str, Callable[[List[str]], bool]], database_manager: DatabaseManager ) -> List[Tuple[str, List[str]]]: """Get jobs that have `string` (or apply a callable) inside their log-file. Either use `string` or `error`. Parameters ---------- error : str or callable String that is searched for or callable that is applied to the log text. Must take a single argument, a list of strings, and return True if the job has to be killed, or False if not. database_manager : `DatabaseManager` A `DatabaseManager` instance. Returns ------- has_string : dict A list ``(job_name, fnames)``, which have the string inside their log-file. """ if isinstance(error, str): has_error = lambda lines: error in "".join(lines) # noqa: E731 elif callable(error): has_error = error else: raise ValueError("`error` can only be a `str` or `callable`.") def file_has_error(fname): if not os.path.exists(fname): return False with open(fname) as f: lines = f.readlines() return has_error(lines) have_error = [] for entry in database_manager.as_dicts(): fnames = entry["output_logs"] if entry["job_id"] is not None and any(file_has_error(f) for f in fnames): all_fnames = fnames + [entry["log_fname"]] have_error.append((entry["job_name"], all_fnames)) return have_error class KillManager(_BaseManager): """Kill manager. Automatically cancel jobs that contain an error (or other condition) in the log files. Parameters ---------- scheduler : `~adaptive_scheduler.scheduler.BaseScheduler` A scheduler instance from `adaptive_scheduler.scheduler`. database_manager : `DatabaseManager` A `DatabaseManager` instance. error : str or callable, default: "srun: error:" If ``error`` is a string and is found in the log files, the job will be cancelled and restarted. If it is a callable, it is applied to the log text. Must take a single argument, a list of strings, and return True if the job has to be killed, or False if not. interval : int, default: 600 Time in seconds between checking for the condition. max_cancel_tries : int, default: 5 Try maximum `max_cancel_tries` times to cancel a job. move_to : str, optional If a job is cancelled the log is either removed (if ``move_to=None``) or moved to a folder (e.g. if ``move_to='old_logs'``). """ def __init__( self, scheduler: BaseScheduler, database_manager: DatabaseManager, error: Union[str, Callable[[List[str]], bool]] = "srun: error:", interval: int = 600, max_cancel_tries: int = 5, move_to: Optional[str] = None, ): super().__init__() self.scheduler = scheduler self.database_manager = database_manager self.error = error self.interval = interval self.max_cancel_tries = max_cancel_tries self.move_to = move_to self.cancelled: List[str] = [] self.deleted: List[str] = [] async def _manage(self) -> None: while True: try: self.database_manager.update() failed_jobs = logs_with_string_or_condition( self.error, self.database_manager ) to_cancel: List[str] = [] to_delete: List[str] = [] for job_name, fnames in failed_jobs: to_cancel.append(job_name) to_delete.extend(fnames) self.scheduler.cancel( to_cancel, with_progress_bar=False, max_tries=self.max_cancel_tries ) _remove_or_move_files( to_delete, with_progress_bar=False, move_to=self.move_to ) self.cancelled.extend(to_cancel) self.deleted.extend(to_delete) await asyncio.sleep(self.interval) except concurrent.futures.CancelledError: log.info("task was cancelled because of a CancelledError") raise except Exception as e: log.exception("got exception in kill manager", exception=str(e)) def get_allowed_url() -> str: """Get an allowed url for the database manager. Returns ------- url : str An url that can be used for the database manager, with the format ``tcp://ip_of_this_machine:allowed_port.``. """ ip = socket.gethostbyname(socket.gethostname()) port = zmq.ssh.tunnel.select_random_ports(1)[0] return f"tcp://{ip}:{port}" def _make_default_run_script( url: str, save_interval: int, log_interval: int, goal: Union[Callable[[adaptive.BaseLearner], bool], None] = None, runner_kwargs: Optional[Dict[str, Any]] = None, run_script_fname: str = "run_learner.py", executor_type: str = "mpi4py", ) -> None: default_runner_kwargs = dict(shutdown_executor=True) runner_kwargs = dict(default_runner_kwargs, goal=goal, **(runner_kwargs or {})) serialized_runner_kwargs = cloudpickle.dumps(runner_kwargs) if executor_type not in ("mpi4py", "ipyparallel", "dask-mpi", "process-pool"): raise NotImplementedError( "Use 'ipyparallel', 'dask-mpi', 'mpi4py' or 'process-pool'." ) if executor_type == "dask-mpi": try: import dask_mpi # noqa: F401 except ModuleNotFoundError as e: msg = "You need to have 'dask-mpi' installed to use `executor_type='dask-mpi'`." raise Exception(msg) from e with open(Path(__file__).parent / "run_script.py.j2") as f: empty = "".join(f.readlines()) template = jinja2.Template(empty).render( run_script_fname=run_script_fname, executor_type=executor_type, url=url, serialized_runner_kwargs=serialized_runner_kwargs, save_interval=save_interval, log_interval=log_interval, ) with open(run_script_fname, "w") as f: f.write(template) def _get_infos(fname: str, only_last: bool = True) -> List[str]: status_lines: List[str] = [] with open(fname) as f: lines = f.readlines() for line in reversed(lines): with suppress(Exception): info = json.loads(line) if info["event"] == "current status": status_lines.append(info) if only_last: return status_lines return status_lines def parse_log_files( job_names: List[str], database_manager: DatabaseManager, scheduler, only_last: bool = True, ) -> pd.DataFrame: """Parse the log-files and convert it to a `~pandas.core.frame.DataFrame`. This only works if you use `adaptive_scheduler.client_support.log_info` inside your ``run_script``. Parameters ---------- job_names : list List of job names. database_manager : `DatabaseManager` A `DatabaseManager` instance. scheduler : `~adaptive_scheduler.scheduler.BaseScheduler` A scheduler instance from `adaptive_scheduler.scheduler`. only_last : bool, default: True Only look use the last printed status message. Returns ------- `~pandas.core.frame.DataFrame` """ _queue = scheduler.queue() database_manager.update(_queue) infos = [] for entry in database_manager.as_dicts(): log_fname = entry["log_fname"] if log_fname is None or not os.path.exists(log_fname): continue for info in _get_infos(log_fname, only_last): info.pop("event") # this is always "current status" info["timestamp"] = datetime.datetime.strptime( info["timestamp"], "%Y-%m-%d %H:%M.%S" ) info["elapsed_time"] = pd.to_timedelta(info["elapsed_time"]) info.update(entry) infos.append(info) for info in infos: info_from_queue = _queue.get(info["job_id"]) if info_from_queue is None: continue info["state"] = info_from_queue["state"] info["job_name"] = info_from_queue["job_name"] return
pd.DataFrame(infos)
pandas.DataFrame
# -*- coding: utf-8 -*- # ================================================================================ # ACUMOS # ================================================================================ # Copyright © 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved. # ================================================================================ # This Acumos software file is distributed by AT&T and Tech Mahindra # under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================ from __future__ import print_function import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from crome import CromeProcessor float_cols = ["cpu_usage", "cpu_usagemhz", "mem_active", "mem_consumed", "mem_granted", "mem_usage", "net_received", "net_transmitted", "net_usage"] trim_cols = ["DATETIMEUTC", "DATEUTC", "GLOBAL_CUSTOMER_ID", "SUBSCRIBER_NAME", "VM_ID"] features = ['VM_mapped', 'day', 'weekday', 'hour', 'minute', 'hist-1D8H', 'hist-1D4H', 'hist-1D2H', 'hist-1D1H', 'hist-1D', 'hist-1D15m', 'hist-1D30m', 'hist-1D45m'] def remove_column_spaces (df): replace_dict = {} for colname in df.columns: replace_dict[colname] = colname.replace(" ", "") df = df.rename(index=str, columns=replace_dict) return df def cols_to_float (df, columns): for colname in columns: print (" float: ", colname) try: df[colname] = df[colname].apply(lambda x:np.float64(str(x).replace(",",""))) except: pass return df def trim_columns (df, columns): for colname in columns: print (" trim: ", colname) try: df[colname] = df[colname].str.strip() except: pass return df def preprocess (df, target_col, VM_list=[], max_proc=50): print ("remove spaces") df = remove_column_spaces(df) print ("collect VMs") to_trim = list(trim_cols) df = trim_columns (df, ['VM_ID']) to_trim.remove('VM_ID') if not VM_list or len(VM_list) == 0: VM_list = sorted(list(set(df['VM_ID']))) # process all VMs else: df = df[df['VM_ID'].isin(VM_list)] vm_map = dict([(val, i) for i, val in enumerate(set(df['VM_ID']))]) df['VM_mapped'] = df['VM_ID'].apply(lambda x: vm_map[x]) print ("convert columns to float:", float_cols) df = cols_to_float (df, float_cols) print ("apply trim:", trim_cols) df = trim_columns (df, trim_cols) cp = CromeProcessor (target_col, feats=features) result =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser)
tm.assert_frame_equal(chunks[0], df[1:3])
pandas.util.testing.assert_frame_equal
import numpy as np import pandas as pd def set_order(df, row): if
pd.isnull(row['order'])
pandas.isnull
import os import pickle import re from pathlib import Path import numpy as np import pandas as pd from matplotlib import pyplot as plt from numpy import interp import thoipapy from thoipapy.utils import make_sure_path_exists def validate_multiple_predictors_and_subsets_auboc(s, df_set, logging): logging.info("start create_AUBOC_43databases_figs") predictors = ["THOIPA_{}_LOO".format(s["set_number"]), "PREDDIMER", "TMDOCK", "LIPS_surface_ranked", "random"] # "LIPS_L*E", subsets = ["crystal", "NMR", "ETRA"] for subset in subsets: df_o_minus_r_mean_df = pd.DataFrame() AUBOC_list = [] mean_AUBOC_file = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/compare_selected_predictors/data/{s['setname']}.{subset}.4predictors_mean_AUBOC.csv" mean_AUBOC_barplot_png = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/compare_selected_predictors/figs/{s['setname']}.{subset}.4predictors_mean_AUBOC.png" BOCURVE_linechart_csv = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/compare_selected_predictors/data/{s['setname']}.{subset}.4predictors_BOCURVE_linechart.csv" BOCURVE_linechart_png = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/compare_selected_predictors/figs/{s['setname']}.{subset}.4predictors_BOCURVE_linechart.png" make_sure_path_exists(BOCURVE_linechart_png, isfile=True) make_sure_path_exists(mean_AUBOC_file, isfile=True) for predictor in predictors: bocurve_data_xlsx = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/data/{predictor}/bocurve_data.xlsx" df_o_minus_r = pd.read_excel(bocurve_data_xlsx, sheet_name="df_o_minus_r", index_col=0) df_o_minus_r = df_o_minus_r.filter(regex=subset, axis=1) df_o_minus_r_mean = df_o_minus_r.T.mean() # apply cutoff (e.g. 5 residues for AUBOC5) auboc_ser = df_o_minus_r_mean.iloc[:s["n_residues_AUBOC_validation"]] AUBOC = np.trapz(y=auboc_ser, x=auboc_ser.index) AUBOC_list.append(AUBOC) df_o_minus_r_mean_df =
pd.concat([df_o_minus_r_mean_df, df_o_minus_r_mean], axis=1, join="outer")
pandas.concat
import unittest from unittest.mock import patch import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from road_data_scraper.steps.metadata import ( create_sensor_metadata_tuples, direction_string_cleaner, get_sensor_urls, get_sites_by_sensor, name_string_cleaner, ) class TestMetadata(unittest.TestCase): def setUp(self): headers = [ "id", "name", "description", "longitude", "latitude", "status", "direction", "easting", "northing", ] # fmt: off data_midas = [ [1,"MIDAS","M4/2295A2",-0.520380,51.493012,"Inactive","westbound",502816,178156], [2,"MIDAS","A1M/2259B",-0.320275,52.535158,"Active","southbound",514029,294356], [3,"MIDAS","M5/7482B",-2.175138,52.175652,"Active","northbound",388120,253057], [4,"MIDAS","M3/2173A",-1.392374,50.960359,"Active","westbound",442769,118058], [5,"MIDAS","M25/5764B",0.283162,51.575617,"Active","clockwise",558308,188775], ] data_tame = [ [6304,"TAME",30360220,-0.960508,50.986164,"Active","southbound",473059,121266], [6305,"TAME",30360221,-0.961806,50.985430,"Active","northbound",472969,121183], [6310,"TAME",30360229,-0.832786,51.298988,"Active","westbound",481472,156187], [6311,"TAME",30360230,-1.035767,51.262403,"Active","eastbound",467374,151913], [6312,"TAME",30360231,-1.037151,51.262037,"Active","westbound",467278,151871], ] data_tmu = [ [7236,"TMU","5607/1",-1.338882,51.100315,"Active","northbound",446387,133654], [7237,"TMU","5606/2",-1.341841,51.103119,"Active","southbound",446177,133964], [7238,"TMU","5606/1",-1.341654,51.103190,"Active","southbound",446190,133972], [7239,"TMU","5601/2",-1.339803,51.173895,"Active","northbound",446249,141836], [7240,"TMU","5601/1",-1.340046,51.173915,"Active","northbound",446232,141838], ] # fmt:on self.sensor_tables = { "midas":
pd.DataFrame(data_midas, columns=headers)
pandas.DataFrame
import os import sys import pickle import pandas as pd import numpy as np import sys from sklearn.feature_selection import chi2, SelectKBest, f_regression from sklearn.decomposition import PCA, TruncatedSVD from sklearn.manifold import Isomap, LocallyLinearEmbedding import settings as project_settings target_data_folder = project_settings.target_data_folder features_data_folder = project_settings.features_data_folder class_folder = project_settings.class_folder result_folder = project_settings.result_folder algorithm_len = project_settings.algorithm_len sys.path.append(class_folder) from decision_tree_singletarget import DecisionTree_Single from decision_tree_multitarget import DecisionTree_Multi from random_forest_singletarget import RandomForestRegressor_Single from random_forest_multitarget import RandomForestRegressor_Multi from dnn_model import DNN from dnn_single_model import DNN_Single labels =pd.read_csv(f"{target_data_folder}labels.txt",sep=';',index_col=False) sys_min = sys.float_info.min def create_data(df,df_perf,labels): df2 = df_perf.assign(label = labels['x']) df2 = df2.rename(columns={'1' : 'Precision'}) data = df.join(df2.set_index('label')) return data def clean_dataset(df): assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame" df.dropna(inplace=True) indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(1) df = df[df.replace([-np.inf], sys.float_info.min).notnull().all(axis=1)] return df[indices_to_keep].astype(np.float32) def get_data_for_algorith(algorithm, no_fold): df_perf = pd.read_csv(f"{target_data_folder}performance_0_I{algorithm}.txt",sep='\t') df_train = pd.read_csv(f"{features_data_folder}train_{no_fold}_fused.csv",sep='\t', index_col=0) df_test =
pd.read_csv(f"{features_data_folder}test_{no_fold}_fused.csv",sep='\t', index_col=0)
pandas.read_csv
""" August 2020 <NAME>, Data Science Campus Processes the raw JSON Play Store review file Returned JSON from the API is in nested JSON, with some optional values. See the following link for the schema: https://developers.google.com/android-publisher/api-ref/rest/v3/reviews Access to the API is controlled through oauth2 and you will need to authenticate to access the console automatically to download reviews. For example: from google.oauth2 import service_account from apiclient.discovery import build try: credentials = service_account.Credentials.from_service_account_info(credentials_dict) except Exception as e: print(e) return # Get list of reviews using googleapiclient.discovery try: service = googleapiclient.discovery.build('androidpublisher', 'v3', credentials=credentials) response = service.reviews().list(packageName='uk.organisation.appname.production').execute() except Exception as e: print(e) return if not 'reviews' in response or len(response['reviews']) == 0: print('No reviews') else: print('Reviews detected.') .... The following code assumes that the reviews have been downloaded and saved to JSON, and this has been loaded to a variable reviews_j all_review_data = process_json(review_j) # You can save the reviews to CSV file directly save_reviews(all_review_data, define_csv_file_name()) # Or convert to a Pandas dataframe abnd manipluate as required all_reviews = pd.DataFrame(all_review_data) """ import pandas as pd from datetime import datetime def process_json(review_j): """ Processes the nested JSON reviews (converted to dict) to a list of flat dict Each review is processed to create a flat dict of data Args: review_j (dict) - the JSON reviews convert to dict Returns: list of dict of extracted review data """ # Set up a list to all_review_data = [] # Iterate through all review entries for entries in review_j: if entries == 'reviews': reviews = review_j[entries] # for an individual review there could be multiple comments # Find the author and id and then create an entry for each comment for review in reviews: author_name = None review_key = None for review_key in review: # get the author name and id if review_key == 'reviewId': review_id = review[review_key] if review_key == 'authorName': author_name = review[review_key] # Extract all comments if review_key == 'comments': # Create a new entry for each user comment comments = review[review_key] for comment in comments: review_data = extract_comments(comment, review_id, author_name) all_review_data.append(review_data) print(f"Processed {len(all_review_data)} records") return all_review_data def extract_timestamp(last_modified): # Extracts time stamp from seconds = None nanos = None for t in last_modified: if t == "seconds": seconds = last_modified[t] if t == "nanos": nanos = last_modified[t] return (seconds, nanos) def extract_comments(comment, review_id, author_name): """ Extracts a single review from the nested dict to create a flattened dict. The JSON schema is outlined in https://developers.google.com/android-publisher/api-ref/rest/v3/reviews#Review Args: comment (string) - user comment for this review review_id (string) - review id for this review author_name (string) - author name for this review Returns: dict of extracted flattened data """ review_data = {} # Some entries may be missing, so add them as None review_data['review_id'] = review_id review_data['author_name'] = author_name review_data["android_os_version"] = None review_data["app_version_code"] = None review_data["app_version_name"] = None review_data["device"] = None review_data["reviewer_language"] = None review_data['dev_comment_last_modified_seconds'] = None review_data['dev_comment_last_modified_nanos'] = None review_data['dev_comment_text'] = None # Define the expected keys from the Review schema # THis is a list of tuples, the first value being the key # and the second is the name to be used in the flattened # dict file comments_keys =[ ("starRating", "star_rating"), ("reviewerLanguage", "reviewer_language"), ("device", "device"), ("androidOsVersion", "android_os_version"), ("appVersionCode", "app_version_code"), ("appVersionName", "app_version_name"), ("thumbsUpCount", "thumbs_up_count"), ("thumbsDownCount", "thumbs_down_count"), ("originalText", "original_text") ] metadata_keys = [ ("productName", "device_product_name"), ("manufacturer", "device_manufacturer"), ("screenHeightPx", "device_screen_height_px"), ("screenWidthPx", "device_screen_width_px"), ("screenHeightPx","device_screen_height_px"), ("nativePlatform", "device_native_platform"), ("screenDensityDpi", "device_screen_density_dpi"), ("glEsVersion", "device_gles_version"), ("cpuModel", "device_cpu_model"), ("cpuMake", "device_cpu_make"), ("ramMb", "device_ram_mb") ] # The raw dict is nested, so we will process each nest section # seperately, e.g., nested sections include comments and metadata # We move through the dictionary and look for specific keys to either # extract directly or to identify as a nested section for extraction # For each use comment extract the user comments and the dev comments for entry in comment: if entry == 'userComment': # This the user comments section user_comment = comment[entry] for val in user_comment: #print(val) if val == 'text': review_data['user_comment'] = user_comment['text'] elif val == 'lastModified': # Extract the timestamp s,n = extract_timestamp(user_comment['lastModified']) review_data['user_comment_last_modified_seconds'] = s review_data['user_comment_last_modified_nanos'] = n elif val == 'deviceMetadata': for n in metadata_keys: review_data[n[1]] = extract_values(user_comment, n[0]) else: # Extract the comment values for n in comments_keys: review_data[n[1]] = extract_values(user_comment, n[0]) if entry == 'developerComment': # Developer comments dev_comment = comment[entry] for val in dev_comment: #print(val) # Extract the time stamp if val == 'lastModified': s,n = extract_timestamp(dev_comment['lastModified']) review_data['dev_comment_last_modified_seconds'] = s review_data['dev_comment_last_modified_nanos'] = n # Extract the text elif val == 'text': review_data['dev_comment_text'] = dev_comment['text'] return review_data def extract_values(obj, key): """Pull value of specified key from nested dict section. Args: obj (dict) - the dict to search through key (string) - key to extract Returns: value asscoiated with the """ arr = [] def extract(obj, arr, key): """Recursively search for values of key in JSON tree.""" if isinstance(obj, dict): for k, v in obj.items(): if isinstance(v, (dict, list)): extract(v, arr, key) elif k == key: arr.append(v) return arr elif isinstance(obj, list): for item in obj: extract(item, arr, key) return arr results = extract(obj, arr, key) if len(results) == 0: return None else: return results[0] def define_csv_file_name(): # defines a timestamped filename for the flattened table data ts = datetime.now() file_name = f"google_review_{ts.strftime('%Y%m%d_%H%M%S')}.csv" return file_name def save_reviews(all_reviews, file_name): # Convert to pandas dataframe df = pd.DataFrame(all_reviews) # The timestamp can be converted to a date time and added as extra columns: df['user_comment_ts'] =
pd.to_datetime(df['user_comment_last_modified_seconds'],errors='coerce', unit='s')
pandas.to_datetime
""" Analyze results and plot figures """ # Imports #==============# import pandas as pd import numpy as np import scipy import random import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") import bioinformatics as bioinf # Plots for HMM method 10-fold cross validation #===============================================# fnt='Arial' ticks_font = {'fontname':fnt, 'size':'18'} legend_font = {'family':fnt, 'size':'12'} label_font = {'family':fnt, 'size':'20'} plt.rcParams['figure.figsize'] = [6,3] ec = 'black' legend_label = ['AS', 'SH'] # NCBI dataset ex = pd.read_csv('results_final/ncbi_kfold.csv') lw = 0.25 ASs = list(ex.diff_score[:300]) SHs = list(ex.diff_score[300:]) random.shuffle(ASs) random.shuffle(SHs) out1 = plt.bar(range(300), ASs, color='#00BFFF', linewidth=lw, edgecolor='#00BFFF') out2 = plt.bar(range(300,600), SHs, color='#00FA9A', linewidth=lw, edgecolor='#00FA9A') pltout = [x[0] for x in [out1, out2]] plt.xlabel('Sequence', **label_font) plt.ylabel('Score difference', **label_font) plt.xticks(**ticks_font) plt.yticks([-300,-150,0,150,300], **ticks_font) plt.xlim([-1,601]) plt.axhline(color='black', linewidth=1) plt.legend(pltout, legend_label, prop=legend_font, loc='upper right',frameon=False) plt.tight_layout() plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.dpi'] = 300 plt.savefig('plots/ncbi_kfold.pdf') plt.savefig('plots/ncbi_kfold.png',transparent = True) plt.savefig('plots/ncbi_kfold.svg',format='svg',transparent = True) plt.close() # Table of classification/association rules #===========================================# from subtype_rules import GH13MSA ASmsa = 'fasta/GH13_positions_only/AS_cat.fasta' SHmsa = 'fasta/GH13_positions_only/SH_cat.fasta' GH13msa = GH13MSA(ASmsa, SHmsa) GH13msa.get_freq(include_gaps=True) rules = pd.read_csv('results_final/rules/rules_all.csv', index_col=0) rules_amino = pd.read_csv('results_final/rules/rules_amino.csv', index_col=0) rules_type = pd.read_csv('results_final/rules/rules_type.csv', index_col=0) mcc = list(rules.mcc) min_mcc = np.percentile(mcc, 98) # mcc > 0.86 rules_mcc = rules[rules.mcc >= min_mcc] rules_amino_mcc = rules_amino[rules_amino.mcc >= min_mcc] # 32 rules rules_type_mcc = rules_type[rules_type.mcc >= min_mcc] # 16 rules positions = sorted(set(rules_mcc.Np_pos)) # 39 positions rules_mcc.to_csv('results_final/rules/rules_mcc.csv') rules_amino_mcc.to_csv('results_final/rules/rules_amino_mcc.csv') rules_type_mcc.to_csv('results_final/rules/rules_type_mcc.csv') rules_amino_table = rules_amino_mcc.loc[:,['Np_pos','rule', 'closest_subsite', 'dist_subsite','sens', 'spec', 'acc', 'mcc']] rules_amino_table.columns = ['Position', 'Rule', 'Closest subsite', 'Distance to closest subsite (Å)', 'Sensitivity', 'Specificity', 'Accuracy', 'MCC'] rules_amino_table.to_csv('plots/rules_amino_table.csv') rules_type_table = rules_type_mcc.loc[:,['Np_pos','rule', 'closest_subsite', 'dist_subsite', 'sens', 'spec', 'acc', 'mcc']] rules_type_table.columns = ['Position', 'Rule', 'Closest subsite', 'Distance to closest subsite (Å)', 'Sensitivity', 'Specificity', 'Accuracy', 'MCC'] rules_type_table.to_csv('plots/rules_type_table.csv') # Plot Histogram for MCC of rules #=================================# fnt='Arial' ticks_font = {'fontname':fnt, 'size':'20'} label_font = {'family':fnt, 'size':'22'} title_font = {'family':fnt, 'size':'24'} plt.rcParams['figure.figsize'] = [6,3.5] plt.rcParams['grid.alpha'] = 0.5 plt.rcParams['axes.axisbelow'] = True weights = np.zeros_like(mcc) + 1/len(mcc) plt.hist(mcc, bins=12, rwidth=1, color='royalblue', weights=weights) plt.xticks(np.arange(-60,101,40)*0.01, **ticks_font) plt.yticks(np.arange(0,28,5)*0.01, **ticks_font) plt.xlabel('MCC', **label_font) plt.ylabel('Relative frequency', **label_font) plt.tight_layout() plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.dpi'] = 300 plt.savefig('plots/rules_mcc_dist.png',transparent = True) plt.savefig('plots/rules_mcc_dist.svg',format='svg',transparent = True) plt.savefig('plots/rules_mcc_dist.pdf') plt.close() # Minimum distance between rules' positions and substrate #============================================================# fnt='Arial' ticks_font = {'fontname':fnt, 'size':'20'} label_font = {'family':fnt, 'size':'22'} title_font = {'family':fnt, 'size':'24'} plt.rcParams['figure.figsize'] = [6,3.5] plt.rcParams['grid.alpha'] = 0.5 plt.rcParams['axes.axisbelow'] = True #dist58 = np.percentile(rules_mcc.dist_subsite, 58) #4.79Å rule_dist = list(rules_mcc.dist_subsite) weights = np.zeros_like(rule_dist) + 1/len(rule_dist) plt.hist(rule_dist, bins=10, weights=weights, color='royalblue') plt.xticks(np.arange(0,31,5), **ticks_font) plt.xlim((0,30)) plt.yticks(np.arange(0,76,25)*0.01, **ticks_font) plt.xlabel('Distance to substrate (Å)', **label_font) plt.ylabel('Relative frequency', **label_font) plt.tight_layout() plt.savefig('plots/rules_distance_dist.pdf') plt.close() # Distribution at 39 important positions #==========================================# plt.rcParams['figure.figsize'] = [7,4] for i in range(len(positions)): GH13msa.site_plot(site=positions[i], savefig=True, savepath='plots/position_distribution') # Aromatic residues within 6Å of substrate (and consensus AS and SH) #==============================================================================# GH13msa.get_consensus_sequences() AS_consensus = list(GH13msa.consensus_AS) SH_consensus = list(GH13msa.consensus_SH) Np = bioinf.split_fasta('fasta/GH13_positions_only/consensus.fasta')[1][1] excel = pd.read_csv('results_final/residue_distances.csv', index_col=0) closest_subsite = list(excel.iloc[:,0]) distances = list(excel.iloc[:,1]) resid_aro, Np_aro, AS_aro, SH_aro, closest_subsite_aro, dist_aro = [],[],[],[],[],[] AS_aro_freq, SH_aro_freq, conserved = [], [], [] aro_res = ['F', 'W', 'Y', 'H'] for i in range(len(Np)): if (Np[i] in aro_res or AS_consensus[i] in aro_res or SH_consensus[i] in aro_res)\ and distances[i]<=6.0: resid_aro.append(i+1) Np_aro.append(Np[i]) AS_aro.append(AS_consensus[i]) SH_aro.append(SH_consensus[i]) closest_subsite_aro.append(closest_subsite[i]) dist_aro.append(distances[i]) AS_freq = GH13msa.AS_freq.iloc[[4,6,18,19],i].sum()*100 SH_freq = GH13msa.SH_freq.iloc[[4,6,18,19],i].sum()*100 AS_aro_freq.append(AS_freq) SH_aro_freq.append(SH_freq) if AS_freq > 66 and SH_freq < 66: conserved.append('AS') elif AS_freq < 66 and SH_freq > 66: conserved.append('SH') elif AS_freq > 66 and SH_freq > 66: conserved.append('AS and SH') else: conserved.append('None') store = pd.DataFrame([resid_aro, Np_aro, AS_aro, SH_aro, AS_aro_freq, SH_aro_freq, closest_subsite_aro, dist_aro, conserved]).transpose() store.columns = ['Position', 'GH13 residue', 'AS consensus residue', 'SH consensus residue', 'Frequency of aromatic residues in ASs (%)', 'Frequency of aromatic residues in SHs (%)', 'Closest subsite', 'Distance to closest subsite (Å)', 'Aromatic residues conserved (>66%) in'] store = store.sort_values('Closest subsite') store.to_csv('results_final/aromatic_residues.csv') # Pymol commands for viewing aromatic residues on structure #=============================================================# pymol_AS = 'select aroAS, ' pymol_both = 'select aroboth, ' for i in range(len(store)): pos = store.iloc[i,0] if store.iloc[i,-1]=='AS': pymol_AS += f'resi {pos} or ' elif store.iloc[i,-1]=='AS and SH': pymol_both += f'resi {pos} or ' with open('plots/aromatic_pymol.txt', 'w') as pym: pym.write(pymol_AS[:-4] + '\n\n') pym.write(pymol_both[:-4] + '\n\n') # Table of position-specific rules for predicting hydrolysis or transglycosylation #======================================================# ex =
pd.read_csv('results_final/ml_rf_pred/position_rules.csv', index_col=0)
pandas.read_csv
from unittest.mock import patch import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from pytest import importorskip from woodwork.logical_types import ( Boolean, Categorical, Datetime, Double, Integer, NaturalLanguage ) from evalml.exceptions import ComponentNotYetFittedError from evalml.pipelines.components import TargetEncoder importorskip('category_encoders', reason='Skipping test because category_encoders not installed') def test_init(): parameters = {"cols": None, "smoothing": 1.0, "handle_unknown": "value", "handle_missing": "value"} encoder = TargetEncoder() assert encoder.parameters == parameters def test_parameters(): encoder = TargetEncoder(cols=['a']) expected_parameters = {"cols": ['a'], "smoothing": 1.0, "handle_unknown": "value", "handle_missing": "value"} assert encoder.parameters == expected_parameters def test_categories(): encoder = TargetEncoder() with pytest.raises(AttributeError, match="'TargetEncoder' object has no attribute"): encoder.categories def test_invalid_inputs(): with pytest.raises(ValueError, match="Invalid input 'test' for handle_unknown"): TargetEncoder(handle_unknown='test') with pytest.raises(ValueError, match="Invalid input 'test2' for handle_missing"): TargetEncoder(handle_missing='test2') with pytest.raises(ValueError, match="Smoothing value needs to be strictly larger than 0"): TargetEncoder(smoothing=0) def test_null_values_in_dataframe(): X = pd.DataFrame({'col_1': ["a", "b", "c", "d", np.nan], 'col_2': ["a", "b", "a", "c", "b"], 'col_3': ["a", "a", "a", "a", "a"]}) y = pd.Series([0, 1, 1, 1, 0]) encoder = TargetEncoder(handle_missing='value') encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': [0.6, 0.6, 0.6, 0.6, 0.6], 'col_2': [0.526894, 0.526894, 0.526894, 0.6, 0.526894], 'col_3': [0.6, 0.6, 0.6, 0.6, 0.6, ]}) assert_frame_equal(X_expected, X_t.to_dataframe()) encoder = TargetEncoder(handle_missing='return_nan') encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': [0.6, 0.6, 0.6, 0.6, np.nan], 'col_2': [0.526894, 0.526894, 0.526894, 0.6, 0.526894], 'col_3': [0.6, 0.6, 0.6, 0.6, 0.6, ]}) assert_frame_equal(X_expected, X_t.to_dataframe()) encoder = TargetEncoder(handle_missing='error') with pytest.raises(ValueError, match='Columns to be encoded can not contain null'): encoder.fit(X, y) def test_cols(): X = pd.DataFrame({'col_1': [1, 2, 1, 1, 2], 'col_2': ['2', '1', '1', '1', '1'], 'col_3': ["a", "a", "a", "a", "a"]}) X_expected = X.astype({'col_1': 'Int64', 'col_2': 'category', 'col_3': 'category'}) y = pd.Series([0, 1, 1, 1, 0]) encoder = TargetEncoder(cols=[]) encoder.fit(X, y) X_t = encoder.transform(X) assert_frame_equal(X_expected, X_t.to_dataframe()) encoder = TargetEncoder(cols=['col_2']) encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': pd.Series([1, 2, 1, 1, 2], dtype="Int64"), 'col_2': [0.60000, 0.742886, 0.742886, 0.742886, 0.742886], 'col_3': pd.Series(["a", "a", "a", "a", "a"], dtype="category")}) assert_frame_equal(X_expected, X_t.to_dataframe(), check_less_precise=True) encoder = TargetEncoder(cols=['col_2', 'col_3']) encoder.fit(X, y) X_t = encoder.transform(X) encoder2 = TargetEncoder() encoder2.fit(X, y) X_t2 = encoder2.transform(X) assert_frame_equal(X_t.to_dataframe(), X_t2.to_dataframe()) def test_transform(): X = pd.DataFrame({'col_1': [1, 2, 1, 1, 2], 'col_2': ["r", "t", "s", "t", "t"], 'col_3': ["a", "a", "a", "b", "a"]}) y = pd.Series([0, 1, 1, 1, 0]) encoder = TargetEncoder() encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': pd.Series([1, 2, 1, 1, 2], dtype="Int64"), 'col_2': [0.6, 0.65872, 0.6, 0.65872, 0.65872], 'col_3': [0.504743, 0.504743, 0.504743, 0.6, 0.504743]}) assert_frame_equal(X_expected, X_t.to_dataframe()) def test_smoothing(): # larger smoothing values should bring the values closer to the global mean X = pd.DataFrame({'col_1': [1, 2, 1, 1, 2], 'col_2': [2, 1, 1, 1, 1], 'col_3': ["a", "a", "a", "a", "b"]}) y = pd.Series([0, 1, 1, 1, 0]) encoder = TargetEncoder(smoothing=1) encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': pd.Series([1, 2, 1, 1, 2], dtype="Int64"), 'col_2': pd.Series([2, 1, 1, 1, 1], dtype="Int64"), 'col_3': [0.742886, 0.742886, 0.742886, 0.742886, 0.6]}) assert_frame_equal(X_expected, X_t.to_dataframe()) encoder = TargetEncoder(smoothing=10) encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': pd.Series([1, 2, 1, 1, 2], dtype="Int64"), 'col_2': pd.Series([2, 1, 1, 1, 1], dtype="Int64"), 'col_3': [0.686166, 0.686166, 0.686166, 0.686166, 0.6]}) assert_frame_equal(X_expected, X_t.to_dataframe()) encoder = TargetEncoder(smoothing=100) encoder.fit(X, y) X_t = encoder.transform(X) X_expected = pd.DataFrame({'col_1': pd.Series([1, 2, 1, 1, 2], dtype="Int64"), 'col_2':
pd.Series([2, 1, 1, 1, 1], dtype="Int64")
pandas.Series
# transform pairs table to contact counts between binned coordinates # pos-pos -> bin-bin / point -> pixel import pandas as pd, numpy as np import datashader as ds import datashader.transfer_functions as tf import pickle as pkl import xarray as xr from pkgutil import get_data from io import StringIO from . import ref class GenomeIdeograph: @staticmethod def get_lengths(ref_file): # Get metrics of reference_genome, # should cover all file-finding troubles. ## Input: ## ref_file: reference_abbrevations(file stored in module) ## or lengths file_path(csv format:: chrom, lengths) ## Return: ## chromosome_order; dict, {chromosome:length} shipped_refs = { "hg19":"hg19.len.csv", "hg19.dip":"hg19.dip.len.csv", "mm10":"mm10.len.csv", "mm10.dip":"mm10.dip.len.csv" } if ref_file in shipped_refs: ref_dat = get_data(ref.__name__, refs[reference]) lengths = pd.read_csv( StringIO(ref_dat.decode()), index_col=0) else: try: lengths = pd.read_csv( ref_file,index_col=0) except FileNotFoundError: print("ref: neither valid abbrevations nor valid reference file") chrom_order = dict(zip(lengths.index, range(len(lengths.index)))) lengths = lengths.iloc[:,0].to_dict() return chrom_order, lengths def __init__(self, ref_file): ## ref_file: reference_abbrevations(file stored in module) ## or lengths file_path(csv format:: chrom, lengths) ## chromosome order is the order of presentation in ## ref_file self.chr_order, self.lengths = \ get_lengths(ref_file) self.chrs = list(self.chr_order.keys()) def breaks(self, binsize:int): # Get binned reference(int version) ## Return: ## breaks of bins(dict of list) all_breaks = {} for chrom in self.lengths: length = self.lengths[chrom] breaks = list(range(0, length, binsize)) breaks.append(length) # don't forget the rightmost point all_breaks[chrom] = breaks return all_breaks def bins(self, binsize:int): # Get binned reference(IntervalIdex version) ## Return: ## intervals of each bin( ## dict of IntervalIndex) breaks = self.breaks(binsize) bins = {chrom : pd.IntervalIndex.from_breaks( breaks[chrom], closed="left", name=chrom,dtype='interval[int64]') for chrom in breaks} return bins def chr_sort(self,chr_list): # Sort input chr_id list according to this ideograph return sorted(chr_list, key = lambda x: self.chr_order[x]) def chr_sort_keys(self): # key function for sorted return lambda x: self.chr_order[x] def symmetry(X): # flip lower-triangle-part and add # it to upper-triangle # set lower triangle to zeros # Input: # X: 2darray, assume square X = np.tril(X,-1).T + X X[np.tril_indices(X.shape[0],-1)] = 0 return X def bin_cut(dat:pd.DataFrame, breaks:dict, bins:dict): # Binnify contacts between a pair of chromosomes(chr_pair) # Input: ## dat: pairs, assume intra-contacts or ## inter-contacts between two chromosome ## chr_pair: set with 1(for intra) or 2(inter) elements ## breaks: binned reference ## chromosome_name : boundary of each bin in that chromosome} ## (keys should contain all eles in chr_pair) ## bins: binned reference(IntervalIndex version) ## use as index ## chromosome_name : intervals of each bin in that chromosome} ## (keys should contain all eles in chr_pair) # Output: ## pd.DataFrame with full interval_index # using first row to infer which chr_pair this chr1, chr2 = dat.iloc[0,[1,3]] # binnify b_dat, xi, yi = np.histogram2d(x=dat["pos1"],y=dat["pos2"], bins=[breaks[chr1],breaks[chr2]]) # store in sparse matrix if chr1 == chr2: # upper-triangle for intra_contacts b_dat = symmetry(b_dat) b_dat = pd.DataFrame( b_dat).astype(pd.SparseDtype(int,0)) # using Interval version of bins as index b_dat.index, b_dat.columns = \ bins[chr1], bins[chr2] return b_dat def tiled_bin_cut(pairs:pd.DataFrame,ref:GenomeIdeograph,binsize:int)->Hicmap: pairs_b = {} for indi, dat in pairs.groupby(["chr1","chr2"]): pairs_b[indi] = \ bin_cut(dat,ref.breaks(binsize),ref.bins(binsize)) # in-case input pairs isn't upper-triangle norm_pairs_b = {} for key in pairs_b: if frozenset(key) in norm_pairs_b: norm_pairs_b[frozenset(key)] += \ pairs_b[key] else: norm_pairs_b[frozenset(key)] = pairs_b[key] return norm_pairs_b def shader_matrix_plot(mat:pd.DataFrame, width:int=500, height:int=500, short_length:int=0): # plot binnified pairs matrix, difference samples aligned in same coords # short_legth set short edge of resulting image, and keep h_w ratio(according to mat.shape) # useful when mat isn't standard square x_mat = xr.DataArray(mat.values, coords=[("pos1",mat.index),("pos2",mat.columns)]) # transform to xarray form if short_length != 0: expand_r = short_length // min(*mat.shape) cvs = ds.Canvas(plot_width=mat.shape[1]*expand_r, plot_height=mat.shape[0]*expand_r) else: cvs = ds.Canvas(plot_width=width, plot_height=height) x_mat['_file_obj'] = None # work around for ds bug return tf.shade(cvs.raster(x_mat)) def write_matrix(mat:scipy.sparse.csc_matrix,file_name:str): with open(file_name,'wb') as f: pkl.dump(mat, f) def read_matrix(file_name:str)->pd.DataFrame: with open(file_name,'rb') as f: mat = pkl.load(f) return
pd.DataFrame.sparse.from_spmatrix(mat)
pandas.DataFrame.sparse.from_spmatrix
#!/usr/bin/env python ### Up to date as of 10/2019 ### '''Section 0: Import python libraries This code has a number of dependencies, listed below. They can be installed using the virtual environment "slab23" that is setup using script 'library/setup3env.sh'. Additional functions are housed in file 'slab2functions.py' and imported below. There are some additional dependencies used by the function file that do not need to be installed separately. ''' # stdlib imports from datetime import datetime import os.path import argparse import numpy as np from pandas import DataFrame import pandas as pd import warnings import slab2functions as s2f import math import mapio.gmt as gmt from functools import partial from multiprocess import Pool import loops as loops from scipy import ndimage import psutil import cProfile import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def main(args): '''Section 1: Setup In this section: (1) Identify necessary input files (2) Load parameters from '[slab]input.par' (3) Define optional boxes for PDF/print testing (4) Define output file names (5) Gathering optional arguments, setting defaults (6) Define search ellipsoid parameters (7) Define Average active source profiles (8) Define reference model (Slab1.0 and/or slab guides) (9) Define Trench Locations (10) Open and modify input dataset (11) Calculate seismogenic zone thickness (12) Record variable parameters used for this model (13) Define search grid (14) Identify tomography datasets (15) Initialize arrays for Section 2 ''' print('Start Section 1 of 7: Setup') print(' Loading inputs...') ''' ------ (1) Identify necessary input files ------ ''' trenches = 'library/misc/trenches_usgs_2017_depths.csv' agesFile = 'library/misc/interp_age.3.2g.nc' ageerrorsFile = 'library/misc/interp_ageerror.3.2g.nc' polygonFile = 'library/misc/slab_polygons.txt' addFile = 'library/misc/addagain.csv' parFile = args.parFile pd.options.mode.chained_assignment = None warnings.filterwarnings("ignore", message="invalid value encountered in less") warnings.filterwarnings("ignore", message="invalid value encountered in true_divide") warnings.filterwarnings("ignore", message="invalid value encountered in greater") warnings.filterwarnings("ignore", message="invalid value encountered in double_scalars") ''' ------ (2) Load parameters from '[slab]input.par' ------''' for line in open(parFile): plist = line.split() if len(plist)>2: if plist[0] == 'inFile': inFile = plist[2] if plist[0] == 'use_box': use_box = plist[2] if plist[0] == 'latmin': latmin = np.float64(plist[2]) if plist[0] == 'latmax': latmax = np.float64(plist[2]) if plist[0] == 'lonmin': lonmin = np.float64(plist[2]) if plist[0] == 'lonmax': lonmax = np.float64(plist[2]) if plist[0] == 'slab': slab = plist[2] if plist[0] == 'grid': grid = np.float64(plist[2]) if plist[0] == 'radius1': radius1 = np.float64(plist[2]) if plist[0] == 'radius2': radius2 = np.float64(plist[2]) if plist[0] == 'sdr': sdr = np.float64(plist[2]) if plist[0] == 'ddr': ddr = np.float64(plist[2]) if plist[0] == 'taper': taper = np.float64(plist[2]) if plist[0] == 'T': T = np.float64(plist[2]) if plist[0] == 'node': node = np.float64(plist[2]) if plist[0] == 'filt': filt = np.float64(plist[2]) if plist[0] == 'maxdist': maxdist = np.float64(plist[2]) if plist[0] == 'minunc': minunc = np.float64(plist[2]) if plist[0] == 'mindip': mindip = np.float64(plist[2]) if plist[0] == 'minstk': minstk = np.float64(plist[2]) if plist[0] == 'maxthickness': maxthickness = np.float64(plist[2]) if plist[0] == 'seismo_thick': seismo_thick = np.float64(plist[2]) if plist[0] == 'dipthresh': dipthresh = np.float64(plist[2]) if plist[0] == 'fracS': fracS = np.float64(plist[2]) if plist[0] == 'kdeg': kdeg = np.float64(plist[2]) if plist[0] == 'knot_no': knot_no = np.float64(plist[2]) if plist[0] == 'rbfs': rbfs = np.float64(plist[2]) # loop through to find latest slab input file if specified polyname = slab if slab == 'kur' or slab == 'izu': polyname = 'jap' if inFile == 'latest': yearmax = 0 monthmax = 0 for filename in os.listdir('Input'): if filename.endswith('.csv'): try: slabname,datei,instring = filename.split('_') except: continue if slabname == polyname and instring == 'input.csv': try: monthi, yeari = datei.split('-') except: continue yeari = int(yeari) monthi = int(monthi) if yeari >= yearmax: yearmax = yeari inFile = 'Input/%s'%filename if monthi > monthmax: monthmax = monthi inFile = 'Input/%s'%filename print (' using input file: %s'%inFile) if slab == 'mue' or slab == 'phi' or slab == 'cot' or slab == 'sul' or slab == 'ryu': if args.undergrid is None: if slab == 'mue': print ('This slab is truncated by the Caribbean (car) slab, argument -u cardepgrid is required') print ('Exiting .... ') exit() if slab == 'cot': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'sul': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'phi': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'ryu': print ('This slab is truncated by the Kurils-Japan (kur) slab, argument -u kurdepgrid is required') print ('Exiting .... ') exit() else: undergrid = args.undergrid ''' ------ (4) Define output file names ------ ''' date = datetime.today().strftime('%m.%d.%y') now = datetime.now() time = '%s.%s' % (now.hour, now.minute) folder = '%s_slab2_%s' % (slab, date) os.system('mkdir Output/%s'%folder) outFile = 'Output/%s/%s_slab2_res_%s.csv' % (folder, slab, date) dataFile = 'Output/%s/%s_slab2_dat_%s.csv' % (folder, slab, date) nodeFile = 'Output/%s/%s_slab2_nod_%s.csv' % (folder, slab, date) fillFile = 'Output/%s/%s_slab2_fil_%s.csv' % (folder, slab, date) rempFile = 'Output/%s/%s_slab2_rem_%s.csv' % (folder, slab, date) clipFile = 'Output/%s/%s_slab2_clp_%s.csv' % (folder, slab, date) these_params = 'Output/%s/%s_slab2_par_%s.csv' % (folder, slab, date) datainfo = 'Output/%s/%s_slab2_din_%s.csv' % (folder, slab, date) nodeinfo = 'Output/%s/%s_slab2_nin_%s.csv' % (folder, slab, date) suppFile = 'Output/%s/%s_slab2_sup_%s.csv' % (folder, slab, date) nodexFile = 'Output/%s/%s_slab2_nox_%s.csv' % (folder, slab, date) nodeuFile = 'Output/%s/%s_slab2_nou_%s.csv' % (folder, slab, date) depTextFile = 'Output/%s/%s_slab2_dep_%s.txt' % (folder, slab, date) depGridFile = 'Output/%s/%s_slab2_dep_%s.grd' % (folder, slab, date) strTextFile = 'Output/%s/%s_slab2_str_%s.txt' % (folder, slab, date) strGridFile = 'Output/%s/%s_slab2_str_%s.grd' % (folder, slab, date) dipTextFile = 'Output/%s/%s_slab2_dip_%s.txt' % (folder, slab, date) dipGridFile = 'Output/%s/%s_slab2_dip_%s.grd' % (folder, slab, date) uncTextFile = 'Output/%s/%s_slab2_unc_%s.txt' % (folder, slab, date) uncGridFile = 'Output/%s/%s_slab2_unc_%s.grd' % (folder, slab, date) thickTextFile = 'Output/%s/%s_slab2_thk_%s.txt' % (folder, slab, date) thickGridFile = 'Output/%s/%s_slab2_thk_%s.grd' % (folder, slab, date) savedir = 'Output/%s'%folder ''' ------ (3) Define optional boxes for PDF/print testing ------''' if args.test is not None: testlonmin = args.test[0] testlonmax = args.test[1] testlatmin = args.test[2] testlatmax = args.test[3] if testlonmin < 0: testlonmin += 360 if testlonmax < 0: testlonmax += 360 testarea = [testlonmin, testlonmax, testlatmin, testlatmax] printtest = True os.system('mkdir Output/PDF%s' % (slab)) os.system('mkdir Output/multitest_%s' % (slab)) f = open(datainfo, 'w+') f.write('dataID, nodeID, used_or_where_filtered') f.write('\n') f.close() f = open(datainfo, 'w+') f.write('nodeID, len(df), status, details') f.write('\n') f.close() else: # an area not in range of any slab polygon testarea = [220, 230, 15, 20] printtest = False ''' --- (5) Gathering optional arguments, setting defaults ---''' if use_box == 'yes': check = 1 slab = s2f.rectangleIntersectsPolygon(lonmin, lonmax, latmin, latmax, polygonFile) if isinstance(slab, str): slab = slab else: try: slab = slab[0] except: print('System exit because box does not intersect slab polygon') raise SystemExit() elif use_box == 'no': check = 0 lon1, lon2, lat1, lat2 = s2f.determine_polygon_extrema(slab, polygonFile) lonmin = float(lon1) lonmax = float(lon2) latmin = float(lat1) latmax = float(lat2) else: print('use_box in slab2input.par must be "yes" or "no"') raise SystemExit() ''' ------ (6) Define search ellipsoid parameters ------''' alen = radius1 blen = radius2 ec = math.sqrt(1-((math.pow(blen, 2))/(math.pow(alen, 2)))) mdist = alen * ec ''' ------ (7) Define Average active source profiles ------''' # Different because alu is variable E/W if slab == 'alu': AA_data = pd.read_csv('library/avprofiles/alu_av5.csv') global_average = False elif slab == 'him': AA_data = pd.read_csv('library/avprofiles/him_av.csv') global_average = False elif slab == 'kur' or slab == 'izu': AA_source = 'library/avprofiles/%s_av.txt' % 'jap' AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) AA_data = AA_data[AA_data.dist < 125] global_average = False # Use RF data like AA data to constrain flat slab in Mexico elif slab == 'cam': AA_source = 'library/avprofiles/%s_av.txt' % slab AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) RF_data = pd.read_csv('library/avprofiles/cam_RF_av.csv') AA_data = pd.concat([AA_data,RF_data],sort=True) global_average = False else: global_average = False # See if there is a averace active source profile for this slab try: AA_source = 'library/avprofiles/%s_av.txt' % slab AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) # If there is no profile for this slab, use the global profile except: AA_global =
pd.read_csv('library/avprofiles/global_as_av2.csv')
pandas.read_csv
import re import numpy as np import pandas as pd from dateutil.tz import tzutc from dateutil.parser import parse as parse_date from datetime import datetime, timedelta, timezone from qset.utils.numeric import custom_round # NOTE: slow def parse_human_timestamp_re(hts, min_date_str="2000"): """ :param hts: Human timestamp: 20180101/2018010112/201801011200/20180101120000/20180101120000123... :return: """ ts_PATTERN = re.compile(r"(\d{4})(\d{2})(\d{2})(\d{2})?(\d{2})?(\d{2})?(\d+)?") hts = str(hts) if hts < min_date_str: raise Exception("Min date test failed") split = list(ts_PATTERN.match(hts).groups()[: int((len(hts) - 2) / 2)]) # adjust microseconds if len(split) == 7: split[-1] = split[-1].ljust(6, "0")[:6] return datetime(*map(int, split)) def parse_human_timestamp(hts, min_date_str="2000"): """ :param hts: Human timestamp: 20180101/2018010112/201801011200/20180101120000/20180101120000123... :return: """ hts = str(hts) if hts < min_date_str: raise Exception("Min date test failed") slices = [ slice(0, 4), slice(4, 6), slice(6, 8), slice(8, 10), slice(10, 12), slice(12, 14), slice(14, None), ][: int((len(hts) - 2) / 2)] split = [hts[sl] for sl in slices] # adjust microseconds if len(split) == 7: split[-1] = split[-1].ljust(6, "0")[:6] return datetime(*map(int, split)) def cast_hts(dt_obj): dt_obj = cast_datetime(dt_obj) return int(dt_obj.strftime("%Y%m%d%H%M%S%f")[:-3]) def cast_datetime(dt_obj, none_invariant=True): """ :param dt_obj: datetime-like object: datetime.datetime or str :return: datetime is_utc = NOTE: This is slow """ if isinstance(dt_obj, datetime): return dt_obj elif isinstance(dt_obj, str) and not is_freq(dt_obj): try: return parse_human_timestamp(dt_obj) except: pass # '01.08.2019' type search = re.search(r"(\d\d)\.(\d\d)\.(\d\d\d\d)", dt_obj) if search: d, m, y = search.groups() return datetime(int(y), int(m), int(d)) # '01.08.20' type for pat in [ r"^(\d\d)\.(\d\d)\.(\d\d)$", r"^\d(\d\d)\.(\d\d)\.(\d\d)$", r"^\d(\d\d)\.(\d\d)\.(\d\d)^\d", r"^(\d\d)\.(\d\d)\.(\d\d)\d", ]: search = re.search(pat, dt_obj) if search: d, m, y = search.groups() return datetime(int(y) + 2000, int(m), int(d)) dt = parse_date(dt_obj) if dt and dt.tzinfo: dt = dt.astimezone(tzutc()).replace(tzinfo=None) return dt elif none_invariant and dt_obj is None: return None elif isinstance(dt_obj, (int, float, np.integer)): try: return parse_human_timestamp(dt_obj) except: pass try: return parse_date(str(dt_obj)) except: pass try: return datetime.fromtimestamp(dt_obj, tz=timezone.utc).replace(tzinfo=None) except: pass return datetime.fromtimestamp(dt_obj / 1000, tz=timezone.utc).replace( tzinfo=None ) else: raise Exception("Unknown datetime-like object type") cast_dt = cast_datetime def cast_timestamp(dt_obj): """ :param dt_obj: naive datetime :return: """ dt_obj = cast_datetime(dt_obj) # timestamp is always in utc! return dt_obj.replace(tzinfo=timezone.utc).timestamp() cast_ts = cast_timestamp def cast_mts(dt_obj): return cast_timestamp(dt_obj) * 1000 def cast_str(dt, format=None): if isinstance(dt, str): return dt elif isinstance(dt, datetime): if not format: return str(dt) return dt.strftime(format) else: raise Exception("Unsupported type") def get_strptime_pattern(s): """ :param s: str :return: get strptime pattern NOTE: be careful with microseconds. It is not handled properly """ if len(s) > 20: raise Exception("Too big string") return "%Y%m%d%H%M%S%f"[: int(len(s) - 2)] def cast_datetime_series(s): """ :param s: a series of datetime-like objects with the same prototype. :return: a datetime series """ sample = s.iloc[0] # process hts case try: parse_human_timestamp(sample) except: pass else: sample = str(sample) pattern = get_strptime_pattern(sample) s = s.astype(str) # 20 is for full %Y%m%D%H%M%S%f and 17 is for the same format, but when %f is replaced with 3 digits, not 6 as is by default if len(sample) > 20: # crop to microseconds s = s[:20] elif len(sample) >= 17: # add zeros for microseconds s = s + "0" * (20 - len(sample)) return pd.to_datetime(s, format=pattern) if isinstance(sample, (int, np.integer)): # considered as timestamp: 1521193807 int_part = str(sample).split(".")[0] # '1521193807' if len(int_part) == 10: return pd.to_datetime(s, unit="s") # '1521193807000' elif len(int_part) == 13: return pd.to_datetime(s, unit="ms") # '1521193807000000' elif len(int_part) == 16: return pd.to_datetime(s, unit="us") # '1521193807000000000' elif len(int_part) == 19: return pd.to_datetime(s, unit="ns") elif isinstance(sample, (float, np.float)): # considered as timestamp: 1521193807 int_part = str(sample).split(".")[0] # '1521193807' if len(int_part) == 10: return s.apply(datetime.utcfromtimestamp) # '1521193807000' elif len(int_part) == 13: return (s / 1000).apply(datetime.utcfromtimestamp) return pd.to_datetime(s, infer_datetime_format=True) def cast_datetime_many(lst): # NOTE: THIS CODE INFERS DATETIME FORMAT! In other words, all passed values should have the same format return cast_datetime_series(
pd.Series(lst)
pandas.Series
import os import tqdm import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from collections import Counter from sklearn import model_selection def load_data(): fp = os.path.dirname(__file__) # Sensor data data = pd.read_csv(fp + '/PdM_telemetry.csv.gz') # Error alarm logs data = data.merge( pd.read_csv(fp + '/PdM_errors.csv.gz'), how='left', on=['datetime', 'machineID']) # Failure logs data = data.merge( pd.read_csv(fp + '/PdM_failures.csv.gz'), how='left', on=['datetime', 'machineID']) # Formatting data.datetime = pd.to_datetime(data.datetime) return data def cleaning(df): # NaN values are encoded to -1 df = df.sort_values('errorID') df.errorID = df.errorID.factorize()[0] df = df.sort_values('failure') df.failure = df.failure.factorize()[0] df = df.sort_values(['machineID', 'datetime']) df.errorID = df.errorID.astype('category') df.failure = df.failure.astype('category') df.volt = df.volt.astype('float32') df.rotate = df.rotate.astype('float32') df.pressure = df.pressure.astype('float32') df.vibration = df.vibration.astype('float32') df.datetime = pd.to_datetime(df.datetime) return df def load_clean_data(): return cleaning(load_data()) def generate_run_to_failure(raw_data, health_censor_aug=1000, min_lifetime=10, max_lifetime=300, seed=123, outfn=None): run_to_failure = [] error_ids = raw_data.errorID.dropna().sort_values().unique().tolist() for machine_id, g in tqdm.tqdm(raw_data.groupby('machineID'), desc='run-to-failure'): g = g.set_index('datetime').sort_index() start_date = g.index.values[0] failures = g.loc[~g.failure.isnull()] for event_time, event in failures.iterrows(): # Extracting a single cycle/process cycle = g[start_date:event_time].drop('machineID', axis=1) lifetime = (event_time - start_date).days if lifetime < 1: start_date = event_time continue numerical_features = cycle.agg(['min', 'max', 'mean']).unstack().reset_index() numerical_features['feature'] = numerical_features.level_0.str.cat(numerical_features.level_1, sep='_') numerical_features = numerical_features.pivot_table(columns='feature', values=0) categorical_features = pd.DataFrame(Counter(cycle.errorID), columns=error_ids, index=[0]) sample = pd.concat([numerical_features, categorical_features], axis=1) sample[['machine_id', 'lifetime', 'broken']] = machine_id, lifetime, 1 run_to_failure.append(sample) start_date = event_time run_to_failure = pd.concat(run_to_failure, axis=0).reset_index(drop=True) health_censors = censoring_augmentation(raw_data, n_samples=health_censor_aug, min_lifetime=min_lifetime, max_lifetime=max_lifetime, seed=seed) run_to_failure = pd.concat([run_to_failure, health_censors]) # Shuffle run_to_failure = run_to_failure.sample(frac=1, random_state=seed).reset_index(drop=True) run_to_failure = run_to_failure.fillna(0.) if outfn is not None: run_to_failure.to_csv(outfn, index=False) return run_to_failure def censoring_augmentation(raw_data, n_samples=10, max_lifetime=150, min_lifetime=2, seed=123): error_ids = raw_data.errorID.dropna().sort_values().unique().tolist() np.random.seed(seed) samples = [] pbar = tqdm.tqdm(total=n_samples, desc='augmentation') while len(samples) < n_samples: censor_timing = np.random.randint(min_lifetime, max_lifetime) machine_id = np.random.randint(100) + 1 tmp = raw_data[raw_data.machineID == machine_id] tmp = tmp.drop('machineID', axis=1).set_index('datetime').sort_index() failures = tmp[~tmp.failure.isnull()] if failures.shape[0] < 2: continue failure_id = np.random.randint(failures.shape[0]) failure = failures.iloc[failure_id] event_time = failure.name start_date = tmp.index.values[0] if failure_id == 0 else failures.iloc[failure_id - 1].name # censoring cycle = tmp[start_date:event_time] cycle = cycle.iloc[:censor_timing] if not cycle.shape[0] == censor_timing: continue numerical_features = cycle.agg(['min', 'max', 'mean', 'std']).unstack().reset_index() numerical_features['feature'] = numerical_features.level_0.str.cat(numerical_features.level_1, sep='_') numerical_features = numerical_features.pivot_table(columns='feature', values=0) categorical_features = pd.DataFrame(Counter(cycle.errorID), columns=error_ids, index=[0]) sample = pd.concat([numerical_features, categorical_features], axis=1) sample[['machine_id', 'lifetime', 'broken']] = machine_id, censor_timing, 0 samples.append(sample) pbar.update(1) pbar.close() return pd.concat(samples).reset_index(drop=True).fillna(0) def generate_validation_sets(method='kfold', n_splits=5, seed=123, outdir=None): validation_sets = [] if method == 'kfold': # K-fold cross validation assert type(n_splits) == int assert n_splits > 2 raw_data = load_data() kfold = model_selection.KFold(n_splits=n_splits, shuffle=True, random_state=seed) for i, (train_index, test_index) in enumerate(kfold.split(np.arange(100))): print('K-fold {}/{}'.format(i+1, n_splits)) # train/test split by machine ID train_machines = raw_data[raw_data.machineID.isin(train_index)] test_machines = raw_data[raw_data.machineID.isin(test_index)] # print('train:', train_machines.shape) # print('test:', test_machines.shape) # convert the two sets into run-to-failure data train_censored_data = generate_run_to_failure( train_machines, health_censor_aug=len(train_index)*10, seed=seed) test_consored_data = generate_run_to_failure( test_machines, health_censor_aug=len(test_index)*10, seed=seed) # print('train:', train_censored_data.shape) # print('test:', test_consored_data.shape) validation_sets.append((train_censored_data, test_consored_data)) if outdir is not None: train_censored_data.to_csv(outdir + f'/train_{i}.csv.gz', index=False) test_consored_data.to_csv(outdir + f'/test_{i}.csv.gz', index=False) elif method == 'leave-one-out': raise NotImplementedError return validation_sets def load_validation_sets(filepath, n_splits=5): return [(pd.read_csv(filepath + f'/train_{i}.csv.gz'), pd.read_csv(filepath + f'/test_{i}.csv.gz')) for i in range(n_splits)] def plot_sequence_and_events(data, machine_id=1): data = data[data.machineID == machine_id] fig, ax = plt.subplots(4 + 2, figsize=(8, 8)) data.plot(y='volt', legend=True, ax=ax[0]) data.plot(y='rotate', legend=True, ax=ax[1]) data.plot(y='pressure', legend=True, ax=ax[2]) data.plot(y='vibration', legend=True, ax=ax[3]) if data.errorID.isnull().sum() < data.errorID.shape[0]: pd.get_dummies(data.errorID).plot(ax=ax[4]) if data.failure.isnull().sum() < data.failure.shape[0]:
pd.get_dummies(data.failure)
pandas.get_dummies
import pandas as pd from xml.etree import ElementTree as etree pd.set_option('display.max_columns', 500) class DataFrame: def __init__(self, doc, allElements): '''doc = .eaf file; allElements = line element and its children''' self.doc = doc self.allElements = allElements self.tbl = self.buildTable(doc,self.allElements) def getTbl(self): return self.tbl # def getTimeSlotIDs(self, doc, tbl_elements): # '''next step asks for row 0 of dataframe (speech), get value of TSRef1 (start time)''' # startTimeSlotID = tbl_elements.iloc[0, tbl_elements.columns.values.tolist().index('TIME_SLOT_REF1')] # endTimeSlotID = tbl_elements.iloc[0, tbl_elements.columns.values.tolist().index('TIME_SLOT_REF2')] # return startTimeSlotID, endTimeSlotID def getTimeSlotIDs(self, doc, tbl_elements): '''next step asks for row 0 of dataframe (speech), get value of TSRef1 (start time)''' if 'TIME_SLOT_REF1' in tbl_elements.columns: startTimeSlotID = tbl_elements.iloc[0, tbl_elements.columns.values.tolist().index('TIME_SLOT_REF1')] endTimeSlotID = tbl_elements.iloc[0, tbl_elements.columns.values.tolist().index('TIME_SLOT_REF2')] else: startTimeSlotID = False parentRefID = tbl_elements.iloc[0, tbl_elements.columns.values.tolist().index('ANNOTATION_REF')] while startTimeSlotID == False: # print(parentRefID) parentAnnotation = doc.find('TIER/ANNOTATION/ALIGNABLE_ANNOTATION[@ANNOTATION_ID="%s"]' %parentRefID) if not parentAnnotation: parentAnnotation = doc.find('TIER/ANNOTATION/REF_ANNOTATION[@ANNOTATION_ID="%s"]' % parentRefID) if 'TIME_SLOT_REF1' in parentAnnotation.attrib: startTimeSlotID = parentAnnotation.attrib['TIME_SLOT_REF1'] endTimeSlotID = parentAnnotation.attrib['TIME_SLOT_REF2'] newTSR1_column = [startTimeSlotID] newTSR2_column = [endTimeSlotID] for i in range(1,tbl_elements.shape[0]): newTSR1_column.append("NaN") newTSR2_column.append("NaN") tbl_elements.insert(0,'TIME_SLOT_REF1',newTSR1_column) tbl_elements.insert(0, 'TIME_SLOT_REF2', newTSR2_column) # row = tbl_elements.loc[tbl_elements['TIER_ID'] == self.speechTier] # print("speech tier row is %s" %row) else: try: parentRefID = parentAnnotation.attrib[('ANNOTATION_REF')] except KeyError: '''this will happen if the speech tier is not time-aligned or the child of a time-aligned tier; this will probably crash SLEXIL, but this is an inadmissible file type anyway, we can figure out how to warn the user later''' print('bailing') startTimeSlotID = float('NaN') endTimeSlotID = float('NaN') return startTimeSlotID, endTimeSlotID def buildTable(self, doc, lineElements): #doc = .eaf file; lineElements = line element and its children tbl_elements = pd.DataFrame(e.attrib for e in lineElements) startTimeSlotID, endTimeSlotID = self.getTimeSlotIDs(doc, tbl_elements) pattern = "TIME_ORDER/TIME_SLOT[@TIME_SLOT_ID='%s']" % startTimeSlotID startTime = int(doc.find(pattern).attrib["TIME_VALUE"]) startTimes = [startTime] rowCount = tbl_elements.shape[0] '''next step fills in NaN for all the children of the time-aligned tier, but since that messes us up with the getStart/End methods in IjalLine if the *speech tier* isn't aligned, let's just give every row a copy of the start and end times''' for i in range(1, rowCount): # startTimes.append(float('NaN')) startTimes.append(startTime) '''repeat previous for end times''' pattern = "TIME_ORDER/TIME_SLOT[@TIME_SLOT_ID='%s']" % endTimeSlotID endTime = int(doc.find(pattern).attrib["TIME_VALUE"]) endTimes = [endTime] for i in range(1, rowCount): # endTimes.append(float('NaN')) endTimes.append(endTime) tbl_times =
pd.DataFrame({"START": startTimes, "END": endTimes})
pandas.DataFrame
import pandas as pd import numpy as np import random from human_ISH_config import * import math import os import sklearn from sklearn.linear_model import LogisticRegression from sklearn.model_selection import StratifiedKFold from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score from sklearn.ensemble import RandomForestClassifier #DATA_DIR: This is defined in human_ISJ_config.py. This is the directory you have defined to store all the data. PATH_TO_SZ_STUDY = os.path.join(DATA_DIR, "schizophrenia") PATH_TO_SZ_POST_PROCESS = os.path.join(PATH_TO_SZ_STUDY, "post_process_on_sz") def get_sz_labels_image_and_donor_level(label): """ This function is used to select a certain column from the info csv file to be later used as a label in downstream tasks. The main columns that we were interested are: "description" and "smoker" "description" indicates whether the donor was case or control, and "smoker" indicates whether they smoked or not. This information is available from the Allen website. :param label: string. The column name to be used as label :return: None """ path_to_sz_info = os.path.join(PATH_TO_SZ_STUDY, "human_ISH_info.csv") sz_info_df = pd.read_csv(path_to_sz_info) if label == 'description': new_df = pd.DataFrame(columns=['ID', label]) # --------------- image level --------------- new_df['ID'] = sz_info_df['image_id'] diagnosis = list(sz_info_df['description']) image_sz_count = 0 image_no_sz_count = 0 for i in range(len(diagnosis)): if "schizophrenia" in diagnosis[i]: diagnosis[i] = True image_sz_count +=1 elif "control" in diagnosis[i]: diagnosis[i] = False image_no_sz_count +=1 else: diagnosis[i] = None new_df[label] = diagnosis file_name = "sz_diagnosis_as_label_image_level.csv" new_df.to_csv(os.path.join(PATH_TO_SZ_POST_PROCESS, file_name), index=None) print ("image sz count: ", image_sz_count) print ("image no sz count: ", image_no_sz_count) print ("total: ", image_sz_count + image_no_sz_count) # --------------- donor level --------------- group_by_donor = sz_info_df.groupby('donor_id') donor_list=[] diagnosis_list = [] donor_sz_count = 0 donor_no_sz_count = 0 for key, item in group_by_donor: donor_list.append(key) diagnosis = list(item['description'])[0] if "schizophrenia" in diagnosis: diagnosis_list.append(True) donor_sz_count +=1 elif "control" in diagnosis: diagnosis_list.append(False) donor_no_sz_count +=1 else: diagnosis_list.append(None) new_df = pd.DataFrame(columns=['ID', label]) new_df['ID']= donor_list new_df[label] = diagnosis_list file_name = "sz_diagnosis_as_label_donor_level.csv" new_df.to_csv(os.path.join(PATH_TO_SZ_POST_PROCESS, file_name), index=None) print ("donor sz count: ", donor_sz_count) print ("donor no sz count: ", donor_no_sz_count) print ("total: ", donor_sz_count + donor_no_sz_count) elif label in ['donor_age', 'donor_sex', 'smoker', 'pmi', 'tissue_ph', 'donor_race']: new_df = pd.DataFrame(columns=['ID', label]) # --------------- image level --------------- new_df['ID'] = sz_info_df['image_id'] new_df[label] = list(sz_info_df[label]) file_name = label + "_as_label_image_level.csv" new_df.to_csv(os.path.join(PATH_TO_SZ_POST_PROCESS, file_name), index=None) # --------------- donor level --------------- group_by_donor = sz_info_df.groupby('donor_id') donor_list = [] label_list = [] for key, item in group_by_donor: donor_list.append(key) label_list.append(list(item[label])[0]) new_df = pd.DataFrame(columns=['ID', label]) new_df['ID'] = donor_list new_df[label] = label_list file_name = label + "_as_label_donor_level.csv" new_df.to_csv(os.path.join(PATH_TO_SZ_POST_PROCESS, file_name), index=None) def embeddings_per_gene_per_donor(path_to_per_gene_per_donor_level_files, input_type, ts, embeddings_df): """ This function gets an image-level embedding file and outputs a donor-level csv file for each gene. Each gene will have a separate csv file: gene_name.csv Each row in the csv file will represent a donor. The number of rows in the csv file is the number of donors on which this specific gene was tested. We will use image level embeddings, then group them by gene. So each group will be all the images that assay the same gene. Then, within each group, we will group the images again by donor_id and use the mean() function to take the average of the embeddings. :param path_to_per_gene_per_donor_level_files: the path in which per gene donor-level files should be saved. The directory will be created if it doesn't alredy exist. :param input_type: str. Determine the type of input vectors. Could be: ['embed','demog','demog_and_embed','random','plain_resnet'] :param ts: str. The timestamp that indicates which files to use. :param embeddings_df: pandas data frame. Image-level embeddings. :return: a list of genes """ # the embeddings are image level path_to_sz_info = os.path.join(PATH_TO_SZ_STUDY, "human_ISH_info.csv") sz_info_df =
pd.read_csv(path_to_sz_info)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 25 21:13:58 2020 @author: sarakohnke """ #Set working directory import os path="/Users/sarakohnke/Desktop/data_type_you/interim-tocsv" os.chdir(path) os.getcwd() #Import required packages import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import seaborn as sns #Import data for files with demographic information #(This is after converted .xpt to .csv) #import 7 demo files demo05=pd.read_csv('DEMO_D_NHANES_Demographics_2005.csv') demo07=pd.read_csv('DEMO_E_NHANES_Demographics_2007.csv') demo09=pd.read_csv('DEMO_F_NHANES_Demographics_2009.csv') demo11=pd.read_csv('DEMO_G_NHANES_Demographics_2011.csv') demo13=pd.read_csv('DEMO_H_NHANES_Demographics_2013.csv') demo15=pd.read_csv('DEMO_I_NHANES_Demographics_2015.csv') demo17=pd.read_csv('DEMO_J_NHANES_Demographics_2017.csv') #add year as a column demo05['Year']=2005 demo07['Year']=2007 demo09['Year']=2009 demo11['Year']=2011 demo13['Year']=2013 demo15['Year']=2015 demo17['Year']=2017 #append all dfs together demographics_allyears=demo05.append(demo07, ignore_index = True) demographics_allyears=demographics_allyears.append(demo09, ignore_index = True) demographics_allyears=demographics_allyears.append(demo11, ignore_index = True) demographics_allyears=demographics_allyears.append(demo13, ignore_index = True) demographics_allyears=demographics_allyears.append(demo15, ignore_index = True) demographics_allyears=demographics_allyears.append(demo17, ignore_index = True) #select only desired cols demographics_allyears2=demographics_allyears[['SEQN','RIAGENDR','RIDAGEYR']].copy() #rename cols demographics_allyears2.rename(columns={'SEQN':'Patient ID', 'RIAGENDR':'Male', 'RIDAGEYR':'Age (years)'}, inplace=True) #see if there are unknowns (eg 777) demographics_allyears2['Age (years)'].value_counts().sort_index() #replace 2 with 0 for female demographics_allyears2['Male'].replace(2,0,inplace=True) #drop rows with nas demographics_allyears3=demographics_allyears2.dropna(axis=0) #filter for adults demographics_allyears4=demographics_allyears3[demographics_allyears3['Age (years)']>=18] #Import data for files with blood pressure information #import 7 bp files bp05=pd.read_csv('BPX_D_NHANES_Blood_Pressure_2005.csv') bp07=pd.read_csv('BPX_E_NHANES_Blood_Pressure_2007.csv') bp09=pd.read_csv('BPX_F_NHANES_Blood_Pressure_2009.csv') bp11=pd.read_csv('BPX_G_NHANES_Blood_Pressure_2011.csv') bp13=pd.read_csv('BPX_H_NHANES_Blood_Pressure_2013.csv') bp15=pd.read_csv('BPX_I_NHANES_Blood_Pressure_2015.csv') bp17=pd.read_csv('BPX_J_NHANES_Blood_Pressure_2017.csv') #add year as a column bp05['Year']=2005 bp07['Year']=2007 bp09['Year']=2009 bp11['Year']=2011 bp13['Year']=2013 bp15['Year']=2015 bp17['Year']=2017 #append all dfs together bp_allyears=bp05.append(bp07, ignore_index = True) bp_allyears=bp_allyears.append(bp09, ignore_index = True) bp_allyears=bp_allyears.append(bp11, ignore_index = True) bp_allyears=bp_allyears.append(bp13, ignore_index = True) bp_allyears=bp_allyears.append(bp15, ignore_index = True) bp_allyears=bp_allyears.append(bp17, ignore_index = True) #select only desired cols bp_allyears2=bp_allyears[['SEQN','BPXPLS','BPXSY1','BPXDI1']].copy() #rename cols bp_allyears2.rename(columns={'SEQN':'Patient ID', 'BPXPLS':'Pulse (60sec)', 'BPXSY1':'Systolic pressure (mmHg)', 'BPXDI1':'Diastolic pressure (mmHg)'}, inplace=True) #see if there are unknowns (eg 777) bp_allyears2['Systolic pressure (mmHg)'].value_counts().sort_index() #replace values that don't make sense with NaNs bp_allyears2['Pulse (60sec)'].replace(0,np.nan,inplace=True) bp_allyears2['Pulse (60sec)'].value_counts().sort_index() bp_allyears2['Diastolic pressure (mmHg)'].replace([0,2,4,6,8,10,12,14,16,18],np.nan,inplace=True) bp_allyears2['Diastolic pressure (mmHg)'].value_counts().sort_index() #drop rows with nas bp_allyears3=bp_allyears2.dropna(axis=0) #Import data for files with body measure information #import 7 body measure files bm05=pd.read_csv('BMX_D_NHANES_Body_Measures_2005.csv') bm07=pd.read_csv('BMX_E_NHANES_Body_Measures_2007.csv') bm09=pd.read_csv('BMX_F_NHANES_Body_Measures_2009.csv') bm11=pd.read_csv('BMX_G_NHANES_Body_Measures_2011.csv') bm13=pd.read_csv('BMX_H_NHANES_Body_Measures_2013.csv') bm15=pd.read_csv('BMX_I_NHANES_Body_Measures_2015.csv') bm17=pd.read_csv('BMX_J_NHANES_Body_Measures_2017.csv') #add year as a column bm05['Year']=2005 bm07['Year']=2007 bm09['Year']=2009 bm11['Year']=2011 bm13['Year']=2013 bm15['Year']=2015 bm17['Year']=2017 #append all dfs together bm_allyears=bm05.append(bm07, ignore_index = True) bm_allyears=bm_allyears.append(bm09, ignore_index = True) bm_allyears=bm_allyears.append(bm11, ignore_index = True) bm_allyears=bm_allyears.append(bm13, ignore_index = True) bm_allyears=bm_allyears.append(bm15, ignore_index = True) bm_allyears=bm_allyears.append(bm17, ignore_index = True) #select only desired cols bm_allyears2=bm_allyears[['SEQN','BMXBMI']].copy() #rename cols bm_allyears2.rename(columns={'SEQN':'Patient ID', 'BMXBMI':'BMI (kg/m2)'}, inplace=True) #see if there are unknowns (eg 777) bm_allyears2['BMI (kg/m2)'].value_counts().sort_index() #drop rows with nas bm_allyears3=bm_allyears2.dropna(axis=0) #Import data for files with total cholesterol information #import 7 chol files chol05=pd.read_csv('TCHOL_D_NHANES_Total_Cholesterol_2005.csv') chol07=pd.read_csv('TCHOL_E_NHANES_Total_Cholesterol_2007.csv') chol09=pd.read_csv('TCHOL_F_NHANES_Total_Cholesterol_2009.csv') chol11=pd.read_csv('TCHOL_G_NHANES_Total_Cholesterol_2011.csv') chol13=pd.read_csv('TCHOL_H_NHANES_Total_Cholesterol_2013.csv') chol15=pd.read_csv('TCHOL_I_NHANES_Total_Cholesterol_2015.csv') chol17=pd.read_csv('TCHOL_J_NHANES_Total_Cholesterol_2017.csv') #add year as a column chol05['Year']=2005 chol07['Year']=2007 chol09['Year']=2009 chol11['Year']=2011 chol13['Year']=2013 chol15['Year']=2015 chol17['Year']=2017 #append all dfs together chol_allyears=chol05.append(chol07, ignore_index = True) chol_allyears=chol_allyears.append(chol09, ignore_index = True) chol_allyears=chol_allyears.append(chol11, ignore_index = True) chol_allyears=chol_allyears.append(chol13, ignore_index = True) chol_allyears=chol_allyears.append(chol15, ignore_index = True) chol_allyears=chol_allyears.append(chol17, ignore_index = True) #select only desired cols chol_allyears2=chol_allyears[['SEQN','LBXTC']].copy() #rename cols chol_allyears2.rename(columns={'SEQN':'Patient ID', 'LBXTC':'Total cholesterol (mg/dl)'}, inplace=True) #see if there are unknowns (eg 777) chol_allyears2['Total cholesterol (mg/dl)'].value_counts().sort_index() #drop rows with nas chol_allyears3=chol_allyears2.dropna(axis=0) #Import data for files with blood count information #import 7 blood count files cbc05=pd.read_csv('CBC_D_NHANES_Complete_Blood_Count_2005.csv') cbc07=pd.read_csv('CBC_E_NHANES_Complete_Blood_Count_2007.csv') cbc09=pd.read_csv('CBC_F_NHANES_Complete_Blood_Count_2009.csv') cbc11=pd.read_csv('CBC_G_NHANES_Complete_Blood_Count_2011.csv') cbc13=pd.read_csv('CBC_H_NHANES_Complete_Blood_Count_2013.csv') cbc15=pd.read_csv('CBC_I_NHANES_Complete_Blood_Count_2015.csv') cbc17=pd.read_csv('CBC_J_NHANES_Complete_Blood_Count_2017.csv') #add year as a column cbc05['Year']=2005 cbc07['Year']=2007 cbc09['Year']=2009 cbc11['Year']=2011 cbc13['Year']=2013 cbc15['Year']=2015 cbc17['Year']=2017 #append all dfs together cbc_allyears=cbc05.append(cbc07, ignore_index = True) cbc_allyears=cbc_allyears.append(cbc09, ignore_index = True) cbc_allyears=cbc_allyears.append(cbc11, ignore_index = True) cbc_allyears=cbc_allyears.append(cbc13, ignore_index = True) cbc_allyears=cbc_allyears.append(cbc15, ignore_index = True) cbc_allyears=cbc_allyears.append(cbc17, ignore_index = True) #select only desired cols cbc_allyears2=cbc_allyears[['SEQN','LBXMPSI','LBXPLTSI','LBXRBCSI','LBDEONO', 'LBDLYMNO','LBDBANO','LBDMONO']].copy() #rename cols cbc_allyears2.rename(columns={'SEQN':'Patient ID', 'LBXMPSI':'Mean platelet volume (fL)', 'LBXPLTSI':'Platelet count (1000 cells/uL)', 'LBXRBCSI':'Red blood cell count (million cells/uL)', 'LBDEONO':'Eosinophils number (1000 cells/uL)', 'LBDLYMNO':'Lymphocyte number (1000 cells/uL)', 'LBDBANO':'Basophils number (1000 cells/uL)', 'LBDMONO':'Monocyte number (1000 cells/uL)'}, inplace=True) #see if there are unknowns (eg 777) cbc_allyears2['Monocyte number (1000 cells/uL)'].value_counts().sort_index() #drop rows with nas cbc_allyears3=cbc_allyears2.dropna(axis=0) #Import data for files with A1c/glycohemoglobin information #import 7 a1c files a1c05=
pd.read_csv('GHB_D_NHANES_A1C_2005.csv')
pandas.read_csv
import functools import json import warnings from abc import ABC, abstractmethod, abstractproperty from collections.abc import Iterable from typing import Dict, List, Optional, Tuple, Union import pandas as pd import pastas as ps from numpy import isin from pastas.io.pas import PastasEncoder from tqdm import tqdm from .util import ItemInLibraryException, _custom_warning, validate_names FrameorSeriesUnion = Union[pd.DataFrame, pd.Series] warnings.showwarning = _custom_warning class BaseConnector(ABC): """Base Connector class. Class holds base logic for dealing with timeseries and Pastas Models. Create your own Connector to a data source by writing a a class that inherits from this BaseConnector. Your class has to override each abstractmethod and abstractproperty. """ _default_library_names = ["oseries", "stresses", "models", "oseries_models"] # whether to check model timeseries contents against stored copies check_model_series_values = True def __repr__(self): """Representation string of the object.""" return (f"<{type(self).__name__}> '{self.name}': " f"{self.n_oseries} oseries, " f"{self.n_stresses} stresses, " f"{self.n_models} models") @abstractmethod def _get_library(self, libname: str): """Get library handle. Must be overriden by subclass. Parameters ---------- libname : str name of the library Returns ------- lib : Any handle to the library """ pass @abstractmethod def _add_item(self, libname: str, item: Union[FrameorSeriesUnion, Dict], name: str, metadata: Optional[Dict] = None, overwrite: bool = False) -> None: """Internal method to add item for both timeseries and pastas.Models. Must be overriden by subclass. Parameters ---------- libname : str name of library to add item to item : FrameorSeriesUnion or dict item to add name : str name of the item metadata : dict, optional dictionary containing metadata, by default None """ pass @abstractmethod def _get_item(self, libname: str, name: str) \ -> Union[FrameorSeriesUnion, Dict]: """Internal method to get item (series or pastas.Models). Must be overriden by subclass. Parameters ---------- libname : str name of library name : str name of item Returns ------- item : FrameorSeriesUnion or dict item (timeseries or pastas.Model) """ pass @abstractmethod def _del_item(self, libname: str, name: str) -> None: """Internal method to delete items (series or models). Must be overriden by subclass. Parameters ---------- libname : str name of library to delete item from name : str name of item to delete """ pass @abstractmethod def _get_metadata(self, libname: str, name: str) -> Dict: """Internal method to get metadata. Must be overriden by subclass. Parameters ---------- libname : str name of the library name : str name of the item Returns ------- metadata : dict dictionary containing metadata """ pass @abstractproperty def oseries_names(self): """List of oseries names. Property must be overriden by subclass. """ pass @abstractproperty def stresses_names(self): """List of stresses names. Property must be overriden by subclass. """ pass @abstractproperty def model_names(self): """List of model names. Property must be overriden by subclass. """ pass def set_check_model_series_values(self, b: bool): """Turn check_model_series_values option on (True) or off (False). The default option is off. When turned on, the model timeseries (ml.oseries.series_original, and stressmodel.stress.series_original) values are checked against the stored copies in the database. If these do not match, an error is raised, and the model is not added to the database. This check is somewhat computationally expensive, which is why it can be turned on or off. Parameters ---------- b : bool boolean indicating whether option should be turned on (True) or off (False). Option is off by default. """ self.check_model_series_values = b print(f"Model timeseries checking set to: {b}.") def _add_series(self, libname: str, series: FrameorSeriesUnion, name: str, metadata: Optional[dict] = None, overwrite: bool = False) -> None: """Internal method to add series to database. Parameters ---------- libname : str name of the library to add the series to series : pandas.Series or pandas.DataFrame data to add name : str name of the timeseries metadata : dict, optional dictionary containing metadata, by default None overwrite : bool, optional overwrite existing dataset with the same name, by default False Raises ------ ItemInLibraryException if overwrite is False and name is already in the database """ if not isinstance(name, str): name = str(name) self._validate_input_series(series) series = self._set_series_name(series, name) in_store = getattr(self, f"{libname}_names") if name not in in_store or overwrite: self._add_item(libname, series, name, metadata=metadata, overwrite=overwrite) self._clear_cache(libname) else: raise ItemInLibraryException(f"Item with name '{name}' already" f" in '{libname}' library!") def _update_series(self, libname: str, series: FrameorSeriesUnion, name: str, metadata: Optional[dict] = None) -> None: """Internal method to update timeseries. Parameters ---------- libname : str name of library series : FrameorSeriesUnion timeseries containing update values name : str name of the timeseries to update metadata : Optional[dict], optional optionally provide metadata dictionary which will also update the current stored metadata dictionary, by default None """ if libname not in ["oseries", "stresses"]: raise ValueError("Library must be 'oseries' or 'stresses'!") self._validate_input_series(series) series = self._set_series_name(series, name) stored = self._get_series(libname, name, progressbar=False) # get union of index idx_union = stored.index.union(series.index) # update series with new values update = stored.reindex(idx_union) update.update(series) # metadata update_meta = self._get_metadata(libname, name) if metadata is not None: update_meta.update(metadata) self._add_series(libname, update, name, metadata=update_meta, overwrite=True) def _upsert_series(self, libname: str, series: FrameorSeriesUnion, name: str, metadata: Optional[dict] = None) -> None: """Update or insert series depending on whether it exists in store. Parameters ---------- libname : str name of library series : FrameorSeriesUnion timeseries to update/insert name : str name of the timeseries metadata : Optional[dict], optional metadata dictionary, by default None """ if libname not in ["oseries", "stresses"]: raise ValueError("Library must be 'oseries' or 'stresses'!") if name in getattr(self, f"{libname}_names"): self._update_series(libname, series, name, metadata=metadata) else: self._add_series(libname, series, name, metadata=metadata) def update_metadata(self, libname: str, name: str, metadata: dict) -> None: """Update metadata. Note: also retrieves and stores timeseries as updating only metadata is not supported for some Connectors. Parameters ---------- libname : str name of library name : str name of the item for which to update metadata metadata : dict metadata dictionary that will be used to update the stored metadata """ if libname not in ["oseries", "stresses"]: raise ValueError("Library must be 'oseries' or 'stresses'!") update_meta = self._get_metadata(libname, name) update_meta.update(metadata) # get series, since just updating metadata is not really defined # in all cases s = self._get_series(libname, name, progressbar=False) self._add_series(libname, s, name, metadata=update_meta, overwrite=True) def add_oseries(self, series: Union[FrameorSeriesUnion, ps.TimeSeries], name: str, metadata: Optional[dict] = None, overwrite: bool = False) -> None: """Add oseries to the database. Parameters ---------- series : pandas.Series, pandas.DataFrame or pastas.TimeSeries data to add name : str name of the timeseries metadata : dict, optional dictionary containing metadata, by default None. If pastas.TimeSeries is passed, metadata is kwarg is ignored and metadata is taken from pastas.TimeSeries object overwrite : bool, optional overwrite existing dataset with the same name, by default False """ series, metadata = self._parse_series_input(series, metadata) self._add_series("oseries", series, name=name, metadata=metadata, overwrite=overwrite) def add_stress(self, series: Union[FrameorSeriesUnion, ps.TimeSeries], name: str, kind: str, metadata: Optional[dict] = None, overwrite: bool = False) -> None: """Add stress to the database. Parameters ---------- series : pandas.Series, pandas.DataFrame or pastas.TimeSeries data to add, if pastas.Timeseries is passed, series_orignal and metadata is stored in database name : str name of the timeseries kind : str category to identify type of stress, this label is added to the metadata dictionary. metadata : dict, optional dictionary containing metadata, by default None. If pastas.TimeSeries is passed, metadata is kwarg is ignored and metadata is taken from pastas.TimeSeries object overwrite : bool, optional overwrite existing dataset with the same name, by default False """ series, metadata = self._parse_series_input(series, metadata) if metadata is None: metadata = {} metadata["kind"] = kind self._add_series("stresses", series, name=name, metadata=metadata, overwrite=overwrite) def add_model(self, ml: Union[ps.Model, dict], overwrite: bool = False, validate_metadata: bool = False) -> None: """Add model to the database. Parameters ---------- ml : pastas.Model or dict pastas Model or dictionary to add to the database overwrite : bool, optional if True, overwrite existing model, by default False validate_metadata, bool optional remove unsupported characters from metadata dictionary keys Raises ------ TypeError if model is not pastas.Model or dict ItemInLibraryException if overwrite is False and model is already in the database """ if isinstance(ml, ps.Model): mldict = ml.to_dict(series=False) name = ml.name if validate_metadata: metadata = validate_names(d=ml.oseries.metadata) else: metadata = ml.oseries.metadata elif isinstance(ml, dict): mldict = ml name = ml["name"] metadata = None else: raise TypeError("Expected pastas.Model or dict!") if not isinstance(name, str): name = str(name) if name not in self.model_names or overwrite: # check if stressmodels supported self._check_stressmodels_supported(ml) # check if oseries and stresses exist in store self._check_model_series_names_for_store(ml) self._check_oseries_in_store(ml) self._check_stresses_in_store(ml) # write model to store self._add_item("models", mldict, name, metadata=metadata, overwrite=overwrite) else: raise ItemInLibraryException(f"Model with name '{name}' " "already in 'models' library!") self._clear_cache("_modelnames_cache") self._add_oseries_model_links(str(mldict["oseries"]["name"]), name) @staticmethod def _parse_series_input(series: Union[FrameorSeriesUnion, ps.TimeSeries], metadata: Optional[Dict] = None) \ -> Tuple[FrameorSeriesUnion, Optional[Dict]]: """Internal method to parse series input. Parameters ---------- series : Union[FrameorSeriesUnion, ps.TimeSeries], series object to parse metadata : dict, optional metadata dictionary or None, by default None Returns ------- series, metadata : FrameorSeriesUnion, Optional[Dict] timeseries as pandas.Series or DataFrame and optionally metadata dictionary """ if isinstance(series, ps.TimeSeries): if metadata is not None: print("Warning! Metadata kwarg ignored. Metadata taken from " "pastas.TimeSeries object!") s = series.series_original m = series.metadata else: s = series m = metadata return s, m def update_oseries(self, series: Union[FrameorSeriesUnion, ps.TimeSeries], name: str, metadata: Optional[dict] = None) -> None: """Update oseries values. Parameters ---------- series : Union[FrameorSeriesUnion, ps.TimeSeries] timeseries to update stored oseries with name : str name of the oseries to update metadata : Optional[dict], optional optionally provide metadata, which will update the stored metadata dictionary, by default None """ series, metadata = self._parse_series_input(series, metadata) self._update_series("oseries", series, name, metadata=metadata) def upsert_oseries(self, series: Union[FrameorSeriesUnion, ps.TimeSeries], name: str, metadata: Optional[dict] = None) -> None: """Update or insert oseries values depending on whether it exists. Parameters ---------- series : Union[FrameorSeriesUnion, ps.TimeSeries] timeseries to update/insert name : str name of the oseries metadata : Optional[dict], optional optionally provide metadata, which will update the stored metadata dictionary if it exists, by default None """ series, metadata = self._parse_series_input(series, metadata) self._upsert_series("oseries", series, name, metadata=metadata) def update_stress(self, series: Union[FrameorSeriesUnion, ps.TimeSeries], name: str, metadata: Optional[dict] = None) -> None: """Update stresses values. Note: the 'kind' attribute of a stress cannot be updated! To update the 'kind' delete and add the stress again. Parameters ---------- series : Union[FrameorSeriesUnion, ps.TimeSeries] timeseries to update stored stress with name : str name of the stress to update metadata : Optional[dict], optional optionally provide metadata, which will update the stored metadata dictionary, by default None """ series, metadata = self._parse_series_input(series, metadata) self._update_series("stresses", series, name, metadata=metadata) def upsert_stress(self, series: Union[FrameorSeriesUnion, ps.TimeSeries], name: str, kind: str, metadata: Optional[dict] = None) -> None: """Update or insert stress values depending on whether it exists. Parameters ---------- series : Union[FrameorSeriesUnion, ps.TimeSeries] timeseries to update/insert name : str name of the stress metadata : Optional[dict], optional optionally provide metadata, which will update the stored metadata dictionary if it exists, by default None """ series, metadata = self._parse_series_input(series, metadata) if metadata is None: metadata = {} metadata["kind"] = kind self._upsert_series("stresses", series, name, metadata=metadata) def del_models(self, names: Union[list, str]) -> None: """Delete model(s) from the database. Parameters ---------- names : str or list of str name(s) of the model to delete """ for n in self._parse_names(names, libname="models"): mldict = self.get_models(n, return_dict=True) oname = mldict["oseries"]["name"] self._del_item("models", n) self._del_oseries_model_link(oname, n) self._clear_cache("_modelnames_cache") def del_oseries(self, names: Union[list, str]): """Delete oseries from the database. Parameters ---------- names : str or list of str name(s) of the oseries to delete """ for n in self._parse_names(names, libname="oseries"): self._del_item("oseries", n) self._clear_cache("oseries") def del_stress(self, names: Union[list, str]): """Delete stress from the database. Parameters ---------- names : str or list of str name(s) of the stress to delete """ for n in self._parse_names(names, libname="stresses"): self._del_item("stresses", n) self._clear_cache("stresses") def _get_series(self, libname: str, names: Union[list, str], progressbar: bool = True, squeeze: bool = True) \ -> FrameorSeriesUnion: """Internal method to get timeseries. Parameters ---------- libname : str name of the library names : str or list of str names of the timeseries to load progressbar : bool, optional show progressbar, by default True squeeze : bool, optional if True return DataFrame or Series instead of dictionary for single entry Returns ------- pandas.DataFrame or dict of pandas.DataFrames either returns timeseries as pandas.DataFrame or dictionary containing the timeseries. """ ts = {} names = self._parse_names(names, libname=libname) desc = f"Get {libname}" for n in (tqdm(names, desc=desc) if progressbar else names): ts[n] = self._get_item(libname, n) # return frame if len == 1 if len(ts) == 1 and squeeze: return ts[n] else: return ts def get_metadata(self, libname: str, names: Union[list, str], progressbar: bool = False, as_frame: bool = True, squeeze: bool = True) -> Union[dict, pd.DataFrame]: """Read metadata from database. Parameters ---------- libname : str name of the library containing the dataset names : str or list of str names of the datasets for which to read the metadata squeeze : bool, optional if True return dict instead of list of dict for single entry Returns ------- dict or pandas.DataFrame returns metadata dictionary or DataFrame of metadata """ metalist = [] names = self._parse_names(names, libname=libname) desc = f"Get metadata {libname}" for n in (tqdm(names, desc=desc) if progressbar else names): imeta = self._get_metadata(libname, n) if imeta is None: imeta = {} if "name" not in imeta.keys(): imeta["name"] = n metalist.append(imeta) if as_frame: meta = self._meta_list_to_frame(metalist, names=names) return meta else: if len(metalist) == 1 and squeeze: return metalist[0] else: return metalist def get_oseries(self, names: Union[list, str], return_metadata: bool = False, progressbar: bool = False, squeeze: bool = True) \ -> Union[Union[FrameorSeriesUnion, Dict], Optional[Union[Dict, List]]]: """Get oseries from database. Parameters ---------- names : str or list of str names of the oseries to load return_metadata : bool, optional return metadata as dictionary or list of dictionaries, default is False progressbar : bool, optional show progressbar, by default False squeeze : bool, optional if True return DataFrame or Series instead of dictionary for single entry Returns ------- oseries : pandas.DataFrame or dict of DataFrames returns timeseries as DataFrame or dictionary of DataFrames if multiple names were passed metadata : dict or list of dict metadata for each oseries, only returned if return_metadata=True """ oseries = self._get_series("oseries", names, progressbar=progressbar, squeeze=squeeze) if return_metadata: metadata = self.get_metadata("oseries", names, progressbar=progressbar, as_frame=False, squeeze=squeeze) return oseries, metadata else: return oseries def get_stresses(self, names: Union[list, str], return_metadata: bool = False, progressbar: bool = False, squeeze: bool = True) \ -> Union[Union[FrameorSeriesUnion, Dict], Optional[Union[Dict, List]]]: """Get stresses from database. Parameters ---------- names : str or list of str names of the stresses to load return_metadata : bool, optional return metadata as dictionary or list of dictionaries, default is False progressbar : bool, optional show progressbar, by default False squeeze : bool, optional if True return DataFrame or Series instead of dictionary for single entry Returns ------- stresses : pandas.DataFrame or dict of DataFrames returns timeseries as DataFrame or dictionary of DataFrames if multiple names were passed metadata : dict or list of dict metadata for each stress, only returned if return_metadata=True """ stresses = self._get_series("stresses", names, progressbar=progressbar, squeeze=squeeze) if return_metadata: metadata = self.get_metadata("stresses", names, progressbar=progressbar, as_frame=False, squeeze=squeeze) return stresses, metadata else: return stresses def get_models(self, names: Union[list, str], return_dict: bool = False, progressbar: bool = False, squeeze: bool = True, update_ts_settings: bool = False) \ -> Union[ps.Model, list]: """Load models from database. Parameters ---------- names : str or list of str names of the models to load return_dict : bool, optional return model dictionary instead of pastas.Model (much faster for obtaining parameters, for example) progressbar : bool, optional show progressbar, by default False squeeze : bool, optional if True return Model instead of list of Models for single entry update_ts_settings : bool, optional update timeseries settings based on timeseries in store. overwrites stored tmin/tmax in model. Returns ------- pastas.Model or list of pastas.Model return pastas model, or list of models if multiple names were passed """ models = [] names = self._parse_names(names, libname="models") desc = "Get models" for n in (tqdm(names, desc=desc) if progressbar else names): data = self._get_item("models", n) if return_dict: ml = data else: ml = self._parse_model_dict( data, update_ts_settings=update_ts_settings) models.append(ml) if len(models) == 1 and squeeze: return models[0] else: return models def empty_library(self, libname: str, prompt: bool = True, progressbar: bool = True): """Empty library of all its contents. Parameters ---------- libname : str name of the library prompt : bool, optional prompt user for input before deleting contents, by default True. Default answer is "n", user must enter 'y' to delete contents progressbar : bool, optional show progressbar, by default True """ if prompt: ui = input(f"Do you want to empty '{libname}'" " library of all its contents? [y/N] ") if ui.lower() != "y": return names = self._parse_names(None, libname) for name in (tqdm(names, desc=f"Deleting items from {libname}") if progressbar else names): self._del_item(libname, name) self._clear_cache(libname) print(f"Emptied library {libname} in {self.name}: " f"{self.__class__}") def _iter_series(self, libname: str, names: Optional[List[str]] = None): """Internal method iterate over timeseries in library. Parameters ---------- libname : str name of library (e.g. 'oseries' or 'stresses') names : Optional[List[str]], optional list of names, by default None, which defaults to all stored series Yields ------- pandas.Series or pandas.DataFrame timeseries contained in library """ names = self._parse_names(names, libname) for nam in names: yield self._get_series(libname, nam, progressbar=False) def iter_oseries(self, names: Optional[List[str]] = None): """Iterate over oseries in library. Parameters ---------- names : Optional[List[str]], optional list of oseries names, by default None, which defaults to all stored series Yields ------- pandas.Series or pandas.DataFrame oseries contained in library """ yield from self._iter_series("oseries", names=names) def iter_stresses(self, names: Optional[List[str]] = None): """Iterate over stresses in library. Parameters ---------- names : Optional[List[str]], optional list of stresses names, by default None, which defaults to all stored series Yields ------- pandas.Series or pandas.DataFrame stresses contained in library """ yield from self._iter_series("stresses", names=names) def iter_models(self, modelnames: Optional[List[str]] = None, return_dict: bool = False): """Iterate over models in library. Parameters ---------- modelnames : Optional[List[str]], optional list of models to iterate over, by default None which uses all models return_dict : bool, optional if True, return model as dictionary, by default False, which returns a pastas.Model. Yields ------- pastas.Model or dict timeseries model """ modelnames = self._parse_names(modelnames, "models") for mlnam in modelnames: yield self.get_models(mlnam, return_dict=return_dict, progressbar=False) def _add_oseries_model_links(self, onam: str, mlnames: Union[str, List[str]]): """Add model name to stored list of models per oseries. Parameters ---------- onam : str name of oseries mlnames : Union[str, List[str]] model name or list of model names for an oseries with name onam. """ # get stored list of model names if str(onam) in self.oseries_with_models: modellist = self._get_item("oseries_models", onam) else: # else empty list modellist = [] # if one model name, make list for loop if isinstance(mlnames, str): mlnames = [mlnames] # loop over model names for iml in mlnames: # if not present, add to list if iml not in modellist: modellist.append(iml) self._add_item("oseries_models", modellist, onam, overwrite=True) self._clear_cache("oseries_models") def _del_oseries_model_link(self, onam, mlnam): """Delete model name from stored list of models per oseries. Parameters ---------- onam : str name of oseries mlnam : str name of model """ modellist = self._get_item("oseries_models", onam) modellist.remove(mlnam) if len(modellist) == 0: self._del_item("oseries_models", onam) else: self._add_item("oseries_models", modellist, onam, overwrite=True) self._clear_cache("oseries_models") def _update_all_oseries_model_links(self): """Add all model names to oseries metadata dictionaries. Used for old PastaStore versions, where relationship between oseries and models was not stored. If there are any models in the database and if the oseries_models library is empty, loops through all models to determine which oseries each model belongs to. """ # get oseries_models library if there are any contents, if empty # add all model links. if self.n_models > 0: if len(self.oseries_models) == 0: links = self._get_all_oseries_model_links() for onam, mllinks in tqdm(links.items(), desc="Store models per oseries", total=len(links)): self._add_oseries_model_links(onam, mllinks) def _get_all_oseries_model_links(self): """Get all model names per oseries in dictionary. Returns ------- links : dict dictionary with oseries names as keys and lists of model names as values """ links = {} for mldict in tqdm(self.iter_models(return_dict=True), total=self.n_models, desc="Get models per oseries"): onam = mldict["oseries"]["name"] mlnam = mldict["name"] if onam in links: links[onam].append(mlnam) else: links[onam] = [mlnam] return links @staticmethod def _clear_cache(libname: str) -> None: """Clear cached property.""" if libname == "models": libname = "_modelnames_cache" getattr(BaseConnector, libname).fget.cache_clear() @property # type: ignore @functools.lru_cache() def oseries(self): """Dataframe with overview of oseries.""" return self.get_metadata("oseries", self.oseries_names) @property # type: ignore @functools.lru_cache() def stresses(self): """Dataframe with overview of stresses.""" return self.get_metadata("stresses", self.stresses_names) @property # type: ignore @functools.lru_cache() def _modelnames_cache(self): """List of model names.""" return self.model_names @ property def n_oseries(self): return len(self.oseries_names) @property def n_stresses(self): return len(self.stresses_names) @property def n_models(self): return len(self.model_names) @property # type: ignore @functools.lru_cache() def oseries_models(self): """List of model names per oseries. Returns ------- d : dict dictionary with oseries names as keys and list of model names as values """ d = {} for onam in self.oseries_with_models: d[onam] = self._get_item("oseries_models", onam) return d class ConnectorUtil: """Mix-in class for general Connector helper functions. Only for internal methods, and not methods that are related to CRUD operations on database. """ def _parse_names(self, names: Optional[Union[list, str]] = None, libname: Optional[str] = "oseries") -> list: """Internal method to parse names kwarg, returns iterable with name(s). Parameters ---------- names : Union[list, str], optional str or list of str or None or 'all' (last two options retrieves all names) libname : str, optional name of library, default is 'oseries' Returns ------- list list of names """ if not isinstance(names, str) and isinstance(names, Iterable): return names elif isinstance(names, str) and names != "all": return [names] elif names is None or names == "all": if libname == "oseries": return getattr(self, "oseries_names") elif libname == "stresses": return getattr(self, "stresses_names") elif libname == "models": return getattr(self, "model_names") elif libname == "oseries_models": return getattr(self, "oseries_with_models") else: raise ValueError(f"No library '{libname}'!") else: raise NotImplementedError(f"Cannot parse 'names': {names}") @staticmethod def _meta_list_to_frame(metalist: list, names: list): """Convert list of metadata dictionaries to DataFrame. Parameters ---------- metalist : list list of metadata dictionaries names : list list of names corresponding to data in metalist Returns ------- pandas.DataFrame DataFrame containing overview of metadata """ # convert to dataframe if len(metalist) > 1: meta = pd.DataFrame(metalist) if len({"x", "y"}.difference(meta.columns)) == 0: meta["x"] = meta["x"].astype(float) meta["y"] = meta["y"].astype(float) elif len(metalist) == 1: meta = pd.DataFrame(metalist) elif len(metalist) == 0: meta = pd.DataFrame() if "name" in meta.columns: meta.set_index("name", inplace=True) else: meta.index = names return meta def _parse_model_dict(self, mdict: dict, update_ts_settings: bool = False): """Internal method to parse dictionary describing pastas models. Parameters ---------- mdict : dict dictionary describing pastas.Model update_ts_settings : bool, optional update stored tmin and tmax in timeseries settings based on timeseries loaded from store. Returns ------- ml : pastas.Model timeseries analysis model """ # oseries if 'series' not in mdict['oseries']: name = str(mdict["oseries"]['name']) if name not in self.oseries.index: msg = 'oseries {} not present in project'.format(name) raise LookupError(msg) mdict['oseries']['series'] = self.get_oseries(name) # update tmin/tmax from timeseries if update_ts_settings: mdict["oseries"]["settings"]["tmin"] = \ mdict['oseries']['series'].index[0] mdict["oseries"]["settings"]["tmax"] = \ mdict['oseries']['series'].index[-1] # StressModel, WellModel for ts in mdict["stressmodels"].values(): if "stress" in ts.keys(): for stress in ts["stress"]: if 'series' not in stress: name = str(stress['name']) if name in self.stresses.index: stress['series'] = self.get_stresses(name) # update tmin/tmax from timeseries if update_ts_settings: stress["settings"]["tmin"] = \ stress['series'].index[0] stress["settings"]["tmax"] = \ stress['series'].index[-1] # RechargeModel, TarsoModel if ("prec" in ts.keys()) and ("evap" in ts.keys()): for stress in [ts["prec"], ts["evap"]]: if 'series' not in stress: name = str(stress['name']) if name in self.stresses.index: stress['series'] = self.get_stresses(name) # update tmin/tmax from timeseries if update_ts_settings: stress["settings"]["tmin"] = \ stress['series'].index[0] stress["settings"]["tmax"] = \ stress['series'].index[-1] else: msg = "stress '{}' not present in project".format( name) raise KeyError(msg) # hack for pcov w dtype object (when filled with NaNs on store?) if "fit" in mdict: if "pcov" in mdict["fit"]: pcov = mdict["fit"]["pcov"] if pcov.dtypes.apply( lambda dtyp: isinstance(dtyp, object)).any(): mdict["fit"]["pcov"] = pcov.astype(float) try: # pastas>=0.15.0 ml = ps.io.base._load_model(mdict) except AttributeError: # pastas<0.15.0 ml = ps.io.base.load_model(mdict) return ml @staticmethod def _validate_input_series(series): """check if series is pandas.DataFrame or pandas.Series. Parameters ---------- series : object object to validate Raises ------ TypeError if object is not of type pandas.DataFrame or pandas.Series """ if not (isinstance(series, pd.DataFrame) or isinstance(series, pd.Series)): raise TypeError("Please provide pandas.DataFrame" " or pandas.Series!") if isinstance(series, pd.DataFrame): if series.columns.size > 1: raise ValueError("Only DataFrames with one " "column are supported!") @staticmethod def _set_series_name(series, name): """Set series name to match user defined name in store. Parameters ---------- series : pandas.Series or pandas.DataFrame set name for this timeseries name : str name of the timeseries (used in the pastastore) """ if isinstance(series, pd.Series): series.name = name # empty string on index name causes trouble when reading # data from Arctic VersionStores if series.index.name == "": series.index.name = None if isinstance(series, pd.DataFrame): series.columns = [name] return series @staticmethod def _check_stressmodels_supported(ml): supported_stressmodels = [ "StressModel", "StressModel2", "RechargeModel", "WellModel", "TarsoModel", "Constant", "LinearTrend", "StepModel", ] if isinstance(ml, ps.Model): smtyps = [sm._name for sm in ml.stressmodels.values()] elif isinstance(ml, dict): smtyps = [sm["stressmodel"] for sm in ml["stressmodels"].values()] check = isin(smtyps, supported_stressmodels) if not all(check): unsupported = set(smtyps) - set(supported_stressmodels) raise NotImplementedError( "PastaStore does not support storing models with the " f"following stressmodels: {unsupported}") @staticmethod def _check_model_series_names_for_store(ml): prec_evap_model = ["RechargeModel", "TarsoModel"] if isinstance(ml, ps.Model): # non RechargeModel nor Tarsomodel stressmodels series_names = [istress.series.name for sm in ml.stressmodels.values() if sm._name not in prec_evap_model for istress in sm.stress] # RechargeModel, TarsoModel if isin(prec_evap_model, [i._name for i in ml.stressmodels.values()] ).any(): series_names += [istress.series.name for sm in ml.stressmodels.values() if sm._name in prec_evap_model for istress in sm.stress] elif isinstance(ml, dict): # non RechargeModel nor Tarsomodel stressmodels series_names = [istress["name"] for sm in ml["stressmodels"].values() if sm["stressmodel"] not in prec_evap_model for istress in sm["stress"]] # RechargeModel, TarsoModel if isin(prec_evap_model, [i["stressmodel"] for i in ml["stressmodels"].values()] ).any(): series_names += [istress["name"] for sm in ml["stressmodels"].values() if sm["stressmodel"] in prec_evap_model for istress in [sm["prec"], sm["evap"]]] else: raise TypeError("Expected pastas.Model or dict!") if len(series_names) - len(set(series_names)) > 0: msg = ("There are multiple stresses series with the same name! " "Each series name must be unique for the PastaStore!") raise ValueError(msg) def _check_oseries_in_store(self, ml: Union[ps.Model, dict]): """Internal method, check if Model oseries are contained in PastaStore. Parameters ---------- ml : Union[ps.Model, dict] pastas Model """ if isinstance(ml, ps.Model): name = ml.oseries.name elif isinstance(ml, dict): name = str(ml["oseries"]["name"]) else: raise TypeError("Expected pastas.Model or dict!") if name not in self.oseries.index: msg = (f"Cannot add model because oseries '{name}' " "is not contained in store.") raise LookupError(msg) # expensive check if self.check_model_series_values and isinstance(ml, ps.Model): s_org = self.get_oseries(name).squeeze().dropna() if not ml.oseries.series_original.dropna().equals(s_org): raise ValueError( f"Cannot add model because model oseries '{name}'" " is different from stored oseries!") def _check_stresses_in_store(self, ml: Union[ps.Model, dict]): """Internal method, check if stresses timeseries are contained in PastaStore. Parameters ---------- ml : Union[ps.Model, dict] pastas Model """ prec_evap_model = ["RechargeModel", "TarsoModel"] if isinstance(ml, ps.Model): for sm in ml.stressmodels.values(): if sm._name in prec_evap_model: stresses = [sm.prec, sm.evap] else: stresses = sm.stress for s in stresses: if s.name not in self.stresses.index: msg = (f"Cannot add model because stress '{s.name}' " "is not contained in store.") raise LookupError(msg) if self.check_model_series_values: s_org = self.get_stresses(s.name).squeeze() if not s.series_original.equals(s_org): raise ValueError( f"Cannot add model because model stress " f"'{s.name}' is different from stored stress!") elif isinstance(ml, dict): for sm in ml["stressmodels"].values(): if sm["stressmodel"] in prec_evap_model: stresses = [sm["prec"], sm["evap"]] else: stresses = sm["stress"] for s in stresses: if s["name"] not in self.stresses.index: msg = (f"Cannot add model because stress '{s['name']}' " "is not contained in store.") raise LookupError(msg) else: raise TypeError("Expected pastas.Model or dict!") def _stored_series_to_json(self, libname: str, names: Optional[Union[list, str]] = None, squeeze: bool = True, progressbar: bool = False): """Write stored series to JSON. Parameters ---------- libname : str library name names : Optional[Union[list, str]], optional names of series, by default None squeeze : bool, optional return single entry as json string instead of list, by default True progressbar : bool, optional show progressbar, by default False Returns ------- files : list or str list of series converted to JSON string or single string if single entry is returned and squeeze is True """ names = self._parse_names(names, libname=libname) files = [] for n in (tqdm(names, desc=libname) if progressbar else names): s = self._get_series(libname, n, progressbar=False) if isinstance(s, pd.Series): s = s.to_frame() try: sjson = s.to_json(orient="columns") except ValueError as e: msg = (f"DatetimeIndex of '{n}' probably contains NaT " "or duplicate timestamps!") raise ValueError(msg) from e files.append(sjson) if len(files) == 1 and squeeze: return files[0] else: return files def _stored_metadata_to_json(self, libname: str, names: Optional[Union[list, str]] = None, squeeze: bool = True, progressbar: bool = False): """Write metadata from stored series to JSON. Parameters ---------- libname : str library containing series names : Optional[Union[list, str]], optional names to parse, by default None squeeze : bool, optional return single entry as json string instead of list, by default True progressbar : bool, optional show progressbar, by default False Returns ------- files : list or str list of json string """ names = self._parse_names(names, libname=libname) files = [] for n in (tqdm(names, desc=libname) if progressbar else names): meta = self.get_metadata(libname, n, as_frame=False) meta_json = json.dumps(meta, cls=PastasEncoder, indent=4) files.append(meta_json) if len(files) == 1 and squeeze: return files[0] else: return files def _series_to_archive(self, archive, libname: str, names: Optional[Union[list, str]] = None, progressbar: bool = True): """Internal method for writing DataFrame or Series to zipfile. Parameters ---------- archive : zipfile.ZipFile reference to an archive to write data to libname : str name of the library to write to zipfile names : str or list of str, optional names of the timeseries to write to archive, by default None, which writes all timeseries to archive progressbar : bool, optional show progressbar, by default True """ names = self._parse_names(names, libname=libname) for n in (tqdm(names, desc=libname) if progressbar else names): sjson = self._stored_series_to_json( libname, names=n, progressbar=False, squeeze=True) meta_json = self._stored_metadata_to_json( libname, names=n, progressbar=False, squeeze=True) archive.writestr(f"{libname}/{n}.json", sjson) archive.writestr(f"{libname}/{n}_meta.json", meta_json) def _models_to_archive(self, archive, names=None, progressbar=True): """Internal method for writing pastas.Model to zipfile. Parameters ---------- archive : zipfile.ZipFile reference to an archive to write data to names : str or list of str, optional names of the models to write to archive, by default None, which writes all models to archive progressbar : bool, optional show progressbar, by default True """ names = self._parse_names(names, libname="models") for n in (tqdm(names, desc="models") if progressbar else names): m = self.get_models(n, return_dict=True) jsondict = json.dumps(m, cls=PastasEncoder, indent=4) archive.writestr(f"models/{n}.pas", jsondict) @ staticmethod def _series_from_json(fjson: str): """Load timeseries from JSON. Parameters ---------- fjson : str path to file Returns ------- s : pd.DataFrame DataFrame containing timeseries """ s = pd.read_json(fjson, orient="columns") if not isinstance(s.index, pd.DatetimeIndex): s.index =
pd.to_datetime(s.index, unit='ms')
pandas.to_datetime
import pandas as pd from pandas._testing import assert_frame_equal import pytest import numpy as np from scripts.normalize_data import ( remove_whitespace_from_column_names, normalize_expedition_section_cols, remove_bracket_text, remove_whitespace, ddm2dec, remove_empty_unnamed_columns, normalize_columns ) class RemoveSpacesFromColumns: def test_replaces_leading_and_trailing_spaces_from_columns(self): df = pd.DataFrame(columns=[' Aa', 'Bb12 ', ' Cc', 'Dd ', ' Ed Ed ', ' 12 ' ]) res = remove_whitespace_from_column_names(df) assert res == ['Aa', 'Bb12', 'Cc', 'Dd', 'Ee Ee', '12'] def test_returns_columns_if_no_leading_and_trailing_spaces(self): df = pd.DataFrame(columns=['Aa', 'Bb', 'Cc', 'Dd', 'Ed Ed']) res = remove_whitespace_from_column_names(df) assert res == ['Aa', 'Bb', 'Cc', 'Dd', 'Ee Ee' ] class TestNormalizeExpeditionSectionCols: def test_dataframe_does_not_change_if_expection_section_columns_exist(self): data = { "Col": [0, 1], "Exp": ["1", "10"], "Site": ["U1", "U2"], "Hole": ["h", "H"], "Core": ["2", "20"], "Type": ["t", "T"], "Section": ["3", "3"], "A/W": ["a", "A"], } df = pd.DataFrame(data) expected =
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: <EMAIL> @site: e-smartdata.org """ import numpy as np import pandas as pd import seaborn as sns sns.set() dft = pd.DataFrame({'price': np.random.randn(97)}, index=pd.date_range('20190101 09:00:00', periods=97, freq='5min')) fake_price = dft.cumsum() fake_price_mean = fake_price.rolling(10).mean() # %% fake_price.plot() # %% stats =
pd.concat([fake_price, fake_price_mean], axis=1)
pandas.concat