prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from pathlib import Path from .utils import logging, get_cols, DATABASE logger = logging.getLogger(__name__) cwd = Path(__file__).parent def main(_, name, level, row): con = f'postgresql:///{DATABASE}' file = (cwd / f'../../../inputs/cod/{name}.xlsx') sheets =
pd.ExcelFile(file, engine='openpyxl')
pandas.ExcelFile
import pandas as pd import numpy as np from pathlib import Path from datetime import datetime as dt from datetime import timedelta as td import sys import interpolate_matrix_test as interpolate_helpers ############################### # 1. Set parameters # 2. READ IN IN FILES # 3. SET DATA OBJECTS # 4. WRITE OUT RESULTS TO REQUIRED TXT AND CSV FILES REQUIRED FOR OPTIMISATION ############################### ############################### #TODO: # 1. Change .xlsx files to .csv files # 2. Fix folder reference files # 3. interpolate_helpers.output_write_df writes multiple dfs when > 1 columns in 'input_df' ############################### #### SET PARAMETERS year_length = 8760 interval_length = 1 repeat_ren_signals = 20 repeat_other_signals = 20 if interval_length == 1: interval_len = "_hourly" elif interval_length == 4: interval_len = "_15min" elif interval_length == 12: interval_len = "_5min" month_vec = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] dir2 = 'C:/Users/w47147/misc_code/RODeO-master/RODeO-master/Create_tariff_files/Data_files/' dir1 = dir2 + "CSV_data/" dir0 = dir2 + "TXT_files/" #### READ IN IN FILES num1int = pd.read_csv(dir2 + "CSV_data/e_tou_8760.csv") num1A = pd.read_csv(dir2 + "CSV_data/e_prices.csv") num6A = pd.read_csv(dir1 + "d_tou_prices.csv") numlBint = pd.read_excel(dir1 + "GAMS_Energy_Sale.xlsx", skiprows = 1, sheet_name = 'Sheet1') num1B = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_Energy_Purchase.xlsx", skiprows = 1, sheet_name = 'Sheet1') num1BB = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_AS.xlsx", skiprows = 1, sheet_name = 'Sheet1') num2 = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_FUEL.xlsx", skiprows = 1, sheet_name = 'Sheet1') num3 = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_renewables.xlsx", skiprows = 1, sheet_name = 'Sheet1') num4 = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "linear") numlBint = pd.read_excel(dir1 + "GAMS_additional_load_profiles.xlsx", skiprows = 1, sheet_name = 'Sheet1') num9 = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_product_price.xlsx", skiprows = 1, sheet_name = 'Sheet1') num10A = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_product_consumed.xlsx", skiprows = 1, sheet_name = 'Sheet1') for column in numlBint.columns: if column not in ["Date", "Interval"]: numlBint[column] = numlBint[column]/sum(numlBint[column]) * year_length/24 num11A = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_Max_input_cap.xlsx", skiprows = 1, sheet_name = 'Sheet1') num12A = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") numlBint = pd.read_excel(dir1 + "GAMS_Max_output_cap.xlsx", skiprows = 1, sheet_name = 'Sheet1') num13A = interpolate_helpers.interpolate_matrix(numlBint, year_length, interval_length, "repeat") num1int_ = num1int.copy() for column in num1int_.columns: for price_integer in num1A.index: num1int_.loc[num1int_[column] == price_integer, column] = num1A.loc[price_integer][str(float(column))] num1 = interpolate_helpers.interpolate_matrix(num1int, year_length, interval_length, "repeat") num1_ = interpolate_helpers.interpolate_matrix(num1int_, year_length, interval_length, "repeat") num1A1 = num1_.fillna(0).copy() num5 = pd.read_csv(dir2 + "CSV_data/d_flat_prices.csv") num8 = pd.read_csv(dir1 + "fixed_charge.csv") numA = pd.read_csv(dir1 + "tariff_property_list.csv") Scenarios1 = numA['label'] num5int =
pd.read_csv(dir2 + "CSV_data/d_flat_prices.csv")
pandas.read_csv
import numpy as np import arviz as az import seaborn as sns import pandas as pd import pickle as pkl import importlib import anndata as ad import ast import matplotlib.pyplot as plt from scdcdm.util import result_classes as res from scdcdm.util import multi_parameter_sampling as mult from scdcdm.util import multi_parameter_analysis_functions as ana from scdcdm.util import data_generation as gen from scdcdm.model import other_models as om pd.set_option('display.max_columns', 500) pd.set_option('display.max_rows', 500) sns.set_style("ticks") sns.set_context("paper", font_scale=1.4) result_path = "C:\\Users\\Johannes\\Documents\\Uni\\Master's_Thesis\\compositionalDiff-johannes_tests_2\\data\\benchmark_results" #%% importlib.reload(ana) # Get data: # all_study_params: One line per data point # all_study_params_agg: Combine identical simulation parameters path = "C:\\Users\\Johannes\\Documents\\Uni\\Master's_Thesis\\compositionalDiff-johannes_tests_2\\data\\model_comparison" results, all_study_params, all_study_params_agg = ana.multi_run_study_analysis_prepare(path) #%% all_study_params_agg = ana.get_scores(all_study_params_agg, models=4) all_study_params = ana.get_scores(all_study_params, models=4) # Set deprecated cases for poisson model (1 sample per group) to mcc=0 all_study_params.loc[all_study_params["n_samples"] == "[1, 1]", "mcc_0"] = 0 all_study_params_agg.loc[all_study_params_agg["n_samples"] == "[1, 1]", "mcc_0"] = 0 #%% # Find relations between numerical values and compsition/inrease vectors b = [] for y1_0 in [200, 400, 600, 800, 1000]: b_i = np.round(gen.counts_from_first(y1_0, 5000, 5), 3) b.append(np.round(np.log(b_i / 5000), 2)) print(b) b_counts = dict(zip([b_i[0] for b_i in b], [200, 400, 600, 800, 1000])) b2 = [] for y1_0 in [200, 400, 600, 800, 1000]: b_i = np.round(gen.counts_from_first(y1_0, 5000, 5), 3) b2.append(b_i) b_w_dict = {} w_rel_dict = {} i = 0 w_all = [] for b_i in b2: b_t = np.round(np.log(b_i / 5000), 3) print(b_t) w_d = {} for change in [b_i[0]/3, b_i[0]/2, b_i[0], b_i[0]*2, b_i[0]*3]: _, w = gen.b_w_from_abs_change(b_i, change, 5000) w_0 = np.round(w[0], 3) w_d[w_0] = change rel_change = np.round(change/b_i[0], 2) w_rel_dict[w_0] = rel_change b_w_dict[b_t[0]] = w_d i += 1 print(b_w_dict) #%% # Get some new metrics that make plotting more convenient all_study_params_agg["n_controls"] = [ast.literal_eval(x)[0] for x in all_study_params_agg["n_samples"].tolist()] all_study_params_agg["n_cases"] = [ast.literal_eval(x)[1] for x in all_study_params_agg["n_samples"].tolist()] all_study_params_agg["n_total"] = all_study_params_agg["n_total"].astype("float") all_study_params_agg["w"] = [ast.literal_eval(x)[0][0] for x in all_study_params_agg["w_true"]] all_study_params_agg["b_0"] = [ast.literal_eval(x)[0] for x in all_study_params_agg["b_true"]] all_study_params_agg["b_count"] = [b_counts[np.round(x, 2)] for x in all_study_params_agg["b_0"]] bs = all_study_params_agg["b_0"].tolist() ws = all_study_params_agg["w"].tolist() rels = [0.33, 0.5, 1, 2, 3] increases = [] rel_changes = [] for i in range(len(bs)): increases.append(b_w_dict[bs[i]][ws[i]]) rel_changes.append(w_rel_dict[ws[i]]) all_study_params_agg["num_increase"] = increases all_study_params_agg["rel_increase"] = rel_changes all_study_params_agg["log_fold_increase"] = np.round(np.log2((all_study_params_agg["num_increase"] + all_study_params_agg["b_count"]) / all_study_params_agg["b_count"]), 2) print(all_study_params_agg) all_study_params["n_controls"] = [ast.literal_eval(x)[0] for x in all_study_params["n_samples"].tolist()] all_study_params["n_cases"] = [ast.literal_eval(x)[1] for x in all_study_params["n_samples"].tolist()] all_study_params["n_total"] = all_study_params["n_total"].astype("float") all_study_params["w"] = [ast.literal_eval(x)[0][0] for x in all_study_params["w_true"]] all_study_params["b_0"] = [ast.literal_eval(x)[0] for x in all_study_params["b_true"]] all_study_params["b_count"] = [b_counts[np.round(x, 2)] for x in all_study_params["b_0"]] bs = all_study_params["b_0"].tolist() ws = all_study_params["w"].tolist() rels = [0.33, 0.5, 1, 2, 3] increases = [] rel_changes = [] for i in range(len(bs)): increases.append(b_w_dict[bs[i]][ws[i]]) rel_changes.append(w_rel_dict[ws[i]]) all_study_params["num_increase"] = increases all_study_params["rel_increase"] = rel_changes all_study_params["log_fold_increase"] = np.round(np.log2((all_study_params["num_increase"] + all_study_params["b_count"]) / all_study_params["b_count"]), 2) print(all_study_params) #%% result_path = "C:\\Users\\Johannes\\Documents\\Uni\\Master's_Thesis\\compositionalDiff-johannes_tests_2\\data\\benchmark_results" with open(result_path + "\\model_comparison_results_aggregated.pkl", "wb") as f: pkl.dump(all_study_params_agg, file=f, protocol=4) with open(result_path + "\\model_comparison_results.pkl", "wb") as f: pkl.dump(all_study_params, file=f, protocol=4) #%% # Convert data from wide to long models = ["Poisson (Haber et al.)", "Simple DM", "scdcdm", "scDC (SydneyBioX)"] param_cols = ["b_count", "num_increase", "n_controls", "n_cases", "log_fold_increase"] metrics = ["tpr", "tnr", "precision", "accuracy", "youden", "f1_score", "mcc"] final_df_agg =
pd.DataFrame()
pandas.DataFrame
''' Module that contains functions for intergenic mode. ''' import subprocess import os from multiprocessing import Pool from .misc import load_exp import functools import pandas as pd import numpy as np ''' Define a function that can get the gene expression given a tag directory, a GTF file, a normalization method, and strandedness. ''' def get_gene_exp(args): tag_directory,gtf_file,norm,stranded,out_file = args if stranded: strand = ['+'] else: strand = ['both'] f = open(out_file,'w') subprocess.call(['analyzeRepeats.pl',gtf_file,'none',norm,'-strand']+strand+['-count','genes','-d',tag_directory], stdout=f,stderr=subprocess.PIPE) f.close() ''' Define a function that can get the gene expression (both normalized and un-normalized) given a list of tag directories, a GTF file, and strandedness. ''' def get_multi_gene_exp(tag_dirs,gtf_file,stranded,out_dir,cpu): #Format and run commands for getting initial gene expression. cmds = [] for norm in ['-raw','-fpkm']: cmds += [(tag_dir,gtf_file,norm,stranded,os.path.join(out_dir,tag_dir.split('/')[-1]+f'.{norm[1:]}.txt')) for tag_dir in tag_dirs] pool = Pool(processes=min(len(cmds),cpu)) pool.map(get_gene_exp,cmds) pool.close() #Join all of these files together. raw_dfs = [] fpkm_dfs = [] for y in [x[-1] for x in cmds]: if y[-7:] == 'raw.txt': raw_dfs.append(load_exp(y)) os.remove(y) else: fpkm_dfs.append(load_exp(y)) os.remove(y) raw_df = functools.reduce(lambda x,y: pd.merge(x,y,on=['ID','Length']),raw_dfs) raw_df = raw_df[['ID','Length']+sorted(raw_df.columns[2:])] fpkm_df = functools.reduce(lambda x,y: pd.merge(x,y,on=['ID','Length']),fpkm_dfs) fpkm_df = fpkm_df[['ID','Length']+sorted(fpkm_df.columns[2:])] raw_df.to_csv(os.path.join(out_dir,'gene.exp.raw.txt'),sep='\t',index=False) fpkm_df.to_csv(os.path.join(out_dir,'gene.exp.fpkm.txt'),sep='\t',index=False) ''' Define a function that can get the maximum isoform for all genes when given a gene expression file and a gene-to-transcript mapping. ''' def get_max_isoform(gene_exp_file,gene_to_transcript_file,out_dir): #Load gene expression file into dataframe. gene_exp = pd.read_csv(gene_exp_file,sep='\t') del gene_exp['Length'] gene_exp = gene_exp.set_index('ID') #Get max expression. gene_exp['Max Exp'] = gene_exp.max(axis=1) #Load gene-to-transcript mapping. gene_to_transcript = pd.read_csv(gene_to_transcript_file,sep='\t') #Get maximum expression for each gene. gene_exp =
pd.merge(gene_to_transcript,gene_exp,left_on='Transcript ID',right_index=True)
pandas.merge
from lib.allgemein import liste_in_floats_umwandeln import pandas as pd import untangle from decimal import * #written by <NAME> def get_xml_RecordTime_excitationwl(dateiname): obj = untangle.parse(dateiname) RecordTime = obj.XmlMain.Documents.Document['RecordTime'] excitationwl = float(obj.XmlMain.Documents.Document.xDim.Calibration['LaserWave']) return RecordTime, excitationwl def get_timestamps(dateiname): obj = untangle.parse(dateiname) predf = [] for i in range(0, len(obj.XmlMain.Documents.Document.Data.Frame)): timestamp = obj.XmlMain.Documents.Document.Data.Frame[i]['TimeStamp'] timestamp = Decimal(timestamp) predf.append(timestamp) posi = list(range(0, len(predf), 1)) colunames = [] for i in posi: colu = 'Frame ' + str(i + 1) colunames.append(colu) df = pd.DataFrame(predf, index=colunames, columns=['timestamp']) df_timestamps = df.transpose() return df_timestamps def get_positions(dateiname): obj = untangle.parse(dateiname) predf = [] for i in range(0,len(obj.XmlMain.Documents.Document.Data.Frame)): positions = obj.XmlMain.Documents.Document.Data.Frame[i]['ValuePosition'] z = positions.split(";") ft = liste_in_floats_umwandeln(z) predf.append(ft) posi=list(range(0, len(predf),1)) colunames = [] for i in posi: colu = 'Frame ' + str(i + 1) colunames.append(colu) df =
pd.DataFrame(predf, index=colunames, columns=['x [µm]','y [µm]','z [µm]'])
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # # Dynamic Allocation # # We really don't save money this way (defined amounts every month). In reality we would be better to set up a budget and allocate any leftover money to savings that is above and beyond our spending habits. # %% import pandas as pd import datetime # %% me = { 'biweekly_income': 2500, 'expected_raise_pct': 0.05, 'salary_cap_pct': 0.30, 'biweekly_spend': 1500, 'monthly_rent': 1627 } # %% accounts_definition = [ { 'name':'chequing', 'rate': 0.05*0.01, 'starting_balance': 2000, 'max_value': 5000, #hold at this value, 'biweekly_contribution':50, }, { 'name':'tfsa', 'registered':True, 'rate': 5*0.01, 'starting_balance': 20000, 'biweekly_contribution': 300, 'contribution_room': 27000, 'yearly_contrib': 5000 # contrib room added each year }, { 'name':'rrsp', 'registered':True, 'rate': 5*0.01, 'starting_balance': 0, 'biweekly_contribution': 0, 'max_value': 35000 #for first-time home buy }, { 'name':'high_interest_savings', 'rate': 2*0.01, 'starting_balance': 2000, 'max_value': 20000, #hold at this value 'biweekly_contribution':300 } ] # %% unregistered = { 'name':'unregistered', 'rate': 3*0.01, 'starting_balance': 0, } # %% BW = 3 * 26 # years in 2-week chunks # %% #initialize accounts accounts = {'name':account['name'] for account in accounts_definition} # %% [markdown] # ## Income # # Pure salary income, with option for it to grow annualy # %% income = pd.np.ones(BW)*me.get("biweekly_income") for year in range(BW//26): if me.get("salary_cap_pct") and (1 + me.get("salary_cap_pct")) * me.get("biweekly_income") < income[year*26]: break else: income[year*26:]*= 1 + me.get("expected_raise_pct",0) # %% [markdown] # ## Distribution # # How is this distributed to the accounts # %% unregistered_balance = pd.np.ones(BW)*unregistered.get('starting_balance',0) unregsitered_rate = unregistered.get('rate',0) # %% [markdown] # go through time, do all accounts each step # %% spending = pd.np.ones(BW) * me.get("biweekly_spend",0) rent = pd.np.ones(BW) * me.get("monthly_rent",0) * 12/26 # biweekly rent? income -= spending + rent # this is our takehome invest = sum(acct.get("biweekly_contribution", 0) for acct in accounts_definition)# amount invested biweekly for account in accounts_definition: amount = account.get("biweekly_contribution",0)/invest account['ratio'] = amount # %% [markdown] # ### Rules for distribution # # - Try to follow the user inputs, split up money based on ratio between monthly contribs # - When all the *investment* accounts are full, fill up the *unregistered* account # - Stop filling RRSP once it's above the 1st time homebuyer amount (would be better to stop before this happens, but ...) # %% accts = [] for account in accounts_definition: balance =
pd.np.ones(BW)
pandas.np.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> """ import time import seaborn as sns import pandas as pd import numpy as np import os from sklearn.cluster import KMeans, DBSCAN, Birch, SpectralClustering, AgglomerativeClustering from sklearn import metrics from sklearn import preprocessing import matplotlib.pyplot as plt from math import floor # Function that preprocesses the given dataset, and then applies five clustering # algorithms calculating their execution time, Calinski-Harabaz and Silhouette # scores and saves their scatter matrix in a 'plots' directory in png format, # using the given dataset name combined with the algorithm name as file name. # If the dataset's size is under 100 samples, it also saves a heatmap # for each algorithm. def ClusteringAlgorithms(dataset, dataset_name): # Normalization of the dataset normalized_dataset = preprocessing.normalize(dataset, norm='l2') # K-Means k_means = KMeans(init='k-means++', n_clusters=4, n_init=5, random_state=101010) # DBSCAN dbscan = DBSCAN(eps=0.1) # Birch birch = Birch(threshold=0.1, n_clusters=4) # Spectral Clustering spectral = SpectralClustering(n_clusters=4, random_state=101010) # Ward hierarchical_clusters = 100 half_dataset_size = floor(dataset.shape[0]/2) if hierarchical_clusters > half_dataset_size: hierarchical_clusters = half_dataset_size ward = AgglomerativeClustering(n_clusters=hierarchical_clusters, linkage='ward') clustering_algorithms = [ ("K-Means", k_means), ("DBSCAN", dbscan), ("Birch", birch), ("Spectral Clustering", spectral), ("Ward", ward) ] print("-----------------------{}-----------------------".format(dataset_name)) for name, algorithm in clustering_algorithms: #print("{:20s}".format(name), end='') print("{} & ".format(name), end='') t1 = time.time() cluster_predict = algorithm.fit_predict(normalized_dataset) t2 = time.time() - t1 k = len(set(cluster_predict)) print("{} & ".format(k), end='') print("{:.3f} & ".format(t2), end='') #print("| k: {:3.0f}, ".format(k),end='') #print("{:0.3f} seconds, ".format(t2),end='') if (k>1) and (name is not "Ward"): metric_CH = metrics.calinski_harabaz_score(normalized_dataset, cluster_predict) metric_SC = metrics.silhouette_score(normalized_dataset, cluster_predict, metric='euclidean', sample_size=floor(0.1*len(normalized_dataset)), random_state=123456) else: metric_CH = 0 metric_SC = 0 #print("CH Index: {:9.3f}, ".format(metric_CH),end='') #print("SC: {:.5f}".format(metric_SC)) print("{:.3f} & ".format(metric_CH), end='') print("{:.5f} & ".format(metric_SC), end='') # Assignment gets turned into DataFrame column_name = 'cluster' clusters = pd.DataFrame(cluster_predict,index=dataset.index,columns=[column_name]) # Clusters column gets added to dataset modified_dataset = pd.concat([dataset, clusters], axis=1) # Filter those clusters with outliers samples (clusters that represent less than 3% of the dataset) if len(modified_dataset) > 100: min_size = floor(modified_dataset.shape[0]*0.01) else: min_size = 2 filtered_dataset = modified_dataset[modified_dataset.groupby('cluster').cluster.transform(len) > min_size] new_k = len(set(filtered_dataset[column_name])) #print("De los {:.0f} clusters hay {:.0f} con más de {:.0f} elementos. Del total de {:.0f} elementos, se seleccionan {:.0f}".format(k,new_k,min_size,len(modified_dataset),len(filtered_dataset))) print("{} & ".format(new_k), end='') print("{} ".format(len(modified_dataset)-len(filtered_dataset)) + r"\\") # Define directory path script_dir = os.path.dirname(__file__) # Now the scatter matrix is generated with the appended dataset sns.set() variables = list(filtered_dataset) variables.remove(column_name) sns_plot = sns.pairplot(filtered_dataset, vars=variables, hue=column_name, palette='Paired', plot_kws={"s": 25}, diag_kind="hist") sns_plot.fig.subplots_adjust(wspace=.03, hspace=.03); # Directory is created if does not already exist plot_dir = os.path.join(script_dir, 'plots/') plot_name = name+"-"+dataset_name+"-ScatterMatrix.png" if not os.path.isdir(plot_dir): os.makedirs(plot_dir) # File plot is saved in 'plots' directory sns_plot.savefig(plot_dir + plot_name) sns_plot.fig.clear() # And the heatmap comparing variables values in each cluster # Directory is created if does not already exist heatmap_dir = os.path.join(script_dir, 'heatmaps/') heatmap_name = name+"-"+dataset_name+"-Heatmap.png" if not os.path.isdir(heatmap_dir): os.makedirs(heatmap_dir) # List of clusters that have been defined by the algorithm clusters_list = list(set(filtered_dataset[column_name])) # Creation of an empty DataFrame that will be filled with a row for each cluster, # each column equivalent to the mean value of the variable for the # examples in the cluster mean_dataframe = pd.DataFrame() for cluster in clusters_list: cluster_dataframe = filtered_dataset[filtered_dataset[column_name] == cluster] mean_array = dict(np.mean(cluster_dataframe[variables],axis=0)) aux_mean_dataframe = pd.DataFrame(mean_array,index=[str(cluster)]) mean_dataframe =
pd.concat([mean_dataframe,aux_mean_dataframe])
pandas.concat
# -*- coding: utf-8 -*- """ Module containing logic for table and graph with Ownership History """ __author__ = '<NAME>' __email__ = '<EMAIL>' from pandas import DataFrame from PyQt5.QtCore import QObject, pyqtSlot from source.util import Assertor from .table_model import TableModel from .model import Model from ..graphics import BarChartWithLine class HistoryModel(Model): """ Implementation of model for Ownership history """ _finn_history_keys = ["finn_adresse", "eieform", "kommunenr", "gardsnr", "bruksnr", "bruksenhetsnr", "seksjonsnr", "historikk"] def __init__(self, parent: QObject): """ Constructor / Instantiation of class Parameters ---------- parent : QObject Parent view for which the model in to be linked """ Assertor.assert_data_types([parent], [QObject]) super().__init__(parent) self.keys = None self.values = None self.bar_plot = None self.table_view_mapping = None @pyqtSlot() def add_finn_history(self, postfix: str): """ method for adding Finn ownership history to front end Parameters ---------- postfix : str index if used in naming of widgets """ Assertor.assert_data_types([postfix], [str]) grandparent = self.parent.parent history_data = {} if grandparent.finn_model.finn_data: for key, val in grandparent.finn_model.finn_data.items(): if key[:-len(postfix)] in self._finn_history_keys: if key[:-len(postfix)] == "historikk": history_data.update( {key: val.to_dict() if isinstance(val, DataFrame) else val}) else: history_data.update({key: val}) self.data.update(history_data) for key in self._finn_history_keys: if key == "historikk": BarChartWithLine.clear_graphics(self.parent.ui.graphics_view_historikk, self.parent.ui.table_view_historikk) if key + postfix in self.data.keys() and self.data["historikk" + postfix]: # table history_data_model = TableModel(
DataFrame(self.data[key + postfix])
pandas.DataFrame
from graph_build.graph_noise_join.conf import GraphNoiseJoinConf import logging import os import fiona import math from pyproj import CRS import numpy as np import pandas as pd import geopandas as gpd import graph_build.graph_noise_join.utils as utils import common.igraph as ig_utils from common.igraph import Edge as E from graph_build.graph_noise_join.schema import SamplingGdf as S from typing import Dict log = logging.getLogger('noise_graph_join') def noise_graph_join( edge_gdf: gpd.GeoDataFrame, sampling_interval: float, noise_layers: Dict[str, gpd.GeoDataFrame], nodata_layer: gpd.GeoDataFrame, b_debug: bool = False, debug_gpkg: str = '' ) -> gpd.GeoDataFrame: # create sampling points edge_gdf = utils.add_sampling_points_to_gdf(edge_gdf, sampling_interval=sampling_interval) point_gdf = utils.explode_sampling_point_gdf(edge_gdf, points_geom_column=S.sampling_points) # select only unique sampling points for sampling point_gdf = utils.add_unique_geom_id(point_gdf, log) uniq_point_gdf = point_gdf.drop_duplicates(S.xy_id, keep='first') initial_sampling_count = len(uniq_point_gdf.index) log.info(f'created {len(uniq_point_gdf)} unique sampling points ({round(len(point_gdf)/point_gdf[S.edge_id].nunique(),2)} per edge)') # add boolean column indicating wether sampling point is within potential nodata zone uniq_point_gdf = utils.add_inside_nodata_zone_column(uniq_point_gdf, nodata_layer, log) # columns: edge_id, sample_len, xy_id, nodata_zone (1 / na) if b_debug: if os.path.exists(debug_gpkg): os.remove(debug_gpkg) log.info('exporting edges and sampling points for debugging') edge_gdf.drop(columns=[S.sampling_points]).to_file(debug_gpkg, layer='graph_edges', driver='GPKG') uniq_point_gdf.to_file(debug_gpkg, layer='sampling_points', driver='GPKG') # spatially join noise values by sampling points from a set of noise surface layers noise_samples = utils.sjoin_noise_values(uniq_point_gdf, noise_layers, log) noise_samples[S.no_noise_values] = noise_samples.apply(lambda row: utils.all_noise_values_none(row, noise_layers), axis=1) utils.log_none_noise_stats(log, noise_samples) # add column indicating wether sampling points is both located in potential nodata_zone and is missing noise values noise_samples[S.missing_noises] = noise_samples.apply(lambda row: True if (row[S.nodata_zone] == 1) & (row[S.no_noise_values] == True) else False, axis=1) normal_samples = noise_samples[noise_samples[S.missing_noises] == False].copy() if b_debug: noise_samples.to_file(debug_gpkg, layer='sampling_points_noise', driver='GPKG') missing_noises_count = len(noise_samples[noise_samples[S.missing_noises] == True]) missing_share = round(100 * missing_noises_count/len(noise_samples.index), 2) log.info(f'found {missing_noises_count} ({missing_share} %) sampling points for which noise values need to be interpolated') # define columns for sampled values sampling_columns = [S.xy_id, S.road, S.train, S.tram, S.metro, S.n_max, S.n_max_sources, S.n_max_adj] if missing_noises_count == 0: log.info('processing noise samples') all_samples = utils.aggregate_noise_values(normal_samples) all_samples = all_samples[sampling_columns] else: # interpolate noise values for sampling points missing them in nodata zones interpolated_samples = noise_samples[noise_samples[S.missing_noises] == True][[S.xy_id, S.geometry]].copy() interpolated_samples[S.offset_sampling_points] = [utils.get_sampling_points_around(point, distance=7, count=20) for point in interpolated_samples[S.geometry]] offset_sampling_points = utils.explode_offset_sampling_point_gdf(interpolated_samples, S.offset_sampling_points) if b_debug: offset_sampling_points.to_file(debug_gpkg, layer='offset_sampling_points', driver='GPKG') # join noise values to offset sampling points offset_sampling_point_noises = utils.sjoin_noise_values(offset_sampling_points, noise_layers, log) if b_debug: offset_sampling_point_noises.to_file(debug_gpkg, layer='offset_sampling_point_noises', driver='GPKG') # calculate average noise values per xy_id from offset sampling points offset_samples_by_xy_id = offset_sampling_point_noises.groupby(by=S.xy_id) row_accumulator = [] for xy_id, group in offset_samples_by_xy_id: samples = group.copy() samples = samples.fillna(0) interpolated_sample = {name: samples[name].quantile(.7, interpolation='nearest') for name in noise_layers.keys()} interpolated_sample[S.xy_id] = xy_id row_accumulator.append(interpolated_sample) interpolated_noise_samples = pd.DataFrame(row_accumulator) interpolated_noise_samples = interpolated_noise_samples.replace(0, np.nan) # add newly sampled noise values to sampling points missing them interpolated_samples = pd.merge(interpolated_samples.drop(columns=[S.offset_sampling_points]), interpolated_noise_samples, on=S.xy_id, how='left') if b_debug: interpolated_samples.to_file(debug_gpkg, layer='interpolated_samples', driver='GPKG') # add maximum noise values etc. to sampling points log.info('processing noise samples') normal_samples = utils.aggregate_noise_values(normal_samples) interpolated_samples = utils.aggregate_noise_values(interpolated_samples, prefer_syke=True) # combine sampling point dataframes to one normal_samples = normal_samples[sampling_columns] interpolated_samples = interpolated_samples[sampling_columns] all_samples =
pd.concat([normal_samples, interpolated_samples], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- # Copyright (c) 2019 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). import codecs import datetime import logging import logging.config import os import re import time import numpy as np import sharkpylib from sharkpylib import mappinglib from sharkpylib.file import txt_reader from sharkpylib.file.file_handlers import Directory from sharkpylib.file.file_handlers import ListDirectory from sharkpylib.file.file_handlers import MappingDirectory from sharkpylib.qc.mask_areas import MaskAreasDirectory try: import pandas as pd except: pass import sys parent_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if parent_directory not in sys.path: sys.path.append(parent_directory) from sharkpylib import gismo class TavastlandException(Exception): """ Blueprint for error message. code is for external mapping of exceptions. For example if a GUI wants to handle the error text for different languages. """ code = None message = '' def __init__(self, message='', code=''): self.message = '{}: {}'.format(self.message, message) if code: self.code = code class TavastlandExceptionCorrupedFile(TavastlandException): """ """ code = '' message = 'Corruped file' class TavastlandExceptionNoCO2data(TavastlandException): """ """ code = '' message = '' class TavastlandExceptionNoMatchWhenMerging(TavastlandException): """ """ code = '' message = '' class File(object): def __init__(self, file_path='', **kwargs): self._set_logger(kwargs.get('logger')) self.file_path = file_path self.file_directory = os.path.dirname(self.file_path) self.file_name = os.path.basename(self.file_path) self.file_id = self.file_name self.df = pd.DataFrame() self.time_start = None self.time_end = None self.data_loaded = None self.time_in_file_name_formats = ['TP_%Y%m%d%H%M%S.mit'] self._add_file_path_time() self.time_frozen_between = [] if kwargs.get('load_file'): self.load_file() def _set_logger(self, logger): if logger: self.logger = logger else: logging.config.fileConfig('logging.conf') self.logger = logging.getLogger('timedrotating') def _len_header_equals_len_data(self, file_path): with open(file_path) as fid: for r, line in enumerate(fid): split_line = line.split('\t') if r==0: header = split_line else: if len(header) == len(split_line): return True return False def _add_file_path_time(self): self.file_path_time = None self.file_path_year = None self.file_path_possible_years = [] for time_format in self.time_in_file_name_formats: try: time_object = datetime.datetime.strptime(self.file_name, time_format) self.file_path_time = time_object break except ValueError: # logger.debug('No time in file path for file: {}'.format(self.file_path)) pass # Find year result = re.findall('\d{4}', self.file_name) if result: self.file_path_year = int(result[0]) self.file_path_possible_years = [self.file_path_year-1, self.file_path_year, self.file_path_year+1] def _delete_columns(self): if 'Date' in self.df.columns: self.df.drop(['Date'], axis=1, inplace=True) # Time is removed in method _add_columns elif 'PC Date' in self.df.columns: self.df.drop(['PC Date', 'PC Time'], axis=1, inplace=True) if 'Lat' in self.df.columns: self.df.drop(['Lat', 'Lon'], axis=1, inplace=True) elif 'latitude' in self.df.columns: self.df.drop(['latitude', 'longitude'], axis=1, inplace=True) def _add_columns(self): # Time if 'Date' in self.df.columns: time_str = self.df['Date'] + ' ' + self.df['Time'].copy() self.df.drop('Time', axis=1, inplace=True) self.df['time'] = pd.to_datetime(time_str, format='%d.%m.%Y %H:%M:%S') elif 'PC Date' in self.df.columns: time_str = self.df['PC Date'] + ' ' + self.df['PC Time'] self.df['time'] = pd.to_datetime(time_str, format='%d/%m/%y %H:%M:%S') # Position if 'Lat' in self.df.columns: self.df['lat'] = self.df['Lat'].apply(as_float) self.df['lon'] = self.df['Lon'].apply(as_float) elif 'latitude' in self.df.columns: self.df['lat'] = self.df['latitude'].apply(as_float) self.df['lon'] = self.df['longitude'].apply(as_float) else: self.df['lat'] = np.nan self.df['lon'] = np.nan self.df['source_file'] = self.file_name def _remove_duplicates(self): # print('REMOVE DUPLICATES', self.file_id) # First save missing periodes dub_boolean = self.df.duplicated('time', keep=False) between = [] missing_period = [] for i, t0, b0, t1, b1 in zip(self.df.index[:-1], self.df['time'].values[:-1], dub_boolean.values[:-1], self.df['time'].values[1:], dub_boolean.values[1:]): if i == 0 and b0: missing_period.append('?') if b1 and not b0: # t0s = pd.to_datetime(t0).strftime('%Y%m%d%H%M%S') # missing_period.append(t0s) missing_period.append(t0) elif b0 and not b1: # t1s = pd.to_datetime(t1).strftime('%Y%m%d%H%M%S') # missing_period.append(t1s) missing_period.append(t1) # print(missing_period) if len(missing_period) == 2: between.append(missing_period) # between.append('-'.join(missing_period)) missing_period = [] if missing_period: missing_period.append('?') between.append(missing_period) # between.append('-'.join(missing_period)) # print('between:', len(between)) self.time_frozen_between = between # Now drop all duplicates self.df.drop_duplicates('time', keep=False, inplace=True) def valid_data_line(self, line): if 'DD.MM.YYYY' in line: # print('DD.MM.YYYY', self.file_path) return False if not line.strip(): # print('BLANK', self.file_path) return False return True def load_file(self, **kwargs): if not os.path.exists(self.file_path): raise FileNotFoundError header = [] data = [] with codecs.open(self.file_path, encoding=kwargs.get('encoding', 'cp1252')) as fid: for row, line in enumerate(fid): split_line = line.strip('\n\r').split(kwargs.get('sep', '\t')) split_line = [item.strip() for item in split_line] if row == 1 and header: if len(header) != len(split_line): header = header[:len(split_line)] if not header: header = split_line else: if len(header) != len(split_line): raise TavastlandExceptionCorrupedFile self.logger.warning('invalid file: {}'.format(row, self.file_path)) self.data_loaded = False return False if not self.valid_data_line(line): self.logger.warning('Removing invalid line {} from file: {}'.format(row, self.file_path)) continue data.append(split_line) self.original_columns = header[:] self.df = pd.DataFrame(data, columns=header) self._add_columns() self._remove_duplicates() self.filter_data() self._delete_columns() self.data_loaded = True return True def filter_data(self): """ Filters the data from unwanted lines etc. :return: """ combined_keep_boolean = pd.Series([True]*len(self.df)) keep_boolean = ~self.df[self.original_columns[0]].str.contains('DD.MM.YYYY') combined_keep_boolean = combined_keep_boolean & keep_boolean keep_boolean = ~self.df[self.original_columns[0]].str.contains('.1904') combined_keep_boolean = combined_keep_boolean & keep_boolean keep_boolean = self.df['time'] <= datetime.datetime.now() combined_keep_boolean = combined_keep_boolean & keep_boolean removed = self.df.loc[~combined_keep_boolean] if len(removed): self.logger.warning('{} lines removed from file {}'.format(len(removed), self.file_path)) self.df = self.df.loc[combined_keep_boolean, :] def clean_file(self, export_directory): """ Loads file (including filter data) and saves to the export directory. :return """ # print(export_directory) if export_directory == self.file_directory: raise TavastlandException('Cannot export to the same directory!') if not os.path.exists(export_directory): os.makedirs(export_directory) if self.data_loaded is None: self.load_file() export_file_path = os.path.join(export_directory, self.file_name) self.df[self.original_columns].to_csv(export_file_path, index=False, sep='\t') def get_df(self): if self.data_loaded is None: self.load_file() return self.df def get_time_range(self): def get_time(line): date = re.findall('\d{2}\.\d{2}\.\d{4}', line) time = re.findall('\d{2}:\d{2}:\d{2}', line) if date and time: return datetime.datetime.strptime(date[0] + time[0], '%d.%m.%Y%H:%M:%S') date = re.findall('\d{2}/\d{2}/\d{2}', line) time = re.findall('\d{2}:\d{2}:\d{2}', line) if date and time: return datetime.datetime.strptime(date[0] + time[0], '%d/%m/%y%H:%M:%S') self.time_start = None self.time_end = None if self.data_loaded: self.time_start = self.df.time.values[0] self.time_end = self.df.time.values[-1] return self.time_start, self.time_end else: with codecs.open(self.file_path) as fid: for r, line in enumerate(fid): if self.valid_data_line(line): if r == 0: continue elif not self.time_start: time = get_time(line) self.time_start = time self.time_end = get_time(line) return self.time_start, self.time_end def in_time_range(self, datetime_object): if not self.time_start: self.get_time_range() return (datetime_object >= self.time_start) & (datetime_object <= self.time_end) def check_if_valid_file_name(self): """ External method. Returns True if file_name follows the structure(s) described in method. :param file_name: :return: """ raise NotImplementedError def warnings(self): """ Returns a list of strange things found in file. Strange things kan be handled. :return: list with description of the warnings. """ raise NotImplementedError def get_file_errors(self): """ Returns a list of errors in file if any. Errors are obvious faults that can not be handled. :return list with description of the errors. """ raise NotImplementedError def _get_file_errors(self): error_list = [] if not self._len_header_equals_len_data(self.file_path): text = 'Header is not the same length as data in file: {}.'.format(self.file_name) error_list.append(text) return error_list class MITfile(File): def __init__(self, file_path='', **kwargs): File.__init__(self, file_path, **kwargs) def check_if_valid_file_name(self, file_name): """ External method. Returns True if file_name follows the structure(s) described in method. :param file_name: :return: """ if not file_name.endswith('.mit'): return False return True def warnings(self): """ Returns a list of strange things found in file. Strange things kan be handled. :return: list with description of the warnings. """ raise NotImplementedError def get_file_errors(self): """ Returns a list of errors in file if any. Errors are obvious faults that can not be handled. :return list with description of the errors. """ error_list = self._get_file_errors() # Check time start, end = self.get_time_range() d = datetime.datetime(1980, 1, 1) this_year = datetime.datetime.now().year if not all([start, end]): text = 'Could not find time in file {}.'.format(self.file_name) error_list.append(text) else: if start < d: text = 'Start data is too early in file {}. Before {}'.format(self.file_name, d.strftime('%Y%m%d')) error_list.append(text) # continue if start > end: text = 'Start time > end time in file {}.'.format(self.file_name) error_list.append(text) # continue if any([start.year > this_year, end.year > this_year]): text = 'Start year or end year is later than current year in file {}.'.format(self.file_name) error_list.append(text) # continue if any([start.year == 1904, end.year == 1904]): text = 'Start year or end year is 1904 in file {}.'.format(self.file_name) self.logger.info(text) error_list.append(text) if error_list: self.logger.info('; '.join(error_list)) return error_list class CO2file(File): def __init__(self, file_path='', **kwargs): File.__init__(self, file_path, **kwargs) def check_if_valid_file_name(self, file_name): """ External method. Returns True if file_name follows the structure(s) described in method. :param file_name: :return: """ if not file_name.endswith('dat.txt'): return False return True def warnings(self): """ Returns a list of strange things found in file. Strange things kan be handled. :return: list with description of the warnings. """ raise NotImplementedError def get_file_errors(self): """ Returns a list of errors in file if any. Errors are obvious faults that can not be handled. :return list with description of the errors. """ error_list = self._get_file_errors() # Check time start, end = self.get_time_range() d = datetime.datetime(1980, 1, 1) this_year = datetime.datetime.now().year if not all([start, end]): text = 'Could not find time in file {}.'.format(self.file_name) error_list.append(text) if error_list: self.logger.info('; '.join(error_list)) return error_list class FileHandler(object): def __init__(self, **kwargs): self._set_logger(kwargs.get('logger')) self.logger.debug('Starting FileHandler for Tavastland') self.directories = {} self.directories['mit'] = kwargs.get('mit_directory', None) self.directories['co2'] = kwargs.get('co2_directory', None) self.export_directory = kwargs.get('export_directory', None) self.save_directory = None self.current_merge_data =
pd.DataFrame()
pandas.DataFrame
import typing import unittest import numpy as np import pandas as pd import sklearn.datasets import sklearn.model_selection from autoPyTorch.datasets.tabular_dataset import DataTypes, TabularDataset from autoPyTorch.utils.backend import create from autoPyTorch.utils.pipeline import get_dataset_requirements class DataFrameTest(unittest.TestCase): def runTest(self): df = pd.DataFrame([['a', 0.1, 1], ['b', 0.2, np.nan]]) target_df =
pd.Series([1, 2])
pandas.Series
__all__ = ["spectrometer_sensitivity"] # standard library from typing import List, Union # dependent packages import numpy as np import pandas as pd from .atmosphere import eta_atm_func from .instruments import eta_Al_ohmic_850, photon_NEP_kid, window_trans from .physics import johnson_nyquist_psd, rad_trans, T_from_psd from .physics import c, h, k from .filter import eta_filter_lorentzian, eta_filter_csv, weighted_average # type aliases ArrayLike = Union[np.ndarray, List[float], List[int], float, int] # main functions def spectrometer_sensitivity( filter_transmission_csv: str = "", F: ArrayLike = 350.0e9, R: float = 500.0, F_res: int = 30, overflow: int = 80, pwv: float = 0.5, EL: float = 60.0, eta_M1_spill: ArrayLike = 0.99, eta_M2_spill: ArrayLike = 0.90, eta_wo_spill: ArrayLike = 0.99, n_wo_mirrors: int = 4.0, window_AR: bool = True, eta_co: ArrayLike = 0.65, eta_lens_antenna_rad: ArrayLike = 0.81, eta_circuit: ArrayLike = 0.32, eta_IBF: ArrayLike = 0.5, KID_excess_noise_factor: float = 1.1, theta_maj: ArrayLike = 22.0 * np.pi / 180.0 / 60.0 / 60.0, theta_min: ArrayLike = 22.0 * np.pi / 180.0 / 60.0 / 60.0, eta_mb: ArrayLike = 0.6, telescope_diameter: float = 10.0, Tb_cmb: ArrayLike = 2.725, Tp_amb: ArrayLike = 273.0, Tp_cabin: ArrayLike = 290.0, Tp_co: ArrayLike = 4.0, Tp_chip: ArrayLike = 0.12, snr: float = 5.0, obs_hours: float = 10.0, on_source_fraction: float = 0.4 * 0.9, on_off: bool = True, ): """Calculate the sensitivity of a spectrometer. Parameters which are functions of frequency can be a vector (see Parameters). Output is a pandas DataFrame which containts results of simulation (see Returns). Parameters ---------- filter_transmission_csv Optional. File location of a .csv file with transmission for filter channels Header: Frequencies rows: filter channels with transmission per column frequency F Used when filter_transmission_csv isn't used. Frequency of the astronomical signal. Units: Hz. R Used when filter_transmission_csv isn't used. Spectral resolving power in F/W_F where W_F is equivalent bandwidth and HWHM of filters. Units: None. See also: http://www.astrosurf.com/buil/us/spe2/hresol7.htm F_res Used when filter_transmission_csv isn't used. The number of frequency bins within a FWHM Units: none. Overflow Used when filter_transmission_csv isn't used. The number of extra FHWM's below the first and above the last channel Units: none. pwv Precipitable water vapour. Units: mm. EL Telescope elevation angle. Units: degrees. eta_M1_spill Spillover efficiency at the telescope primary mirror. Units: None. eta_M2_spill Spillover efficiency at the telescope secondary mirror. Units: None. eta_wo_spill Product of all spillover losses in the warm optics in the cabin. Units: None. n_wo_mirrors Number of cabin optics excluding telescope M1 and M2. Units: None. window_AR Whether the window is supposed to be coated by Ar (True) or not (False). eta_co Product of following. Units: None. (1) Cold spillover. (2) Cold ohmic losses. (3) Filter transmission loss. eta_lens_antenna_rad The loss at chip temperature, *that is not in the circuit.* Product of the following. Units: None. (1) Front-to-back ratio of the lens-antenna on the chip (defalut: 0.93). (2) Reflection efficiency at the surface of the lens (default: 0.9). (3) Matching efficiency, due to the mismatch (default: 0.98). (4) Spillover efficiency of the lens-antenna (default: 0.993). These values can be found in D2_2V3.pdf, p14. eta_circuit The loss at chip temperature, *in the circuit.*. Units: None. eta_IBF Fraction of the filter power transmission that is within the filter channel bandwidth. Units: None. The rest of the power is cross talk, picking up power that is in the bands of neighboring channels. This efficiency applies to the coupling to astronomical line signals. This efficiency does not apply to the coupling to continuum, including the the coupling to the atmosphere for calculating the NEP. KID_excess_noise_factor Need to be documented. Units: None. theta_maj The HPBW along the major axis, assuming a Gaussian beam. Units: radians. theta_min The HPBW along the minor axis, assuming a Gaussian beam. Units: radians. eta_mb Main beam efficiency. Units: None. Note that eta_mb includes the following terms from D2_2V3.pdf from Shahab's report. because a decrease in these will launch the beam to the sky but not couple it to the point source (See also FAQ.). (1) eta_Phi. (2) eta_amp. telescope_diameter Diameter of the telescope. Units: m. Tb_cmb Brightness temperature of the CMB. Units: K. Tp_amb Physical temperature of the atmosphere and ambient environment around the telescope. Units: K. Tp_cabin Physical temperature of the telescope cabin. Units: K. Tp_co Physical temperature of the cold optics inside the cryostat. Units: K. Tp_chip Physical temperature of the chip. Units: K. snr Target signal to noise to be reached (for calculating the MDLF). Units: None. obs_hours Observing hours, including off-source time and the slew overhead between on- and off-source. Units: hours. on_source_fraction Fraction of the time on source (between 0. and 1.). Units: None. on_off If the observation involves on_off chopping, then the SNR degrades by sqrt(2) because the signal difference includes the noise twice. Returns ---------- F Best-fit center frequencies from filter_transmission_csv. Same as input if filter_transmission_csv isn't used. Units: Hz. pwv Same as input. EL Same as input eta_atm Atmospheric transmission within the FHWM of the channel. Units: None. eta_atm_cont Atmospheric transmission across the entire widht of the filter. Units: None. R best-fit F/FWHM fitted from filter_transmission_csv Equivalent bandwidth within F/R if filter_transmission_csv isn't used. Units: None W_F_spec Best-fit Equivalent bandwith within the FWHM from filter_transmission_csv Equivalent bandwidth within F/R if filter_transmission_csv isn't used. Units: Hz. W_F_cont Equivalent bandwidth of 1 channel including the power coupled outside of the filter channel band. Units: Hz. theta_maj Same as input. theta_min Same as input. eta_a Aperture efficiency. Units: None. See also: https://deshima.kibe.la/notes/324 eta_mb Main beam efficiency. Units: None. eta_forward Forward efficiency within the FHWM of the channel. Units: None. See also: https://deshima.kibe.la/notes/324 eta_forward_cont Forward efficiency across the entire widht of the filter. Units: None. See also: https://deshima.kibe.la/notes/324 eta_sw Coupling efficiency from a spectral point source to the cryostat window. Units: None. eta_sw_cont Coupling efficiency from a continuum point source to the cryostat window. Units: None. eta_window Transmission of the cryostat window within the FHWM of the channel. Units: None. eta_window_cont Transmission of the cryostat window across the entire widht of the filter. Units: None. eta_inst Instrument optical efficiency within the FHWM of the channel. Units: None. See also: https://arxiv.org/abs/1901.06934 eta_inst_cont Instrument optical efficiency across the entire widht of the filter. Units: None. See also: https://arxiv.org/abs/1901.06934 eta_circuit Equivalent efficiency of Lorentzian fit from filter_transmission.csv. Same as input if filter_transmission.csv isn't used. Units: None Tb_sky Planck brightness temperature of the sky. Units: K. Tb_M1 Planck brightness temperature looking into the telescope primary. Units: K. Tb_M2 Planck brightness temperature looking into the telescope secondary, including the spillover to the cold sky. Units: K. Tb_wo Planck brightness temperature looking into the warm optics. Units: K. Tb_window Planck brightness temperature looking into the window. Units: K. Tb_co Planck brightness temperature looking into the cold optis. Units: K. Tb_filter Planck brightness temperature looking into the lens from the filter. Units: K. Tb_KID Planck brightness temperature looking into the filter from the KID. Units: K. Pkid Power absorbed by the KID. Units: W. Pkid_sky Power of the sky loading to the KID. Units: W Pkid_warm Power of the warm optics loading to the KID. Units: W Pkid_cold Power of the cold optics and circuit loading to the KID. Units: W n_ph Photon occupation number within the FHWM of the channel. Units: None. See also: http://adsabs.harvard.edu/abs/1999ASPC..180..671R n_ph_cont Photon occupation number across the entire widht of the filter. Units: None. See also: http://adsabs.harvard.edu/abs/1999ASPC..180..671R NEPkid Noise equivalent power at the KID with respect to the absorbed power. Units: W Hz^0.5. NEPinst Instrumnet NEP within within the FHWM of the channel. Units: W Hz^0.5. See also: https://arxiv.org/abs/1901.06934 NEPinst_cont Instrumnet NEP across the entire widht of the filter. Units: W Hz^0.5. See also: https://arxiv.org/abs/1901.06934 NEFD_line Noise Equivalent Flux Density for couploing to a line that is not wider than the filter bandwidth. Units: W/m^2/Hz * s^0.5. NEFD_continuum Noise Equivalent Flux Density for couploing to a countinuum source. Units: W/m^2/Hz * s^0.5. NEF Noise Equivalent Flux within the FHWM of the channel. Units: W/m^2 * s^0.5. NEF_cont Noise Equivalent Flux across the entire widht of the filter. Units: W/m^2 * s^0.5. MDLF Minimum Detectable Line Flux. Units: W/m^2. MS Mapping Speed. Units: arcmin^2 mJy^-2 h^-1. snr Same as input. obs_hours Same as input. on_source_fraction Same as input. on_source_hours Observing hours on source. Units: hours. equivalent_Trx Equivalent receiver noise temperature within the FHWM of the channel. Units: K. at the moment this assumes Rayleigh-Jeans! equivalent_Trx_cont Equivalent receiver noise temperature across the entire widht of the filter. Units: K. at the moment this assumes Rayleigh-Jeans! chi_sq The Chi Squared value of the Lorentzian fit from filter_transmission_csv Zero when filter_transmission_csv is not used. Units: None. Notes ----- The parameters to calculate the window transmission / reflection is hard-coded in the function window_trans(). """ # Filter approximation or read from csv? if filter_transmission_csv == "": # Generate filter ( eta_filter, eta_inband, F, F_int, W_F_int, box_height, box_width, chi_sq, ) = eta_filter_lorentzian(F, F / R, eta_circuit, F_res, overflow) R = F / box_width else: # Read from csv ( eta_filter, eta_inband, F, F_int, W_F_int, box_height, box_width, chi_sq, ) = eta_filter_csv(filter_transmission_csv) # Equivalent Bandwidth of 1 channel, modelled as a box filter. # Used for calculating loading and coupling to a continuum source W_F_cont = box_width / eta_IBF # Used for calculating coupling to a line source, # with a linewidth not wider than the filter channel W_F_spec = box_width # Efficiency of filter channels eta_circuit = box_height # ############################################################# # 1. Calculating loading power absorbed by the KID, and the NEP # ############################################################# # ....................................................... # Efficiencies for calculating sky coupling # ....................................................... # Ohmic loss as a function of frequency, from skin effect scaling eta_Al_ohmic = 1.0 - (1.0 - eta_Al_ohmic_850) * np.sqrt(F_int / 850.0e9) eta_M1_ohmic = eta_Al_ohmic eta_M2_ohmic = eta_Al_ohmic # Collect efficiencies at the same temperature eta_M1 = eta_M1_ohmic * eta_M1_spill eta_wo = eta_Al_ohmic**n_wo_mirrors * eta_wo_spill # Forward efficiency: does/should not include window loss # because it is defined as how much power out of # the crystat window couples to the cold sky. eta_forward_spec = weighted_average( eta_M1 * eta_M2_ohmic * eta_M2_spill * eta_wo + (1.0 - eta_M2_spill) * eta_wo, eta_inband, ) eta_forward_cont = weighted_average( eta_M1 * eta_M2_ohmic * eta_M2_spill * eta_wo + (1.0 - eta_M2_spill) * eta_wo, eta_filter, ) # Calcuate eta at center of integration bin eta_atm = eta_atm_func(F=F_int, pwv=pwv, EL=EL) # Johnson-Nyquist Power Spectral Density (W/Hz) # for the physical temperatures of each stage psd_jn_cmb = johnson_nyquist_psd(F=F_int, T=Tb_cmb) psd_jn_amb = johnson_nyquist_psd(F=F_int, T=Tp_amb) psd_jn_cabin = johnson_nyquist_psd(F=F_int, T=Tp_cabin) psd_jn_co = johnson_nyquist_psd(F=F_int, T=Tp_co) psd_jn_chip = johnson_nyquist_psd(F=F_int, T=Tp_chip) # Optical Chain # Sequentially calculate the Power Spectral Density (W/Hz) at each stage. # Uses only basic radiation transfer: rad_out = eta*rad_in + (1-eta)*medium psd_sky = rad_trans(rad_in=psd_jn_cmb, medium=psd_jn_amb, eta=eta_atm) psd_M1 = rad_trans(rad_in=psd_sky, medium=psd_jn_amb, eta=eta_M1) psd_M2 = rad_trans(rad_in=psd_M1, medium=psd_jn_amb, eta=eta_M2_ohmic) psd_M2_spill = rad_trans(rad_in=psd_M2, medium=psd_sky, eta=eta_M2_spill) psd_wo = rad_trans(rad_in=psd_M2_spill, medium=psd_jn_cabin, eta=eta_wo) [psd_window, eta_window] = window_trans( F=F_int, psd_in=psd_wo, psd_cabin=psd_jn_cabin, psd_co=psd_jn_co, window_AR=window_AR, ) psd_co = rad_trans(rad_in=psd_window, medium=psd_jn_co, eta=eta_co) psd_filter = rad_trans(rad_in=psd_co, medium=psd_jn_chip, eta=eta_lens_antenna_rad) # Instrument optical efficiency as in JATIS 2019 # (eta_inst can be calculated only after calculating eta_window) eta_inst_spec = ( eta_lens_antenna_rad * eta_co * eta_circuit * weighted_average(eta_window, eta_inband) ) eta_inst_cont = ( eta_lens_antenna_rad * eta_co * eta_circuit * weighted_average(eta_window, eta_filter) ) # Calculating Sky loading, Warm loading and Cold loading individually for reference # (Not required for calculating Pkid, but serves as a consistency check.) # ................................................................................. # Sky loading psd_KID_sky_1 = ( psd_sky * eta_M1 * eta_M2_spill * eta_M2_ohmic * eta_wo * eta_lens_antenna_rad * eta_co * eta_window ) psd_KID_sky_2 = ( rad_trans(0, psd_sky, eta_M2_spill) * eta_M2_ohmic * eta_wo * eta_lens_antenna_rad * eta_co * eta_window ) psd_KID_sky = psd_KID_sky_1 + psd_KID_sky_2 skycoup = weighted_average( psd_KID_sky / psd_sky, eta_filter ) # To compare with Jochem # Warm loading psd_KID_warm = ( window_trans( F=F_int, psd_in=rad_trans( rad_trans( rad_trans( rad_trans(0, psd_jn_amb, eta_M1), 0, eta_M2_spill ), # sky spillover does not count for warm loading psd_jn_amb, eta_M2_ohmic, ), psd_jn_cabin, eta_wo, ), psd_cabin=psd_jn_cabin, psd_co=0, window_AR=window_AR, )[0] * eta_co * eta_lens_antenna_rad ) # Cold loading psd_KID_cold = rad_trans( rad_trans( window_trans( F=F_int, psd_in=0.0, psd_cabin=0.0, psd_co=psd_jn_co, window_AR=window_AR, )[0], psd_jn_co, eta_co, ), psd_jn_chip, eta_lens_antenna_rad, ) # Loadig power absorbed by the KID # ............................................. """ if np.all(psd_filter != psd_KID_sky + psd_KID_warm + psd_KID_cold): print("WARNING: psd_filter != psd_KID_sky + psd_KID_warm + psd_KID_cold") """ Pkid = np.sum(psd_filter * W_F_int * eta_filter, axis=1) Pkid_sky = np.sum(psd_KID_sky * W_F_int * eta_filter, axis=1) Pkid_warm = np.sum(psd_KID_warm * W_F_int * eta_filter, axis=1) Pkid_cold = np.sum(psd_KID_cold * W_F_int * eta_filter, axis=1) # Photon + R(ecombination) NEP of the KID # ............................................. n_ph_spec = weighted_average(psd_filter / (h * F_int), eta_inband) * eta_circuit n_ph_cont = weighted_average(psd_filter / (h * F_int), eta_filter) * eta_circuit NEPkid = ( photon_NEP_kid(F_int, psd_filter * W_F_int * eta_filter, W_F_int) * KID_excess_noise_factor ) # Instrument NEP as in JATIS 2019 # ............................................. NEPinst_spec = NEPkid / eta_inst_spec # Instrument NEP NEPinst_cont = NEPkid / eta_inst_cont # Instrument NEP # ############################################################## # 2. Calculating source coupling and sensitivtiy (MDLF and NEFD) # ############################################################## # Efficiencies # ......................................................... Ag = np.pi * (telescope_diameter / 2.0) ** 2.0 # Geometric area of the telescope omega_mb = np.pi * theta_maj * theta_min / np.log(2) / 4 # Main beam solid angle omega_a = omega_mb / eta_mb # beam solid angle Ae = (c / F) ** 2 / omega_a # Effective Aperture (m^2): lambda^2 / omega_a eta_a = Ae / Ag # Aperture efficiency # Coupling from the "S"ource to outside of "W"indow eta_pol = 0.5 # Instrument is single polarization eta_atm_spec = weighted_average(eta_atm, eta_inband) eta_atm_cont = weighted_average(eta_atm, eta_filter) eta_sw_spec = ( eta_pol * eta_a * eta_forward_spec * eta_atm_spec ) # Source-Window coupling eta_sw_cont = ( eta_pol * eta_a * eta_forward_cont * eta_atm_cont ) # Source-Window coupling # NESP: Noise Equivalent Source Power (an intermediate quantitiy) # ......................................................... NESP_spec = NEPinst_spec / eta_sw_spec # Noise equivalnet source power NESP_cont = NEPinst_cont / eta_sw_cont # Noise equivalnet source power # NEF: Noise Equivalent Flux (an intermediate quantitiy) # ......................................................... # From this point, units change from Hz^-0.5 to t^0.5 # sqrt(2) is because NEP is defined for 0.5 s integration. NEF_spec = NESP_spec / Ag / np.sqrt(2) # Noise equivalent flux NEF_cont = NESP_cont / Ag / np.sqrt(2) # Noise equivalent flux # If the observation is involves ON-OFF sky subtraction, # Subtraction of two noisy sources results in sqrt(2) increase in noise. if on_off: NEF_spec = np.sqrt(2) * NEF_spec NEF_cont = np.sqrt(2) * NEF_cont # MDLF (Minimum Detectable Line Flux) # ......................................................... # Note that eta_IBF does not matter for MDLF because it is flux. MDLF = NEF_spec * snr / np.sqrt(obs_hours * on_source_fraction * 60.0 * 60.0) # NEFD (Noise Equivalent Flux Density) # ......................................................... continuum_NEFD = NEF_cont / W_F_cont spectral_NEFD = NEF_spec / W_F_spec # = continuum_NEFD / eta_IBF > spectral_NEFD # Mapping Speed (line, 1 channel) (arcmin^2 mJy^-2 h^-1) # ......................................................... MS = ( 60.0 * 60.0 * 1.0 * omega_mb * (180.0 / np.pi * 60.0) ** 2.0 / (np.sqrt(2) * spectral_NEFD * 1e29) ** 2.0 ) # Equivalent Trx # ......................................................... Trx_spec = NEPinst_spec / k / np.sqrt(2 * W_F_cont) - T_from_psd( F, weighted_average(psd_wo, eta_inband) ) # assumes RJ! Trx_cont = NEPinst_spec / k / np.sqrt(2 * W_F_cont) - T_from_psd( F, weighted_average(psd_wo, eta_filter) ) # assumes RJ! # ############################################ # 3. Output results as Pandas DataFrame # ############################################ result = pd.concat( [ pd.Series(F, name="F"), pd.Series(pwv, name="PWV"), pd.Series(EL, name="EL"), pd.Series(eta_atm_spec, name="eta_atm"), pd.Series(eta_atm_cont, name="eta_atm_cont"), pd.Series(R, name="R"), pd.Series(W_F_spec, name="W_F_spec"), pd.Series(W_F_cont, name="W_F_cont"), pd.Series(theta_maj, name="theta_maj"), pd.Series(theta_min, name="theta_min"), pd.Series(eta_a, name="eta_a"), pd.Series(eta_mb, name="eta_mb"), pd.Series(eta_forward_spec, name="eta_forward"), pd.Series(eta_forward_cont, name="eta_forward_cont"), pd.Series(eta_sw_spec, name="eta_sw"), pd.Series(eta_sw_cont, name="eta_sw_cont"), pd.Series(weighted_average(eta_window, eta_inband), name="eta_window"), pd.Series(weighted_average(eta_window, eta_filter), name="eta_window_cont"), pd.Series(eta_inst_spec, name="eta_inst"), pd.Series(eta_inst_cont, name="eta_inst_cont"), pd.Series(eta_circuit, name="eta_circuit"), pd.Series( weighted_average(T_from_psd(F_int, psd_sky), eta_filter), name="Tb_sky" ), pd.Series( weighted_average(T_from_psd(F_int, psd_M1), eta_filter), name="Tb_M1" ), pd.Series( weighted_average(T_from_psd(F_int, psd_M2), eta_filter), name="Tb_M2" ), pd.Series( weighted_average(T_from_psd(F_int, psd_wo), eta_filter), name="Tb_wo" ), pd.Series( weighted_average(T_from_psd(F_int, psd_window), eta_filter), name="Tb_window", ), pd.Series( weighted_average(T_from_psd(F_int, psd_co), eta_filter), name="Tb_co" ), pd.Series( weighted_average(T_from_psd(F_int, psd_filter), eta_filter), name="Tb_filter", ), pd.Series( T_from_psd(F, eta_circuit * weighted_average(psd_filter, eta_filter)), name="Tb_KID", ), pd.Series(Pkid, name="Pkid"), pd.Series(Pkid_sky, name="Pkid_sky"), pd.Series(Pkid_warm, name="Pkid_warm"), pd.Series(Pkid_cold, name="Pkid_cold"), pd.Series(n_ph_spec, name="n_ph"), pd.Series(n_ph_cont, name="n_ph_cont"), pd.Series(NEPkid, name="NEPkid"), pd.Series(NEPinst_spec, name="NEPinst"), pd.Series(NEPinst_cont, name="NEPinst_cont"), pd.Series(spectral_NEFD, name="NEFD_line"), pd.Series(continuum_NEFD, name="NEFD_continuum"), pd.Series(NEF_spec, name="NEF"), pd.Series(NEF_cont, name="NEF_cont"), pd.Series(MDLF, name="MDLF"), pd.Series(MS, name="MS"), pd.Series(snr, name="snr"), pd.Series(obs_hours, name="obs_hours"), pd.Series(on_source_fraction, name="on_source_fraction"),
pd.Series(obs_hours * on_source_fraction, name="on_source_hours")
pandas.Series
#%% import pandas as pd import matplotlib.pyplot as plt import numpy as np from datetime import datetime df =
pd.read_csv('data/cleanedData.csv')
pandas.read_csv
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import webbrowser import warnings from .file_download import update_index from .file_tools import validate_version, get_version_files_paths from .dataframe_tools import add_index_levels from .exceptions import * class DataSet: """ Note that all cancer datasets are class objects that inherit from cptac.dataset. Therefore the same function calls exist for cptac.Endometrial, cptac.Colon, etc. """ def __init__(self, cancer_type, version, valid_versions, data_files): """Initialize variables for a DataSet object. Parameters: cancer_type (str): The cancer type requested for this dataset version (str): The version number requested for this dataset valid_versions (list of str): A list of all possible valid versions for this dataset data_files (dict, keys of str, values of list of str): A dictionary where the keys are the existing version of the dataset, and the values are lists of the data file names for that version. """ # Initialize the _cancer_type instance variable self._cancer_type = cancer_type.lower() # Update the index, if possible. If there's no internet, that's fine. try: update_index(self._cancer_type) except NoInternetError: pass # Validate the version self._version = validate_version(version, self._cancer_type, use_context="init", valid_versions=valid_versions) # Get the paths to the data files version_data_files = data_files[self._version] # Get the data files for this version from the data files dictionary self._data_files_paths = get_version_files_paths(self._cancer_type, self._version, version_data_files) # Initialize dataframe and definitions dicts as empty for this parent class self._data = {} self._definitions = {} # Assign the valid dfs lists, but make them instance variables so they're easy to override if needed # These are the omics dataframes that are valid for use in the utilities functions self._valid_omics_dfs = [ 'acetylproteomics', 'circular_RNA', 'CNV', 'lincRNA', 'lipidomics', 'metabolomics', 'miRNA', 'phosphoproteomics', 'phosphoproteomics_gene', 'proteomics', 'somatic_mutation_binary', 'transcriptomics', ] # These are the metadata dataframes that are valid for use in the utilities functions self._valid_metadata_dfs = [ "clinical", "derived_molecular", "experimental_design", #"followup", # Right now there are duplicate rows, so don't include follow up tables for joins. ] # We don't allow the treatment df, as in Ovarian, or medical_history df, as in Ccrcc, because they both have multiple rows for each sample. # Methods to get metadata dataframes def get_clinical(self): """Get the clinical dataframe.""" return self._get_dataframe("clinical") def get_derived_molecular(self): """Get the derived_molecular dataframe.""" return self._get_dataframe("derived_molecular") def get_experimental_design(self): """Get the experimental_design dataframe.""" return self._get_dataframe("experimental_design") def get_medical_history(self): """Get the medical_history dataframe.""" return self._get_dataframe("medical_history") def get_treatment(self): """Get the treatment dataframe.""" return self._get_dataframe("treatment") def get_followup(self): """Get the followup dataframe.""" return self._get_dataframe("followup") # Methods to get omics dataframes def get_acetylproteomics(self): """Get the acetylproteomics dataframe.""" return self._get_dataframe("acetylproteomics") def get_circular_RNA(self): """Get the circular_RNA dataframe.""" return self._get_dataframe("circular_RNA") def get_CNV(self): """Get the CNV dataframe.""" return self._get_dataframe("CNV") def get_lincRNA(self): """Get the lincRNA dataframe.""" return self._get_dataframe("lincRNA") def get_lipidomics(self): """Get the lipidomics dataframe.""" return self._get_dataframe("lipidomics") def get_metabolomics(self): """Get the metabolomics dataframe.""" return self._get_dataframe("metabolomics") def get_methylation(self): """Get the methylation dataframe.""" return self._get_dataframe("methylation") def get_miRNA(self): """Get the miRNA dataframe.""" return self._get_dataframe("miRNA") def get_phosphoproteomics(self): """Get the phosphoproteomics dataframe.""" return self._get_dataframe("phosphoproteomics") def get_phosphoproteomics_gene(self): """Get the phosphoproteomics_gene dataframe. The gene level phosphorylation measurement is an aggregate metric which potentially averages together individual measurements of different sites. Use get_phosphoproteomics() to view the data for individual sites.""" return self._get_dataframe("phosphoproteomics_gene") def get_phosphosites(self, genes): """Returns dataframe with all phosphosites of specified gene or list of genes. Parameters: genes (str, or list or array-like of str): gene or list of genes to use to select phosphosites. str if single, list or array-like of str if multiple. Returns: pandas DataFrame: The phosphoproteomics for the specified gene(s). """ return self._get_omics_cols("phosphoproteomics", genes) def get_proteomics(self): """Get the proteomics dataframe.""" return self._get_dataframe("proteomics") def get_transcriptomics(self): """Get the transcriptomics dataframe.""" return self._get_dataframe("transcriptomics") # Methods to get mutations dataframes def get_gene_fusion(self): """Get the gene_fusion dataframe.""" return self._get_dataframe("gene_fusion") def get_somatic_mutation(self): """Get the somatic_mutation dataframe.""" return self._get_dataframe("somatic_mutation") def get_somatic_mutation_binary(self): """Get the somatic_mutation_binary dataframe, which has a binary value indicating, for each location on each gene, whether there was a mutation in that gene at that location, for each sample.""" return self._get_dataframe("somatic_mutation_binary") # Help methods def define(self, term): """Print the definition a term, if it is in the dataset's list of definitions. Parameters: term (str): term to be defined Returns: None """ if len(self._definitions.keys()) == 0: raise NoDefinitionsError("No definitions provided for this dataset.") elif term in self._definitions.keys(): print(self._definitions[term]) else: raise InvalidParameterError("{} not found in definitions. Check capitalization. Alternatively, the dataset's 'search(<your term>)' method can be used to perform a web search of the term provided.".format(term)) def get_cancer_type(self): """Return the cancer type for this dataset, as a string.""" return self._cancer_type def version(self): """Return the dataset version of this instance, as a string.""" return self._version def how_to_cite(self): """Print instructions for citing the data.""" print('Please include the following statement in publications using data accessed through this module:\n"Data used in this publication were generated by the Clinical Proteomic Tumor Analysis Consortium (NCI/NIH, <https://proteomics.cancer.gov/programs/cptac/>). Data were accessed through the Python module cptac, available at <https://pypi.org/project/cptac/>."') def list_data(self): """Print list of loaded dataframes and dimensions.""" print("Below are the dataframes contained in this dataset:") for name in sorted(self._data.keys(), key=str.lower): df = self._data[name] print("\t{}\n\t\tDimensions: {}".format(name, df.shape)) def list_definitions(self): """Print all terms defined in the dataset's list of definitions.""" if len(self._definitions.keys()) > 0: for term in sorted(self._definitions.keys(), key=str.lower): print(term) else: raise NoDefinitionsError("No definitions provided for this dataset.") def search(self, term): """Search for a term in a web browser. Parameters: term (str): term to be searched Returns: None """ url = "https://www.google.com/search?q=" + term message = f"Searching for {term} in web browser..." print(message, end='\r') webbrowser.open(url) print(" " * len(message), end='\r') # Erase the message def reduce_multiindex(self, df, levels_to_drop=None, flatten=False, sep='_'): """Drop levels from and/or flatten the column axis of a dataframe with a column multiindex. Parameters: df (pandas DataFrame): The dataframe to make the changes to. levels_to_drop (str, int, or list or array-like of str or int, optional): Levels, or indices of levels, to drop from the dataframe's column multiindex. These must match the names or indices of actual levels of the multiindex. Must be either all strings, or all ints. Default of None will drop no levels. flatten (bool, optional): Whether or not to flatten the multiindex. Default of False will not flatten. sep (str, optional): String to use to separate index levels when flattening. Default is underscore. Returns: pandas DataFrame: The dataframe, with the desired column index changes made. """ # Make a copy, so the original dataframe is preserved df = df.copy(deep=True) if levels_to_drop is not None: if df.columns.nlevels < 2: raise DropFromSingleIndexError("You attempted to drop level(s) from an index with only one level.") if isinstance(levels_to_drop, (str, int)): levels_to_drop = [levels_to_drop] elif not isinstance(levels_to_drop, (list, pd.core.series.Series, pd.core.indexes.base.Index)): raise InvalidParameterError(f"Parameter 'levels_to_drop' is of invalid type {type(levels_to_drop)}. Valid types: str, int, list or array-like of str or int, or NoneType.") # Check that they're not trying to drop too many columns existing_len = len(df.columns.names) to_drop_len = len(levels_to_drop) if to_drop_len >= existing_len: raise InvalidParameterError(f"You tried to drop too many levels from the dataframe column index. The most levels you can drop is one less than however many exist. {existing_len} levels exist; you tried to drop {to_drop_len}.") # Check that the levels they want to drop all exist to_drop_set = set(levels_to_drop) if all(isinstance(level, int) for level in to_drop_set): existing_set_indices = set(range(len(df.columns.names))) if not to_drop_set <= existing_set_indices: raise InvalidParameterError(f"Some level indices in {levels_to_drop} do not exist in dataframe column index, so they cannot be dropped. Existing column level indices: {list(range(len(df.columns.names)))}") else: existing_set = set(df.columns.names) if not to_drop_set <= existing_set: raise InvalidParameterError(f"Some levels in {levels_to_drop} do not exist in dataframe column index, so they cannot be dropped. Existing column levels: {df.columns.names}") df.columns = df.columns.droplevel(levels_to_drop) num_dups = df.columns.duplicated(keep=False).sum() if num_dups > 0: warnings.warn(f"Due to dropping the specified levels, dataframe now has {num_dups} duplicated column headers.", DuplicateColumnHeaderWarning, stacklevel=2) if flatten: if df.columns.nlevels < 2: warnings.warn("You tried to flatten an index that didn't have multiple levels, so we didn't actually change anything.", FlattenSingleIndexWarning, stacklevel=2) return df tuples = df.columns.to_flat_index() # Converts multiindex to an index of tuples no_nan = tuples.map(lambda x: [item for item in x if pd.notnull(item)]) # Cut any NaNs out of tuples joined = no_nan.map(lambda x: sep.join(x)) # Join each tuple df.columns = joined df.columns.name = "Name" # For consistency return df def get_genotype_all_vars(self, mutations_genes, mutations_filter=None, show_location=True, mutation_hotspot=None): """Return a dataframe that has the mutation type and wheather or not it is a multiple mutation Parameters: mutation_genes (str, or list or array-like of str): The gene(s) to get mutation data for. mutations_filter (list, optional): List of mutations to prioritize when filtering out multiple mutations, in order of priority. show_location (bool, optional): Whether to include the Location column from the mutation dataframe. Defaults to True. mutation_hotspot (optional): a list of hotspots """ #If they don't give us a filter, this is the default. if mutations_filter == None: mutations_filter = ["Deletion", 'Frame_Shift_Del', 'Frame_Shift_Ins', 'Nonsense_Mutation', 'Missense_Mutation_hotspot', 'Missense_Mutation', 'Amplification', 'In_Frame_Del', 'In_Frame_Ins', 'Wildtype'] #combine the cnv and mutations dataframe combined = self.join_omics_to_mutations(omics_df_name="CNV", mutations_genes=mutations_genes, omics_genes=mutations_genes) #drop the database index from ccrcc if self.get_cancer_type() == "ccrcc": cc = self.get_CNV() drop = ['Database_ID'] combined = self.reduce_multiindex(df=combined, levels_to_drop=drop) #If there are hotspot mutations, append 'hotspot' to the mutation type so that it's prioritized correctly def mark_hotspot_locations(row): #iterate through each location in the current row mutations = [] for location in row[mutations_genes+'_Location']: if location in mutation_hotspot: #if it's a hotspot mutation #get the position of the location position = row[mutations_genes+'_Location'].index(location) #use that to change the correct mutation mutations.append(row[mutations_genes+"_Mutation"][position] + "_hotspot") else: # get the position of the location position = row[mutations_genes+'_Location'].index(location) mutations.append(row[mutations_genes+"_Mutation"][position]) return mutations if mutation_hotspot is not None: combined['hotspot'] = combined.apply(mark_hotspot_locations, axis=1) combined[mutations_genes+"_Mutation"] = combined['hotspot'] combined = combined.drop(columns='hotspot') # Based on cnv make a new column with mutation type that includes deletions and amplifications def add_del_and_amp(row): if row[mutations_genes+"_CNV"] <= -.2: mutations = row[mutations_genes+"_Mutation"] + ['Deletion'] locations = row[mutations_genes+'_Location']+['Deletion'] elif row[mutations_genes+"_CNV"] >= .2: mutations = row[mutations_genes+"_Mutation"] + ['Amplification'] locations = row[mutations_genes+'_Location']+['Amplification'] else: mutations = row[mutations_genes+"_Mutation"] locations = row[mutations_genes+"_Location"] return mutations, locations combined['mutations'], combined['locations'] = zip(*combined.apply(add_del_and_amp, axis=1)) #now that we have the deletion and amplifications, we need to prioritize the correct mutations. def sort(row): sortedcol = [] location = [] chosen_indices = [] sample_mutations_list = row['mutations'] sample_locations_list = row['locations'] if len(sample_mutations_list) == 1: #if there's only one mutation in the list sortedcol.append(sample_mutations_list[0]) location.append(sample_locations_list[0]) else: for filter_val in mutations_filter: # This will start at the beginning of the filter list, thus filters earlier in the list are prioritized, like we want if filter_val in sample_mutations_list: chosen_indices = [index for index, value in enumerate(sample_mutations_list) if value == filter_val] if len(chosen_indices) > 0: # We found at least one mutation from the filter to prioritize, so we don't need to worry about later values in the filter priority list break if len(chosen_indices) == 0: # None of the mutations for the sample were in the filter for mutation in sample_mutations_list: if mutation in truncations: chosen_indices += [index for index, value in enumerate(sample_mutations_list) if value == mutation] soonest_mutation = sample_mutations_list[chosen_indices[0]] soonest_location = sample_locations_list[chosen_indices[0]] chosen_indices.clear() sortedcol.append(soonest_mutation) location.append(soonest_location) return pd.Series([sortedcol, location],index=['mutations', 'locations']) df = combined.apply(sort, axis=1) combined['Mutation'] = df['mutations'] combined['Location'] = df['locations'] #get a sample_status column that says if the gene has multiple mutations (including dletion and amplification) def sample_status(row): if len(row['mutations']) > 1: #if there's more than one mutation if len(row['mutations']) == 2 and "Wildtype_Tumor" in row['mutations']: #one of the mutations might be a "wildtype tumor" status ="Single_mutation" elif len(row['mutations']) == 2 and "Wildtype_Normal" in row['mutations']: status ="Single_mutation" else: status = "Multiple_mutation" else: if row["mutations"] == ["Wildtype_Normal"]: status = "Wildtype_Normal" elif row['mutations'] == ['Wildtype_Tumor']: status = "Wildtype_Tumor" else: status = "Single_mutation" return status combined['Mutation_Status'] = combined.apply(sample_status, axis=1) #drop all the unnecessary Columns df = combined.drop(columns=[mutations_genes+"_CNV", mutations_genes+"_Mutation", mutations_genes+"_Location", mutations_genes+"_Mutation_Status", 'Sample_Status', 'mutations','locations']) if show_location == False: df = df.drop(columns="Location") #if they don't want us to show the location, drop it return df # Join functions def join_omics_to_omics(self, df1_name, df2_name, genes1=None, genes2=None): """Take specified column(s) from one omics dataframe, and join to specified columns(s) from another omics dataframe. Intersection (inner join) of indices is used. Parameters: df1_name (str): Name of first omics dataframe to select columns from. df2_name (str): Name of second omics dataframe to select columns from. genes1 (str, or list or array-like of str, optional): Gene(s) for column(s) to select from df1_name. str if one key, list or array-like of str if multiple. Default of None will select entire dataframe. genes2 (str, or list or array-like of str, optional): Gene(s) for Column(s) to select from df2_name. str if one key, list or array-like of str if multiple. Default of None will select entire dataframe. Returns: pandas DataFrame: The selected columns from the two omics dataframes, joined into one dataframe. """ # Select the columns from each dataframe selected1 = self._get_omics_cols(df1_name, genes1) selected2 = self._get_omics_cols(df2_name, genes2) # Make the multiindices the same if selected1.columns.names != selected2.columns.names: selected1.columns = add_index_levels(to=selected1.columns, source=selected2.columns) selected2.columns = add_index_levels(to=selected2.columns, source=selected1.columns) df = selected1.join(selected2, how='outer') # Warn them about any NaNs that were inserted in the outer join self._warn_inserted_nans(df1_name, df2_name, selected1.index, selected2.index) df = df.sort_index() # Sort rows in ascending order return df def join_omics_to_mutations(self, omics_df_name, mutations_genes, omics_genes=None, mutations_filter=None, show_location=True): """Select all mutations for specified gene(s), and joins them to all or part of the given omics dataframe. Intersection (inner join) of indices is used. Each location or mutation cell contains a list, which contains the one or more location or mutation values corresponding to that sample for that gene, or a value indicating that the sample didn't have a mutation in that gene. Parameters: omics_df (str): Name of omics dataframe to join the mutation data to. mutations_genes (str, or list or array-like of str): The gene(s) to get mutation data for. str if one gene, list or array-like of str if multiple. omics_genes (str, or list or array-like of str, optional): Gene(s) to select from the omics dataframe. str if one gene, list or array-like of str if multiple. Default will select entire dataframe. mutations_filter (list, optional): List of mutations to prioritize when filtering out multiple mutations, in order of priority. If none of the multiple mutations in a sample are included in filter_prefer, the function will automatically prioritize truncation over missense mutations, and then mutations earlier in the sequence over later mutations. Passing an empty list will cause this default hierarchy to be applied to all samples. Default parameter of None will cause no filtering to be done, and all mutation data will be included, in a list. show_location (bool, optional): Whether to include the Location column from the mutation dataframe. Defaults to True. Returns: pandas DataFrame: The mutations for the specified gene, joined to all or part of the omics dataframe. Each location or mutation cell contains a list, which contains the one or more location or mutation values corresponding to that sample for that gene, or a value indicating that the sample didn't have a mutation in that gene. """ # Select the data from each dataframe omics = self._get_omics_cols(omics_df_name, omics_genes) mutations = self._get_genes_mutations(mutations_genes, mutations_filter) mutations_were_filtered = mutations_filter is not None joined = self._join_other_to_mutations(omics, mutations, mutations_were_filtered, show_location) # Warn them about any NaNs that were inserted in the outer join self._warn_inserted_nans(omics_df_name, "somatic_mutation", omics.index, mutations.index) return joined def join_metadata_to_metadata(self, df1_name, df2_name, cols1=None, cols2=None): """Take specified column(s) from one metadata dataframe, and join to specified columns(s) from another metadata dataframe. Intersection (inner join) of indices is used. Parameters: df1_name (str): Name of first metadata dataframe to select columns from. df2_name (str): Name of second metadata dataframe to select columns from. cols1 (str, or list or array-like of str, optional): Column(s) to select from df1_name. str if one key, list or array-like of str if multiple. Default of None will select entire dataframe. cols2 (str, or list or array-like of str, optional): Column(s) to select from df2_name. str if one key, list or array-like of str if multiple. Default of None will select entire dataframe. Returns: pandas DataFrame: The selected columns from the two metadata dataframes, joined into one dataframe. """ # Select the columns from each dataframe selected1 = self._get_metadata_cols(df1_name, cols1) selected2 = self._get_metadata_cols(df2_name, cols2) df = selected1.join(selected2, how='outer', rsuffix='_from_' + df2_name) # Use suffix in case both dataframes have a particular column, such as Patient_ID # Warn them about any NaNs that were inserted in the outer join self._warn_inserted_nans(df1_name, df2_name, selected1.index, selected2.index) df = df.sort_index() # Sort rows in ascending order return df def join_metadata_to_omics(self, metadata_df_name, omics_df_name, metadata_cols=None, omics_genes=None): """Joins columns from a metadata dataframe (clinical, derived_molecular, or experimental_design) to part or all of an omics dataframe. Intersection (inner join) of indices is used. Parameters: metadata_df_name (str): Name of metadata dataframe to select columns from. omics_df_name (str): Name of omics dataframe to join the metadata columns to. metadata_cols (str, or list or array-like of str, optional): Column(s) to select from the metadata dataframe. str if one gene, list or array-like of str if multiple. Default is None, which will select the entire metadata dataframe. omics_genes (str, or list or array-like of str, optional): Gene(s) to select data for from the omics dataframe. str if one gene, list or array-like of str if multiple. Default is None, which will select entire dataframe. Returns: pandas DataFrame: The selected metadata columns, joined with all or part of the omics dataframe. """ # Select the columns from each dataframe metadata_selected = self._get_metadata_cols(metadata_df_name, metadata_cols) omics_selected = self._get_omics_cols(omics_df_name, omics_genes) # Make the indices the same if metadata_selected.columns.names != omics_selected.columns.names: metadata_selected.columns = add_index_levels(to=metadata_selected.columns, source=omics_selected.columns) joined = metadata_selected.join(omics_selected, how='outer') # Warn them about any NaNs that were inserted in the outer join self._warn_inserted_nans(metadata_df_name, omics_df_name, metadata_selected.index, omics_selected.index) joined = joined.sort_index() # Sort rows in ascending order return joined def join_metadata_to_mutations(self, metadata_df_name, mutations_genes, metadata_cols=None, mutations_filter=None, show_location=True): """Select all mutations for specified gene(s), and joins them to all or part of the given metadata dataframe. Intersection (inner join) of indices is used. Each location or mutation cell contains a list, which contains the one or more location or mutation values corresponding to that sample for that gene, or a value indicating that the sample didn't have a mutation in that gene. Parameters: metadata_df_name (str): Name of metadata dataframe to join the mutation data to. mutations_genes (str, or list or array-like of str): The gene(s) to get mutation data for. str if one gene, list or array-like of str if multiple. metadata_cols (str, or list or array-like of str, optional): Gene(s) to select from the metadata dataframe. str if one gene, list or array-like of str if multiple. Default will select entire dataframe. mutations_filter (list, optional): List of mutations to prioritize when filtering out multiple mutations, in order of priority. If none of the multiple mutations in a sample are included in filter_prefer, the function will automatically prioritize truncation over missense mutations, and then mutations earlier in the sequence over later mutations. Passing an empty list will cause this default hierarchy to be applied to all samples. Default parameter of None will cause no filtering to be done, and all mutation data will be included, in a list. show_location (bool, optional): Whether to include the Location column from the mutation dataframe. Defaults to True. Returns: pandas DataFrame: The mutations for the specified gene, joined to all or part of the metadata dataframe. Each location or mutation cell contains a list, which contains the one or more location or mutation values corresponding to that sample for that gene, or a value indicating that the sample didn't have a mutation in that gene. """ # Select the data from each dataframe metadata = self._get_metadata_cols(metadata_df_name, metadata_cols) mutations = self._get_genes_mutations(mutations_genes, mutations_filter) mutations_were_filtered = mutations_filter is not None joined = self._join_other_to_mutations(metadata, mutations, mutations_were_filtered, show_location) # Warn them about any NaNs that were inserted in the outer join self._warn_inserted_nans(metadata_df_name, "somatic_mutation", metadata.index, mutations.index) return joined # "Private" methods def _get_dataframe(self, name): """Check if a dataframe with the given name exists, and return a copy of it if it does. Parameters: name (str): The name of the dataframe to get. Returns: pandas DataFrame: A copy of the desired dataframe, if it exists in this dataset. """ if name in self._data.keys(): df = self._data[name] return_df = df.copy(deep=True) # We copy it, with deep=True, so edits on their copy don't affect the master for this instance return return_df else: raise DataframeNotIncludedError(f"{name} dataframe not included in the {self.get_cancer_type()} dataset.") def _get_sample_status_map(self): """Get a pandas Series from the clinical dataframe, with sample ids as the index, and each sample's status (tumor or normal) as the values.""" clinical = self.get_clinical() status_map = clinical["Sample_Tumor_Normal"] status_map.name = "Sample_Status" return status_map def _check_df_valid(self, df_name, df_type): """Checks whether a dataframe with this name is valid for use as an omics or metadata dataframe in one of the utilties functions. Throws an InvalidParameterError if it isn't. Parameters: df_name (str): The dataframe name to check. df_type (str): Which type of dataframe we're validating--either "omics" or "metadata" Returns: None """ if not isinstance(df_name, str): # Check that they passed a str, since utilities functions used to directly accept dataframes raise InvalidParameterError(f"Please pass a str for dataframe name parameter. You passed {df_name}, which is a {type(df_name)}") if df_type == "omics": valid_dfs = self._valid_omics_dfs elif df_type == "metadata": valid_dfs = self._valid_metadata_dfs else: raise CptacDevError(f"Invalid df_type of {df_type} passed to cptac.DataSet._check_df_valid.") if df_name not in self._data.keys(): raise DataframeNotIncludedError(f"{df_name} dataframe not included in the {self.get_cancer_type()} dataset.") elif df_name not in valid_dfs: error_msg = f"{df_name} is not a valid {df_type} dataframe for this function in this dataset. Valid options:" for valid_name in valid_dfs: if valid_name in self._data.keys(): # Only print it if it's included in this dataset error_msg = error_msg + '\n\t' + valid_name raise InvalidParameterError(error_msg) def _warn_inserted_nans(self, name1, name2, index1, index2): """Compare two indices from two dataframes, and warn the user that any rows with index values not in both indices were filled with NaNs in a join function. Parameters: name1 (str): Name of the dataframe the first index came from name2 (str): Name of the dataframe the second index came from index1 (pandas Index): First index to compare index2 (pandas Index): Second index to compare Returns: None """ unique1 = index1.difference(index2) unique2 = index2.difference(index1) self._issue_inserted_nans_warning(unique1, name2) self._issue_inserted_nans_warning(unique2, name1) def _issue_inserted_nans_warning(self, unique, other_name): """Issue a warning that the samples in unique were not found in the other_name dataframe, and those column(s) were filled with NaN. Parameters: unique (list or array-like of str): The samples that weren't in the other_name dataframe. other_name (str): The name of the dataframe the samples weren't found in. Returns: None """ if other_name == "somatic_mutation": return # This will have separate fill warnings printed, because we use different fill values. elif len(unique) > 0: warnings.warn(f"{other_name} data was not found for the following samples, so {other_name} data columns were filled with NaN for these samples: {', '.join(unique)}", InsertedNanWarning, stacklevel=4) def _get_omics_cols(self, omics_df_name, genes): """Based on a single gene, or a list or array-like of genes, select multiple columns from an omics dataframe, and return the selected columns as one dataframe. Parameters: omics_df_name (str): Name of omics dataframe to select column(s) from. genes (str, or list or array-like of str): Gene(s) to use to select columns from omics_df. str if one gene, list or array-like if multiple. Passing None will select the entire omics dataframe. Returns: pandas DataFrame: The selected columns from the dataframe. """ # Check that they passed a valid omics df self._check_df_valid(omics_df_name, "omics") # Get our omics df, using _get_dataframe to catch invalid requests omics_df = self._get_dataframe(omics_df_name) # Process genes parameter if isinstance(genes, str): # If it's a single gene, make it a list so we can treat everything the same genes = [genes] elif isinstance(genes, (list, pd.core.series.Series, pd.core.indexes.base.Index)): # If it's already a list or array-like, we're all good pass elif genes is None: # If it's the default of None, rename columns and return the entire dataframe # Add the gene name to end beginning of each column header, to preserve info when we join dataframes. if isinstance(omics_df.columns, pd.core.index.MultiIndex): omics_df.columns = omics_df.columns.set_levels(omics_df.columns.levels[0] + '_' + omics_df_name, level=0) else: omics_df = omics_df.add_suffix('_' + omics_df_name) return omics_df else: # If it's none of those, they done messed up. Tell 'em. raise InvalidParameterError("Genes parameter \n{}\nis of invalid type {}. Valid types: str, list or array-like of str, or NoneType.".format(genes, type(genes))) genes = pd.Index(genes, name="Name") if isinstance(omics_df.columns, pd.core.index.MultiIndex): contained = genes.intersection(omics_df.columns.get_level_values("Name")).drop_duplicates() # Get the genes that actually exist in the dataframe's columns mi_contained = omics_df.columns[omics_df.columns.get_level_values("Name").isin(genes)] not_contained = genes.difference(contained).drop_duplicates() # So we can warn the user later arrays = [not_contained] + [[np.nan] for i in range(omics_df.columns.nlevels - 1)] mi_not_contained = pd.MultiIndex.from_product(arrays, names=omics_df.columns.names) genes = mi_contained.union(mi_not_contained) # To use for reindexing the dataframe else: contained = genes.intersection(omics_df.columns).drop_duplicates() # Get the genes that actually exist in the dataframe's columns not_contained = genes.difference(contained).drop_duplicates() # So we can warn the user later selected = omics_df[contained] selected = selected.reindex(columns=genes) # This will add the columns not included in the dataframe, and fill them with NaN. # Warn the user about columns filled with NaN if len(not_contained) > 0: warnings.warn(f"The following columns were not found in the {omics_df_name} dataframe, so they were inserted into joined table, but filled with NaN: {', '.join(not_contained)}", ParameterWarning, stacklevel=3) # Append dataframe name to end of each column header, to preserve info when we merge dataframes if isinstance(omics_df.columns, pd.core.index.MultiIndex): selected.columns = selected.columns.set_levels(selected.columns.levels[0] + '_' + omics_df_name, level=0) else: selected = selected.add_suffix('_' + omics_df_name) return selected def _get_metadata_cols(self, df_name, cols): """Select a single column or several columns from a metadata dataframe. Parameters: df_name (str): The name of the metadata dataframe to select the column(s) from. cols (str, or list or array-like of str): The column(s) to select from the dataframe. str if single, list or array-like of str if multiple. Passing None will select the entire dataframe. Returns: pandas DataFrame: The specified columns from the given dataframe. """ # Check that they passed a valid metadata df self._check_df_valid(df_name, "metadata") # Get our dataframe, using _get_dataframe to catch invalid requests df = self._get_dataframe(df_name) # Process genes parameter if isinstance(cols, str): # If it's a single column, make it a list so we can treat everything the same cols = [cols] elif isinstance(cols, (list, pd.core.series.Series, pd.core.indexes.base.Index)): # If it's already a list or array-like, we're all good pass elif cols is None: # If it's the default of None, return the entire dataframe return df else: # If it's none of those, they done messed up. Tell 'em. raise InvalidParameterError("Columns parameter {} is of invalid type {}. Valid types: str, or list or array-like of str.".format(cols, type(cols))) cols = pd.Index(cols).drop_duplicates() # Check that they didn't pass any invalid columns not_contained = cols.difference(df.columns) if len(not_contained) > 0: raise InvalidParameterError(f'The following columns were not found in the {df_name} dataframe: {", ".join(not_contained)}') selected = df[cols] return selected def _get_genes_mutations(self, genes, mutations_filter): """Gets all the mutations for one or multiple genes, for all patients. Parameters: genes (str, or list or array-like of str): The gene(s) to grab mutations for. str if one, list or array-like of str if multiple. mutations_filter (list, optional): List of mutations to prioritize when filtering out multiple mutations, in order of priority. If none of the multiple mutations in a sample are included in filter_prefer, the function will automatically prioritize truncation over missense mutations, and then mutations earlier in the sequence over later mutations. Passing an empty list will cause this default hierarchy to be applied to all samples. Passing None will cause no filtering to be done, and all mutation data will be included, in a list. Returns: pandas DataFrame: The mutations in each patient for the specified gene(s). """ somatic_mutation = self.get_somatic_mutation() # Process genes parameter if isinstance(genes, str): # If it's a single gene, make it a list so we can treat everything the same genes = [genes] elif isinstance(genes, (list, pd.core.series.Series, pd.core.indexes.base.Index)): # If it's already a list or array-like, we're all good pass else: # If it's neither of those, they done messed up. Tell 'em. raise InvalidParameterError("Genes parameter {} is of invalid type {}. Valid types: str, or list or array-like of str.".format(genes, type(genes))) # Set some column names for use later gene_col = "Gene" mutation_col = "Mutation" location_col = "Location" mutation_status_col = "Mutation_Status" # Check that they didn't make any typos in specifying filter values invalid_filter = False if mutations_filter is not None: for filter_val in mutations_filter: if (filter_val not in somatic_mutation[mutation_col].values) and (filter_val not in somatic_mutation[location_col].values): raise InvalidParameterError(f"Filter value {filter_val} does not exist in the mutations dataframe for this dataset. Check for typos and existence. Merge aborted.") # Create an empty dataframe, which we'll fill with the columns we select using our genes, and then return. df = pd.DataFrame(index=somatic_mutation.index.copy().drop_duplicates()) genes =
pd.Series(genes)
pandas.Series
# %% import os import pandas as pd import numpy as np from fcutils.plotting.colors import colorMap from analysis.misc.paths import cellfinder_cells_folder, cellfinder_out_dir, injections_folder from analysis.anatomy.utils import * # %% import matplotlib.pyplot as plt for i in range(100): color = colorMap(i, name='YlOrBr', vmin=0, vmax=100) # plt.scatter(0, i, c=color, s=20) print(color) # %% # Merge highest projecting regions in a summary datafame cell_files = dict( # cc_136_0 = ('GRN', 'right', 'CC_136_0_ch0_cells.h5'), # cc_136_1 = ('GRN', 'right', 'CC_136_1_ch0_cells.h5'), cc_134_1 = ('SCm', 'left', 'CC_134_1_ch1_cells.h5'), cc_134_2 = ('SCm', 'left', 'CC_134_2_ch1_cells.h5'), ) data = {} df = pd.DataFrame() ipsidf, contradf = pd.DataFrame(), pd.DataFrame() for mouse, (inj, hemi, path) in cell_files.items(): all_cells = pd.read_hdf(os.path.join(cellfinder_cells_folder, path), key='hdf') all_cells = all_cells.loc[all_cells.region != inj] n_cells = len(all_cells) threshold = 2 ipsi = all_cells.loc[all_cells.hemisphere == hemi] ipsi = (ipsi.groupby('region').count().sort_values('region_name')[::-1]/ n_cells) * 100 ipsi = ipsi.loc[ipsi.x > threshold].x.rename(f'{mouse}_{inj}_ipsi').round(2) contra = all_cells.loc[all_cells.hemisphere != hemi] contra = (contra.groupby('region').count().sort_values('region_name')[::-1]/ n_cells) * 100 contra = contra.loc[contra.x > threshold].x.rename(f'{mouse}_{inj}_contra').round(2) df = pd.concat([df, ipsi, contra], axis=1).sort_index() ipsidf = pd.concat([ipsidf, ipsi], axis=1).sort_index() contradf = pd.concat([contradf, contra], axis=1).sort_index() # print(df.to_markdown()) # %% import networkx as nx ipsi = ipsidf.sum(axis=1)/2 contra = contradf.sum(axis=1)/2 edges = [] regions = list(df.index) for reg in regions: # try: # edges.append((f'{reg}_r', 'SC_r', {'weight':ipsi[reg]})) # except: # pass try: edges.append((f'{reg}_r', 'SC_l', {'weight':contra[reg]})) except: pass # try: # edges.append((f'{reg}_l', 'SC_r', {'weight':contra[reg]})) # except: # pass try: edges.append((f'{reg}_l', 'SC_l', {'weight':ipsi[reg]})) except: pass # edges.append((f'{reg}_l', f'{reg}_r', {'weight':1})) G=nx.Graph() G.add_edges_from(edges) nx.draw(G, with_labels=True, pos=nx.spring_layout(G)) # %% cell_files = dict( cc_136_0 = ('GRN', 'right', 'CC_136_0_ch0_cells.h5'), cc_136_1 = ('GRN', 'right', 'CC_136_1_ch0_cells.h5'), # cc_134_1 = ('SCm', 'left', 'CC_134_1_ch1_cells.h5'), # cc_134_2 = ('SCm', 'left', 'CC_134_2_ch1_cells.h5'), ) data = {} df = pd.DataFrame() ipsidf, contradf = pd.DataFrame(), pd.DataFrame() for mouse, (inj, hemi, path) in cell_files.items(): all_cells = pd.read_hdf(os.path.join(cellfinder_cells_folder, path), key='hdf') all_cells = all_cells.loc[all_cells.region != inj] n_cells = len(all_cells) ipsi = all_cells.loc[all_cells.hemisphere == hemi] ipsi = (ipsi.groupby('region').count().sort_values('region_name')[::-1]/ n_cells) * 100 ipsi = ipsi.loc[ipsi.x > threshold].x.rename(f'{mouse}_{inj}_ipsi').round(2) contra = all_cells.loc[all_cells.hemisphere != hemi] contra = (contra.groupby('region').count().sort_values('region_name')[::-1]/ n_cells) * 100 contra = contra.loc[contra.x > threshold].x.rename(f'{mouse}_{inj}_contra').round(2) df =
pd.concat([df, ipsi, contra], axis=1)
pandas.concat
import pandas as pd from pymongo import MongoClient class KAnonymizer: names = ( 'age', 'region', #Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. 'gender', # "weight" of that person in the dataset (i.e. how many people does that person represent) -> https://www.kansascityfed.org/research/datamuseum/cps/coreinfo/keyconcepts/weights 'job', 'religion', 'language', 'marital', 'sa', 'rowno' ) # some fields are categorical and will require special treatment categorical = set(( 'region', 'gender', 'job', 'religion', 'language', 'marital', 'sa', )) def configure(self): conn = MongoClient() # database db = conn.ppdp # Created or Switched to collection names: my_gfg_collection collection = db.unsanitizeddata df = pd.DataFrame(list(collection.find({}, {'_id':0}))) for name in self.categorical: df[name] = df[name].astype('category') return df def get_spans(self, df, partition, scale=None): """ :param df: the dataframe for which to calculate the spans :param partition: the partition for which to calculate the spans :param scale: if given, the spans of each column will be divided by the value in `scale` for that column : returns: The spans of all columns in the partition """ spans = {} for column in df.columns: if column in self.categorical: processed = pd.Series() for index, value in df[column][partition].items(): processed.set_value(index, self.remov_punct(str(value))) span = len(processed.unique()) else: processed =
pd.Series()
pandas.Series
import itertools import logging import math from datetime import datetime, timedelta, timezone import boto3 import numpy as np import pandas as pd import pyarrow as pa import pytest import awswrangler as wr from ._utils import ensure_data_types, get_df_list logging.getLogger("awswrangler").setLevel(logging.DEBUG) @pytest.mark.parametrize("partition_cols", [None, ["c2"], ["c1", "c2"]]) def test_parquet_metadata_partitions_dataset(path, partition_cols): df = pd.DataFrame({"c0": [0, 1, 2], "c1": [3, 4, 5], "c2": [6, 7, 8]}) wr.s3.to_parquet(df=df, path=path, dataset=True, partition_cols=partition_cols) columns_types, partitions_types = wr.s3.read_parquet_metadata(path=path, dataset=True) partitions_types = partitions_types if partitions_types is not None else {} assert len(columns_types) + len(partitions_types) == len(df.columns) assert columns_types.get("c0") == "bigint" assert (columns_types.get("c1") == "bigint") or (partitions_types.get("c1") == "string") assert (columns_types.get("c1") == "bigint") or (partitions_types.get("c1") == "string") @pytest.mark.parametrize("partition_cols", [None, ["c2"], ["value", "c2"]]) def test_parquet_cast_string_dataset(path, partition_cols): df = pd.DataFrame({"id": [1, 2, 3], "value": ["foo", "boo", "bar"], "c2": [4, 5, 6], "c3": [7.0, 8.0, 9.0]}) wr.s3.to_parquet(df, path, dataset=True, partition_cols=partition_cols, dtype={"id": "string", "c3": "string"}) df2 = wr.s3.read_parquet(path, dataset=True).sort_values("id", ignore_index=True) assert str(df2.id.dtypes) == "string" assert str(df2.c3.dtypes) == "string" assert df.shape == df2.shape for col, row in tuple(itertools.product(df.columns, range(3))): assert str(df[col].iloc[row]) == str(df2[col].iloc[row]) @pytest.mark.parametrize("use_threads", [True, False, 2]) def test_read_parquet_filter_partitions(path, use_threads): df = pd.DataFrame({"c0": [0, 1, 2], "c1": [0, 1, 2], "c2": [0, 0, 1]}) wr.s3.to_parquet(df, path, dataset=True, partition_cols=["c1", "c2"], use_threads=use_threads) df2 = wr.s3.read_parquet( path, dataset=True, partition_filter=lambda x: True if x["c1"] == "0" else False, use_threads=use_threads ) assert df2.shape == (1, 3) assert df2.c0.iloc[0] == 0 assert df2.c1.astype(int).iloc[0] == 0 assert df2.c2.astype(int).iloc[0] == 0 df2 = wr.s3.read_parquet( path, dataset=True, partition_filter=lambda x: True if x["c1"] == "1" and x["c2"] == "0" else False, use_threads=use_threads, ) assert df2.shape == (1, 3) assert df2.c0.iloc[0] == 1 assert df2.c1.astype(int).iloc[0] == 1 assert df2.c2.astype(int).iloc[0] == 0 df2 = wr.s3.read_parquet( path, dataset=True, partition_filter=lambda x: True if x["c2"] == "0" else False, use_threads=use_threads ) assert df2.shape == (2, 3) assert df2.c0.astype(int).sum() == 1 assert df2.c1.astype(int).sum() == 1 assert df2.c2.astype(int).sum() == 0 def test_parquet(path): df_file = pd.DataFrame({"id": [1, 2, 3]}) path_file = f"{path}test_parquet_file.parquet" df_dataset = pd.DataFrame({"id": [1, 2, 3], "partition": ["A", "A", "B"]}) df_dataset["partition"] = df_dataset["partition"].astype("category") path_dataset = f"{path}test_parquet_dataset" with pytest.raises(wr.exceptions.InvalidArgumentCombination): wr.s3.to_parquet(df=df_file, path=path_file, mode="append") with pytest.raises(wr.exceptions.InvalidCompression): wr.s3.to_parquet(df=df_file, path=path_file, compression="WRONG") with pytest.raises(wr.exceptions.InvalidArgumentCombination): wr.s3.to_parquet(df=df_dataset, path=path_dataset, partition_cols=["col2"]) with pytest.raises(wr.exceptions.InvalidArgumentCombination): wr.s3.to_parquet(df=df_dataset, path=path_dataset, description="foo") with pytest.raises(wr.exceptions.InvalidArgumentValue): wr.s3.to_parquet(df=df_dataset, path=path_dataset, partition_cols=["col2"], dataset=True, mode="WRONG") wr.s3.to_parquet(df=df_file, path=path_file) assert len(wr.s3.read_parquet(path=path_file, use_threads=True, boto3_session=None).index) == 3 assert len(wr.s3.read_parquet(path=[path_file], use_threads=False, boto3_session=boto3.DEFAULT_SESSION).index) == 3 paths = wr.s3.to_parquet(df=df_dataset, path=path_dataset, dataset=True)["paths"] with pytest.raises(wr.exceptions.InvalidArgument): assert wr.s3.read_parquet(path=paths, dataset=True) assert len(wr.s3.read_parquet(path=path_dataset, use_threads=True, boto3_session=boto3.DEFAULT_SESSION).index) == 3 dataset_paths = wr.s3.to_parquet( df=df_dataset, path=path_dataset, dataset=True, partition_cols=["partition"], mode="overwrite" )["paths"] assert len(wr.s3.read_parquet(path=path_dataset, use_threads=True, boto3_session=None).index) == 3 assert len(wr.s3.read_parquet(path=dataset_paths, use_threads=True).index) == 3 assert len(wr.s3.read_parquet(path=path_dataset, dataset=True, use_threads=True).index) == 3 wr.s3.to_parquet(df=df_dataset, path=path_dataset, dataset=True, partition_cols=["partition"], mode="overwrite") wr.s3.to_parquet( df=df_dataset, path=path_dataset, dataset=True, partition_cols=["partition"], mode="overwrite_partitions" ) def test_parquet_validate_schema(path): df =
pd.DataFrame({"id": [1, 2, 3]})
pandas.DataFrame
#!/usr/bin/env python3 # # Create model outputs with P.1203 software. # # Copyright 2018 <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os from itu_p1203.p1203Pv import P1203Pv from itu_p1203.p1203Pq import P1203Pq import pandas as pd import yaml import argparse import json import numpy as np from tqdm import tqdm tqdm.pandas() DB_IDS = ['TR04', 'TR06', 'VL04', 'VL13'] ROOT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..') def parse_mode3_features(pvs_id, features_mode3_path): pvs_features = pd.read_csv( os.path.join( features_mode3_path, pvs_id + '.csv') ) return pvs_features def calc_mode0_O22(row): pvs_features = (int(row["coding_res"]), int(row["display_res"]), float(row["bitrate_kbps_segment_size"]), int(row["framerate"])) return P1203Pv.video_model_function_mode0(*pvs_features) def calc_mode1_O22(row): pvs_features = (int(row["coding_res"]), int(row["display_res"]), float(row["bitrate_kbps_segment_size"]), int(row["framerate"]), [], float(row["iframe_ratio"])) return P1203Pv.video_model_function_mode1(*pvs_features) def calc_mode2_O22(row): # check if fallback is needed has_bitstream_data = "BS_TwoPercentQP1" in row.keys() and isinstance(row["BS_TwoPercentQP1"], str) try: avg_qp = eval(row["BS_TwoPercentQP1"]) except Exception as e: has_bitstream_data = False if has_bitstream_data: frame_types = eval(row["types"]) frames = [] for ftyp, qp_values in zip(frame_types, avg_qp): frames.append({ 'type': ftyp, 'qpValues': [qp_values] }) pvs_features = ( int(row["coding_res"]), int(row["display_res"]), int(row["framerate"]), frames, None, [] ) return P1203Pv.video_model_function_mode2(*pvs_features) else: # tqdm.write("Switching back to Mode 1 for PVS {}, sample index {}".format(row["pvs_id"], row["sample_index"])) return None def calc_mode3_O22(row): frame_types = eval(row["types"]) avg_qp = eval(row["BS_Av_QPBB"]) frames = [] for ftyp, qp_values in zip(frame_types, avg_qp): frames.append({ 'type': ftyp, 'qpValues': [qp_values] }) pvs_features = ( int(row["coding_res"]), int(row["display_res"]), float(row["framerate"]), frames, None, [] ) return P1203Pv.video_model_function_mode3(*pvs_features) def calc_O46(O21, O22, device, stall_vec=[]): l_buff = [] p_buff = [] if stall_vec: for l, p in stall_vec: l_buff.append(l) p_buff.append(p) pq_fun = P1203Pq(O21, O22, l_buff, p_buff, device) return pq_fun.calculate() def main(args): db_data = pd.DataFrame() O21_path = os.path.join(ROOT_PATH, 'data', 'O21.csv') stalling_dir_path = os.path.join(ROOT_PATH, 'data', 'test_configs') features_mode0_path = os.path.join(ROOT_PATH, 'data', 'features', 'features_mode0.csv') features_mode1_path = os.path.join(ROOT_PATH, 'data', 'features', 'features_mode1.csv') features_mode2_path = os.path.join(ROOT_PATH, 'data', 'features', 'features_mode2') features_mode3_path = os.path.join(ROOT_PATH, 'data', 'features', 'features_mode3') # read in data # O21 O21_data = pd.read_csv(O21_path) # stalling yaml_per_db = {} for db_id in DB_IDS: yaml_per_db[db_id] = yaml.load( open(os.path.join(stalling_dir_path, db_id + '-config.yaml'))) # read in from hdf-files if they exist, otherwise run pv-calc if args.create_hdfs: print('Calculating O22 scores for all modes ...') # mode0 features print('Reading mode 0 features ...') mode0_features = pd.read_csv(features_mode0_path) # mode1 features print('Reading mode 1 features ...') mode1_features = pd.read_csv(features_mode1_path) # mode2 features print('Reading mode 2 features (may take a while) ...') pvss = mode1_features["pvs_id"].unique() list_of_dataframes_for_mode2 = [] for pvs_id in tqdm(pvss): pvs_data_all = pd.read_csv(os.path.join(features_mode2_path, pvs_id + '.csv')) if "BS_TwoPercentQP1" in pvs_data_all.keys(): list_of_dataframes_for_mode2.append( pvs_data_all[[ "pvs_id", "sample_index", "framerate", "types", "sizes", "quant", "coding_res", "display_res", "BS_TwoPercentQP1" ]].copy() ) else: # no bitstream data available list_of_dataframes_for_mode2.append( pvs_data_all[[ "pvs_id", "sample_index", "framerate", "types", "sizes", "coding_res", "display_res" ]].copy() ) mode2_features = pd.concat(list_of_dataframes_for_mode2, ignore_index=True) # mode3 features print('Reading mode 3 features (may take a while) ...') pvss = mode1_features["pvs_id"].unique() list_of_dataframes_for_mode3 = [] for pvs_id in tqdm(pvss): pvs_data_all = pd.read_csv(os.path.join(features_mode3_path, pvs_id + '.csv')) list_of_dataframes_for_mode3.append( pvs_data_all[[ "pvs_id", "sample_index", "framerate", "types", "quant", "coding_res", "display_res", "BS_Av_QPBB" ]].copy() ) mode3_features = pd.concat(list_of_dataframes_for_mode3, ignore_index=True) # calc Pv # mode0 print('Calculating mode 0 Pv') mode0_features['O22'] = mode0_features.progress_apply(calc_mode0_O22, axis=1) # mode1 print('Calculating mode 1 Pv') mode1_features['O22'] = mode1_features.progress_apply(calc_mode1_O22, axis=1) # mode2 print('Calculating mode 2 Pv') mode2_features['O22'] = mode2_features.progress_apply(calc_mode2_O22, axis=1) missing_values_indices = np.where(pd.isnull(mode2_features.O22))[0] # go through each sample index that has no value yet print('Re-calculating mode 2 Pv missing values') for idx in tqdm(missing_values_indices): # get required features from mode 1, ... pvs_id = mode2_features.iloc[idx]['pvs_id'] sample_index = mode2_features.iloc[idx]['sample_index'] row = mode1_features.loc[(mode1_features["pvs_id"] == pvs_id) & (mode1_features["sample_index"] == sample_index)] # and calculate Mode 1 score instead mode1_O22 = calc_mode1_O22(row) # overwrite data in Mode 2 data frame # https://stackoverflow.com/a/43968774/435093 mode2_features.iat[idx, mode2_features.columns.get_loc("O22")] = mode1_O22 # mode3 print('Calculating mode 3 Pv') mode3_features['O22'] = mode3_features.progress_apply(calc_mode3_O22, axis=1) mode0_features.to_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode0') mode1_features.to_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode1') mode2_features.to_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode2') mode3_features.to_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode3') else: if os.path.isfile(os.path.join(ROOT_PATH, "data_original", "save.h5")): mode0_features = pd.read_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode0') mode1_features = pd.read_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode1') mode2_features = pd.read_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode2') mode3_features = pd.read_hdf(os.path.join(ROOT_PATH, "data_original", "save.h5"), key='mode3') else: print('No h5 file found, please rerun with -c flag') quit() # parse buffering data from -config.yaml stalling_per_hrc = {} for db_id in yaml_per_db: for hrc_id in yaml_per_db[db_id]['hrcList']: buffts = 0 buff_events = [] # ts, dur for (event, ts) in yaml_per_db[db_id]['hrcList'][hrc_id]["eventList"]: if event in ['stall', 'buffering']: buff_events.append([buffts, ts]) else: buffts += ts stalling_per_hrc[hrc_id] = buff_events pvss = mode1_features["pvs_id"].unique() per_pvs_data = {} print('Creating O21/22-json files ...') O22_tocsv = pd.DataFrame(columns=['pvs_id', 'mode', 'sample_index', 'O22']) list_to_concat = [] for pvs_id in tqdm(pvss): database_id = pvs_id.split('_')[0] if database_id not in DB_IDS: print("WARNING: Saved PVS {} not in required DBs".format(pvs_id)) continue src_id = pvs_id.split('_')[1] hrc_id = pvs_id.split('_')[2] per_pvs_data[pvs_id] = {} per_pvs_data[pvs_id]['O21'] = O21_data[O21_data["pvs_id"] == pvs_id].sort_values(by=['sample_index'])["O21"].tolist() per_pvs_data[pvs_id]['O22'] = {} per_pvs_data[pvs_id]['O22']['mode0'] = \ mode0_features[mode0_features["pvs_id"] == pvs_id].sort_values(by=['sample_index'])["O22"].tolist() per_pvs_data[pvs_id]['O22']['mode1'] = \ mode1_features[mode1_features["pvs_id"] == pvs_id].sort_values(by=['sample_index'])["O22"].tolist() per_pvs_data[pvs_id]['O22']['mode2'] = \ mode2_features[mode2_features["pvs_id"] == pvs_id].sort_values(by=['sample_index'])["O22"].tolist() per_pvs_data[pvs_id]['O22']['mode3'] = \ mode3_features[mode3_features["pvs_id"] == pvs_id].sort_values(by=['sample_index'])["O22"].tolist() per_pvs_data[pvs_id]['I23'] = stalling_per_hrc[hrc_id] per_pvs_data[pvs_id]['IGen'] = {} per_pvs_data[pvs_id]['IGen']['displaySize'] = str(int( yaml_per_db[database_id]["displayHeight"] * 1.7777778)) + 'x' + str(yaml_per_db[database_id]["displayHeight"]) # this should be inserted below when producing the o46 scores per_pvs_data[pvs_id]['IGen']['device'] = '' # write .json outputs from pv (O21, O22, i23, igen) for mode_id in ['mode0', 'mode1', 'mode2', 'mode3']: csv_index = 0 for o22_sample in per_pvs_data[pvs_id]['O22'][mode_id]: csv_row = { 'pvs_id': pvs_id, 'mode': mode_id[-1], 'sample_index': csv_index, 'O22': o22_sample} csv_row_df = pd.DataFrame(csv_row, index=[0]) list_to_concat.append(csv_row_df) csv_index += 1 os.makedirs(os.path.join(ROOT_PATH, 'data', mode_id), exist_ok=True) json_filename = os.path.join( ROOT_PATH, 'data', mode_id, 'O21O22-{}.json'.format(pvs_id) ) #- `data/mode0/O21O22-TR01_SRCxxx_HRCxxx.json` data_to_write = per_pvs_data[pvs_id].copy() data_to_write['O22'] = per_pvs_data[pvs_id]['O22'][mode_id] with open(json_filename, 'w') as outfile: json.dump(data_to_write, outfile) print('Writing O22 CSV file ...') O22_tocsv = pd.concat(list_to_concat, ignore_index=True) O22_tocsv.to_csv( os.path.join(ROOT_PATH, 'data', 'O22.csv'), columns=['pvs_id', 'mode', 'sample_index', 'O22'], index=False ) # calc pq for each .json. print('Calculating Pq-scores ...') O46_tocsv = pd.DataFrame(columns=['pvs_id', 'mode', 'context', 'O46']) list_to_concat = [] for pvs_id in tqdm(pvss): pvs_data = per_pvs_data[pvs_id] for device in ['mobile', 'pc']: for curr_mode in pvs_data['O22']: O46_vals = calc_O46( pvs_data['O21'], pvs_data['O22'][curr_mode], device, pvs_data['I23']) # O21, O22, O23, O34, O35, O46, mode O46_output_data = {} O46_output_data['O23'] = O46_vals['O23'] O46_output_data['O34'] = O46_vals['O34'] O46_output_data['O35'] = O46_vals['O35'] O46_output_data['O46'] = O46_vals['O46'] O46_output_data['O22'] = pvs_data['O22'][curr_mode] O46_output_data['O21'] = pvs_data['O21'] O46_output_data['mode'] = curr_mode[-1] # write o46-jsons #- `data/mode0/O46-TR01_SRCxxx_HRCxxx-pc.json` csv_row = { 'pvs_id': pvs_id, 'mode': curr_mode[-1], 'context': device, 'O46': O46_vals['O46'] } csv_row_df = pd.DataFrame(csv_row, index=[0]) list_to_concat.append(csv_row_df) json_filename = os.path.join( ROOT_PATH, 'data', curr_mode, "046-{pvs_id}-{device}.json".format(**locals()) ) with open(json_filename, 'w') as outfile: json.dump(O46_output_data, outfile) print('Writing O46 CSV file ...') O46_tocsv =
pd.concat(list_to_concat, ignore_index=True)
pandas.concat
import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots from python.ftm.plot_events import get_refuel_events_from_events_csv, get_total_walking_distances_from_events_csv, \ get_parking_events_from_events_csv from python.ftm.util import get_run_dir, get_latest_run, get_iteration_dir, get_last_iteration def plot_iteration(iteration, row, col, y_min_value, y_max_value): # Setup directory working_dir = get_iteration_dir(run_dir, iteration) print("-------------- ITERATION", iteration, "--------------------") print("Working on path: ", working_dir) df_events_refueling = get_refuel_events_from_events_csv(working_dir + "events.csv") size_before_filtering = len(df_events_refueling.index) df_events_refueling = df_events_refueling[df_events_refueling.fuel > 0] print('Refuel_Event_Analysis: Ignored ', size_before_filtering - len(df_events_refueling.index), ' events with 0 fuel') print("Total of ", len(df_events_refueling.index), "Refuel Events") # Group by charger x = pd.Series() y =
pd.Series()
pandas.Series
""" Copyright 2022 HSBC Global Asset Management (Deutschland) GmbH Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd import pytest import pyratings as rtg from tests import conftest @pytest.fixture(scope="session") def rtg_inputs_longterm(): return pd.DataFrame( data={ "rtg_sp": ["AAA", "AA-", "AA+", "BB-", "C", np.nan, "BBB+", "AA"], "rtg_moody": ["Aa1", "Aa3", "Aa2", "Ba3", "Ca", np.nan, np.nan, "Aa2"], "rtg_fitch": ["AA-", np.nan, "AA-", "B+", "C", np.nan, np.nan, "AA"], } ) @pytest.fixture(scope="session") def rtg_inputs_shortterm(): return pd.DataFrame( data={ "rtg_sp": ["A-1", "A-3", "A-1+", "D", "B", np.nan, "A-2", "A-3"], "rtg_moody": ["P-2", "NP", "P-1", "NP", "P-3", np.nan, np.nan, "P-3"], "rtg_fitch": ["F1", np.nan, "F1", "F3", "F3", np.nan, np.nan, "F3"], } ) def test_get_best_rating_longterm_with_explicit_rating_provider(rtg_inputs_longterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings( rtg_inputs_longterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="long-term", ) expectations = pd.Series( data=["AAA", "AA-", "AA+", "BB-", "CC", np.nan, "BBB+", "AA"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_best_rating_longterm_with_inferring_rating_provider(rtg_inputs_longterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings(rtg_inputs_longterm, tenor="long-term") expectations = pd.Series( data=["AAA", "AA-", "AA+", "BB-", "CC", np.nan, "BBB+", "AA"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_best_rating_shortterm_with_explicit_rating_provider(rtg_inputs_shortterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings( rtg_inputs_shortterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="short-term", ) expectations = pd.Series( data=["A-1", "A-3", "A-1+", "A-3", "A-3", np.nan, "A-2", "A-3"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_best_rating_shortterm_with_inferring_rating_provider(rtg_inputs_shortterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings(rtg_inputs_shortterm, tenor="short-term") expectations = pd.Series( data=["A-1", "A-3", "A-1+", "A-3", "A-3", np.nan, "A-2", "A-3"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_second_best_rating_longterm_with_explicit_rating_provider( rtg_inputs_longterm, ): """Test computation of second-best ratings on a security (line-by-line) basis.""" actual = rtg.get_second_best_ratings( rtg_inputs_longterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="long-term", ) expectations = pd.Series( data=["AA+", "AA-", "AA", "BB-", "C", np.nan, "BBB+", "AA"], name="second_best_rtg", )
pd.testing.assert_series_equal(actual, expectations)
pandas.testing.assert_series_equal
import math import os import sys import numpy as np import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.figure_factory as ff from cell_defination import * sys.path.insert(1, r'C:\Users\bunny\PycharmProjects\vccf_visualization') import utils.kidney_nuclei_vessel_calculate as my_csv def generate_one_line_df(df, key): line_x = [None] * (len(df) * 2) line_y = [None] * (len(df) * 2) line_z = [None] * (len(df) * 2) line_x[::2] = df[f"n{key}x"] line_y[::2] = df[f"n{key}y"] line_z[::2] = df[f"n{key}z"] line_x[1::2] = df["nx"] line_y[1::2] = df["ny"] line_z[1::2] = df["nz"] l_data = dict() l_data["x"] = line_x l_data["y"] = line_y l_data["z"] = line_z # v_color = ['red'] * len(vessel_x_list) # v_data["color"] = v_color l_df =
pd.DataFrame(l_data)
pandas.DataFrame
import pandas as pd import numpy as np import math from deprecated import deprecated from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error, mean_squared_log_error import os root_path = os.path.dirname(os.path.abspath('__file__')) import sys sys.path.append(root_path) from tools.metrics_ import PPTS from config.globalLog import logger def dump_train_dev_test_to_csv( path, train_y=None, train_pred=None, train_nse=None, train_mse=None, train_nrmse=None, train_mae=None, train_mape=None, train_ppts=None, dev_y=None, dev_pred=None, dev_nse=None, dev_mse=None, dev_nrmse=None, dev_mae=None, dev_mape=None, dev_ppts=None, test_y=None, test_pred=None, test_nse=None, test_mse=None, test_nrmse=None, test_mae=None, test_mape=None, test_ppts=None, time_cost=None, ): """ Dump training and developing records and predictions as well as r square to excel. Args: path: The local disk path to dump data into. train_y: train records with Dataframe type. train_pred: train predictions with numpy array type. train_nse: R square value for training records and predictions, type float. train_nrmse: Normalized root mean square error value for training records and predictions, type float. train_mae: Mean absolute error value for training records and predictions, type float. train_mape: Mean absolute percentage error value for training records and predictions, type float. train_ppts: Peak percentage threshold statistic value for training records and predictions, type float. dev_y: developing records with Dataframe type. dev_pred: developing predictions with numpy array type. dev_nse: R square value for development records and predictions, type float. dev_nrmse: Normalized root mean square error value for development records and predictions, type float. dev_mae: Mean absolute error value for development records and predictions, type float. dev_mape: Mean absolute percentage error value for development records and predictions, type float. dev_ppts: Peak percentage threshold statistic value for development records and predictions, type float. test_y: testing records with Dataframe type. test_pred: testing predictions with numpy array type. test_nse: R square value for testing records and predictions, type float. test_nrmse: Normalized root mean square error value for testing records and predictions, type float. test_mae: Mean absolute error value for testing records and predictions, type float. test_mape: Mean absolute percentage error value for testing records and predictions, type float. test_ppts: Peak percentage threshold statistic value for testing records and predictions, type float. time_cost: Time cost for profiling, type float. """ index_train = pd.Index(np.linspace(0, train_y.size-1, train_y.size)) index_dev = pd.Index(np.linspace(0, dev_y.size-1, dev_y.size)) index_test = pd.Index(np.linspace(0, test_y.size-1, test_y.size)) # convert the train_pred numpy array into Dataframe series train_y = pd.DataFrame(list(train_y), index=index_train, columns=['train_y'])['train_y'] train_pred = pd.DataFrame(data=train_pred, index=index_train,columns=['train_pred'])['train_pred'] train_nse = pd.DataFrame([train_nse], columns=['train_nse'])['train_nse'] train_mse = pd.DataFrame([train_mse], columns=['train_mse'])['train_mse'] train_nrmse = pd.DataFrame([train_nrmse], columns=['train_nrmse'])['train_nrmse'] train_mae = pd.DataFrame([train_mae], columns=['train_mae'])['train_mae'] train_mape =
pd.DataFrame([train_mape], columns=['train_mape'])
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import json import logging import random import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler import mct.Constants as Constants import mct.Utilities as Utils from mct.HypothesisTester import chi_square_bias_test class BiasTester(object): """ Perform a bias check between the control and treatment dataframes. """ __group_control = 'group_control' __group_treatment = 'group_treatment' __index_group = 'index_group' __rf_propensity_scores = 'rf_propensity_scores' def __init__(self, config: json): self.config = config self.__logger = logging.getLogger("mct") return def check_bias(self, control_df: pd.DataFrame, treatment_df: pd.DataFrame) -> \ (pd.DataFrame, pd.DataFrame, pd.DataFrame, bool): """ # Compares the destruction of invariant features separately and flag any stat sig # difference that satisfies the given minimum percentage deviation threshold :param control_df: control dataframe :param treatment_df: treatment dataframe :return: """ self.__logger.debug('Checking for Population Bias') invariant_features = self.config[Constants.invariant_columns] p_value_threshold = self.config[Constants.p_value_threshold] percentage_deviation_threshold = self.config[Constants.resample_threshold] small_bin_percent_threshold = self.config[Constants.small_bin_percent_threshold] bias_results, deviation, is_biased = chi_square_bias_test(control_df[invariant_features], treatment_df[invariant_features], groups=[Constants.control_group, Constants.treatment_group], group_column_name=Constants.group_column_name, other_threshold=small_bin_percent_threshold, p_value=0.01) bias_results[Constants.num_of_bins] = bias_results[Constants.degree_of_freedom] + 1 bias_results[Constants.resample] = 'no' bias_results.loc[(bias_results[Constants.percentage_deviation] > percentage_deviation_threshold) & (bias_results[Constants.p_value_threshold] < p_value_threshold), Constants.resample] = 'yes' # Sort and round Bias results bias_results = bias_results.sort_values(by=Constants.percentage_deviation, ascending=False) bias_results.sort_values(by=[Constants.percentage_deviation, Constants.feature], ascending=False, inplace=True) is_biased = is_biased and (bias_results[Constants.resample] == 'yes').any() self.__logger.info("Is Data biased: {0}".format(is_biased)) # Sort and round deviations. deviation.sort_values( by=[Constants.feature, Constants.bin_column], ascending=False, inplace=True) return bias_results, deviation, is_biased def normalize_bias(self, control: pd.DataFrame, treatment: pd.DataFrame, bias_results: pd.DataFrame, random_state=None) -> (pd.DataFrame, pd.DataFrame): """ Normalize and correct for the major biases. bias_results - needs to include columns to normalize, and dof """ self.__logger.debug("Bias Normalization: started") Utils.add_group_columns(control, treatment) if self.config[Constants.normalization_type] != 'rf': message = 'Currently only supported normalization type is random forest' self.__logger.error(message) raise Exception(message) if not bias_results.empty: resample_columns = bias_results[Constants.feature] max_categories = bias_results[Constants.num_of_bins] data_splits = [(self.__group_control, control), (self.__group_treatment, treatment)] feature_transforms = [('categorical', x, y) for x, y in zip(resample_columns, max_categories)] self.__logger.info('Using RF propensity scores with caliper based matching.') # Get data after sampling. df_metric = self.__sample_propensity(data_splits, feature_transforms, random_state=random_state) df_control = df_metric[df_metric[Constants.group_column_name] == Constants.control_group] df_treatment = df_metric[df_metric[Constants.group_column_name] == Constants.treatment_group] return df_control, df_treatment else: self.__logger.info("Bias Normalization skipped.") self.__logger.debug("Bias Normalization finished. ") # Transform the input data def __transform(self, input_frame, features): train =
pd.DataFrame(index=input_frame.index)
pandas.DataFrame
import shutil import numpy as np import pandas as pd import logging import time as _time import requests import random from tqdm import tqdm from concurrent import futures from datetime import datetime, date, time from dateutil.relativedelta import relativedelta, FR from opensignals import utils logger = logging.getLogger(__name__) AWS_BASE_URL='https://numerai-signals-public-data.s3-us-west-2.amazonaws.com' SIGNALS_UNIVERSE=f'{AWS_BASE_URL}/latest_universe.csv' SIGNALS_TICKER_MAP=f'{AWS_BASE_URL}/signals_ticker_map_w_bbg.csv' SIGNALS_TARGETS=f'{AWS_BASE_URL}/signals_train_val_bbg.csv' def get_tickers(): ticker_map = pd.read_csv(SIGNALS_TICKER_MAP) ticker_map = ticker_map.dropna(subset=['yahoo']) logger.info(f'Number of eligible tickers: {ticker_map.shape[0]}') if ticker_map['yahoo'].duplicated().any(): raise Exception( f'Found duplicated {ticker_map["yahoo"].duplicated().values().sum()}' ' yahoo tickers' ) if ticker_map['bloomberg_ticker'].duplicated().any(): raise Exception( f'Found duplicated {ticker_map["bloomberg_ticker"].duplicated().values().sum()}' ' bloomberg_ticker tickers' ) return ticker_map def get_ticker_data(db_dir): ticker_data = pd.DataFrame({ 'bloomberg_ticker' : pd.Series([], dtype='str'), 'date' :
pd.Series([], dtype='datetime64[ns]')
pandas.Series
import pytest import logging import datetime import json import pandas as pd from astropy.table import Table from b_to_zooniverse import upload_decals # logging.basicConfig( # format='%(asctime)s %(message)s', # level=logging.DEBUG) @pytest.fixture def calibration_dir(tmpdir): return tmpdir.mkdir('calibration_dir').strpath @pytest.fixture def fits_dir(tmpdir): return tmpdir.mkdir('fits_dir').strpath @pytest.fixture def png_dir(tmpdir): return tmpdir.mkdir('png_dir').strpath @pytest.fixture def fits_loc(fits_dir): return fits_dir + '/' + 'test_image.fits' @pytest.fixture def png_loc(png_dir): return png_dir + '/' + 'test_image.png' @pytest.fixture() def nsa_catalog(): return Table([ {'iauname': 'gal_a', 'ra': 146., 'dec': -1., 'petroth50': 2., 'petroth90': 5.}, # adversarial example identical to gal_a {'iauname': 'gal_dr1', 'ra': 14., 'dec': -1., 'petroth50': 2., 'petroth90': 5.}, {'iauname': 'gal_dr2', 'ra': 1., 'dec': -1., 'petroth50': 2., 'petroth90': 5.} ]) @pytest.fixture() def fake_metadata(): # manifest expects many columns from joint catalog return { 'petrotheta': 4., 'petroflux': [20., 21., 22., 23., 24., 25., 26.], 'nsa_version': '1_0_0', 'z': 0.1, 'mag': [0., 1., 2., 3., 4., 5., 6.], 'absmag': [10., 11., 12., 13., 14., 15., 16.], 'nmgy': [30., 31., 32., 33., 34., 35., 36.], 'another_column': 'sadness'} @pytest.fixture() def joint_catalog(fits_dir, png_dir, fake_metadata): # saved from downloader, which adds fits_loc, png_loc and png_ready to nsa_catalog + decals bricks gal_a = { 'iauname': 'gal_a', 'nsa_id': 0, 'fits_loc': '{}/gal_a.fits'.format(fits_dir), 'png_loc': '{}/gal_a.png'.format(png_dir), 'png_ready': True, 'ra': 146., 'dec': -1., 'petroth50': 2., 'petroth90': 5.} gal_a.update(fake_metadata) gal_dr1 = { 'iauname': 'gal_dr1', 'nsa_id': 1, 'fits_loc': '{}/gal_b.fits'.format(fits_dir), 'png_loc': '{}/gal_b.png'.format(png_dir), 'png_ready': True, 'ra': 14., 'dec': -1., 'petroth50': 2., 'petroth90': 5.} gal_dr1.update(fake_metadata) gal_dr2 = { 'iauname': 'gal_dr2', 'nsa_id': 2, 'fits_loc': '{}/gal_c.fits'.format(fits_dir), 'png_loc': '{}/gal_c.png'.format(png_dir), 'png_ready': True, 'ra': 1., 'dec': -1., 'petroth50': 2., 'petroth90': 5.} gal_dr2.update(fake_metadata) return Table([gal_a, gal_dr1, gal_dr2]) @pytest.fixture() def previous_subjects(): # loaded from GZ data dump. Metadata already corrected in setup (name = main stage). return Table([ # DR1 entries have provided_image_id filled with iau name, nsa_id blank, dr blank {'_id': 'ObjectId(0)', 'zooniverse_id': 'gz_dr1', 'iauname': 'gal_dr1', 'nsa_id': 1, 'dr': 'DR1', 'ra': 14., 'dec': -1., 'petroth50': 2., 'petroth90': 5. }, # DR2 entries have provided_image_id blank, nsa_id filled with NSA_[number], dr filled with 'DR2' {'_id': 'ObjectId(1)', 'zooniverse_id': 'gz_dr2', 'iauname': 'gal_dr2', 'nsa_id': 2, 'dr': 'DR2', 'ra': 1., 'dec': -1., 'petroth50': 2., 'petroth90': 5. } ]) @pytest.fixture() def expert_catalog(): return Table([ { # gal a is both a bar and ring galaxy, and so should be included in the calibration set 'iauname': 'gz_a', 'ra': 146., 'dec': -1., 'bar': 2 ** 5, 'ring': 2 ** 3, } ]) # # def test_upload_decals_to_panoptes(joint_catalog, previous_subjects, expert_catalog, calibration_dir): # # TODO mock the uploader here # main_subjects, calibration_subjects = upload_decals_to_panoptes( # joint_catalog, previous_subjects, expert_catalog, calibration_dir) # # print(main_subjects) # print(calibration_subjects) # # assert len(main_subjects) == 1 # assert len(calibration_subjects) == len(main_subjects) * 2 # # first_main_subject = main_subjects[0] # assert first_main_subject['png_loc'][-17:] == 'png_dir/gal_a.png' # assert first_main_subject['key_data']['ra'] == 146.0 # assert first_main_subject['key_data']['dec'] == -1. # assert first_main_subject['key_data']['nsa_id'] == 0 # assert first_main_subject['key_data']['petroth50'] == 2.0 # assert first_main_subject['key_data']['mag_abs_r'] == 14.0 # TODO better unit tests for calibration image manifest # wrong, should have 1 of each version not two # assert calibration_subjects[0]['png_loc'][-29:] == 'calibration_dir/gal_a_dr2.png' # assert calibration_subjects[0]['key_data']['selected_image'] == 'dr2_png_loc' # assert calibration_subjects[1]['png_loc'][-32:] == 'calibration_dir/gal_a_colour.png' @pytest.fixture() def subject_extract(): return pd.DataFrame([ { 'subject_id': 'classified', # gal_dr2 should be removed from joint catalog - has been uploaded/classified 'workflow_id': '6122', 'metadata': json.dumps({ # read by subject loader 'ra': 1., # in joint catalog as 'gal_a' 'dec': -1, 'locations': json.dumps({'0': 'url.png'}) # expected by subject loader. Value is itself a json. }) }, { 'subject_id': 'used_twice', 'workflow_id': '6122', 'metadata': json.dumps({ 'ra': 146., # should still exclude gal_a 'dec': -1, 'locations': json.dumps({'0': 'url.png'}) }) }, { 'subject_id': 'used_twice', 'workflow_id': '9999', # duplicate subject due to being attached to another workflow 'metadata': json.dumps({ 'ra': 146., # should still exclude gal_a 'dec': -1, 'locations': json.dumps({'0': 'url.png'}) }) }, { 'subject_id': 'different_workflow', 'workflow_id': '9999', 'metadata': json.dumps({ 'ra': 14., # should NOT exclude gal_dr1, classified elsewhere 'dec': -1, 'locations': json.dumps({'0': 'url.png'}) }) }, { 'subject_id': 'early', 'workflow_id': '6122', 'metadata': json.dumps({ 'ra': 146., # should NOT exclude gal_dr1, classified early 'dec': -1, 'locations': json.dumps({'0': 'url.png'}) }) }, ]) @pytest.fixture() def classification_extract(): # note: subject_ids, with an s, from Panoptes return pd.DataFrame([ { 'subject_ids': 'classified', 'created_at': '2018-01-01', # should ensure gal_dr2 is removed for being classified 'workflow_id': '6122' }, { 'subject_ids': 'used_twice', 'created_at': pd.to_datetime('2018-01-01'), # is already datetime, should not throw error 'workflow_id': '6122' }, { 'subject_ids': 'used_twice', # should still exclude gal_dr2 even though used twice 'created_at':
pd.to_datetime('2018-01-01')
pandas.to_datetime
import sklearn.linear_model import sklearn.preprocessing import sklearn.metrics import pandas as pd import numpy as np import dataset_categories import mushroom_classifier """ This class is used for reliable classification results, running the main method or using the high level functions of mushroom_classifier.py for classification produces flawed results. The bugs will be fixed in a later version. """ if __name__ == "__main__": # import and data and asign to variables data_primary = pd.read_csv(dataset_categories.FILE_PATH_PRIMARY_EDITED, header=0, sep=';') data_secondary =
pd.read_csv(dataset_categories.FILE_PATH_SECONDARY_NO_MISS, header=0, sep=';')
pandas.read_csv
import warnings import cvxpy as cp import numpy as np import numpy.linalg as la import pandas as pd import scipy.stats as st from _solver_fast import _cd_solver from linearmodels.iv import IV2SLS, compare from patsy import dmatrices from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin from sklearn.utils.validation import ( check_array, check_is_fitted, check_random_state, check_X_y, ) from statsmodels.api import add_constant class Rlasso(BaseEstimator, RegressorMixin): """ Rigorous Lasso and Sqrt-Lasso estimator with theoretically motivated and data-driven penalty level. Parameters ---------- post: bool, default=True If True, post-lasso is used to estimate betas, meaning that features selected by rlasso are estimated by OLS in the final model, as outlined in [2]_. sqrt: bool, default=False If True, square-root lasso criterion is minimized is minimized instead of normal lasso. See [1]_ and notes below for details. fit_intercept: bool, default=True If True, an unpenalized intercept is estimated by mean centering the data prior to estimation. cov_type: str, default="nonrobust" Type of covariance matrix. Right now the supported types are: "nonrobust", "robust". x_dependent: bool, default=False If True, the alternative and less conservative lambda is estimated by simulation using the conditional distribution of the design matrix. n_sim: int, default=5000 Number of simulations to be performed for x-dependent lambda calculation. random_state: int, default=None Random seed used for simulations if `x_dependent` is set to `True`. lasso_psi: bool, default=False By default post-lasso is the default method for obtaining residuals in the prestd: bool, default=False If True, the data is prestandardized instead of on the fly by penalty loadings. Currently only supports homoscedastic case. n_corr: int, default=5 Number of most correlated variables to be used in the for initial calculation of the residuals. c: float, default=1.1 Slack parameter used in the lambda calculation. From [3]_ "c needs to be greater than 1 for the regularization event to hold asymptotically, but not too high as the shrinkage bias is increasing in c." gamma: float, optional=None Regularization parameter, where the probability of selecting the correct model is given by 1-gamma. If not specified, the the value is set to: 0.1 / np.log(n) max_iter: int, default=2 Maximum number of iterations to perform in the iterative estimation procedure to obtain the Rlasso estimates. conv_tol: float, default=1e-4 Tolerance for the convergence of the iterative estimation procedure. solver: str, default="cd" Solver to be used for the iterative estimation procedure. Alternatives are: "cd" - coordinate descent method. "cvxpy" - cvxpy solver. cd_max_iter: int, default=10000 Maximum number of iterations to be perform by the coordinate descent algorithm before stopping. cd_tol: float, default=1e-10 Convergence tolerance for the coordinate descent algorithm. cvxpy_opts: dict, default=None Additional options to be passed to the cvxpy solver. See cvxpy documentation for more details: https://www.cvxpy.org/tutorial/advanced/index.html#solve-method-options zero_tol: float, default=1e-4 Tolerance for the rounding of estimated coefficients to zero. Attributes ---------- coef_: numpy.array, shape (n_features,) Estimated coefficients. intercept_: float Estimated intercept. lambd_: float Estimated lambda/overall penalty level. psi_: numpy.array, shape (n_features, n_features) Estimated penalty loadings. n_iter_: int Number of iterations performed by the rlasso algorithm. n_features_in_: int Number of features in the input data. n_samples_: int Number of samples/observations in the input data. feature_names_in_: str Feature names of ``X``. Only stored if the input data is of type ``pd.DataFrame``. Notes ----- Rlasso minimizes the following loss function: .. math:: \widehat{\\beta} = \\arg \min \\frac{1}{n} \lVert y_i - x_i'\\beta \\rVert_2^2 +\\frac{\lambda}{n} \sum^p_{j=1}\psi_j|\\beta_j| Or in the case of square-root lasso when ``sqrt=True``: .. math:: \widehat{\\beta} = \\arg \min \\frac{1}{\sqrt{n}} \lVert y_i - x_i'\\beta \\rVert_2 + \\frac{\lambda}{n} \sum^p_{j=1}\psi_j|\\beta_j| Where :math:`\psi_{j}` are regressor specific penalty loadings and :math:`\lambda` is the overall penalty level. For an introduction to the rigorous lasso algorithm to estimate the penalty loadings and the overall penalty level see [3]_ and [4]_. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2011). Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 98(4), 791-806. .. [2] <NAME>., & <NAME>. (2013). Least squares after model selection in high-dimensional sparse models. Bernoulli, 19(2), 521-547. .. [3] <NAME>., <NAME>., & <NAME>. (2020). lassopack: Model selection and prediction with regularized regression in Stata. The Stata Journal, 20(1), 176-235. .. [4] <NAME>., <NAME>., & <NAME>. (2016). hdm: High-dimensional metrics. arXiv preprint arXiv:1608.00354. Examples -------- >>> import numpy as np >>> from rlasso import Rlasso >>> X = np.random.randn(100, 5) >>> y = np.random.randn(100) >>> rlasso = Rlasso() >>> rlasso.fit(X, y) """ def __init__( self, *, post=True, sqrt=False, fit_intercept=True, cov_type="nonrobust", x_dependent=False, random_state=None, lasso_psi=False, prestd=False, n_corr=5, max_iter=2, conv_tol=1e-4, n_sim=5000, c=1.1, gamma=None, solver="cd", cd_max_iter=1000, cd_tol=1e-10, cvxpy_opts=None, zero_tol=1e-4, ): self.post = post self.sqrt = sqrt self.fit_intercept = fit_intercept self.cov_type = cov_type self.x_dependent = x_dependent self.random_state = random_state self.lasso_psi = lasso_psi self.prestd = prestd self.n_corr = n_corr self.max_iter = max_iter self.conv_tol = conv_tol self.n_sim = n_sim self.c = c self.gamma = gamma self.solver = solver self.cd_max_iter = cd_max_iter self.cd_tol = cd_tol self.zero_tol = zero_tol self.cvxpy_opts = cvxpy_opts def _psi_calc(self, X, n, v=None): """Calculate the penalty loadings.""" # TODO Implement cluster robust covariance # if prestandardized X, set loadings to ones if self.prestd: psi = np.ones(self.n_features_in_) # sqrt case elif self.sqrt: if self.cov_type == "nonrobust": psi = np.sqrt(np.mean(X**2, axis=0)) # heteroscedastic robust case elif self.cov_type == "robust" and v is not None: Xv2 = np.einsum("ij, i -> j", X**2, v**2) psi_1 = np.sqrt(np.mean(X**2, axis=0)) psi_2 = np.sqrt(Xv2 / np.sum(v**2)) psi = np.maximum(psi_1, psi_2) # clustered else: raise NotImplementedError("Cluster robust loadings not implemented") elif self.cov_type == "nonrobust": psi = np.sqrt(np.mean(X**2, axis=0)) elif self.cov_type == "robust" and v is not None: Xe2 = np.einsum("ij, i -> j", X**2, v**2) psi = np.sqrt(Xe2 / n) else: raise NotImplementedError("Cluster robust loadings not implemented") if self.nopen_idx_: psi[self.nopen_idx_] = 0.0 return psi def _lambd_calc( self, n, p, X, *, v=None, s1=None, psi=None, ): # sourcery skip: remove-redundant-if """Calculate the lambda/overall penalty level.""" # TODO Always return both lambda and lambda scaled by RMSE # for the purpose of comparison between specifications. # TODO: Implement cluster robust case # empirical gamma if not provided gamma = self.gamma or 0.1 / np.log(n) if psi is not None: psi = np.diag(psi) if self.sqrt: lf = self.c # x-independent (same for robust and nonrobust) if not self.x_dependent: prob = st.norm.ppf(1 - (gamma / (2 * p))) lambd = lf * np.sqrt(n) * prob elif self.cov_type == "nonrobust": Xpsi = X @ la.inv(psi) sims = np.empty(self.n_sim) for r in range(self.n_sim): g = self.random_state_.normal(size=(n, 1)) sg = np.mean(g**2) sims[r] = sg * np.max(np.abs(np.sum(Xpsi * g, axis=0))) lambd = lf * np.quantile(sims, 1 - gamma) elif self.cov_type == "robust": Xpsi = X @ la.inv(psi) sims = np.empty(self.n_sim) for r in range(self.n_sim): g = self.random_state_.normal(size=(n, 1)) sg = np.mean(g**2) sims[r] = sg * np.max(np.abs(np.sum(Xpsi * v[:, None] * g, axis=0))) lambd = lf * np.quantile(sims, 1 - gamma) else: raise NotImplementedError("Cluster robust penalty not implemented") else: lf = 2 * self.c # homoscedasticity and x-independent case if self.cov_type == "nonrobust" and not self.x_dependent: assert s1 is not None proba = st.norm.ppf(1 - (gamma / (2 * p))) # homoscedastic/non-robust case lambd = lf * s1 * np.sqrt(n) * proba elif self.cov_type == "nonrobust" and self.x_dependent: assert psi is not None sims = np.empty(self.n_sim) Xpsi = X @ la.inv(psi) for r in range(self.n_sim): g = self.random_state_.normal(size=(n, 1)) sims[r] = np.max(np.abs(np.sum(Xpsi * g, axis=0))) lambd = lf * s1 * np.quantile(sims, 1 - gamma) # heteroscedastic/cluster robust and x-independent case elif self.cov_type in ("robust", "cluster") and not self.x_dependent: proba = st.norm.ppf(1 - (gamma / (2 * p))) lambd = lf * np.sqrt(n) * proba # heteroscedastic/cluster robust and x-dependent case elif self.cov_type == "robust" and self.x_dependent: sims = np.empty(self.n_sim) Xpsi = X @ la.inv(psi) for r in range(self.n_sim): g = self.random_state_.normal(size=(n, 1)) sims[r] = np.max(np.abs(np.sum(Xpsi * v[:, None] * g, axis=0))) lambd = lf * np.quantile(sims, 1 - gamma) # heteroscedastic/cluster robust and x-dependent case else: raise NotImplementedError("Cluster robust penalty not implemented") return lambd def _cvxpy_solver( self, X, y, lambd, psi, n, p, ): """ Solve the lasso problem using cvxpy """ beta = cp.Variable(p) if self.sqrt: loss = cp.norm2(y - X @ beta) / cp.sqrt(n) else: loss = cp.sum_squares(y - X @ beta) / n reg = (lambd / n) * cp.norm1(np.diag(psi) @ beta) objective = cp.Minimize(loss + reg) prob = cp.Problem(objective) prob.solve(**self.cvxpy_opts or {}) # round beta to zero if below threshold beta = beta.value beta[np.abs(beta) < self.zero_tol] = 0.0 return beta def _OLS(self, X, y): """ Solve the OLS problem """ # add dim if X is 1-d if X.ndim == 1: X = X[:, None] try: return la.solve(X.T @ X, X.T @ y) except la.LinAlgError: warnings.warn("Singular matrix encountered. invoking lstsq solver for OLS") return la.lstsq(X, y, rcond=None)[0] def _post_lasso(self, beta, X, y): """Replace the non-zero lasso coefficients by OLS.""" nonzero_idx = np.where(beta != 0)[0] X_sub = X[:, nonzero_idx] post_beta = self._OLS(X_sub, y) beta[nonzero_idx] = post_beta return beta def _starting_values(self, XX, Xy, lambd, psi): """Calculate starting values for the lasso.""" if self.sqrt: return la.solve(XX + lambd * np.diag(psi**2), Xy) else: return la.solve(XX * 2 + lambd * np.diag(psi**2), Xy * 2) def _fit(self, X, y, *, nopen_idx=None): """Helper function to fit the model.""" if self.max_iter < 0: raise ValueError("`max_iter` cannot be negative") if self.cov_type not in ("nonrobust", "robust"): raise ValueError("cov_type must be one of 'nonrobust', 'robust'") if self.solver not in ("cd", "cvxpy"): raise ValueError("solver must be one of 'cd', 'cvxpy'") if self.c < 1: warnings.warn( "c should be greater than 1 for the regularization" " event to hold asymptotically" ) if self.prestd and self.cov_type in ("robust", "cluster"): warnings.warn( "prestd is not implemented for robust penalty. " "Data is assumed to be homoscedastic." ) if nopen_idx is not None and not isinstance(nopen_idx, (list, np.ndarray)): raise ValueError("nopen_idx must be a list or numpy array") X, y = check_X_y(X, y, accept_sparse=False, ensure_min_samples=2) self.nopen_idx_ = nopen_idx p = self.n_features_in_ = X.shape[1] n = X.shape[0] # check random state self.random_state_ = check_random_state(self.random_state) # intercept and pre-standardization handling if self.fit_intercept or self.prestd: X_mean, y_mean = np.mean(X, axis=0), np.mean(y) X, y = X - X_mean, y - y_mean if self.prestd: X_std, y_std = np.std(X, axis=0), np.std(y) X, y = X / X_std, y / y_std # pre-allocate arrays for coordinate descent solver if self.solver == "cd": # precompute XX and Xy crossprods XX = X.T @ X Xy = X.T @ y # make matrices fortran contiguous XX = np.asfortranarray(XX, dtype=np.float64) X = np.asfortranarray(X, dtype=np.float64) Xy = np.asfortranarray(Xy, dtype=np.float64) y = np.asfortranarray(y, dtype=np.float64) # sqrt used under homoscedastic is one-step estimator if self.sqrt and self.cov_type == "nonrobust" and not self.x_dependent: psi = self._psi_calc(X, n) lambd = self._lambd_calc(n=n, p=p, X=X) if self.solver == "cd": beta_ridge = self._starting_values(XX, Xy, lambd, psi) beta = _cd_solver( X=X, y=y, XX=XX, Xy=Xy, lambd=lambd, psi=psi, starting_values=beta_ridge, sqrt=self.sqrt, fit_intercept=self.fit_intercept, max_iter=self.cd_max_iter, opt_tol=self.cd_tol, zero_tol=self.zero_tol, ) else: beta = self._cvxpy_solver( X=X, y=y, lambd=lambd, psi=psi, n=n, p=p, ) if self.post: beta = self._post_lasso(beta, X, y) # rescale beta if self.prestd: beta *= y_std / X_std self.intercept_ = y_mean - X_mean @ beta if self.fit_intercept else 0.0 self.nonzero_idx_ = np.where(beta != 0)[0] self.coef_ = beta self.n_iter_ = 1 self.lambd_ = lambd self.psi_ = psi return # calculate error based on initial # highly correlated vars r = np.empty(p) for k in range(p): r[k] = np.abs(st.pearsonr(X[:, k], y)[0]) X_top = X[:, np.argsort(r)[-self.n_corr :]] beta0 = self._OLS(X_top, y) v = y - X_top @ beta0 s1 = np.sqrt(np.mean(v**2)) psi = self._psi_calc(X=X, v=v, n=n) lambd = self._lambd_calc( n=n, p=p, v=v, s1=s1, X=X, psi=psi, ) # get initial estimates k=0 if self.solver == "cd": beta_ridge = self._starting_values(XX, Xy, lambd, psi) beta = _cd_solver( X=X, y=y, XX=XX, Xy=Xy, lambd=lambd, psi=psi, starting_values=beta_ridge, sqrt=self.sqrt, fit_intercept=self.fit_intercept, max_iter=self.cd_max_iter, opt_tol=self.cd_tol, zero_tol=self.zero_tol, ) else: beta = self._cvxpy_solver( X=X, y=y, lambd=lambd, psi=psi, n=n, p=p, ) for k in range(self.max_iter): s0 = s1 # post lasso handling if not self.lasso_psi: beta = self._post_lasso(beta, X, y) # error refinement v = y - X @ beta s1 = np.sqrt(np.mean(v**2)) # if convergence not reached get new estimates of lambd and psi psi = self._psi_calc(X=X, v=v, n=n) lambd = self._lambd_calc( n=n, p=p, v=v, s1=s1, X=X, psi=psi, ) if self.solver == "cd": beta = _cd_solver( X=X, y=y, XX=XX, Xy=Xy, lambd=lambd, psi=psi, starting_values=beta_ridge, sqrt=self.sqrt, fit_intercept=self.fit_intercept, max_iter=self.cd_max_iter, opt_tol=self.cd_tol, zero_tol=self.zero_tol, ) else: beta = self._cvxpy_solver( X=X, y=y, lambd=lambd, psi=psi, n=n, p=p, ) # check convergence if np.abs(s1 - s0) < self.conv_tol: break # end of algorithm if self.post and not self.lasso_psi: beta = self._post_lasso(beta, X, y) # rescale beta if standardized if self.prestd: beta *= y_std / X_std self.intercept_ = y_mean - X_mean @ beta if self.fit_intercept else 0.0 self.nonzero_idx_ = np.where(beta != 0)[0] self.coef_ = beta self.n_iter_ = k + 1 if self.max_iter > 0 else 1 self.lambd_ = lambd self.psi_ = psi def fit(self, X, y, *, nopen_idx=None): """ Fit the model to the data. parameters ---------- X: array-like, shape (n_samples, n_features) Design matrix. y: array-like, shape (n_samples,) Target vector. returns ------- self: object Returns self. """ # store feature names if dataset is pandas if isinstance(X, pd.DataFrame): self.feature_names_ = X.columns self._fit(X, y, nopen_idx=nopen_idx) # sklearn estimator must return self return self def fit_formula(self, formula, data): """ Fit the the model to the data using fomula language. Parameters ---------- formula: str Formula to fit the model. Ex: "y ~ x1 + x2 + x3" data: Union[pandas.DataFrame, numpy.recarray, dict] Dataset to fit the model. Returns ------- self: object Returns self. """ y, X = dmatrices(formula, data) self.feature_names_in_ = X.design_info.column_names X, y = np.asarray(X), np.asarray(y) y = y.flatten() # check if intercept is in data if "Intercept" in self.feature_names_in_: if not self.fit_intercept: raise ValueError( ( "Intercept is in data but fit_intercept is False." " Set fit_intercept to True to fit intercept or" " update the formula to remove the intercept" ) ) # drop column of ones from X # since intercept calculated in _fit # by partialing out X = X[:, 1:] self._fit(X, y) # sklearn estimator must return self return self def predict(self, X): """ Use fitted model to predict on new data. Parameters ---------- X: array-like, shape (n_samples, n_features) Design matrix. returns ------- y_pred: array-like, shape (n_samples,) Predicted target values. """ # check if fitted check_is_fitted(self) X = check_array(X) return self.intercept_ + X @ self.coef_ class RlassoLogit(BaseEstimator, ClassifierMixin): def __init__( self, post=True, fit_intercept=True, c=1.1, gamma=0.05, zero_tol=1e-4, solver_opts=None, ): """Rigorous Lasso Logistic Regression.""" self.post = post self.fit_intercept = fit_intercept self.c = c self.gamma = gamma self.zero_tol = zero_tol self.solver_opts = solver_opts def _criterion_function(self, X, y, beta, lambd, n, regularization=True): """Criterion function for the penalized Lasso Logistic Regression.""" ll = cp.sum(cp.multiply(y, X @ beta) - cp.logistic(X @ beta)) / n if not regularization: return -ll reg = (lambd / n) * cp.norm1(beta) return -(ll - reg) def _cvxpy_solve(self, X, y, lambd, n, p): """Solve the problem using cvxpy.""" beta = cp.Variable(p) obj = cp.Minimize(self._criterion_function(X, y, beta, lambd, n)) prob = cp.Problem(obj) # solve problem and return beta prob.solve(**self.solver_opts or {}) beta = beta.value beta[np.abs(beta) < self.zero_tol] = 0.0 return beta def _decision_function(self, X, beta): """Compute the decision function of the model.""" return 1 / (1 + np.exp(-X @ beta)) def _lambd_calc(self, n, p): lambd0 = (self.c / 2) * np.sqrt(n) * st.norm.ppf(1 - self.gamma / (2 * p)) lambd = lambd0 / (2 * n) return lambd0, lambd def _fit(self, X, y, *, gamma=None): n, p = X.shape if gamma is None: gamma = 0.1 / np.log(n) lambd0, lambd = self._lambd_calc(n, p) beta = self._cvxpy_solve(X, y, lambd, n, p) return {"beta": beta, "lambd0": lambd0, "lambd": lambd} def fit(self, X, y, *, gamma=None): """Fit the model to the data. parameters ---------- X: array-like, shape (n_samples, n_features) Design matrix. y: array-like, shape (n_samples,) Target vector. gamma: float, optional (default: 0.1 / np.log(n_samples)) returns ------- self: object Returns self. """ # check inputs X, y = check_X_y(X, y, accept_sparse=True, ensure_2d=True) # assert y is binary if np.unique(y).shape[0] != 2: raise ValueError("y must be binary") res = self._fit(X, y, gamma=gamma) self.coef_ = res["beta"] self.lambd0_ = res["lambd0"] self.lambd_ = res["lambd"] return self def predict(self, X): """Predict the class labels for X.""" # check model is fitted and inputs are correct check_is_fitted(self, ["coef_"]) X = check_array(X) probas = self._decision_function(X, self.coef_) return np.where(probas > 0.5, 1, 0) def predict_proba(self, X): """Predict class probabilities for X.""" # check model is fitted and inputs are correct check_is_fitted(self) X = check_array(X) return self._decision_function(X, self.coef_) def predict_log_proba(self, X): """Predict class log-probabilities for X.""" return np.log(self._decision_function(X, self.coef_)) class RlassoIV: """ Rigorous Lasso for instrumental-variable estimation in the presence of high-dimensional instruments and/or controls. Uses the post-double-selection (PDS) and post-regularization (CHS) methods for estimation, see references below. Parameters ---------- select_X: bool, optional (default: True) Whether to use lasso/post-lasso for feature selection of high-dim controls. select_Z: bool, optional (default: True) Whether to use lasso/post-lasso for feature selection of high-dim instruments. post: bool, default=True If True, post-lasso is used to estimate betas, meaning that features selected by rlasso are estimated by OLS in the final model, as outlined in [2]_. sqrt: bool, default=False If True, square-root lasso criterion is minimized is minimized instead of normal lasso. See [1]_ and notes below for details. fit_intercept: bool, default=True If True, an unpenalized intercept is estimated by mean centering the data prior to estimation. cov_type: str, default="nonrobust" Type of covariance matrix. Right now the supported types are: "nonrobust", "robust". x_dependent: bool, default=False If True, the alternative and less conservative lambda is estimated by simulation using the conditional distribution of the design matrix. n_sim: int, default=5000 Number of simulations to be performed for x-dependent lambda calculation. random_state: int, default=None Random seed used for simulations if `x_dependent` is set to `True`. lasso_psi: bool, default=False By default post-lasso is the default method for obtaining residuals in the prestd: bool, default=False If True, the data is prestandardized instead of on the fly by penalty loadings. Currently only supports homoscedastic case. n_corr: int, default=5 Number of most correlated variables to be used in the for initial calculation of the residuals. c: float, default=1.1 Slack parameter used in the lambda calculation. From [3]_ "c needs to be greater than 1 for the regularization event to hold asymptotically, but not too high as the shrinkage bias is increasing in c." gamma: float, optional=None Regularization parameter, where the probability of selecting the correct model is given by 1-gamma. If not specified, the the value is set to: 0.1 / np.log(n) max_iter: int, default=2 Maximum number of iterations to perform in the iterative estimation procedure to obtain the Rlasso estimates. conv_tol: float, default=1e-4 Tolerance for the convergence of the iterative estimation procedure. solver: str, default="cd" Solver to be used for the iterative estimation procedure. Alternatives are: "cd" - coordinate descent method. "cvxpy" - cvxpy solver. cd_max_iter: int, default=10000 Maximum number of iterations to be perform by the coordinate descent algorithm before stopping. cd_tol: float, default=1e-10 Convergence tolerance for the coordinate descent algorithm. cvxpy_opts: dict, default=None Additional options to be passed to the cvxpy solver. See cvxpy documentation for more details: https://www.cvxpy.org/tutorial/advanced/index.html#solve-method-options zero_tol: float, default=1e-4 Tolerance for the rounding of estimated coefficients to zero. Attributes ---------- results_: dict["PDS", "CHS"] Dictionary containing the 2-stage-least-squares estimates. Values are `linearmodels.iv.IV2SLS` objects. See: https://bashtage.github.io/linearmodels/iv/iv/linearmodels.iv.model.IV2SLS.html https://bashtage.github.io/linearmodels/iv/examples/basic-examples.html X_selected_: dict[list[str]] List of selected controls for each stage in the estimation. Z_selected_: list[str] List of selected instruments. valid_vars_: list[str] List of variables for which standard errors and test statistics are valid. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2015). Post-selection and post-regularization inference in linear models with many controls and instruments. American Economic Review, 105(5), 486-90. .. [2] <NAME>., <NAME>., & <NAME>. (2014). Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies, 81(2), 608-650. .. [3] <NAME>., <NAME>., & <NAME>. (2019). PDSLASSO: Stata module for post-selection and post-regularization OLS or IV estimation and inference. Notes ----- ``RlassoIV`` is used when one wants to use instruments in order to estimate low-dimensional endogenous variables in the setting .. math:: y_{i}=\\alpha d_{i}+x_{i}^{\prime} \\beta+\\varepsilon_{i} .. math:: d_{i}=x_{i}^{\prime} \gamma+z_{i}^{\prime} \delta+u_{i} where :math:`d_{i}` is endogonous and `both instruments $z_i$ and and controls $x_i$ are possibily high-dimensional. Examples -------- >>> import numpy as np >>> from rlassomodels import RlassoIV >>> X = np.random.randn(100, 20) >>> Z = np.random.randn(100, 15) >>> d_endog = np.random.randn(100) >>> y = np.random.randn(100) >>> # Fit the model, use rlasso to select both controls and instruments >>> rlasso_iv = RlassoIV(select_X=True, select_Z=True) >>> rlasso_iv.fit(X, y, D_exog = None, D_endog=d_endog, Z=Z) """ def __init__( self, *, select_X=True, select_Z=True, post=True, sqrt=False, fit_intercept=True, cov_type="nonrobust", x_dependent=False, random_state=None, lasso_psi=False, prestd=False, n_corr=5, max_iter=2, conv_tol=1e-4, n_sim=5000, c=1.1, gamma=None, solver="cd", cd_max_iter=1000, cd_tol=1e-10, cvxpy_opts=None, zero_tol=1e-4, ): self.select_X = select_X self.select_Z = select_Z self.post = post self.sqrt = sqrt self.fit_intercept = fit_intercept self.cov_type = cov_type self.x_dependent = x_dependent self.random_state = random_state self.lasso_psi = lasso_psi self.prestd = prestd self.n_corr = n_corr self.n_sim = n_sim self.c = c self.gamma = gamma self.max_iter = max_iter self.conv_tol = conv_tol self.solver = solver self.cd_max_iter = cd_max_iter self.cd_tol = cd_tol self.zero_tol = zero_tol self.cvxpy_opts = cvxpy_opts self.rlasso = Rlasso( post=post, sqrt=sqrt, fit_intercept=fit_intercept, cov_type=cov_type, x_dependent=x_dependent, random_state=random_state, lasso_psi=lasso_psi, prestd=prestd, n_corr=n_corr, n_sim=n_sim, c=c, gamma=gamma, max_iter=max_iter, conv_tol=conv_tol, solver=solver, cd_max_iter=cd_max_iter, cd_tol=cd_tol, cvxpy_opts=cvxpy_opts, ) def _check_inputs(self, X, y, D_exog, D_endog, Z): """ Checks inputs before passed to fit. For now, data is converted to pd.DataFrame's as it simplifices keeping track of nonzero indices and varnames significantly. """ def _check_single(var, name): if var is None: return if isinstance(var, pd.DataFrame): return var if isinstance(var, np.ndarray): var = pd.DataFrame(var) var.columns = [f"{name}{i}" for i in range(var.shape[1])] return var elif isinstance(var, pd.core.series.Series): return (
pd.DataFrame(var)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected =
tm.box_expected(expected, xbox)
pandas._testing.box_expected
from glob import glob from PIL import Image import pickle as pkl import os import configargparse import configparser import torch import numpy as np import argparse import sys import matplotlib.pyplot as plt import yaml from munch import munchify import json import PIL from parse import parse import collections import random from PIL import ImageOps def create_dir_if_doesnt_exist(dir_path): """ This function creates a dictionary if it doesnt exist. :param dir_path: string, dictionary path """ if not os.path.exists(dir_path): os.makedirs(dir_path) return def crop_and_save_single(img,crop_height,crop_width,image_save_dir,name,with_label=False): """ crop and save single image to an equal sized sub images :param img: numpy array of the image :param crop_height: int, height of cropped image :param crop_width: int, width of cropped image :param image_save_dir: string, path to directory :param name: string, name of image to be saved :param with_label: bool, if image array includes a mask channel """ assert np.mod(img.shape[0], crop_height) == 0 assert np.mod(img.shape[1], crop_width) == 0 num_row = img.shape[0] #// crop_height num_col = img.shape[1] #// crop_width crop_img = np.zeros((crop_height, crop_width, 4)) for row in range(0,num_row,crop_height): for col in range(0,num_col,crop_width): # print("row:{}, row+crop height:{}, j: {}, row+cropwidth:{}".format(row,row+crop_height,col,col+crop_width)) crop_img = img[row:row+crop_height, col:col+crop_width, :] # out_name = img_name[:-4] + '_' + \ out_name = name + '_' + \ str(num_col) + '_' + str(row).zfill(2) + \ '_' + str(col).zfill(2)+'.png' # if with_label: # label_name = "/"+str(index) + "_" + date_time + "_label" # crop_3_ch = crop_img[:,:,:3] # if cropping a labeled image # crop_label = crop_img[:,:,-1] # if cropping a labeled image # PIL_crop_label = Image.fromarray(crop_label.astype(np.uint8)) # # PIL_crop_label.save(save_dir[1]+"_label_"+out_name) # if cropping a labeled image PIL_crop = Image.fromarray(crop_img[:,:,:3].astype(np.uint8)) # if with_label: # # return PIL_crop,PIL_crop_label # # return PIL_crop PIL_crop.save(image_save_dir+"/"+out_name) def get_date_from_metadata(img): extracted_exif = {PIL.ExifTags.TAGS[k]: v for k,v in img._getexif().items() if k in PIL.ExifTags.TAGS} date_time = extracted_exif['DateTime'] date_time = date_time.split(" ")[0].replace(":","_") return date_time def t2n(x): x = x.cpu().detach().numpy() return x def mat_to_csv(mat_path,save_to): import scipy.io import pandas as pd mat = scipy.io.loadmat(mat_path) mat = {k:v for k,v in mat.items() if k[0]!='_'} data = pd.DataFrame({k:
pd.Series(v[0])
pandas.Series
import gzip import itertools as IT import logging import os import random from functools import partial, wraps from pathlib import Path import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from tqdm import tqdm DEFAULT_CHUNK_SIZE = 8_192 def init(): print("Using DaskLike") def from_sequence(iter_, *args, **kwargs): return DaskLike(iter_) def dasklike_iter(fxn): @wraps(fxn) def _(*args, **kwargs): return from_sequence(fxn(*args, **kwargs)) return _ def chunk_stream(stream, chunk_size=DEFAULT_CHUNK_SIZE): while True: data = list(IT.islice(stream, chunk_size)) if not data: return yield data @dasklike_iter def concat(streams): return IT.chain.from_iterable(streams) @dasklike_iter def read_text(path_glob, include_path=False, compression=None, progress=True): if not isinstance(path_glob, (list, tuple)): path_glob = [path_glob] filenames = list(IT.chain.from_iterable(Path().glob(str(pg)) for pg in path_glob)) if progress: path_glob_str = os.path.commonprefix(filenames) filenames = tqdm(filenames, desc=f"Reading glob {path_glob_str}", leave=False) for filename in filenames: if filename.suffix.endswith(".gz") or compression == "gzip": openfxn = gzip.open else: openfxn = open with openfxn(filename, "r") as fd: if progress: fd = tqdm(fd, desc=filename.name, leave=False) for line in fd: if include_path: yield (line, filename) else: yield line class DaskLike: def __init__(self, stream=None): if isinstance(stream, DaskLike): self.stream = stream.stream else: self.stream = stream def __iter__(self): return iter(self.stream) @dasklike_iter def map(self, fxn, *args, **kwargs): return map(partial(fxn, *args, **kwargs), self.stream) @dasklike_iter def flatten(self): return IT.chain.from_iterable(self.stream) @dasklike_iter def map_partitions(self, fxn, *args, partition_size=DEFAULT_CHUNK_SIZE, **kwargs): fxn_partial = partial(fxn, *args, **kwargs) for chunk in chunk_stream(self.stream, chunk_size=partition_size): yield map(fxn_partial, self.stream) @dasklike_iter def groupby(self, grouper, sort=False): stream = self.stream if sort: stream = list(stream) stream.sort(key=grouper) return ((k, list(g)) for k, g in IT.groupby(stream, key=grouper)) @dasklike_iter def filter(self, fxn, *args, **kwargs): return filter(partial(fxn, *args, **kwargs), self.stream) def take(self, N, compute=True): take_stream, self.stream = IT.tee(self.stream) data = IT.islice(take_stream, N) if compute: return list(data) return from_sequence(data) @dasklike_iter def debug_counter(self, desc, every=500): for i, item in enumerate(self.stream): if (i + 1) % every == 0: print(f"[{desc}] {i}") yield item @dasklike_iter def debug_sampler(self, desc, proba): for item in self.stream: if random.random() < proba: print(f"[{desc}] Sample:") print(item) yield item def to_dataframe( self, meta=None, columns=None, partition_size=DEFAULT_CHUNK_SIZE, progress=True ): if meta: columns = list(meta.keys()) stream = self.stream if progress: stream = tqdm(stream, desc="Creating Dataframe") df = pd.DataFrame(columns=columns) if meta: df = df.astype(meta) for chunk in chunk_stream(stream, chunk_size=partition_size): df_chunk =
pd.DataFrame(chunk, columns=columns)
pandas.DataFrame
import unittest import pandas as pd import pandas.util.testing as pdtest import numpy as np from tia.analysis.model import * class TestAnalysis(unittest.TestCase): def setUp(self): self.closing_pxs = pd.Series( np.arange(10, 19, dtype=float), pd.date_range("12/5/2014", "12/17/2014", freq="B"), ) self.dvds = pd.Series( [1.25, 1.0], index=[pd.to_datetime("12/8/2014"), pd.to_datetime("12/16/2014")], ) def test_trade_split(self): trd = Trade(1, "12/1/2014", 10.0, 10.0, -1.0) t1, t2 = trd.split(4) self.assertEqual(t1.qty, 4) self.assertEqual(t1.fees, -0.4) self.assertEqual(t1.ts, trd.ts) self.assertEqual(t2.qty, 6) self.assertEqual(t2.fees, -0.6) self.assertEqual(t2.ts, trd.ts) def test_txn_details(self): t1 = Trade(1, "12/8/2014", 5.0, 10.0, -1.0) t2 = Trade(2, "12/8/2014", 2.0, 15.0, -1.0) t3 = Trade(3, "12/10/2014", -3.0, 5.0, -1.0) t4 = Trade(4, "12/12/2014", -4.0, 20.0, -1.0) t5 = Trade(5, "12/16/2014", -4.0, 10.0, 0) t6 = Trade(6, "12/17/2014", 4.0, 15.0, 0) sec = PortfolioPricer( multiplier=2.0, closing_pxs=self.closing_pxs, dvds=self.dvds ) # Test txn frame port = SingleAssetPortfolio(sec, [t1, t2, t3, t4, t5, t6]) txns = port.txns.frame index = list(range(len(port.trades))) pdtest.assert_series_equal( txns.txn_qty, pd.Series([5.0, 2.0, -3.0, -4.0, -4, 4], index=index) ) pdtest.assert_series_equal( txns.open_val, pd.Series([-100.0, -160.0, -160.0 * 4.0 / 7.0, 0, 80, 0], index=index), ) pdtest.assert_series_equal( txns.txn_fees, pd.Series([-1.0, -1.0, -1.0, -1.0, 0, 0], index=index) ) pdtest.assert_series_equal( txns.txn_intent, pd.Series( [ Intent.Open, Intent.Increase, Intent.Decrease, Intent.Close, Intent.Open, Intent.Close, ], index=index, ), ) pdtest.assert_series_equal( txns.txn_action, pd.Series( [ Action.Buy, Action.Buy, Action.Sell, Action.Sell, Action.SellShort, Action.Cover, ], index=index, ), ) # CHECK PL pl = port.pl # Load the dataset import tia, os xl = os.path.join(tia.__path__[0], "tests", "test_analysis.xlsx") expected = pd.read_excel(xl) expected = expected.reset_index() # check ltd txn level ltd = pl.ltd_txn_frame pdtest.assert_series_equal(expected.pos.astype(float), ltd.pos) pdtest.assert_series_equal(expected.ltd_pl, ltd.pl) pdtest.assert_series_equal(expected.ltd_upl, ltd.upl) pdtest.assert_series_equal(expected.ltd_rpl, ltd.rpl) pdtest.assert_series_equal(expected.ltd_dvds, ltd.dvds) pdtest.assert_series_equal(expected.ltd_fees.astype(float), ltd.fees) pdtest.assert_series_equal(expected.ltd_rpl_gross, ltd.rpl_gross) # check txn level txnlvl = pl.txn_frame pdtest.assert_series_equal(expected.pos.astype(float), txnlvl.pos) pdtest.assert_series_equal(expected.dly_pl, txnlvl.pl)
pdtest.assert_series_equal(expected.dly_upl, txnlvl.upl)
pandas.util.testing.assert_series_equal
""" Seed processing code $Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/like2/seeds.py,v 1.7 2018/01/27 15:37:17 burnett Exp $ """ import os, sys, time, pickle, glob, types import numpy as np import pandas as pd from astropy.io import fits from skymaps import SkyDir, Band from uw.utilities import keyword_options from uw.like2 import (tools, sedfuns, maps, sources, localization, roimodel,) from uw.like2.pipeline import (check_ts,) #oops stagedict) #### need to fix! from uw.like2.pub import healpix_map def read_seedfile(seedkey, filename=None, config=None): model_name = os.getcwd().split('/')[-1] if model_name.startswith('month') and seedkey=='pgw': #monthly mode, need to find and load PGW analysis with rouighly equivalent months month=int(model_name[5:]); filename='/nfs/farm/g/glast/g/catalog/transients/TBIN_%d_all_pgw.txt'% (month-1) assert os.path.exists(filename), 'PGWAVE file %s not found'% filename try: seeds = pd.read_table(filename, sep=' ', skipinitialspace=True, index_col=1, header=None, names='tbin ra dec k_signif pgw_roi fgl_seed fgl_ra fgl_dec fgl_assoc'.split()) except Exception as msg: raise Exception('Failed to read file %s: %s' % (filename, msg)) names=[] for i,s in seeds.iterrows(): j = int(s.name[4:6]) if s.name[6]=='_' else int(s.name[4:5]) names.append('PGW_%02d_%03d_%02d' % (month, int(s.pgw_roi), j)) seeds['name'] = names elif model_name.startswith('month') and seedkey=='PGW': # monthly mode, new format PGwave, in a single FITS file month=int(model_name[5:]); assert os.path.exists(filename), 'PGWAVE file {} not found'.format( filename) t = fits.open(filename) df=pd.DataFrame(t[1].data) selector = lambda month : (df.run=='1m ') & (df.TBIN=='TBIN_{:<2d}'.format(month-1)) cut = selector(month) assert sum(cut)>0, 'No seeds found for month {}'.format(month) print ('Found {} PGWave seeds'.format(sum(cut))) ra = np.array(df.Ra[cut],float) dec = np.array(df.Dec[cut],float) prefix = 'PG{:02d} '.format(int(month)) # note making it a string type name = np.array([prefix + n.split('_')[-1].strip() for n in 'TBIN_{}_'.format(month-1)+df.PGW_name[cut]]) seeds = pd.DataFrame([name, ra,dec], index='name ra dec'.split()).T elif filename is None and config is not None: # assume that config[seedkey] is the filename if seedkey in config: filename = config[seedkey] elif os.path.exists('seeds_{}.csv'.format(seedkey)): filename='seeds_{}.csv'.format(seedkey) else: raise Exception('seedkey {} not found in config, or filename'.format(seedkey)) if os.path.splitext(filename)=='.fits': # a standard FITS catalog f = fits.open(os.path.expandvars(filename)) name, ra, dec = [f[1].data.field(x) for x in 'Source_Name RAJ2000 DEJ2000'.split()] seeds = pd.DataFrame([name, np.array(ra,float),np.array(dec,float)], index='name ra dec'.split()).T else: seeds = pd.read_csv(filename) elif filename is not None: # file is cvs seeds = pd.read_csv(filename) else: # reading a TS seeds file t = glob.glob('seeds_%s*' % seedkey) assert len(t)==1, 'Seed file search, using key {}, failed to find one file\n\t{}'.format( seedkey,t) seedfile=t[0] try: csv_format=seedfile.split('.')[-1]=='csv' if csv_format: seeds = pd.read_csv(seedfile) else: seeds = pd.read_table(seedfile) except Exception as msg: raise Exception('Failed to read file %s, perhaps empty: %s' %(seedfile, msg)) seeds['skydir'] = map(SkyDir, seeds.ra, seeds.dec) seeds['hpindex'] = map( Band(12).index, seeds.skydir) # check for duplicated names dups = seeds.name.duplicated() if sum(dups)>0: print ('\tRemoving {} duplicate entries'.format(sum(dups))) return seeds[np.logical_not(dups)] return seeds def select_seeds_in_roi(roi, fn='seeds/seeds_all.csv'): """ Read seeds from csv file, return those in the given ROI roi : int or Process instance if the latter, look up index from roi direction. direction """ if type(roi)!=int: roi = Band(12).index(roi.roi_dir) seeds = pd.read_csv(fn, index_col=0) seeds['skydir'] = map(SkyDir, seeds.ra, seeds.dec) seeds.index.name = 'name' sel = np.array(map( Band(12).index, seeds.skydir))==roi return seeds[sel] def add_seeds(roi, seedkey='all', config=None, model='PowerLaw(1e-14, 2.2)', associator=None, tsmap_dir='tsmap_fail', tsmin=10, lqmax=20, update_if_exists=False, location_tolerance=0.5, pair_tolerance=0.25, **kwargs): """ add "seeds" from a text file the the current ROI roi : the ROI object seedkey : string Expect one of 'pgw' or 'ts' for now. Used by read_seedfile to find the list associator : tsmap_dir mints : float minimum TS to accept for addition to the model lqmax : float maximum localization quality for tentative source """ def add_seed(s): # use column 'key' to determine the model to use model = maps.table_info[s['key']][1]['model'] try: src=roi.add_source(sources.PointSource(name=s.name, skydir=s['skydir'], model=model)) if src.model.name=='LogParabola': roi.freeze('beta',src.name) elif src.model.name=='PLSuperExpCutoff': roi.freeze('Cutoff', src.name) print ('%s: added at %s' % (s.name, s['skydir'])) except Exception as msg: print ('*** fail to add source:', msg) if update_if_exists: src = roi.get_source(s.name) print ('{}: updating existing source at {} '.format(s.name, s['skydir'])) else: print ('{}: Fail to add "{}"'.format(s.name, msg)) return # profile prof= roi.profile(src.name, set_normalization=True) src.ts= prof['ts'] if prof is not None else 0 # fit Norm try: roi.fit(s.name+'_Norm', tolerance=0., ignore_exception=False) except Exception as msg: print ('\tFailed to fit seed norm: \n\t{}\nTrying full fit'.format(msg)) return False # fit both parameters try: roi.fit(s.name, tolerance=0., ignore_exception=False) except Exception as msg: print ('\tFailed to fit seed norm and index:') return False ts = roi.TS() print ('\nTS = %.1f' % ts,) if ts<tsmin: print (' <%.1f, Fail to add.' % tsmin) return False else: print (' OK') # one iteration of pivot change iter = 2 if iter>0 and roi.repivot([src], min_ts=tsmin,select=src.name ): iter -=1 # and a localization: remove if fails or poor roi.localize(s.name, update=True, tolerance=1e-3) quality = src.ellipse[5] if hasattr(src, 'ellipse') and src.ellipse is not None else None if quality is None or quality>lqmax: print ('\tFailed localization, quality {}, maximum allowed {}'.format(quality, lqmax)) return True seedfile = kwargs.pop('seedfile', 'seeds/seeds_{}.csv'.format(seedkey)) seedlist = select_seeds_in_roi(roi, seedfile) if len(seedlist)==0: print ('no seeds in ROI') return False else: print ('Found {} seeds from {} in this ROI: check positions'.format(len(seedlist),seedfile)) good = 0 for sname,s in seedlist.iterrows(): print ('='*20, sname, 'Initial TS:{:.1f}'.format(s.ts), '='*20) if not add_seed( s): roi.del_source(sname) else: good +=1 return good>0 def create_seeds(keys = ['ts', 'tsp', 'hard', 'soft'], seed_folder='seeds', tsmin=10, merge_tolerance=1.0, update=False, max_pixels=30000,): """Process the """ #keys =stagedict.stagenames[stagename]['pars']['table_keys'] modelname = os.getcwd().split('/')[-1]; if modelname.startswith('uw'): seedroot='' elif modelname.startswith('year'): seedroot='y'+modelname[-2:] elif modelname.startswith('month'): seedroot='m'+modelname[-2:] else: raise Exception('Unrecognized model name, {}. '.format(modelname)) # list of prefix characters for each template prefix = dict(ts='M', tsp='P', hard='H', soft='L') if not os.path.exists(seed_folder): os.mkdir(seed_folder) table_name = 'hptables_{}_512.fits'.format('_'.join(keys)) if not (update or os.path.exists(table_name)): print ("Checking that all ROI map pickles are present...") ok = True; for key in keys: folder = '{}_table_512'.format(key) assert os.path.exists(folder), 'folder {} not found'.format(folder) files = sorted(glob.glob(folder+'/*.pickle')) print (folder, ) n = files[0].find('HP12_')+5 roiset = set([int(name[n:n+4]) for name in files]) missing = sorted(list(set(range(1728)).difference(roiset))) if missing==0: ok = False print ('{} missing: {}'.format(len(missing), missing ) if len(missing)>0 else 'OK' ) assert ok, 'One or more missing runs' print ('Filling tables...') healpix_map.assemble_tables(keys) assert os.path.exists(table_name) # generate txt files with seeds print ('Run cluster analysis for each TS table') seedfiles = ['{}/seeds_{}.txt'.format(seed_folder, key) for key in keys] # make DataFrame tables from seedfiles tables=[] for key, seedfile in zip(keys, seedfiles): print ('{}: ...'.format(key),) if os.path.exists(seedfile) and not update: print ('Seedfile {} exists: skipping make_seeds step...'.format(seedfile)) table = pd.read_table(seedfile, index_col=0) print ('found {} seeds'.format(len(table))) else: rec = open(seedfile, 'w') nseeds = check_ts.make_seeds('test', table_name, fieldname=key, rec=rec, seedroot=seedroot+prefix[key], rcut=tsmin, minsize=1,mask=None, max_pixels=max_pixels,) if nseeds>0: #read back, set skydir column, add to list of tables print ('\tWrote file {} with {} seeds'.format(seedfile, nseeds)) table = pd.read_table(seedfile, index_col=0) table['skydir'] = map(SkyDir, table.ra, table.dec) table['key'] = key else: print ('\tFailed to find seeds: file {} not processed.'.format(seedfile)) continue tables.append(table) if len(tables)<2: print ('No files to merge') return u = merge_seed_files(tables, merge_tolerance); print ('Result of merge with tolerance {} deg: {}/{} kept'.format(merge_tolerance,len(u), sum([len(t) for t in tables]))) outfile ='{}/seeds_all.csv'.format(seed_folder) u.to_csv(outfile) print ('Wrote file {} with {} seeds'.format(outfile, len(u))) def merge_seed_files(tables, dist_deg=1.0): """Merge multiple seed files tables : list of data frames """ dist_rad = np.radians(dist_deg) for t in tables: t['skydir'] = map(SkyDir, t.ra, t.dec) def find_close(A,B): """ helper function: make a DataFrame with A index containg columns of the name of the closest entry in B, and its distance A, B : DataFrame objects each with a skydir column """ def mindist(a): d = map(a.difference, B.skydir.values) n = np.argmin(d) return [B.index[n], B.ts[n], np.degrees(d[n])] df = pd.DataFrame( map(mindist, A.skydir.values), index=A.index, columns=('id_b', 'ts_b', 'distance')) df['ts_a'] = A.ts df['id_a'] = A.index return df def merge2(A,B): "Merge two tables" close_df = find_close(A,B).query('distance<{}'.format(dist_rad)) bdups = close_df.query('ts_b<ts_a') bdups.index=bdups.id_b bdups = bdups[~bdups.index.duplicated()] adups = close_df.query('ts_b>ts_a') A['dup'] = adups['id_b'] B['dup'] = bdups['id_a'] merged= A[
pd.isnull(A.dup)
pandas.isnull
import pytest import pandas as pd import numpy as np from pandas import testing as pdt from pandas import Timestamp from datetime import datetime from pyam import utils, META_IDX TEST_VARS = ["foo", "foo|bar", "foo|bar|baz"] TEST_CONCAT_SERIES = pd.Series(["foo", "bar", "baz"], index=["f", "b", "z"]) def test_pattern_match_none(): data = pd.Series(["foo", "bar"]) values = ["baz"] obs = utils.pattern_match(data, values) assert (obs == [False, False]).all() def test_pattern_match_nan(): data = pd.Series(["foo", np.nan]) values = ["baz"] obs = utils.pattern_match(data, values, has_nan=True) assert (obs == [False, False]).all() def test_pattern_match_one(): data =
pd.Series(["foo", "bar"])
pandas.Series
try: import debug_settings except: print("Cannot import debug settings!") import logging logging.basicConfig() logging.getLogger().setLevel(logging.INFO) import glob import numpy as np import os import pandas as pd import sys import yaml from copy import deepcopy from argparse import ArgumentParser from collections import OrderedDict from pathlib import Path import bark.core.commons import bark.core import bark.core.models.behavior from bark.runtime.commons.parameters import ParameterServer from bark.runtime.scenario.scenario_generation.configurable_scenario_generation import ( ConfigurableScenarioGeneration, add_config_reader_module) from bark.runtime.viewer.matplotlib_viewer import MPViewer from bark.runtime.viewer.video_renderer import VideoRenderer from bark_mcts.models.behavior.hypothesis.behavior_space.behavior_space import \ BehaviorSpace from bark_ml.behaviors.discrete_behavior import BehaviorDiscreteMacroActionsML from bark_ml.evaluators.goal_reached import GoalReached from bark_ml.library_wrappers.lib_fqf_iqn_qrdqn.agent import FQFAgent from hythe.libs.environments.gym import HyDiscreteHighway from hythe.libs.observer.belief_observer import BeliefObserver from load.benchmark_database import BenchmarkDatabase from serialization.database_serializer import DatabaseSerializer add_config_reader_module("bark_mcts.runtime.scenario.behavior_space_sampling") is_local = True logging.info("Running on process with ID: {}".format(os.getpid())) def configure_args(parser=None): if parser is None: parser = ArgumentParser() parser.add_argument('--mode', type=str, default="train") parser.add_argument('--output_dir', "--od", type=str, default="results/debug/exp_7bd21e7d-3c33-4dc9-8d1e-83dbb951f234") parser.add_argument('--episode_no', "--en", type=int, default=1000) return parser.parse_args(sys.argv[1:]) def configure_behavior_space(params): return BehaviorSpace(params) def main(): print("Experiment server at :", os.getcwd()) args = configure_args() #load exp params exp_dir = args.output_dir params_filename = glob.glob(os.path.join(exp_dir, "params_[!behavior]*")) params = ParameterServer(filename=params_filename[0]) params.load(fn=params_filename[0]) params["ML"]["BaseAgent"]["SummaryPath"] = os.path.join(exp_dir, "agent/summaries") params["ML"]["BaseAgent"]["CheckpointPath"] = os.path.join(exp_dir, "agent/checkpoints") splits = 8 behavior_params_filename = glob.glob(os.path.join(exp_dir, "behavior_params*")) if behavior_params_filename: params_behavior = ParameterServer(filename=behavior_params_filename[0]) else: params_behavior = ParameterServer(filename="configuration/params/1D_desired_gap_no_prior.json") behavior_space = configure_behavior_space(params_behavior) hypothesis_set, hypothesis_params = behavior_space.create_hypothesis_set_fixed_split(split=splits) observer = BeliefObserver(params, hypothesis_set, splits=splits) behavior = BehaviorDiscreteMacroActionsML(params_behavior) evaluator = GoalReached(params) viewer = MPViewer(params=params, x_range=[-35, 35], y_range=[-35, 35], follow_agent_id=True) # database creation dir_prefix = "" dbs = DatabaseSerializer(test_scenarios=2, test_world_steps=2, num_serialize_scenarios=10) dbs.process(os.path.join(dir_prefix, "configuration/database"), filter_sets="**/**/interaction_merging_light_dense_1D.json") local_release_filename = dbs.release(version="test") db = BenchmarkDatabase(database_root=local_release_filename) scenario_generator, _, _ = db.get_scenario_generator(0) video_renderer = VideoRenderer(renderer=viewer, world_step_time=0.2) env = HyDiscreteHighway(params=params, scenario_generation=scenario_generator, behavior=behavior, evaluator=evaluator, observer=observer, viewer=video_renderer, render=is_local) # non-agent evaluation mode num_steps = 100 num_samples = params_behavior["BehaviorSpace"]["Hypothesis"]["BehaviorHypothesisIDM"]["NumSamples"] print("Steps, samples, splits", num_steps, num_samples, splits) step = 1 env.reset() threshold = observer.is_enabled_threshold discretize = observer.is_discretize beliefs_df =
pd.DataFrame(columns=["Step", "Action", "Agent", "Beliefs", "HyNum"])
pandas.DataFrame
import sys, io, json, base64, datetime as dt sys.path.append("tmp") import matplotlib matplotlib.use('Agg') #not sure if this include / 'Agg' is necessary import cntk from helpers_cntk import * #################################### # Parameters #################################### classifier = 'svm' #must match the option used for model training imgPath = "uploadedImg.jpg" #"12.jpg" resourcesDir = "tmp" # Do not change run_mbSize = 1 svm_boL2Normalize = True if classifier == "svm": cntkRefinedModelPath = pathJoin(resourcesDir, "cntk_fixed.model") else: cntkRefinedModelPath = pathJoin(resourcesDir, "cntk_refined.model") workingDir = pathJoin(resourcesDir, "tmp/") svmPath = pathJoin(resourcesDir, classifier + ".np") #only used if classifier is set to 'svm' lutId2LabelPath = pathJoin(resourcesDir, "lutId2Label.pickle") ################ # API run() and # init() methods ################ # API call entry point def run(input_df): try: print("Python version: " + str(sys.version) + ", CNTK version: " + cntk.__version__) startTime = dt.datetime.now() print(str(input_df)) # convert input back to image and save to disk base64ImgString = input_df['image base64 string'][0] print(base64ImgString) pil_img = base64ToPilImg(base64ImgString) print("pil_img.size: " + str(pil_img.size)) pil_img.save(imgPath, "JPEG") print("Save pil_img to: " + imgPath) # Load model <---------- SHOULD BE DONE JUST ONCE print("Classifier = " + classifier) makeDirectory(workingDir) if not os.path.exists(cntkRefinedModelPath): raise Exception("Model file {} does not exist, likely because the {} classifier has not been trained yet.".format(cntkRefinedModelPath, classifier)) model = load_model(cntkRefinedModelPath) lutId2Label = readPickle(lutId2LabelPath) # Run DNN printDeviceType() node = getModelNode(classifier) mapPath = pathJoin(workingDir, "rundnn_map.txt") dnnOutput = runCntkModelImagePaths(model, [imgPath], mapPath, node, run_mbSize) # Predicted labels and scores scoresMatrix = runClassifierOnImagePaths(classifier, dnnOutput, svmPath, svm_boL2Normalize) scores = scoresMatrix[0] predScore = np.max(scores) predLabel = lutId2Label[np.argmax(scores)] print("Image predicted to be '{}' with score {}.".format(predLabel, predScore)) # Create json-encoded string of the model output executionTimeMs = (dt.datetime.now() - startTime).microseconds / 1000 outDict = {"label": str(predLabel), "score": str(predScore), "allScores": str(scores), "Id2Labels": str(lutId2Label), "executionTimeMs": str(executionTimeMs)} outJsonString = json.dumps(outDict) print("Json-encoded detections: " + outJsonString[:120] + "...") print("DONE.") return(str(outJsonString)) except Exception as e: return(str(e)) # API initialization method def init(): try: print("Executing init() method...") print("Python version: " + str(sys.version) + ", CNTK version: " + cntk.__version__) except Exception as e: print("Exception in init:") print(str(e)) ################ # Main ################ def main(): from azureml.api.schema.dataTypes import DataTypes from azureml.api.schema.sampleDefinition import SampleDefinition from azureml.api.realtime.services import generate_schema import pandas # Create random 5x5 pixels image to use as sample input #base64ImgString = "iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAIAAAACDbGyAAAAFElEQVR4nGP8//8/AxJgYkAFpPIB6vYDBxf2tWQAAAAASUVORK5CYII=" #pilImg = pilImread("C:/Users/pabuehle/Desktop/vienna/iris4/tiny.jpg") pilImg = Image.fromarray((np.random.rand(5, 5, 3) * 255).astype('uint8')) #.convert('RGB') base64ImgString = pilImgToBase64(pilImg) #random 5x5 pixels image # Call init() and run() function init() df =
pandas.DataFrame(data=[[base64ImgString]], columns=['image base64 string'])
pandas.DataFrame
from pytorch_lightning.core.step_result import TrainResult import pandas as pd import torch import math import numpy as np from src.utils import simple_accuracy from copy import deepcopy from torch.optim.lr_scheduler import LambdaLR class WeightEMA(object): def __init__(self, model, ema_model, alpha=0.999): self.model = model self.ema_model = ema_model self.ema_model.eval() self.alpha = alpha self.ema_has_module = hasattr(self.ema_model, 'module') # Fix EMA. https://github.com/valencebond/FixMatch_pytorch thank you! self.param_keys = [k for k, _ in self.ema_model.named_parameters()] self.buffer_keys = [k for k, _ in self.ema_model.named_buffers()] for p in self.ema_model.parameters(): p.requires_grad_(False) def step(self): needs_module = hasattr(self.model, 'module') and not self.ema_has_module with torch.no_grad(): msd = self.model.state_dict() esd = self.ema_model.state_dict() for k in self.param_keys: if needs_module: j = 'module.' + k else: j = k model_v = msd[j].detach() ema_v = esd[k] esd[k].copy_(ema_v * self.alpha + (1. - self.alpha) * model_v) for k in self.buffer_keys: if needs_module: j = 'module.' + k else: j = k esd[k].copy_(msd[j]) class UnlabelledStatisticsLogger: def __init__(self, level='image', save_frequency=500, artifacts_path=None, name='unlabelled'): self.level = level self.batch_dfs = [] self.save_frequency = save_frequency self.artifacts_path = artifacts_path self.logging_df = pd.DataFrame() self.name = name self.strategies = set() def log_statistics(self, u_scores: torch.tensor, u_targets: torch.tensor, u_pseudo_targets: torch.tensor, u_ids: torch.tensor, current_epoch: int, strategy_name=None, current_globalstep: int = None): if self.level == 'batch': raise NotImplementedError() # Needs to be rewriten to consider u_scores # certain_ul_targets = u_targets[thresholding_mask == 1.0].cpu().numpy() # all_ul_targets = u_targets.cpu().numpy() # result.log('certain_ul_acc', certain_ul_acc, on_epoch=False, on_step=True, sync_dist=True) # result.log('all_ul_acc', all_ul_acc, on_epoch=False, on_step=True, sync_dist=True) # result.log('max_probs', u_scores.mean(), on_epoch=False, on_step=True, sync_dist=True) # result.log('n_certain', thresholding_mask.sum(), on_epoch=False, on_step=True, sync_dist=True) elif self.level == 'image': batch_df = pd.DataFrame(index=range(len(u_ids))) batch_df['image_id'] = u_ids.tolist() batch_df['score'] = u_scores.tolist() batch_df['correctness'] = (u_pseudo_targets == u_targets).tolist() batch_df['epoch'] = current_epoch if current_globalstep is not None: batch_df['datastep'] = current_globalstep if strategy_name is not None: batch_df['strategy'] = strategy_name self.strategies.add(strategy_name) self.batch_dfs.append(batch_df) def on_epoch_end(self, current_epoch): if self.level: for batch_df in self.batch_dfs: self.logging_df = self.logging_df.append(batch_df, ignore_index=True) self.batch_dfs = [] if self.level == 'image' and current_epoch % self.save_frequency == 0: epochs_range = self.logging_df['epoch'].min(), self.logging_df['epoch'].max() csv_path = f'{self.artifacts_path}/{self.name}_epochs_{epochs_range[0]:05d}_{epochs_range[1]:05d}.csv' self.logging_df.to_csv(csv_path, index=False) self.logging_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MaxAbsScaler from sklearn.cluster import KMeans #%% load dataset vehicles = pd.read_csv('../../data/raw/vehicles.csv') print(vehicles.head()) print(vehicles.columns) print(vehicles.shape) #%% choosing select columns select_columns = ['make', 'model', 'year', 'displ', 'cylinders', 'trany', 'drive', 'VClass', 'fuelType', 'barrels08', 'city08', 'highway08', 'comb08', 'co2TailpipeGpm', 'fuelCost08'] vehicles = vehicles[select_columns][vehicles.year <= 2016].drop_duplicates().dropna() vehicles = vehicles.sort_values(['make', 'model', 'year']) #%% rename the columns vehicles.columns = ['Make', 'Model', 'Year', 'Engine Displacement', 'Cylinders', 'Transmission', 'Drivetrain', 'Vehicle Class', 'Fuel Type', 'Fuel Barrels/Year', 'City MPG', 'Highway MPG', 'Combined MPG', 'CO2 Emission Grams/Mile', 'Fuel Cost/Year'] #%% aggregating to higher level categories def unique_col_values(df): for column in df: print(f'{df[column].name} | {len(df[column].unique())} | {df[column].dtype}') unique_col_values(vehicles) #%% aggregating transmission types AUTOMATIC = 'Automatic' MANUAL = 'Manual' vehicles.loc[vehicles['Transmission'].str.startswith('A'), 'Transmission Type'] = AUTOMATIC vehicles.loc[vehicles['Transmission'].str.startswith('M'), 'Transmission Type'] = MANUAL print(vehicles['Transmission Type'].sample(5)) #%% aggregating vehicle class small = ['Compact Cars', 'Subcompact Cars', 'Two Seaters', 'Minicompact Cars'] midsize = ['Midsize Cars'] large = ['Large Cars'] vehicles.loc[vehicles['Vehicle Class'].isin(small), 'Vehicle Category'] = 'Small Cars' vehicles.loc[vehicles['Vehicle Class'].isin(midsize), 'Vehicle Category'] = 'Midsize Cars' vehicles.loc[vehicles['Vehicle Class'].isin(large), 'Vehicle Category'] = 'Large Cars' vehicles.loc[vehicles['Vehicle Class'].str.contains('Station'), 'Vehicle Category'] = 'Station Wagons' vehicles.loc[vehicles['Vehicle Class'].str.contains('Truck'), 'Vehicle Category'] = 'Pickup Trucks' vehicles.loc[vehicles['Vehicle Class'].str.contains('Special Purpose'), 'Vehicle Category'] = 'Special Purpose' vehicles.loc[vehicles['Vehicle Class'].str.contains('Sport Utility'), 'Vehicle Category'] = 'Sport Utility' vehicles.loc[vehicles['Vehicle Class'].str.lower().str.contains('van'), 'Vehicle Category'] = 'Vans & Minivans' print(vehicles['Vehicle Category'].sample(5)) #%% aggregating make and model vehicles['Model Type'] = (vehicles['Make'] + ' ' + vehicles['Model'].str.split().str.get(0)) print(vehicles['Model Type'].sample(5)) #%% aggregating fuel type print(vehicles['Fuel Type'].unique()) vehicles['Gas'] = 0 vehicles['Ethanol'] = 0 vehicles['Electric'] = 0 vehicles['Propane'] = 0 vehicles['Natural Gas'] = 0 vehicles.loc[vehicles['Fuel Type'].str.contains('Regular|Gasoline|Midgrade|Premium|Diesel'), 'Gas'] = 1 vehicles.loc[vehicles['Fuel Type'].str.contains('E85'), 'Ethanol'] = 1 vehicles.loc[vehicles['Fuel Type'].str.contains('Electricity'), 'Electric'] = 1 vehicles.loc[vehicles['Fuel Type'].str.contains('propane'), 'Propane'] = 1 vehicles.loc[vehicles['Fuel Type'].str.contains('natural|CNG'), 'Natural Gas'] = 1 vehicles.loc[vehicles['Fuel Type'].str.contains('Regular|Gasoline'), 'Gas Type'] = 'Regular' vehicles.loc[vehicles['Fuel Type'].str.contains('Midgrade'), 'Gas Type'] = 'Midgrade' vehicles.loc[vehicles['Fuel Type'].str.contains('Premium'), 'Gas Type'] = 'Premium' vehicles.loc[vehicles['Fuel Type'].str.contains('Diesel'), 'Gas Type'] = 'Diesel' vehicles.loc[vehicles['Fuel Type'].str.contains('natural|CNG'), 'Gas Type'] = 'Natural' cols = ['Fuel Type', 'Gas Type', 'Gas', 'Ethanol', 'Electric', 'Propane', 'Natural Gas'] print(vehicles[cols].sample(5)) #%% creating categories from continuous variables # fuel efficiency efficiency_categories = ['Very Low Efficiency', 'Low Efficiency', 'Moderate Efficiency', 'High Efficiency', 'Very High Efficiency'] vehicles['Fuel Efficiency'] = pd.qcut(vehicles['Combined MPG'], 5, efficiency_categories) print(vehicles['Fuel Efficiency'].sample(5)) #%% engine size engine_categories = ['Very Small Engine', 'Small Engine', 'Moderate Engine', 'Large Engine', 'Very Large Engine'] vehicles['Engine Size'] =
pd.qcut(vehicles['Engine Displacement'], 5, engine_categories)
pandas.qcut
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0.html # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Testing hwm_allocation() with bookings in natural order. import unittest from imscommon.es.ims_esclient import ESClient from pyspark.sql import HiveContext from pyspark import SparkContext, SparkConf import optimizer.util import pandas from pandas.testing import assert_frame_equal import optimizer.algo.hwm import os import json import warnings class Unittest_HWM_Allocations_2(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore", ResourceWarning) fpath = os.path.abspath(os.path.join(os.path.dirname(__file__),"..")) with open(fpath + '/data_source/bookings_fully_overlapped.json') as bookings_source: self.bookings = json.load(bookings_source) with open(fpath + '/data_source/cfg.json') as cfg_source: self.cfg = json.load(cfg_source) today = '20180402' self.days = optimizer.util.get_days_from_bookings(today, self.bookings) self.sc = SparkContext.getOrCreate() self.hive_context = HiveContext(self.sc) self.schema = optimizer.util.get_common_pyspark_schema() def compare_two_dfs(self, pandas_df_expected, df_to_test_rows): df = self.hive_context.createDataFrame(df_to_test_rows, self.schema) df_allocated = optimizer.algo.hwm.hwm_allocation(df, self.bookings, self.days) pandas_df_allocated = df_allocated.select("*").toPandas() print(pandas_df_expected) print(pandas_df_allocated) return self.assertTrue(assert_frame_equal(pandas_df_expected, pandas_df_allocated, check_dtype=False) == None) def test_hwm_allocation_case1(self): pandas_df_expected = pandas.DataFrame(columns=['day', 'ands', 'minus', 'amount', 'allocated']) pandas_df_expected.loc[0] = ['20180402', ['b1', 'b3', 'b2'], [], 733, {'b1': 500, 'b3': 233}] df_to_test_rows = [(['20180402', ['b1', 'b3', 'b2'], [], {}, 733])] return self.compare_two_dfs(pandas_df_expected, df_to_test_rows) def test_hwm_allocation_case2(self): pandas_df_expected = pandas.DataFrame(columns=['day', 'ands', 'minus', 'amount', 'allocated']) pandas_df_expected.loc[0] = ['20180402', ['b1'], ['b2', 'b3'], 6047, {'b1': 500}] df_to_test_rows = [(['20180402', ['b1'], ['b2', 'b3'], {}, 6047])] return self.compare_two_dfs(pandas_df_expected, df_to_test_rows) def test_hwm_allocation_case3(self): pandas_df_expected = pandas.DataFrame(columns=['day', 'ands', 'minus', 'amount', 'allocated']) pandas_df_expected.loc[0] = ['20180402', ['b2'], ['b1', 'b3'], 1410, {'b2': 800}] df_to_test_rows = [(['20180402', ['b2'], ['b1', 'b3'], {}, 1410])] return self.compare_two_dfs(pandas_df_expected, df_to_test_rows) def test_hwm_allocation_case4(self): pandas_df_expected = pandas.DataFrame(columns=['day', 'ands', 'minus', 'amount', 'allocated']) pandas_df_expected.loc[0] = ['20180402', ['b3'], ['b1', 'b2'], 12241, {'b3': 1000}] df_to_test_rows = [(['20180402', ['b3'], ['b1', 'b2'], {}, 12241])] return self.compare_two_dfs(pandas_df_expected, df_to_test_rows) def test_hwm_allocation_case5(self): pandas_df_expected = pandas.DataFrame(columns=['day', 'ands', 'minus', 'amount', 'allocated']) pandas_df_expected.loc[0] = ['20180402', ['b1', 'b2'], ['b3'], 3575, {'b1': 500, 'b2': 800}] df_to_test_rows = [(['20180402', ['b1', 'b2'], ['b3'], {}, 3575])] return self.compare_two_dfs(pandas_df_expected, df_to_test_rows) def test_hwm_allocation_case6(self): pandas_df_expected =
pandas.DataFrame(columns=['day', 'ands', 'minus', 'amount', 'allocated'])
pandas.DataFrame
import doctest import os from unittest import TestCase import pandas as pd import xarray as xr from pysd.tools.benchmarking import assert_frames_close _root = os.path.dirname(__file__) class TestUtils(TestCase): def test_xrsplit(self): import pysd array1d = xr.DataArray([0.5, 0., 1.], {'ABC': ['A', 'B', 'C']}, ['ABC']) array2d = xr.DataArray([[0.5, -1.5], [-1., -0.5], [-0.75, 0.]], {'ABC': ['A', 'B', 'C'], 'XY': ['X', 'Y']}, ['ABC', 'XY']) array3d = xr.DataArray([[[0.5, 4.], [-1.5, 3.]], [[-1., 2.], [-0.5, 5.5]], [[-0.75, 0.75], [0., -1.]]], {'ABC': ['A', 'B', 'C'], 'XY': ['X', 'Y'], 'FG': ['F', 'G']}, ['ABC', 'XY', 'FG']) s1d = pysd.utils.xrsplit(array1d) s2d = pysd.utils.xrsplit(array2d) s3d = pysd.utils.xrsplit(array3d) # check length self.assertEqual(len(s1d), 3) self.assertEqual(len(s2d), 6) self.assertEqual(len(s3d), 12) # check all values for 1d self.assertIn(xr.DataArray(0.5, {'ABC': ['A']}, ['ABC']), s1d) self.assertIn(xr.DataArray(0., {'ABC': ['B']}, ['ABC']), s1d) self.assertIn(xr.DataArray(1., {'ABC': ['C']}, ['ABC']), s1d) # check some values for 2d and 3d self.assertIn(xr.DataArray(0.5, {'ABC': ['A'], 'XY': ['X']}, ['ABC', 'XY']), s2d) self.assertIn(xr.DataArray(-0.5, {'ABC': ['B'], 'XY': ['Y']}, ['ABC', 'XY']), s2d) self.assertIn(xr.DataArray(-0.5, {'ABC': ['B'], 'XY': ['Y'], 'FG': ['F']}, ['ABC', 'XY', 'FG']), s3d) self.assertIn(xr.DataArray(0.75, {'ABC': ['C'], 'XY': ['X'], 'FG': ['G']}, ['ABC', 'XY', 'FG']), s3d) def test_get_return_elements_subscirpts(self): import pysd self.assertEqual( pysd.utils.get_return_elements( ["Inflow A[Entry 1,Column 1]", "Inflow A[Entry 1,Column 2]"], {'Inflow A': 'inflow_a'}), (['inflow_a'], {'Inflow A[Entry 1,Column 1]': ('inflow_a', ('Entry 1', 'Column 1')), 'Inflow A[Entry 1,Column 2]': ('inflow_a', ('Entry 1', 'Column 2'))} ) ) def test_get_return_elements_realnames(self): import pysd self.assertEqual( pysd.utils.get_return_elements( ["Inflow A", "Inflow B"], {'Inflow A': 'inflow_a', 'Inflow B': 'inflow_b'}), (['inflow_a', 'inflow_b'], {'Inflow A': ('inflow_a', None), 'Inflow B': ('inflow_b', None)} ) ) def test_get_return_elements_pysafe_names(self): import pysd self.assertEqual( pysd.utils.get_return_elements( ["inflow_a", "inflow_b"], {'Inflow A': 'inflow_a', 'Inflow B': 'inflow_b'}), (['inflow_a', 'inflow_b'], {'inflow_a': ('inflow_a', None), 'inflow_b': ('inflow_b', None)} ) ) def test_get_return_elements_not_found_error(self): """" Test for not found element """ import pysd with self.assertRaises(KeyError): pysd.utils.get_return_elements( ["inflow_a", "inflow_b", "inflow_c"], {'Inflow A': 'inflow_a', 'Inflow B': 'inflow_b'}) def test_make_flat_df(self): import pysd df = pd.DataFrame(index=[1], columns=['elem1']) df.at[1] = [xr.DataArray([[1, 2, 3], [4, 5, 6], [7, 8, 9]], {'Dim1': ['A', 'B', 'C'], 'Dim2': ['D', 'E', 'F']}, dims=['Dim1', 'Dim2'])] expected = pd.DataFrame(index=[1], data={'Elem1[B,F]': 6.}) return_addresses = { 'Elem1[B,F]': ('elem1', {'Dim1': ['B'], 'Dim2': ['F']})} actual = pysd.utils.make_flat_df(df, return_addresses) # check all columns are in the DataFrame self.assertEqual(set(actual.columns), set(expected.columns)) assert_frames_close(actual, expected, rtol=1e-8, atol=1e-8) def test_make_flat_df_nosubs(self): import pysd df = pd.DataFrame(index=[1], columns=['elem1', 'elem2']) df.at[1] = [25, 13] expected = pd.DataFrame(index=[1], columns=['Elem1', 'Elem2']) expected.at[1] = [25, 13] return_addresses = {'Elem1': ('elem1', {}), 'Elem2': ('elem2', {})} actual = pysd.utils.make_flat_df(df, return_addresses) # check all columns are in the DataFrame self.assertEqual(set(actual.columns), set(expected.columns)) self.assertTrue(all(actual['Elem1'] == expected['Elem1'])) self.assertTrue(all(actual['Elem2'] == expected['Elem2'])) def test_make_flat_df_return_array(self): """ There could be cases where we want to return a whole section of an array - ie, by passing in only part of the simulation dictionary. in this case, we can't force to float...""" import pysd df = pd.DataFrame(index=[1], columns=['elem1', 'elem2']) df.at[1] = [xr.DataArray([[1, 2, 3], [4, 5, 6], [7, 8, 9]], {'Dim1': ['A', 'B', 'C'], 'Dim2': ['D', 'E', 'F']}, dims=['Dim1', 'Dim2']), xr.DataArray([[1, 2, 3], [4, 5, 6], [7, 8, 9]], {'Dim1': ['A', 'B', 'C'], 'Dim2': ['D', 'E', 'F']}, dims=['Dim1', 'Dim2'])] expected = pd.DataFrame(index=[1], columns=['Elem1[A, Dim2]', 'Elem2']) expected.at[1] = [xr.DataArray([[1, 2, 3]], {'Dim1': ['A'], 'Dim2': ['D', 'E', 'F']}, dims=['Dim1', 'Dim2']), xr.DataArray([[1, 2, 3], [4, 5, 6], [7, 8, 9]], {'Dim1': ['A', 'B', 'C'], 'Dim2': ['D', 'E', 'F']}, dims=['Dim1', 'Dim2'])] return_addresses = { 'Elem1[A, Dim2]': ('elem1', {'Dim1': ['A'], 'Dim2': ['D', 'E', 'F']}), 'Elem2': ('elem2', {})} actual = pysd.utils.make_flat_df(df, return_addresses) # check all columns are in the DataFrame self.assertEqual(set(actual.columns), set(expected.columns)) # need to assert one by one as they are xarrays self.assertTrue( actual.loc[1, 'Elem1[A, Dim2]'].equals( expected.loc[1, 'Elem1[A, Dim2]'])) self.assertTrue( actual.loc[1, 'Elem2'].equals(expected.loc[1, 'Elem2'])) def test_make_flat_df_flatten(self): import pysd df =
pd.DataFrame(index=[1], columns=['elem1', 'elem2'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 ################################## # Author: <NAME> # Copyright © 2020 The Board of Trustees of the Royal Botanic Gardens, Kew ################################## # # # wcvp_taxo # wcvp_taxo is a python3 script for matching and resolving scientific names against the WCVP database (https://wcvp.science.kew.org/) # # ## Input # ### A. Input files # The script requires two input tables: The WCVP database and a file with species names to match on WCVP # 1. **WCVP database**: must be downloaded from http://sftp.kew.org/pub/data-repositories/WCVP/. It will be filtered and save by the script in pickle format. If you whish to update the WCVP database, deleted the .pkl file. # 2. **Sample file**: This spreadsheet must be in **.csv** format and contain at least one column with the scientific names you wish to match in WCVP. By default the script will look for a column named **scientific_name**. Otherwise it will look for a column called **Species**. If the species name is spread in two columns **(Genus, Species)**, the script with recognize it automatically. # # ### B. Parameters # These parameters are optional and can be accessed with python wcvp_taxo.py -h # - **-g, --resolve_genus**: Find taxa for scientific names written in genus sp. format # - **-s, --similar_tax_method**: Find most similar taxa for misspelled taxa. <br> # Possibles values are: # - **similarity_genus**: Search for similar scientific name in WCVP assuming genus is correct (fast) # - **similarity**: Search for similar scientific name in WCVP (slow) # - **request_kewmatch**: Search for similar scientific name using kewmatch (online) (ok if less than <200 queries) # - **-d, --duplicate_action**. Action to take when multiple wcvp entries match the provided scientific_name. <br> # Possibles values are: # - **rank**: reduce duplicates by prioritizing accepted > unplaced > synonym > homotypic_synonym taxonomic status (keep first entry). # - **divert**: divert duplicates to _duplicates.csv # - **divert_taxonOK**: divert duplicates to _duplicates.csv, unless all matching entries have the same taxon name in WCVP (keep first entry) # - **divert_speciesOK**: divert duplicates to _duplicates.csv, unless all matching entries have the same species name in WCVP (keep first entry) # - **divert_genusOK**: divert duplicates to _duplicates.csv, unless all matching entries have the same genus name in WCVP (keep first entry and rename as genus sp.) # - **-oc, --only_changes**: Output file only contains IDs that have a different taxonomy than provided (species, genus or family if provided) # - **-os, --simple_output**: Output file is simplified to 4 columns: ID, kew-id, Ini_sci_name, sci_name # - **-v, --verbose**: verbose output in console # # # ## Example # ```console # python wcvp_taxo.py wcvp_export.txt sample_file.csv -g -s similarity_genus -d divert_taxonOK # python wcvp_taxo.py wcvp_export.txt sample_file.csv # python wcvp_taxo.py wcvp_export.txt sample_file.csv -oc -os -s similarity --verbose -d divert # python wcvp_taxo.py wcvp_export.txt sample_file.csv -g -s similarity -d rank --verbose # ``` # # ## Output # For the example above, the script will output the following tables: # * **sample_file_wcvp.csv**: Samples for which the scientific name are resolved. # * **sample_file_duplicates.csv**: Samples for which the scientific name matched multiple WCVP entries. # * **sample_file_unresolved.csv**: Samples for which the scientific name did not match any WCVP entries. # # # ## Pipeline # ### Pre-processing # * Load wcvp database. If only text file exist, saving as .pkl. # * Find column containing scientific names. scientific_name or sci_name (default), Species or Genus + Species otherwise. # * Search for column with unique IDs. First column in table will be selected. Creates column with unique IDs if it doesn't exist. Will not pick sci_name or Species as ID. # # ### Initial checks # * Check if Ini_scinames are written as Genus sp. # * Check if Ini_scinames exist in WCVP # * Optional. Find similar names if not in WCVP # * Check if Ini_scinames have duplicate entries # * Proceed to matching for valid scientific names # # ### Matching & Resolving # 1. Find accepted and unplaced matches. # 2. Resolves synonyms and homotypic synonyms. # 3. Resolve duplicates. # 4. Output tables # # ## Dependencies # pandas, tqdm<br> # for similarity: difflib, requests, ast<br> # numpy, os, argparse, sys # In[1]: import pandas as pd from tqdm import tqdm import numpy as np pd.options.mode.chained_assignment = None # default='warn' import os import argparse import sys # ## Parameters # In[2]: parser = argparse.ArgumentParser( description='Script used to match species names with wcvp. Requires at least the paths to the wcvp\ file and to a .csv file containing scientific names (species or genus + species)') parser.add_argument("wcvp_path", type=str, help="path to wcvp_export.txt, \ download from http://sftp.kew.org/pub/data-repositories/WCVP/") parser.add_argument("df_path", type=str, help="path to spreadsheet in .csv format. Note output will be in the same folder") parser.add_argument("-g", "--resolve_genus", help="Optional. find taxa for scientific names written in genus sp. format", action="store_true", default=False) parser.add_argument("-s",'--similar_tax_method', help="Optional. Find most similar taxa for misspelled taxa. possibles values are: \ similarity_genus, similarity, request_kew", action="store", default=None) parser.add_argument("-d",'--duplicate_action', help="Optional. Action to take when multiple wcvp taxon match to a sci_name. possibles values are: \ rank, divert, divert_taxonOK, divert_speciesOK, divert_genusOK.\ \n\n rank: reduce duplicates by prioritizing accepted > unplaced > synonym > homotypic synonym \ taxonomic status. \n\n divert: flag duplicates, remove them from _wcvp.csv output and write them to _duplicates.csv", action="store", default='rank') parser.add_argument("-oc", "--only_changes", help="Optional. Output file only contains IDs that have a different taxonomy than provided", action="store_true", default=False) parser.add_argument("-od", "--output_duplicates", help="Optional. Output a separate file for duplicates as _duplicates.csv", action="store_true", default=False) parser.add_argument("-os", "--simple_output", help="Optional. Specify which columns of the input file should be kept, in addition to ID, species name \ and WCVP columns kew-id and species name. \ e.g. --simple_output ['idSequencing','NumReads'] will produce an output with \ idSequencing,NumReads, kew-id, Ini_sci_name, sci_name", action="store_true", default=False) parser.add_argument("-v", "--verbose", help="Optional. verbose output in console", action="store_true", default=False) args = parser.parse_args() wcvp_path = args.wcvp_path df_path = args.df_path resolve_genus=args.resolve_genus find_most_similar=args.find_most_similar dupl_action=args.duplicate_action only_changes=args.only_changes simple_output=args.simple_output verbose=args.verbose status_keep=['Accepted','Unplaced'] # In[3]: # ## Jupyter Notebook # wcvp_path='wcvp_v4_mar_2021.txt' # df_path='../PAFTOL_DB/2021-03-19_paftol_export.csv' # resolve_genus=True # find_most_similar='similarity' # dupl_action='rank' # verbose=False # only_changes=True # # simple_output=False # simple_output=['idPaftol','idSequencing','ExternalSequenceID','DataSource','Project','Taxonomical_Notes'] # status_keep=['Accepted','Unplaced'] # ## Functions # ### Data processing functions # In[4]: # Load wcvp file and save as pickle for faster loading def load_wcvp(wcvp_path): print('Loading WCVP...',end='') # Load pickel if os.path.exists(wcvp_path.replace('.txt','.pkl')): print('found .pkl...',end='') wcvp = pd.read_pickle(wcvp_path.replace('.txt','.pkl')) elif os.path.exists(wcvp_path): wcvp = pd.read_table(wcvp_path,sep='|',encoding='utf-8') print('found .txt, ',end='') # Remove extra columns wcvp = wcvp.drop(columns=['parent_kew_id','parent_name','parent_authors']) print('saving to .pkl...',end='') wcvp.to_pickle(wcvp_path.replace('.txt','.pkl')) else: print('could not find',wcvp_path) sys.exit() print(wcvp.shape[0],'entries') return wcvp def load_df(df_path): print('Loading dataset...',end='') try: smpl_df = pd.read_csv(df_path,encoding='utf-8') print(smpl_df.shape[0],'entries') return smpl_df except: print('could not find',df_path) sys.exit() # In[5]: #Define ID column def GetIDcol(df): #Check for columns with all unique values col_unique=(df.nunique()==df.shape[0]).to_frame().reset_index().rename(columns={0:'unique','index':'column'}) col_unique = col_unique[col_unique.unique==True] col_unique = col_unique[~col_unique['column'].isin(['Ini_sci_name','Ini_Genus','Ini_Species'])] if col_unique.shape[0]>0: print('found',col_unique.shape[0],'ID column:',end='') colsID=list(col_unique['column']) colID=colsID[0] print(colID) else: print('No ID column, create ID from index') colID='ID' #Return new col with ID return colID # In[6]: #Find which column contains the scientific name to match def define_sci_name(smpl_df, verbose=False): col_taxo=list(smpl_df.columns[smpl_df.columns.str.contains( 'family|genus|species|infraspecies|sci_name|scientific_name',case=False)]) for itaxo in col_taxo: smpl_df = smpl_df.rename(columns = {itaxo:'Ini_' + itaxo.capitalize()}) if verbose: print('renaming ' + itaxo + ' to Ini_' + itaxo, end=', ') # Use sci_name if provided if 'Ini_Sci_name' in smpl_df.columns: print('\nScientific Name is sci_name') smpl_df = smpl_df.rename(columns = {'Ini_Sci_name':'Ini_sci_name'}) elif 'Ini_Scientific_name' in smpl_df.columns: print('\nScientific Name is scientific_name') smpl_df = smpl_df.rename(columns = {'Ini_Scientific_name':'Ini_sci_name'}) else: # Identify is scientific name is in 1 or two columns try: avg_word_sp=smpl_df['Ini_Species'].str.split().str.len().mean() print('avg words in Ini_Species:',round(avg_word_sp,1)) if round(avg_word_sp)==1: print('Scientific Name (Ini_sci_name) is Ini_Genus + Ini_Species') smpl_df['Ini_sci_name'] = smpl_df['Ini_Genus'] + ' ' + smpl_df['Ini_Species'] elif round(avg_word_sp)>=2: print('Scientific Name (Ini_sci_name) is Ini_Species') smpl_df['Ini_sci_name'] = smpl_df['Ini_Species'] except: print('ERROR: Could not identify species column') sys.exit() return smpl_df # ### WCVP related functions # In[7]: def get_by_taxon_name(df, wcvp): tmp_wcvp=wcvp[wcvp.taxon_name.isin(df.sci_name)] match = pd.merge(df, tmp_wcvp, how='inner', left_on='sci_name', right_on='taxon_name') return match # In[8]: def get_by_kew_id(df, wcvp): tmp_wcvp=wcvp[wcvp.kew_id.isin(df.kew_id)] match = pd.merge(df, tmp_wcvp, how='inner', on='kew_id') return match # In[9]: #Find closely matching scientific name using difflib.get_close_matches if scientific name was not found def find_sim(sci_name, wcvp, only_from_genus=True): if sci_name==sci_name: # Search for similar sci_name with same genus smpl_genus=sci_name.split(' ')[0] wcvp_gen=wcvp[wcvp.genus.isin([smpl_genus])] if wcvp_gen.shape[0]>0: sim_tax = difflib.get_close_matches(sci_name, wcvp_gen.taxon_name.astype(str), n=1, cutoff=.9) if len(sim_tax)>0: return sim_tax[0] # If didn't work, search for similar sci_name else: if only_from_genus==False: sim_tax = difflib.get_close_matches(sci_name, wcvp.taxon_name.astype(str), n=1, cutoff=.9) if len(sim_tax)>0: return sim_tax[0] else: return None else: return None # print(find_sim('Combretum mussaendiflora', wcvp)) # print(find_sim('Scaveola humilis', wcvp, only_from_genus=False)) # In[10]: #Find closely matching scientific name using kew namematching system def kew_namematch(sci_name, verbose=False): url = "http://namematch.science.kew.org/api/v2/powo/csv" payload = '{\"column\": 0,\"headers\": false,\"outputAllColumns\": true,\"currentChunk\": 0,\"data\": [[\"' + sci_name + '\"]]}' headers = { 'Content-Type': 'application/json' } try: response = requests.request("POST", url, headers=headers, data = payload) content=str(response.text).replace("b'",'').replace("'",'') if verbose: print(content) stats_dict=ast.literal_eval(content)['stats'] if stats_dict['matched']>0: try: record_dict=ast.literal_eval(content)['records'] rec_df = pd.DataFrame(record_dict[1], index =record_dict[0]).T return rec_df.loc[0,'Scientific Name'] except: print('ERROR: Failed to convert to dict -',sci_name) return None except: print('ERROR: No valid response -',sci_name) return None # print(kew_namematch('Combretum mussaendiflora',verbose=True)) # In[11]: #Find closely matching scientific name def get_sim(df, wcvp, find_most_similar, verbose=False): print('\nLooking for most similar names') df['Similar_sci_name']=np.nan for idx, row in tqdm(df.iterrows(), total=df.shape[0]): if find_most_similar=='similarity_genus': df.loc[idx,'Similar_sci_name']=find_sim(row.sci_name, wcvp, only_from_genus=True) elif find_most_similar=='similarity': df.loc[idx,'Similar_sci_name']=find_sim(row.sci_name, wcvp, only_from_genus=False) elif find_most_similar=='kewmatch': df.loc[idx,'Similar_sci_name']=kew_namematch(row.sci_name) if verbose: print(idx,row.sci_name,':',df.loc[idx,'Similar_sci_name']) df['InWCVP']=(df.Similar_sci_name.isna()==False) df['Similar_match']=(df.Similar_sci_name.isna()==False) # Recover accepted and synonym taxa for found similar names df = df.drop(columns=['sci_name']).rename(columns={'Similar_sci_name':'sci_name'}) return df # In[12]: def get_duplicates_type(df): df = df.sort_values('ID').reset_index().drop(columns='index') df['Duplicate_type']='Different_taxa' ID_ls=df.ID.unique() for iID in ID_ls: tmp_df=df[df.ID==iID] # Check if all entries have the same genus if tmp_df.genus.nunique()==1: df.loc[tmp_df.index,'Duplicate_type']='Same_Genus' # Check if all entries have the same species if len(set(return_dupl.genus + ' ' + return_dupl.species))==1: df.loc[tmp_df.index,'Duplicate_type']='Same_Species' # Check if all entries have the same taxon name if tmp_df.taxon_name.nunique()==1: df.loc[tmp_df.index,'Duplicate_type']='Same_Taxon' return df # ## Main # In[13]: if __name__ == "__main__": print('\n\n##### wcvp_taxo v0.5 ##### \nAuthor: <NAME> \nLast update: 2021-03-25\n') print(wcvp_path, df_path, 'g:', resolve_genus, ' s:', find_most_similar, ' d:', dupl_action, ' oc:', only_changes, ' os:', simple_output, ' v:', verbose) #Load libraries depending on the similarity method if find_most_similar in ['similarity_genus','similarity']: import difflib if find_most_similar=='request_kew': import requests import ast ## Loading and preparing data print('\n\nLoading and preparing data') wcvp = load_wcvp(wcvp_path) smpl_df = load_df(df_path) # Find scientific names smpl_df = define_sci_name(smpl_df) # Select or make ID column colID=GetIDcol(smpl_df) if colID=='ID': smpl_df['ID']=smpl_df.index else: smpl_df['ID']=smpl_df[colID] ## Initial checks smpl_df['sci_name']=smpl_df['Ini_sci_name'] print('\n\nInitial checks') # Check if Ini_scinames are written as Genus sp. smpl_df['Genus_sp'] = smpl_df['sci_name'].str.split(' ',expand=True)[1].isin(['sp.','sp']) if smpl_df.Genus_sp.sum()>0: smpl_df.loc[smpl_df.Genus_sp,'sci_name'] = smpl_df.loc[smpl_df.Genus_sp,'sci_name'].str.split(' ',expand=True)[0] if resolve_genus: print('Genus sp:',(smpl_df.Genus_sp==True).sum(),'IDs with Genus sp. as sci_name') # Check if Ini_scinames exist in WCVP smpl_df['InWCVP']=smpl_df.sci_name.isin(wcvp.taxon_name) print('Missing taxa:',(smpl_df.InWCVP==False).sum(),'IDs not in WCVP') # Optional. Find similar names if not in WCVP if find_most_similar in ['similarity_genus','similarity','request_kew']: resolved_sim = get_sim(smpl_df[smpl_df.InWCVP==False],wcvp=wcvp,find_most_similar=find_most_similar,verbose=verbose) smpl_df = pd.concat([smpl_df[~smpl_df.ID.isin(resolved_sim.ID)], resolved_sim]) print('find_most_similar: found',smpl_df.Similar_match.sum(),'IDs by similarity') # Check if Ini_scinames have duplicate entries dupl_taxon_names = wcvp[wcvp.taxon_name.isin(smpl_df.sci_name)]['taxon_name'].to_frame().groupby('taxon_name').size() .to_frame().reset_index().rename(columns={0:'count'}) dupl_taxon_names = dupl_taxon_names[dupl_taxon_names['count']>1].taxon_name smpl_df['Duplicates']=smpl_df.sci_name.isin(dupl_taxon_names) print('Duplicates:',(smpl_df.Duplicates==True).sum(),'IDs matching multiple entries in WCVP') # Simpler dataframe if smpl_df[~smpl_df.InWCVP].shape[0]>0: print('No match for',smpl_df[~smpl_df.InWCVP].shape[0],'IDs') smpl_dfs = smpl_df[smpl_df.InWCVP][['ID','sci_name','Duplicates']] ## get WCVP taxons # Recover accepted and unplaced taxa print('\n\nMatching & Resolving') match = get_by_taxon_name(smpl_dfs[(smpl_dfs.Duplicates==False)], wcvp) return_df = match[match.taxonomic_status.isin(status_keep)] print('After direct matching: found match for',return_df.shape[0],'IDs') # Resolving synonyms synonyms = match[match.taxonomic_status.isin(['Synonym','Homotypic_Synonym'])] .rename(columns={'kew_id':'Ini_kew_id','accepted_kew_id':'kew_id','taxonomic_status':'Ini_taxonomic_status'}) cols_syn=list(smpl_dfs.columns) + ['Ini_kew_id','Ini_taxonomic_status'] return_syn = get_by_kew_id(df = synonyms[cols_syn + ['kew_id']], wcvp = wcvp) return_df=
pd.concat([return_df,return_syn])
pandas.concat
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json from hashlib import md5 from typing import Dict, Iterable, Optional, Set, Type import numpy as np import pandas as pd from ax.core.base import Base from ax.core.types import TFidelityTrialEvaluation, TTrialEvaluation TPdTimestamp = pd.Timestamp COLUMN_DATA_TYPES = { "arm_name": str, "metric_name": str, "mean": np.float64, "sem": np.float64, "trial_index": np.int64, "start_time": TPdTimestamp, "end_time": TPdTimestamp, "n": np.int64, "frac_nonnull": np.float64, "random_split": np.int64, "fidelities": str, # Dictionary stored as json } REQUIRED_COLUMNS = {"arm_name", "metric_name", "mean"} class Data(Base): """Class storing data for an experiment. The dataframe is retrieved via the `df` property. The data can be stored to gluster for future use by attaching it to an experiment using `experiment.add_data()` (this requires a description to be set.) Attributes: df: DataFrame with underlying data, and required columns. description: Human-readable description of data. """ def __init__( self, df: Optional[pd.DataFrame] = None, description: Optional[str] = None ) -> None: """Init Data. Args: df: DataFrame with underlying data, and required columns. description: Human-readable description of data. """ # Initialize with barebones DF. if df is None: self._df = pd.DataFrame(columns=self.required_columns()) else: missing_columns = self.required_columns() - ( self.required_columns() & set(df.columns.tolist()) ) if len(missing_columns) > 0: raise ValueError( f"Dataframe must contain required columns {list(missing_columns)}." ) extra_columns = set(df.columns.tolist()) - ( set(self.column_data_types().keys()) & set(df.columns.tolist()) ) if len(extra_columns) > 0: raise ValueError(f"Columns {list(extra_columns)} are not supported.") df = df.dropna(axis=0, how="all").reset_index(drop=True) df = self._safecast_df(df=df) # Reorder the columns for easier viewing col_order = [c for c in self.column_data_types() if c in df.columns] self._df = df[col_order] self.description = description @classmethod def _safecast_df(cls, df: pd.DataFrame) -> pd.DataFrame: """Function for safely casting df to standard data types. Needed because numpy does not support NaNs in integer arrays. Args: df: DataFrame to safe-cast. Returns: safe_df: DataFrame cast to standard dtypes. """ dtype = { # Pandas timestamp handlng is weird col: "datetime64[ns]" if coltype is TPdTimestamp else coltype for col, coltype in cls.column_data_types().items() if col in df.columns.values and not ( cls.column_data_types()[col] is np.int64 and df.loc[:, col].isnull().any() ) } return df.astype(dtype=dtype) @staticmethod def required_columns() -> Set[str]: """Names of required columns.""" return REQUIRED_COLUMNS @staticmethod def column_data_types() -> Dict[str, Type]: """Type specification for all supported columns.""" return COLUMN_DATA_TYPES @staticmethod def from_multiple_data(data: Iterable["Data"]) -> "Data": if sum(1 for _ in data) == 0: # Return empty data if empty iterable. return Data() return Data(df=pd.concat([datum.df for datum in data], axis=0, sort=True)) @staticmethod def from_evaluations( evaluations: Dict[str, TTrialEvaluation], trial_index: int, sample_sizes: Optional[Dict[str, int]] = None, start_time: Optional[int] = None, end_time: Optional[int] = None, ) -> "Data": """ Convert dict of evaluations to Ax data object. Args: evaluations: Map from arm name to metric outcomes (itself a mapping of metric names to tuples of mean and optionally a SEM). trial_index: Trial index to which this data belongs. sample_sizes: Number of samples collected for each arm. start_time: Optional start time of run of the trial that produced this data, in milliseconds. end_time: Optional end time of run of the trial that produced this data, in milliseconds. Returns: Ax Data object. """ records = [ { "arm_name": name, "metric_name": metric_name, "mean": evaluation[metric_name][0], "sem": evaluation[metric_name][1], "trial_index": trial_index, } for name, evaluation in evaluations.items() for metric_name in evaluation.keys() ] if start_time is not None or end_time is not None: for record in records: record.update({"start_time": start_time, "end_time": end_time}) if sample_sizes: for record in records: record["n"] = sample_sizes[str(record["arm_name"])] return Data(df=
pd.DataFrame(records)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ---------------------------------------------------------------------- # Name: csv_plot_heatmap.py # Description: # # Author: m.akei # Copyright: (c) 2020 by m.na.akei # Time-stamp: <2020-08-30 09:56:44> # Licence: # Copyright (c) 2021 <NAME> # # This software is released under the MIT License. # http://opensource.org/licenses/mit-license.php # ---------------------------------------------------------------------- import argparse import textwrap import sys import re import json from pathlib import Path import math import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.express as px import pandas as pd from scipy.stats import moment VERSION = 1.0 HIST_FUNC_LIST = ['count', 'sum', 'avg', 'min', 'max'] def init(): # argparse --- コマンドラインオプション、引数、サブコマンドのパーサー Python 3.8.5 ドキュメント https://docs.python.org/ja/3/library/argparse.html arg_parser = argparse.ArgumentParser(description="plot histogram chart with counting values", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent(''' remark: the column for '--facet' and '--ctegory' should have few uni values. If '--xrange' was given, valuse in the column was clipped into the range and plotted with bins given by '--nbins'. for '--pareto_chart', only followings are available '--xrange', '--yrange', '--nbins', '--output', '--format', '--with', '--height', '--packed_html' '--pareto_sort_mode=axis' may be usefull to estimate threhold. for animation column, colon ":" must be escaped by "\". ex: "Animation\:Column". if datetime column was used as column for animation, format of datetime should be defined. see datetime Basic date and time types Python 3.9.4 documentation https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior about '--nbin_mode', see Histogram - Wikipedia https://en.wikipedia.org/wiki/Histogram . NOTE 's_and_s' means Shimazaki and Shinomoto's choice. example: csv_plot_histogram.py --nbins=50 --category="ABC004" --xrange=0.4,0.6 --output=test_plot_hist.html test_plot.csv "ABC001" "ABC002" csv_plot_histogram.py --nbins=50 --category="ABC004" --side_hist=rug --output=test_plot_hist.html test_plot.csv "ABC001" "ABC002" csv_plot_histogram.py --nbins=50 --category="ABC004" --side_hist=rug --log_y --xrange=0.4,0.6 --output=test_plot_hist.html test_plot.csv "ABC001" "ABC002" csv_plot_histogram.py --nbin_mode="square-root" --output=test_plot_hist.html test_plot.csv "ABC001" "ABC002" csv_plot_histogram.py --output=test.html --pareto_chart --nbins=100 a10.csv value csv_plot_histogram.py --output=test.html --pareto_chart --pareto_sort_mode=axis --nbins=100 a10.csv value csv_plot_histogram.py --output=test_hist_dt.html --datetime="%Y-%m-%d %H:%M:%S" test_bar.csv dt ''')) arg_parser.add_argument('-v', '--version', action='version', version='%(prog)s {}'.format(VERSION)) arg_parser.add_argument("--title", dest="TITLE", help="title of chart", type=str, metavar='TEXT', default="") arg_parser.add_argument("--nbins", dest="NBINS", help="number of bins,default=10", type=int, metavar='INT', default=10) arg_parser.add_argument("--nbin_modes", dest="NBIN_MODE", help="method to evaluate number of bins. if given, '--nbins' is ignored.", choices=["square-root", "sturges", "rice", "doane", "s_and_s", "freedman_diaconis"], default=None) arg_parser.add_argument("--side_hist", dest="SIDE_HIST", help="side histogram mode", choices=['rug', 'box', 'violin', 'histogram'], default=None) arg_parser.add_argument("--facets", dest="FACETS", help="names of columns to make group with csv, 'row_facet,col_facet'", type=str, metavar='column[,column]', default=None) arg_parser.add_argument("--hist_func", dest="HIST_FUNC", help="function for histogram z-axis", choices=HIST_FUNC_LIST, default="count") arg_parser.add_argument("--category", dest="CATEG", help="name of column as category", type=str, metavar='column', default=None) arg_parser.add_argument("--category_orders", dest="CATEG_ORDERS", help="orders of elements in each category, with json format", type=str, metavar='JSON_STRING', default=None) arg_parser.add_argument("--animation_column", dest="ANIMATION_COL", help="name of column as aimation", type=str, metavar='column[:datetime_format]', default=None) arg_parser.add_argument("--datetime", dest="XDATETIME", help="format of x as datetime", type=str, metavar='DATETIME_FORMAT', default=None) arg_parser.add_argument("--xrange", dest="XRANGE", help="range of x", type=str, metavar='XMIN,XMAX') arg_parser.add_argument("--yrange", dest="YRANGE", help="range of y", type=str, metavar='YMIN,YMAX') arg_parser.add_argument("--log_x", dest="LOG_X", help="log-scaled x axis", action="store_true", default=False) arg_parser.add_argument("--log_y", dest="LOG_Y", help="log-scaled y axis", action="store_true", default=False) arg_parser.add_argument("--noautoscale", dest="NOAUTOSCALE", help="not autoscale x or y for facets", action="store_false") arg_parser.add_argument("--output", dest="OUTPUT", help="path of output file", type=str, metavar="FILE") arg_parser.add_argument("--format", dest="FORMAT", help="format of output, default=svg", choices=["svg", "png", "jpg", "json", "html"], default="svg") arg_parser.add_argument("--packed_html", dest="PACKED_HTML", help="whether plotly.js is included in result html file, this is enable only for --format=html", action="store_true") arg_parser.add_argument("--width", dest="WIDTH", help="width of output", type=int, metavar='WIDTH', default=None) arg_parser.add_argument("--height", dest="HEIGHT", help="height of output", type=int, metavar='HEIGHT', default=None) arg_parser.add_argument("--pareto_chart", dest="PARETO", help="pareto chart mode", action="store_true", default=False) arg_parser.add_argument("--pareto_sort_mode", dest="PARETO_M", help="sort mode for pareto mode, default=asscending count", choices=["count", "axis"], default="count") arg_parser.add_argument('csv_file', metavar='CSV_FILE', help='csv files to read', nargs=1) arg_parser.add_argument('x_column', metavar='X_COLUMN', help='name of colum as x-axis', nargs=1) arg_parser.add_argument('y_column', metavar='Y_COLUMN', help='name of colum as weight of histogram', nargs="?") args = arg_parser.parse_args() return args def make_categ_hist(df, column, sort_mode, params): col = column df_series = df[col] if sort_mode == "count": pareto_df = df_series.value_counts().sort_values(ascending=False).reset_index() else: pareto_df = df_series.value_counts().reset_index() pareto_df.sort_index(ascending=True, inplace=True) # pareto_df["index"] = pareto_df["index"].apply(lambda x: str(x)) pareto_df["index"] = pareto_df["index"].astype("string") return pareto_df def make_number_hist(df, column, sort_mode, params): nphist_arg = {"bins": params["nbins"]} if "y" in params: nphist_arg.update({"weights": np.array(df[params["y"]])}) hist, bins = np.histogram(np.array(df[column]), **nphist_arg) pareto_df = pd.DataFrame(columns=[column, "index"]) pareto_df["index"] = bins[:-1] pareto_df[column] = hist if sort_mode == "count": pareto_df.sort_values(ascending=False, inplace=True, by=column) pareto_df.reset_index(inplace=True, drop=True) else: pareto_df.sort_index(ascending=True, inplace=True) # pareto_df["index"] = np.round(pareto_df["index"], 2) pareto_df["index"] = pareto_df["index"].apply(lambda x: "{}".format(x)) return pareto_df def plot_pareto_chart(df, column, sort_mode, params): col = column if df[column].dtype == float or df[column].dtype == int: pareto_df = make_number_hist(df, column, sort_mode, params) else: pareto_df = make_categ_hist(df, column, sort_mode, params) pareto_df["cumulative persentage"] = pareto_df[col].cumsum() / pareto_df[col].sum() * 100 fig = make_subplots(specs=[[{"secondary_y": True}]]) fig.add_trace( go.Bar(x=pareto_df["index"], y=pareto_df[col], name="count"), secondary_y=False, ) fig.add_trace( go.Scatter(x=pareto_df["index"], y=pareto_df["cumulative persentage"], name="cumulative persentage", mode='markers'), secondary_y=True, ) fig.update_layout(xaxis=dict(type="category")) if "titile" in params: fig.update_layout(title_text=params["title"]) if "range_y" in params: fig.update_layout(yaxis_range=params["range_y"]) if "log_x" in params and params["log_x"]: fig.update_xaxes(type="log") if "log_y" in params and params["log_y"]: fig.update_yaxes(type="log") fig.update_xaxes(title_text=col) fig.update_yaxes(title_text="count", secondary_y=False) fig.update_yaxes(title_text="cumulative persentage", secondary_y=True) return fig, pareto_df def evaluate_number_of_bin(ds_0, mode): ds = ds_0.dropna() npts = len(ds) nbin_tabl = {} nbin_tabl["square-root"] = math.ceil(math.sqrt(npts)) nbin_tabl["sturges"] = math.ceil(math.log2(npts)) + 1 nbin_tabl["rice"] = math.ceil(2 * math.pow(npts, 1 / 3)) sig = math.sqrt((6 * (npts - 2)) / ((npts + 1) * (npts + 3))) skw = moment(ds, moment=3) nbin_tabl["doane"] = int(1 + math.log2(npts) + math.log2(1 + abs(skw) / sig)) nbin_tabl["s_and_s"] = evaluate_number_of_bin_Shimazaki_and_Shinomoto(ds) nbin_tabl["freedman_diaconis"] = evaluate_number_of_bin_Freedman_Diaconis(ds) if mode not in nbin_tabl: mes = f"??error:csv_plot_histogram:invalid mode to evaluate number of bins:{mode}" print(mes, file=sys.stderr) raise ValueError(mes) print(f"%inf:csv_plot_histgoram:evaluate_number_of_bin:required mode={mode}", file=sys.stderr) for k in nbin_tabl.keys(): print(f"\t{k}={nbin_tabl[k]}", file=sys.stderr) nbins = int(nbin_tabl[mode]) return nbins def evaluate_number_of_bin_Shimazaki_and_Shinomoto(ds, N_MIN=4, N_MAX=100): # GitHub - oldmonkABA/optimal_histogram_bin_width: Method to compute equal sized Optimal Histogram Bin Width https://github.com/oldmonkABA/optimal_histogram_bin_width # https://www.neuralengine.org/res/code/python/histsample_torii.py https://www.neuralengine.org/res/code/python/histsample_torii.py x = ds.array x_max = max(x) x_min = min(x) N0 = np.arange(N_MIN, N_MAX) D = (x_max - x_min) / N0 # bin size vector Cost = np.zeros(shape=(np.size(D), 1)) Cost = np.zeros(np.size(D)) for i in range(np.size(N0)): ki = np.histogram(x, bins=N0[i]) ki = ki[0] k = np.mean(ki) v = np.var(ki) Cost[i] = (2 * k - v) / (D[i]**2) idx = np.argmin(Cost) cmin = Cost[idx] # minimum cost optD = D[idx] # optiomum bin print(f" {cmin}, {N0[idx]}, {optD}", file=sys.stderr) return N0[idx] def evaluate_number_of_bin_Freedman_Diaconis(ds): iqr = ds.quantile(.75) - ds.quantile(.25) npts = len(ds) bin_width = 2 * iqr / math.pow(npts, 1 / 3) nbin = int(np.ceil((ds.max() - ds.min()) / bin_width)) return nbin if __name__ == "__main__": args = init() csv_file = args.csv_file[0] output_format = args.FORMAT packed_html = args.PACKED_HTML width = args.WIDTH height = args.HEIGHT categ = args.CATEG animation_col = args.ANIMATION_COL output_file = args.OUTPUT log_x = args.LOG_X log_y = args.LOG_Y no_auto_scale = args.NOAUTOSCALE hist_func = args.HIST_FUNC pareto_mode = args.PARETO pareto_sort_mode = args.PARETO_M if output_file is None: if csv_file != "-": output_file = Path(csv_file).stem + "_histogram_" + hist_func + "." + output_format else: output_file = sys.stdout.buffer else: output_format = Path(output_file).suffix[1:] if csv_file == "-": csv_file = sys.stdin title = args.TITLE side_hist_mode = args.SIDE_HIST x_col_name = args.x_column[0] y_col_name = args.y_column x_datetime_format = args.XDATETIME xrange_s = args.XRANGE xrange = None if xrange_s is not None: xrange = re.split(r'\s*,\s*', xrange_s) if len(xrange) < 2: print("invalid '--xrange': {}".format(xrange_s), file=sys.stderr) exit(1) else: xrange = list(map(float, xrange)) yrange_s = args.YRANGE yrange = None if yrange_s is not None: yrange = re.split(r'\s*,\s*', yrange_s) if len(yrange) < 2: print("invalid '--yrange': {}".format(yrange_s), file=sys.stderr) exit(1) else: yrange = list(map(float, yrange)) nbin = args.NBINS nbin_mode = args.NBIN_MODE facets = args.FACETS facet_mode = False if facets is not None: facet_mode = True cvs = re.split(r'\s*,\s*', facets) if len(cvs) > 1: row_facet = cvs[0] col_facet = cvs[1] else: row_facet = cvs[0] col_facet = None categ_orders_s = args.CATEG_ORDERS categ_orders = {} if categ_orders_s is not None: try: categ_orders = json.loads(categ_orders_s) except json.decoder.JSONDecodeError as e: print("??Error: '--category_orders' has invalid format: {}".format(e), file=sys.stderr) print(categ_orders_s) sys.exit(1) #--- processing # 2D Histograms | Python | Plotly https://plotly.com/python/2D-Histogram/ csv_df = pd.read_csv(csv_file) if nbin_mode is not None: nbin = evaluate_number_of_bin(csv_df[x_col_name], nbin_mode) print(f"%inf:csv_plot_histogram:number of bins={nbin}", file=sys.stderr) nbin_params = {"nbins": nbin} if y_col_name is not None: fig_params = {"x": x_col_name, "y": y_col_name} else: fig_params = {"x": x_col_name} if x_datetime_format is not None: try: csv_df[x_col_name] = pd.to_datetime(csv_df[x_col_name], format=x_datetime_format) except Exception as e: print(f"??error: invalid datetime format {x_datetime_format} for {x_col_name}", file=sys.stderr) sys.exit(1) fig_params["histfunc"] = hist_func if categ is not None: z_params = {"color": categ, "opacity": 1.0} else: z_params = None side_hist_params = None if side_hist_mode is not None: side_hist_params = {"marginal": side_hist_mode} else: side_hist_params = None if facet_mode: facet_params = {} if row_facet is not None and len(row_facet) > 0: facet_params.update(dict(facet_row=row_facet)) if col_facet is not None and len(col_facet) > 0: facet_params.update(dict(facet_col=col_facet)) else: facet_params = None if side_hist_params is not None: fig_params.update(side_hist_params) if facet_params is not None: fig_params.update(facet_params) fig_params.update(nbin_params) if z_params is not None: fig_params.update(z_params) if title is not None and len(title) > 0: fig_params["title"] = title if width is not None: fig_params["width"] = int(width) if height is not None: fig_params["height"] = int(height) if xrange is not None: fig_params["range_x"] = xrange csv_df[x_col_name].clip(lower=xrange[0], upper=xrange[1], inplace=True) if yrange is not None: fig_params["range_y"] = yrange if log_x: fig_params["log_x"] = True if log_y: fig_params["log_y"] = True if csv_df[x_col_name].dtype in [str, object]: fig_params["category_orders"] = {x_col_name: sorted(csv_df[x_col_name].value_counts().keys())} if animation_col is not None: cvs = re.split(r"\s*(?<!\\):\s*", animation_col, maxsplit=1) ani_col = cvs[0] ani_col = re.sub(r"\\:", ":", ani_col) fig_params["animation_frame"] = ani_col if len(csv_df[ani_col].value_counts()) > 100: print("??error:csv_plot_bar:too many values in column for animation:{}".format(ani_col), file=sys.stderr) sys.exit(1) if len(cvs) > 1: t_format = cvs[1] csv_df =
pd.to_datetime(csv_df[ani_col], format=t_format)
pandas.to_datetime
import logging import traceback import pandas as pd import numpy as np import seaborn as sns from collections import defaultdict import matplotlib matplotlib.use('Agg') matplotlib.rcParams['pdf.fonttype'] = 42 import matplotlib.ticker as ticker from matplotlib import pyplot as plt import matplotlib.patches as mpatches from matplotlib.backends.backend_pdf import PdfPages import inStrain.plotting.utilities from inStrain.plotting.utilities import plot_genome from inStrain.plotting.utilities import estimate_breadth def genome_plot_from_IS(IS, plot_dir=False, **kwargs): # Load the required data try: stb = IS.get('scaffold2bin') b2s = defaultdict(list) for s, b in stb.items(): b2s[b].append(s) assert len(b2s.keys()) > 0 # Load the cache covTs = kwargs.get('covT')#, IS.get('covT')) clonTs = kwargs.get('clonT')#, IS.get('clonT')) raw_linkage_table = kwargs.get('raw_linkage_table')#, IS.get('raw_linkage_table')) cumulative_snv_table = kwargs.get('cumulative_snv_table')#, IS.get('cumulative_snv_table')) scaffold2length = IS.get('scaffold2length') rl = IS.get_read_length() profiled_scaffolds = set(scaffold2length.keys()) except: logging.error("Skipping plot 2 - you don't have all required information. You need to run inStrain genome_wide first") traceback.print_exc() return # Make the plot logging.info("Plotting plot 2") name = 'genomeWide_microdiveristy_metrics.pdf' pp = PdfPages(plot_dir + name) for genome, scaffolds in b2s.items(): if not plot_genome(genome, IS, **kwargs): continue present_scaffolds = list(set(scaffolds).intersection(set(profiled_scaffolds))) Wdb, breaks, midpoints = load_windowed_metrics(present_scaffolds, scaffold2length, rl, report_midpoints=True, covTs=covTs, clonTs=clonTs, raw_linkage_table=raw_linkage_table, cumulative_snv_table=cumulative_snv_table) if len(Wdb) == 0: logging.debug(f"{genome} could not have windowed metrics loaded") continue genomeWide_microdiveristy_metrics_plot(Wdb, breaks, title=genome) fig = plt.gcf() fig.set_size_inches(8, 5) fig.tight_layout() pp.savefig(fig)#, bbox_inches='tight') #plt.show() plt.close(fig) # Save the figure pp.close() #plt.show() plt.close('all') def scaffold_inspection_from_IS(IS, plot_dir=False, **kwargs): # Load the required data try: stb = IS.get('scaffold2bin') b2s = defaultdict(list) for s, b in stb.items(): b2s[b].append(s) assert len(b2s.keys()) > 0 # Load the cache covTs = kwargs.get('covTs', IS.get('covT')) clonTs = kwargs.get('clonTs', IS.get('clonT')) raw_linkage_table = kwargs.get('raw_linkage_table', IS.get('raw_linkage_table')) cumulative_snv_table = kwargs.get('cumulative_snv_table', IS.get('cumulative_snv_table')) scaffold2length = IS.get('scaffold2length') rl = IS.get_read_length() profiled_scaffolds = set(scaffold2length.keys()) except: logging.error("Skipping plot 7 - you don't have all required information. You need to run inStrain genome_wide first") traceback.print_exc() return # Make the plot logging.info("Plotting plot 7") name = 'ScaffoldInspection_plot.pdf' pp = PdfPages(plot_dir + name) for genome, scaffolds in b2s.items(): if not plot_genome(genome, IS, **kwargs): continue present_scaffolds = list(set(scaffolds).intersection(set(profiled_scaffolds))) Wdb, breaks, midpoints = load_windowed_metrics(present_scaffolds, scaffold2length, rl, report_midpoints=True, covTs=covTs, clonTs=clonTs, raw_linkage_table=raw_linkage_table, cumulative_snv_table=cumulative_snv_table) if len(Wdb) == 0: logging.debug(f"{genome} could not have windowed metrics loaded") continue scaffold_inspection_plot(Wdb, breaks, midpoints, title=genome) fig = plt.gcf() fig.tight_layout() pp.savefig(fig)#, bbox_inches='tight') #plt.show() plt.close(fig) # Save the figure pp.close() #plt.show() plt.close('all') def genomeWide_microdiveristy_metrics_plot(Wdb, breaks, title=''): ''' Make the multiple metrics plot ''' # Get set up for multiple rows i = len(Wdb['metric'].unique()) if i > 1: fig, ax = plt.subplots(i, 1, sharex=True) else: ax = {} ax[0] = plt.gca() i = 0 for metric in ['linkage', 'snp_density', 'coverage', 'nucl_diversity']: #for metric, wdb in Wdb.groupby('metric'): if metric not in set(Wdb['metric'].tolist()): continue wdb = Wdb[Wdb['metric'] == metric] med = wdb['value'].median() # Rotate colors: colors = ['red', 'blue', 'black'] c = 0 for mm, ddb in wdb.groupby('ANI'): ax[i].plot(ddb['midpoint'], ddb['value'], c=colors[c], label=mm, marker='o', ms=1)#, ls='') c += 1 ax[i].set_title("{0}".format(metric)) ax[i].grid(False) if i == 0: ax[i].legend(loc='upper left', title='Min read ANI (%)') # Add breaks for b in breaks: ax[i].axvline(b, ls='-', c='lightgrey', zorder=-1) i += 1 plt.xlabel('genome position') plt.xlim(0, Wdb['midpoint'].max()) plt.suptitle(title, y=0.999) plt.subplots_adjust(hspace=0.3) def load_windowed_metrics(scaffolds, s2l, rLen, metrics=None, window_len=None, ANI_levels=[0, 100], min_scaff_len=0, report_midpoints=False, covTs=False, clonTs=False, raw_linkage_table=False, cumulative_snv_table=False): if metrics is None: metrics = ['coverage', 'nucl_diversity', 'linkage', 'snp_density'] if type(metrics) != type([]): print("Metrics must be a list") return # Figure out the MMs needed #rLen = IS.get_read_length() mms = [_get_mm(None, ANI, rLen=rLen) for ANI in ANI_levels] # Sort the scaffolds #s2l = IS.get('scaffold2length') scaffolds = sorted(scaffolds, key=s2l.get, reverse=True) if min_scaff_len > 0: scaffolds = [s for s in scaffolds if s2l[s] >= min_scaff_len] # Figure out the window length if window_len == None: window_len = int(sum([s2l[s] for s in scaffolds]) / 100) else: window_len = int(window_len) # Calculate the breaks breaks = [] midpoints = {} tally = 0 for scaffold in scaffolds: midpoints[scaffold] = tally + int(s2l[scaffold] / 2) tally += s2l[scaffold] breaks.append(tally) dbs = [] if 'coverage' in metrics: if covTs == False: logging.error("need covTs for coverage") raise Exception cdb = load_windowed_coverage_or_clonality('coverage', covTs, scaffolds, window_len, mms, ANI_levels, s2l) cdb['metric'] = 'coverage' dbs.append(cdb) # if 'clonality' in metrics: # cdb = load_windowed_coverage_or_clonality(IS, 'clonality', scaffolds, window_len, mms, ANI_levels, s2l) # cdb['metric'] = 'clonality' # dbs.append(cdb) if 'nucl_diversity' in metrics: if clonTs == False: logging.error("need clonTs for microdiversity") raise Exception cdb = load_windowed_coverage_or_clonality('nucl_diversity', clonTs, scaffolds, window_len, mms, ANI_levels, s2l) cdb['metric'] = 'nucl_diversity' dbs.append(cdb) if 'linkage' in metrics: if raw_linkage_table is False: logging.error("need raw_linkage_table for linkage") raise Exception cdb = load_windowed_linkage(raw_linkage_table, scaffolds, window_len, mms, ANI_levels, s2l) cdb['metric'] = 'linkage' dbs.append(cdb) if 'snp_density' in metrics: if cumulative_snv_table is False: logging.error("need cumulative_snv_table for snp_density") raise Exception if len(cumulative_snv_table) > 0: cdb = load_windowed_SNP_density(cumulative_snv_table, scaffolds, window_len, mms, ANI_levels, s2l) cdb['metric'] = 'snp_density' dbs.append(cdb) if len(dbs) > 0: Wdb =
pd.concat(dbs, sort=True)
pandas.concat
import unittest import pandas as pd import numpy as np from scipy.sparse.csr import csr_matrix from string_grouper.string_grouper import DEFAULT_MIN_SIMILARITY, \ DEFAULT_REGEX, DEFAULT_NGRAM_SIZE, DEFAULT_N_PROCESSES, DEFAULT_IGNORE_CASE, \ StringGrouperConfig, StringGrouper, StringGrouperNotFitException, \ match_most_similar, group_similar_strings, match_strings, \ compute_pairwise_similarities from unittest.mock import patch, Mock def mock_symmetrize_matrix(x: csr_matrix) -> csr_matrix: return x class SimpleExample(object): def __init__(self): self.customers_df = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address4', '', 'Description4', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address5', 'Tel5', 'Description5', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.customers_df2 = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('DD012339M', 'HyperStartup Inc.', 'Address4', 'Tel4', 'Description4', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address5', '', 'Description5', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address6', 'Tel6', 'Description6', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.a_few_strings = pd.Series(['BB016741P', 'BB082744L', 'BB098762D', 'BB099931J', 'BB072982K', 'BB059082Q']) self.one_string = pd.Series(['BB0']) self.two_strings = pd.Series(['Hyper', 'Hyp']) self.whatever_series_1 = pd.Series(['whatever']) self.expected_result_with_zeroes = pd.DataFrame( [ (1, 'Hyper Startup Incorporated', 0.08170638, 'whatever', 0), (0, 'Mega Enterprises Corporation', 0., 'whatever', 0), (2, 'Hyper Startup Inc.', 0., 'whatever', 0), (3, 'Hyper-Startup Inc.', 0., 'whatever', 0), (4, 'Hyper Hyper Inc.', 0., 'whatever', 0), (5, 'Mega Enterprises Corp.', 0., 'whatever', 0) ], columns=['left_index', 'left_Customer Name', 'similarity', 'right_side', 'right_index'] ) self.expected_result_centroid = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) self.expected_result_centroid_with_index_col = pd.DataFrame( [ (0, 'Mega Enterprises Corporation'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (4, 'Hyper Hyper Inc.'), (0, 'Mega Enterprises Corporation') ], columns=['group_rep_index', 'group_rep_Customer Name'] ) self.expected_result_first = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) class StringGrouperConfigTest(unittest.TestCase): def test_config_defaults(self): """Empty initialisation should set default values""" config = StringGrouperConfig() self.assertEqual(config.min_similarity, DEFAULT_MIN_SIMILARITY) self.assertEqual(config.max_n_matches, None) self.assertEqual(config.regex, DEFAULT_REGEX) self.assertEqual(config.ngram_size, DEFAULT_NGRAM_SIZE) self.assertEqual(config.number_of_processes, DEFAULT_N_PROCESSES) self.assertEqual(config.ignore_case, DEFAULT_IGNORE_CASE) def test_config_immutable(self): """Configurations should be immutable""" config = StringGrouperConfig() with self.assertRaises(Exception) as _: config.min_similarity = 0.1 def test_config_non_default_values(self): """Configurations should be immutable""" config = StringGrouperConfig(min_similarity=0.1, max_n_matches=100, number_of_processes=1) self.assertEqual(0.1, config.min_similarity) self.assertEqual(100, config.max_n_matches) self.assertEqual(1, config.number_of_processes) class StringGrouperTest(unittest.TestCase): def test_auto_blocking_single_DataFrame(self): """tests whether automatic blocking yields consistent results""" # This function will force an OverflowError to occur when # the input Series have a combined length above a given number: # OverflowThreshold. This will in turn trigger automatic splitting # of the Series/matrices into smaller blocks when n_blocks = None sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] # first do manual blocking sg = StringGrouper(df1, min_similarity=0.1) pd.testing.assert_series_equal(sg.master, df1) self.assertEqual(sg.duplicates, None) matches = fix_row_order(sg.match_strings(df1, n_blocks=(1, 1))) self.assertEqual(sg._config.n_blocks, (1, 1)) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def do_test_with(OverflowThreshold): nonlocal sg # allows reference to sg, as sg will be modified below # Now let us mock sg._build_matches: sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() matches_auto = fix_row_order(sg.match_strings(df1, n_blocks=None)) pd.testing.assert_series_equal(sg.master, df1) pd.testing.assert_frame_equal(matches, matches_auto) self.assertEqual(sg._config.n_blocks, None) # Note that _build_matches is called more than once if and only if # a split occurred (that is, there was more than one pair of # matrix-blocks multiplied) if len(sg._left_Series) + len(sg._right_Series) > \ OverflowThreshold: # Assert that split occurred: self.assertGreater(sg._build_matches.call_count, 1) else: # Assert that split did not occur: self.assertEqual(sg._build_matches.call_count, 1) # now test auto blocking by forcing an OverflowError when the # combined Series' lengths is greater than 10, 5, 3, 2 do_test_with(OverflowThreshold=100) # does not trigger auto blocking do_test_with(OverflowThreshold=10) do_test_with(OverflowThreshold=5) do_test_with(OverflowThreshold=3) do_test_with(OverflowThreshold=2) def test_n_blocks_single_DataFrame(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] matches11 = fix_row_order(match_strings(df1, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. sg = StringGrouper(df1, min_similarity=0.1) def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def test_overflow_error_with(OverflowThreshold, n_blocks): nonlocal sg sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() max_left_block_size = (len(df1)//n_blocks[0] + (1 if len(df1) % n_blocks[0] > 0 else 0)) max_right_block_size = (len(df1)//n_blocks[1] + (1 if len(df1) % n_blocks[1] > 0 else 0)) if (max_left_block_size + max_right_block_size) > OverflowThreshold: with self.assertRaises(Exception): _ = sg.match_strings(df1, n_blocks=n_blocks) else: matches_manual = fix_row_order(sg.match_strings(df1, n_blocks=n_blocks)) pd.testing.assert_frame_equal(matches11, matches_manual) test_overflow_error_with(OverflowThreshold=100, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(2, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 2)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(4, 4)) def test_n_blocks_both_DataFrames(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df['Customer Name'] df2 = simple_example.customers_df2['Customer Name'] matches11 = fix_row_order(match_strings(df1, df2, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, df2, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) def test_n_blocks_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=2) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(0, 2)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2.5)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2, 3)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, )) def test_tfidf_dtype_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=None) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=0) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype='whatever') def test_compute_pairwise_similarities(self): """tests the high-level function compute_pairwise_similarities""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid similarities = compute_pairwise_similarities(df1, df2) expected_result = pd.Series( [ 1.0, 0.6336195351561589, 1.0000000000000004, 1.0000000000000004, 1.0, 0.826462625999832 ], name='similarity' ) expected_result = expected_result.astype(np.float32) pd.testing.assert_series_equal(expected_result, similarities) sg = StringGrouper(df1, df2) similarities = sg.compute_pairwise_similarities(df1, df2) pd.testing.assert_series_equal(expected_result, similarities) def test_compute_pairwise_similarities_data_integrity(self): """tests that an exception is raised whenever the lengths of the two input series of the high-level function compute_pairwise_similarities are unequal""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid with self.assertRaises(Exception): _ = compute_pairwise_similarities(df1, df2[:-2]) @patch('string_grouper.string_grouper.StringGrouper') def test_group_similar_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function group_similar_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = group_similar_strings( test_series_1, string_ids=test_series_id_1 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_most_similar(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_most_similar utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_2 = None test_series_id_1 = None test_series_id_2 = None df = match_most_similar( test_series_1, test_series_2, master_id=test_series_id_1, duplicates_id=test_series_id_2 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_matches.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = match_strings(test_series_1, master_id=test_series_id_1) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_matches.assert_called_once() self.assertEqual(df, 'whatever') @patch( 'string_grouper.string_grouper.StringGrouper._symmetrize_matrix', side_effect=mock_symmetrize_matrix ) def test_match_list_symmetry_without_symmetrize_function(self, mock_symmetrize_matrix_param): """mocks StringGrouper._symmetrize_matches_list so that this test fails whenever _matches_list is **partially** symmetric which often occurs when the kwarg max_n_matches is too small""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() mock_symmetrize_matrix_param.assert_called_once() # obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # switch the column names of lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # if the intersection is empty then _matches_list is completely non-symmetric (this is acceptable) # if the intersection is not empty then at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertFalse(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) def test_match_list_symmetry_with_symmetrize_function(self): """This test ensures that _matches_list is symmetric""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() # Obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # Switch the column names of the lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # Obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # If the intersection is empty this means _matches_list is completely non-symmetric (this is acceptable) # If the intersection is not empty this means at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertTrue(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) @patch( 'string_grouper.string_grouper.StringGrouper._fix_diagonal', side_effect=mock_symmetrize_matrix ) def test_match_list_diagonal_without_the_fix(self, mock_fix_diagonal): """test fails whenever _matches_list's number of self-joins is not equal to the number of strings""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['<NAME>'] matches = match_strings(df, max_n_matches=1) mock_fix_diagonal.assert_called_once() num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertNotEqual(num_self_joins, num_strings) def test_match_list_diagonal(self): """This test ensures that all self-joins are present""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['Customer Name'] matches = match_strings(df, max_n_matches=1) num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertEqual(num_self_joins, num_strings) def test_zero_min_similarity(self): """Since sparse matrices exclude zero elements, this test ensures that zero similarity matches are returned when min_similarity <= 0. A bug related to this was first pointed out by @nbcvijanovic""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.whatever_series_1 matches = match_strings(s_master, s_dup, min_similarity=0) pd.testing.assert_frame_equal(simple_example.expected_result_with_zeroes, matches) def test_zero_min_similarity_small_max_n_matches(self): """This test ensures that a warning is issued when n_max_matches is suspected to be too small while min_similarity <= 0 and include_zeroes is True""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.two_strings with self.assertRaises(Exception): _ = match_strings(s_master, s_dup, max_n_matches=1, min_similarity=0) def test_get_non_matches_empty_case(self): """This test ensures that _get_non_matches() returns an empty DataFrame when all pairs of strings match""" simple_example = SimpleExample() s_master = simple_example.a_few_strings s_dup = simple_example.one_string sg = StringGrouper(s_master, s_dup, max_n_matches=len(s_master), min_similarity=0).fit() self.assertTrue(sg._get_non_matches_list().empty) def test_n_grams_case_unchanged(self): """Should return all ngrams in a string with case""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit do not ignore case sg = StringGrouper(test_series, ignore_case=False) expected_result = ['McD', 'cDo', 'Don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit ignore case sg = StringGrouper(test_series, ignore_case=True) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower_with_defaults(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Implicit default case (i.e. default behaviour) sg = StringGrouper(test_series) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_build_matrix(self): """Should create a csr matrix only master""" test_series = pd.Series(['foo', 'bar', 'baz']) sg = StringGrouper(test_series) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() c = csr_matrix([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) np.testing.assert_array_equal(c.toarray(), master.toarray()) np.testing.assert_array_equal(c.toarray(), dupe.toarray()) def test_build_matrix_master_and_duplicates(self): """Should create a csr matrix for master and duplicates""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() master_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) dupes_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 0., 1., 0.]]) np.testing.assert_array_equal(master_expected.toarray(), master.toarray()) np.testing.assert_array_equal(dupes_expected.toarray(), dupe.toarray()) def test_build_matches(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() expected_matches = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) np.testing.assert_array_equal(expected_matches, sg._build_matches(master, dupe)[0].toarray()) def test_build_matches_list(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_case_insensitive_build_matches_list(self): """Should create the cosine similarity matrix of two case insensitive series""" test_series_1 = pd.Series(['foo', 'BAR', 'baz']) test_series_2 = pd.Series(['FOO', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_get_matches_two_dataframes(self): test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2).fit() left_side = ['foo', 'bar'] left_index = [0, 1] right_side = ['foo', 'bar'] right_index = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'similarity': similarity, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_single(self): test_series_1 = pd.Series(['foo', 'bar', 'baz', 'foo']) sg = StringGrouper(test_series_1) sg = sg.fit() left_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] right_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] left_index = [0, 3, 1, 2, 0, 3] right_index = [0, 0, 1, 2, 3, 3] similarity = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'similarity': similarity, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_1_series_1_id_series(self): test_series_1 = pd.Series(['foo', 'bar', 'baz', 'foo']) test_series_id_1 = pd.Series(['A0', 'A1', 'A2', 'A3']) sg = StringGrouper(test_series_1, master_id=test_series_id_1) sg = sg.fit() left_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] left_side_id = ['A0', 'A3', 'A1', 'A2', 'A0', 'A3'] left_index = [0, 3, 1, 2, 0, 3] right_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] right_side_id = ['A0', 'A0', 'A1', 'A2', 'A3', 'A3'] right_index = [0, 0, 1, 2, 3, 3] similarity = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'left_id': left_side_id, 'similarity': similarity, 'right_id': right_side_id, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_2_series_2_id_series(self): test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_id_1 = pd.Series(['A0', 'A1', 'A2']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) test_series_id_2 = pd.Series(['B0', 'B1', 'B2']) sg = StringGrouper(test_series_1, test_series_2, duplicates_id=test_series_id_2, master_id=test_series_id_1).fit() left_side = ['foo', 'bar'] left_side_id = ['A0', 'A1'] left_index = [0, 1] right_side = ['foo', 'bar'] right_side_id = ['B0', 'B1'] right_index = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'left_id': left_side_id, 'similarity': similarity, 'right_id': right_side_id, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_raises_exception_if_unexpected_options_given(self): # When the input id data does not correspond with its string data: test_series_1 = pd.Series(['foo', 'bar', 'baz']) bad_test_series_id_1 = pd.Series(['A0', 'A1']) good_test_series_id_1 = pd.Series(['A0', 'A1', 'A2']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) bad_test_series_id_2 = pd.Series(['B0', 'B1']) good_test_series_id_2 = pd.Series(['B0', 'B1', 'B2']) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, master_id=bad_test_series_id_1) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, duplicates=test_series_2, duplicates_id=bad_test_series_id_2, master_id=good_test_series_id_1) # When the input data is ok but the option combinations are invalid: with self.assertRaises(Exception): _ = StringGrouper(test_series_1, test_series_2, master_id=good_test_series_id_1) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, test_series_2, duplicates_id=good_test_series_id_2) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, duplicates_id=good_test_series_id_2) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, master_id=good_test_series_id_1, duplicates_id=good_test_series_id_2) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, master_id=good_test_series_id_1, ignore_index=True, replace_na=True) # Here we force an exception by making the number of index-levels of duplicates different from master: # and setting replace_na=True test_series_2.index = pd.MultiIndex.from_tuples(list(zip(list('ABC'), [0, 1, 2]))) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, duplicates=test_series_2, replace_na=True) def test_get_groups_single_df_group_rep_default(self): """Should return a pd.Series object with the same length as the original df. The series object will contain a list of the grouped strings""" simple_example = SimpleExample() customers_df = simple_example.customers_df pd.testing.assert_series_equal( simple_example.expected_result_centroid, group_similar_strings( customers_df['Customer Name'], min_similarity=0.6, ignore_index=True ) ) sg = StringGrouper(customers_df['Customer Name']) pd.testing.assert_series_equal( simple_example.expected_result_centroid, sg.group_similar_strings( customers_df['Customer Name'], min_similarity=0.6, ignore_index=True ) ) def test_get_groups_single_valued_series(self): """This test ensures that get_groups() returns a single-valued DataFrame or Series object since the input-series is also single-valued. This test was created in response to a bug discovered by <NAME>""" pd.testing.assert_frame_equal(
pd.DataFrame([(0, "hello")], columns=['group_rep_index', 'group_rep'])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta('-2days')]) assert_series_equal(result, expected) def test_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) datetime_series = Series([NaT, Timestamp('19900315')]) nat_series_dtype_timedelta = Series( [NaT, NaT], dtype='timedelta64[ns]') nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]') single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) assert_series_equal(datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + datetime_series assert_series_equal(datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 assert_series_equal(nat_series_dtype_timestamp - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + nat_series_dtype_timestamp assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) with tm.assertRaises(TypeError): timedelta_series - single_nat_dtype_datetime # addition assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp) # multiplication assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series * 1, timedelta_series) assert_series_equal(1 * timedelta_series, timedelta_series) assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) assert_series_equal(timedelta_series * nan, nat_series_dtype_timedelta) assert_series_equal(nan * timedelta_series, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): datetime_series * 1 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1 with tm.assertRaises(TypeError): datetime_series * 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1.0 # division assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / nan, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1 def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s, s2), (s2, s)]: self.assertRaises(TypeError, lambda: x == y) self.assertRaises(TypeError, lambda: x != y) self.assertRaises(TypeError, lambda: x >= y) self.assertRaises(TypeError, lambda: x > y) self.assertRaises(TypeError, lambda: x < y) self.assertRaises(TypeError, lambda: x <= y) def test_more_na_comparisons(self): for dtype in [None, object]: left = Series(['a', np.nan, 'c'], dtype=dtype) right = Series(['a', np.nan, 'd'], dtype=dtype) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_nat_comparisons(self): data = [([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.NaT, pd.NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')], [pd.NaT, pd.NaT, pd.Period('2011-03', freq='M')])] # add lhs / rhs switched data data = data + [(r, l) for l, r in data] for l, r in data: for dtype in [None, object]: left = Series(l, dtype=dtype) # Series, Index for right in [Series(r, dtype=dtype), Index(r, dtype=dtype)]: expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected = Series([False, False, False]) assert_series_equal(left < right, expected) expected = Series([False, False, False]) assert_series_equal(left > right, expected) expected = Series([False, False, True]) assert_series_equal(left >= right, expected) expected = Series([False, False, True]) assert_series_equal(left <= right, expected) def test_nat_comparisons_scalar(self): data = [[pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')]] for l in data: for dtype in [None, object]: left = Series(l, dtype=dtype) expected = Series([False, False, False]) assert_series_equal(left == pd.NaT, expected) assert_series_equal(pd.NaT == left, expected) expected = Series([True, True, True]) assert_series_equal(left != pd.NaT, expected) assert_series_equal(pd.NaT != left, expected) expected = Series([False, False, False]) assert_series_equal(left < pd.NaT, expected) assert_series_equal(pd.NaT > left, expected) assert_series_equal(left <= pd.NaT, expected) assert_series_equal(pd.NaT >= left, expected) assert_series_equal(left > pd.NaT, expected) assert_series_equal(pd.NaT < left, expected) assert_series_equal(left >= pd.NaT, expected)
assert_series_equal(pd.NaT <= left, expected)
pandas.util.testing.assert_series_equal
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import Pipeline from sklearn.externals import joblib from nltk import WordNetLemmatizer from nltk.corpus import stopwords as sw from nltk.corpus import wordnet as wn import nltk import string from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC from numpy import array import numpy as np import os.path from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import KFold, cross_val_predict from sklearn.naive_bayes import ComplementNB stopwords = set(sw.words('english')) stopwords_pt =set(sw.words('portuguese')) stopwords_sp =set(sw.words('spanish')) punct = set(string.punctuation) lemmatizer = WordNetLemmatizer() filename_sample_sheets = { 'Phenom': 'phenom_samples.xlsx', 'Legacy 500': 'legacy500_samples.xlsx', 'Legacy 600': 'legacy600_samples.xlsx', 'Lineage': 'lineage_samples.xlsx' } filename_accuracy_sheets = { 'Phenom': 'phenom_accuracies.xlsx', 'Legacy 500': 'legacy500_accuracies.xlsx', 'Legacy 600': 'legacy600_accuracies.xlsx', 'Lineage': 'lineage_accuracies.xlsx' } paths_pickles = { 'Phenom': '../../../../models/failcode/phenom_failcode_clf.pkl', 'Legacy 500': '../../../../models/failcode/legacy500_failcode_clf.pkl', 'Legacy 600': '../../../../models/failcode/legacy600_failcode_clf.pkl', 'Lineage': '../../../../models/failcode/lineage_failcode_clf.pkl' } def create_dict(): for f, t in zip(dictionary['ERRADO'], dictionary['CERTO']): my_dict[f] = t def replace_words(word): if my_dict.get(word): str = my_dict.get(word) else: str = word return str def inverse_transform(X): return [" ".join(doc) for doc in X] def transform(X): return [ list(tokenize(doc)) for doc in X ] def listarDocumentos(document): return document def tokenize(document): # Break the document into sentences for sent in nltk.sent_tokenize(document): # Break the sentence into part of speech tagged tokens for token, tag in nltk.pos_tag(nltk.wordpunct_tokenize(sent)): # Remove spaces before and after in string value token = token.strip() token = token.lower() token = replace_words(token) if token in stopwords: continue if token in stopwords_pt: continue if token in stopwords_sp: continue if all(char in punct for char in token): continue lemma = lemmatize(token, tag) yield lemma def lemmatize(token, tag): tag = { 'N': wn.NOUN, 'V': wn.VERB, 'R': wn.ADV, 'J': wn.ADJ }.get(tag[0], wn.NOUN) return WordNetLemmatizer().lemmatize(token, tag) def do_preprocessing(df): # data_preprocessing = df['PROBLEM DESCRIPTION'] data_preprocessing = transform(df) data_preprocessing = inverse_transform(data_preprocessing) data_preprocessing = array(data_preprocessing) data_preprocessing = pd.Series(data_preprocessing) return data_preprocessing def main(): global dictionary, my_dict, df_samples, predicted_data, df_test global dict_accuracies, dict_accuracies_excel, df_accuracy # Create the dictionary xls_dict =
pd.ExcelFile('../dictionary.xls')
pandas.ExcelFile
#!/usr/bin/env python3 # # This makes a dataframe containing a temporal average of navg last slices # ======================================================================== # # Imports # # ======================================================================== import os import re import glob import argparse import numpy as np import pandas as pd import utilities # ======================================================================== # # Function definitions # # ======================================================================== # ======================================================================== # # Main # # ======================================================================== if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="Average slices over time") parser.add_argument( "-f", "--folder", help="Folder where files are stored", type=str, required=True ) parser.add_argument( "-n", "--navg", help="Number of time steps to average over", type=int, default=1 ) args = parser.parse_args() # Setup fdir = os.path.abspath(args.folder) oname = os.path.join(fdir, "avg_slice.csv") prefix = "output" suffix = ".csv" # Get time steps, keep only last navg steps pattern = prefix + "*" + suffix fnames = sorted(glob.glob(os.path.join(fdir, pattern))) times = [] for fname in fnames: times.append(int(re.findall(r"\d+", fname)[-1])) times = np.unique(sorted(times))[-args.navg :] # Loop over each time step and get the dataframe lst = [] for time in times: pattern = prefix + "*" + str(time) + suffix fnames = sorted(glob.glob(os.path.join(fdir, pattern))) df = utilities.get_merged_csv(fnames) lst.append(df) df["time"] = time df =
pd.concat(lst, ignore_index=True)
pandas.concat
import sparse import numpy as np import pandas as pd from sklearn.impute import SimpleImputer from utils.clustering import * from utils.plots import * from lightgbm import LGBMClassifier def retransform(arr: np.array, df: pd.DataFrame) -> pd.DataFrame: """Helper for scikit learn preprocessing.""" return pd.DataFrame(arr, index=df.index, columns=df.columns) def impute(X, strategy, imputer=None): """Missing value imputer.""" if imputer: X = retransform(imputer.transform(X), X) else: imputer = SimpleImputer(strategy=strategy) X = retransform(imputer.fit_transform(X), X) return X, imputer def cwfs(K, partitions, df, X_tr, y_tr, tr, cv = None, plot_importance = False): """Cluster Weighted Feature Selection.""" sub_features = None plt = None ns = None if K != 'n_clusters': ## Determine the cluster importance using MDA. p = partitions.reset_index() p["index"] = ["feature_" + str(s) for s in p["index"].copy()] cs = p.groupby("cluster")["index"].apply(list) clusters = cs.to_dict() # Determine cluster importance imp_c = mda_clustered( LogisticRegression(max_iter=1000), df.iloc[tr], X_tr, y_tr, clusters, n_splits=5, cv = cv ) if plot_importance: plt = plot_cluster_importance(imp_c) # Determine how many features to pick from each cluster props = imp_c["mean"] / imp_c["mean"].sum() ns = np.round(props * K).astype(int) # Select important features and create reduced datasets sub_features = select_k_features(partitions, ns) else: # Select only the top feature w.r.t. importance from each cluster sub_features = (partitions.sort_values("importance", ascending=False) .groupby("cluster") .head(1)['feature']) return sub_features, ns, (plt, imp_c) def scfm(part_tr, X_tr_norm, X_te_norm, y_tr, agg, plot=False, verbose=False, seed=None): """Sub Cluster Feature Merging.""" # Compute subclusters X_tr_sc = {} X_te_sc = {} n_cl = np.unique(part_tr["cluster"]) for c in ( tqdm(n_cl) if verbose else n_cl ): ## Get features in cluster. f_in_c = part_tr.query(f"cluster == {c}")["feature"].values ## Clean corr matrix C_tr_star_clean = clean_matrix_(X_tr_norm[f_in_c]) ## Compute subclusters. sub_part_tr, _ = runN_Louvain(C_tr_star_clean, N=100, verbose=False, random_state=seed) ## Get original feature names back sub_part_tr["feature"] = part_tr.query(f"cluster == {c}")["feature"].values for sc in np.unique(sub_part_tr["cluster"]): f_sc = sub_part_tr.query(f"cluster == {sc}")["feature"].values X_tr_sc[f"cl{c}_subcl{sc}"] = agg(X_tr_norm[f_sc], axis=1) X_te_sc[f"cl{c}_subcl{sc}"] = agg(X_te_norm[f_sc], axis=1) # Convert dict to pandas df X_tr_sc = pd.DataFrame(X_tr_sc) X_te_sc =
pd.DataFrame(X_te_sc)
pandas.DataFrame
from enum import IntEnum import os import pandas as pd from pathlib import Path import time class outcome(IntEnum): UNCHANGED = 0 IMPROVED = 1 DETERIORATED = -1 class attribute: geneName = str variantNumber = int drugName = str outcome = str relation = bool sideEffect = bool def _type(self): return [_type for name, _type in (vars(self.__class__).items()) if not name.startswith("_")] def _name(self): return [name for name, _type in (vars(self.__class__).items()) if not name.startswith("_")] # def __init__(self): # self.geneName = str class fileReader: def __init__(self, input_dir, suffix=None): self.files = [] self.input_dir = input_dir self.suffix = suffix self.buffs = {} self.__loadfiles() self.data = None def __loadfiles(self): with os.scandir(self.input_dir) as it: for entry in it: if entry.is_file() and (os.path.splitext(entry.name)[1] == self.suffix or self.suffix == None): self.files.append(entry) def readfiles(self): # self.loadfiles() for f in self.files: with open(f, "r") as ifile: self.buffs[f.name] = ifile.readlines() return self.buffs def getFileNames(self): return [f.name for f in self.files] def getFilePathes(self): return [f.path for f in self.files] class database: def __init__(self, input_dir): freader = fileReader(input_dir, '.txt') buffs = freader.readfiles() col_names = attribute()._name() self.data = [] for f in freader.getFilePathes(): self.data.append(pd.read_csv(f, sep='\t', names=col_names)) self.data =
pd.concat(self.data, ignore_index=True)
pandas.concat
import pandas as pd import numpy as np # from pandas.core.tools.datetimes import normalize_date from pandas._libs import tslib from backend.robinhood_api import RobinhoodAPI class RobinhoodData: """ Wrapper to download orders and dividends from Robinhood accounts Downloads two dataframes and saves to datafile ---------- Parameters: datafile : location of h5 datafile """ def __init__(self, datafile): self.datafile = datafile def _login(self, user, password): self.client = RobinhoodAPI() # try import the module with passwords try: _temp = __import__('auth') self.client.login(_temp.local_user, _temp.local_password) except: self.client.login(username=user, password=password) return self # private method for getting all orders def _fetch_json_by_url(self, url): return self.client.session.get(url).json() # deleting sensitive or redundant fields def _delete_sensitive_fields(self, df): for col in ['account', 'url', 'id', 'instrument']: if col in df: del df[col] return df # download orders and fields requiring RB client def _download_orders(self): print("Downloading orders from Robinhood") orders = [] past_orders = self.client.order_history() orders.extend(past_orders['results']) while past_orders['next']: next_url = past_orders['next'] past_orders = self._fetch_json_by_url(next_url) orders.extend(past_orders['results']) df = pd.DataFrame(orders) df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='created_at', inplace=True) df.reset_index(inplace=True, drop=True) df_ord = self._delete_sensitive_fields(df) return df_ord # download dividends and fields requiring RB client def _download_dividends(self): print("Downloading dividends from Robinhood") dividends = self.client.dividends() dividends = [x for x in dividends['results']] df =
pd.DataFrame(dividends)
pandas.DataFrame
import asyncio import sys import random as rand import os from .integration_test_utils import setup_teardown_test, _generate_table_name, V3ioHeaders, V3ioError from storey import build_flow, CSVSource, CSVTarget, SyncEmitSource, Reduce, Map, FlatMap, AsyncEmitSource, ParquetTarget, ParquetSource, \ DataframeSource, ReduceToDataFrame import pandas as pd import aiohttp import pytest import v3io import uuid import datetime @pytest.fixture() def v3io_create_csv(): # Setup file_path = _generate_table_name('bigdata/csv_test') asyncio.run(_write_test_csv(file_path)) # Test runs yield file_path # Teardown asyncio.run(_delete_file(file_path)) @pytest.fixture() def v3io_teardown_file(): # Setup file_path = _generate_table_name('bigdata/csv_test') # Test runs yield file_path # Teardown asyncio.run(_delete_file(file_path)) async def _write_test_csv(file_path): connector = aiohttp.TCPConnector() v3io_access = V3ioHeaders() client_session = aiohttp.ClientSession(connector=connector) try: data = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" await client_session.put(f'{v3io_access._webapi_url}/{file_path}', data=data, headers=v3io_access._get_put_file_headers, ssl=False) finally: await client_session.close() async def _delete_file(path): connector = aiohttp.TCPConnector() v3io_access = V3ioHeaders() client_session = aiohttp.ClientSession(connector=connector) try: response = await client_session.delete(f'{v3io_access._webapi_url}/{path}', headers=v3io_access._get_put_file_headers, ssl=False) if response.status >= 300 and response.status != 404 and response.status != 409: body = await response.text() raise V3ioError(f'Failed to delete item at {path}. Response status code was {response.status}: {body}') finally: await client_session.close() def test_csv_reader_from_v3io(v3io_create_csv): controller = build_flow([ CSVSource(f'v3io:///{v3io_create_csv}', header=True), FlatMap(lambda x: x), Map(lambda x: int(x)), Reduce(0, lambda acc, x: acc + x), ]).run() termination_result = controller.await_termination() assert termination_result == 495 def test_csv_reader_from_v3io_error_on_file_not_found(): controller = build_flow([ CSVSource('v3io:///bigdatra/tests/idontexist.csv', header=True), ]).run() try: controller.await_termination() assert False except FileNotFoundError: pass async def async_test_write_csv_to_v3io(v3io_teardown_csv): controller = build_flow([ AsyncEmitSource(), CSVTarget(f'v3io:///{v3io_teardown_csv}', columns=['n', 'n*10'], header=True) ]).run() for i in range(10): await controller.emit([i, 10 * i]) await controller.terminate() await controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.aio.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_csv.split('/', 1) result = await v3io_client.object.get(container, path) finally: await v3io_client.close() expected = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert result.body.decode("utf-8") == expected def test_write_csv_to_v3io(v3io_teardown_file): asyncio.run(async_test_write_csv_to_v3io(v3io_teardown_file)) def test_write_csv_with_dict_to_v3io(v3io_teardown_file): file_path = f'v3io:///{v3io_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, columns=['n', 'n*10'], header=True) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}) controller.terminate() controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_file.split('/', 1) result = v3io_client.object.get(container, path) finally: v3io_client.close() expected = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert result.body.decode("utf-8") == expected def test_write_csv_infer_columns_without_header_to_v3io(v3io_teardown_file): file_path = f'v3io:///{v3io_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}) controller.terminate() controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_file.split('/', 1) result = v3io_client.object.get(container, path) finally: v3io_client.close() expected = "0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert result.body.decode("utf-8") == expected def test_write_csv_from_lists_with_metadata_and_column_pruning_to_v3io(v3io_teardown_file): file_path = f'v3io:///{v3io_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, columns=['event_key=$key', 'n*10'], header=True) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}, key=f'key{i}') controller.terminate() controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_file.split('/', 1) result = v3io_client.object.get(container, path) finally: v3io_client.close() expected = "event_key,n*10\nkey0,0\nkey1,10\nkey2,20\nkey3,30\nkey4,40\nkey5,50\nkey6,60\nkey7,70\nkey8,80\nkey9,90\n" assert result.body.decode("utf-8") == expected def test_write_to_parquet_to_v3io(setup_teardown_test): out_dir = f'v3io:///{setup_teardown_test}' columns = ['my_int', 'my_string'] controller = build_flow([ SyncEmitSource(), ParquetTarget(out_dir, partition_cols='my_int', columns=columns, max_events=1) ]).run() expected = [] for i in range(10): controller.emit([i, f'this is {i}']) expected.append([i, f'this is {i}']) expected_in_pyarrow1 = pd.DataFrame(expected, columns=columns) expected_in_pyarrow3 = expected_in_pyarrow1.copy() expected_in_pyarrow1['my_int'] = expected_in_pyarrow1['my_int'].astype('int32') expected_in_pyarrow3['my_int'] = expected_in_pyarrow3['my_int'].astype('category') controller.terminate() controller.await_termination() read_back_df = pd.read_parquet(out_dir, columns=columns) assert read_back_df.equals(expected_in_pyarrow1) or read_back_df.equals(expected_in_pyarrow3) def test_write_to_parquet_to_v3io_single_file_on_termination(setup_teardown_test): out_file = f'v3io:///{setup_teardown_test}/out.parquet' columns = ['my_int', 'my_string'] controller = build_flow([ SyncEmitSource(), ParquetTarget(out_file, columns=columns) ]).run() expected = [] for i in range(10): controller.emit([i, f'this is {i}']) expected.append([i, f'this is {i}']) expected = pd.DataFrame(expected, columns=columns, dtype='int64') controller.terminate() controller.await_termination() read_back_df = pd.read_parquet(out_file, columns=columns) assert read_back_df.equals(expected), f"{read_back_df}\n!=\n{expected}" # ML-775 def test_write_to_parquet_key_hash_partitioning(setup_teardown_test): out_dir = f'v3io:///{setup_teardown_test}/test_write_to_parquet_default_partitioning{uuid.uuid4().hex}/' controller = build_flow([ SyncEmitSource(key_field=1), ParquetTarget(out_dir, columns=['my_int', 'my_string'], partition_cols=[('$key', 4)]) ]).run() expected = [] expected_buckets = [3, 0, 1, 3, 0, 3, 1, 1, 1, 2] for i in range(10): controller.emit([i, f'this is {i}']) expected.append([i, f'this is {i}', expected_buckets[i]]) expected = pd.DataFrame(expected, columns=['my_int', 'my_string', 'hash4_key']) controller.terminate() controller.await_termination() read_back_df = pd.read_parquet(out_dir) read_back_df['hash4_key'] = read_back_df['hash4_key'].astype('int64') read_back_df.sort_values('my_int', inplace=True) read_back_df.reset_index(inplace=True, drop=True) assert read_back_df.equals(expected), f"{read_back_df}\n!=\n{expected}" # ML-701 def test_write_to_parquet_to_v3io_force_string_to_timestamp(setup_teardown_test): out_file = f'v3io:///{setup_teardown_test}/out.parquet' columns = ['time'] controller = build_flow([ SyncEmitSource(), ParquetTarget(out_file, columns=[('time', 'datetime')]) ]).run() expected = [] for i in range(10): t = '2021-03-02T19:45:00' controller.emit([t]) expected.append([datetime.datetime.fromisoformat(t)]) expected = pd.DataFrame(expected, columns=columns) controller.terminate() controller.await_termination() read_back_df = pd.read_parquet(out_file, columns=columns) assert read_back_df.equals(expected) def test_write_to_parquet_to_v3io_with_indices(setup_teardown_test): out_file = f'v3io:///{setup_teardown_test}/test_write_to_parquet_with_indices{uuid.uuid4().hex}.parquet' controller = build_flow([ SyncEmitSource(), ParquetTarget(out_file, index_cols='event_key=$key', columns=['my_int', 'my_string']) ]).run() expected = [] for i in range(10): controller.emit([i, f'this is {i}'], key=f'key{i}') expected.append([f'key{i}', i, f'this is {i}']) columns = ['event_key', 'my_int', 'my_string'] expected = pd.DataFrame(expected, columns=columns, dtype='int64') expected.set_index(['event_key'], inplace=True) controller.terminate() controller.await_termination() read_back_df =
pd.read_parquet(out_file, columns=columns)
pandas.read_parquet
from typing import List import pandas as pd from matplotlib import pyplot as plt import mundi import sidekick as sk from mundi import Region from pydemic.utils import fmt, pc from pydemic_ui import st from pydemic_ui.app import SimpleApp from pydemic_ui.apps.sitrep import abstract, cases_or_deaths, cases_plot from pydemic_ui.i18n import _, __ APPS = { "abstract": abstract, "cases_or_deaths": cases_or_deaths, "cases_plot": cases_plot, } class ReportCasesTableApp(SimpleApp): """ A simple table-centric situation report. It shows the number of cases and deaths in the last 14 and 28 days for each sub-region in the selected query. """ message = __( """ The highest increase in the reported case rate in the last 14 days was observed in the {self.max_cases_region} region, followed by the {self.other_cases_regions} regions. The highest increase in the mortality rate in the last 14 days was observed in the {self.max_deaths_region}, followed by the {self.other_deaths_regions} regions. """ ) mundi_query = {"country_code": "BR", "type": "state"} @sk.lazy def regions(self) -> List[Region]: """ Return a list of regions """ return regions(**self.mundi_query) @sk.lazy def tables(self): """ Compute tables by state and by region. """ def get_data(rs): data = [*map(info, rs)] index = [r.id for r in rs] data = pd.DataFrame(data, index=index) data.columns = pd.MultiIndex.from_tuples(data.columns) dtypes = {col: float for col in data.dtypes.keys()} dtypes["", "name"] = str return data.astype(dtypes) parent_ids = sorted({r.parent_id for r in self.regions}) parents = [*map(mundi.region, parent_ids)] return get_data(parents), get_data(self.regions) def _max_region(self, col): data, _ = self.tables names = data[col].sort_values() return mundi.region(names.index[-1]).name def _other_regions(self, col): data, _ = self.tables names = data.sort_values(col).mundi["name"] *other, last = names.iloc[1:] other = ", ".join(other) if other: return _(" and ").join([other, last]) return last @sk.lazy @sk.ignore_error(AttributeError, handler=str) def max_cases_region(self): return self._max_region(("14 days", "cases")) @sk.lazy @sk.ignore_error(AttributeError, handler=str) def max_deaths_region(self): return self._max_region(("14 days", "deaths")) @sk.lazy @sk.ignore_error(AttributeError, handler=str) def other_cases_regions(self): return self._other_regions(("14 days", "cases")) @sk.lazy @sk.ignore_error(AttributeError, handler=str) def other_deaths_regions(self): return self._other_regions(("14 days", "deaths")) def ask(self): ... def show(self): by_region, by_state = self.tables self.st.markdown(self.message.format(self=self)) self.st.subheader(_("Epidemic situation, by region")) self.st.markdown(_("Cases and deaths by 100k people.")) self.show_table(by_region) self.st.subheader(_("Epidemic situation, by state")) self.st.markdown(_("Cases and deaths by 100k people.")) self.show_table(by_state) def show_table(self, data): self.st.write( data.style_dataframe.format(fmt) .format({("increase", x): pc for x in ["cases", "deaths"]}) .highlight_max(axis=0, color="red") .highlight_min(axis=0, color="green") ) def groupby_parent(data, column="parent_id"): parents_col = pd.DataFrame({column: parents(data.index)}) new =
pd.concat([data, parents_col], axis=1)
pandas.concat
# coding: utf-8 # In[1]: import pandas as pd tweets =
pd.read_csv("tweets.csv")
pandas.read_csv
import sys import pandas as pd import numpy as np from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' Load messages and categories files from a csv to a dataframe, merge them togheter and return the dataframe Attributes: messages_filepath = fullpath including filename categories_filepath = fullpath including filename ''' messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) df = messages.merge(categories, how='left', on='id') return df def clean_data(df): ''' Clean and transform the dataframe to expand the categories into individual columns Attributes: df = merged dataframe ''' # create a dataframe of the 36 individual category columns categories = df['categories'].str.split(';', expand=True) names = list(categories.iloc[0,:].str[:-2]) categories.columns = names categories = categories.apply(lambda x: x.str[-1], axis=1) categories = categories.apply(pd.to_numeric, axis=1) categories['related'].replace(2, 1, inplace=True) #replace 2 by 1 # drop the original categories column from `df` df.drop(columns=['categories'], inplace=True) # concatenate the original dataframe with the new `categories` dataframe cleaned_df =
pd.concat([df, categories], axis=1)
pandas.concat
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64'), columns=wrapper.columns ) ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: ma = mapped_array_nosort ma_grouped = mapped_array_nosort_grouped else: ma = mapped_array ma_grouped = mapped_array_grouped np.testing.assert_array_equal( ma['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( ma['a'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) np.testing.assert_array_equal( ma['b'].id_arr, np.array([3, 4, 5]) ) np.testing.assert_array_equal( ma['b'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'a']].id_arr, np.array([0, 1, 2, 0, 1, 2]) ) np.testing.assert_array_equal( ma[['a', 'a']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'b']].id_arr, np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( ma[['a', 'b']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = ma.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped['g1'].wrapper.ndim == 2 assert ma_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert ma_grouped['g2'].wrapper.ndim == 2 assert ma_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped[['g1']].wrapper.ndim == 2 assert ma_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert ma_grouped[['g1', 'g2']].wrapper.ndim == 2 assert ma_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_magic(self): a = vbt.MappedArray( wrapper, records_arr['some_field1'], records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) a_inv = vbt.MappedArray( wrapper, records_arr['some_field1'][::-1], records_arr['col'][::-1], id_arr=records_arr['id'][::-1], idx_arr=records_arr['idx'][::-1] ) b = records_arr['some_field2'] a_bool = vbt.MappedArray( wrapper, records_arr['some_field1'] > np.mean(records_arr['some_field1']), records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) b_bool = records_arr['some_field2'] > np.mean(records_arr['some_field2']) assert a ** a == a ** 2 with pytest.raises(Exception): _ = a * a_inv # binary ops # comparison ops np.testing.assert_array_equal((a == b).values, a.values == b) np.testing.assert_array_equal((a != b).values, a.values != b) np.testing.assert_array_equal((a < b).values, a.values < b) np.testing.assert_array_equal((a > b).values, a.values > b) np.testing.assert_array_equal((a <= b).values, a.values <= b) np.testing.assert_array_equal((a >= b).values, a.values >= b) # arithmetic ops np.testing.assert_array_equal((a + b).values, a.values + b) np.testing.assert_array_equal((a - b).values, a.values - b) np.testing.assert_array_equal((a * b).values, a.values * b) np.testing.assert_array_equal((a ** b).values, a.values ** b) np.testing.assert_array_equal((a % b).values, a.values % b) np.testing.assert_array_equal((a // b).values, a.values // b) np.testing.assert_array_equal((a / b).values, a.values / b) # __r*__ is only called if the left object does not have an __*__ method np.testing.assert_array_equal((10 + a).values, 10 + a.values) np.testing.assert_array_equal((10 - a).values, 10 - a.values) np.testing.assert_array_equal((10 * a).values, 10 * a.values) np.testing.assert_array_equal((10 ** a).values, 10 ** a.values) np.testing.assert_array_equal((10 % a).values, 10 % a.values) np.testing.assert_array_equal((10 // a).values, 10 // a.values) np.testing.assert_array_equal((10 / a).values, 10 / a.values) # mask ops np.testing.assert_array_equal((a_bool & b_bool).values, a_bool.values & b_bool) np.testing.assert_array_equal((a_bool | b_bool).values, a_bool.values | b_bool) np.testing.assert_array_equal((a_bool ^ b_bool).values, a_bool.values ^ b_bool) np.testing.assert_array_equal((True & a_bool).values, True & a_bool.values) np.testing.assert_array_equal((True | a_bool).values, True | a_bool.values) np.testing.assert_array_equal((True ^ a_bool).values, True ^ a_bool.values) # unary ops np.testing.assert_array_equal((-a).values, -a.values) np.testing.assert_array_equal((+a).values, +a.values) np.testing.assert_array_equal((abs(-a)).values, abs((-a.values))) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Mean', 'Std', 'Min', 'Median', 'Max', 'Min Index', 'Max Index' ], dtype='object') pd.testing.assert_series_equal( mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 11.777777777777779, 0.859116756396542, 11.0, 11.666666666666666, 12.666666666666666 ], index=stats_index[:-2], name='agg_func_mean' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 11.0, 1.0, 10.0, 11.0, 12.0, 'x', 'z' ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 12.166666666666666, 1.4719601443879746, 10.0, 12.5, 14.0, 'x', 'y' ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_stats_mapping(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Value Counts: test_10.0', 'Value Counts: test_11.0', 'Value Counts: test_12.0', 'Value Counts: test_13.0', 'Value Counts: test_14.0' ], dtype='object') pd.testing.assert_series_equal( mp_mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 0.5, 0.5, 0.5, 0.5, 0.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 1, 1, 1, 0, 0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 1, 1, 1, 2, 1 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(), mapped_array.stats(settings=dict(mapping=mapping)) ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mp_mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 9) pd.testing.assert_index_equal(stats_df.index, mp_mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# base.py ############# # class TestRecords: def test_config(self, tmp_path): assert vbt.Records.loads(records['a'].dumps()) == records['a'] assert vbt.Records.loads(records.dumps()) == records records.save(tmp_path / 'records') assert vbt.Records.load(tmp_path / 'records') == records def test_records(self): pd.testing.assert_frame_equal( records.records, pd.DataFrame.from_records(records_arr) ) def test_recarray(self): np.testing.assert_array_equal(records['a'].recarray.some_field1, records['a'].values['some_field1']) np.testing.assert_array_equal(records.recarray.some_field1, records.values['some_field1']) def test_records_readable(self): pd.testing.assert_frame_equal( records.records_readable, pd.DataFrame([ [0, 'a', 'x', 10.0, 21.0], [1, 'a', 'y', 11.0, 20.0], [2, 'a', 'z', 12.0, 19.0], [3, 'b', 'x', 13.0, 18.0], [4, 'b', 'y', 14.0, 17.0], [5, 'b', 'z', 13.0, 18.0], [6, 'c', 'x', 12.0, 19.0], [7, 'c', 'y', 11.0, 20.0], [8, 'c', 'z', 10.0, 21.0] ], columns=pd.Index(['Id', 'Column', 'Timestamp', 'some_field1', 'some_field2'], dtype='object')) ) def test_is_sorted(self): assert records.is_sorted() assert records.is_sorted(incl_id=True) assert not records_nosort.is_sorted() assert not records_nosort.is_sorted(incl_id=True) def test_sort(self): assert records.sort().is_sorted() assert records.sort().is_sorted(incl_id=True) assert records.sort(incl_id=True).is_sorted(incl_id=True) assert records_nosort.sort().is_sorted() assert records_nosort.sort().is_sorted(incl_id=True) assert records_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = records['a'].values['some_field1'] >= records['a'].values['some_field1'].mean() record_arrays_close( records['a'].apply_mask(mask_a).values, np.array([ (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) mask = records.values['some_field1'] >= records.values['some_field1'].mean() filtered = records.apply_mask(mask) record_arrays_close( filtered.values, np.array([ (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.), (6, 2, 0, 12., 19.) ], dtype=example_dt) ) assert records_grouped.apply_mask(mask).wrapper == records_grouped.wrapper def test_map_field(self): np.testing.assert_array_equal( records['a'].map_field('some_field1').values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( records.map_field('some_field1').values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) assert records_grouped.map_field('some_field1').wrapper == \ records.map_field('some_field1', group_by=group_by).wrapper assert records_grouped.map_field('some_field1', group_by=False).wrapper.grouper.group_by is None def test_map(self): @njit def map_func_nb(record): return record['some_field1'] + record['some_field2'] np.testing.assert_array_equal( records['a'].map(map_func_nb).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map(map_func_nb).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map(map_func_nb).wrapper == \ records.map(map_func_nb, group_by=group_by).wrapper assert records_grouped.map(map_func_nb, group_by=False).wrapper.grouper.group_by is None def test_map_array(self): arr = records_arr['some_field1'] + records_arr['some_field2'] np.testing.assert_array_equal( records['a'].map_array(arr[:3]).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map_array(arr).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map_array(arr).wrapper == \ records.map_array(arr, group_by=group_by).wrapper assert records_grouped.map_array(arr, group_by=False).wrapper.grouper.group_by is None def test_apply(self): @njit def cumsum_apply_nb(records): return np.cumsum(records['some_field1']) np.testing.assert_array_equal( records['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( records.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert records_grouped.apply(cumsum_apply_nb).wrapper == \ records.apply(cumsum_apply_nb, group_by=group_by).wrapper assert records_grouped.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_count(self): assert records['a'].count() == 3 pd.testing.assert_series_equal( records.count(), pd.Series( np.array([3, 3, 3, 0]), index=wrapper.columns ).rename('count') ) assert records_grouped['g1'].count() == 6 pd.testing.assert_series_equal( records_grouped.count(), pd.Series( np.array([6, 3]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('count') ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: r = records_nosort r_grouped = records_nosort_grouped else: r = records r_grouped = records_grouped record_arrays_close( r['a'].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) pd.testing.assert_index_equal( r['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) record_arrays_close( r[['a', 'a']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (0, 1, 0, 10., 21.), (1, 1, 1, 11., 20.), (2, 1, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) record_arrays_close( r[['a', 'b']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = r.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( r_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped['g1'].wrapper.ndim == 2 assert r_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( r_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert r_grouped['g2'].wrapper.ndim == 2 assert r_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( r_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped[['g1']].wrapper.ndim == 2 assert r_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( r_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( r_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert r_grouped[['g1', 'g2']].wrapper.ndim == 2 assert r_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( r_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_filtering(self): filtered_records = vbt.Records(wrapper, records_arr[[0, -1]]) record_arrays_close( filtered_records.values, np.array([(0, 0, 0, 10., 21.), (8, 2, 2, 10., 21.)], dtype=example_dt) ) # a record_arrays_close( filtered_records['a'].values, np.array([(0, 0, 0, 10., 21.)], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['a'].map_field('some_field1').id_arr, np.array([0]) ) assert filtered_records['a'].map_field('some_field1').min() == 10. assert filtered_records['a'].count() == 1. # b record_arrays_close( filtered_records['b'].values, np.array([], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['b'].map_field('some_field1').id_arr, np.array([]) ) assert np.isnan(filtered_records['b'].map_field('some_field1').min()) assert filtered_records['b'].count() == 0. # c record_arrays_close( filtered_records['c'].values, np.array([(8, 0, 2, 10., 21.)], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['c'].map_field('some_field1').id_arr, np.array([8]) ) assert filtered_records['c'].map_field('some_field1').min() == 10. assert filtered_records['c'].count() == 1. # d record_arrays_close( filtered_records['d'].values, np.array([], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['d'].map_field('some_field1').id_arr, np.array([]) ) assert np.isnan(filtered_records['d'].map_field('some_field1').min()) assert filtered_records['d'].count() == 0. def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count' ], dtype='object') pd.testing.assert_series_equal( records.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( records.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( records.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( records['c'].stats(), records.stats(column='c') ) pd.testing.assert_series_equal( records['c'].stats(), records.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( records_grouped['g2'].stats(), records_grouped.stats(column='g2') ) pd.testing.assert_series_equal( records_grouped['g2'].stats(), records.stats(column='g2', group_by=group_by) ) stats_df = records.stats(agg_func=None) assert stats_df.shape == (4, 4) pd.testing.assert_index_equal(stats_df.index, records.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# ranges.py ############# # ts = pd.DataFrame({ 'a': [1, -1, 3, -1, 5, -1], 'b': [-1, -1, -1, 4, 5, 6], 'c': [1, 2, 3, -1, -1, -1], 'd': [-1, -1, -1, -1, -1, -1] }, index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6) ]) ranges = vbt.Ranges.from_ts(ts, wrapper_kwargs=dict(freq='1 days')) ranges_grouped = vbt.Ranges.from_ts(ts, wrapper_kwargs=dict(freq='1 days', group_by=group_by)) class TestRanges: def test_mapped_fields(self): for name in range_dt.names: np.testing.assert_array_equal( getattr(ranges, name).values, ranges.values[name] ) def test_from_ts(self): record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 2, 3, 1), (2, 0, 4, 5, 1), (3, 1, 3, 5, 0), (4, 2, 0, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper.freq == day_dt pd.testing.assert_index_equal( ranges_grouped.wrapper.grouper.group_by, group_by ) def test_records_readable(self): records_readable = ranges.records_readable np.testing.assert_array_equal( records_readable['Range Id'].values, np.array([ 0, 1, 2, 3, 4 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'b', 'c' ]) ) np.testing.assert_array_equal( records_readable['Start Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-01T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['End Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-04T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Closed', 'Closed', 'Closed', 'Open', 'Closed' ]) ) def test_to_mask(self): pd.testing.assert_series_equal( ranges['a'].to_mask(), ts['a'] != -1 ) pd.testing.assert_frame_equal( ranges.to_mask(), ts != -1 ) pd.testing.assert_frame_equal( ranges_grouped.to_mask(), pd.DataFrame( [ [True, True], [False, True], [True, True], [True, False], [True, False], [True, False] ], index=ts.index, columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_duration(self): np.testing.assert_array_equal( ranges['a'].duration.values, np.array([1, 1, 1]) ) np.testing.assert_array_equal( ranges.duration.values, np.array([1, 1, 1, 3, 3]) ) def test_avg_duration(self): assert ranges['a'].avg_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( ranges.avg_duration(), pd.Series( np.array([86400000000000, 259200000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('avg_duration') ) pd.testing.assert_series_equal( ranges_grouped.avg_duration(), pd.Series( np.array([129600000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_duration') ) def test_max_duration(self): assert ranges['a'].max_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( ranges.max_duration(), pd.Series( np.array([86400000000000, 259200000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('max_duration') ) pd.testing.assert_series_equal( ranges_grouped.max_duration(), pd.Series( np.array([259200000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_duration') ) def test_coverage(self): assert ranges['a'].coverage() == 0.5 pd.testing.assert_series_equal( ranges.coverage(), pd.Series( np.array([0.5, 0.5, 0.5, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.coverage(), ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage() ) pd.testing.assert_series_equal( ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage(overlapping=True), pd.Series( np.array([1.0, 1.0, 1.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.coverage(normalize=False), pd.Series( np.array([3.0, 3.0, 3.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage(overlapping=True, normalize=False), pd.Series( np.array([3.0, 3.0, 3.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges_grouped.coverage(), pd.Series( np.array([0.4166666666666667, 0.25]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('coverage') ) pd.testing.assert_series_equal( ranges_grouped.coverage(), ranges_grouped.replace(records_arr=np.repeat(ranges_grouped.values, 2)).coverage() ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Coverage', 'Overlap Coverage', 'Total Records', 'Duration: Min', 'Duration: Median', 'Duration: Max', 'Duration: Mean', 'Duration: Std' ], dtype='object') pd.testing.assert_series_equal( ranges.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 1.25, pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 08:00:00'), pd.Timedelta('0 days 00:00:00') ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( ranges.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 3, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00') ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( ranges.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), pd.Timedelta('5 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 4, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('1 days 12:00:00'), pd.Timedelta('1 days 00:00:00') ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( ranges['c'].stats(), ranges.stats(column='c') ) pd.testing.assert_series_equal( ranges['c'].stats(), ranges.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( ranges_grouped['g2'].stats(), ranges_grouped.stats(column='g2') ) pd.testing.assert_series_equal( ranges_grouped['g2'].stats(), ranges.stats(column='g2', group_by=group_by) ) stats_df = ranges.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, ranges.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# drawdowns.py ############# # ts2 = pd.DataFrame({ 'a': [2, 1, 3, 1, 4, 1], 'b': [1, 2, 1, 3, 1, 4], 'c': [1, 2, 3, 2, 1, 2], 'd': [1, 2, 3, 4, 5, 6] }, index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6) ]) drawdowns = vbt.Drawdowns.from_ts(ts2, wrapper_kwargs=dict(freq='1 days')) drawdowns_grouped = vbt.Drawdowns.from_ts(ts2, wrapper_kwargs=dict(freq='1 days', group_by=group_by)) class TestDrawdowns: def test_mapped_fields(self): for name in drawdown_dt.names: np.testing.assert_array_equal( getattr(drawdowns, name).values, drawdowns.values[name] ) def test_ts(self): pd.testing.assert_frame_equal( drawdowns.ts, ts2 ) pd.testing.assert_series_equal( drawdowns['a'].ts, ts2['a'] ) pd.testing.assert_frame_equal( drawdowns_grouped['g1'].ts, ts2[['a', 'b']] ) assert drawdowns.replace(ts=None)['a'].ts is None def test_from_ts(self): record_arrays_close( drawdowns.values, np.array([ (0, 0, 0, 1, 1, 2, 2.0, 1.0, 3.0, 1), (1, 0, 2, 3, 3, 4, 3.0, 1.0, 4.0, 1), (2, 0, 4, 5, 5, 5, 4.0, 1.0, 1.0, 0), (3, 1, 1, 2, 2, 3, 2.0, 1.0, 3.0, 1), (4, 1, 3, 4, 4, 5, 3.0, 1.0, 4.0, 1), (5, 2, 2, 3, 4, 5, 3.0, 1.0, 2.0, 0) ], dtype=drawdown_dt) ) assert drawdowns.wrapper.freq == day_dt pd.testing.assert_index_equal( drawdowns_grouped.wrapper.grouper.group_by, group_by ) def test_records_readable(self): records_readable = drawdowns.records_readable np.testing.assert_array_equal( records_readable['Drawdown Id'].values, np.array([ 0, 1, 2, 3, 4, 5 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'b', 'b', 'c' ]) ) np.testing.assert_array_equal( records_readable['Peak Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-03T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Start Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-04T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Valley Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-05T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['End Timestamp'].values, np.array([ '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-06T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Peak Value'].values, np.array([ 2., 3., 4., 2., 3., 3. ]) ) np.testing.assert_array_equal( records_readable['Valley Value'].values, np.array([ 1., 1., 1., 1., 1., 1. ]) ) np.testing.assert_array_equal( records_readable['End Value'].values, np.array([ 3., 4., 1., 3., 4., 2. ]) ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Recovered', 'Recovered', 'Active', 'Recovered', 'Recovered', 'Active' ]) ) def test_drawdown(self): np.testing.assert_array_almost_equal( drawdowns['a'].drawdown.values, np.array([-0.5, -0.66666667, -0.75]) ) np.testing.assert_array_almost_equal( drawdowns.drawdown.values, np.array([-0.5, -0.66666667, -0.75, -0.5, -0.66666667, -0.66666667]) ) pd.testing.assert_frame_equal( drawdowns.drawdown.to_pd(), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [-0.5, np.nan, np.nan, np.nan], [np.nan, -0.5, np.nan, np.nan], [-0.66666669, np.nan, np.nan, np.nan], [-0.75, -0.66666669, -0.66666669, np.nan] ]), index=ts2.index, columns=ts2.columns ) ) def test_avg_drawdown(self): assert drawdowns['a'].avg_drawdown() == -0.6388888888888888 pd.testing.assert_series_equal( drawdowns.avg_drawdown(), pd.Series( np.array([-0.63888889, -0.58333333, -0.66666667, np.nan]), index=wrapper.columns ).rename('avg_drawdown') ) pd.testing.assert_series_equal( drawdowns_grouped.avg_drawdown(), pd.Series( np.array([-0.6166666666666666, -0.6666666666666666]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_drawdown') ) def test_max_drawdown(self): assert drawdowns['a'].max_drawdown() == -0.75 pd.testing.assert_series_equal( drawdowns.max_drawdown(), pd.Series( np.array([-0.75, -0.66666667, -0.66666667, np.nan]), index=wrapper.columns ).rename('max_drawdown') ) pd.testing.assert_series_equal( drawdowns_grouped.max_drawdown(), pd.Series( np.array([-0.75, -0.6666666666666666]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_drawdown') ) def test_recovery_return(self): np.testing.assert_array_almost_equal( drawdowns['a'].recovery_return.values, np.array([2., 3., 0.]) ) np.testing.assert_array_almost_equal( drawdowns.recovery_return.values, np.array([2., 3., 0., 2., 3., 1.]) ) pd.testing.assert_frame_equal( drawdowns.recovery_return.to_pd(), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [2.0, np.nan, np.nan, np.nan], [np.nan, 2.0, np.nan, np.nan], [3.0, np.nan, np.nan, np.nan], [0.0, 3.0, 1.0, np.nan] ]), index=ts2.index, columns=ts2.columns ) ) def test_avg_recovery_return(self): assert drawdowns['a'].avg_recovery_return() == 1.6666666666666667 pd.testing.assert_series_equal( drawdowns.avg_recovery_return(), pd.Series( np.array([1.6666666666666667, 2.5, 1.0, np.nan]), index=wrapper.columns ).rename('avg_recovery_return') ) pd.testing.assert_series_equal( drawdowns_grouped.avg_recovery_return(), pd.Series( np.array([2.0, 1.0]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_recovery_return') ) def test_max_recovery_return(self): assert drawdowns['a'].max_recovery_return() == 3.0 pd.testing.assert_series_equal( drawdowns.max_recovery_return(), pd.Series( np.array([3.0, 3.0, 1.0, np.nan]), index=wrapper.columns ).rename('max_recovery_return') ) pd.testing.assert_series_equal( drawdowns_grouped.max_recovery_return(), pd.Series( np.array([3.0, 1.0]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_recovery_return') ) def test_duration(self): np.testing.assert_array_almost_equal( drawdowns['a'].duration.values, np.array([1, 1, 1]) ) np.testing.assert_array_almost_equal( drawdowns.duration.values, np.array([1, 1, 1, 1, 1, 3]) ) def test_avg_duration(self): assert drawdowns['a'].avg_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( drawdowns.avg_duration(), pd.Series( np.array([86400000000000, 86400000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('avg_duration') ) pd.testing.assert_series_equal( drawdowns_grouped.avg_duration(), pd.Series( np.array([86400000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_duration') ) def test_max_duration(self): assert drawdowns['a'].max_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( drawdowns.max_duration(), pd.Series( np.array([86400000000000, 86400000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('max_duration') ) pd.testing.assert_series_equal( drawdowns_grouped.max_duration(), pd.Series( np.array([86400000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_duration') ) def test_coverage(self): assert drawdowns['a'].coverage() == 0.5 pd.testing.assert_series_equal( drawdowns.coverage(), pd.Series( np.array([0.5, 0.3333333333333333, 0.5, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( drawdowns_grouped.coverage(), pd.Series( np.array([0.4166666666666667, 0.25]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('coverage') ) def test_decline_duration(self): np.testing.assert_array_almost_equal( drawdowns['a'].decline_duration.values, np.array([1., 1., 1.]) ) np.testing.assert_array_almost_equal( drawdowns.decline_duration.values, np.array([1., 1., 1., 1., 1., 2.]) ) def test_recovery_duration(self): np.testing.assert_array_almost_equal( drawdowns['a'].recovery_duration.values, np.array([1, 1, 0]) ) np.testing.assert_array_almost_equal( drawdowns.recovery_duration.values, np.array([1, 1, 0, 1, 1, 1]) ) def test_recovery_duration_ratio(self): np.testing.assert_array_almost_equal( drawdowns['a'].recovery_duration_ratio.values, np.array([1., 1., 0.]) ) np.testing.assert_array_almost_equal( drawdowns.recovery_duration_ratio.values, np.array([1., 1., 0., 1., 1., 0.5]) ) def test_active_records(self): assert isinstance(drawdowns.active, vbt.Drawdowns) assert drawdowns.active.wrapper == drawdowns.wrapper record_arrays_close( drawdowns['a'].active.values, np.array([ (2, 0, 4, 5, 5, 5, 4., 1., 1., 0) ], dtype=drawdown_dt) ) record_arrays_close( drawdowns['a'].active.values, drawdowns.active['a'].values ) record_arrays_close( drawdowns.active.values, np.array([ (2, 0, 4, 5, 5, 5, 4.0, 1.0, 1.0, 0), (5, 2, 2, 3, 4, 5, 3.0, 1.0, 2.0, 0) ], dtype=drawdown_dt) ) def test_recovered_records(self): assert isinstance(drawdowns.recovered, vbt.Drawdowns) assert drawdowns.recovered.wrapper == drawdowns.wrapper record_arrays_close( drawdowns['a'].recovered.values, np.array([ (0, 0, 0, 1, 1, 2, 2.0, 1.0, 3.0, 1), (1, 0, 2, 3, 3, 4, 3.0, 1.0, 4.0, 1) ], dtype=drawdown_dt) ) record_arrays_close( drawdowns['a'].recovered.values, drawdowns.recovered['a'].values ) record_arrays_close( drawdowns.recovered.values, np.array([ (0, 0, 0, 1, 1, 2, 2.0, 1.0, 3.0, 1), (1, 0, 2, 3, 3, 4, 3.0, 1.0, 4.0, 1), (3, 1, 1, 2, 2, 3, 2.0, 1.0, 3.0, 1), (4, 1, 3, 4, 4, 5, 3.0, 1.0, 4.0, 1) ], dtype=drawdown_dt) ) def test_active_drawdown(self): assert drawdowns['a'].active_drawdown() == -0.75 pd.testing.assert_series_equal( drawdowns.active_drawdown(), pd.Series( np.array([-0.75, np.nan, -0.3333333333333333, np.nan]), index=wrapper.columns ).rename('active_drawdown') ) with pytest.raises(Exception): drawdowns_grouped.active_drawdown() def test_active_duration(self): assert drawdowns['a'].active_duration() == np.timedelta64(86400000000000) pd.testing.assert_series_equal( drawdowns.active_duration(), pd.Series( np.array([86400000000000, 'NaT', 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('active_duration') ) with pytest.raises(Exception): drawdowns_grouped.active_duration() def test_active_recovery(self): assert drawdowns['a'].active_recovery() == 0. pd.testing.assert_series_equal( drawdowns.active_recovery(), pd.Series( np.array([0., np.nan, 0.5, np.nan]), index=wrapper.columns ).rename('active_recovery') ) with pytest.raises(Exception): drawdowns_grouped.active_recovery() def test_active_recovery_return(self): assert drawdowns['a'].active_recovery_return() == 0. pd.testing.assert_series_equal( drawdowns.active_recovery_return(), pd.Series( np.array([0., np.nan, 1., np.nan]), index=wrapper.columns ).rename('active_recovery_return') ) with pytest.raises(Exception): drawdowns_grouped.active_recovery_return() def test_active_recovery_duration(self): assert drawdowns['a'].active_recovery_duration() == pd.Timedelta('0 days 00:00:00') pd.testing.assert_series_equal( drawdowns.active_recovery_duration(), pd.Series( np.array([0, 'NaT', 86400000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('active_recovery_duration') ) with pytest.raises(Exception): drawdowns_grouped.active_recovery_duration() def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Coverage [%]', 'Total Records', 'Total Recovered Drawdowns', 'Total Active Drawdowns', 'Active Drawdown [%]', 'Active Duration', 'Active Recovery [%]', 'Active Recovery Return [%]', 'Active Recovery Duration', 'Max Drawdown [%]', 'Avg Drawdown [%]', 'Max Drawdown Duration', 'Avg Drawdown Duration', 'Max Recovery Return [%]', 'Avg Recovery Return [%]', 'Max Recovery Duration', 'Avg Recovery Duration', 'Avg Recovery Duration Ratio' ], dtype='object') pd.testing.assert_series_equal( drawdowns.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 44.444444444444436, 1.5, 1.0, 0.5, 54.166666666666664, pd.Timedelta('2 days 00:00:00'), 25.0, 50.0, pd.Timedelta('0 days 12:00:00'), 66.66666666666666, 58.33333333333333, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( drawdowns.stats(settings=dict(incl_active=True)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 44.444444444444436, 1.5, 1.0, 0.5, 54.166666666666664, pd.Timedelta('2 days 00:00:00'), 25.0, 50.0, pd.Timedelta('0 days 12:00:00'), 69.44444444444444, 62.962962962962955, pd.Timedelta('1 days 16:00:00'), pd.Timedelta('1 days 16:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( drawdowns.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 50.0, 3, 2, 1, 75.0, pd.Timedelta('1 days 00:00:00'), 0.0, 0.0, pd.Timedelta('0 days 00:00:00'), 66.66666666666666, 58.33333333333333, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( drawdowns.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 41.66666666666667, 5, 4, 1, 66.66666666666666, 58.33333333333333, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=pd.Index([ 'Start', 'End', 'Period', 'Coverage [%]', 'Total Records', 'Total Recovered Drawdowns', 'Total Active Drawdowns', 'Max Drawdown [%]', 'Avg Drawdown [%]', 'Max Drawdown Duration', 'Avg Drawdown Duration', 'Max Recovery Return [%]', 'Avg Recovery Return [%]', 'Max Recovery Duration', 'Avg Recovery Duration', 'Avg Recovery Duration Ratio' ], dtype='object'), name='g1' ) ) pd.testing.assert_series_equal( drawdowns['c'].stats(), drawdowns.stats(column='c') ) pd.testing.assert_series_equal( drawdowns['c'].stats(), drawdowns.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( drawdowns_grouped['g2'].stats(), drawdowns_grouped.stats(column='g2') ) pd.testing.assert_series_equal( drawdowns_grouped['g2'].stats(), drawdowns.stats(column='g2', group_by=group_by) ) stats_df = drawdowns.stats(agg_func=None) assert stats_df.shape == (4, 21) pd.testing.assert_index_equal(stats_df.index, drawdowns.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# orders.py ############# # close = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6), datetime(2020, 1, 7), datetime(2020, 1, 8) ]).vbt.tile(4, keys=['a', 'b', 'c', 'd']) size = np.full(close.shape, np.nan, dtype=np.float_) size[:, 0] = [1, 0.1, -1, -0.1, np.nan, 1, -1, 2] size[:, 1] = [-1, -0.1, 1, 0.1, np.nan, -1, 1, -2] size[:, 2] = [1, 0.1, -1, -0.1, np.nan, 1, -2, 2] orders = vbt.Portfolio.from_orders(close, size, fees=0.01, freq='1 days').orders orders_grouped = orders.regroup(group_by) class TestOrders: def test_mapped_fields(self): for name in order_dt.names: np.testing.assert_array_equal( getattr(orders, name).values, orders.values[name] ) def test_close(self): pd.testing.assert_frame_equal( orders.close, close ) pd.testing.assert_series_equal( orders['a'].close, close['a'] ) pd.testing.assert_frame_equal( orders_grouped['g1'].close, close[['a', 'b']] ) assert orders.replace(close=None)['a'].close is None def test_records_readable(self): records_readable = orders.records_readable np.testing.assert_array_equal( records_readable['Order Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) ) np.testing.assert_array_equal( records_readable['Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'c' ]) ) np.testing.assert_array_equal( records_readable['Size'].values, np.array([ 1.0, 0.1, 1.0, 0.1, 1.0, 1.0, 2.0, 1.0, 0.1, 1.0, 0.1, 1.0, 1.0, 2.0, 1.0, 0.1, 1.0, 0.1, 1.0, 2.0, 2.0 ]) ) np.testing.assert_array_equal( records_readable['Price'].values, np.array([ 1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Fees'].values, np.array([ 0.01, 0.002, 0.03, 0.004, 0.06, 0.07, 0.16, 0.01, 0.002, 0.03, 0.004, 0.06, 0.07, 0.16, 0.01, 0.002, 0.03, 0.004, 0.06, 0.14, 0.16 ]) ) np.testing.assert_array_equal( records_readable['Side'].values, np.array([ 'Buy', 'Buy', 'Sell', 'Sell', 'Buy', 'Sell', 'Buy', 'Sell', 'Sell', 'Buy', 'Buy', 'Sell', 'Buy', 'Sell', 'Buy', 'Buy', 'Sell', 'Sell', 'Buy', 'Sell', 'Buy' ]) ) def test_buy_records(self): assert isinstance(orders.buy, vbt.Orders) assert orders.buy.wrapper == orders.wrapper record_arrays_close( orders['a'].buy.values, np.array([ (0, 0, 0, 1., 1., 0.01, 0), (1, 0, 1, 0.1, 2., 0.002, 0), (4, 0, 5, 1., 6., 0.06, 0), (6, 0, 7, 2., 8., 0.16, 0) ], dtype=order_dt) ) record_arrays_close( orders['a'].buy.values, orders.buy['a'].values ) record_arrays_close( orders.buy.values, np.array([ (0, 0, 0, 1., 1., 0.01, 0), (1, 0, 1, 0.1, 2., 0.002, 0), (4, 0, 5, 1., 6., 0.06, 0), (6, 0, 7, 2., 8., 0.16, 0), (9, 1, 2, 1., 3., 0.03, 0), (10, 1, 3, 0.1, 4., 0.004, 0), (12, 1, 6, 1., 7., 0.07, 0), (14, 2, 0, 1., 1., 0.01, 0), (15, 2, 1, 0.1, 2., 0.002, 0), (18, 2, 5, 1., 6., 0.06, 0), (20, 2, 7, 2., 8., 0.16, 0) ], dtype=order_dt) ) def test_sell_records(self): assert isinstance(orders.sell, vbt.Orders) assert orders.sell.wrapper == orders.wrapper record_arrays_close( orders['a'].sell.values, np.array([ (2, 0, 2, 1., 3., 0.03, 1), (3, 0, 3, 0.1, 4., 0.004, 1), (5, 0, 6, 1., 7., 0.07, 1) ], dtype=order_dt) ) record_arrays_close( orders['a'].sell.values, orders.sell['a'].values ) record_arrays_close( orders.sell.values, np.array([ (2, 0, 2, 1., 3., 0.03, 1), (3, 0, 3, 0.1, 4., 0.004, 1), (5, 0, 6, 1., 7., 0.07, 1), (7, 1, 0, 1., 1., 0.01, 1), (8, 1, 1, 0.1, 2., 0.002, 1), (11, 1, 5, 1., 6., 0.06, 1), (13, 1, 7, 2., 8., 0.16, 1), (16, 2, 2, 1., 3., 0.03, 1), (17, 2, 3, 0.1, 4., 0.004, 1), (19, 2, 6, 2., 7., 0.14, 1) ], dtype=order_dt) ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total Records', 'Total Buy Orders', 'Total Sell Orders', 'Min Size', 'Max Size', 'Avg Size', 'Avg Buy Size', 'Avg Sell Size', 'Avg Buy Price', 'Avg Sell Price', 'Total Fees', 'Min Fees', 'Max Fees', 'Avg Fees', 'Avg Buy Fees', 'Avg Sell Fees' ], dtype='object') pd.testing.assert_series_equal( orders.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 5.25, 2.75, 2.5, 0.10000000000000002, 2.0, 0.9333333333333335, 0.9166666666666666, 0.9194444444444446, 4.388888888888889, 4.527777777777779, 0.26949999999999996, 0.002, 0.16, 0.051333333333333335, 0.050222222222222224, 0.050222222222222224 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( orders.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 7, 4, 3, 0.1, 2.0, 0.8857142857142858, 1.025, 0.7000000000000001, 4.25, 4.666666666666667, 0.33599999999999997, 0.002, 0.16, 0.047999999999999994, 0.057999999999999996, 0.03466666666666667 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( orders.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 14, 7, 7, 0.1, 2.0, 0.8857142857142858, 0.8857142857142856, 0.8857142857142858, 4.428571428571429, 4.428571428571429, 0.672, 0.002, 0.16, 0.048, 0.048, 0.047999999999999994 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( orders['c'].stats(), orders.stats(column='c') ) pd.testing.assert_series_equal( orders['c'].stats(), orders.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( orders_grouped['g2'].stats(), orders_grouped.stats(column='g2') ) pd.testing.assert_series_equal( orders_grouped['g2'].stats(), orders.stats(column='g2', group_by=group_by) ) stats_df = orders.stats(agg_func=None) assert stats_df.shape == (4, 19) pd.testing.assert_index_equal(stats_df.index, orders.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# trades.py ############# # exit_trades = vbt.ExitTrades.from_orders(orders) exit_trades_grouped = vbt.ExitTrades.from_orders(orders_grouped) class TestExitTrades: def test_mapped_fields(self): for name in trade_dt.names: if name == 'return': np.testing.assert_array_equal( getattr(exit_trades, 'returns').values, exit_trades.values[name] ) else: np.testing.assert_array_equal( getattr(exit_trades, name).values, exit_trades.values[name] ) def test_close(self): pd.testing.assert_frame_equal( exit_trades.close, close ) pd.testing.assert_series_equal( exit_trades['a'].close, close['a'] ) pd.testing.assert_frame_equal( exit_trades_grouped['g1'].close, close[['a', 'b']] ) assert exit_trades.replace(close=None)['a'].close is None def test_records_arr(self): record_arrays_close( exit_trades.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) reversed_col_orders = orders.replace(records_arr=np.concatenate(( orders.values[orders.values['col'] == 2], orders.values[orders.values['col'] == 1], orders.values[orders.values['col'] == 0] ))) record_arrays_close( vbt.ExitTrades.from_orders(reversed_col_orders).values, exit_trades.values ) def test_records_readable(self): records_readable = exit_trades.records_readable np.testing.assert_array_equal( records_readable['Exit Trade Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c' ]) ) np.testing.assert_array_equal( records_readable['Size'].values, np.array([ 1.0, 0.10000000000000009, 1.0, 2.0, 1.0, 0.10000000000000009, 1.0, 2.0, 1.0, 0.10000000000000009, 1.0, 1.0, 1.0 ]) ) np.testing.assert_array_equal( records_readable['Entry Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Avg Entry Price'].values, np.array([ 1.0909090909090908, 1.0909090909090908, 6.0, 8.0, 1.0909090909090908, 1.0909090909090908, 6.0, 8.0, 1.0909090909090908, 1.0909090909090908, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Entry Fees'].values, np.array([ 0.010909090909090908, 0.0010909090909090918, 0.06, 0.16, 0.010909090909090908, 0.0010909090909090918, 0.06, 0.16, 0.010909090909090908, 0.0010909090909090918, 0.06, 0.07, 0.08 ]) ) np.testing.assert_array_equal( records_readable['Exit Timestamp'].values, np.array([ '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Avg Exit Price'].values, np.array([ 3.0, 4.0, 7.0, 8.0, 3.0, 4.0, 7.0, 8.0, 3.0, 4.0, 7.0, 8.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Exit Fees'].values, np.array([ 0.03, 0.004, 0.07, 0.0, 0.03, 0.004, 0.07, 0.0, 0.03, 0.004, 0.07, 0.08, 0.0 ]) ) np.testing.assert_array_equal( records_readable['PnL'].values, np.array([ 1.8681818181818182, 0.2858181818181821, 0.8699999999999999, -0.16, -1.9500000000000002, -0.29600000000000026, -1.1300000000000001, -0.16, 1.8681818181818182, 0.2858181818181821, 0.8699999999999999, -1.1500000000000001, -0.08 ]) ) np.testing.assert_array_equal( records_readable['Return'].values, np.array([ 1.7125000000000001, 2.62, 0.145, -0.01, -1.7875000000000003, -2.7133333333333334, -0.18833333333333335, -0.01, 1.7125000000000001, 2.62, 0.145, -0.1642857142857143, -0.01 ]) ) np.testing.assert_array_equal( records_readable['Direction'].values, np.array([ 'Long', 'Long', 'Long', 'Long', 'Short', 'Short', 'Short', 'Short', 'Long', 'Long', 'Long', 'Short', 'Long' ]) ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Closed', 'Closed', 'Closed', 'Open', 'Closed', 'Closed', 'Closed', 'Open', 'Closed', 'Closed', 'Closed', 'Closed', 'Open' ]) ) np.testing.assert_array_equal( records_readable['Position Id'].values, np.array([ 0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9 ]) ) def test_duration(self): np.testing.assert_array_almost_equal( exit_trades['a'].duration.values, np.array([2, 3, 1, 1]) ) np.testing.assert_array_almost_equal( exit_trades.duration.values, np.array([2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1]) ) def test_winning_records(self): assert isinstance(exit_trades.winning, vbt.ExitTrades) assert exit_trades.winning.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].winning.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].winning.values, exit_trades.winning['a'].values ) record_arrays_close( exit_trades.winning.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7) ], dtype=trade_dt) ) def test_losing_records(self): assert isinstance(exit_trades.losing, vbt.ExitTrades) assert exit_trades.losing.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].losing.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].losing.values, exit_trades.losing['a'].values ) record_arrays_close( exit_trades.losing.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) def test_win_rate(self): assert exit_trades['a'].win_rate() == 0.75 pd.testing.assert_series_equal( exit_trades.win_rate(), pd.Series( np.array([0.75, 0., 0.6, np.nan]), index=close.columns ).rename('win_rate') ) pd.testing.assert_series_equal( exit_trades_grouped.win_rate(), pd.Series( np.array([0.375, 0.6]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('win_rate') ) def test_winning_streak(self): np.testing.assert_array_almost_equal( exit_trades['a'].winning_streak.values, np.array([1, 2, 3, 0]) ) np.testing.assert_array_almost_equal( exit_trades.winning_streak.values, np.array([1, 2, 3, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0]) ) def test_losing_streak(self): np.testing.assert_array_almost_equal( exit_trades['a'].losing_streak.values, np.array([0, 0, 0, 1]) ) np.testing.assert_array_almost_equal( exit_trades.losing_streak.values, np.array([0, 0, 0, 1, 1, 2, 3, 4, 0, 0, 0, 1, 2]) ) def test_profit_factor(self): assert exit_trades['a'].profit_factor() == 18.9 pd.testing.assert_series_equal( exit_trades.profit_factor(), pd.Series( np.array([18.9, 0., 2.45853659, np.nan]), index=ts2.columns ).rename('profit_factor') ) pd.testing.assert_series_equal( exit_trades_grouped.profit_factor(), pd.Series( np.array([0.81818182, 2.45853659]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('profit_factor') ) def test_expectancy(self): assert exit_trades['a'].expectancy() == 0.716 pd.testing.assert_series_equal( exit_trades.expectancy(), pd.Series( np.array([0.716, -0.884, 0.3588, np.nan]), index=ts2.columns ).rename('expectancy') ) pd.testing.assert_series_equal( exit_trades_grouped.expectancy(), pd.Series( np.array([-0.084, 0.3588]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('expectancy') ) def test_sqn(self): assert exit_trades['a'].sqn() == 1.634155521947584 pd.testing.assert_series_equal( exit_trades.sqn(), pd.Series( np.array([1.63415552, -2.13007307, 0.71660403, np.nan]), index=ts2.columns ).rename('sqn') ) pd.testing.assert_series_equal( exit_trades_grouped.sqn(), pd.Series( np.array([-0.20404671, 0.71660403]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('sqn') ) def test_long_records(self): assert isinstance(exit_trades.long, vbt.ExitTrades) assert exit_trades.long.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].long.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].long.values, exit_trades.long['a'].values ) record_arrays_close( exit_trades.long.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) def test_short_records(self): assert isinstance(exit_trades.short, vbt.ExitTrades) assert exit_trades.short.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].short.values, np.array([], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].short.values, exit_trades.short['a'].values ) record_arrays_close( exit_trades.short.values, np.array([ (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8) ], dtype=trade_dt) ) def test_open_records(self): assert isinstance(exit_trades.open, vbt.ExitTrades) assert exit_trades.open.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].open.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].open.values, exit_trades.open['a'].values ) record_arrays_close( exit_trades.open.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) def test_closed_records(self): assert isinstance(exit_trades.closed, vbt.ExitTrades) assert exit_trades.closed.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].closed.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].closed.values, exit_trades.closed['a'].values ) record_arrays_close( exit_trades.closed.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8) ], dtype=trade_dt) ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'First Trade Start', 'Last Trade End', 'Coverage', 'Overlap Coverage', 'Total Records', 'Total Long Trades', 'Total Short Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Max Win Streak', 'Max Loss Streak', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'SQN' ], dtype='object') pd.testing.assert_series_equal( exit_trades.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('5 days 08:00:00'), pd.Timedelta('2 days 00:00:00'), 3.25, 2.0, 1.25, 2.5, 0.75, -0.1, 58.333333333333336, 2.0, 1.3333333333333333, 168.38888888888889, -91.08730158730158, 149.25, -86.3670634920635, pd.Timedelta('2 days 00:00:00'), pd.Timedelta('1 days 12:00:00'), np.inf, 0.11705555555555548, 0.18931590012681135 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( exit_trades.stats(settings=dict(incl_open=True)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('5 days 08:00:00'), pd.Timedelta('2 days 00:00:00'), 3.25, 2.0, 1.25, 2.5, 0.75, -0.1, 58.333333333333336, 2.0, 2.3333333333333335, 174.33333333333334, -96.25396825396825, 149.25, -42.39781746031746, pd.Timedelta('2 days 00:00:00'), pd.Timedelta('1 days 06:00:00'), 7.11951219512195, 0.06359999999999993, 0.07356215977397455 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( exit_trades.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('5 days 00:00:00'), pd.Timedelta('2 days 00:00:00'), 4, 4, 0, 3, 1, -0.16, 100.0, 3, 0, 262.0, 14.499999999999998, 149.25, np.nan, pd.Timedelta('2 days 00:00:00'), pd.NaT, np.inf, 1.008, 2.181955050824476 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( exit_trades.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('5 days 00:00:00'), pd.Timedelta('5 days 00:00:00'), 8, 4, 4, 6, 2, -0.32, 50.0, 3, 3, 262.0, -271.3333333333333, 149.25, -156.30555555555557, pd.Timedelta('2 days 00:00:00'), pd.Timedelta('2 days 00:00:00'), 0.895734597156398, -0.058666666666666756, -0.10439051512510047 ], index=stats_index, name='g1' ) ) pd.testing.assert_index_equal( exit_trades.stats(tags='trades').index, pd.Index([ 'First Trade Start', 'Last Trade End', 'Total Long Trades', 'Total Short Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Max Win Streak', 'Max Loss Streak', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'SQN' ], dtype='object') ) pd.testing.assert_series_equal( exit_trades['c'].stats(), exit_trades.stats(column='c') ) pd.testing.assert_series_equal( exit_trades['c'].stats(), exit_trades.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( exit_trades_grouped['g2'].stats(), exit_trades_grouped.stats(column='g2') ) pd.testing.assert_series_equal( exit_trades_grouped['g2'].stats(), exit_trades.stats(column='g2', group_by=group_by) ) stats_df = exit_trades.stats(agg_func=None) assert stats_df.shape == (4, 25) pd.testing.assert_index_equal(stats_df.index, exit_trades.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) entry_trades = vbt.EntryTrades.from_orders(orders) entry_trades_grouped = vbt.EntryTrades.from_orders(orders_grouped) class TestEntryTrades: def test_records_arr(self): record_arrays_close( entry_trades.values, np.array([ (0, 0, 1.0, 0, 1.0, 0.01, 3, 3.0909090909090904, 0.03090909090909091, 2.05, 2.05, 0, 1, 0), (1, 0, 0.1, 1, 2.0, 0.002, 3, 3.0909090909090904, 0.003090909090909091, 0.10399999999999998, 0.5199999999999999, 0, 1, 0), (2, 0, 1.0, 5, 6.0, 0.06, 6, 7.0, 0.07, 0.8699999999999999, 0.145, 0, 1, 1), (3, 0, 2.0, 7, 8.0, 0.16, 7, 8.0, 0.0, -0.16, -0.01, 0, 0, 2), (4, 1, 1.0, 0, 1.0, 0.01, 3, 3.0909090909090904, 0.03090909090909091, -2.131818181818181, -2.131818181818181, 1, 1, 3), (5, 1, 0.1, 1, 2.0, 0.002, 3, 3.0909090909090904, 0.003090909090909091, -0.11418181818181816, -0.5709090909090908, 1, 1, 3), (6, 1, 1.0, 5, 6.0, 0.06, 6, 7.0, 0.07, -1.1300000000000001, -0.18833333333333335, 1, 1, 4), (7, 1, 2.0, 7, 8.0, 0.16, 7, 8.0, 0.0, -0.16, -0.01, 1, 0, 5), (8, 2, 1.0, 0, 1.0, 0.01, 3, 3.0909090909090904, 0.03090909090909091, 2.05, 2.05, 0, 1, 6), (9, 2, 0.1, 1, 2.0, 0.002, 3, 3.0909090909090904, 0.003090909090909091, 0.10399999999999998, 0.5199999999999999, 0, 1, 6), (10, 2, 1.0, 5, 6.0, 0.06, 6, 7.0, 0.07, 0.8699999999999999, 0.145, 0, 1, 7), (11, 2, 1.0, 6, 7.0, 0.07, 7, 8.0, 0.08, -1.1500000000000001, -0.1642857142857143, 1, 1, 8), (12, 2, 1.0, 7, 8.0, 0.08, 7, 8.0, 0.0, -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) reversed_col_orders = orders.replace(records_arr=np.concatenate(( orders.values[orders.values['col'] == 2], orders.values[orders.values['col'] == 1], orders.values[orders.values['col'] == 0] ))) record_arrays_close( vbt.EntryTrades.from_orders(reversed_col_orders).values, entry_trades.values ) def test_records_readable(self): records_readable = entry_trades.records_readable np.testing.assert_array_equal( records_readable['Entry Trade Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]) ) np.testing.assert_array_equal( records_readable['Position Id'].values, np.array([ 0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9 ]) ) positions = vbt.Positions.from_trades(exit_trades) positions_grouped = vbt.Positions.from_trades(exit_trades_grouped) class TestPositions: def test_records_arr(self): record_arrays_close( positions.values, np.array([ (0, 0, 1.1, 0, 1.09090909, 0.012, 3, 3.09090909, 0.034, 2.154, 1.795, 0, 1, 0), (1, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (2, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (3, 1, 1.1, 0, 1.09090909, 0.012, 3, 3.09090909, 0.034, -2.246, -1.87166667, 1, 1, 3), (4, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (5, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (6, 2, 1.1, 0, 1.09090909, 0.012, 3, 3.09090909, 0.034, 2.154, 1.795, 0, 1, 6), (7, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (8, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8), (9, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) reversed_col_trades = exit_trades.replace(records_arr=np.concatenate(( exit_trades.values[exit_trades.values['col'] == 2], exit_trades.values[exit_trades.values['col'] == 1], exit_trades.values[exit_trades.values['col'] == 0] ))) record_arrays_close( vbt.Positions.from_trades(reversed_col_trades).values, positions.values ) def test_records_readable(self): records_readable = positions.records_readable np.testing.assert_array_equal( records_readable['Position Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]) ) assert 'Parent Id' not in records_readable.columns # ############# logs.py ############# # logs = vbt.Portfolio.from_orders(close, size, fees=0.01, log=True, freq='1 days').logs logs_grouped = logs.regroup(group_by) class TestLogs: def test_mapped_fields(self): for name in log_dt.names: np.testing.assert_array_equal( getattr(logs, name).values, logs.values[name] ) def test_records_readable(self): records_readable = logs.records_readable np.testing.assert_array_equal( records_readable['Log Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ]) ) np.testing.assert_array_equal( records_readable['Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'c', 'c', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd' ]) ) np.testing.assert_array_equal( records_readable['Group'].values, np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 ]) ) np.testing.assert_array_equal( records_readable['Cash'].values, np.array([ 100.0, 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 103.024, 100.0, 100.99, 101.18799999999999, 98.15799999999999, 97.75399999999999, 97.75399999999999, 103.69399999999999, 96.624, 100.0, 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 109.954, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 ]) ) np.testing.assert_array_equal( records_readable['Position'].values, np.array([ 0.0, 1.0, 1.1, 0.10000000000000009, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, -1.1, -0.10000000000000009, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 1.1, 0.10000000000000009, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['Debt'].values, np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.2, 0.10909090909090913, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['Free Cash'].values, np.array([ 100.0, 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 103.024, 100.0, 98.99, 98.788, 97.93981818181818, 97.754, 97.754, 91.694, 96.624, 100.0, 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 95.954, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 ]) ) np.testing.assert_array_equal( records_readable['Val Price'].values, np.array([ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Value'].values, np.array([ 100.0, 100.99, 102.088, 102.158, 102.154, 102.154, 103.094, 103.024, 100.0, 98.99, 97.88799999999999, 97.75799999999998, 97.75399999999999, 97.75399999999999, 96.69399999999999, 96.624, 100.0, 100.99, 102.088, 102.158, 102.154, 102.154, 103.094, 101.954, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 ]) ) np.testing.assert_array_equal( records_readable['Request Size'].values, np.array([ 1.0, 0.1, -1.0, -0.1, np.nan, 1.0, -1.0, 2.0, -1.0, -0.1, 1.0, 0.1, np.nan, -1.0, 1.0, -2.0, 1.0, 0.1, -1.0, -0.1, np.nan, 1.0, -2.0, 2.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan ]) ) np.testing.assert_array_equal( records_readable['Request Price'].values, np.array([ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Request Size Type'].values, np.array([ 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount', 'Amount' ]) ) np.testing.assert_array_equal( records_readable['Request Direction'].values, np.array([ 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both', 'Both' ]) ) np.testing.assert_array_equal( records_readable['Request Fees'].values, np.array([ 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 ]) ) np.testing.assert_array_equal( records_readable['Request Fixed Fees'].values, np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['Request Slippage'].values, np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['Request Min Size'].values, np.array([ 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08 ]) ) np.testing.assert_array_equal( records_readable['Request Max Size'].values, np.array([ np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf ]) ) np.testing.assert_array_equal( records_readable['Request Size Granularity'].values, np.array([ np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan ]) ) np.testing.assert_array_equal( records_readable['Request Rejection Prob'].values, np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['Request Lock Cash'].values, np.array([ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False ]) ) np.testing.assert_array_equal( records_readable['Request Allow Partial'].values, np.array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True ]) ) np.testing.assert_array_equal( records_readable['Request Raise Rejection'].values, np.array([ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False ]) ) np.testing.assert_array_equal( records_readable['Request Log'].values, np.array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True ]) ) np.testing.assert_array_equal( records_readable['New Cash'].values, np.array([ 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 103.024, 86.864, 100.99, 101.18799999999999, 98.15799999999999, 97.75399999999999, 97.75399999999999, 103.69399999999999, 96.624, 112.464, 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 109.954, 93.794, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 ]) ) np.testing.assert_array_equal( records_readable['New Position'].values, np.array([ 1.0, 1.1, 0.10000000000000009, 0.0, 0.0, 1.0, 0.0, 2.0, -1.0, -1.1, -0.10000000000000009, 0.0, 0.0, -1.0, 0.0, -2.0, 1.0, 1.1, 0.10000000000000009, 0.0, 0.0, 1.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['New Debt'].values, np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.2, 0.10909090909090913, 0.0, 0.0, 6.0, 0.0, 16.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) ) np.testing.assert_array_equal( records_readable['New Free Cash'].values, np.array([ 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 103.024, 86.864, 98.99, 98.788, 97.93981818181818, 97.754, 97.754, 91.694, 96.624, 80.464, 98.99, 98.788, 101.758, 102.154, 102.154, 96.094, 95.954, 93.794, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 ]) ) np.testing.assert_array_equal( records_readable['New Val Price'].values, np.array([ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['New Value'].values, np.array([ 100.0, 100.99, 102.088, 102.158, 102.154, 102.154, 103.094, 103.024, 100.0, 98.99, 97.88799999999999, 97.75799999999998, 97.75399999999999, 97.75399999999999, 96.69399999999999, 96.624, 100.0, 100.99, 102.088, 102.158, 102.154, 102.154, 103.094, 101.954, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 ]) ) np.testing.assert_array_equal( records_readable['Result Size'].values, np.array([ 1.0, 0.1, 1.0, 0.1, np.nan, 1.0, 1.0, 2.0, 1.0, 0.1, 1.0, 0.1, np.nan, 1.0, 1.0, 2.0, 1.0, 0.1, 1.0, 0.1, np.nan, 1.0, 2.0, 2.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan ]) ) np.testing.assert_array_equal( records_readable['Result Price'].values, np.array([ 1.0, 2.0, 3.0, 4.0, np.nan, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, np.nan, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, np.nan, 6.0, 7.0, 8.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan ]) ) np.testing.assert_array_equal( records_readable['Result Fees'].values, np.array([ 0.01, 0.002, 0.03, 0.004, np.nan, 0.06, 0.07, 0.16, 0.01, 0.002, 0.03, 0.004, np.nan, 0.06, 0.07, 0.16, 0.01, 0.002, 0.03, 0.004, np.nan, 0.06, 0.14, 0.16, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan ]) ) np.testing.assert_array_equal( records_readable['Result Side'].values, np.array([ 'Buy', 'Buy', 'Sell', 'Sell', None, 'Buy', 'Sell', 'Buy', 'Sell', 'Sell', 'Buy', 'Buy', None, 'Sell', 'Buy', 'Sell', 'Buy', 'Buy', 'Sell', 'Sell', None, 'Buy', 'Sell', 'Buy', None, None, None, None, None, None, None, None ]) ) np.testing.assert_array_equal( records_readable['Result Status'].values, np.array([ 'Filled', 'Filled', 'Filled', 'Filled', 'Ignored', 'Filled', 'Filled', 'Filled', 'Filled', 'Filled', 'Filled', 'Filled', 'Ignored', 'Filled', 'Filled', 'Filled', 'Filled', 'Filled', 'Filled', 'Filled', 'Ignored', 'Filled', 'Filled', 'Filled', 'Ignored', 'Ignored', 'Ignored', 'Ignored', 'Ignored', 'Ignored', 'Ignored', 'Ignored' ]) ) np.testing.assert_array_equal( records_readable['Result Status Info'].values, np.array([ None, None, None, None, 'SizeNaN', None, None, None, None, None, None, None, 'SizeNaN', None, None, None, None, None, None, None, 'SizeNaN', None, None, None, 'SizeNaN', 'SizeNaN', 'SizeNaN', 'SizeNaN', 'SizeNaN', 'SizeNaN', 'SizeNaN', 'SizeNaN' ]) ) np.testing.assert_array_equal( records_readable['Order Id'].values, np.array([ 0, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, 14, 15, 16, 17, -1, 18, 19, 20, -1, -1, -1, -1, -1, -1, -1, -1 ]) ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total Records', 'Status Counts: None', 'Status Counts: Filled', 'Status Counts: Ignored', 'Status Counts: Rejected', 'Status Info Counts: None', 'Status Info Counts: SizeNaN' ], dtype='object') pd.testing.assert_series_equal( logs.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 8.0, 0.0, 5.25, 2.75, 0.0, 5.25, 2.75 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( logs.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 8, 0, 7, 1, 0, 7, 1 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( logs.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'),
pd.Timedelta('8 days 00:00:00')
pandas.Timedelta
""" Prepare training and testing datasets as CSV dictionaries 2.0 (Further modification required for GBM) Created on 04/26/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np import re # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store','dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 # pair tiles of 20x, 10x, 5x of the same area def paired_tile_ids_in(slide, label, root_dir, sldnum): dira = os.path.isdir(root_dir + 'level0') dirb = os.path.isdir(root_dir + 'level1') dirc = os.path.isdir(root_dir + 'level2') if dira and dirb and dirc: fac = 500 ids = [] for level in range(3): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '_{}.png'.format(str(sldnum)) in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = int(re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0]) except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 0] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 1] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 2] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) return idsa # Get all svs images with its label as one file; level is the tile resolution level def big_image_sum(pmd, path='../tiles/', dict_file='../tcia_pathology_slides.tsv', ref_file='../gbm_all_subtype_collections.2019-10-13.tsv'): refdict = {'low': 0, 'high': 1, False: 0, True: 1, 'normal': 0, 'short': 1, 'long': 2} dct = pd.read_csv(dict_file, sep='\t', header=0) # dct = dct.loc[dct['used_in_proteome'] == True] ref = pd.read_csv(ref_file, sep='\t', header=0) ref = ref.dropna(subset=[pmd]) ref[pmd] = ref[pmd].replace(refdict) big_images = [] if pmd == 'telomere': normalimg = intersection(ref.loc[ref[pmd] == 0]['case'].tolist(), dct['case_id'].tolist()) normalsld = dct[dct['case_id'].isin(normalimg)]['slide_id'].tolist() shortimg = intersection(ref.loc[ref[pmd] == 1]['case'].tolist(), dct['case_id'].tolist()) shortsld = dct[dct['case_id'].isin(shortimg)]['slide_id'].tolist() longimg = intersection(ref.loc[ref[pmd] == 2]['case'].tolist(), dct['case_id'].tolist()) longsld = dct[dct['case_id'].isin(longimg)]['slide_id'].tolist() for i in normalsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 0, path + "{}/".format(pctnum), sldnum]) for i in shortsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 1, path + "{}/".format(pctnum), sldnum]) for i in longsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 2, path + "{}/".format(pctnum), sldnum]) else: negimg = intersection(ref.loc[ref[pmd] == 0]['case'].tolist(), dct['case_id'].tolist()) negsld = dct[dct['case_id'].isin(negimg)]['slide_id'].tolist() posimg = intersection(ref.loc[ref[pmd] == 1]['case'].tolist(), dct['case_id'].tolist()) possld = dct[dct['case_id'].isin(posimg)]['slide_id'].tolist() for i in negsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 0, path + "{}/".format(pctnum), sldnum]) for i in possld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 1, path + "{}/".format(pctnum), sldnum]) datapd = pd.DataFrame(big_images, columns=['slide', 'label', 'path', 'sldnum']) return datapd # seperate into training and testing; each type is the same separation ratio on big images # test and train csv files contain tiles' path. def set_sep(alll, path, cls, cut=0.3, batchsize=24): trlist = [] telist = [] valist = [] CPTAC = alll for i in range(cls): subset = CPTAC.loc[CPTAC['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut / 2)] valist.append(subset[subset['slide'].isin(validation)]) test = unq[int(len(unq) * cut / 2):int(len(unq) * cut)] telist.append(subset[subset['slide'].isin(test)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) train_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) validation_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) for idx, row in test.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['sldnum']) test_tiles = pd.concat([test_tiles, tile_ids]) for idx, row in train.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['sldnum']) train_tiles =
pd.concat([train_tiles, tile_ids])
pandas.concat
from __future__ import print_function, division #from nilmtk.stats import intersect_many_fast import matplotlib.pyplot as plt import pandas as pd from datetime import timedelta import matplotlib.dates as mdates from copy import deepcopy import numpy as np # NILMTK imports from nilmtk.consts import SECS_PER_DAY from nilmtk.timeframe import TimeFrame, convert_none_to_nat class TimeFrameGroup(): """ A collection of nilmtk.TimeFrame objects. The timeframegroup is used to store TimeFrames of a certain type (eg. good sections) for a whole load profile together. It then allows intersection functionality between multiple load profiles to eg. find the good timeframes in all the TimeFrameGroups. The TimeFrameGroup has been rewritten using pandas DataFrames because the previous implementation was far to slow Attributes: ---------- _df: [start_time, end_time] The dataframe with the sec_start sec_end """ def __init__(self, timeframes=None, starts_and_ends = None): if isinstance(timeframes, TimeFrameGroup): self._df = timeframes._df.copy() if isinstance(timeframes, pd.core.indexes.datetimes.DatetimeIndex): self._df = timeframes elif isinstance(timeframes, pd.DataFrame): self._df = timeframes.copy() elif not starts_and_ends is None: self._df = pd.DataFrame({'section_start': starts_and_ends['starts'], 'section_end': starts_and_ends['ends']}) elif not timeframes is None: self._df = pd.DataFrame([(frame.start, frame.end) for frame in timeframes], columns = ['section_start', 'section_end']) else: self._df = pd.DataFrame(columns = ['section_start', 'section_end']) def plot(self, ax=None, y=0, height=1, gap=0.05, color='b', **plot_kwargs): if ax is None: ax = plt.gca() ax.xaxis.axis_date() height -= gap * 2 for _, row in self._df.iterrows(): length = (row['section_end'] - row['section_start']).total_seconds() / SECS_PER_DAY bottom_left_corner = (mdates.date2num(row['section_start']), y + gap) rect = plt.Rectangle(bottom_left_corner, length, height, color=color, **plot_kwargs) ax.add_patch(rect) ax.autoscale_view() return ax def plot_simple(self, ax=None, gap=0.05, **plot_kwargs): for _, row in self._df.iterrows(): length = (row['section_end'] - row['section_start']).total_seconds() / SECS_PER_DAY bottom_left_corner = (mdates.date2num(row['section_start']), 0) rect = plt.Rectangle(bottom_left_corner, length, 1, color='b', **plot_kwargs) ax.add_patch(rect) return ax def plot_deltahistogram(self, bins = 10): (self._df['section_end'] - self._df['section_start']).apply(lambda e: e.total_seconds()).hist(bins=bins) def get_timeframe(self): ''' Returns the timeframe from start of first section to end of last section. Returns: timeframe: outer timeframe of this TimeFrameGroup ''' if self._df.empty: return TimeFrame(start = None, end = None) idx = self._df.index return TimeFrame(start = self._df.loc[idx[0], 'section_start'], end = self._df.loc[idx[-1], 'section_end']) def union(self, other): ''' self.good_sections(): |######----#####-----######-#| other.good_sections(): |---##---####----##-----###-#| diff(): |######--#######-##--######-#| ''' assert isinstance(other, (TimeFrameGroup, list)) return TimeFrameGroup.union_many([self, other]) def union_many(groups): ''' Function to do a do a fast intersection between many timeframes Paramters --------- groups: [nilmtk.TimeFrameGroup] The group of timeframegroups to calculate the union for. ''' all_events = pd.Series() for group in groups: all_events = all_events.append(pd.Series(1, index=pd.DatetimeIndex(group._df['section_start']))) all_events = all_events.append(pd.Series(-1, index=pd.DatetimeIndex(group._df['section_end']))) all_events.sort_index(inplace=True) any_active = (all_events.cumsum()>0).astype(int) switches = (any_active - any_active.shift(1).fillna(0)) starts = all_events[switches == 1].index ends = all_events[switches == -1].index result = pd.DataFrame({'section_start': starts, 'section_end':ends}) return TimeFrameGroup(result) def diff(self, other): ''' Difference between this and the other TimeFrameGroup. self.good_sections(): |######----#####-----######-#| other.good_sections(): |---##---####----##-----###-#| diff(): |###--#------###-----###-----| ''' assert isinstance(other, (TimeFrameGroup, list)) all_events = pd.Series() all_events = all_events.append(pd.Series(1, index=pd.DatetimeIndex(self._df['section_start']))) all_events = all_events.append(pd.Series(-1, index=pd.DatetimeIndex(self._df['section_end']))) all_events = all_events.append(pd.Series(-1, index=pd.DatetimeIndex(other._df['section_start']))) all_events = all_events.append(pd.Series(+1, index=pd.DatetimeIndex(other._df['section_end']))) all_events.sort_index(inplace=True) all_active = (all_events.cumsum()>0) starts = all_events.index[all_active] ends = all_active.shift(1) if len(ends > 0): ends[0] = False ends = all_events[ends].index result = pd.DataFrame({'section_start': starts, 'section_end':ends}) return TimeFrameGroup(result) def intersection(self, other): """Returns a new TimeFrameGroup of self masked by other. Illustrated example: self.good_sections(): |######----#####-----######-#| other.good_sections(): |---##---####----##-----###-#| intersection(): |---##-----##-----------###-#| """ # Hier hat es geknallt als ich Accuracy als Error Metric berechnen wollte. Bei der Assertion assert isinstance(other, (TimeFrameGroup, list)) return TimeFrameGroup.intersect_many([self, other]) def intersect_many(groups): ''' Function to do a do a fast intersection between many timeframes Paramters --------- groups: [nilmtk.TimeFrameGroup] The group of timeframegroups to calculate the intersection for. ''' if any(map(lambda grp: len(grp._df) == 0, groups)): return TimeFrameGroup() all_events =
pd.Series()
pandas.Series
import sys from time import time, sleep import pandas as pd import psutil import shutil import glob import os try: import _pickle as pickle except: import pickle def print_progress_bar(count, total, start=0): bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '=' * filled_len + '-' * (bar_len - filled_len) if percents == 100: if start == 0: msg = '[%s] %d%%\n' % (bar, percents) else: elapsed = time() - start if elapsed > 3600: elapsed /= 3600 msg = '[%s] %d%% total: %0.2f hours\n' % (bar, percents, elapsed) elif elapsed > 60: elapsed /= 60 msg = '[%s] %d%% total: %0.2f minutes\n' % (bar, percents, elapsed) else: msg = '[%s] %d%% total: %0.2f seconds\n' % (bar, percents, elapsed) elif start == 0 or percents == 0: msg = '[%s] %d%%\r' % (bar, percents) else: elapsed = time() - start eta = elapsed / (percents/100) - elapsed if eta > 3600: eta /= 3600 msg = '[%s] %d%% eta: %0.2f hours \r' % (bar, percents, eta) elif eta > 60: eta /= 60 msg = '[%s] %d%% eta: %0.2f minutes \r' % (bar, percents, eta) else: msg = '[%s] %d%% eta: %0.2f seconds \r' % (bar, percents, eta) sys.stdout.write(msg[:-1].ljust(89)+msg[-1]) sys.stdout.flush() def set_low_process_priority(): p = psutil.Process(os.getpid()) if sys.platform == "win32": p.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS) else: p.nice(5) def set_high_process_priority(): p = psutil.Process(os.getpid()) if sys.platform == "win32": p.nice(psutil.ABOVE_NORMAL_PRIORITY_CLASS) else: p.nice(-5) def getPlayerName(player): return ".".join(os.path.basename(player).split(".")[:-1]) def saveWTL(config, p1, p2, w, t, l): if w > 0 or t > 0 or l > 0: data = { "player1": p1, "player2": p2, "wins": w, "ties": t, "losses": l} pickle.dump(data, open(config.data.performance_location+"staged_"+str(time())+".pickle","wb")) sleep(0.05) def mergeStagedWTL(config): #only run if not already merging in another process if os.path.exists(config.data.performance_location+"win_matrix_temp.csv"): return None else: win_matrix_file = open(config.data.performance_location+"win_matrix_temp.csv", "w+") merged_data = [] files = glob.glob(config.data.performance_location+"staged_*.pickle") for file in files: try: data = pickle.load(open(file, "rb")) found = False for i in range(len(merged_data)): if merged_data[i]['player1'] == data['player1'] and merged_data[i]['player2'] == data['player2']: found = True merged_data[i]['wins'] += data['wins'] merged_data[i]['ties'] += data['ties'] merged_data[i]['losses'] += data['losses'] break elif merged_data[i]['player1'] == data['player2'] and merged_data[i]['player2'] == data['player1']: found = True merged_data[i]['wins'] += data['losses'] merged_data[i]['ties'] += data['ties'] merged_data[i]['losses'] += data['wins'] break if not found: merged_data.append(data) os.remove(file) except Exception as e: continue if os.path.exists(config.data.performance_location+"win_matrix.csv"): df = pd.read_csv(config.data.performance_location+"win_matrix.csv", index_col=0) else: df =
pd.DataFrame()
pandas.DataFrame
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np import math from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel from qteasy.database import DataSource from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs from qteasy.blender import _exp_to_token, blender_parser, signal_blend class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000., 20000., 10000.]) self.op = np.array([0., 1., -0.33333333]) self.amounts_to_sell = np.array([0., 0., -3333.3333]) self.cash_to_spend = np.array([0., 20000., 0.]) self.prices = np.array([10., 20., 10.]) self.r = qt.Cost(0.0) def test_rate_creation(self): """测试对象生成""" print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') self.assertEqual(self.r.buy_fix, 0) self.assertEqual(self.r.sell_fix, 0) def test_rate_operations(self): """测试交易费率对象""" self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r.calculate(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): """测试买卖交易费率""" self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 0. self.r.sell_min = 0. self.r.slipage = 0. print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): """测试最低交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """测试最低交易费用对其他交易费率参数的影响""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): """测试固定交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): """测试交易滑点""" self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4, 10.87, 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19, 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97, 12.178, 11.95, 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64, 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3, 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82, 12.67, 12.876, 12.986, 13.271, 13.606, 13.82, 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34, 12.141, 11.687, 11.992, 12.458, 12.131, 11.75, 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56, 12.879, 12.861, 12.973, 13.235, 13.53, 13.531, 13.137, 13.166, 13.31, 13.103, 13.007, 12.643, 12.69, 12.216, 12.385, 12.046, 12.321, 11.9, 11.772, 11.816, 11.871, 11.59, 11.518, 11.94, 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16, 11.741, 11.26, 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62, 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89, 10.728, 11.191, 11.646, 11.62, 11.195, 11.178, 11.18, 10.956, 11.205, 10.87, 11.098, 10.639, 10.487, 10.507, 10.92, 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77, 11.225, 10.92, 10.824, 11.096, 11.542, 11.06, 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55, 9.008, 9.138, 9.088, 9.434, 9.156, 9.65, 9.431, 9.654, 10.079, 10.411, 10.865, 10.51, 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72, 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11, 13.53, 13.123, 13.138, 13.57, 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86, 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11, 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32, 16.59, 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06, 17.36, 17.108, 17.348, 17.596, 17.46, 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64, 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67, 15.911, 16.077, 16.17, 15.722, 15.258, 14.877, 15.138, 15., 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71, 16.327, 16.605, 16.486, 16.846, 16.935, 17.21, 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43, 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([9.7, 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59, 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55, 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91, 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97, 14.228, 13.84, 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41, 14.74, 15.03, 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86, 15.097, 15.178, 15.293, 15.238, 15., 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81, 17.192, 16.86, 16.745, 16.707, 16.552, 16.133, 16.301, 16.08, 15.81, 15.75, 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57, 16.778, 16.928, 16.932, 17.22, 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95, 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36, 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79, 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72, 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12, 15.442, 15.476, 15.789, 15.36, 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2, 15.994, 15.86, 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49, 17.768, 17.509, 17.795, 18.147, 18.63, 18.945, 19.021, 19.518, 19.6, 19.744, 19.63, 19.32, 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3, 17.894, 17.744, 17.5, 17.083, 17.092, 16.864, 16.453, 16.31, 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93, 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67, 14.797, 14.42, 14.681, 15.16, 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32, 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71, 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39, 11.723, 12.084, 11.8, 11.471, 11.33, 11.504, 11.295, 11.3, 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94, 10.521, 10.36, 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72, 10.54, 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54, 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39, 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4, 9.332, 9.34, 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63, 8.831, 8.957, 9.18, 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85, 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06, 10.188, 10.095, 9.739, 9.881, 9.7, 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514, 0.40710639, 0.40708157, 0.40609006, 0.4073625, 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593, 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768, 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592, 0.42615335, 0.42526286, 0.4248906, 0.42368986, 0.4232565, 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645, 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991, 0.405011, 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969, 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559, 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634, 0.36539259, 0.36428672, 0.36502487, 0.3647148, 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685, 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281, -0.02416067, -0.02763238, -0.027579, -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633, -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756, -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062, 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977, 0.0474047, 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686, 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441, 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094, 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544, 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123, 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174, 0.05051288, 0.0564852, 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782, 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908, 0.08562706, 0.0839014, 0.0849072, 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347, -0.0460858, -0.0416761, -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583, -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841, -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915, -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592, -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058, -0.04533641, -0.0461183, -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414, -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265, -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383, -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499, -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632, -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571, -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486, -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195, -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678, -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565, -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743, -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428, -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789, -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945, -0.04672356, -0.03581408, -0.0439215, -0.03429495, -0.0260362, -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908, 0.11302115, 0.0909566, 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445, 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807, 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069, 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612, 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943, 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336, 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809, 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061, 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356, 0.70912003, 0.60328917, 0.6395092, 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216, 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253, 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): # 精心设计的模拟股票名称、交易日期、以及股票价格 self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) # 精心设计的模拟PT持股仓位目标信号: self.pt_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.250, 0.150, 0.000, 0.300, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.370, 0.193, 0.120, 0.072, 0.072, 0.072, 0.096], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300]]) # 精心设计的模拟PS比例交易信号,与模拟PT信号高度相似 self.ps_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.100, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -0.750, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.333, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, -0.500, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, -1.000], [0.000, 0.000, 0.000, 0.000, 0.200, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.500, 0.000, 0.000, 0.150, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.200, 0.000, -1.000, 0.200, 0.000], [0.500, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.200, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, -0.500, 0.200], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.150, 0.000, 0.000], [-1.000, 0.000, 0.000, 0.250, 0.000, 0.250, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.250, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, -1.000, 0.000, -1.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.800, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -1.000, 0.000, 0.100], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, -1.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-1.000, 0.000, 0.150, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]]) # 精心设计的模拟VS股票交易信号,与模拟PS信号类似 self.vs_signals = np.array([[000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 300, 300], [400, 400, 000, 000, 000, 000, 000], [000, 000, 250, 000, 000, 000, 000], [000, 000, 000, 000, -400, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, -200, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, -300], [000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 300, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 400, 000, -300, 600, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [600, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, -400, 600], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 500, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 300, 000, 000], [-500, 000, 000, 500, 000, 200, 000], [000, 000, 000, 000, 000, 000, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, -700, 000, -600, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-400, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, -600, 000, 300], [000, 000, 000, 000, 000, 000, 000], [000, -300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 700, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000]]) # 精心设计的模拟多价格交易信号,模拟50个交易日对三只股票的操作 self.multi_shares = ['000010', '000030', '000039'] self.multi_dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08'] self.multi_dates = [pd.Timestamp(date_text) for date_text in self.multi_dates] # 操作的交易价格包括开盘价、最高价和收盘价 self.multi_prices_open = np.array([[10.02, 9.88, 7.26], [10.00, 9.88, 7.00], [9.98, 9.89, 6.88], [9.97, 9.75, 6.91], [9.99, 9.74, np.nan], [10.01, 9.80, 6.81], [10.04, 9.62, 6.63], [10.06, 9.65, 6.45], [10.06, 9.58, 6.16], [10.11, 9.67, 6.24], [10.11, 9.81, 5.96], [10.07, 9.80, 5.97], [10.06, 10.00, 5.96], [10.09, 9.95, 6.20], [10.03, 10.10, 6.35], [10.02, 10.06, 6.11], [10.06, 10.14, 6.37], [10.08, 9.90, 5.58], [9.99, 10.20, 5.65], [10.00, 10.29, 5.65], [10.03, 9.86, 5.19], [10.02, 9.48, 5.42], [10.06, 10.01, 6.30], [10.03, 10.24, 6.15], [9.97, 10.26, 6.05], [9.94, 10.24, 5.89], [9.83, 10.12, 5.22], [9.78, 10.65, 5.20], [9.77, 10.64, 5.07], [9.91, 10.56, 6.04], [9.92, 10.42, 6.12], [9.97, 10.43, 5.85], [9.91, 10.29, 5.67], [9.90, 10.30, 6.02], [9.88, 10.44, 6.04], [9.91, 10.60, 7.07], [9.63, 10.67, 7.64], [9.64, 10.46, 7.99], [9.57, 10.39, 7.59], [9.55, 10.90, 8.73], [9.58, 11.01, 8.72], [9.61, 11.01, 8.97], [9.62, np.nan, 8.58], [9.55, np.nan, 8.71], [9.57, 10.82, 8.77], [9.61, 11.02, 8.40], [9.63, 10.96, 7.95], [9.64, 11.55, 7.76], [9.61, 11.74, 8.25], [9.56, 11.80, 7.51]]) self.multi_prices_high = np.array([[10.07, 9.91, 7.41], [10.00, 10.04, 7.31], [10.00, 9.93, 7.14], [10.00, 10.04, 7.00], [10.03, 9.84, np.nan], [10.03, 9.88, 6.82], [10.04, 9.99, 6.96], [10.09, 9.70, 6.85], [10.10, 9.67, 6.50], [10.14, 9.71, 6.34], [10.11, 9.85, 6.04], [10.10, 9.90, 6.02], [10.09, 10.00, 6.12], [10.09, 10.20, 6.38], [10.10, 10.11, 6.43], [10.05, 10.18, 6.46], [10.07, 10.21, 6.43], [10.09, 10.26, 6.27], [10.10, 10.38, 5.77], [10.00, 10.47, 6.01], [10.04, 10.42, 5.67], [10.04, 10.07, 5.67], [10.06, 10.24, 6.35], [10.09, 10.27, 6.32], [10.05, 10.38, 6.43], [9.97, 10.43, 6.36], [9.96, 10.39, 5.79], [9.86, 10.65, 5.47], [9.77, 10.84, 5.65], [9.92, 10.65, 6.04], [9.94, 10.73, 6.14], [9.97, 10.63, 6.23], [9.97, 10.51, 5.83], [9.92, 10.35, 6.25], [9.92, 10.46, 6.27], [9.92, 10.63, 7.12], [9.93, 10.74, 7.82], [9.64, 10.76, 8.14], [9.58, 10.54, 8.27], [9.60, 11.02, 8.92], [9.58, 11.12, 8.76], [9.62, 11.17, 9.15], [9.62, np.nan, 8.90], [9.64, np.nan, 9.01], [9.59, 10.92, 9.16], [9.62, 11.15, 9.00], [9.63, 11.11, 8.27], [9.70, 11.55, 7.99], [9.66, 11.95, 8.33], [9.64, 11.93, 8.25]]) self.multi_prices_close = np.array([[10.04, 9.68, 6.64], [10.00, 9.87, 7.26], [10.00, 9.86, 7.03], [9.99, 9.87, 6.87], [9.97, 9.79, np.nan], [9.99, 9.82, 6.64], [10.03, 9.80, 6.85], [10.03, 9.66, 6.70], [10.06, 9.62, 6.39], [10.06, 9.58, 6.22], [10.11, 9.69, 5.92], [10.09, 9.78, 5.91], [10.07, 9.75, 6.11], [10.06, 9.96, 5.91], [10.09, 9.90, 6.23], [10.03, 10.04, 6.28], [10.03, 10.06, 6.28], [10.06, 10.08, 6.27], [10.08, 10.24, 5.70], [10.00, 10.24, 5.56], [9.99, 10.24, 5.67], [10.03, 9.86, 5.16], [10.03, 10.13, 5.69], [10.06, 10.12, 6.32], [10.03, 10.10, 6.14], [9.97, 10.25, 6.25], [9.94, 10.24, 5.79], [9.83, 10.22, 5.26], [9.77, 10.75, 5.05], [9.84, 10.64, 5.45], [9.91, 10.56, 6.06], [9.93, 10.60, 6.21], [9.96, 10.42, 5.69], [9.91, 10.25, 5.46], [9.91, 10.24, 6.02], [9.88, 10.49, 6.69], [9.91, 10.57, 7.43], [9.64, 10.63, 7.72], [9.56, 10.48, 8.16], [9.57, 10.37, 7.83], [9.55, 10.96, 8.70], [9.57, 11.02, 8.71], [9.61, np.nan, 8.88], [9.61, np.nan, 8.54], [9.55, 10.88, 8.87], [9.57, 10.87, 8.87], [9.63, 11.01, 8.18], [9.64, 11.01, 7.80], [9.65, 11.58, 7.97], [9.62, 11.80, 8.25]]) # 交易信号包括三组,分别作用与开盘价、最高价和收盘价 # 此时的关键是股票交割期的处理,交割期不为0时,以交易日为单位交割 self.multi_signals = [] # multisignal的第一组信号为开盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.000, 0.000], [0.000, -0.500, 0.000], [0.000, -0.500, 0.000], [0.000, 0.000, 0.000], [0.150, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.300, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.300], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.350, 0.250], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.100, 0.000, 0.350], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.050, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.150, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, -0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.200], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.500, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -0.800], [0.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.750, 0.000, 0.000], [0.000, 0.000, -0.850], [0.000, 0.000, 0.000], [0.000, -0.700, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -1.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-1.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 交易回测所需的价格也有三组,分别是开盘价、最高价和收盘价 self.multi_histories = [] # multisignal的第一组信号为开盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_open, columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_high, columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_close, columns=self.multi_shares, index=self.multi_dates ) ) # 设置回测参数 self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.pt_signal_hp = dataframe_to_hp( pd.DataFrame(self.pt_signals, index=self.dates, columns=self.shares), htypes='close' ) self.ps_signal_hp = dataframe_to_hp( pd.DataFrame(self.ps_signals, index=self.dates, columns=self.shares), htypes='close' ) self.vs_signal_hp = dataframe_to_hp( pd.DataFrame(self.vs_signals, index=self.dates, columns=self.shares), htypes='close' ) self.multi_signal_hp = stack_dataframes( self.multi_signals, stack_along='htypes', htypes='open, high, close' ) self.history_list = dataframe_to_hp( pd.DataFrame(self.prices, index=self.dates, columns=self.shares), htypes='close' ) self.multi_history_list = stack_dataframes( self.multi_histories, stack_along='htypes', htypes='open, high, close' ) # 模拟PT信号回测结果 # PT信号,先卖后买,交割期为0 self.pt_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21979.4972], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21880.9628], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21630.0454], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20968.0007], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21729.9339], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21107.6400], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21561.1745], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21553.0916], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22316.9366], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22084.2862], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21777.3543], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22756.8225], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22843.4697], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22762.1766], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22257.0973], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23136.5259], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 21813.7852], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22395.3204], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23717.6858], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22715.4263], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 22498.3254], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23341.1733], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24162.3941], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24847.1508], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23515.9755], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24555.8997], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24390.6372], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24073.3309], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24394.6500], [2076.3314, 903.0334, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 3487.5655, 0.0000, 34904.8150], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 34198.4475], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 33753.0190], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 34953.8178], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 33230.2498], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35026.7819], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36976.2649], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38673.8147], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38717.3429], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36659.0854], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35877.9607], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36874.4840], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37010.2695], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 38062.3510], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36471.1357], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37534.9927], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37520.2569], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36747.7952], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36387.9409], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 35925.9715], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36950.7028], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37383.2463], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37761.2724], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 39548.2653], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41435.1291], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41651.6261], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41131.9920], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 41286.4702], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 40978.7259], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 40334.5453], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41387.9172], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42492.6707], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42953.7188], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42005.1092], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42017.9106], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 43750.2824], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41766.8679], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 42959.1150], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 41337.9320], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 40290.3688]]) # PT信号,先买后卖,交割期为0 self.pt_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [797.1684, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 2703.5808, 0.0000, 21979.4972], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21700.7241], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21446.6630], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20795.3593], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21557.2924], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 20933.6887], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21392.5581], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21390.2918], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22147.7562], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21910.9053], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21594.2980], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22575.4380], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22655.8312], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22578.4365], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22073.2661], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22955.2367], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 21628.1647], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22203.4237], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 23516.2598], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22505.8428], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22199.1042], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23027.9302], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23848.5806], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24540.8871], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23205.6838], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24267.6685], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24115.3796], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23814.3667], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24133.6611], [2061.6837, 896.6628, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 3285.8830, 0.0000, 34658.5742], [0.0000, 896.6628, 507.6643, 466.6033, 0.0000, 1523.7106, 1467.7407, 12328.8684, 0.0000, 33950.7917], [0.0000, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 4380.3797, 0.0000, 33711.4045], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 34922.0959], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 33237.1081], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35031.8071], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36976.3376], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38658.5245], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38712.2854], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36655.3125], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35904.3692], [644.1423, 902.2617, 514.8253, 0.0000, 15.5990, 0.0000, 1467.7407, 14821.9004, 0.0000, 36873.9080], [644.1423, 902.2617, 514.8253, 0.0000, 1220.8683, 0.0000, 1467.7407, 10470.8781, 0.0000, 36727.7895], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37719.9840], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36138.1277], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37204.0760], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37173.1201], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36398.2298], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36034.2178], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 35583.6399], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36599.2645], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37013.3408], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37367.7449], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 39143.8273], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41007.3074], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41225.4657], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 40685.9525], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 1467.7407, 6592.6891, 0.0000, 40851.5435], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 0.0000, 0.0000, 41082.1210], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 40385.0135], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 41455.1513], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42670.6769], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 43213.7233], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42205.2480], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42273.9386], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 44100.0777], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42059.7208], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 43344.9653], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 41621.0324], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 40528.0648]]) # PT信号,先卖后买,交割期为2天(股票)0天(现金)以便利用先卖的现金继续买入 self.pt_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21584.441], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21309.576], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20664.323], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21445.597], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 20806.458], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21288.441], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21294.365], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 22058.784], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21805.540], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21456.333], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22459.720], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22611.602], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22470.912], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21932.634], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22425.864], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21460.103], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22376.968], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23604.295], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22704.826], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22286.293], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23204.755], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24089.017], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24768.185], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23265.196], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24350.540], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24112.706], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23709.076], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24093.545], [2060.275, 896.050, 504.579, 288.667, 0.000, 763.410, 1577.904, 2835.944, 0.000, 34634.888], [578.327, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 732.036, 0.000, 33912.261], [0.000, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 4415.981, 0.000, 33711.951], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 34951.433], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 33224.596], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35065.209], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 37018.699], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38706.035], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38724.569], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 36647.268], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35928.930], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36967.229], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37056.598], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 38129.862], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36489.333], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37599.602], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37566.823], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36799.280], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36431.196], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 35940.942], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36973.050], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37393.292], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37711.276], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 39515.991], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41404.440], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41573.523], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41011.613], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 41160.181], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 40815.512], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 40145.531], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41217.281], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42379.061], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42879.589], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41891.452], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41929.003], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 43718.052], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41685.916], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 42930.410], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 41242.589], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 40168.084]]) # PT信号,先买后卖,交割期为2天(股票)1天(现金) self.pt_res_bs21 = np.array([ [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [797.168, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 2475.037, 0.000, 21584.441], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21266.406], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20623.683], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21404.957], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 20765.509], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21248.748], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21256.041], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 22018.958], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21764.725], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21413.241], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22417.021], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22567.685], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22427.699], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21889.359], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22381.938], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21416.358], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22332.786], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 0.000, 2386.698, 0.000, 23557.595], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 23336.992], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 22907.742], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24059.201], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24941.902], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25817.514], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24127.939], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25459.688], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25147.370], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25005.842], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 1086.639, 2752.004, 0.000, 25598.700], [2138.154, 929.921, 503.586, 288.667, 0.000, 761.900, 1086.639, 4818.835, 0.000, 35944.098], [661.356, 929.921, 503.586, 553.843, 0.000, 1954.237, 1086.639, 8831.252, 0.000, 35237.243], [0.000, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 9460.955, 0.000, 35154.442], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36166.632], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 34293.883], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 35976.901], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37848.552], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39512.574], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39538.024], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37652.984], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36687.909], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37749.277], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37865.518], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38481.190], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37425.087], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38051.341], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38065.478], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37429.495], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37154.479], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 36692.717], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37327.055], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37937.630], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 38298.645], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 39689.369], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40992.397], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 41092.265], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40733.622], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40708.515], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40485.321], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 39768.059], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 40519.595], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 41590.937], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42354.983], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41175.149], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41037.902], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42706.213], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 40539.205], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 41608.692], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39992.148], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39134.828]]) # 模拟PS信号回测结果 # PS信号,先卖后买,交割期为0 self.ps_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22027.4535], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 20939.9992], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21250.0636], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22282.7812], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21407.0658], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21160.2373], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21826.7682], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22744.9403], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23466.1185], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22017.8821], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23191.4662], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23099.0822], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22684.7671], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22842.1346], [1073.8232, 416.6787, 735.6442, 269.8496, 1785.2055, 938.6967, 1339.2073, 5001.4246, 0.0000, 33323.8359], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32820.2901], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32891.2308], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34776.5296], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 33909.0325], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34560.1906], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 36080.4552], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38618.4454], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38497.9230], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 37110.0991], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 35455.2467], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35646.1860], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35472.3020], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36636.4694], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35191.7035], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36344.2242], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36221.6005], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35943.5708], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35708.2608], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35589.0286], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36661.0285], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36310.5909], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36466.7637], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 37784.4918], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39587.6766], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 40064.0191], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39521.6439], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39932.2761], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39565.2475], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 38943.1632], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39504.1184], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40317.8004], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40798.5768], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39962.5711], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40194.4793], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 41260.4003], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39966.3024], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 40847.3160], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 39654.5445], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 38914.8151]]) # PS信号,先买后卖,交割期为0 self.ps_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21625.6913], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 20873.0389], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21450.9447], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 22269.3892], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21969.5329], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21752.6924], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22000.6088], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23072.5655], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23487.5201], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22441.0460], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23201.2700], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23400.9485], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22306.2008], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21989.5913], [1073.8232, 737.0632, 735.6442, 269.8496, 1708.7766, 938.6967, 0.0000, 5215.4255, 0.0000, 31897.1636], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31509.5059], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31451.7888], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32773.4592], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32287.0318], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32698.1938], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34031.5183], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 35537.8336], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36212.6487], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36007.5294], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34691.3797], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33904.8810], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34341.6098], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 35479.9505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34418.4455], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34726.7182], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34935.0407], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34136.7505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33804.1575], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 33653.8970], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 34689.8757], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 34635.7841], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 35253.2755], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 36388.1051], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 37987.4204], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38762.2103], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38574.0544], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39101.9156], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39132.5587], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38873.2941], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39336.6594], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39565.9568], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39583.4317], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39206.8350], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39092.6551], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39666.1834], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38798.0749], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 39143.5561], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38617.8779], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38156.1701]]) # PS信号,先卖后买,交割期为2天(股票)1天(现金) self.ps_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0.000, 33323.836], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32891.231], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34776.530], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 33909.032], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34560.191], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 36080.455], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38618.445], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38497.923], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 37110.099], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 35455.247], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35646.186], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35472.302], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36636.469], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35191.704], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36344.224], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36221.601], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35943.571], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35708.261], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35589.029], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36661.029], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36310.591], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36466.764], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 37784.492], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39587.677], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 40064.019], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39521.644], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39932.276], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39565.248], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 38943.163], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39504.118], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40317.800], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40798.577], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39962.571], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40194.479], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 41260.400], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39966.302], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 40847.316], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 39654.544], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 38914.815]]) # PS信号,先买后卖,交割期为2天(股票)1天(现金) self.ps_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 208.333, 326.206, 5020.833, 0.000, 9761.111], [351.119, 421.646, 0.000, 0.000, 555.556, 208.333, 326.206, 1116.389, 0.000, 9645.961], [351.119, 421.646, 190.256, 0.000, 555.556, 208.333, 326.206, 151.793, 0.000, 9686.841], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9813.932], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9803.000], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9605.334], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9304.001], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8870.741], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8738.282], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8780.664], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9126.199], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9199.746], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9083.518], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9380.932], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9581.266], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 9927.154], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10059.283], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10281.669], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10093.263], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 0.000, 4453.525, 0.000, 10026.289], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9870.523], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9606.437], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9818.691], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9726.556], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9964.547], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 10053.449], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9917.440], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9889.495], [117.098, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 6189.948, 0.000, 20064.523], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21124.484], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20827.077], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20396.124], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19856.445], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20714.156], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19971.485], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20733.948], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20938.903], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21660.772], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21265.298], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20684.378], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21754.770], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21775.215], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21801.488], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21235.427], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21466.714], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 20717.431], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21294.450], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 22100.247], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21802.552], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21593.608], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21840.028], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22907.725], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23325.945], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22291.942], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23053.050], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23260.084], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22176.244], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21859.297], [1055.763, 740.051, 729.561, 272.237, 1706.748, 932.896, 0.000, 5221.105, 0.000, 31769.617], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31389.961], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31327.498], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32647.140], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32170.095], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32577.742], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 33905.444], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35414.492], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 36082.120], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35872.293], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 34558.132], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33778.138], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34213.578], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 35345.791], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34288.014], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34604.406], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34806.850], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34012.232], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33681.345], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 33540.463], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 34574.280], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 34516.781], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 35134.412], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 36266.530], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 37864.376], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38642.633], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38454.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 38982.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 39016.154], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38759.803], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39217.182], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39439.690], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39454.081], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39083.341], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38968.694], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39532.030], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38675.507], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 39013.741], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38497.668], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38042.410]]) # 模拟VS信号回测结果 # VS信号,先卖后买,交割期为0 self.vs_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 9925.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954.0000, 0.0000, 9785.0000], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878.0000, 0.0000, 9666.0000], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0.0000, 0.0000, 9731.0000], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9830.9270], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9785.8540], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9614.3412], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9303.1953], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8834.4398], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8712.7554], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8717.9507], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9079.1479], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9166.0276], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9023.6607], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9291.6864], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9411.6371], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20137.8405], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20711.3567], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21470.3891], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21902.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20962.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21833.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21941.8169], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21278.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21224.4700], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160.0000, 0.0000, 31225.2119], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30894.5748], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30764.3811], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31615.4215], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 32486.1394], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 33591.2847], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34056.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34756.4863], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34445.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34433.9541], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33870.4703], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34014.3010], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34680.5671], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33890.9945], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34004.6640], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34127.7768], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 32613.3171], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 33168.1558], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33504.6236], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33652.1318], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35557.5191], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35669.7128], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35211.4466], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35550.6079], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35711.6563], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35682.6079], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35880.8336], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36249.8740], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36071.6159], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35846.1562], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35773.3578], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36274.9465], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35739.3094], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 36135.0917], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35286.5835], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35081.3658]]) # VS信号,先买后卖,交割期为0 self.vs_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 10000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 9925], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954, 0.0000, 9785], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878, 0.0000, 9666], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0, 0.0000, 9731], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9830.927022], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9785.854043], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9614.341223], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9303.195266], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8834.439842], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8712.755424], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8717.95069], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9079.147929], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9166.027613], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9023.66075], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9291.686391], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9411.637081], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20137.84054], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20711.35674], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21470.38914], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21902.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20962.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21833.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21941.81688], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21278.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21224.46995], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160, 0.0000, 31225.21185], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30894.57479], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30764.38113], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31615.42154], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 32486.13941], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 33591.28466], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34056.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34756.48633], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34445.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34433.95412], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33870.47032], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34014.30104], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34680.56715], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33890.99452], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34004.66398], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34127.77683], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 32613.31706], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 33168.15579], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33504.62357], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33652.13176], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35557.51909], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35669.71276], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35211.44665], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35550.60792], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35711.65633], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35682.60792], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35880.83362], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36249.87403], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36071.61593], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35846.15615], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35773.35783], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36274.94647], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35739.30941], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 36135.09172], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35286.58353], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35081.36584]]) # VS信号,先卖后买,交割期为2天(股票)1天(现金) self.vs_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # VS信号,先买后卖,交割期为2天(股票)1天(现金) self.vs_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # Multi信号处理结果,先卖后买,使用卖出的现金买进,交割期为2天(股票)0天(现金) self.multi_res = np.array( [[0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 9965.1867], [0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 10033.0650], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10034.8513], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10036.6376], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10019.3404], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10027.7062], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10030.1477], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10005.1399], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10002.5054], [150.3516, 489.4532, 0.0000, 3765.8877, 0.0000, 9967.3860], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10044.4059], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10078.1430], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10138.2709], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10050.4768], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10300.0711], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10392.6970], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10400.5282], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10408.9220], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10376.5914], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10346.8794], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10364.7474], [75.1758, 381.1856, 645.5014, 2459.1665, 0.0000, 10302.4570], [18.7939, 381.1856, 645.5014, 3024.6764, 0.0000, 10747.4929], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11150.9107], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11125.2946], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11191.9956], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11145.7486], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11090.0768], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11113.8733], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11456.3281], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21983.7333], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22120.6165], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21654.5327], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21429.6550], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21912.5643], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22516.3100], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23169.0777], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23390.8080], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23743.3742], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 23210.7311], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24290.4375], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24335.3279], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18317.3553], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18023.4660], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24390.0527], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24389.6421], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24483.5953], [0.0000, 559.9112, 0.0000, 18321.5674, 0.0000, 24486.1895], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389]]) def test_loop_step_pt_sb00(self): """ test loop step PT-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[2][7], own_amounts=self.pt_res_sb00[2][0:7], available_cash=self.pt_res_sb00[2][7], available_amounts=self.pt_res_sb00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[2][7] + c_g + c_s amounts = self.pt_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[30][7], own_amounts=self.pt_res_sb00[30][0:7], available_cash=self.pt_res_sb00[30][7], available_amounts=self.pt_res_sb00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[30][7] + c_g + c_s amounts = self.pt_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[59][7] + 10000, own_amounts=self.pt_res_sb00[59][0:7], available_cash=self.pt_res_sb00[59][7] + 10000, available_amounts=self.pt_res_sb00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[95][7], own_amounts=self.pt_res_sb00[95][0:7], available_cash=self.pt_res_sb00[95][7], available_amounts=self.pt_res_sb00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[96][7] + c_g + c_s amounts = self.pt_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[97][0:7])) def test_loop_step_pt_bs00(self): """ test loop step PT-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[2][7], own_amounts=self.pt_res_bs00[2][0:7], available_cash=self.pt_res_bs00[2][7], available_amounts=self.pt_res_bs00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[2][7] + c_g + c_s amounts = self.pt_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[30][7], own_amounts=self.pt_res_bs00[30][0:7], available_cash=self.pt_res_bs00[30][7], available_amounts=self.pt_res_bs00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[30][7] + c_g + c_s amounts = self.pt_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[59][7] + 10000, own_amounts=self.pt_res_bs00[59][0:7], available_cash=self.pt_res_bs00[59][7] + 10000, available_amounts=self.pt_res_bs00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[95][7], own_amounts=self.pt_res_bs00[95][0:7], available_cash=self.pt_res_bs00[95][7], available_amounts=self.pt_res_bs00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[96][7] + c_g + c_s amounts = self.pt_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[97][0:7])) def test_loop_step_ps_sb00(self): """ test loop step PS-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_sb00[2][7], available_amounts=self.ps_res_sb00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[2][7] + c_g + c_s amounts = self.ps_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_sb00[30][7], available_amounts=self.ps_res_sb00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[30][7] + c_g + c_s amounts = self.ps_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[59][7] + 10000, own_amounts=self.ps_res_sb00[59][0:7], available_cash=self.ps_res_sb00[59][7] + 10000, available_amounts=self.ps_res_sb00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[95][7], own_amounts=self.ps_res_sb00[95][0:7], available_cash=self.ps_res_sb00[95][7], available_amounts=self.ps_res_sb00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[96][7] + c_g + c_s amounts = self.ps_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[97][0:7])) def test_loop_step_ps_bs00(self): """ test loop step PS-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_bs00[2][7], available_amounts=self.ps_res_bs00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[2][7] + c_g + c_s amounts = self.ps_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_bs00[30][7], available_amounts=self.ps_res_bs00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[30][7] + c_g + c_s amounts = self.ps_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[59][7] + 10000, own_amounts=self.ps_res_bs00[59][0:7], available_cash=self.ps_res_bs00[59][7] + 10000, available_amounts=self.ps_res_bs00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[95][7], own_amounts=self.ps_res_bs00[95][0:7], available_cash=self.ps_res_bs00[95][7], available_amounts=self.ps_res_bs00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[96][7] + c_g + c_s amounts = self.ps_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[97][0:7])) def test_loop_step_vs_sb00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[2][7], own_amounts=self.vs_res_sb00[2][0:7], available_cash=self.vs_res_sb00[2][7], available_amounts=self.vs_res_sb00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[2][7] + c_g + c_s amounts = self.vs_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[30][7], own_amounts=self.vs_res_sb00[30][0:7], available_cash=self.vs_res_sb00[30][7], available_amounts=self.vs_res_sb00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[30][7] + c_g + c_s amounts = self.vs_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[59][7] + 10000, own_amounts=self.vs_res_sb00[59][0:7], available_cash=self.vs_res_sb00[59][7] + 10000, available_amounts=self.vs_res_sb00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[95][7], own_amounts=self.vs_res_sb00[95][0:7], available_cash=self.vs_res_sb00[95][7], available_amounts=self.vs_res_sb00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[96][7] + c_g + c_s amounts = self.vs_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[97][0:7])) def test_loop_step_vs_bs00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[2][7], own_amounts=self.vs_res_bs00[2][0:7], available_cash=self.vs_res_bs00[2][7], available_amounts=self.vs_res_bs00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[2][7] + c_g + c_s amounts = self.vs_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[30][7], own_amounts=self.vs_res_bs00[30][0:7], available_cash=self.vs_res_bs00[30][7], available_amounts=self.vs_res_bs00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[30][7] + c_g + c_s amounts = self.vs_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[59][7] + 10000, own_amounts=self.vs_res_bs00[59][0:7], available_cash=self.vs_res_bs00[59][7] + 10000, available_amounts=self.vs_res_bs00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[95][7], own_amounts=self.vs_res_bs00[95][0:7], available_cash=self.vs_res_bs00[95][7], available_amounts=self.vs_res_bs00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[96][7] + c_g + c_s amounts = self.vs_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[97][0:7])) def test_loop_pt(self): """ Test looping of PT proportion target signals, with stock delivery delay = 0 days cash delivery delay = 0 day buy-sell sequence = sell first """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 0 days \n' 'cash delivery delay = 0 day \n' 'buy-sell sequence = sell first') res = apply_loop(op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.pt_res_bs00, 2)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=0, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.pt_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.pt_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.ps_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.ps_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.ps_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs(self): """ Test looping of VS Volume Signal type of signals """ res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.vs_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.vs_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.vs_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_multiple_signal(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=True, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.multi_res[i])) print() self.assertTrue(np.allclose(res, self.multi_res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=False, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestStrategy(unittest.TestCase): """ test all properties and methods of strategy base class""" def setUp(self) -> None: pass class TestLSStrategy(RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ # TODO: This strategy is not working, find out why and improve def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class MyStg(qt.RollingTiming): """自定义双均线择时策略策略""" def __init__(self): """这个均线择时策略只有三个参数: - SMA 慢速均线,所选择的股票 - FMA 快速均线 - M 边界值 策略的其他说明 """ """ 必须初始化的关键策略参数清单: """ super().__init__( pars=(20, 100, 0.01), par_count=3, par_types=['discr', 'discr', 'conti'], par_bounds_or_enums=[(10, 250), (10, 250), (0.0, 0.5)], stg_name='CUSTOM ROLLING TIMING STRATEGY', stg_text='Customized Rolling Timing Strategy for Testing', data_types='close', window_length=100, ) print(f'=====================\n====================\n' f'custom strategy initialized, \npars: {self.pars}\npar_count:{self.par_count}\npar_types:' f'{self.par_types}\n' f'{self.info()}') # 策略的具体实现代码写在策略的_realize()函数中 # 这个函数固定接受两个参数: hist_price代表特定组合的历史数据, params代表具体的策略参数 def _realize(self, hist_price, params): """策略的具体实现代码: s:短均线计算日期;l:长均线计算日期;m:均线边界宽度;hesitate:均线跨越类型""" f, s, m = params # 临时处理措施,在策略实现层对传入的数据切片,后续应该在策略实现层以外事先对数据切片,保证传入的数据符合data_types参数即可 h = hist_price.T # 计算长短均线的当前值 s_ma = qt.sma(h[0], s)[-1] f_ma = qt.sma(h[0], f)[-1] # 计算慢均线的停止边界,当快均线在停止边界范围内时,平仓,不发出买卖信号 s_ma_u = s_ma * (1 + m) s_ma_l = s_ma * (1 - m) # 根据观望模式在不同的点位产生Long/short/empty标记 if f_ma > s_ma_u: # 当快均线在慢均线停止范围以上时,持有多头头寸 return 1 elif s_ma_l < f_ma < s_ma_u: # 当均线在停止边界以内时,平仓 return 0 else: # f_ma < s_ma_l 当快均线在慢均线停止范围以下时,持有空头头寸 return -1 class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(strategies='dma', signal_type='PS') self.op2 = qt.Operator(strategies='dma, macd, trix') def test_init(self): """ test initialization of Operator class""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.signal_type, 'pt') self.assertIsInstance(op.strategies, list) self.assertEqual(len(op.strategies), 0) op = qt.Operator('dma') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies, list) self.assertIsInstance(op.strategies[0], TimingDMA) op = qt.Operator('dma, macd') self.assertIsInstance(op, qt.Operator) op = qt.Operator(['dma', 'macd']) self.assertIsInstance(op, qt.Operator) def test_repr(self): """ test basic representation of Opeartor class""" op = qt.Operator() self.assertEqual(op.__repr__(), 'Operator()') op = qt.Operator('macd, dma, trix, random, avg_low') self.assertEqual(op.__repr__(), 'Operator(macd, dma, trix, random, avg_low)') self.assertEqual(op['dma'].__repr__(), 'Q-TIMING(DMA)') self.assertEqual(op['macd'].__repr__(), 'R-TIMING(MACD)') self.assertEqual(op['trix'].__repr__(), 'R-TIMING(TRIX)') self.assertEqual(op['random'].__repr__(), 'SELECT(RANDOM)') self.assertEqual(op['avg_low'].__repr__(), 'FACTOR(AVG LOW)') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') self.op.info() def test_get_strategy_by_id(self): """ test get_strategy_by_id()""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op.get_strategy_by_id('macd'), op.strategies[0]) self.assertIs(op.get_strategy_by_id(1), op.strategies[1]) self.assertIs(op.get_strategy_by_id('trix'), op.strategies[2]) def test_get_items(self): """ test method __getitem__(), it should be the same as geting strategies by id""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op['macd'], op.strategies[0]) self.assertIs(op['trix'], op.strategies[2]) self.assertIs(op[1], op.strategies[1]) self.assertIs(op[3], op.strategies[2]) def test_get_strategies_by_price_type(self): """ test get_strategies_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategies_by_price_type('close') stg_open = op.get_strategies_by_price_type('open') stg_high = op.get_strategies_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, [op.strategies[1]]) self.assertEqual(stg_open, [op.strategies[0], op.strategies[2]]) self.assertEqual(stg_high, []) stg_wrong = op.get_strategies_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_count_by_price_type(self): """ test get_strategy_count_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_count_by_price_type('close') stg_open = op.get_strategy_count_by_price_type('open') stg_high = op.get_strategy_count_by_price_type('high') self.assertIsInstance(stg_close, int) self.assertIsInstance(stg_open, int) self.assertIsInstance(stg_high, int) self.assertEqual(stg_close, 1) self.assertEqual(stg_open, 2) self.assertEqual(stg_high, 0) stg_wrong = op.get_strategy_count_by_price_type(123) self.assertIsInstance(stg_wrong, int) self.assertEqual(stg_wrong, 0) def test_get_strategy_names_by_price_type(self): """ test get_strategy_names_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_names_by_price_type('close') stg_open = op.get_strategy_names_by_price_type('open') stg_high = op.get_strategy_names_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['DMA']) self.assertEqual(stg_open, ['MACD', 'TRIX']) self.assertEqual(stg_high, []) stg_wrong = op.get_strategy_names_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_id_by_price_type(self): """ test get_strategy_IDs_by_price_type""" print('-----Test get strategy IDs by price type------\n') op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['dma']) self.assertEqual(stg_open, ['macd', 'trix']) self.assertEqual(stg_high, []) op.add_strategies('dma, macd') op.set_parameter('dma_1', price_type='open') op.set_parameter('macd', price_type='open') op.set_parameter('macd_1', price_type='high') op.set_parameter('trix', price_type='close') print(f'Operator strategy id:\n' f'{op.strategies} on memory pos:\n' f'{[id(stg) for stg in op.strategies]}') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') stg_all = op.get_strategy_id_by_price_type() print(f'All IDs of strategies:\n' f'{stg_all}\n' f'All price types of strategies:\n' f'{[stg.price_type for stg in op.strategies]}') self.assertEqual(stg_close, ['dma', 'trix']) self.assertEqual(stg_open, ['macd', 'dma_1']) self.assertEqual(stg_high, ['macd_1']) stg_wrong = op.get_strategy_id_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_property_strategies(self): """ test property strategies""" print(f'created a new simple Operator with only one strategy: DMA') op = qt.Operator('dma') strategies = op.strategies self.assertIsInstance(strategies, list) op.info() print(f'created the second simple Operator with three strategies') self.assertIsInstance(strategies[0], TimingDMA) op = qt.Operator('dma, macd, cdl') strategies = op.strategies op.info() self.assertIsInstance(strategies, list) self.assertIsInstance(strategies[0], TimingDMA) self.assertIsInstance(strategies[1], TimingMACD) self.assertIsInstance(strategies[2], TimingCDL) def test_property_strategy_count(self): """ test Property strategy_count, and the method get_strategy_count_by_price_type()""" self.assertEqual(self.op.strategy_count, 1) self.assertEqual(self.op2.strategy_count, 3) self.assertEqual(self.op.get_strategy_count_by_price_type(), 1) self.assertEqual(self.op2.get_strategy_count_by_price_type(), 3) self.assertEqual(self.op.get_strategy_count_by_price_type('close'), 1) self.assertEqual(self.op.get_strategy_count_by_price_type('high'), 0) self.assertEqual(self.op2.get_strategy_count_by_price_type('close'), 3) self.assertEqual(self.op2.get_strategy_count_by_price_type('open'), 0) def test_property_strategy_names(self): """ test property strategy_ids""" op = qt.Operator('dma') self.assertIsInstance(op.strategy_ids, list) names = op.strategy_ids[0] print(f'names are {names}') self.assertEqual(names, 'dma') op = qt.Operator('dma, macd, trix, cdl') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'cdl') op = qt.Operator('dma, macd, trix, dma, dma') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'dma_1') self.assertEqual(op.strategy_ids[4], 'dma_2') def test_property_strategy_blenders(self): """ test property strategy blenders including property setter, and test the method get_blender()""" print(f'------- Test property strategy blenders ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') # test adding blender to empty operator op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op.add_strategy('dma') op.strategy_blenders = '1+2' self.assertEqual(op.strategy_blenders, {'close': ['+', '2', '1']}) op.clear_strategies() self.assertEqual(op.strategy_blenders, {}) op.add_strategies('dma, trix, macd, dma') op.set_parameter('dma', price_type='open') op.set_parameter('trix', price_type='high') op.set_blender('open', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) op.set_blender('open', '1+2+3') op.set_blender('abc', '1+2+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') blender_abc = op.get_blender('abc') self.assertEqual(op.strategy_blenders, {'open': ['+', '3', '+', '2', '1']}) self.assertEqual(blender_open, ['+', '3', '+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) self.assertEqual(blender_abc, None) op.set_blender('open', 123) blender_open = op.get_blender('open') self.assertEqual(blender_open, []) op.set_blender(None, '1+1') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) self.assertEqual(op.get_blender(), {'close': ['+', '1', '1'], 'open': ['+', '1', '1'], 'high': ['+', '1', '1']}) self.assertEqual(blender_open, ['+', '1', '1']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '1', '1']) op.set_blender(None, ['1+1', '3+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '3']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '4', '3']) self.assertEqual(op.view_blender('open'), '3+4') self.assertEqual(op.view_blender('close'), '1+1') self.assertEqual(op.view_blender('high'), '3+4') op.strategy_blenders = (['1+2', '2*3', '1+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) self.assertEqual(op.view_blender('open'), '1+4') self.assertEqual(op.view_blender('close'), '1+2') self.assertEqual(op.view_blender('high'), '2*3') # test error inputs: # wrong type of price_type self.assertRaises(TypeError, op.set_blender, 1, '1+3') # price_type not found, no change is made op.set_blender('volume', '1+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # price_type not valid, no change is made op.set_blender('closee', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('open', 55) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('close', ['1+2']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, ['*', '3', '2']) # can't parse blender, set to empty list op.set_blender('high', 'a+bc') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, []) def test_property_singal_type(self): """ test property signal_type""" op = qt.Operator() self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'pt') op = qt.Operator(signal_type='ps') self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='PS') self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='proportion signal') self.assertEqual(op.signal_type, 'ps') print(f'"pt" will be the default type if wrong value is given') op = qt.Operator(signal_type='wrong value') self.assertEqual(op.signal_type, 'pt') print(f'test signal_type.setter') op.signal_type = 'ps' self.assertEqual(op.signal_type, 'ps') print(f'test error raising') self.assertRaises(TypeError, setattr, op, 'signal_type', 123) self.assertRaises(ValueError, setattr, op, 'signal_type', 'wrong value') def test_property_op_data_types(self): """ test property op_data_types""" op = qt.Operator() self.assertIsInstance(op.op_data_types, list) self.assertEqual(op.op_data_types, []) op = qt.Operator('macd, dma, trix') dt = op.op_data_types self.assertEqual(dt[0], 'close') op = qt.Operator('macd, cdl') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) op.add_strategy('dma') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) def test_property_op_data_type_count(self): """ test property op_data_type_count""" op = qt.Operator() self.assertIsInstance(op.op_data_type_count, int) self.assertEqual(op.op_data_type_count, 0) op = qt.Operator('macd, dma, trix') dtn = op.op_data_type_count self.assertEqual(dtn, 1) op = qt.Operator('macd, cdl') dtn = op.op_data_type_count self.assertEqual(dtn, 4) op.add_strategy('dma') dtn = op.op_data_type_count self.assertEqual(dtn, 4) def test_property_op_data_freq(self): """ test property op_data_freq""" op = qt.Operator() self.assertIsInstance(op.op_data_freq, str) self.assertEqual(len(op.op_data_freq), 0) self.assertEqual(op.op_data_freq, '') op = qt.Operator('macd, dma, trix') dtf = op.op_data_freq self.assertIsInstance(dtf, str) self.assertEqual(dtf[0], 'd') op.set_parameter('macd', data_freq='m') dtf = op.op_data_freq self.assertIsInstance(dtf, list) self.assertEqual(len(dtf), 2) self.assertEqual(dtf[0], 'd') self.assertEqual(dtf[1], 'm') def test_property_bt_price_types(self): """ test property bt_price_types""" print('------test property bt_price_tyeps-------') op = qt.Operator() self.assertIsInstance(op.bt_price_types, list) self.assertEqual(len(op.bt_price_types), 0) self.assertEqual(op.bt_price_types, []) op = qt.Operator('macd, dma, trix') btp = op.bt_price_types self.assertIsInstance(btp, list) self.assertEqual(btp[0], 'close') op.set_parameter('macd', price_type='open') btp = op.bt_price_types btpc = op.bt_price_type_count print(f'price_types are \n{btp}') self.assertIsInstance(btp, list) self.assertEqual(len(btp), 2) self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.add_strategies(['dma', 'macd']) op.set_parameter('dma_1', price_type='high') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'high') self.assertEqual(btp[2], 'open') self.assertEqual(btpc, 3) op.remove_strategy('dma_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.remove_strategy('macd_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) def test_property_op_data_type_list(self): """ test property op_data_type_list""" op = qt.Operator() self.assertIsInstance(op.op_data_type_list, list) self.assertEqual(len(op.op_data_type_list), 0) self.assertEqual(op.op_data_type_list, []) op = qt.Operator('macd, dma, trix, cdl') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(ohd[0], ['close']) op.set_parameter('macd', data_types='open, close') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(len(ohd), 4) self.assertEqual(ohd[0], ['open', 'close']) self.assertEqual(ohd[1], ['close']) self.assertEqual(ohd[2], ['close']) self.assertEqual(ohd[3], ['open', 'high', 'low', 'close']) def test_property_op_history_data(self): """ Test this important function to get operation history data that shall be used in signal generation these data are stored in list of nd-arrays, each ndarray represents the data that is needed for each and every strategy """ print(f'------- Test getting operation history data ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.op_history_data, {}) self.assertEqual(op.signal_type, 'pt') def test_property_opt_space_par(self): """ test property opt_space_par""" print(f'-----test property opt_space_par--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_space_par, tuple) self.assertIsInstance(op.opt_space_par[0], list) self.assertIsInstance(op.opt_space_par[1], list) self.assertEqual(len(op.opt_space_par), 2) self.assertEqual(op.opt_space_par, ([], [])) op = qt.Operator('macd, dma, trix, cdl') osp = op.opt_space_par print(f'before setting opt_tags opt_space_par is empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(osp[0], []) self.assertEqual(osp[1], []) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) osp = op.opt_space_par print(f'after setting opt_tags opt_space_par is not empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(len(osp), 2) self.assertIsInstance(osp[0], list) self.assertIsInstance(osp[1], list) self.assertEqual(len(osp[0]), 6) self.assertEqual(len(osp[1]), 6) self.assertEqual(osp[0], [(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) self.assertEqual(osp[1], ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) def test_property_opt_types(self): """ test property opt_tags""" print(f'-----test property opt_tags--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_tags, list) self.assertEqual(len(op.opt_tags), 0) self.assertEqual(op.opt_tags, []) op = qt.Operator('macd, dma, trix, cdl') otp = op.opt_tags print(f'before setting opt_tags opt_space_par is empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(otp, [0, 0, 0, 0]) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) otp = op.opt_tags print(f'after setting opt_tags opt_space_par is not empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(len(otp), 4) self.assertEqual(otp, [1, 1, 0, 0]) def test_property_max_window_length(self): """ test property max_window_length""" print(f'-----test property max window length--------:\n') op = qt.Operator() self.assertIsInstance(op.max_window_length, int) self.assertEqual(op.max_window_length, 0) op = qt.Operator('macd, dma, trix, cdl') mwl = op.max_window_length print(f'before setting window_length the value is 270:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 270) op.set_parameter('macd', window_length=300) op.set_parameter('dma', window_length=350) mwl = op.max_window_length print(f'after setting window_length the value is new set value:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 350) def test_property_bt_price_type_count(self): """ test property bt_price_type_count""" print(f'-----test property bt_price_type_count--------:\n') op = qt.Operator() self.assertIsInstance(op.bt_price_type_count, int) self.assertEqual(op.bt_price_type_count, 0) op = qt.Operator('macd, dma, trix, cdl') otp = op.bt_price_type_count print(f'before setting price_type the price count is 1:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 1) op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='open') otp = op.bt_price_type_count print(f'after setting price_type the price type count is 2:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 2) def test_property_set(self): """ test all property setters: setting following properties: - strategy_blenders - signal_type other properties can not be set""" print(f'------- Test setting properties ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op = qt.Operator('macd, dma, trix, cdl') # TODO: 修改set_parameter(),使下面的用法成立 # a_to_sell.set_parameter('dma, cdl', price_type='open') op.set_parameter('dma', price_type='open') op.set_parameter('cdl', price_type='open') sb = op.strategy_blenders st = op.signal_type self.assertIsInstance(sb, dict) print(f'before setting: strategy_blenders={sb}') self.assertEqual(sb, {}) op.strategy_blenders = '1+2 * 3' sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '*', '3', '2', '1'], 'open': ['+', '*', '3', '2', '1']}) op.strategy_blenders = ['1+2', '3-4'] sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '2', '1'], 'open': ['-', '4', '3']}) def test_operator_ready(self): """test the method ready of Operator""" op = qt.Operator() print(f'operator is ready? "{op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[1], qt.SelectingAll) self.assertIsInstance(op.strategies[2], qt.RiconUrgent) self.assertIsInstance(op[0], qt.TimingDMA) self.assertIsInstance(op[1], qt.SelectingAll) self.assertIsInstance(op[2], qt.RiconUrgent) self.assertIsInstance(op['dma'], qt.TimingDMA) self.assertIsInstance(op['all'], qt.SelectingAll) self.assertIsInstance(op['urgent'], qt.RiconUrgent) self.assertEqual(op.strategy_count, 3) print(f'test adding strategies into existing op') print('test adding strategy by string') op.add_strategy('macd') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingMACD) self.assertEqual(op.strategy_count, 4) op.add_strategy('random') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.SelectingRandom) self.assertEqual(op.strategy_count, 5) test_ls = TestLSStrategy() op.add_strategy(test_ls) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], TestLSStrategy) self.assertEqual(op.strategy_count, 6) print(f'Test different instance of objects are added to operator') op.add_strategy('dma') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingDMA) self.assertIsNot(op.strategies[0], op.strategies[6]) def test_operator_add_strategies(self): """ etst adding multiple strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertEqual(op.strategy_count, 3) print('test adding multiple strategies -- adding strategy by list of strings') op.add_strategies(['dma', 'macd']) self.assertEqual(op.strategy_count, 5) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by comma separated strings') op.add_strategies('dma, macd') self.assertEqual(op.strategy_count, 7) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategies') op.add_strategies([qt.TimingDMA(), qt.TimingMACD()]) self.assertEqual(op.strategy_count, 9) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[7], qt.TimingDMA) self.assertIsInstance(op.strategies[8], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategy and str') op.add_strategies(['DMA', qt.TimingMACD()]) self.assertEqual(op.strategy_count, 11) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[9], qt.TimingDMA) self.assertIsInstance(op.strategies[10], qt.TimingMACD) self.assertIsNot(op.strategies[0], op.strategies[9]) self.assertIs(type(op.strategies[0]), type(op.strategies[9])) print('test adding fault data') self.assertRaises(AssertionError, op.add_strategies, 123) self.assertRaises(AssertionError, op.add_strategies, None) def test_opeartor_remove_strategy(self): """ test method remove strategy""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.remove_strategy('dma') self.assertEqual(op.strategy_count, 6) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'dma_1', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['dma_1']) self.assertEqual(op.strategies[3], op['macd']) self.assertEqual(op.strategies[4], op['dma_2']) self.assertEqual(op.strategies[5], op['custom']) op.remove_strategy('dma_1') self.assertEqual(op.strategy_count, 5) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['macd']) self.assertEqual(op.strategies[3], op['dma_2']) self.assertEqual(op.strategies[4], op['custom']) def test_opeartor_clear_strategies(self): """ test operator clear strategies""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op.add_strategy('dma', pars=(12, 123, 25)) self.assertEqual(op.strategy_count, 1) self.assertEqual(op.strategy_ids, ['dma']) self.assertEqual(type(op.strategies[0]), TimingDMA) self.assertEqual(op.strategies[0].pars, (12, 123, 25)) op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) def test_operator_prepare_data(self): """test processes that related to prepare data""" test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(strategies=[test_ls, test_sel, test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='custom', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.assertEqual(self.op.strategies[0].pars, {'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='custom_1', pars=()) self.assertEqual(self.op.strategies[1].pars, ()), self.op.set_parameter(stg_id='custom_2', pars=(0.2, 0.02, -0.02)) self.assertEqual(self.op.strategies[2].pars, (0.2, 0.02, -0.02)), self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._op_history_data, dict) self.assertEqual(len(self.op._op_history_data), 3) # test if automatic strategy blenders are set self.assertEqual(self.op.strategy_blenders, {'close': ['+', '2', '+', '1', '0']}) tim_hist_data = self.op._op_history_data['custom'] sel_hist_data = self.op._op_history_data['custom_1'] ric_hist_data = self.op._op_history_data['custom_2'] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ Test signal generation process of operator objects :return: """ # 使用test模块的自定义策略生成三种交易策略 test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sel2 = TestSelStrategyDiffTime() test_sig = TestSigStrategy() print('--Test PT type signal generation--') # 测试PT类型的信号生成: # 创建一个Operator对象,信号类型为PT(比例目标信号) # 这个Operator对象包含两个策略,分别为LS-Strategy以及Sel-Strategy,代表择时和选股策略 # 两个策略分别生成PT信号后混合成一个信号输出 self.op = qt.Operator(strategies=[test_ls, test_sel]) self.op.set_parameter(stg_id='custom', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id=1, pars=()) # self.a_to_sell.set_blender(blender='0+1+2') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test operator information in normal mode--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['+', '1', '0']}) self.op.set_blender(None, '0*1') self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0']}) print('--test operation signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) backtest_price_types = op_list.htypes self.assertEqual(backtest_price_types[0], 'close') self.assertEqual(op_list.shape, (3, 45, 1)) reduced_op_list = op_list.values.squeeze().T print(f'op_list created, it is a 3 share/45 days/1 htype array, to make comparison happen, \n' f'it will be squeezed to a 2-d array to compare on share-wise:\n' f'{reduced_op_list}') target_op_values = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) self.assertTrue(np.allclose(target_op_values, reduced_op_list, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 测试两组PT类型的信号生成: # 在Operator对象中增加两个SigStrategy策略,策略类型相同但是策略的参数不同,回测价格类型为"OPEN" # Opeartor应该生成两组交易信号,分别用于"close"和"open"两中不同的价格类型 # 这里需要重新生成两个新的交易策略对象,否则在op的strategies列表中产生重复的对象引用,从而引起错误 test_ls = TestLSStrategy() test_sel = TestSelStrategy() self.op.add_strategies([test_ls, test_sel]) self.op.set_parameter(stg_id='custom_2', price_type='open') self.op.set_parameter(stg_id='custom_3', price_type='open') self.assertEqual(self.op['custom'].price_type, 'close') self.assertEqual(self.op['custom_2'].price_type, 'open') self.op.set_parameter(stg_id='custom_2', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id='custom_3', pars=()) self.op.set_blender(blender='0 or 1', price_type='open') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test how operator information is printed out--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0'], 'open': ['or', '1', '0']}) print('--test opeartion signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) signal_close = op_list['close'].squeeze().T signal_open = op_list['open'].squeeze().T self.assertEqual(signal_close.shape, (45, 3)) self.assertEqual(signal_open.shape, (45, 3)) target_op_close = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) target_op_open = np.array([[0.5, 0.5, 1.0], [0.5, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.5, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.5, 1.0, 0.0], [0.5, 1.0, 0.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0]]) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_close), list(signal_close))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_close, signal_close, equal_nan=True)) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_open), list(signal_open))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_open, signal_open, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 更多测试集合 def test_stg_parameter_setting(self): """ test setting parameters of strategies test the method set_parameters :return: """ op = qt.Operator(strategies='dma, all, urgent') print(op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{op.strategies[0].info()}') # TODO: allow set_parameters to a list of strategies or str-listed strategies # TODO: allow set_parameters to all strategies of specific bt price type print(f'Set up strategy parameters by strategy id') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) op.set_parameter('all', window_length=20) op.set_parameter('all', price_type='high') print(f'Can also set up strategy parameters by strategy index') op.set_parameter(2, price_type='open') op.set_parameter(2, opt_tag=1, pars=(9, -0.09), window_length=10) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(op.strategies[2].pars, (9, -0.09)) self.assertEqual(op.op_data_freq, 'd') self.assertEqual(op.op_data_types, ['close', 'high', 'open']) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.max_window_length, 20) print(f'KeyError will be raised if wrong strategy id is given') self.assertRaises(KeyError, op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(KeyError, op.set_parameter, stg_id='wrong_input', pars=(1, 2)) print(f'ValueError will be raised if parameter can be set') self.assertRaises(ValueError, op.set_parameter, stg_id=0, pars=('wrong input', 'wrong input')) # test blenders of different price types # test setting blenders to different price types # TODO: to allow operands like "and", "or", "not", "xor" # a_to_sell.set_blender('close', '0 and 1 or 2') # self.assertEqual(a_to_sell.get_blender('close'), 'str-1.2') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) op.set_blender('open', '0 & 1 | 2') self.assertEqual(op.get_blender('open'), ['|', '2', '&', '1', '0']) op.set_blender('high', '(0|1) & 2') self.assertEqual(op.get_blender('high'), ['&', '2', '|', '1', '0']) op.set_blender('close', '0 & 1 | 2') self.assertEqual(op.get_blender(), {'close': ['|', '2', '&', '1', '0'], 'high': ['&', '2', '|', '1', '0'], 'open': ['|', '2', '&', '1', '0']}) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.opt_tags, [1, 0, 1]) def test_signal_blend(self): self.assertEqual(blender_parser('0 & 1'), ['&', '1', '0']) self.assertEqual(blender_parser('0 or 1'), ['or', '1', '0']) self.assertEqual(blender_parser('0 & 1 | 2'), ['|', '2', '&', '1', '0']) blender = blender_parser('0 & 1 | 2') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 1) self.assertEqual(signal_blend([0, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '0 & ( 1 | 2 )' self.assertEqual(blender_parser('0 & ( 1 | 2 )'), ['&', '|', '2', '1', '0']) blender = blender_parser('0 & ( 1 | 2 )') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 0) self.assertEqual(signal_blend([0, 0, 1], blender), 0) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '(1-2)/3 + 0' self.assertEqual(blender_parser('(1-2)/3 + 0'), ['+', '0', '/', '3', '-', '2', '1']) blender = blender_parser('(1-2)/3 + 0') self.assertEqual(signal_blend([5, 9, 1, 4], blender), 7) # pars: '(0*1/2*(3+4))+5*(6+7)-8' self.assertEqual(blender_parser('(0*1/2*(3+4))+5*(6+7)-8'), ['-', '8', '+', '*', '+', '7', '6', '5', '*', '+', '4', '3', '/', '2', '*', '1', '0']) blender = blender_parser('(0*1/2*(3+4))+5*(6+7)-8') self.assertEqual(signal_blend([1, 1, 1, 1, 1, 1, 1, 1, 1], blender), 3) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 14) # parse: '0/max(2,1,3 + 5)+4' self.assertEqual(blender_parser('0/max(2,1,3 + 5)+4'), ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('0/max(2,1,3 + 5)+4') self.assertEqual(signal_blend([8.0, 4, 3, 5.0, 0.125, 5], blender), 0.925) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 5.25) print('speed test') import time st = time.time() blender = blender_parser('0+max(1,2,(3+4)*5, max(6, (7+8)*9), 10-11) * (12+13)') res = [] for i in range(10000): res = signal_blend([1, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 2, 3], blender) et = time.time() print(f'total time for RPN processing: {et - st}, got result: {res}') blender = blender_parser("0 + 1 * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 7) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0+1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) # TODO: 目前对于-(1+2)这样的表达式还无法处理 # self.a_to_sell.set_blender('selecting', "-(0 + 1) * 2") # self.assertEqual(self.a_to_sell.signal_blend([1, 2, 3]), -9) blender = blender_parser("(0-1)/2 + 3") print(f'RPN of notation: "(0-1)/2 + 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 2, 3, 0.0], blender), -0.33333333) blender = blender_parser("0 + 1 / 2") print(f'RPN of notation: "0 + 1 / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, math.pi, 4], blender), 1.78539816) blender = blender_parser("(0 + 1) / 2") print(f'RPN of notation: "(0 + 1) / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 2, 3], blender), 1) blender = blender_parser("(0 + 1 * 2) / 3") print(f'RPN of notation: "(0 + 1 * 2) / 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([3, math.e, 10, 10], blender), 3.0182818284590454) blender = blender_parser("0 / 1 * 2") print(f'RPN of notation: "0 / 1 * 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 3, 6], blender), 2) blender = blender_parser("(0 - 1 + 2) * 4") print(f'RPN of notation: "(0 - 1 + 2) * 4" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 1, -1, np.nan, math.pi], blender), -3.141592653589793) blender = blender_parser("0 * 1") print(f'RPN of notation: "0 * 1" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([math.pi, math.e], blender), 8.539734222673566) blender = blender_parser('abs(3-sqrt(2) / cos(1))') print(f'RPN of notation: "abs(3-sqrt(2) / cos(1))" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['abs(1)', '-', '/', 'cos(1)', '1', 'sqrt(1)', '2', '3']) blender = blender_parser('0/max(2,1,3 + 5)+4') print(f'RPN of notation: "0/max(2,1,3 + 5)+4" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('1 + sum(1,2,3+3, sum(1, 2) + 3) *5') print(f'RPN of notation: "1 + sum(1,2,3+3, sum(1, 2) + 3) *5" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '5', 'sum(4)', '+', '3', 'sum(2)', '2', '1', '+', '3', '3', '2', '1', '1']) blender = blender_parser('1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)') print(f'RPN of notation: "1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '+', '3', '2', 'sum(5)', '-', '8', '7', 'sum(2)', '*', '6', '+', '5', '4', '3', '*', '4', '+', '5', '3', '2', '1', '1']) # TODO: ndarray type of signals to be tested: def test_set_opt_par(self): """ test setting opt pars in batch""" print(f'--------- Testing setting Opt Pars: set_opt_par -------') op = qt.Operator('dma, random, crossline') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) self.assertEqual(op.opt_tags, [1, 0, 0]) op.set_opt_par((5, 12, 9)) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 1]) op.set_opt_par((5, 12, 9, 8, 26, 9, 'buy')) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) op.set_opt_par((9, 200, 155, 8, 26, 9, 'buy', 5, 12, 9)) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=2, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 2]) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (5, 10, 5, 'sell')) op.set_opt_par((5, 12, 9, (8, 26, 9, 'buy'))) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # Test Errors # Not enough values for parameter op.set_parameter('crossline', opt_tag=1) self.assertRaises(ValueError, op.set_opt_par, (5, 12, 9, 8)) # wrong type of input self.assertRaises(AssertionError, op.set_opt_par, [5, 12, 9, 7, 15, 12, 'sell']) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'R-TIMING' self.stg_name = "CROSSLINE" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) def test_tokenizer(self): self.assertListEqual(_exp_to_token('1+1'), ['1', '+', '1']) print(_exp_to_token('1+1')) self.assertListEqual(_exp_to_token('1 & 1'), ['1', '&', '1']) print(_exp_to_token('1&1')) self.assertListEqual(_exp_to_token('1 and 1'), ['1', 'and', '1']) print(_exp_to_token('1 and 1')) self.assertListEqual(_exp_to_token('1 or 1'), ['1', 'or', '1']) print(_exp_to_token('1 or 1')) self.assertListEqual(_exp_to_token('(1 - 1 + -1) * pi'), ['(', '1', '-', '1', '+', '-1', ')', '*', 'pi']) print(_exp_to_token('(1 - 1 + -1) * pi')) self.assertListEqual(_exp_to_token('abs(5-sqrt(2) / cos(pi))'), ['abs(', '5', '-', 'sqrt(', '2', ')', '/', 'cos(', 'pi', ')', ')']) print(_exp_to_token('abs(5-sqrt(2) / cos(pi))')) self.assertListEqual(_exp_to_token('sin(pi) + 2.14'), ['sin(', 'pi', ')', '+', '2.14']) print(_exp_to_token('sin(pi) + 2.14')) self.assertListEqual(_exp_to_token('(1-2)/3.0 + 0.0000'), ['(', '1', '-', '2', ')', '/', '3.0', '+', '0.0000']) print(_exp_to_token('(1-2)/3.0 + 0.0000')) self.assertListEqual(_exp_to_token('-(1. + .2) * max(1, 3, 5)'), ['-', '(', '1.', '+', '.2', ')', '*', 'max(', '1', ',', '3', ',', '5', ')']) print(_exp_to_token('-(1. + .2) * max(1, 3, 5)')) self.assertListEqual(_exp_to_token('(x + e * 10) / 10'), ['(', 'x', '+', 'e', '*', '10', ')', '/', '10']) print(_exp_to_token('(x + e * 10) / 10')) self.assertListEqual(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)'), ['8.2', '/', '(', '(', '-.1', '+', 'abs3(', '3', ',', '4', ',', '5', ')', ')', '*', '0.12', ')']) print(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)')) self.assertListEqual(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12'), ['8.2', '/', 'abs3(', '3', ',', '4', ',', '25.34', '+', '5', ')', '*', '0.12']) print(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12')) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2, Timestamp('2020-01-04 00:00:00', freq='D'): 3, Timestamp('2020-01-05 00:00:00', freq='D'): 4, Timestamp('2020-01-06 00:00:00', freq='D'): 5, Timestamp('2020-01-07 00:00:00', freq='D'): 6, Timestamp('2020-01-08 00:00:00', freq='D'): 7, Timestamp('2020-01-09 00:00:00', freq='D'): 8, Timestamp('2020-01-10 00:00:00', freq='D'): 9} self.assertDictEqual(self.hp.rows, row_dict) def test_len(self): """ test the function len(HistoryPanel) :return: """ self.assertEqual(len(self.hp), 10) def test_empty_history_panel(self): """测试空HP或者特殊HP如维度标签为纯数字的HP""" test_hp = qt.HistoryPanel(self.data) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) self.assertEqual(test_hp.level_count, 5) self.assertEqual(test_hp.row_count, 10) self.assertEqual(test_hp.column_count, 4) self.assertEqual(test_hp.shares, list(range(5))) self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d'))) self.assertEqual(test_hp.htypes, list(range(4))) self.assertTrue(np.allclose(test_hp.values, self.data)) print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}') print(test_hp) # HistoryPanel should be empty if no value is given empty_hp = qt.HistoryPanel() self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) # HistoryPanel should also be empty if empty value (np.array([])) is given empty_hp = qt.HistoryPanel(np.empty((5, 0, 4)), levels=self.shares, columns=self.htypes) self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) def test_create_history_panel(self): """ test the creation of a HistoryPanel object by passing all data explicitly """ self.assertIsInstance(self.hp, qt.HistoryPanel) self.assertEqual(self.hp.shape[0], 5) self.assertEqual(self.hp.shape[1], 10) self.assertEqual(self.hp.shape[2], 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(list(self.hp.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp2, qt.HistoryPanel) self.assertEqual(self.hp2.shape[0], 5) self.assertEqual(self.hp2.shape[1], 10) self.assertEqual(self.hp2.shape[2], 1) self.assertEqual(self.hp2.level_count, 5) self.assertEqual(self.hp2.row_count, 10) self.assertEqual(self.hp2.column_count, 1) self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp2.columns.keys()), ['close']) self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp3, qt.HistoryPanel) self.assertEqual(self.hp3.shape[0], 1) self.assertEqual(self.hp3.shape[1], 10) self.assertEqual(self.hp3.shape[2], 4) self.assertEqual(self.hp3.level_count, 1) self.assertEqual(self.hp3.row_count, 10) self.assertEqual(self.hp3.column_count, 4) self.assertEqual(list(self.hp3.levels.keys()), ['000100']) self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01')) self.assertIsInstance(self.hp4, qt.HistoryPanel) self.assertEqual(self.hp4.shape[0], 1) self.assertEqual(self.hp4.shape[1], 10) self.assertEqual(self.hp4.shape[2], 1) self.assertEqual(self.hp4.level_count, 1) self.assertEqual(self.hp4.row_count, 10) self.assertEqual(self.hp4.column_count, 1) self.assertEqual(list(self.hp4.levels.keys()), ['000100']) self.assertEqual(list(self.hp4.columns.keys()), ['close']) self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01')) self.hp5.info() self.assertIsInstance(self.hp5, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp5.values, self.data)) self.assertEqual(self.hp5.shape[0], 5) self.assertEqual(self.hp5.shape[1], 10) self.assertEqual(self.hp5.shape[2], 4) self.assertEqual(self.hp5.level_count, 5) self.assertEqual(self.hp5.row_count, 10) self.assertEqual(self.hp5.column_count, 4) self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4]) self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30')) self.hp6.info() self.assertIsInstance(self.hp6, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp6.values, self.data)) self.assertEqual(self.hp6.shape[0], 5) self.assertEqual(self.hp6.shape[1], 10) self.assertEqual(self.hp6.shape[2], 4) self.assertEqual(self.hp6.level_count, 5) self.assertEqual(self.hp6.row_count, 10) self.assertEqual(self.hp6.column_count, 4) self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104']) self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01')) print('test creating HistoryPanel with very limited data') print('test creating HistoryPanel with 2D data') temp_data = np.random.randint(10, size=(7, 3)).astype('float') temp_hp = qt.HistoryPanel(temp_data) # Error testing during HistoryPanel creating # shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data, levels=self.shares, columns='close', rows=self.index) # valus is not np.ndarray self.assertRaises(TypeError, qt.HistoryPanel, list(self.data)) # dimension/shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data2, levels='000100', columns=self.htypes, rows=self.index) # value dimension over 3 self.assertRaises(AssertionError, qt.HistoryPanel, np.random.randint(10, size=(5, 10, 4, 2))) # lebel value not valid self.assertRaises(ValueError, qt.HistoryPanel, self.data2, levels=self.shares, columns='close', rows='a,b,c,d,e,f,g,h,i,j') def test_history_panel_slicing(self): """测试HistoryPanel的各种切片方法 包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式""" self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1])) self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3])) self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]])) self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ])) self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :])) self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :])) self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2])) print('start testing HistoryPanel') data = np.random.randint(10, size=(10, 5)) # index = pd.date_range(start='20200101', freq='d', periods=10) shares = '000100,000101,000102,000103,000104' dtypes = 'close' df = pd.DataFrame(data) print('=========================\nTesting HistoryPanel creation from DataFrame') hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes) hp.info() hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes') hp.info() print('=========================\nTesting HistoryPanel creation from initialization') data = np.random.randint(10, size=(5, 10, 4)).astype('float') index = pd.date_range(start='20200101', freq='d', periods=10) dtypes = 'close, open, high,low' data[0, [5, 6, 9], [0, 1, 3]] = np.nan data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index) hp.info() print('==========================\n输出close类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True)) print(f'==========================\n输出close和open类型的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True)) print(f'==========================\n输出第一只股票的所有类型历史数据\n') self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True)) print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n') self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出0、1两个htype的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出close起到high止的三个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出0、1、3三个股票的全部历史数据\n') self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3]) self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出所有股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True)) print('==========================\n输出000100股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True)) print('==========================\nstart testing multy axis slicing of HistoryPanel object') print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n', hp['close,open', ['000100', '000102']]) print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n', hp['close,open', '000100, 000102']) print(f'historyPanel: hp:\n{hp}') print(f'data is:\n{data}') hp.htypes = 'open,high,low,close' hp.info() hp.shares = ['000300', '600227', '600222', '000123', '000129'] hp.info() def test_segment(self): """测试历史数据片段的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test segment with None parameters') seg1 = test_hp.segment() seg2 = test_hp.segment('20150202') seg3 = test_hp.segment(end_date='20201010') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp.values )) self.assertTrue(np.allclose( seg2.values, test_hp.values )) self.assertTrue(np.allclose( seg3.values, test_hp.values )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates) self.assertEqual(seg3.hdates, test_hp.hdates) print(f'Test segment with proper dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160704') seg3 = test_hp.segment(start_date='2016-07-05', end_date='20160708') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 2:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[2:6]) print(f'Test segment with non-existing but in range dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160703') seg3 = test_hp.segment(start_date='2016-07-03', end_date='20160710') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 1:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[1:6]) print(f'Test segment with out-of-range dates') seg1 = test_hp.segment(start_date='2016-05-03', end_date='20160910') self.assertIsInstance(seg1, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) def test_slice(self): """测试历史数据切片的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test slice with shares') share = '000101' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101'])) share = '000101, 000103' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101', '000103']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101, 000103'])) print(f'Test slice with htypes') htype = 'open' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open'])) htype = 'open, close' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open, close'])) # test that slicing of "open, close" does NOT equal to "close, open" self.assertFalse(np.allclose(slc.values, test_hp['close, open'])) print(f'Test slicing with both htypes and shares') share = '000103, 000101' htype = 'high, low, close' slc = test_hp.slice(shares=share, htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000103', '000101']) self.assertEqual(slc.htypes, ['high', 'low', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['high, low, close', '000103, 000101'])) print(f'Test Error cases') # duplicated input htype = 'open, close, open' self.assertRaises(AssertionError, test_hp.slice, htypes=htype) def test_relabel(self): new_shares_list = ['000001', '000002', '000003', '000004', '000005'] new_shares_str = '000001, 000002, 000003, 000004, 000005' new_htypes_list = ['close', 'volume', 'value', 'exchange'] new_htypes_str = 'close, volume, value, exchange' temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_list) print(temp_hp.info()) print(temp_hp.htypes) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_list) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) print(f'test errors raising') temp_hp = self.hp.copy() self.assertRaises(AssertionError, temp_hp.re_label, htypes=new_shares_str) self.assertRaises(TypeError, temp_hp.re_label, htypes=123) self.assertRaises(AssertionError, temp_hp.re_label, htypes='wrong input!') def test_csv_to_hp(self): pass def test_hdf_to_hp(self): pass def test_hp_join(self): # TODO: 这里需要加强,需要用具体的例子确认hp_join的结果正确 # TODO: 尤其是不同的shares、htypes、hdates,以及它们在顺 # TODO: 序不同的情况下是否能正确地组合 print(f'join two simple HistoryPanels with same shares') temp_hp = self.hp.join(self.hp2, same_shares=True) self.assertIsInstance(temp_hp, qt.HistoryPanel) def test_df_to_hp(self): print(f'test converting DataFrame to HistoryPanel') data = np.random.randint(10, size=(10, 5)) df1 = pd.DataFrame(data) df2 = pd.DataFrame(data, columns=str_to_list(self.shares)) df3 = pd.DataFrame(data[:, 0:4]) df4 = pd.DataFrame(data[:, 0:4], columns=str_to_list(self.htypes)) hp = qt.dataframe_to_hp(df1, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, [0, 1, 2, 3, 4]) self.assertEqual(hp.htypes, ['close']) self.assertEqual(hp.hdates, [pd.Timestamp('1970-01-01 00:00:00'), pd.Timestamp('1970-01-01 00:00:00.000000001'), pd.Timestamp('1970-01-01 00:00:00.000000002'), pd.Timestamp('1970-01-01 00:00:00.000000003'), pd.Timestamp('1970-01-01 00:00:00.000000004'), pd.Timestamp('1970-01-01 00:00:00.000000005'), pd.Timestamp('1970-01-01 00:00:00.000000006'), pd.Timestamp('1970-01-01 00:00:00.000000007'), pd.Timestamp('1970-01-01 00:00:00.000000008'), pd.Timestamp('1970-01-01 00:00:00.000000009')]) hp = qt.dataframe_to_hp(df2, shares=self.shares, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, str_to_list(self.shares)) self.assertEqual(hp.htypes, ['close']) hp = qt.dataframe_to_hp(df3, shares='000100', column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, [0, 1, 2, 3]) hp = qt.dataframe_to_hp(df4, shares='000100', htypes=self.htypes, column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, str_to_list(self.htypes)) hp.info() self.assertRaises(KeyError, qt.dataframe_to_hp, df1) def test_to_dataframe(self): """ 测试HistoryPanel对象的to_dataframe方法 """ print(f'START TEST == test_to_dataframe') print(f'test converting test hp to dataframe with share == "000102":') df_test = self.hp.to_dataframe(share='000102') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000102'], values)) print(f'test DataFrame conversion with share == "000100"') df_test = self.hp.to_dataframe(share='000100') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000100'], values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, share=3.0) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, share='000300') print(f'test DataFrame conversion with htype == "close"') df_test = self.hp.to_dataframe(htype='close') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['close'].T, values)) print(f'test DataFrame conversion with htype == "high"') df_test = self.hp.to_dataframe(htype='high') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['high'].T, values)) print(f'test DataFrame conversion with htype == "high" and dropna') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[4:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values))].reshape(9, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion with htype == "high", dropna and treat infs as na') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True, inf_as_na=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[5:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values) & ~np.isinf(target_values))].reshape(8, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, htype=pd.DataFrame()) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, htype='non_type') print(f'Raises ValueError when both or none parameter is given') self.assertRaises(KeyError, self.hp.to_dataframe) self.assertRaises(KeyError, self.hp.to_dataframe, share='000100', htype='close') def test_to_df_dict(self): """测试HistoryPanel公有方法to_df_dict""" print('test convert history panel slice by share') df_dict = self.hp.to_df_dict('share') self.assertEqual(self.hp.shares, list(df_dict.keys())) df_dict = self.hp.to_df_dict() self.assertEqual(self.hp.shares, list(df_dict.keys())) print('test convert historypanel slice by htype ') df_dict = self.hp.to_df_dict('htype') self.assertEqual(self.hp.htypes, list(df_dict.keys())) print('test raise assertion error') self.assertRaises(AssertionError, self.hp.to_df_dict, by='random text') self.assertRaises(AssertionError, self.hp.to_df_dict, by=3) print('test empty hp') df_dict = qt.HistoryPanel().to_df_dict('share') self.assertEqual(df_dict, {}) def test_stack_dataframes(self): print('test stack dataframes in a list') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes([df1, df2, df3], stack_along='shares', shares=['000100', '000200', '000300']) hp2 = stack_dataframes([df1, df2, df3], stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000100', '000200', '000300']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes=['close', 'high', 'low']) hp4 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) print('test stack dataframes in a dict') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares') hp2 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000001.SZ', '000002.SZ', '000003.SZ']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes(dfs={'close': df1, 'high': df2, 'low': df3}, stack_along='htypes') hp4 = stack_dataframes(dfs={'close': df1, 'low': df2, 'high': df3}, stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) def test_to_csv(self): pass def test_to_hdf(self): pass def test_fill_na(self): """测试填充无效值""" print(self.hp) new_values = self.hp.values.astype(float) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = np.nan print(new_values) temp_hp = qt.HistoryPanel(values=new_values, levels=self.hp.levels, rows=self.hp.rows, columns=self.hp.columns) self.assertTrue(np.allclose(temp_hp.values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]], np.nan, equal_nan=True)) temp_hp.fillna(2.3) filled_values = new_values.copy() filled_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = 2.3 self.assertTrue(np.allclose(temp_hp.values, filled_values, equal_nan=True)) def test_fill_inf(self): """测试填充无限值""" def test_get_history_panel(self): # TODO: implement this test case # test get only one line of data pass def test_get_price_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20200101' end = '20200131' htypes = 'open, high, low, close' target_price_000039 = [[9.45, 9.49, 9.12, 9.17], [9.46, 9.56, 9.4, 9.5], [9.7, 9.76, 9.5, 9.51], [9.7, 9.75, 9.7, 9.72], [9.73, 9.77, 9.7, 9.73], [9.83, 9.85, 9.71, 9.72], [9.85, 9.85, 9.75, 9.79], [9.96, 9.96, 9.83, 9.86], [9.87, 9.94, 9.77, 9.93], [9.82, 9.9, 9.76, 9.87], [9.8, 9.85, 9.77, 9.82], [9.84, 9.86, 9.71, 9.72], [9.83, 9.93, 9.81, 9.86], [9.7, 9.87, 9.7, 9.82], [9.83, 9.86, 9.69, 9.79], [9.8, 9.94, 9.8, 9.86]] target_price_600748 = [[5.68, 5.68, 5.32, 5.37], [5.62, 5.68, 5.46, 5.65], [5.72, 5.72, 5.61, 5.62], [5.76, 5.77, 5.6, 5.73], [5.78, 5.84, 5.73, 5.75], [5.89, 5.91, 5.76, 5.77], [6.03, 6.04, 5.87, 5.89], [5.94, 6.07, 5.94, 6.02], [5.96, 5.98, 5.88, 5.97], [6.04, 6.06, 5.95, 5.96], [5.98, 6.04, 5.96, 6.03], [6.1, 6.11, 5.89, 5.94], [6.02, 6.12, 6., 6.1], [5.96, 6.05, 5.88, 6.01], [6.03, 6.03, 5.95, 5.99], [6.02, 6.12, 5.99, 5.99]] target_price_000040 = [[3.63, 3.83, 3.63, 3.65], [3.99, 4.07, 3.97, 4.03], [4.1, 4.11, 3.93, 3.95], [4.12, 4.13, 4.06, 4.11], [4.13, 4.19, 4.07, 4.13], [4.27, 4.28, 4.11, 4.12], [4.37, 4.38, 4.25, 4.29], [4.34, 4.5, 4.32, 4.41], [4.28, 4.35, 4.2, 4.34], [4.41, 4.43, 4.29, 4.31], [4.42, 4.45, 4.36, 4.41], [4.51, 4.56, 4.33, 4.35], [4.35, 4.55, 4.31, 4.55], [4.3, 4.41, 4.22, 4.36], [4.27, 4.44, 4.23, 4.34], [4.23, 4.27, 4.18, 4.25]] print(f'test get price type raw data with single thread') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d') self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') print(f'test get price type raw data with with multi threads') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d', parallel=10) self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') def test_get_financial_report_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20160101' end = '20201231' htypes = 'eps,basic_eps,diluted_eps,total_revenue,revenue,total_share,' \ 'cap_rese,undistr_porfit,surplus_rese,net_profit' target_eps_000039 = [[1.41], [0.1398], [-0.0841], [-0.1929], [0.37], [0.1357], [0.1618], [0.1191], [1.11], [0.759], [0.3061], [0.1409], [0.81], [0.4187], [0.2554], [0.1624], [0.14], [-0.0898], [-0.1444], [0.1291]] target_eps_600748 = [[0.41], [0.22], [0.22], [0.09], [0.42], [0.23], [0.22], [0.09], [0.36], [0.16], [0.15], [0.07], [0.47], [0.19], [0.12], [0.07], [0.32], [0.22], [0.14], [0.07]] target_eps_000040 = [[-0.6866], [-0.134], [-0.189], [-0.036], [-0.6435], [0.05], [0.062], [0.0125], [0.8282], [1.05], [0.985], [0.811], [0.41], [0.242], [0.113], [0.027], [0.19], [0.17], [0.17], [0.064]] target_basic_eps_000039 = [[1.3980000e-01, 1.3980000e-01, 6.3591954e+10, 6.3591954e+10], [-8.4100000e-02, -8.4100000e-02, 3.9431807e+10, 3.9431807e+10], [-1.9290000e-01, -1.9290000e-01, 1.5852177e+10, 1.5852177e+10], [3.7000000e-01, 3.7000000e-01, 8.5815341e+10, 8.5815341e+10], [1.3570000e-01, 1.3430000e-01, 6.1660271e+10, 6.1660271e+10], [1.6180000e-01, 1.6040000e-01, 4.2717729e+10, 4.2717729e+10], [1.1910000e-01, 1.1900000e-01, 1.9099547e+10, 1.9099547e+10], [1.1100000e+00, 1.1000000e+00, 9.3497622e+10, 9.3497622e+10], [7.5900000e-01, 7.5610000e-01, 6.6906147e+10, 6.6906147e+10], [3.0610000e-01, 3.0380000e-01, 4.3560398e+10, 4.3560398e+10], [1.4090000e-01, 1.4050000e-01, 1.9253639e+10, 1.9253639e+10], [8.1000000e-01, 8.1000000e-01, 7.6299930e+10, 7.6299930e+10], [4.1870000e-01, 4.1710000e-01, 5.3962706e+10, 5.3962706e+10], [2.5540000e-01, 2.5440000e-01, 3.3387152e+10, 3.3387152e+10], [1.6240000e-01, 1.6200000e-01, 1.4675987e+10, 1.4675987e+10], [1.4000000e-01, 1.4000000e-01, 5.1111652e+10, 5.1111652e+10], [-8.9800000e-02, -8.9800000e-02, 3.4982614e+10, 3.4982614e+10], [-1.4440000e-01, -1.4440000e-01, 2.3542843e+10, 2.3542843e+10], [1.2910000e-01, 1.2860000e-01, 1.0412416e+10, 1.0412416e+10], [7.2000000e-01, 7.1000000e-01, 5.8685804e+10, 5.8685804e+10]] target_basic_eps_600748 = [[2.20000000e-01, 2.20000000e-01, 5.29423397e+09, 5.29423397e+09], [2.20000000e-01, 2.20000000e-01, 4.49275653e+09, 4.49275653e+09], [9.00000000e-02, 9.00000000e-02, 1.59067065e+09, 1.59067065e+09], [4.20000000e-01, 4.20000000e-01, 8.86555586e+09, 8.86555586e+09], [2.30000000e-01, 2.30000000e-01, 5.44850143e+09, 5.44850143e+09], [2.20000000e-01, 2.20000000e-01, 4.34978927e+09, 4.34978927e+09], [9.00000000e-02, 9.00000000e-02, 1.73793793e+09, 1.73793793e+09], [3.60000000e-01, 3.60000000e-01, 8.66375241e+09, 8.66375241e+09], [1.60000000e-01, 1.60000000e-01, 4.72875116e+09, 4.72875116e+09], [1.50000000e-01, 1.50000000e-01, 3.76879016e+09, 3.76879016e+09], [7.00000000e-02, 7.00000000e-02, 1.31785454e+09, 1.31785454e+09], [4.70000000e-01, 4.70000000e-01, 7.23391685e+09, 7.23391685e+09], [1.90000000e-01, 1.90000000e-01, 3.76072215e+09, 3.76072215e+09], [1.20000000e-01, 1.20000000e-01, 2.35845364e+09, 2.35845364e+09], [7.00000000e-02, 7.00000000e-02, 1.03831865e+09, 1.03831865e+09], [3.20000000e-01, 3.20000000e-01, 6.48880919e+09, 6.48880919e+09], [2.20000000e-01, 2.20000000e-01, 3.72209142e+09, 3.72209142e+09], [1.40000000e-01, 1.40000000e-01, 2.22563924e+09, 2.22563924e+09], [7.00000000e-02, 7.00000000e-02, 8.96647052e+08, 8.96647052e+08], [4.80000000e-01, 4.80000000e-01, 6.61917508e+09, 6.61917508e+09]] target_basic_eps_000040 = [[-1.34000000e-01, -1.34000000e-01, 2.50438755e+09, 2.50438755e+09], [-1.89000000e-01, -1.89000000e-01, 1.32692347e+09, 1.32692347e+09], [-3.60000000e-02, -3.60000000e-02, 5.59073338e+08, 5.59073338e+08], [-6.43700000e-01, -6.43700000e-01, 6.80576162e+09, 6.80576162e+09], [5.00000000e-02, 5.00000000e-02, 6.38891620e+09, 6.38891620e+09], [6.20000000e-02, 6.20000000e-02, 5.23267082e+09, 5.23267082e+09], [1.25000000e-02, 1.25000000e-02, 2.22420874e+09, 2.22420874e+09], [8.30000000e-01, 8.30000000e-01, 8.67628947e+09, 8.67628947e+09], [1.05000000e+00, 1.05000000e+00, 5.29431716e+09, 5.29431716e+09], [9.85000000e-01, 9.85000000e-01, 3.56822382e+09, 3.56822382e+09], [8.11000000e-01, 8.11000000e-01, 1.06613439e+09, 1.06613439e+09], [4.10000000e-01, 4.10000000e-01, 8.13102532e+09, 8.13102532e+09], [2.42000000e-01, 2.42000000e-01, 5.17971521e+09, 5.17971521e+09], [1.13000000e-01, 1.13000000e-01, 3.21704120e+09, 3.21704120e+09], [2.70000000e-02, 2.70000000e-02, 8.41966738e+08, 8.24272235e+08], [1.90000000e-01, 1.90000000e-01, 3.77350171e+09, 3.77350171e+09], [1.70000000e-01, 1.70000000e-01, 2.38643892e+09, 2.38643892e+09], [1.70000000e-01, 1.70000000e-01, 1.29127117e+09, 1.29127117e+09], [6.40000000e-02, 6.40000000e-02, 6.03256858e+08, 6.03256858e+08], [1.30000000e-01, 1.30000000e-01, 1.66572918e+09, 1.66572918e+09]] target_total_share_000039 = [[3.5950140e+09, 4.8005360e+09, 2.1573660e+10, 3.5823430e+09], [3.5860750e+09, 4.8402300e+09, 2.0750827e+10, 3.5823430e+09], [3.5860750e+09, 4.9053550e+09, 2.0791307e+10, 3.5823430e+09], [3.5845040e+09, 4.8813110e+09, 2.1482857e+10, 3.5823430e+09], [3.5831490e+09, 4.9764250e+09, 2.0926816e+10, 3.2825850e+09], [3.5825310e+09, 4.8501270e+09, 2.1020418e+10, 3.2825850e+09], [2.9851110e+09, 5.4241420e+09, 2.2438350e+10, 3.2825850e+09], [2.9849890e+09, 4.1284000e+09, 2.2082769e+10, 3.2825850e+09], [2.9849610e+09, 4.0838010e+09, 2.1045994e+10, 3.2815350e+09], [2.9849560e+09, 4.2491510e+09, 1.9694345e+10, 3.2815350e+09], [2.9846970e+09, 4.2351600e+09, 2.0016361e+10, 3.2815350e+09], [2.9828890e+09, 4.2096630e+09, 1.9734494e+10, 3.2815350e+09], [2.9813960e+09, 3.4564240e+09, 1.8562738e+10, 3.2793790e+09], [2.9803530e+09, 3.0759650e+09, 1.8076208e+10, 3.2793790e+09], [2.9792680e+09, 3.1376690e+09, 1.7994776e+10, 3.2793790e+09], [2.9785770e+09, 3.1265850e+09, 1.7495053e+10, 3.2793790e+09], [2.9783640e+09, 3.1343850e+09, 1.6740840e+10, 3.2035780e+09], [2.9783590e+09, 3.1273880e+09, 1.6578389e+10, 3.2035780e+09], [2.9782780e+09, 3.1169280e+09, 1.8047639e+10, 3.2035780e+09], [2.9778200e+09, 3.1818630e+09, 1.7663145e+10, 3.2035780e+09]] target_total_share_600748 = [[1.84456289e+09, 2.60058426e+09, 5.72443733e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.72096899e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.65738237e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.50257806e+09, 4.58026529e+08], [1.84456289e+09, 2.59868164e+09, 5.16741523e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 5.14677280e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.94955591e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.79001451e+09, 4.44998882e+08], [1.84456289e+09, 3.11401684e+09, 4.46326988e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.45419136e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.39652948e+09, 4.01064256e+08], [1.84456289e+09, 3.18007783e+09, 4.26608403e+09, 4.01064256e+08], [1.84456289e+09, 3.10935622e+09, 3.78417688e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.65806574e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.62063090e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.50063915e+09, 3.65651701e+08], [1.41889453e+09, 3.55940850e+09, 3.22272993e+09, 3.62124939e+08], [1.41889453e+09, 3.56129650e+09, 3.11477476e+09, 3.62124939e+08], [1.41889453e+09, 3.59632888e+09, 3.06836903e+09, 3.62124939e+08], [1.08337087e+09, 3.37400726e+07, 3.00918704e+09, 3.62124939e+08]] target_total_share_000040 = [[1.48687387e+09, 1.06757900e+10, 8.31900755e+08, 2.16091994e+08], [1.48687387e+09, 1.06757900e+10, 7.50177302e+08, 2.16091994e+08], [1.48687387e+09, 1.06757899e+10, 9.90255974e+08, 2.16123282e+08], [1.48687387e+09, 1.06757899e+10, 1.03109866e+09, 2.16091994e+08], [1.48687387e+09, 1.06757910e+10, 2.07704745e+09, 2.16123282e+08], [1.48687387e+09, 1.06757910e+10, 2.09608665e+09, 2.16123282e+08], [1.48687387e+09, 1.06803833e+10, 2.13354083e+09, 2.16123282e+08], [1.48687387e+09, 1.06804090e+10, 2.11489364e+09, 2.16123282e+08], [1.33717327e+09, 8.87361727e+09, 2.42939924e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.34220254e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.16390368e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 1.07961915e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 8.58866066e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 6.87024393e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.71554565e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.54241222e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 5.10059576e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 4.59351639e+08, 1.88489589e+08], [4.69593364e+08, 2.78355875e+08, 4.13430814e+08, 1.88489589e+08], [4.69593364e+08, 2.74235459e+08, 3.83557678e+08, 1.88489589e+08]] target_net_profit_000039 = [[np.nan], [2.422180e+08], [np.nan], [2.510113e+09], [np.nan], [1.102220e+09], [np.nan], [4.068455e+09], [np.nan], [1.315957e+09], [np.nan], [3.158415e+09], [np.nan], [1.066509e+09], [np.nan], [7.349830e+08], [np.nan], [-5.411600e+08], [np.nan], [2.271961e+09]] target_net_profit_600748 = [[np.nan], [4.54341757e+08], [np.nan], [9.14476670e+08], [np.nan], [5.25360283e+08], [np.nan], [9.24502415e+08], [np.nan], [4.66560302e+08], [np.nan], [9.15265285e+08], [np.nan], [2.14639674e+08], [np.nan], [7.45093049e+08], [np.nan], [2.10967312e+08], [np.nan], [6.04572711e+08]] target_net_profit_000040 = [[np.nan], [-2.82458846e+08], [np.nan], [-9.57130872e+08], [np.nan], [9.22114527e+07], [np.nan], [1.12643819e+09], [np.nan], [1.31715269e+09], [np.nan], [5.39940093e+08], [np.nan], [1.51440838e+08], [np.nan], [1.75339071e+08], [np.nan], [8.04740415e+07], [np.nan], [6.20445815e+07]] print('test get financial data, in multi thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=4) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据 print(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) print('test get financial data, in single thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=0) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据,因为网络问题,有可能会取到空数据 self.assertFalse(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) def test_get_composite_type_raw_data(self): pass class TestUtilityFuncs(unittest.TestCase): def setUp(self): pass def test_time_string_format(self): print('Testing qt.time_string_format() function:') t = 3.14 self.assertEqual(time_str_format(t), '3s 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '3s ') self.assertEqual(time_str_format(t, short_form=True), '3"140') self.assertEqual(time_str_format(t, estimation=True, short_form=True), '3"') t = 300.14 self.assertEqual(time_str_format(t), '5min 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '5min ') self.assertEqual(time_str_format(t, short_form=True), "5'140") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "5'") t = 7435.0014 self.assertEqual(time_str_format(t), '2hrs 3min 55s 1.4ms') self.assertEqual(time_str_format(t, estimation=True), '2hrs ') self.assertEqual(time_str_format(t, short_form=True), "2H3'55\"001") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "2H") t = 88425.0509 self.assertEqual(time_str_format(t), '1days 33min 45s 50.9ms') self.assertEqual(time_str_format(t, estimation=True), '1days ') self.assertEqual(time_str_format(t, short_form=True), "1D33'45\"051") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "1D") def test_str_to_list(self): self.assertEqual(str_to_list('a,b,c,d,e'), ['a', 'b', 'c', 'd', 'e']) self.assertEqual(str_to_list('a, b, c '), ['a', 'b', 'c']) self.assertEqual(str_to_list('a, b: c', sep_char=':'), ['a,b', 'c']) self.assertEqual(str_to_list('abc'), ['abc']) self.assertEqual(str_to_list(''), []) self.assertRaises(AssertionError, str_to_list, 123) def test_list_or_slice(self): str_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} self.assertEqual(list_or_slice(slice(1, 2, 1), str_dict), slice(1, 2, 1)) self.assertEqual(list_or_slice('open', str_dict), [1]) self.assertEqual(list(list_or_slice('close, high, low', str_dict)), [0, 2, 3]) self.assertEqual(list(list_or_slice('close:high', str_dict)), [0, 1, 2]) self.assertEqual(list(list_or_slice(['open'], str_dict)), [1]) self.assertEqual(list(list_or_slice(['open', 'high'], str_dict)), [1, 2]) self.assertEqual(list(list_or_slice(0, str_dict)), [0]) self.assertEqual(list(list_or_slice([0, 2], str_dict)), [0, 2]) self.assertEqual(list(list_or_slice([True, False, True, False], str_dict)), [0, 2]) def test_labels_to_dict(self): target_list = [0, 1, 10, 100] target_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} target_dict2 = {'close': 0, 'open': 2, 'high': 1, 'low': 3} self.assertEqual(labels_to_dict('close, open, high, low', target_list), target_dict) self.assertEqual(labels_to_dict(['close', 'open', 'high', 'low'], target_list), target_dict) self.assertEqual(labels_to_dict('close, high, open, low', target_list), target_dict2) self.assertEqual(labels_to_dict(['close', 'high', 'open', 'low'], target_list), target_dict2) def test_input_to_list(self): """ test util function input_to_list()""" self.assertEqual(input_to_list(5, 3), [5, 5, 5]) self.assertEqual(input_to_list(5, 3, 0), [5, 5, 5]) self.assertEqual(input_to_list([5], 3, 0), [5, 0, 0]) self.assertEqual(input_to_list([5, 4], 3, 0), [5, 4, 0]) def test_regulate_date_format(self): self.assertEqual(regulate_date_format('2019/11/06'), '20191106') self.assertEqual(regulate_date_format('2019-11-06'), '20191106') self.assertEqual(regulate_date_format('20191106'), '20191106') self.assertEqual(regulate_date_format('191106'), '20061119') self.assertEqual(regulate_date_format('830522'), '19830522') self.assertEqual(regulate_date_format(datetime.datetime(2010, 3, 15)), '20100315') self.assertEqual(regulate_date_format(pd.Timestamp('2010.03.15')), '20100315') self.assertRaises(ValueError, regulate_date_format, 'abc') self.assertRaises(ValueError, regulate_date_format, '2019/13/43') def test_list_to_str_format(self): self.assertEqual(list_to_str_format(['close', 'open', 'high', 'low']), 'close,open,high,low') self.assertEqual(list_to_str_format(['letters', ' ', '123 4', 123, ' kk l']), 'letters,,1234,kkl') self.assertEqual(list_to_str_format('a string input'), 'a,string,input') self.assertEqual(list_to_str_format('already,a,good,string'), 'already,a,good,string') self.assertRaises(AssertionError, list_to_str_format, 123) def test_is_trade_day(self): """test if the funcion maybe_trade_day() and is_market_trade_day() works properly """ date_trade = '20210401' date_holiday = '20210102' date_weekend = '20210424' date_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) self.assertTrue(maybe_trade_day(date_seems_trade_day)) self.assertTrue(maybe_trade_day(date_too_early)) self.assertTrue(maybe_trade_day(date_too_late)) self.assertTrue(maybe_trade_day(date_christmas)) self.assertTrue(is_market_trade_day(date_trade)) self.assertFalse(is_market_trade_day(date_holiday)) self.assertFalse(is_market_trade_day(date_weekend)) self.assertFalse(is_market_trade_day(date_seems_trade_day)) self.assertFalse(is_market_trade_day(date_too_early)) self.assertFalse(is_market_trade_day(date_too_late)) self.assertTrue(is_market_trade_day(date_christmas)) self.assertFalse(is_market_trade_day(date_christmas, exchange='XHKG')) date_trade = pd.to_datetime('20210401') date_holiday = pd.to_datetime('20210102') date_weekend = pd.to_datetime('20210424') self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) def test_weekday_name(self): """ test util func weekday_name()""" self.assertEqual(weekday_name(0), 'Monday') self.assertEqual(weekday_name(1), 'Tuesday') self.assertEqual(weekday_name(2), 'Wednesday') self.assertEqual(weekday_name(3), 'Thursday') self.assertEqual(weekday_name(4), 'Friday') self.assertEqual(weekday_name(5), 'Saturday') self.assertEqual(weekday_name(6), 'Sunday') def test_list_truncate(self): """ test util func list_truncate()""" l = [1,2,3,4,5] ls = list_truncate(l, 2) self.assertEqual(ls[0], [1, 2]) self.assertEqual(ls[1], [3, 4]) self.assertEqual(ls[2], [5]) self.assertRaises(AssertionError, list_truncate, l, 0) self.assertRaises(AssertionError, list_truncate, 12, 0) self.assertRaises(AssertionError, list_truncate, 0, l) def test_maybe_trade_day(self): """ test util function maybe_trade_day()""" self.assertTrue(maybe_trade_day('20220104')) self.assertTrue(maybe_trade_day('2021-12-31')) self.assertTrue(maybe_trade_day(pd.to_datetime('2020/03/06'))) self.assertFalse(maybe_trade_day('2020-01-01')) self.assertFalse(maybe_trade_day('2020/10/06')) self.assertRaises(TypeError, maybe_trade_day, 'aaa') def test_prev_trade_day(self): """test the function prev_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(prev_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_trade_day(date_seems_trade_day)), pd.to_datetime(prev_seems_trade_day)) self.assertEqual(pd.to_datetime(prev_trade_day(date_too_early)), pd.to_datetime(date_too_early)) self.assertEqual(pd.to_datetime(prev_trade_day(date_too_late)), pd.to_datetime(date_too_late)) self.assertEqual(pd.to_datetime(prev_trade_day(date_christmas)), pd.to_datetime(date_christmas)) def test_next_trade_day(self): """ test the function next_trade_day() """ date_trade = '20210401' date_holiday = '20210102' next_holiday = pd.to_datetime(date_holiday) + pd.Timedelta(2, 'd') date_weekend = '20210424' next_weekend = pd.to_datetime(date_weekend) + pd.Timedelta(2, 'd') date_seems_trade_day = '20210217' next_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(next_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(next_trade_day(date_holiday)), pd.to_datetime(next_holiday)) self.assertEqual(pd.to_datetime(next_trade_day(date_weekend)), pd.to_datetime(next_weekend)) self.assertEqual(pd.to_datetime(next_trade_day(date_seems_trade_day)), pd.to_datetime(next_seems_trade_day)) self.assertEqual(pd.to_datetime(next_trade_day(date_too_early)), pd.to_datetime(date_too_early)) self.assertEqual(pd.to_datetime(next_trade_day(date_too_late)), pd.to_datetime(date_too_late)) self.assertEqual(pd.to_datetime(next_trade_day(date_christmas)), pd.to_datetime(date_christmas)) def test_prev_market_trade_day(self): """ test the function prev_market_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = pd.to_datetime(date_seems_trade_day) - pd.Timedelta(7, 'd') date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' prev_christmas_xhkg = '20201224' self.assertEqual(pd.to_datetime(prev_market_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_holiday)),
pd.to_datetime(prev_holiday)
pandas.to_datetime
#!/usr/bin/env python3 import arbor import pandas, seaborn import matplotlib.pyplot as plt # Construct chains of cells linked with gap junctions, # Chains are connected by synapses. # An event generator is attached to the first cell in the network. # # c --gj-- c --gj-- c --gj-- c --gj-- c # | # syn # | # c --gj-- c --gj-- c --gj-- c --gj-- c # # The individual cells consist of a soma and one dendrite def make_cable_cell(gid): # Build a segment tree tree = arbor.segment_tree() # Soma with radius 5 μm and length 2 * radius = 10 μm, (tag = 1) s = tree.append(arbor.mnpos, arbor.mpoint(-10, 0, 0, 5), arbor.mpoint(0, 0, 0, 5), tag=1) # Single dendrite with radius 2 μm and length 40 μm, (tag = 2) b = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(40, 0, 0, 2), tag=2) # Label dictionary for cell components labels = arbor.label_dict() labels['soma'] = '(tag 1)' labels['dend'] = '(tag 2)' # Mark location for synapse site at midpoint of dendrite (branch 0 = soma + dendrite) labels['synapse_site'] = '(location 0 0.6)' # Gap junction site at connection point of soma and dendrite labels['gj_site'] = '(location 0 0.2)' # Label root of the tree labels['root'] = '(root)' # Paint dynamics onto the cell, hh on soma and passive properties on dendrite decor = arbor.decor() decor.paint('"soma"', arbor.density("hh")) decor.paint('"dend"', arbor.density("pas")) # Attach one synapse and gap junction each on their labeled sites decor.place('"synapse_site"', arbor.synapse('expsyn'), 'syn') decor.place('"gj_site"', arbor.junction('gj'), 'gj') # Attach spike detector to cell root decor.place('"root"', arbor.spike_detector(-10), 'detector') cell = arbor.cable_cell(tree, labels, decor) return cell # Create a recipe that generates connected chains of cells class chain_recipe(arbor.recipe): def __init__(self, ncells_per_chain, nchains): arbor.recipe.__init__(self) self.nchains = nchains self.ncells_per_chain = ncells_per_chain self.props = arbor.neuron_cable_properties() self.cat = arbor.default_catalogue() self.props.register(self.cat) def num_cells(self): return self.ncells_per_chain * self.nchains def cell_description(self, gid): return make_cable_cell(gid) def cell_kind(self, gid): return arbor.cell_kind.cable # Create synapse connection between last cell of one chain and first cell of following chain def connections_on(self, gid): if (gid == 0) or (gid % self.ncells_per_chain > 0): return [] else: src = gid-1 w = 0.05 d = 10 return [arbor.connection((src,'detector'), 'syn', w, d)] # Create gap junction connections between a cell within a chain and its neighbor(s) def gap_junctions_on(self, gid): conns = [] chain_begin = int(gid/self.ncells_per_chain) * self.ncells_per_chain chain_end = chain_begin + self.ncells_per_chain next_cell = gid + 1 prev_cell = gid - 1 if next_cell < chain_end: conns.append(arbor.gap_junction_connection((gid+1, 'gj'), 'gj', 0.015)) if prev_cell >= chain_begin: conns.append(arbor.gap_junction_connection((gid-1, 'gj'), 'gj', 0.015)) return conns # Event generator at first cell def event_generators(self, gid): if gid==0: sched = arbor.explicit_schedule([1]) weight = 0.1 return [arbor.event_generator('syn', weight, sched)] return [] # Place a probe at the root of each cell def probes(self, gid): return [arbor.cable_probe_membrane_voltage('"root"')] def global_properties(self, kind): return self.props # Number of cells per chain ncells_per_chain = 5 # Number of chains nchains = 3 # Total number of cells ncells = nchains * ncells_per_chain #Instantiate recipe recipe = chain_recipe(ncells_per_chain, nchains) # Create a default execution context, domain decomposition and simulation context = arbor.context() decomp = arbor.partition_load_balance(recipe, context) sim = arbor.simulation(recipe, decomp, context) # Set spike generators to record sim.record(arbor.spike_recording.all) # Sampler handles = [sim.sample((gid, 0), arbor.regular_schedule(0.1)) for gid in range(ncells)] # Run simulation for 100 ms sim.run(100) print('Simulation finished') # Print spike times print('spikes:') for sp in sim.spikes(): print(' ', sp) # Plot the results print("Plotting results ...") df_list = [] for gid in range(ncells): samples, meta = sim.samples(handles[gid])[0] df_list.append(pandas.DataFrame({'t/ms': samples[:, 0], 'U/mV': samples[:, 1], 'Cell': f"cell {gid}"})) df =
pandas.concat(df_list,ignore_index=True)
pandas.concat
import math import numpy as np import pandas as pd import seaborn as sns import scipy.stats as ss import matplotlib.pyplot as plt from collections import Counter def convert(data, to): converted = None if to == 'array': if isinstance(data, np.ndarray): converted = data elif isinstance(data, pd.Series): converted = data.values elif isinstance(data, list): converted = np.array(data) elif isinstance(data, pd.DataFrame): converted = data.as_matrix() elif to == 'list': if isinstance(data, list): converted = data elif isinstance(data, pd.Series): converted = data.values.tolist() elif isinstance(data, np.ndarray): converted = data.tolist() elif to == 'dataframe': if isinstance(data, pd.DataFrame): converted = data elif isinstance(data, np.ndarray): converted = pd.DataFrame(data) else: raise ValueError("Unknown data conversion: {}".format(to)) if converted is None: raise TypeError('cannot handle data conversion of type: {} to {}'.format(type(data),to)) else: return converted def conditional_entropy(x, y): """ Calculates the conditional entropy of x given y: S(x|y) Wikipedia: https://en.wikipedia.org/wiki/Conditional_entropy :param x: list / NumPy ndarray / Pandas Series A sequence of measurements :param y: list / NumPy ndarray / Pandas Series A sequence of measurements :return: float """ # entropy of x given y y_counter = Counter(y) xy_counter = Counter(list(zip(x,y))) total_occurrences = sum(y_counter.values()) entropy = 0.0 for xy in xy_counter.keys(): p_xy = xy_counter[xy] / total_occurrences p_y = y_counter[xy[1]] / total_occurrences entropy += p_xy * math.log(p_y/p_xy) return entropy def cramers_v(x, y): """ Calculates Cramer's V statistic for categorical-categorical association. Uses correction from Bergsma and Wicher, Journal of the Korean Statistical Society 42 (2013): 323-328. This is a symmetric coefficient: V(x,y) = V(y,x) Original function taken from: https://stackoverflow.com/a/46498792/5863503 Wikipedia: https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V :param x: list / NumPy ndarray / Pandas Series A sequence of categorical measurements :param y: list / NumPy ndarray / Pandas Series A sequence of categorical measurements :return: float in the range of [0,1] """ confusion_matrix = pd.crosstab(x,y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2/n r,k = confusion_matrix.shape phi2corr = max(0, phi2-((k-1)*(r-1))/(n-1)) rcorr = r-((r-1)**2)/(n-1) kcorr = k-((k-1)**2)/(n-1) return np.sqrt(phi2corr/min((kcorr-1),(rcorr-1))) def theils_u(x, y): """ Calculates Theil's U statistic (Uncertainty coefficient) for categorical-categorical association. This is the uncertainty of x given y: value is on the range of [0,1] - where 0 means y provides no information about x, and 1 means y provides full information about x. This is an asymmetric coefficient: U(x,y) != U(y,x) Wikipedia: https://en.wikipedia.org/wiki/Uncertainty_coefficient :param x: list / NumPy ndarray / Pandas Series A sequence of categorical measurements :param y: list / NumPy ndarray / Pandas Series A sequence of categorical measurements :return: float in the range of [0,1] """ s_xy = conditional_entropy(x,y) x_counter = Counter(x) total_occurrences = sum(x_counter.values()) p_x = list(map(lambda n: n/total_occurrences, x_counter.values())) s_x = ss.entropy(p_x) if s_x == 0: return 1 else: return (s_x - s_xy) / s_x def correlation_ratio(categories, measurements): """ Calculates the Correlation Ratio (sometimes marked by the greek letter Eta) for categorical-continuous association. Answers the question - given a continuous value of a measurement, is it possible to know which category is it associated with? Value is in the range [0,1], where 0 means a category cannot be determined by a continuous measurement, and 1 means a category can be determined with absolute certainty. Wikipedia: https://en.wikipedia.org/wiki/Correlation_ratio :param categories: list / NumPy ndarray / Pandas Series A sequence of categorical measurements :param measurements: list / NumPy ndarray / Pandas Series A sequence of continuous measurements :return: float in the range of [0,1] """ categories = convert(categories, 'array') measurements = convert(measurements, 'array') fcat, _ = pd.factorize(categories) cat_num = np.max(fcat)+1 y_avg_array = np.zeros(cat_num) n_array = np.zeros(cat_num) for i in range(0,cat_num): cat_measures = measurements[np.argwhere(fcat == i).flatten()] n_array[i] = len(cat_measures) y_avg_array[i] = np.average(cat_measures) y_total_avg = np.sum(np.multiply(y_avg_array,n_array))/np.sum(n_array) numerator = np.sum(np.multiply(n_array,np.power(np.subtract(y_avg_array,y_total_avg),2))) denominator = np.sum(np.power(np.subtract(measurements,y_total_avg),2)) if numerator == 0: eta = 0.0 else: eta = numerator/denominator return eta def associations(dataset, nominal_columns=None, mark_columns=False, theil_u=False, plot=True, return_results = False, **kwargs): """ Calculate the correlation/strength-of-association of features in data-set with both categorical (eda_tools) and continuous features using: - Pearson's R for continuous-continuous cases - Correlation Ratio for categorical-continuous cases - Cramer's V or Theil's U for categorical-categorical cases :param dataset: NumPy ndarray / Pandas DataFrame The data-set for which the features' correlation is computed :param nominal_columns: string / list / NumPy ndarray Names of columns of the data-set which hold categorical values. Can also be the string 'all' to state that all columns are categorical, or None (default) to state none are categorical :param mark_columns: Boolean (default: False) if True, output's columns' names will have a suffix of '(nom)' or '(con)' based on there type (eda_tools or continuous), as provided by nominal_columns :param theil_u: Boolean (default: False) In the case of categorical-categorical feaures, use Theil's U instead of Cramer's V :param plot: Boolean (default: True) If True, plot a heat-map of the correlation matrix :param return_results: Boolean (default: False) If True, the function will return a Pandas DataFrame of the computed associations :param kwargs: Arguments to be passed to used function and methods :return: Pandas DataFrame A DataFrame of the correlation/strength-of-association between all features """ dataset = convert(dataset, 'dataframe') columns = dataset.columns if nominal_columns is None: nominal_columns = list() elif nominal_columns == 'all': nominal_columns = columns corr = pd.DataFrame(index=columns, columns=columns) for i in range(0,len(columns)): for j in range(i,len(columns)): if i == j: corr[columns[i]][columns[j]] = 1.0 else: if columns[i] in nominal_columns: if columns[j] in nominal_columns: if theil_u: corr[columns[j]][columns[i]] = theils_u(dataset[columns[i]],dataset[columns[j]]) corr[columns[i]][columns[j]] = theils_u(dataset[columns[j]],dataset[columns[i]]) else: cell = cramers_v(dataset[columns[i]],dataset[columns[j]]) corr[columns[i]][columns[j]] = cell corr[columns[j]][columns[i]] = cell else: cell = correlation_ratio(dataset[columns[i]], dataset[columns[j]]) corr[columns[i]][columns[j]] = cell corr[columns[j]][columns[i]] = cell else: if columns[j] in nominal_columns: cell = correlation_ratio(dataset[columns[j]], dataset[columns[i]]) corr[columns[i]][columns[j]] = cell corr[columns[j]][columns[i]] = cell else: cell, _ = ss.pearsonr(dataset[columns[i]], dataset[columns[j]]) corr[columns[i]][columns[j]] = cell corr[columns[j]][columns[i]] = cell corr.fillna(value=np.nan, inplace=True) if mark_columns: marked_columns = ['{} (nom)'.format(col) if col in nominal_columns else '{} (con)'.format(col) for col in columns] corr.columns = marked_columns corr.index = marked_columns if plot: plt.figure(figsize=kwargs.get('figsize',None)) sns.heatmap(corr, annot=kwargs.get('annot',True), fmt=kwargs.get('fmt','.2f')) plt.show() if return_results: return corr def numerical_encoding(dataset, nominal_columns='all', drop_single_label=False, drop_fact_dict=True): """ Encoding a data-set with mixed data (numerical and categorical) to a numerical-only data-set, using the following logic: - categorical with only a single value will be marked as zero (or dropped, if requested) - categorical with two values will be replaced with the result of Pandas `factorize` - categorical with more than two values will be replaced with the result of Pandas `get_dummies` - numerical columns will not be modified :param dataset: NumPy ndarray / Pandas DataFrame The data-set to encode :param nominal_columns: sequence / string A sequence of the nominal (categorical) columns in the dataset. If string, must be 'all' to state that all columns are nominal. If None, nothing happens. Default: 'all' :param drop_single_label: Boolean (default: False) If True, nominal columns with a only a single value will be dropped. :param drop_fact_dict: Boolean (default: True) If True, the return value will be the encoded DataFrame alone. If False, it will be a tuple of the DataFrame and the dictionary of the binary factorization (originating from pd.factorize) :return: DataFrame or (DataFrame, dict) If drop_fact_dict is True, returns the encoded DataFrame. else, returns a tuple of the encoded DataFrame and dictionary, where each key is a two-value column, and the value is the original labels, as supplied by Pandas `factorize`. Will be empty if no two-value columns are present in the data-set """ dataset = convert(dataset, 'dataframe') if nominal_columns is None: return dataset elif nominal_columns == 'all': nominal_columns = dataset.columns converted_dataset = pd.DataFrame() binary_columns_dict = dict() for col in dataset.columns: if col not in nominal_columns: converted_dataset.loc[:,col] = dataset[col] else: unique_values = pd.unique(dataset[col]) if len(unique_values) == 1 and not drop_single_label: converted_dataset.loc[:,col] = 0 elif len(unique_values) == 2: converted_dataset.loc[:,col], binary_columns_dict[col] = pd.factorize(dataset[col]) else: dummies =
pd.get_dummies(dataset[col],prefix=col)
pandas.get_dummies
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(pd.concat(result), expected) # skipfooter is not supported with the C parser yet if self.engine == 'python': # test bad parameter (skipfooter) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skipfooter=1) pytest.raises(ValueError, reader.read, 3) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_blank_df(self): # GH 14545 data = """a,b """ df = self.read_csv(StringIO(data), header=[0]) expected = DataFrame(columns=['a', 'b']) tm.assert_frame_equal(df, expected) round_trip = self.read_csv(StringIO( expected.to_csv(index=False)), header=[0]) tm.assert_frame_equal(round_trip, expected) data_multiline = """a,b c,d """ df2 = self.read_csv(StringIO(data_multiline), header=[0, 1]) cols = MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) expected2 = DataFrame(columns=cols) tm.assert_frame_equal(df2, expected2) round_trip = self.read_csv(StringIO( expected2.to_csv(index=False)), header=[0, 1]) tm.assert_frame_equal(round_trip, expected2) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(
StringIO(data)
pandas.compat.StringIO
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 14 15:17:16 2018 @author: trevor """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.stats as st import time from sklearn import linear_model from pylab import mpl from scipy.optimize import fsolve from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from matplotlib.font_manager import _rebuild _rebuild() plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False import backtracking cbond_price = pd.read_csv('cbond_price.csv',encoding='GBK') stock_price =
pd.read_csv('stock_price.csv',encoding='GBK')
pandas.read_csv
import os import gc import time import imghdr from io import BytesIO from typing import List, Optional from datetime import datetime import requests import numpy as np import pandas as pd from tqdm.notebook import tqdm # if you don't use IPython Kernel like jupyter, you should change "tqdm.notebook" to "tqdm" from cairosvg import svg2png from PIL import Image import cv2 def get_opensea_api_key(): return os.getenv('OPENSEA_API_KEY') def get_comet_ml_key(): return os.getenv('COMET_ML_KEY') def is_image(url) -> bool: """ Determine if it is an image of png or jpeg. Parameters ---------- url : str Target url. Returns ------- True or False: Return True if this url content is an image of png or jpeg else returns False. """ img = requests.get(url).content img_type = imghdr.what(None, h=img) if img_type in ['png', 'jpeg']: return True else: return False def is_svg(url) -> bool: """ Determine if it is an image of svg. Parameters ---------- url : str Target url. Returns ------- True or False: Return True if this url content is an image of svg else returns False. """ if url.endswith(".svg"): return True else: return False def save_png(url, file_name) -> None: """ Save an image of png or jpeg as a png file. Parameters ---------- url : str Target url. file_name : str The file path of a saved png file. Returns ------- None """ img = requests.get(url).content img = Image.open(BytesIO(img)).convert("RGBA") img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA) cv2.imwrite(file_name, img, [int(cv2.IMWRITE_PNG_COMPRESSION), 3]) def save_svg(url, file_name) -> None: """ Save an image of svg as an svg file. The content that is svg data of animation can't save. Parameters ---------- url : str Target url. file_name : str The file path of a saved png file. Returns ------- None """ img = requests.get(url).content img = svg2png(bytestring=img) img = Image.open(BytesIO(img)).convert("RGBA") img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA) cv2.imwrite(file_name, img) def get_random_data(dir_name: str, num_loop: Optional[int] = None, start_id: int = 0, is_test: bool = False) -> pd.DataFrame: """ Get data of NFT to be had registered OpenSea by using OpenSea API. You can get a large amount of data randomly. If you want to change data to be acquired, you should view the reference of OpenSea API and change 'params' and 'get_features'. Also, I set the delay to reduce the server load by 1 process per 1 min. Please change according to your preference(within the bounds of common sense). If got data is other than png, jpeg, and svg(still image), the data can't save (but continue the process). Parameter --------- dir_name : str Directory path to save images. num_loop : int A number of loops. A number of getting data is 'num_loop' * 50 is_test : bool Get small data(num_loop=5) regardless value of num_loop if you set "is_test=True". Returns ------- df : pd.DataFrame The DataFrame consists of NFT data includes all image ids etc... See Also -------- get_features : list of str There are hundreds of columns of original data, but the number of data to be acquired is limited. Please change according to your preference if column names that you need are not included. params : dict of requests parameters Like get_featrues, Please change according to your preference if you want to change getting data. """ DATAPATH = dir_name df = pd.DataFrame() img_id = start_id url = "https://api.opensea.io/api/v1/assets" if is_test or num_loop is None: num_loop = 5 print("This function execute on test mode(automatically changes to num_loop=5).") for idx in tqdm(range(num_loop)): try: params = {"limit": "50", "order_by": "sale_date", "order_direction": "desc", "offset": str(50*idx)} response = requests.get(url, params=params) data = response.json() assets_df = pd.json_normalize(data['assets']) for feature in assets_df.columns.values: if feature not in df.columns.values: df[feature] = None for feature in df.columns.values: if feature not in assets_df.columns.values: assets_df[feature] = None for i in range(assets_df.shape[0]): img_url = assets_df.iloc[i]['image_url'] img_url.replace(" ", "") if is_image(img_url): file_name = os.path.join(DATAPATH, f"{img_id}.png") save_png(img_url, file_name) df = df.append(assets_df.iloc[i]) img_id += 1 elif is_svg(img_url): file_name = os.path.join(DATAPATH, f"{img_id}.png") save_svg(img_url, file_name) df = df.append(assets_df.iloc[i]) img_id += 1 else: continue gc.collect() # Just in case, free the memory so that the process does not stop time.sleep(60) except: gc.collect() time.sleep(60) continue df = df.reset_index(drop=True) df['image_id'] = (df.index.values.astype(int)+start_id).astype(str) df['image_id'] = df['image_id'].apply(lambda x: x + '.png') return df def get_collection_data(dir_name: str, target_collections: Optional[List[str]] = None, is_test: bool = False) -> pd.DataFrame: """ Get data of NFT to be had registered OpenSea by using OpenSea API. You can get a large amount of data you prefer collection. If you want to change data to be acquired, you should view the reference of OpenSea API and change 'params' and 'get_features'. Also, I set the delay to reduce the server load by 1 process per 1 min. Please change according to your preference(within the bounds of common sense). If got data is other than png, jpeg, and svg(still image), the data can't save (but continue the process). Parameter --------- dir_name : str Directory path to save images. target_collections : list of str The list of collection names you prefer. This variable can be set None, but you must set is_test=True. is_test : bool Get small data regardless values of target_collections if you set "is_test=True". Returns ------- df : pd.DataFrame The DataFrame consists of NFT data includes all image ids etc... See Also -------- get_features : list of str There are hundreds of columns of original data, but the number of data to be acquired is limited. Please change according to your preference if column names that you need are not included. params : dict of requests parameters Like get_featrues, Please change according to your preference if you want to change getting data. """ DATAPATH = dir_name e_count = 0 e_collection = [] if is_test: print("This function execute on test mode.") print("Automatically set target_collections:\n['cryptopunks', 'boredapeyachtclub', 'doodles-official']") target_collections = ['cryptopunks', 'boredapeyachtclub', 'doodles-official'] df = pd.DataFrame() img_id = 0 url = "https://api.opensea.io/api/v1/assets" for collection in target_collections: for idx in tqdm(range(10), ascii=True, desc=collection): try: params = { "offset": str(50*idx), "order_by": "sale_date", "order_direction": "desc", "limit": "50", "collection": collection } response = requests.get(url, params=params) data = response.json() assets_df = pd.json_normalize(data['assets']) for feature in assets_df.columns.values: if feature not in df.columns.values: df[feature] = None for feature in df.columns.values: if feature not in assets_df.columns.values: assets_df[feature] = None for i in range(assets_df.shape[0]): img_url = assets_df.iloc[i]['image_url'] img_url.replace(" ", "") if is_image(img_url): file_name = os.path.join(DATAPATH, f"{img_id}.png") save_png(img_url, file_name) df = df.append(assets_df.iloc[i]) img_id += 1 elif is_svg(img_url): file_name = os.path.join(DATAPATH, f"{img_id}.png") save_svg(img_url, file_name) df = df.append(assets_df.iloc[i]) img_id += 1 else: continue gc.collect() # Just in case, free the memory so that the process does not stop time.sleep(60) except: e_count += 1 e_collection.append(collection) gc.collect() time.sleep(60) continue print(f"error count: {e_count}") print(f"error collection: {list(set(e_collection))}") df = df.reset_index(drop=True) df['image_id'] = df.index.values.astype(str) df['image_id'] = df['image_id'].apply(lambda x: x + '.png') return df def get_data(asset_contract_address: str, token_id: str): """ Get the asset data. Parameters ---------- asset_contract_address : str The string of asset contract address. token_id : str The string of token id. Returns ------- orders_df : pd.DataFrame The dataframe of asset data. """ if type(token_id) != str: token_id = str(token_id) url = f"https://api.opensea.io/api/v1/asset/{asset_contract_address}/{token_id}/" response = requests.request("GET", url) data = response.json() asset_df = pd.json_normalize(data) return asset_df def get_events_data(dir_name: str, num_loop: Optional[int] = 5, start_id: int = 0, is_test: bool = False, start_date: List[int] =[2020, 1, 1, 0, 0, 0], total_date: int = 700) -> pd.DataFrame: """ Get events data of NFT to be had registered OpenSea by using OpenSea API. You can get a large amount of data randomly. If you want to change data to be acquired, you should view the reference of OpenSea API and change 'params' and 'get_features'. Also, I set the delay to reduce the server load by 1 process per 1 min. Please change according to your preference(within the bounds of common sense). If got data is other than png, jpeg, and svg(still image), the data can't save (but continue the process). Parameter --------- dir_name : str Directory path to save images. num_loop : int A number of loops. A number of getting data is 'num_loop' * 50 is_test : bool Get small data(num_loop=5) regardless value of num_loop if you set "is_test=True". Returns ------- df : pd.DataFrame The DataFrame consists of NFT data includes all image ids etc... See Also -------- get_features : list of str There are hundreds of columns of original data, but the number of data to be acquired is limited. Please change according to your preference if column names that you need are not included. params : dict of requests parameters Like get_featrues, Please change according to your preference if you want to change getting data. """ DATAPATH = dir_name df = pd.DataFrame() img_id = start_id before_date = int(datetime(*start_date).timestamp()) headers = {"Accept": "application/json", "X-API-KEY": get_opensea_api_key()} if is_test: num_loop = 3 total_date = 3 print("This function execute on test mode(automatically changes to total_date=3 and num_loop=3).") for _ in tqdm(range(total_date)): for idx in range(num_loop): url = f"https://api.opensea.io/api/v1/events?event_type=offer_entered&only_opensea=false&occurred_before={before_date}" try: params = {"limit": "50", "offset": str(1000*idx)} response = requests.get(url, params=params, headers=headers) data = response.json() assets_df = pd.json_normalize(data['asset_events']) for feature in assets_df.columns.values: if feature not in df.columns.values: df[feature] = None for feature in df.columns.values: if feature not in assets_df.columns.values: assets_df[feature] = None for i in range(assets_df.shape[0]): img_url = assets_df.iloc[i]['asset.image_url'] img_url.replace(" ", "") if is_image(img_url): file_name = os.path.join(DATAPATH, f"{img_id}.png") save_png(img_url, file_name) df = df.append(assets_df.iloc[i]) img_id += 1 elif is_svg(img_url): file_name = os.path.join(DATAPATH, f"{img_id}.png") save_svg(img_url, file_name) df = df.append(assets_df.iloc[i]) img_id += 1 else: continue gc.collect() # Just in case, free the memory so that the process does not stop time.sleep(30) except: gc.collect() time.sleep(30) continue before_date += 86400 df = df.reset_index(drop=True) df['image_id'] = (df.index.values.astype(int)+start_id).astype(str) df['image_id'] = df['image_id'].apply(lambda x: x + '.png') return df def concat_past_data(df: pd.DataFrame, num_past=10): """ Get the NFTs events data. Concatenate successfule price data to df. Prameters --------- df : pd.DataFrame Dataframe of collection data. num_past : int Max number of the price data. """ for i in range(num_past): df[f'past_price{i}'] = 0 address_list = df['asset_contract.address'].values token_id_list = df['token_id'].values for idx, url_li in tqdm(enumerate(zip(address_list, token_id_list))): url = f"https://api.opensea.io/api/v1/events?asset_contract_address={url_li[0]}&token_id={url_li[1]}&only_opensea=false&offset=0&limit=50" headers = {"Accept": "application/json", "X-API-KEY": get_opensea_api_key()} response = requests.request("GET", url, headers=headers) data = response.json() past_df = pd.json_normalize(data['asset_events']) price_list = past_df.query("event_type == 'successful'")['total_price'].values for i in range(min(num_past, len(price_list))): df.loc[idx, f'past_price{i}'] = price_list[i] time.sleep(30) return df def get_past_data(df: pd.DataFrame, dir_name: str): """ Get the NFTs events data as new dataframe. To use this function can get past data max 100. Prameters --------- df : pd.DataFrame Dataframe of the collection data. dir_name : str The name of directory you want to save data. """ address_list = df['asset_contract.address'].values token_id_list = df['token_id'].values before_date_list =
pd.to_datetime(df['last_sale.created_date'])
pandas.to_datetime
import pandas import string import math import csv import os import re from unicodedata import normalize import unicodedata def corrigir_nomes(nome): nome = nome.replace('Á', 'A').replace('É', 'E').replace('Í', 'I').replace('Ó', 'O').replace('Ú', 'U').replace('Ç', 'C') return nome def localize_floats(row): return [ str(el).replace('.', ',') if isinstance(el, float) else el for el in row ] def primeiro_algarismo(txt): txt = txt[0] return txt def remover_ponto_virgula_zero(txt): txt = str(txt).replace(",", "") txt = str(txt).replace(".", "") txt = str(txt).replace(" ", "") txt = str(txt).split("e") try: txt = txt[0] except: txt = txt #txt = str(txt).rsplit("0") while str(txt).endswith("0"): txt = txt[:-1] return txt def remover_acentos(txt): return normalize('NFKD', txt).encode('ASCII', 'ignore').decode('utf-8') def remover_acentos_lista(txt): return [ normalize('NFKD', el).encode('ASCII', 'ignore').decode('ASCII') for el in txt ] def carrega_dados(diretorio, cidade): files = os.listdir(diretorio) files = sorted(files) primeiro = True print(cidade) for file in files: if file.split("_")[0] == cidade: print("entrei ->", file) df = pandas.read_csv(diretorio + file, sep = ',', encoding='utf-8') df2 = df.loc[df['NOME_MUNICIPIO'] == cidade] if primeiro: df1 = df2 primeiro = False else: df1 =
pandas.concat([df1,df2],ignore_index=True)
pandas.concat
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar =
pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1)
pandas.concat
import sys #sys.path.append("..") import numpy as np import theano import theano.tensor as T import theano.tensor.signal.conv as C from epimodel import EpidemiologicalParameters, preprocess_data np.random.seed(123456) import argparse import copy import datetime import itertools import pickle import re from datetime import timedelta import matplotlib.dates as mdates import pandas as pd import pymc3 as pm from sklearn import preprocessing US = True MOBI = "include" # "exclude" RADER_JOINT = False GATHERINGS = 3 # MASKING = True # Now always true # smoothing happens at data init time if at all assert MOBI in ["exclude", "only", "include"] mob_cols = [ "avg_mobility_no_parks_no_residential", "residential_percent_change_from_baseline", ] # Ds = pd.date_range('2020-05-01', '2020-09-01', freq='D') # Adding 20 days to account for death delay Ds = pd.date_range("2020-05-01", "2020-09-21", freq="D") def fill_missing_days(df): df = df.set_index(["date", "country"]) df = df.unstack(fill_value=-1).asfreq("D", fill_value=-1).stack().reset_index() df = df.replace(-1, np.nan) return interpolate_wearing_fwd_bwd(df) def interpolate_wearing_fwd_bwd(df): regions = df.country.unique() cs = [] for r in regions: c = df[df.country == r] c = c.set_index("date") c = c.interpolate(method="time", limit_direction="both").reset_index() cs.append(c) return pd.concat(cs) # moving average def smooth(x, window_len=7): l = window_len s = np.r_[x[l - 1 : 0 : -1], x, x[-2 : -l - 1 : -1]] w = np.ones(window_len, "d") return np.convolve(w / w.sum(), s, mode="valid") def smooth_rader(df, win=7): for r in df.label.unique(): s = df[df.label == r] s["percent_mc"] = smooth(s["percent_mc"], window_len=win)[: -win + 1] df[df.label == r] = s return df def joint_shop_work(df, THRESHOLD=2): return (df.likely_wear_mask_grocery_shopping <= THRESHOLD) & ( df.likely_wear_mask_workplace <= THRESHOLD ) def mean_shop_work(df, THRESHOLD=2): venues = ["likely_wear_mask_grocery_shopping", "likely_wear_mask_workplace"] df["percent_mc"] = df[venues].mean(axis=1) return df["percent_mc"] <= THRESHOLD def load_and_clean_rader_raw(THRESHOLD=2, SMOOTH_RADER=True): # or less DATA_IN = "data/raw/" directory = DATA_IN + "rader/sm_cny_data_1_21_21.csv" us = pd.read_csv(directory) masks = [ "likely_wear_mask_exercising_outside", "likely_wear_mask_grocery_shopping", "likely_wear_mask_visit_family_friends", "likely_wear_mask_workplace", ] # weights = ["weight_daily_national_13plus", "weight_state_weekly"] us = us[["response_date", "state"] + masks] # + weights codes = pd.read_excel(DATA_IN + "rader/cny_sm_codebook_2_5_21.xls") num2name = codes[codes["column"] == "state"][["value", "label"]] us = pd.merge(us, num2name, left_on="state", right_on="value").drop( ["value", "state"], axis=1 ) us["response_date"] = pd.to_datetime(us["response_date"]) if RADER_JOINT: us["percent_mc"] = joint_shop_work(us, THRESHOLD) else: us["percent_mc"] = mean_shop_work(us, THRESHOLD) us = ( us[["response_date", "label", "percent_mc"]] .groupby(["response_date", "label"]) .mean() .reset_index() ) if SMOOTH_RADER: us = smooth_rader(us) return us def load_and_clean_rader(THRESHOLD=2, SMOOTH_RADER=True): # or less DATA_IN = "data/raw/" directory = DATA_IN + "rader/rader_us_wearing_aggregated_mean_shop_and_work.csv" us = pd.read_csv(directory) us["response_date"] = pd.to_datetime(us["response_date"]) return us def add_dummy_wearing_us(us, backfill=True): rader_start = us.date.iloc[0] - timedelta(days=1) fill_days = pd.date_range(Ds[0], rader_start, freq="D") Rs = us.country.unique() if backfill: for s in Rs: df = pd.DataFrame(columns=["date", "country", "percent_mc"]) df.date = fill_days df.country = s fill = us.set_index(["country", "date"]).loc[s].percent_mc.iloc[0] df.percent_mc = fill us = pd.concat([df, us]) # totally random dummy else: for s in us.country.unique(): df = pd.DataFrame(columns=["date", "country", "percent_mc"]) df.date = fill_days df.country = s df.percent_mc = np.random.random(len(df)) us = pd.concat([df, us]) us = us.sort_values(["date", "country"]) return us def load_and_clean_wearing(): wearing = pd.read_csv( "data/raw/umd/umd_national_wearing.csv", parse_dates=["survey_date"], infer_datetime_format=True, ).drop_duplicates() wearing = wearing[(wearing.survey_date >= Ds[0]) & (wearing.survey_date <= Ds[-1])] cols = ["country", "survey_date", "percent_mc"] wearing = wearing[cols] cols = ["country", "date", "percent_mc"] wearing.columns = cols # Append US us_wearing = load_and_clean_rader() us_wearing.columns = ["date", "country", "percent_mc"] us_wearing = us_wearing[cols] us_wearing = us_wearing.replace("Georgia", "Georgia-US") us_wearing = us_wearing.replace("District of Columbia (DC)", "District of Columbia") # Add dummy wearing back to 1st May us_wearing = add_dummy_wearing_us(us_wearing, backfill=True) wearing =
pd.concat([wearing, us_wearing])
pandas.concat
import pandas import argparse import ast # Load arguments from the command line parser = argparse.ArgumentParser() parser.add_argument("--tp", type=str, help="The filename or path to the true positive csv", default='') parser.add_argument("--tn", type=str, help="The filename or path to the true positive csv", default='') parser.add_argument("-t", "--target", type=bool, help="True if you want to only convert the target", default=False) args = parser.parse_args() # Loads the source and target map csvs source_map_df = pandas.read_csv('data/source_map.csv', converters={'cuis':ast.literal_eval}) target_map_df =
pandas.read_csv('data/target_map.csv', converters={'cuis':ast.literal_eval})
pandas.read_csv
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np from pandas.util._decorators import doc from ..util import save_docx_table, get_top_substrs from .dataset import _file_docs, _shared_docs _plot_docs = _file_docs.copy() _plot_docs['scope'] = _shared_docs['scope'] _plot_docs['subjects'] = _shared_docs['subjects'] _plot_docs['decode_values'] = '''decode_values : bool, optional When handling categorical variables that have been encoded through a BPt dataset method, e.g., :func:`Dataset.ordinalize`, then you may optionally either use either the original categorical values before encoding with decode_values = True, or use the current internal values with decode_values = False. :: default = True ''' def _show_values(axs, count=True, space=0): '''code from https://www.statology.org/seaborn-barplot-show-values/''' def _single(ax): longest = 0 for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() - (p.get_height()*0.5) if count: value = f'{int(p.get_width())}' else: value = f'{p.get_width():.2f}' # Keep track of longest label if len(value) > longest: longest = len(value) ax.text(_x, _y, value, ha="left") # Scale x lim a bit to compensate for adding extra text # Specifically by longest value scale = 1 + (longest / 100) ax.set_xlim([scale*x for x in ax.get_xlim()]) if isinstance(axs, np.ndarray): for ax in axs: _single(ax) else: _single(axs) def nan_info(self, scope='all'): # Get data based on passed scope cols = self.get_cols(scope) data = self[cols] # Check for data files self._data_file_fail_check(cols) # Get NaN counts na_counts = data.isna().sum().sort_values(ascending=False) if na_counts.sum() > 0: print('Loaded NaN Info:') print('There are:', na_counts.sum(), 'total missing values') u_counts, c_counts = np.unique(na_counts, return_counts=True) u_counts, c_counts = u_counts[1:], c_counts[1:] inds = c_counts.argsort() u_counts = u_counts[inds[::-1]] c_counts = c_counts[inds[::-1]] for u, c in zip(u_counts, c_counts): if c > 1: keys = list(na_counts[na_counts == u].index) substrs = get_top_substrs(keys) print(c, ' columns found with ', u, ' missing values', ' (column name overlap: ', substrs, ')', sep='') print() def _cont_info(self, cont_cols, subjs, measures, decimals, **extra_args): if len(cont_cols) == 0: return
pd.DataFrame()
pandas.DataFrame
import h5py import numpy as np import pandas as pd import os from multiprocessing import cpu_count, Pool from alcokit.util import fs_dict, is_audio_file from alcokit.hdf.api import Database from alcokit.score import Score import logging logger = logging.getLogger() logger.setLevel(logging.INFO) # TODO : add handling of sparse matrices ? def default_extract_func(abs_path): from alcokit.fft import FFT fft = abs(FFT.stft(abs_path)) score = Score.from_recurrence_matrix(fft) return dict(fft=({}, fft.T), score=({}, score)) def sizeof_fmt(num, suffix='b'): """ straight from https://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size """ for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) def _empty_info(features_names): tuples = [("directory", ""), ("name", ""), *[t for feat in features_names for t in [(feat, "dtype"), (feat, "shape"), (feat, "size")] if feat != "score"] ] idx = pd.MultiIndex.from_tuples(tuples) return pd.DataFrame([], columns=idx) def split_path(path): parts = path.split("/") prefix, file_name = "/".join(parts[:-1]), parts[-1] return prefix, file_name def file_to_db(abs_path, extract_func=default_extract_func, mode="w"): """ if mode == "r+" this will either: - raise an Exception if the feature already exists - concatenate data along the "feature_axis", assuming that each feature correspond to the same file or file collections. If you want to concatenate dbs along the "file_axis" consider using `concatenate_dbs(..)` @param abs_path: @param extract_func: @param mode: @return: """ logger.info("making db for %s" % abs_path) tmp_db = ".".join(abs_path.split(".")[:-1] + ["h5"]) rv = extract_func(abs_path) info = _empty_info(rv.keys()) info.loc[0, [("directory", ""), ("name", "")]] = split_path(abs_path) with h5py.File(tmp_db, mode) as f: for name, (attrs, data) in rv.items(): if issubclass(type(data), np.ndarray): ds = f.create_dataset(name=name, shape=data.shape, data=data) ds.attrs.update(attrs) info.loc[0, name] = ds.dtype, ds.shape, sizeof_fmt(data.nbytes) elif issubclass(type(data), pd.DataFrame): pd.DataFrame(data).to_hdf(tmp_db, name, "r+") f.flush() if "info" in f.keys(): prior = pd.read_hdf(tmp_db, "info", "r") info = pd.concat((prior, info.iloc[:, 2:]), axis=1) info.to_hdf(tmp_db, "info", "r+") f.close() return tmp_db def make_db_for_each_file(root_directory, extract_func=default_extract_func, extension_filter=is_audio_file, n_cores=cpu_count()): root_name, tree = fs_dict(root_directory, extension_filter) args = [(os.path.join(dir, file), extract_func) for dir, files in tree.items() for file in files] with Pool(n_cores) as p: tmp_dbs = p.starmap(file_to_db, args) return tmp_dbs def collect_infos(tmp_dbs): infos = [] for db in tmp_dbs: infos += [Database(db).info] return pd.concat(infos, ignore_index=True) def collect_scores(tmp_dbs): scores = [] offset = 0 for db in tmp_dbs: scr = Database(db).score scr.loc[:, ("start", "stop")] = scr.loc[:, ("start", "stop")].values + offset scr.loc[:, "name"] = ".".join(db.split(".")[:-1]) scores += [scr] offset = scr.last_stop return pd.DataFrame(pd.concat(scores, ignore_index=True)) def zip_prev_next(iterable): return zip(iterable[:-1], iterable[1:]) def ds_definitions_from_infos(infos): tb = infos.iloc[:, 2:].T paths = ["/".join(parts) for parts in infos.iloc[:, :2].values] # change the paths' extensions paths = [".".join(path.split(".")[:-1]) + ".h5" for path in paths] features = set(tb.index.get_level_values(0)) ds_definitions = {} for f in features: dtype = tb.loc[(f, "dtype"), :].unique().item() shapes = tb.loc[(f, "shape"), :].values dims = shapes[0][1:] assert all(shp[1:] == dims for shp in shapes[1:]), "all features should have the same dimensions but for the first axis" layout = Score.from_duration([s[0] for s in shapes]) ds_shape = (layout.last_stop, *dims) layout.index = paths ds_definitions[f] = {"shape": ds_shape, "dtype": dtype, "layout": layout} return ds_definitions def create_datasets_from_defs(target, defs, mode="w"): with h5py.File(target, mode) as f: for name, params in defs.items(): f.create_dataset(name, shape=params["shape"], dtype=params["dtype"]) layout = params["layout"] layout.reset_index(drop=False, inplace=True) layout = layout.rename(columns={"index": "name"}) pd.DataFrame(layout).to_hdf(target, "layouts/" + name, "r+") f.close() return def make_integration_args(target): args = [] with h5py.File(target, "r") as f: for feature in f["layouts"].keys(): df = Score(
pd.read_hdf(target, "layouts/" + feature)
pandas.read_hdf
# Copyright 2021 The CGLB Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce from operator import iconcat from pathlib import Path from typing import List, Optional, Union import glob import click import json import pandas as pd import numpy as np from cglb_experiments.plotting import Plotter, TablePrinter, XAxis from cglb_experiments.utils import short_names @click.group() def main(): pass output_format_type = click.Choice(["standard", "latex", "markdown", "html", "excel"]) @main.command() @click.option("-f", "--output-format", type=output_format_type, default="standard") @click.option("-o", "--output", type=click.Path()) @click.option("--paths-file/--no-paths-file", default=False) @click.argument("files", nargs=-1, type=click.Path(resolve_path=True, dir_okay=False, exists=True)) def results_table(files: List[str], output_format: str, paths_file, output: str): pd.set_option("display.max_columns", None) pd.set_option("display.max_rows", None) pd.set_option("precision", 3) models = dict() dataset_names = set() if paths_file: # File with a list of paths to files with results file = Path(files[0]).expanduser().resolve() files = file.read_text().split() for file in files: f = Path(file) file_text = Path(f).expanduser().read_text() content = json.loads(file_text) _content_id = content.pop("id") dataset, name = short_names(f) dataset_names.add(dataset) column = pd.DataFrame(content.values(), index=content.keys(), columns=[dataset]) columns = models.get(name, column) if columns is not column: models[name] =
pd.concat([columns, column], axis=1)
pandas.concat
import os import json import pandas as pd import zipfile from werkzeug.utils import secure_filename import shutil import time from random import randint from datetime import timedelta import tempfile import sys from elasticsearch import Elasticsearch ## ## # dataframes from dataframes import dataframe # functions from grading_checks import naming, usage, documentation_logging, error_handling from soft_checks import activity_stats, project_folder_structure, project_structure, template_check, selector_check from flask import Flask, request, render_template, redirect, url_for, session, jsonify, Response, send_file, make_response from flask_session import Session from flask_socketio import SocketIO, emit from flask_mysqldb import MySQL import MySQLdb.cursors from passlib.hash import sha256_crypt import pdfkit # es = Elasticsearch(['https://098b8510b627461cb0e77d37d10c4511.us-east-1.aws.found.io:9243'], # http_auth=('elastic', '<PASSWORD>')) application = app = Flask(__name__, static_folder='./static/dist', template_folder="./static") # dont save cache in web browser (updating results image correctly) app.config["CACHE_TYPE"] = "null" app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 app.config['UPLOAD_PATH'] = '/file/' app.config['ALLOWED_EXTENSIONS'] = set(['zip']) app.config['SESSION_TYPE'] = 'filesystem' app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(hours=1) app.config['SECRET_KEY'] = randint(0,99999999999999999999) app.config['MYSQL_HOST'] = 'us-sql01.mysql.database.azure.com' app.config['MYSQL_PORT'] = 3306 app.config['MYSQL_USER'] = 'us-evalsql01@us-sql01' app.config['MYSQL_PASSWORD'] = '<PASSWORD>' app.config['MYSQL_DB'] = 'sleipnir' app.config['APP_ADMIN_RIGHT'] = 'admin' mysql = MySQL(app) # Check Configuration section for more details Session(app) socketio = SocketIO(app, async_mode="eventlet") thread = None ###### gexf = '' df_annotation = [] main_location = "" dict_score = {} df_invokeWf = [] pepper = 'zxf98g7yq3whretgih' ###### @app.route("/") def login(): with app.app_context(): folderPathList = [os.getcwd().replace("\\", "/") + app.config['UPLOAD_PATH'] + path for path in os.listdir(os.getcwd() + app.config['UPLOAD_PATH'])] filteredFolderPathList = [path for path in folderPathList if time.time() - os.path.getmtime(path) > 900] for folder in filteredFolderPathList: shutil.rmtree(folder, True) sessionPathList = [os.getcwd().replace("\\", "/") + '/flask_session/' + path for path in os.listdir(os.getcwd() + '/flask_session/')] filteredSessionPathList = [path for path in sessionPathList if time.time() - os.path.getmtime(path) > 900] for ses in filteredSessionPathList: print(ses) os.remove(ses) if session.get("loggedin"): return redirect(url_for('upload')) else: return render_template('login.html') @app.route("/login", methods=['POST']) def validate_user(): with app.app_context(): requestData = json.loads(str(request.data, encoding="utf-8")) tenant = requestData['tenant'] username = requestData['username'] password = requestData['password'] cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor) cursor.execute("SELECT id FROM tenants WHERE tenant_name = %s", (tenant,)) tenant_record = cursor.fetchone() if tenant_record: tenant_id = tenant_record["id"] cursor.execute('SELECT id, password FROM users WHERE username = %s AND tenant_id = %s', (username, tenant_id,)) user_record = cursor.fetchone() if user_record: user_id = user_record["id"] storedHashedPassword = user_record["password"] if sha256_crypt.verify(password+pepper, storedHashedPassword): resp = jsonify({"result": render_template('fileUpload.html', username=username, user_id=user_id)}) session['loggedin'] = True session['id'] = user_id session['username'] = username cursor.close() return make_response(resp, 200) else: cursor.close() resp = jsonify({"message": "Wrong password"}) return make_response(resp, 400) else: cursor.close() resp = jsonify({"message": "User not exists"}) return make_response(resp, 400) else: cursor.close() resp = jsonify({"message": "Tenant not exists"}) return make_response(resp, 400) @app.route('/logout') def logout(): with app.app_context(): session.pop('loggedin', None) session.pop('id', None) session.pop('username', None) return redirect(url_for('login')) @app.route("/admin", methods=['GET']) def admin(): with app.app_context(): if session.get('loggedin'): cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor) cursor.execute("SELECT * FROM users_rights WHERE user_id = %s " "AND right_id IN (SELECT id FROM rights WHERE `right` = %s);", (int(session.get('id')), app.config['APP_ADMIN_RIGHT'],)) if cursor.fetchone(): cursor.close() return render_template('adminPanel.html', username=session.get('username'), user_id=session.get('id')) else: cursor.close() return "Not Authorized" else: return "Please login first" @app.route('/upload') def upload(): with app.app_context(): folderPathList = [os.getcwd().replace("\\", "/") + app.config['UPLOAD_PATH'] + path for path in os.listdir(os.getcwd() + app.config['UPLOAD_PATH'])] filteredFolderPathList = [path for path in folderPathList if time.time() - os.path.getmtime(path) > 900] for folder in filteredFolderPathList: shutil.rmtree(folder, True) if session.get('loggedin'): return render_template('fileUpload.html', username=session.get('username'), user_id=session.get('id')) else: return "Please login first" def background_thread(): while True: socketio.emit('message', {'alive': "Alive"}) socketio.sleep(60) @socketio.on('connect') def connect(): global thread if thread is None: thread = socketio.start_background_task(target=background_thread) @app.route("/processing", methods=["POST"]) def processing(): requestData=json.loads(str(request.data, encoding="utf-8")) # Get related info from Project.json (name and description) folderPath = session.get('folderPath') fileLocationStr = session.get('fileLocationStr') files = session.get('files') df_json = documentation_logging.grade_project_json_name_desc(folderPath) df_json_exp = pd.DataFrame(df_json.subfiles.tolist(), index=df_json['index']).stack().reset_index() df_json_exp.columns = ['projectId', 'fileIndex', 'filePath'] lst_name = [] df_json['projectName'] = df_json.apply(lambda x: x['projectDetail']['projectName'], axis=1) for name in list(df_json['projectName']): if name not in lst_name: lst_name.append(name) else: count = 2 dup_name = name + '_' + str(count) while dup_name in lst_name: count += 1 dup_name = name + '_' + str(count) lst_name.append(dup_name) df_json['projectName'] = lst_name df_json_exp = pd.merge(df_json_exp, df_json.loc[:, ["mainFolder", 'projectName']].reset_index(), how="left", left_on="projectId", right_on="index") df_json_exp.drop(columns=['fileIndex', "index"], inplace=True) if requestData["setting"]["jsonLog"]: project_detail = list(df_json.copy().reset_index().loc[:, ['index', 'projectDetail', 'projectName']] .T.to_dict().values()) json_name_score = df_json.namingScore.sum() / len(df_json.namingScore) json_description_score = df_json.descriptionScore.sum() / len(df_json.descriptionScore) else: json_name_score = "[Not evaluated]" json_description_score = "[Not evaluated]" project_detail = ['Not evaluated'] # scans all project files and populates dataframes with relevant info socketio.emit('progress', {'data': 'Processing Files ...'}) socketio.sleep(0.1) lst_sub_df = [dataframe.populate_dataframe(files[i], df_json) for i in range(len(files))] df_variable = pd.merge(pd.concat([x[0] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_argument = pd.merge(pd.concat([x[1] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_catches = pd.merge(pd.concat([x[2] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_activity = pd.merge(pd.concat([x[3] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_annotation = pd.concat([x[4] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False) df_selector = pd.merge(
pd.concat([x[5] for x in lst_sub_df], ignore_index=True)
pandas.concat
import requests, re, json, csv import numpy as np import pandas as pd from bs4 import BeautifulSoup confirmed_CSV_URL = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv' deaths_CSV_URL = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Deaths.csv' recovered_CSV_URL = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Recovered.csv' confirmed_total_data = [] deaths_total_data = [] recovered_total_data = [] with requests.Session() as s: download = s.get(confirmed_CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: confirmed_total_data.append(row) with requests.Session() as s: download = s.get(deaths_CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: deaths_total_data.append(row) with requests.Session() as s: download = s.get(recovered_CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: recovered_total_data.append(row) # confirmed_total_data[0] confirmed_df = pd.DataFrame(confirmed_total_data[1:], columns=confirmed_total_data[0]) deaths_df = pd.DataFrame(deaths_total_data, columns=deaths_total_data[0]) recovered_total_data = pd.DataFrame(recovered_total_data, columns=recovered_total_data[0]) confirmed_cols = confirmed_df.columns[confirmed_df.columns.str.endswith('20')] confimred_result = pd.DataFrame() confirmed_result = confirmed_df.filter(confirmed_cols, axis=1) confirmed_result = confirmed_result.astype(int) confirmed_result.loc['Total Confimred'] = confirmed_result.sum() confirmed_result = confirmed_result.tail(1) confirmed_result.columns = range(confirmed_result.shape[1]) confirmed_result = list(confirmed_result.iloc[0]) print(confirmed_result) death_cols = deaths_df.columns[deaths_df.columns.str.endswith('20')] deaths_result = pd.DataFrame() deaths_result = deaths_df.filter(death_cols, axis=1) deaths_result = deaths_result.drop(deaths_result.index[0]) deaths_result = deaths_result.astype(int) deaths_result.loc['Total Deaths'] = deaths_result.sum() deaths_result = deaths_result.tail(1) deaths_result.columns = range(deaths_result.shape[1]) deaths_result = list(deaths_result.iloc[0]) print(deaths_result) recover_cols = recovered_total_data.columns[recovered_total_data.columns.str.endswith('20')] recover_result =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import time import warnings warnings.filterwarnings('ignore') import pandas as pd, numpy as np import math, json, gc, random, os, sys import torch import logging import torch.nn as nn import torch.optim as optim import torch.utils.data as data from sklearn.model_selection import train_test_split from catalyst.dl import SupervisedRunner from catalyst.contrib.dl.callbacks import WandbLogger from contextlib import contextmanager from catalyst.dl.callbacks import AccuracyCallback, F1ScoreCallback, OptimizerCallback #from pytorch_memlab import profile, MemReporter device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # In[2]: def set_seed(seed: int): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # type: ignore torch.backends.cudnn.deterministic = True # type: ignore torch.backends.cudnn.benchmark = True # type: ignore # In[3]: set_seed(2020) # In[4]: test = pd.read_json('/kaggle/input/stanford-covid-vaccine/test.json', lines=True) samplesub= pd.read_csv('/kaggle/input/stanford-covid-vaccine/sample_submission.csv') # In[5]: bpp_max=[] bpp_mean =[] id = test.id.values for i in id: probability = np.load('../input/stanford-covid-vaccine'+'/bpps/%s.npy'%i) bpp_max.append(probability.max(-1).tolist()) bpp_mean.append(probability.mean(-1).tolist()) test['bpp_max']=bpp_max test['bpp_mean']=bpp_mean # In[6]: test_public=test[test['seq_length']==107] test_private=test[test['seq_length']==130] # In[7]: test_public_x=test_public.loc[:,['id','sequence','structure','predicted_loop_type','bpp_max','bpp_mean']] test_private_x=test_private.loc[:,['id','sequence','structure','predicted_loop_type','bpp_max','bpp_mean']] #CUDAに乗らないので、privateデータのサイズを小さくする。 test_private_x1,test_private_x2=train_test_split(test_private_x,test_size=0.5) # In[8]: token2int = {x:i for i, x in enumerate('().<KEY>')} def preprocess_inputs_public(df, cols=['sequence', 'structure', 'predicted_loop_type']): base_fea= np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) bpps_max_fea = np.array(test_public_x['bpp_max'].to_list())[:,:,np.newaxis] bpps_mean_fea = np.array(test_public_x['bpp_mean'].to_list())[:,:,np.newaxis] return np.concatenate([base_fea,bpps_max_fea,bpps_mean_fea], 2) def preprocess_inputs_private1(df, cols=['sequence', 'structure', 'predicted_loop_type']): base_fea= np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) bpps_max_fea = np.array(test_private_x1['bpp_max'].to_list())[:,:,np.newaxis] bpps_mean_fea = np.array(test_private_x1['bpp_mean'].to_list())[:,:,np.newaxis] return np.concatenate([base_fea,bpps_max_fea,bpps_mean_fea], 2) def preprocess_inputs_private2(df, cols=['sequence', 'structure', 'predicted_loop_type']): base_fea= np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) bpps_max_fea = np.array(test_private_x2['bpp_max'].to_list())[:,:,np.newaxis] bpps_mean_fea = np.array(test_private_x2['bpp_mean'].to_list())[:,:,np.newaxis] return np.concatenate([base_fea,bpps_max_fea,bpps_mean_fea], 2) # In[9]: test_public_inputs = torch.from_numpy(preprocess_inputs_public(test_public_x)).to(device).float() test_private_inputs1 = torch.from_numpy(preprocess_inputs_private1(test_private_x1)).to(device).float() test_private_inputs2 = torch.from_numpy(preprocess_inputs_private2(test_private_x2)).to(device).float() # In[10]: #print('train_入力:{}\nvalue_入力:{}\ntrain_ラベル:{}\nvalue_ラベル:{}'.format(train_inputs.shape,val_inputs.shape,train_outputs.shape,val_outputs.shape)) # In[11]: class LSTM_model(nn.Module): def __init__( self, seq_len=107, pred_len=68, dropout=0.5, embed_dim=100, hidden_dim=1024, hidden_layers=2 ): super(LSTM_model, self).__init__() self.pred_len = pred_len self.embeding = nn.Embedding(num_embeddings=len(token2int), embedding_dim=embed_dim) self.lstm = nn.LSTM( input_size=embed_dim * 3+2, hidden_size=hidden_dim, num_layers=hidden_layers, dropout=dropout, bidirectional=True, batch_first=True, ) self.linear = nn.Linear(hidden_dim * 2, 5) def forward(self, seqs): embed = self.embeding(seqs[:,:,0:3].long()) reshaped = torch.reshape(embed, (-1, embed.shape[1], embed.shape[2] * embed.shape[3])) reshaped= torch.cat((reshaped,seqs[:,:,3:5]),2) output, hidden = self.lstm(reshaped) truncated = output[:, : self.pred_len, :] out = self.linear(truncated) return out # In[12]: class GRU_model(nn.Module): def __init__( self, seq_len=107, pred_len=68, dropout=0.5, embed_dim=100, hidden_dim=1024, hidden_layers=2 ): super(GRU_model, self).__init__() self.pred_len = pred_len self.embeding = nn.Embedding(num_embeddings=len(token2int), embedding_dim=embed_dim) self.gru = nn.GRU( input_size=embed_dim * 3+2, hidden_size=hidden_dim, num_layers=hidden_layers, dropout=dropout, bidirectional=True, batch_first=True, ) self.linear = nn.Linear(hidden_dim * 2, 5) def forward(self, seqs): embed = self.embeding(seqs[:,:,0:3].long()) reshaped = torch.reshape(embed, (-1, embed.shape[1], embed.shape[2] * embed.shape[3])) reshaped= torch.cat((reshaped,seqs[:,:,3:5]),2) output, hidden = self.gru(reshaped) truncated = output[:, : self.pred_len, :] out = self.linear(truncated) return out # In[13]: LSTM_weights_path='../input/weight11/LSTM_ver20.pth' def get_LSTM_model(seq_len=107, pred_len=68): model = LSTM_model(seq_len=seq_len, pred_len=pred_len) checkpoint = torch.load(LSTM_weights_path) model.load_state_dict(checkpoint["model_state_dict"]) device = torch.device("cuda") model.to(device) model.eval() return model # In[14]: GRU_weights_path='../input/weight11/GRU_ver8' def get_GRU_model(seq_len=107, pred_len=68): model = GRU_model(seq_len=seq_len, pred_len=pred_len) checkpoint = torch.load(GRU_weights_path) model.load_state_dict(checkpoint["model_state_dict"]) device = torch.device("cuda") model.to(device) model.eval() return model # In[15]: with torch.no_grad(): model =get_LSTM_model() prediction=model(test_public_inputs) result_public_LSTM=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_LSTM_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs1) result_private1_LSTM=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_LSTM_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs2) result_private2_LSTM=prediction.to('cpu').detach().numpy().copy() del prediction # In[16]: with torch.no_grad(): model =get_GRU_model() prediction=model(test_public_inputs) result_public_GRU=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_GRU_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs1) result_private1_GRU=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_GRU_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs2) result_private2_GRU=prediction.to('cpu').detach().numpy().copy() del prediction # In[17]: df0 = pd.DataFrame(index=range(39), columns=['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',]) df0=df0.fillna(0) # In[18]: test_public_id=test_public['id'] idlist_public=test_public_id.values.tolist() # In[19]: test_private_id1=test_private_x1['id'] idlist_private1=test_private_id1.values.tolist() idlist_private1[-5:] # In[20]: test_private_id2=test_private_x2['id'] idlist_private2=test_private_id2.values.tolist() idlist_private2[:5] # In[21]: #無理やりソートすることに testindex=samplesub.loc[:,['id_seqpos']] testindex=testindex.reset_index() # In[22]: df1 = pd.DataFrame(result_public_LSTM[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_public[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_public_LSTM)-1): id = idlist_public[j+1] df2 = pd.DataFrame(result_public_LSTM[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) public_dataframe=df1 df1 = pd.DataFrame(result_private1_LSTM[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private1[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private1_LSTM)-1): id = idlist_private1[j+1] df2 = pd.DataFrame(result_private1_LSTM[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe1=df1 df1 = pd.DataFrame(result_private2_LSTM[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private2[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private2_LSTM)-1): id = idlist_private2[j+1] df2 = pd.DataFrame(result_private2_LSTM[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe2=df1 # In[23]: merged_dataframe=pd.concat([public_dataframe,private_dataframe1,private_dataframe2]) pre_submission_LSTM=pd.merge(testindex,merged_dataframe) # In[24]: pre_submission_LSTM # In[25]: df1 = pd.DataFrame(result_public_GRU[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_public[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_public_GRU)-1): id = idlist_public[j+1] df2 = pd.DataFrame(result_public_GRU[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) public_dataframe=df1 df1 = pd.DataFrame(result_private1_GRU[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private1[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private1_GRU)-1): id = idlist_private1[j+1] df2 = pd.DataFrame(result_private1_GRU[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe1=df1 df1 = pd.DataFrame(result_private2_GRU[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private2[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private2_GRU)-1): id = idlist_private2[j+1] df2 = pd.DataFrame(result_private2_GRU[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe2=df1 # In[26]: merged_dataframe=
pd.concat([public_dataframe,private_dataframe1,private_dataframe2])
pandas.concat
# -*- coding: utf-8 -*- import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D import random import matplotlib from collections import OrderedDict import seaborn as sns import matplotlib.gridspec as gridspec from matplotlib.font_manager import FontProperties plt.rcdefaults() plt.rc('xtick.major', size = 0, width=0) plt.rc('ytick.major', size = 0, width=0) data_dir = r'/home/greydon/Documents/GitHub/afids-clinical/data/input_fid_native' data_mni_dir = r'/home/greydon/Documents/GitHub/afids-clinical/data/input_fid_MNI_linear_combined' #data_dir = r'C:\Users\greydon\Documents\github\afids_parkinsons\input\input_fid' show_only = True sub_ignore = [146] fid_dic = {1: 'AC', 2: 'PC', 3: 'ICS', 4: 'PMJ', 5: 'SIPF', 6: 'RSLMS', 7: 'LSLMS', 8: 'RILMS', 9: 'LILMS', 10: 'CUL', 11: 'IMS', 12: 'RMB', 13: 'LMB', 14: 'PG', 15: 'RLVAC', 16: 'LLVAC', 17: 'RLVPC', 18: 'LLVPC', 19: 'GENU', 20: 'SPLE', 21: 'RALTH', 22: 'LALTH', 23: 'RSAMTH', 24: 'LSAMTH', 25: 'RIAMTH', 26: 'LIAMTH', 27: 'RIGO', 28: 'LIGO', 29: 'RVOH', 30: 'LVOH', 31: 'ROSF', 32: 'LOSF' } fid_desc = {1: 'AC', 2: 'PC', 3: 'Infracollicular Sulcus', 4: 'PMJ', 5: 'Superior IPF', 6: 'Right Superior LMS', 7: 'Left Superior LMS', 8: 'Right Inferior LMS', 9: 'Left Inferior LMS', 10: 'Culmen', 11: 'Intermammillary Sulcus', 12: 'Right Mammilary Body', 13: 'Left Mammilary Body', 14: 'Pineal Gland', 15: 'Right LV at AC', 16: 'Left LV at AC', 17: 'Right LV at PC', 18: 'Left LV at PC', 19: 'Genu of CC', 20: 'Splenium of CC', 21: 'Right AL Temporal Horn', 22: 'Left AL Tempral Horn', 23: 'R. Sup. AM Temporal Horn', 24: 'L. Sup. AM Temporal Horn', 25: 'R Inf. AM Temp Horn', 26: 'L Inf. AM Temp Horn', 27: 'Right IG Origin', 28: 'Left IG Origin', 29: 'R Ventral Occipital Horn', 30: 'L Ventral Occipital Horn', 31: 'R Olfactory Fundus', 32: 'L Olfactory Fundus' } def plot_fiducials(data_plot, expert_mean, data_dir,analysis=2, showOnly=False): random.seed(1) color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(raters))] min_val = -2.5 max_val = 2.5 major_ticks = np.linspace(min_val,max_val, 7) fig = plt.figure(figsize=(18,8)) handles = {} data_cnt = 1 for ifid in range(4): for jfid in range(8): ax = plt.subplot2grid((4,8),(ifid,jfid), projection='3d') tempData = data_plot[data_plot['fid'].isin([data_cnt])] rater_labels = tempData['rater'].values if analysis == 1: plot_title = 'Distance from the average of expert raters' file_name = 'distance_from_expert_mean' tempData = tempData.loc[:,'x':'z'].values - expert_mean.loc[expert_mean['fid'].isin([data_cnt]),'x':'z'].values elif analysis == 2: plot_title = 'Distance from the average of all raters' file_name = 'distance_from_all_raters_mean' tempData = tempData.loc[:,'x':'z'].values - tempData.loc[:,'x':'z'].mean().values elif analysis == 3: plot_title = 'Distance from average MCP' file_name = 'distance_from_avg_mcp' tempData = tempData.loc[:,'x':'z'].values - tempData.loc[:,'x':'z'].mean().values nov_cnt = 1 exp_cnt = 1 rater_labels_final_tmp = {} for i in range(len(rater_labels)): #plot each point + it's index as text above if rater_labels[i] in ('AT','RC','MJ'): rate_label = f"Novice 0{nov_cnt}" nov_cnt += 1 else: rate_label = f"Expert 0{exp_cnt}" exp_cnt += 1 rater_labels_final_tmp[rate_label] = rater_labels[i] rater_labels_final = {} for irate in sorted(list(rater_labels_final_tmp)): rater_labels_final[irate]=rater_labels_final_tmp[irate] print(rater_labels_final) for irate in list(rater_labels_final): rater_idx = [i for i,x in enumerate(rater_labels) if x == rater_labels_final[irate]][0] l1 = ax.scatter(tempData[rater_idx,0], tempData[rater_idx,1], tempData[rater_idx,2], marker='o', c=color[rater_idx],edgecolors='black', s=50, label=irate) handles[irate] = l1 ax.plot((min_val,min_val), (min_val,min_val), (min_val-0.1,max_val+0.1), 'black', linewidth=1.0) ax.set_xlim([min_val,max_val]) ax.set_ylim([min_val,max_val]) ax.set_zlim([min_val,max_val]) ax.set_xlabel('x',labelpad=-15, fontweight='bold', fontsize=14) ax.set_ylabel('y',labelpad=-15, fontweight='bold', fontsize=14) ax.set_zlabel('z',labelpad=-15, fontweight='bold', fontsize=14) ax.get_xaxis().set_ticklabels([]) ax.get_yaxis().set_ticklabels([]) ax.zaxis.set_ticklabels([]) ax.zaxis.set_major_locator(matplotlib.ticker.NullLocator()) ax.set_xticks(major_ticks) ax.set_yticks(major_ticks) ax.set_zticks(major_ticks) ax.grid(which='major', alpha=0.5) ax.xaxis.pane.set_edgecolor('black') ax.yaxis.pane.set_edgecolor('black') ax.zaxis.pane.set_edgecolor('black') ax.xaxis.pane.set_alpha(1) ax.yaxis.pane.set_alpha(1) ax.zaxis.pane.set_alpha(1) ax.xaxis.pane.fill = False ax.yaxis.pane.fill = False ax.zaxis.pane.fill = False ax.view_init(elev=25, azim=44) ax.set_title(str(data_cnt) + ': ' + fid_dic[data_cnt], pad=2, fontweight='bold', fontsize=16) data_cnt += 1 fig.subplots_adjust(hspace=0.15, wspace=0.05, top=0.90, bottom=0.06, left=0.02,right=0.9) plt.legend(handles=handles.values(), fontsize=12, bbox_to_anchor=[2.1, 2.7], handletextpad=0.05) fig.suptitle(plot_title, y = 0.98, fontsize=22, fontweight='bold') if not showOnly: output_dir = os.path.join(data_dir,'plots') if not os.path.exists(output_dir): os.makedirs(output_dir) plt.savefig(os.path.join(output_dir, f"{file_name}.svg"),transparent=True) plt.savefig(os.path.join(output_dir, f"{file_name}.png"),transparent=True,dpi=450) plt.savefig(os.path.join(output_dir, f"{file_name}_white.png"),transparent=False,dpi=450) plt.close() #%% data_dir_out = r'/home/greydon/Documents' sub_ignore = [146] raters = [x for x in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, x)) and 'mean' not in x] rater_final = pd.DataFrame({}) iter_cnt = 0 for irater in raters: patient_files = os.listdir(os.path.join(data_dir, irater)) for isub in patient_files: sub_num = int(''.join([s for s in isub if s.isdigit()])) fileN = os.path.join(data_dir, irater,isub, os.listdir(os.path.join(data_dir, irater,isub))[0]) data_table = pd.read_csv(fileN, skiprows=3, header=None) data_table['rater'] = np.repeat(irater,data_table.shape[0]) data_table['subject'] = np.repeat(sub_num,data_table.shape[0]) rater_final = pd.concat([rater_final, data_table], axis = 0, ignore_index=True) rater_final.rename(columns={0:'node_id', 1:'x', 2:'y', 3:'z', 4:'ow', 5:'ox', 6:'oy', 7:'oz', 8:'vis', 9:'sel', 10:'lock', 11:'fid', 12:'description', 13:'associatedNodeID'}, inplace=True) Sub = pd.DataFrame({}) size = [] for r in raters: sub_temp = np.unique(rater_final[rater_final['rater']==r]['subject']) if sub_ignore: sub_temp = [x for x in sub_temp if x not in sub_ignore] data_table = pd.DataFrame({'rater': np.repeat(r,len(sub_temp)), 'subject':sub_temp}) Sub = pd.concat([Sub, data_table], axis = 0, ignore_index=True) size.append((r,len(sub_temp))) full_subs = set(Sub[Sub['rater']==size[0][0]]['subject'].values) size = sorted(size, key=lambda tup: tup[1], reverse=True) Sub_Comp = list(set(Sub[Sub['rater']==size[0][0]]['subject'].values) & set(Sub[Sub['rater']==size[1][0]]['subject'].values)) for irate in range(2,len(raters)): Sub_Comp = list(set(Sub_Comp) & set(Sub[Sub['rater']==size[irate][0]]['subject'].values)) Sub_Comp = sorted(Sub_Comp) #set(full_subs).difference(Sub[Sub['rater']==size[4][0]]['subject'].values) Data_comp = rater_final[rater_final['subject'].isin(Sub_Comp)] Data_comp = Data_comp.sort_values(['rater','subject', 'fid'], ascending=[True, True,True]) Tot_Data = np.zeros((32,5,len(Sub_Comp),len(raters))) for irate in range(len(raters)): for isub in range(len(Sub_Comp)): Tot_Data[:,:,isub,irate] = Data_comp[(Data_comp['rater']==raters[irate]) & (Data_comp['subject']==Sub_Comp[isub])].sort_values(['fid']).loc[:,['fid','x','y','z','subject']] Tot_mean = np.mean(Tot_Data,3) N = Tot_mean[:,:,:,np.newaxis] Tot_diff = Tot_Data - np.tile(N,[1,1,1,len(raters)]) Tot_eudiff = np.sqrt(Tot_diff[:,1,:,:]**2 + Tot_diff[:,2,:,:]**2 + Tot_diff[:,3,:,:]**2) Rater_AFLE = np.mean(Tot_eudiff,2).T Rater_AFLE_mean = np.mean(Tot_eudiff,1) Rater_AFLE_SD = np.std(Tot_eudiff,1) Total_AFLE_mean = np.mean(Rater_AFLE_mean,1) Total_AFLE_SD = np.std(Tot_eudiff,1) mcp_point = pd.DataFrame({}) for r in raters: for s in Sub_Comp: ac = Data_comp.loc[(Data_comp['rater']==r) & (Data_comp['subject']==s) & (Data_comp['fid']==1),'x':'z'].values[0] pc = Data_comp.loc[(Data_comp['rater']==r) & (Data_comp['subject']==s)& (Data_comp['fid']==2),'x':'z'].values[0] mcp = (ac + pc)/2 data_table = pd.DataFrame({'rater': r, 'subject': s, 'x': mcp[0], 'y': mcp[1],'z': mcp[2]}, index=[0] ) mcp_point = pd.concat([mcp_point, data_table], axis = 0, ignore_index=True) mcp_point_mean = mcp_point.groupby(['subject'])['x','y','z'].mean() data_from_mcp = pd.DataFrame({}) for r in raters: for s in Sub_Comp: for f in range(1,33): point = Data_comp.loc[(Data_comp['rater']==r) & (Data_comp['subject']==s) & (Data_comp['fid']==f),'x':'z'].values[0] di = point - mcp_point_mean.loc[s,:].values euclidean = np.sqrt(di[0]**2 + di[1]**2 + di[2]**2) data_table = pd.DataFrame({'rater': r, 'subject': s, 'fid': f, 'distance': euclidean,'x': di[0], 'y': di[1],'z': di[2]}, index=[0] ) data_from_mcp = pd.concat([data_from_mcp, data_table], axis = 0, ignore_index=True) data_from_mcp_avg = data_from_mcp.groupby(['rater','fid'])['x','y','z'].mean().reset_index() #%% sub_ignore = [146] rater_mni_final = pd.DataFrame({}) iter_cnt = 0 for irater in raters: patient_files = os.listdir(os.path.join(data_mni_dir, irater)) for isub in patient_files: sub_num = int(''.join([s for s in isub if s.isdigit()])) fileN = os.path.join(data_mni_dir, irater,isub, [x for x in os.listdir(os.path.join(data_mni_dir, irater,isub)) if x.endswith('_nlin.fcsv')][0]) data_table = pd.read_csv(fileN, skiprows=3, header=None) data_table['rater'] = np.repeat(irater,data_table.shape[0]) data_table['subject'] = np.repeat(sub_num,data_table.shape[0]) rater_mni_final = pd.concat([rater_mni_final, data_table], axis = 0, ignore_index=True) rater_mni_lin_final = pd.DataFrame({}) iter_cnt = 0 for irater in raters: patient_files = os.listdir(os.path.join(data_mni_dir, irater)) for isub in patient_files: sub_num = int(''.join([s for s in isub if s.isdigit()])) fileN = os.path.join(data_mni_dir, irater,isub, [x for x in os.listdir(os.path.join(data_mni_dir, irater,isub)) if x.endswith('_lin.fcsv')][0]) data_table = pd.read_csv(fileN, skiprows=3, header=None) data_table['rater'] = np.repeat(irater,data_table.shape[0]) data_table['subject'] = np.repeat(sub_num,data_table.shape[0]) rater_mni_lin_final = pd.concat([rater_mni_lin_final, data_table], axis = 0, ignore_index=True) rater_mni_final.rename(columns={0:'node_id', 1:'x', 2:'y', 3:'z', 4:'ow', 5:'ox', 6:'oy', 7:'oz', 8:'vis', 9:'sel', 10:'lock', 11:'fid', 12:'description', 13:'associatedNodeID'}, inplace=True) rater_mni_lin_final.rename(columns={0:'node_id', 1:'x', 2:'y', 3:'z', 4:'ow', 5:'ox', 6:'oy', 7:'oz', 8:'vis', 9:'sel', 10:'lock', 11:'fid', 12:'description', 13:'associatedNodeID'}, inplace=True) Sub = pd.DataFrame({}) size = [] for r in raters: sub_temp = np.unique(rater_mni_final[rater_mni_final['rater']==r]['subject']) if sub_ignore: sub_temp = [x for x in sub_temp if x not in sub_ignore] data_table = pd.DataFrame({'rater': np.repeat(r,len(sub_temp)), 'subject':sub_temp}) Sub = pd.concat([Sub, data_table], axis = 0, ignore_index=True) size.append((r,len(sub_temp))) full_subs = set(Sub[Sub['rater']==size[0][0]]['subject'].values) size = sorted(size, key=lambda tup: tup[1], reverse=True) Sub_Comp = list(set(Sub[Sub['rater']==size[0][0]]['subject'].values) & set(Sub[Sub['rater']==size[1][0]]['subject'].values)) for irate in range(2,len(raters)): Sub_Comp = list(set(Sub_Comp) & set(Sub[Sub['rater']==size[irate][0]]['subject'].values)) Sub_Comp = sorted(Sub_Comp) Data_mni_comp = rater_mni_final[rater_mni_final['subject'].isin(Sub_Comp)] Data_mni_comp = Data_mni_comp.sort_values(['rater','subject', 'fid'], ascending=[True, True,True]) Data_mni_lin_comp = rater_mni_lin_final[rater_mni_lin_final['subject'].isin(Sub_Comp)] Data_mni_lin_comp = Data_mni_lin_comp.sort_values(['rater','subject', 'fid'], ascending=[True, True,True]) Tot_Data = np.zeros((32,5,len(Sub_Comp),len(raters))) Tot_Data_lin = np.zeros((32,5,len(Sub_Comp),len(raters))) for irate in range(len(raters)): for isub in range(len(Sub_Comp)): Tot_Data[:,:,isub,irate] = Data_mni_comp[(Data_mni_comp['rater']==raters[irate]) & (Data_mni_comp['subject']==Sub_Comp[isub])].sort_values(['fid']).loc[:,['fid','x','y','z','subject']] Tot_Data_lin[:,:,isub,irate] = Data_mni_lin_comp[(Data_mni_lin_comp['rater']==raters[irate]) & (Data_mni_lin_comp['subject']==Sub_Comp[isub])].sort_values(['fid']).loc[:,['fid','x','y','z','subject']] MNI152NLin2009cAsym_standard = pd.read_csv('/home/greydon/Documents/GitHub/afids-clinical/data/fid_standards/MNI152NLin2009bAsym_rater_standard/MNI152NLin2009bAsym_desc-raterstandard_afids.fcsv', skiprows=2)[['label','x','y','z']].to_numpy() N = MNI152NLin2009cAsym_standard[:,:,np.newaxis, np.newaxis] MNI_Diff = Tot_Data[:,:4,:,:] - np.tile(N,[1,1,len(Sub_Comp),len(raters)]) MNI_AFLE = np.sqrt(MNI_Diff[:,1,:,:]**2 + MNI_Diff[:,2,:,:]**2 + MNI_Diff[:,3,:,:]**2) MNI_Diff_lin = Tot_Data_lin[:,:4,:,:] - np.tile(N,[1,1,len(Sub_Comp),len(raters)]) MNI_AFLE_lin = np.sqrt(MNI_Diff_lin[:,1,:,:]**2 + MNI_Diff_lin[:,2,:,:]**2 + MNI_Diff_lin[:,3,:,:]**2) MNI_AFLE_rater = np.mean(MNI_AFLE,2).T MNI_AFLE_scan = np.mean(MNI_AFLE,1) MNI_AFLE_total = np.mean(MNI_AFLE_rater,0) MNI_AFLE_std = np.std(MNI_AFLE_rater,0) np.mean(MNI_AFLE_total) np.std(MNI_AFLE_total) MNI_AFLE_lin_rater = np.mean(MNI_AFLE_lin,2).T MNI_AFLE_lin_scan = np.mean(MNI_AFLE_lin,1) MNI_AFLE_lin_total = np.mean(MNI_AFLE_lin_rater,0) MNI_AFLE_lin_std = np.std(MNI_AFLE_lin_rater,0) np.mean(MNI_AFLE_lin_total) np.std(MNI_AFLE_lin_total) df=pd.DataFrame(np.c_[ [N + P for N,P in zip([f'{x:.2f}' for x in MNI_AFLE_lin_total ],[f' ({x:.2f})' for x in MNI_AFLE_lin_std])]+[f'{np.mean(MNI_AFLE_lin_total):.2f} ({np.std(MNI_AFLE_lin_total):.2f})'], [N + P for N,P in zip([f'{x:.2f}' for x in MNI_AFLE_total ],[f' ({x:.2f})' for x in MNI_AFLE_std])]+[f'{np.mean(MNI_AFLE_total):.2f} ({np.std(MNI_AFLE_total):.2f})'] ]) print(df.to_csv(index=None, header=None)) #%% goldStandard = "MA" rater = 1 gold_stand_data = Data_comp[Data_comp['rater'].isin([goldStandard])].reset_index() single_rater_data = Data_comp[Data_comp['rater'].isin([raters[rater]])].reset_index() Coor_Diff = gold_stand_data.loc[:,'x':'z'].values - (single_rater_data.loc[:,'x':'z'].values) rater_error = np.sqrt(Coor_Diff[:,0]**2 + Coor_Diff[:,1]**2 + Coor_Diff[:,2]**2) single_rater_data['rater_error'] = rater_error error_idx = single_rater_data['rater_error'] > 5.0 check_data = pd.DataFrame({'subject': single_rater_data.loc[error_idx,'subject'].values, 'fid': single_rater_data.loc[error_idx,'fid'].values, 'x': single_rater_data.loc[error_idx,'x'].values, 'y': single_rater_data.loc[error_idx,'y'].values, 'z': single_rater_data.loc[error_idx,'z'].values, 'x_diff': Coor_Diff[error_idx,0], 'y_diff': Coor_Diff[error_idx,1], 'z_diff': Coor_Diff[error_idx,2]}) check_data = check_data.sort_values(['subject', 'fid'], ascending=[True, True]) #%% GS_raters = ["GG", "MA"] NGS_raters = [x for x in raters if x not in GS_raters] GS_mean = Data_comp[Data_comp['rater'].isin(GS_raters)].groupby(['subject','fid'])['x','y','z'].mean().reset_index() NGS_mean = Data_comp[Data_comp['rater'].isin(NGS_raters)].groupby(['subject','fid'])['x','y','z'].mean().reset_index() GS_Diff = GS_mean.loc[:,'x':'z'].values - NGS_mean.loc[:,'x':'z'].values GS_error_rate = np.sqrt(GS_Diff[:,0]**2 + GS_Diff[:,1]**2 + GS_Diff[:,2]**2) GS_Diff_mean = pd.DataFrame(np.c_[GS_Diff, GS_mean['subject'].values, GS_mean['fid'].values]).groupby([4])[0,1,2].mean() GS_total_mean = GS_mean.groupby(['fid'])['x','y','z'].mean().reset_index() rater_mean = Data_comp.groupby(['rater','fid'])['x','y','z'].mean().reset_index() #%% plot_fiducials(rater_mean, GS_total_mean, data_dir_out, 1, False) plot_fiducials(rater_mean, GS_total_mean, data_dir_out, 2, False) plot_fiducials(data_from_mcp_avg, None, data_dir_out, 3, False) #%% comparisons = [("GG", 'MA'),("GG", 'AT'),("GG", 'RC'),("GG", 'MJ'),("MA", 'AT'), ("MA", 'RC'),("MA", 'MJ'),("AT", 'RC'),("AT", 'MJ'),("RC", 'MJ')] max_val = 8.0 fig, axes = plt.subplots(4, 2) plot_cnt = 0 for irow in range(4): for icol in range(2): rater_1 = comparisons[plot_cnt][0] rater_2 = comparisons[plot_cnt][1] rater_1_data = Data_comp[Data_comp['rater'].isin([rater_1])].reset_index() rater_2_data = Data_comp[Data_comp['rater'].isin([rater_2])].reset_index() rater_coor_Diff = rater_1_data.loc[:,'x':'z'].values.astype(float) - rater_2_data.loc[:,'x':'z'].values.astype(float) rater_coor_error = pd.DataFrame(np.sqrt(rater_coor_Diff[:,0]**2 + rater_coor_Diff[:,1]**2 + rater_coor_Diff[:,2]**2)) rater_coor_error.rename(columns={0:'error'}, inplace=True) fid_names = [fid_dic[x] for x in np.unique(rater_1_data['fid'].values.astype(int))] rater_coor_error['name']= fid_names*int(len(rater_coor_Diff)/len(fid_names)) rater_coor_error['fid']= list(np.unique(rater_1_data['fid'].values.astype(int)))*int(len(rater_coor_Diff)/len(fid_names)) rater_coor_error_plot =
pd.DataFrame({})
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: jupyter_scripts//ipynb,ifis_tools//py # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 1.0.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # database_tools: # # Set of tools to connect to the data base, put and get data from them. import psycopg2 from psycopg2 import sql import pandas as pd from datetime import datetime from climata.usgs import InstantValueIO, DailyValueIO import numpy as np from ifis_tools import auxiliar as aux data_usr = None data_pass = None data_host = "s-iihr51.iihr.uiowa.edu" data_base = "research_environment" data_port = "5435" # + def DataBaseConnect(user = "iihr_student", password = "<PASSWORD>", host = data_host, port = "5435", database = "research_environment"): '''Connect to the database that hsa stored the usgs information''' con = psycopg2.connect(user = user, password = password, host = host, port = port, database = database) return con def SQL_getSubLinks(linkid): '''returns the list of links that belong to a certain link.''' con = DataBaseConnect(user='nicolas',password='<PASSWORD>',database='rt_precipitation') query = 'SELECT nodeX.link_id AS link_id FROM students.env_master_km AS nodeX, students.env_master_km AS parentX WHERE (nodeX.left BETWEEN parentX.left AND parentX.right) AND parentX.link_id = '+str(linkid) Data = pd.read_sql(query, con) Data = Data.values.T[0] Data.sort() con.close() return Data def SQL_read_USGS_Streamflow(usgs_id, date1, date2, schema = 'pers_nico', table = 'data_usgs', time_name = 'unix_time', data_name = 'val', usgs_name = 'usgs_id'): '''Read streamflow data from IIHR database "research_environment" and returns it as a pandas.DataFrame element. Parameters: - usgs_id: code of the usgs. - date1: initial date of the query. - date2: final date of the query. Optional: - schema: where to obtain data in the databse. - table: master table with the usgs data. - time_name: the name of the column that has the time. - data_name: the name of the column that has the data. - usgs_name: the name of the column that has the id of the usgs stations. Returns: - pandas.DataFrame containing the streamflow data.''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '<PASSWORD>') #Work with dates and usgs id date1 = str(aux.__datetime2unix__(date1)) date2 = str(aux.__datetime2unix__(date2)) if type(usgs_id) is not str: usgs_id = str(usgs_id) #make the querty query = sql.SQL("SELECT "+time_name+", "+data_name+" FROM "+schema+"."+table+" WHERE "+time_name+" BETWEEN "+date1+" and "+date2+" AND "+usgs_name+"='"+usgs_id+"'") #Make the consult. Data = pd.read_sql(query, con, index_col='unix_time',parse_dates={'unix_time':{'unit':'s'}}) con.close() return Data def WEB_Get_USGS(usgs_code, date1, date2, variable = '00060'): '''Get USGS data from the web using the climdata interface Parameters (debe ser probado): - usgs_code: the code of the station to obtain. - date1: initial date. - date2: final date. - variable: - 00060 for streamflow. - 00065 for height''' #Get the data form the web data = InstantValueIO( start_date = pd.Timestamp(date1), end_date = pd.Timestamp(date2), station = usgs_code, parameter = "00060") try: #Convert the data into a pandas series for series in data: flow = [r[0] for r in series.data] dates = [r[1] for r in series.data] #Obtain the series of pandas Q = pd.Series(flow, pd.to_datetime(dates, utc=True)) * 0.02832 Index = [d.replace(tzinfo = None) for d in Q.index] Q.index = Index except: #Convert the data into a pandas series for series in data: flow = [r[1] for r in series.data] dates = [r[0] for r in series.data] #Obtain the series of pandas Q = pd.Series(flow, pd.to_datetime(dates, utc=True)) * 0.02832 Index = [d.replace(tzinfo = None) for d in Q.index] Q.index = Index return Q #SQL Query to obtain the data from per_felipe.pois_adv_geom def SQL_USGS_at_IFIS(): '''Return the list of the usgs stations in the IFIS system and the linkID where they belong.''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '<PASSWORD>') #Query for the stations query = sql.SQL("SELECT foreign_id,link_id FROM pers_felipe.pois_adv_geom where type in (2,3) and foreign_id like '0%' AND link_id < 620000") #make the consult cur = con.cursor() cur.execute(query) L = cur.fetchall() cur.close() con.close() #Obtains a dictionary in which stations are the key DicUSGSinIFIS = {} for l in L: DicUSGSinIFIS.update({l[0]:l[1]}) return DicUSGSinIFIS def SQL_USGS_at_MATC(): '''Return the list of stations that are in the databse pers_nico (matc).''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '<PASSWORD>') #Make the query query = sql.SQL("SELECT DISTINCT(usgs_id) FROM pers_nico.data_usgs_2008") cur = con.cursor() cur.execute(query) L = cur.fetchall() cur.close() con.close() return [l[0] for l in L] def SQL_Get_linkArea(linkID, upArea = True): '''Obtains the up area for a link ID''' #The query and the obtentions con = DataBaseConnect('nicolas','10A28Gir0',database='restore_res_env_92') cur = con.cursor() if upArea: q = sql.SQL("SELECT up_area FROM public.env_master_km where link_id="+str(linkID)) else: q = sql.SQL("SELECT area FROM public.env_master_km where link_id="+str(linkID)) cur.execute(q) A = cur.fetchall() cur.close() con.close() return A[0][0] def SQL_Get_Coordinates(linkID): con = DataBaseConnect(user='nicolas',password='<PASSWORD>') cur = con.cursor() LatLng = {} query = sql.SQL('SELECT lat, lng FROM pers_felipe.pois_adv_geom where link_id = '+str(linkID)) cur.execute(query) Coord = cur.fetchall() con.close() return float(Coord[0][0]),float(Coord[0][1]) def SQL_Read_MeanRainfall(link_id, date1, date2, schema = 'pers_nico', table = 's4mrain', time_name = 'unix_time', data_name = 'rain', linkid_name = 'link_id'): '''DEPRECATED Read streamflow data from IIHR database "research_environment" and returns it as a pandas.DataFrame element. Parameters: - usgs_id: code of the usgs. - date1: initial date of the query. - date2: final date of the query. Optional: - schema: where to obtain data in the databse. - table: master table with the usgs data. - time_name: the name of the column that has the time. - data_name: the name of the column that has the data. - usgs_name: the name of the column that has the id of the usgs stations. Returns: - pandas.DataFrame containing the streamflow data.''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '<PASSWORD>') #Work with dates and usgs id date1 = str(aux.__datetime2unix__(date1)) date2 = str(aux.__datetime2unix__(date2)) if type(link_id) is not str: link_id = str(link_id) #make the querty query = sql.SQL("SELECT "+time_name+", "+data_name+" FROM "+schema+"."+table+" WHERE "+time_name+" BETWEEN "+date1+" and "+date2+" AND "+linkid_name+"='"+link_id+"'") #Make the consult. Data = pd.read_sql(query, con, index_col='unix_time',parse_dates={'unix_time':{'unit':'s'}}) con.close() #Organize rainfall Data = Data.sort_index() Dates =
pd.date_range(Data.index[0], Data.index[-1], freq='1h')
pandas.date_range
"""Integration tests for the HyperTransformer.""" import re from copy import deepcopy from unittest.mock import patch import numpy as np import pandas as pd import pytest from rdt import HyperTransformer from rdt.errors import Error, NotFittedError from rdt.transformers import ( DEFAULT_TRANSFORMERS, BaseTransformer, BinaryEncoder, FloatFormatter, FrequencyEncoder, OneHotEncoder, UnixTimestampEncoder, get_default_transformer, get_default_transformers) class DummyTransformerNumerical(BaseTransformer): INPUT_SDTYPE = 'categorical' OUTPUT_SDTYPES = { 'value': 'float' } def _fit(self, data): pass def _transform(self, data): return data.astype(float) def _reverse_transform(self, data): return data.astype(str) class DummyTransformerNotMLReady(BaseTransformer): INPUT_SDTYPE = 'datetime' OUTPUT_SDTYPES = { 'value': 'categorical', } def _fit(self, data): pass def _transform(self, data): # Stringify input data return data.astype(str) def _reverse_transform(self, data): return data.astype('datetime64') TEST_DATA_INDEX = [4, 6, 3, 8, 'a', 1.0, 2.0, 3.0] def get_input_data(): datetimes = pd.to_datetime([ '2010-02-01', '2010-02-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-02-01', '2010-01-01', '2010-01-01', ]) data = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1, 4, 2, 3], 'float': [0.1, 0.2, 0.1, 0.2, 0.1, 0.4, 0.2, 0.3], 'categorical': ['a', 'a', 'b', 'b', 'a', 'b', 'a', 'a'], 'bool': [False, False, False, True, False, False, True, False], 'datetime': datetimes, 'names': ['Jon', 'Arya', 'Arya', 'Jon', 'Jon', 'Sansa', 'Jon', 'Jon'], }, index=TEST_DATA_INDEX) return data def get_transformed_data(): datetimes = [ 1.264982e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18, 1.262304e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18 ] return pd.DataFrame({ 'integer.value': [1, 2, 1, 3, 1, 4, 2, 3], 'float.value': [0.1, 0.2, 0.1, 0.2, 0.1, 0.4, 0.2, 0.3], 'categorical.value': [0.3125, 0.3125, .8125, 0.8125, 0.3125, 0.8125, 0.3125, 0.3125], 'bool.value': [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0], 'datetime.value': datetimes, 'names.value': [0.3125, 0.75, 0.75, 0.3125, 0.3125, 0.9375, 0.3125, 0.3125] }, index=TEST_DATA_INDEX) def get_reversed_data(): data = get_input_data() data['bool'] = data['bool'].astype('object') return data DETERMINISTIC_DEFAULT_TRANSFORMERS = deepcopy(DEFAULT_TRANSFORMERS) DETERMINISTIC_DEFAULT_TRANSFORMERS['categorical'] = FrequencyEncoder @patch('rdt.transformers.DEFAULT_TRANSFORMERS', DETERMINISTIC_DEFAULT_TRANSFORMERS) def test_hypertransformer_default_inputs(): """Test the HyperTransformer with default parameters. This tests that if default parameters are provided to the HyperTransformer, the ``default_transformers`` method will be used to determine which transformers to use for each field. Setup: - Patch the ``DEFAULT_TRANSFORMERS`` to use the ``FrequencyEncoder`` for categorical sdtypes, so that the output is predictable. Input: - A dataframe with every sdtype. - A fixed random seed to guarantee the samle values are null. Expected behavior: - The transformed data should contain all the ML ready data. - The reverse transformed data should be the same as the input. """ # Setup datetimes = pd.to_datetime([ np.nan, '2010-02-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-02-01', '2010-01-01', '2010-01-01', ]) data = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1, 4, 2, 3], 'float': [0.1, 0.2, 0.1, np.nan, 0.1, 0.4, np.nan, 0.3], 'categorical': ['a', 'a', np.nan, 'b', 'a', 'b', 'a', 'a'], 'bool': [False, np.nan, False, True, False, np.nan, True, False], 'datetime': datetimes, 'names': ['Jon', 'Arya', 'Arya', 'Jon', 'Jon', 'Sansa', 'Jon', 'Jon'], }, index=TEST_DATA_INDEX) # Run ht = HyperTransformer() ht.detect_initial_config(data) ht.fit(data) transformed = ht.transform(data) reverse_transformed = ht.reverse_transform(transformed) # Assert expected_datetimes = [ 1.263069e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18, 1.262304e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18 ] expected_transformed = pd.DataFrame({ 'integer.value': [1, 2, 1, 3, 1, 4, 2, 3], 'float.value': [0.1, 0.2, 0.1, 0.2, 0.1, 0.4, 0.2, 0.3], 'categorical.value': [0.3125, 0.3125, 0.9375, 0.75, 0.3125, 0.75, 0.3125, 0.3125], 'bool.value': [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0], 'datetime.value': expected_datetimes, 'names.value': [0.3125, 0.75, 0.75, 0.3125, 0.3125, 0.9375, 0.3125, 0.3125] }, index=TEST_DATA_INDEX) pd.testing.assert_frame_equal(transformed, expected_transformed) reversed_datetimes = pd.to_datetime([ '2010-01-09 20:34:17.142857216', '2010-02-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-02-01', '2010-01-01', '2010-01-01', ]) expected_reversed = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1, 4, 2, 3], 'float': [0.1, 0.2, 0.1, 0.20000000000000004, 0.1, 0.4, 0.20000000000000004, 0.3], 'categorical': ['a', 'a', np.nan, 'b', 'a', 'b', 'a', 'a'], 'bool': [False, False, False, True, False, False, True, False], 'datetime': reversed_datetimes, 'names': ['Jon', 'Arya', 'Arya', 'Jon', 'Jon', 'Sansa', 'Jon', 'Jon'], }, index=TEST_DATA_INDEX) for row in range(reverse_transformed.shape[0]): for column in range(reverse_transformed.shape[1]): expected = expected_reversed.iloc[row, column] actual = reverse_transformed.iloc[row, column] assert pd.isna(actual) or expected == actual assert isinstance(ht._transformers_tree['integer']['transformer'], FloatFormatter) assert ht._transformers_tree['integer']['outputs'] == ['integer.value'] assert isinstance(ht._transformers_tree['float']['transformer'], FloatFormatter) assert ht._transformers_tree['float']['outputs'] == ['float.value'] assert isinstance(ht._transformers_tree['categorical']['transformer'], FrequencyEncoder) assert ht._transformers_tree['categorical']['outputs'] == ['categorical.value'] assert isinstance(ht._transformers_tree['bool']['transformer'], BinaryEncoder) assert ht._transformers_tree['bool']['outputs'] == ['bool.value'] assert isinstance(ht._transformers_tree['datetime']['transformer'], UnixTimestampEncoder) assert ht._transformers_tree['datetime']['outputs'] == ['datetime.value'] assert isinstance(ht._transformers_tree['names']['transformer'], FrequencyEncoder) assert ht._transformers_tree['names']['outputs'] == ['names.value'] get_default_transformers.cache_clear() get_default_transformer.cache_clear() def test_hypertransformer_field_transformers(): """Test the HyperTransformer with ``field_transformers`` provided. This tests that the transformers specified in the ``field_transformers`` argument are used. Any output of a transformer that is not ML ready (not in the ``_transform_output_sdtypes`` list) should be recursively transformed till it is. Setup: - The datetime column is set to use a dummy transformer that stringifies the input. That output is then set to use the categorical transformer. Input: - A dict mapping each field to a transformer. - A dataframe with every sdtype. Expected behavior: - The transformed data should contain all the ML ready data. - The reverse transformed data should be the same as the input. """ # Setup config = { 'sdtypes': { 'integer': 'numerical', 'float': 'numerical', 'categorical': 'categorical', 'bool': 'boolean', 'datetime': 'datetime', 'names': 'categorical' }, 'transformers': { 'integer': FloatFormatter(missing_value_replacement='mean'), 'float': FloatFormatter(missing_value_replacement='mean'), 'categorical': FrequencyEncoder, 'bool': BinaryEncoder(missing_value_replacement='mode'), 'datetime': DummyTransformerNotMLReady, 'names': FrequencyEncoder } } data = get_input_data() # Run ht = HyperTransformer() ht.detect_initial_config(data) ht.set_config(config) ht.fit(data) transformed = ht.transform(data) reverse_transformed = ht.reverse_transform(transformed) # Assert expected_transformed = get_transformed_data() rename = {'datetime.value': 'datetime.value.value'} expected_transformed = expected_transformed.rename(columns=rename) transformed_datetimes = [0.8125, 0.8125, 0.3125, 0.3125, 0.3125, 0.8125, 0.3125, 0.3125] expected_transformed['datetime.value.value'] = transformed_datetimes pd.testing.assert_frame_equal(transformed, expected_transformed) expected_reversed = get_reversed_data() pd.testing.assert_frame_equal(expected_reversed, reverse_transformed) def test_single_category(): """Test that categorical variables with a single value are supported.""" # Setup ht = HyperTransformer() data = pd.DataFrame({ 'a': ['a', 'a', 'a'] }) # Run ht.detect_initial_config(data) ht.update_transformers(column_name_to_transformer={ 'a': OneHotEncoder() }) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) # Assert pd.testing.assert_frame_equal(data, reverse) def test_dtype_category(): """Test that categorical variables of dtype category are supported.""" # Setup data = pd.DataFrame({'a': ['a', 'b', 'c']}, dtype='category') # Run ht = HyperTransformer() ht.detect_initial_config(data) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) # Assert pd.testing.assert_frame_equal(reverse, data) def test_multiple_fits(): """HyperTransformer should be able to be used multiple times. Fitting, transforming and reverse transforming should produce the same results when called on the same data multiple times. """ # Setup data = get_input_data() ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) transformed1 = ht.transform(data) reversed1 = ht.reverse_transform(transformed1) ht.detect_initial_config(data) ht.fit(data) transformed2 = ht.transform(data) reversed2 = ht.reverse_transform(transformed2) # Assert pd.testing.assert_frame_equal(transformed1, transformed2) pd.testing.assert_frame_equal(reversed1, reversed2) def test_multiple_fits_different_data(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = pd.DataFrame({'col1': [1, 2, 3], 'col2': [1.0, 0.0, 0.0]}) new_data = pd.DataFrame({'col2': [1, 2, 3], 'col1': [1.0, 0.0, 0.0]}) ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) ht.detect_initial_config(new_data) ht.fit(new_data) transformed1 = ht.transform(new_data) transformed2 = ht.transform(new_data) reverse1 = ht.reverse_transform(transformed1) reverse2 = ht.reverse_transform(transformed2) # Assert expected_transformed = pd.DataFrame({'col2.value': [1, 2, 3], 'col1.value': [1.0, 0.0, 0.0]}) pd.testing.assert_frame_equal(transformed1, expected_transformed) pd.testing.assert_frame_equal(transformed2, expected_transformed) pd.testing.assert_frame_equal(reverse1, new_data) pd.testing.assert_frame_equal(reverse2, new_data) def test_multiple_fits_different_columns(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = pd.DataFrame({'col1': [1, 2, 3], 'col2': [1.0, 0.0, 0.0]}) new_data = pd.DataFrame({'col3': [1, 2, 3], 'col4': [1.0, 0.0, 0.0]}) ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) ht.detect_initial_config(new_data) ht.fit(new_data) transformed1 = ht.transform(new_data) transformed2 = ht.transform(new_data) reverse1 = ht.reverse_transform(transformed1) reverse2 = ht.reverse_transform(transformed2) # Assert expected_transformed = pd.DataFrame({'col3.value': [1, 2, 3], 'col4.value': [1.0, 0.0, 0.0]}) pd.testing.assert_frame_equal(transformed1, expected_transformed) pd.testing.assert_frame_equal(transformed2, expected_transformed) pd.testing.assert_frame_equal(reverse1, new_data)
pd.testing.assert_frame_equal(reverse2, new_data)
pandas.testing.assert_frame_equal
import pandas as pd import logging import numpy as np import collections import configparser import shutil import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.dates as mdates import requests import io from astropy.io import fits from astropy.time import Time from pathlib import Path from matplotlib.backends.backend_pdf import PdfPages import sphere import sphere.utils as utils import sphere.toolbox as toolbox _log = logging.getLogger(__name__) # WFS wavelength wave_wfs = 500e-9 class Reduction(object): ''' SPHERE/SPARTA dataset reduction class The analysis and plotting code of this class was originally developed by <NAME> (ESO/IPAG) and based on SAXO tools from Jean-<NAME> (ONERA). See: https://github.com/jmilou/sparta for the code from <NAME>. ''' ################################################## # Class variables ################################################## # specify for each recipe which other recipes need to have been executed before recipe_requirements = collections.OrderedDict([ ('sort_files', []), ('sph_sparta_dtts', ['sort_files']), ('sph_sparta_wfs_parameters', ['sort_files']), ('sph_sparta_atmospheric_parameters', ['sort_files']), ('sph_query_databases', ['sort_files']), ('sph_sparta_plot', ['sort_files', 'sph_sparta_dtts', 'sph_sparta_wfs_parameters', 'sph_sparta_atmospheric_parameters']), ('sph_sparta_clean', []) ]) ################################################## # Constructor ################################################## def __new__(cls, path, log_level='info', sphere_handler=None): ''' Custom instantiation for the class The customized instantiation enables to check that the provided path is a valid reduction path. If not, None will be returned for the reduction being created. Otherwise, an instance is created and returned at the end. Parameters ---------- path : str Path to the directory containing the dataset level : {'debug', 'info', 'warning', 'error', 'critical'} The log level of the handler sphere_handler : log handler Higher-level SPHERE.Dataset log handler ''' # # make sure we are dealing with a proper reduction directory # # init path path = Path(path).expanduser().resolve() # zeroth-order reduction validation raw = path / 'raw' if not raw.exists(): _log.error('No raw/ subdirectory. {0} is not a valid reduction path'.format(path)) return None else: reduction = super(Reduction, cls).__new__(cls) # # basic init # # init path reduction._path = utils.ReductionPath(path) # instrument and mode reduction._instrument = 'SPARTA' # # logging # logger = logging.getLogger(str(path)) logger.setLevel(log_level.upper()) if logger.hasHandlers(): for hdlr in logger.handlers: logger.removeHandler(hdlr) handler = logging.FileHandler(reduction._path.products / 'reduction.log', mode='w', encoding='utf-8') formatter = logging.Formatter('%(asctime)s\t%(levelname)8s\t%(message)s') formatter.default_msec_format = '%s.%03d' handler.setFormatter(formatter) logger.addHandler(handler) if sphere_handler: logger.addHandler(sphere_handler) reduction._logger = logger reduction._logger.info('Creating SPARTA reduction at path {}'.format(path)) # # configuration # reduction._logger.debug('> read default configuration') configfile = f'{Path(sphere.__file__).parent}/instruments/{reduction._instrument}.ini' config = configparser.ConfigParser() reduction._logger.debug('Read configuration') config.read(configfile) # reduction parameters reduction._config = dict(config.items('reduction')) for key, value in reduction._config.items(): try: val = eval(value) except NameError: val = value reduction._config[key] = val # # reduction and recipe status # reduction._status = sphere.INIT reduction._recipes_status = collections.OrderedDict() for recipe in reduction.recipe_requirements.keys(): reduction._update_recipe_status(recipe, sphere.NOTSET) # reload any existing data frames reduction._read_info() reduction._logger.warning('#########################################################') reduction._logger.warning('# WARNING! #') reduction._logger.warning('# Support for SPARTA files is preliminary. The current #') reduction._logger.warning('# format of product files may change in future versions #') reduction._logger.warning('# of the pipeline until an appropriate format is found. #') reduction._logger.warning('# Please do not blindly rely on the current format. #') reduction._logger.warning('#########################################################') # # return instance # return reduction ################################################## # Representation ################################################## def __repr__(self): return '<Reduction, instrument={}, path={}, log={}>'.format(self._instrument, self._path, self.loglevel) def __format__(self): return self.__repr__() ################################################## # Properties ################################################## @property def loglevel(self): return logging.getLevelName(self._logger.level) @loglevel.setter def loglevel(self, level): self._logger.setLevel(level.upper()) @property def instrument(self): return self._instrument @property def path(self): return self._path @property def files_info(self): return self._files_info @property def dtts_info(self): return self._dtts_info @property def visloop_info(self): return self._visloop_info @property def irloop_info(self): return self._irloop_info @property def atmospheric_info(self): return self._atmos_info @property def recipe_status(self): return self._recipes_status @property def config(self): return self._config @property def status(self): return self._status ################################################## # Private methods ################################################## def _read_info(self): ''' Read the files, calibs and frames information from disk files_info : dataframe The data frame with all the information on files This function is not supposed to be called directly by the user. ''' self._logger.info('Read existing reduction information') # path path = self.path # files info fname = path.preproc / 'files.csv' if fname.exists(): self._logger.debug('> read files.csv') files_info = pd.read_csv(fname, index_col=0) # convert times files_info['DATE-OBS'] = pd.to_datetime(files_info['DATE-OBS'], utc=False) files_info['DATE'] = pd.to_datetime(files_info['DATE'], utc=False) # update recipe execution self._update_recipe_status('sort_files', sphere.SUCCESS) else: files_info = None # DTTS info fname = path.products / 'dtts_frames.csv' if fname.exists(): self._logger.debug('> read dtts_frames.csv') dtts_info = pd.read_csv(fname, index_col=0) # convert times dtts_info['DATE-OBS'] = pd.to_datetime(dtts_info['DATE-OBS'], utc=False) dtts_info['DATE'] = pd.to_datetime(dtts_info['DATE'], utc=False) dtts_info['TIME'] = pd.to_datetime(dtts_info['TIME'], utc=False) # update recipe execution self._update_recipe_status('sph_sparta_dtts', sphere.SUCCESS) else: dtts_info = None # VisLoop info fname = path.products / 'visloop_info.csv' visloop = False if fname.exists(): self._logger.debug('> read visloop_info.csv') visloop_info = pd.read_csv(fname, index_col=0) # convert times visloop_info['DATE-OBS'] = pd.to_datetime(visloop_info['DATE-OBS'], utc=False) visloop_info['DATE'] = pd.to_datetime(visloop_info['DATE'], utc=False) visloop_info['TIME'] = pd.to_datetime(visloop_info['TIME'], utc=False) visloop = True else: visloop_info = None # IRLoop info fname = path.products / 'irloop_info.csv' irloop = False if fname.exists(): self._logger.debug('> read irloop_info.csv') irloop_info = pd.read_csv(fname, index_col=0) # convert times irloop_info['DATE-OBS'] = pd.to_datetime(irloop_info['DATE-OBS'], utc=False) irloop_info['DATE'] = pd.to_datetime(irloop_info['DATE'], utc=False) irloop_info['TIME'] = pd.to_datetime(irloop_info['TIME'], utc=False) irloop = True else: irloop_info = None # update recipe execution if visloop and irloop: self._update_recipe_status('sph_sparta_wfs_parameters', sphere.SUCCESS) else: self._update_recipe_status('sph_sparta_wfs_parameters', sphere.NOTSET) # Atmospheric info fname = path.products / 'atmospheric_info.csv' if fname.exists(): self._logger.debug('> read atmospheric_info.csv') atmos_info = pd.read_csv(fname, index_col=0) # convert times atmos_info['DATE-OBS'] = pd.to_datetime(atmos_info['DATE-OBS'], utc=False) atmos_info['DATE'] = pd.to_datetime(atmos_info['DATE'], utc=False) atmos_info['TIME'] =
pd.to_datetime(atmos_info['TIME'], utc=False)
pandas.to_datetime
from datetime import date from google.oauth2 import service_account from googleapiclient.discovery import build import numpy as np from repo_issues_dc import IssueReport as IR import pandas as pd import pathlib credentials = service_account.Credentials.from_service_account_file( str(pathlib.Path("auth/issue-report-generation-ff9748b57ae2.json")) ) #Ignore unless working within an IDE # credentials = service_account.Credentials.from_service_account_file( # str(pathlib.Path("../auth/issue-report-generation-ff9748b57ae2.json")) # ) scopes = credentials.with_scopes( [ "https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive", ] ) def create_sheet(title, repo_name, repo_owner, data): sheets_service = build("sheets", "v4", credentials=credentials) sheets = sheets_service.spreadsheets() # create_body = {"properties": {"title": f"{title} {date.today()}"}, # "sheets": list(map(lambda d: {"properties": {"title": d.get("title")}}, data))} create_body = {"properties": {"title": f"{title}: {repo_owner}/{repo_name}"}, "sheets": list(map(lambda d: {"properties": {"title": d.get("title")}}, data))} res = sheets.create(body=create_body).execute() spreadsheet_id = res.get("spreadsheetId") def df_to_sheet(df): df_columns = [np.array(df.columns)] df_values = df.values.tolist() df_to_sheet = np.concatenate((df_columns, df_values)).tolist() return df_to_sheet update_body = { "valueInputOption": "RAW", "data": list(map(lambda d: {"range": d.get("title"), "values": df_to_sheet(d.get("df"))}, data)) } sheets.values().batchUpdate(spreadsheetId=spreadsheet_id, body=update_body).execute() return res def share_spreadsheet(spreadsheet_id, options, notify=False): drive_service = build("drive", "v3", credentials=credentials) res = ( drive_service.permissions() .create( fileId=spreadsheet_id, body=options, sendNotificationEmail=notify, ) .execute() ) return res def generate_spreadsheet_link(issue_list: list) -> str: df =
pd.DataFrame(issue_list)
pandas.DataFrame
import itertools import pandas as pd from sklearn import preprocessing from learntools.core import * class InteractionFeatures(CodingProblem): _vars = ['clicks', 'interactions'] _hint = ("The easiest way to loop through the pairs is with itertools.combinations. " "Once you have that working, for each pair of columns convert them to strings " "then you can join them with the `+` operator. It's usually good to join with " "a symbol like _ inbetween to ensure unique values. Now you should have a column " "of new categorical values, you can label encoder those and add them to the " "DataFrame") _solution = CS(""" cat_features = ['ip', 'app', 'device', 'os', 'channel'] interactions = pd.DataFrame(index=clicks.index) for col1, col2 in itertools.combinations(cat_features, 2): new_col_name = '_'.join([col1, col2]) # Convert to strings and combine new_values = clicks[col1].map(str) + "_" + clicks[col2].map(str) encoder = preprocessing.LabelEncoder() interactions[new_col_name] = encoder.fit_transform(new_values) """) def check(self, clicks, interactions_): # interactions_ is the student's version #%%RM_IF(PROD)%% cat_features = ['ip', 'app', 'device', 'os', 'channel'] interactions = pd.DataFrame(index=clicks.index) for col1, col2 in itertools.combinations(cat_features, 2): new_col_name = '_'.join([col1, col2]) # Convert to strings and combine new_values = clicks[col1].map(str) + "_" + clicks[col2].map(str) encoder = preprocessing.LabelEncoder() interactions[new_col_name] = encoder.fit_transform(new_values) assert interactions.equals(interactions_) class PastEventsFeature(CodingProblem): _vars = ['count_past_events', 'clicks'] _hint = ("You can get a rolling time window using .rolling(), but first you " "need to convert the index to a time series. The current row is " "included in the window, but we want to count all the events before " "the current row, so be sure to adjust the count.") _solution = CS(""" def count_past_events(series, time_window='6H'): series = pd.Series(series.index, index=series) # Subtract 1 so the current event isn't counted past_events = series.rolling(time_window).count() - 1 return past_events """) def check(self, student_func, clicks): def count_past_events(series, time_window='6H'): series =
pd.Series(series.index, index=series)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Thu May 22 10:14:40 2019 @author : Natacha """ from matplotlib.lines import Line2D import datetime import pandas as pd import datetime import numpy as np from matplotlib import pyplot as plt import glob from astropy.io import ascii import matplotlib.dates as mdates from astropy.table import Table, Column """ Lifeguard reports data """ class time: def __init__(self, day, month, year): self.day = day self.month = month self.year = year def jan_to_01(self): list_name=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] list_numbers=['1','2','3','4','5','6','7','8','9','10','11','12'] for i in range(len(list_name)): if self.month==list_name[i]: self.month=list_numbers[i] def DayEqual(object1, object2): if object1.day==object2.day and object1.month==object2.month and object1.year==object2.year: return True else: return False def GetVariables(filename): """ Return date, water temp, #of bluebottles of a file """ date, datee, water_temp, bluebottles, description = [], [], [], [], [] for i in range(0,len(filename)): day='' month='' year='' date.append(str(filename.Name[i][:-12])) for j in range(0,2): if(date[i][j]!='/'): day+=date[i][j] for j in range(2,len(date[i])-4): if(date[i][j]!='/'): month+=date[i][j] for j in range(len(date[i])-4,len(date[i])): if(date[i][j]!='/'): year+=date[i][j] if filename.Water_temp[i]!=14: #dont take values for water_temp=14C datee.append(time(str(day),str(month),str(year))) water_temp.append(filename.Water_temp[i]) description.append(filename.Description[i]) if filename.Bluebottles[i]=='none' or filename.Bluebottles[i]=='likely': bluebottles.append(0.) elif filename.Bluebottles[i]=='some': bluebottles.append(1.) elif filename.Bluebottles[i]=='many': bluebottles.append(2.) middle_date = [] final_date, final_water_temp, final_bluebottles, final_description = [], [], [], [] for l in range(len(datee)): middle_date.append(datetime.date(int(datee[l].year), int(datee[l].month), int(datee[l].day))) final_date.append(middle_date[0]) final_water_temp.append(water_temp[0]) final_bluebottles.append(bluebottles[0]) final_description.append(description[0]) for l in range(1,len(middle_date)): if middle_date[l]!=middle_date[l-1]: #to only have one value per day final_date.append(middle_date[l]) final_water_temp.append(water_temp[l]) final_bluebottles.append(bluebottles[l]) final_description.append(description[l]) return final_date, final_water_temp, final_bluebottles, final_description def TableDiff(date1,date2,file1,file2): """ Returns a table showing every element file1 and file2 when they are different at the same date Last row is the number of days with the same nb of bluebottles out of all the days """ equal=0 diff=0 date=[] first_beach=[] second_beach=[] print('First beach :') first = input() print('2nd beach :') second = input() for i in range(len(date1)): for j in range(len(date2)): if (date1[i]==date2[j]): if int(file1[i])==int(file2[j]): equal+=1 else: diff+=1 date.append(date1[i]) first_beach.append(file1[i]) second_beach.append(file2[j]) t=Table([date,first_beach,second_beach], names=('date',first,second)) total=equal+diff t.add_row((0, equal, total)) # ascii.write(t, '../outputs_observation_data/diff'+first+second+'.csv', format='csv', fast_writer=False, overwrite=True) def PlotTemp(): """ Save fig of number of bluebottles depending on time and water temperature """ location=['Clovelly','Coogee','Maroubra'] years = mdates.YearLocator() # every year months = mdates.MonthLocator(range(0, 12), interval=2) # every 2month years_fmt = mdates.DateFormatter('%Y') month_fmt = mdates.DateFormatter('%m') for i in range(len(bluebottles)): fig=plt.figure(figsize=(12,9)) for j in range(len(bluebottles[i])): if bluebottles[i][j]==1: somemany=plt.scatter(date[i][j], water_temp[i][j], color='dodgerblue',s=16,marker='o') # elif bluebottles[i][j]==0.5: # likely=plt.scatter(date[i][j], water_temp[i][j], color='lightskyblue',s=12,alpha=0, marker='o') else: none=plt.scatter(date[i][j], water_temp[i][j], color='lightgrey', marker='o',s=16,alpha=0.3) ax=plt.axes() ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.xaxis.set_minor_locator(months) ax.xaxis.set_minor_formatter(month_fmt) ax.tick_params(labelsize=12) fig.autofmt_xdate() plt.ylabel('Water temperature (celsius)', fontsize=16) plt.axvline(x=datetime.date(2017,6,1)) plt.axvline(x=datetime.date(2017,9,1)) plt.axvline(x=datetime.date(2018,6,1)) plt.axvline(x=datetime.date(2018,9,1)) plt.title('Bluebottles observations : '+str(location[i]), fontsize=16) plt.legend((somemany, none),#likely, ('observed','none'),# 'likely', scatterpoints=1, loc='upper left', ncol=3, fontsize=16) plt.show() fig.savefig("../../writing/plot_temp"+str(location[i])+".png",dpi=300) def TableMonthBeach(): """ save csv files for each month and for each beach, with the nb of some, many, likely, none and the percentage of none """ observed_month=[0,0,0] likely_month=[0,0,0] none_month=[0,0,0] percentage_none_month=[0,0,0] location=['Clovelly','Coogee','Maroubra'] yearr=[2016,2017,2018,2019] month=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] monthh=[1,2,3,4,5,6,7,8,9,10,11,12] f, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharey=True, sharex=True) ax=[ax1, ax2, ax3, ax4] xbar=np.arange(0,12) width=0.2 plt.xticks(xbar, ('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec')) for y in range(len(yearr)): for i in range(len(date)): observed_month[i]=[0 for i in range(0,12)] likely_month[i]=[0 for i in range(0,12)] none_month[i]=[0 for i in range(0,12)] percentage_none_month[i]=[0 for i in range(0,12)] for i in range(len(date)): for j in range(len(date[i])): for m in range(len(monthh)): if date[i][j].year==yearr[y]: if date[i][j].month==monthh[m]: if bluebottles[i][j]==1.: observed_month[i][m]+=1 elif bluebottles[i][j]==2: observed_month[i][m]+=2 elif bluebottles[i][j]==0.5: likely_month[i][m]+=1 elif bluebottles[i][j]==0.: none_month[i][m]+=1 percentage_none_month[i][m]=np.divide(100.*none_month[i][m],observed_month[i][m]+likely_month[i][m]+none_month[i][m]) month_beach=Table([month,observed_month[i][:12],likely_month[i][:12],none_month[i][:12], percentage_none_month[i][:12]],names=('Month','Observed','Likely','Noone','% of None')) ascii.write(month_beach, '../outputs_observation_data/new_monthly_bluebottles_'+str(yearr[y])+'_'+location[i]+'.csv', format='csv', fast_writer=False, overwrite=True) ax[y].set_ylabel('# observations') ax[y].bar(xbar-width/2, observed_month[0], width=0.2, color='dodgerblue', align='center',label='observed') ax[y].bar(xbar+width/2, none_month[0], width=0.2, color='hotpink', align='center',label='none') plt.legend() ax[y].set_title("Clovellu "+str(yearr[y])) plt.show() def GetDateSomeLikelyNone(beach_nb,bluebottle_nb): date_number = [] for j in range(len(date[beach_nb])): if bluebottles[beach_nb][j]==bluebottle_nb: date_number.append(date[beach_nb][j]) return date_number def CalcHist(file): observedd=[] likelyy=[] nonee=[] for i in range(len(file)): nonee.append(file.Noone[i]) observedd.append(file.Observed[i]) likelyy.append(file.Likely[i]) return observedd,likelyy, nonee def PlotHist(): f_monthly=[] filesmonthly = glob.glob('../outputs_observation_data/monthly*.csv') obs=[0 for i in range(12)] lik=[0 for i in range(12)] non=[0 for i in range(12)] month=np.arange(12) for i in range(len(filesmonthly)): f_monthly.append(pd.read_csv(filesmonthly[i])) obs[i], lik[i], non[i]=CalcHist(f_monthly[i]) for i in range(12): obbs=np.mean(obs[:]) liik=np.mean(lik[:]) noon=np.mean(non[:]) ax = plt.subplot(111) bins=np.arange(1,14) ax.set_xticks(bins[:-1]) ax.set_xticklabels(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']) ax.bar(month-0.2,obbs,width=0.2,color='lightskyblue',align='center',label='observed') ax.bar(month,liik,width=0.2,color='lightpink',align='center',label='likely') ax.bar(month+0.2,noon,width=0.2,color='grey',align='center',label='none') plt.legend() files_name = glob.glob('../raw_observation_data/bluebottle_lifeguard_reports/*2.xlsx') #0Clovelly 1Coogee 2Maroubra beach=[] date_bb=[0,1,2] date=[0,1,2] water_temp=[0,1,2] bluebottles=[0,1,2] description=[0,1,2] date_box=[0,1,2] for i in range(0,len(files_name)): beach.append(pd.read_excel(files_name[i])) for i in range(0,len(water_temp)): date_bb[i], water_temp[i], bluebottles[i], description[i] = GetVariables(beach[i]) date[0]=date_bb[0] date[1]=date_bb[1][:1036] #delete data before 05/2016 date[2]=date_bb[2][:1025] #delete data before 05/2016 water_temp[1]=water_temp[1][:1036] water_temp[2]=water_temp[2][:1025] #delete data before 05/2016 bluebottles[1]=bluebottles[1][:1036] bluebottles[2]=bluebottles[2][:1025] description[1]=description[1][:1036] description[2]=description[2][:1025] for i in range(0,len(water_temp)): date_box[i]=[GetDateSomeLikelyNone(i,0.),GetDateSomeLikelyNone(i,0.5),GetDateSomeLikelyNone(i,1.)] #PlotHist() #TableDiff(date[0],date[1],bluebottles[0],bluebottles[1]) #TableDiff(date[0],date[2],bluebottles[0],bluebottles[2]) #TableDiff(date[1],date[2],bluebottles[1],bluebottles[2]) #PlotTemp() #TableMonthBeach() """ BOM data """ def GetBOMVariables(filename): """ Return date, water temp, #of bluebottles of a file """ hour, datee, date, water_temp, wind_direction, wind_speed= [], [], [], [], [], [] for i in range(len(filename)): if filename.Water_Temperature[i]>0: water_temp.append(filename.Water_Temperature[i]) datee.append(filename.Date_UTC_Time[i][:11]) date.append(time(str(filename.Date_UTC_Time[i][:2]),str(filename.Date_UTC_Time[i][3:6]),str(filename.Date_UTC_Time[i][7:11]))) hour.append(int(filename.Date_UTC_Time[i][12:14])) wind_direction.append(filename.Wind_Direction[i]) wind_speed.append(filename.Wind_Speed[i]) for i in range(len(date)): date[i].jan_to_01() BOMdate = [] BOMtime_UTC = np.zeros(len(date)) BOMtime = np.zeros(len(date)) for l in range(len(date)): BOMdate.append(datetime.date(int(date[l].year), int(date[l].month), int(date[l].day))) BOMtime_UTC[l] = BOMdate[l].toordinal() + hour[l]/24 #UTC BOMtime = BOMtime_UTC + 10/24 return BOMtime, BOMdate, water_temp, wind_direction, wind_speed def BoxPlot(nb,date_plot,BOMdaily): """ Box plot pour la plage numero nb de wind direction pour les 3 cas : none likely observed """ location=['Clovelly','Coogee','Maroubra'] wind_direction_box0=[] wind_direction_box1=[] wind_direction_box2=[] for i in range(len(date_box[nb][0])): for j in range(len(date_plot)): if date_box[nb][0][i]==date_plot[j]: if np.isnan(BOMdaily[j-1])==False: wind_direction_box0.append(BOMdaily[j-1]) for i in range(len(date_box[nb][1])): for j in range(len(date_plot)): if date_box[nb][1][i]==date_plot[j]: if np.isnan(BOMdaily[j-1])==False: wind_direction_box1.append(BOMdaily[j-1]) for i in range(len(date_box[nb][2])): for j in range(len(date_plot)): if date_box[nb][2][i]==date_plot[j]: if np.isnan(BOMdaily[j-1])==False: wind_direction_box2.append(BOMdaily[j-1]) x=[wind_direction_box0, wind_direction_box1, wind_direction_box2] fig = plt.figure(figsize=(12,9)) plt.title(location[nb]) plt.ylabel('Wind direction (degrees)') plt.boxplot(x,whis=[5,95]) plt.xticks([1,2,3],['None','Likely','Some']) plt.show() # fig.savefig("../outputs_observation_data/box_plot_past_"+str(location[nb])+".png",dpi=300) def DailyAverage(): t=[] BOMwind_direction_daily=[] for i in range(0,len(BOMdate)-1): if BOMdate[i]!=BOMdate[i+1]: t.append(BOMdate[i]) for j in range(len(t)): for i in range(len(BOMwind_direction)): if t[j]==BOMdate[i]: if t[j]!=BOMdate[i+1]: BOMwind_direction_daily.append(np.mean(BOMwind_direction[i-23:i+1])) return BOMwind_direction_daily, t def WindDirectionTime(nb, date_plot, BOMdaily): fig=plt.figure(figsize=(12,9)) bluebottlesoupas=[] location=['Clovelly','Coogee','Maroubra'] for i in range(len(date_plot)): for j in range(len(date[nb])): if date[nb][j]==date_plot[i]: bluebottlesoupas.append(bluebottles[nb][j]) ax=plt.axes() years = mdates.YearLocator() # every year months = mdates.MonthLocator(range(0, 12), interval=2) # every 2month years_fmt = mdates.DateFormatter('%Y') month_fmt = mdates.DateFormatter('%m') for i in range(len(bluebottlesoupas)): if bluebottlesoupas[i]==1.0: observed=plt.scatter(date_plot[i],BOMdaily[i-1],color='dodgerblue',s=12) elif bluebottlesoupas[i]==0.5: likely=plt.scatter(date_plot[i],BOMdaily[i-1],color='palegreen',s=12) elif bluebottlesoupas[i]==0.: none=plt.scatter(date_plot[i],BOMdaily[i-1],color='hotpink',alpha=0.3, marker='+',s=10) ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.xaxis.set_minor_locator(months) ax.xaxis.set_minor_formatter(month_fmt) fig.autofmt_xdate() plt.ylabel('Wind Direction') plt.title(location[nb]) plt.legend((observed, likely, none), ('observed','likely','none'), scatterpoints=1, loc='lower right', ncol=3, fontsize=8) plt.show() # fig.savefig("../outputs_observation_data/gust_direction_past_"+str(location[nb])+".png",dpi=300) #file_name = '../raw_observation_data/bom_port_kembla/all_IDO.csv' #f=pd.read_csv(file_name) #BOMtime, BOMdate, BOMwater_temp, BOMwind_direction, BOMwind_speed = GetBOMVariables(f) #BOMdaily,date_plot=DailyAverage() #plt.hist(x,bins=30) #plt.ylabel('proba') def GetKurnellData(file): day=np.zeros(len(file)) month=np.zeros(len(file)) year=np.zeros(len(file)) hours=np.zeros(len(file)) minutes=np.zeros(len(file)) date=[] def GetU(daily_speed,daily_direction): wind_u = - daily_speed/3.6 * np.sin(np.pi / 180 * daily_direction) return wind_u def GetV(daily_speed,daily_direction): wind_v = - daily_speed/3.6 * np.cos(np.pi / 180 * daily_direction) return wind_v for i in range(len(file)): minutes[i]=file.MI_local_time[i] hours[i]=file.HH24[i] day[i]=file.DD[i] month[i]=file.MM[i] year[i]=file.YY[i] for i in range(len(file)): date.append(datetime.date(int(year[i]),int(month[i]),int(day[i]))) return date, daily_direction, daily_speed, wind_u, wind_v, max_direction, max_speed """ for i in range(len(t)): tt0 = np.where(day_w == t[i])[0] #prend lindice de quand c egal Wind_speed_ms_Daily[i] = np.mean(nonans(Wind_speed_ms[tt0.astype(int)])) """ def PolarPlot(nb,direction): blueb=[] daily=[] fig=plt.figure(figsize=(12,9)) location=['Clovelly','Coogee','Maroubra'] for i in range(len(direction)): for j in range(len(date[nb])): if date_plot[i]+datetime.timedelta(days=1)==date[nb][j]: #date_kurnell daily.append(direction[i]*np.pi/180) if bluebottles[nb][j]==0.: blueb.append('hotpink') elif bluebottles[nb][j]==0.5: blueb.append('palegreen') elif bluebottles[nb][j]==1.: blueb.append('dodgerblue') ax = plt.subplot(111, projection='polar') theta = daily r=8.*np.random.rand(len(daily))+1 colors = blueb legend_elements = [Line2D([0],[0],marker='o',label='None', color='w',markerfacecolor='hotpink', markersize=10), Line2D([0],[0],marker='o',label='Likely', color='w',markerfacecolor='palegreen', markersize=10), Line2D([0],[0],marker='o',label='Observed', color='w',markerfacecolor='dodgerblue', markersize=10)] legend1=plt.legend(handles=legend_elements, loc='lower right') ax.add_artist(legend1) ax.scatter(theta, r, c=colors, cmap='hsv', alpha=0.75) ax.set_rorigin(-2.5) ax.set_theta_zero_location('W', offset=10) plt.title("Daily averaged wind direction (day before) at "+str(location[nb])) plt.show() # fig.savefig("../outputs_observation_data/with_BOMdata/polar_plot_"+str(location[nb])+".png",dpi=300) #file_name_kurnell = '../raw_observation_data/wind_kurnell_sydney_observatory/Kurnell_Data.csv' #file=pd.read_csv(file_name_kurnell) #df = file.apply(pd.to_numeric, args=('coerce',)) # inserts NaNs where empty cell!!! grrrr #date_kurnell, direction_kurnell, speed_kurnell, u_kurnell, v_kurnell, max_direction, max_speed=GetKurnellData(df) def UVplot(): years = mdates.YearLocator() # every year months = mdates.MonthLocator(range(0, 12), interval=2) # every 2month years_fmt = mdates.DateFormatter('%Y') month_fmt = mdates.DateFormatter('%m') fig=plt.figure() ax=plt.subplot(2,1,1) plt.plot(date_kurnell,v_kurnell) plt.ylabel('V') ax1=plt.subplot(2,1,2) plt.plot(date_kurnell,u_kurnell) plt.ylabel('U') ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.xaxis.set_minor_locator(months) ax.xaxis.set_minor_formatter(month_fmt) ax1.xaxis.set_major_locator(years) ax1.xaxis.set_major_formatter(years_fmt) ax1.xaxis.set_minor_locator(months) ax1.xaxis.set_minor_formatter(month_fmt) plt.show() blueb1_2017, date1_2017 = [], [] blueb1_2018, date1_2018 = [], [] for i in range(len(date[1])): if date[1][i].year==2017: blueb1_2017.append(bluebottles[1][i]) date1_2017.append(date[1][i]) elif date[1][i].year==2018: blueb1_2018.append(bluebottles[1][i]) date1_2018.append(date[1][i]) blueb1_2017=pd.Series(blueb1_2017) blueb1_2018=pd.Series(blueb1_2018) date1_2017=pd.Series(np.asarray(date1_2017).astype('datetime64')) date1_2018=pd.Series(np.asarray(date1_2018).astype('datetime64')) # blueb1_2018.groupby(date1_2018.dt.week).sum().plot(kind='bar') blueb2_2017, date2_2017 = [], [] blueb2_2018, date2_2018 = [], [] for i in range(len(date[2])): if date[2][i].year==2017: blueb2_2017.append(bluebottles[2][i]) date2_2017.append(date[2][i]) elif date[2][i].year==2018: blueb2_2018.append(bluebottles[2][i]) date2_2018.append(date[2][i]) blueb2_2017=pd.Series(blueb2_2017) blueb2_2018=
pd.Series(blueb2_2018)
pandas.Series
import os import sqlite3 import pandas as pd from pygbif import occurrences from pygbif import species from datetime import datetime import geopandas as gpd import shapely import numpy as np import fiona from shapely.geometry import shape, Polygon, LinearRing, Point from dwca.read import DwCAReader import random from shapely import wkt # occurrece records table datatypes output_schema = {"GBIF_download_doi": "str", "accessRights": "str", "basisOfRecord": "str", "bibliographicCitation": "str", "collectionCode": "str", "coordinatePrecision": "float", "coordinateUncertaintyInMeters": "float", "dataGeneralizations": "str", "datasetName": "str", "decimalLatitude": "str", "decimalLongitude": "str", "detection_distance_m": "int", "ebird_id": "str", "effort_distance_m": "int", "establishmentMeans": "str", "eventDate": "str", "eventRemarks": "str", "filter_set_name": "str", "footprintSRS": "str", "footprintWKT": "str", "gbif_id": "str", "general_remarks": "str", "geodeticDatum": "str", "georeferenceProtocol": "str", "georeferenceRemarks": "str", "georeferenceVerificationStatus": "str", "georeferencedBy": "str", "gps_accuracy_m": "int", "habitat": "str", "identificationQualifier": "str", "identifiedBy": "str", "identifiedRemarks": "str", "individualCount": "int", "informationWitheld": "str", "institutionID": "str", "issues": "str", "license": "str", "locality": "str", "locationAccordingTo": "str", "locationRemarks": "str", "modified": "str", "nominal_xy_precision": "float", "occurrenceRemarks": "str", "occurrenceStatus": "str", "organismQuantity": "str", "organismQuantityType": "str", "radius_m": "float", "record_id": "str", "recordedBy": "str", "retrieval_date": "str", "samplingProtocol": "str", "samplingEffort": "str", "scientificName": "str", "source": "str", "taxonConceptID": "str", "taxon_info_name": "str", "verbatimLocality": "str", "weight": "int", "weight_notes": "str"} # Core functions >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def build_output_database(output_database): """ Create a database for storing occurrence and taxon concept data. The column names that are "camel case" are Darwin Core attributes, whereas lower case names containing "_" between words are not. Only those Darwin core attributes that could be useful for filtering and assigning weights are included. Parameters ---------- output_database : Path for sqlite database to create; string. Returns ------- Nothing. """ # Delete the database if it already exists if os.path.exists(output_database): os.remove(output_database) # Create or connect to the database conn = sqlite3.connect(output_database) # Create a table for occurrence records. df = (pd.DataFrame(columns=output_schema.keys()) .astype(output_schema) .to_sql(name='occurrence_records', con=conn, if_exists='replace')) conn.close() return def get_EBD_records(taxon_info, filter_set, working_directory, EBD_file, query_name, R_home): ''' Gets eBird records from a copy of the Ebird Basic Dataset that you acquired. Primarily runs R code that uses the Auk package to query the data set in an efficient manner. Some filters can be applied during the query, but others have to be applied to the query results. Date and bounding box filters require quite a bit of preparation and conditions. Parameters ---------- taxon_info : your taxon concept; dictionary filter_set : name of the filter set to apply; dictionary working_directory : path to use for table of filtered query results; string EBD_file : path to your downloaded copy of the Ebird Basic Dataset; string query_name : the name you chose for your query; string R_home : path to R install to use, get from wranglerconfig; string Returns ------- Data frame of eBird records ''' # Point to R home os.environ["R_HOME"] = R_home import rpy2.robjects as robjects import rpy2.robjects.packages as rpackages from rpy2.robjects.vectors import StrVector # import R's utility package, select a mirror for R packages utils = rpackages.importr('utils') # select the first mirror in the list utils.chooseCRANmirror(ind=1) # R packages to load packnames = ('sf', 'auk', 'lubridate', 'tidyverse') names_to_install = [x for x in packnames if not rpackages.isinstalled(x)] if len(names_to_install) > 0: utils.install_packages(StrVector(names_to_install)) # Some file names queried_ebd = working_directory + "tmp_ebd.txt" processed_ebd = working_directory + query_name + ".csv" output_database = working_directory + query_name + '.sqlite' # Replace None values in fitler_set with "" to fit R code. for x in filter_set.keys(): if filter_set[x] == None: filter_set[x] = "" for x in taxon_info.keys(): if taxon_info[x] == None: taxon_info[x] = "" # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< R CODE code = ''' EBD_file <- "{0}" queried_ebd <- "{1}" processed_ebd <- "{2}" species <- "{3}" country <- "{4}" months_range <- "{5}" years_range <- "{6}" lon_range <- "{7}" lat_range <- "{8}" max_coordinate_uncertainty <- {9} taxon_polygon <- "{10}" query_polygon <- "{11}" # Auk uses filters that are compiled and incorporated into a query. # This poses a challenge for dynamic filtering where filters may or may # not be used. We have to set defaults. library(auk) library(tidyverse) library(sf) library(lubridate) starttime = Sys.time() # Runtime has been 30 min # prep dates ------------------------------------------------------------- # auk doesn't allow filtering on months AND year with read_ebd; they have # to be done separately, one with auk filters and the other after with # dplyr. I chose to do the year filtering with auk to minimize size of # returned tibble. This all requires formatting dates as text correctly. # format start month if (months_range != "") {{ if (as.numeric(strsplit(months_range, ",")[[1]][1]) < 10) {{ start_month <- paste(c("0", strsplit(months_range, ",")[[1]][1]), collapse="") }} else {{ start_month <- strsplit(months_range, ",")[[1]][1]}} start_month <- str_trim(start_month) # format end month if (as.numeric(strsplit(months_range, ",")[[1]][2]) < 10) {{ end_month <- paste(c("0", strsplit(months_range, ",")[[1]][2]), collapse="") }} else {{ end_month <- strsplit(months_range, ",")[[1]][2]}} end_month <- str_trim(end_month) # create vector of ok months for filtering with dplyr ok_months <- seq(as.numeric(start_month), as.numeric(end_month)) }} print(ok_months) # pull out start and end years if (years_range != "") {{ start_yr <- str_trim(strsplit(years_range, ",")[[1]][1]) end_yr <- str_trim(strsplit(years_range, ",")[[1]][2]) }} # define data filter according to different scenarios if (months_range == "" && years_range == "") {{ # get all dates date_filter <- c("*-01-31", "*-12-31") }} else if (months_range != "" && years_range != "") {{ # get certain months and years. we have to find the last possible day. end_day <- lubridate::days_in_month(paste(c(end_yr, "-", end_month, "-01"), collapse="")) date_filter <- c(paste(c(start_yr, "-", start_month, "-01"), collapse=""), paste(c(end_yr, "-", end_month, "-", end_day), collapse="")) }} else if (months_range == "" && years_range != "") {{ # get all months from certain years date_filter <- c(paste(c(start_yr, "-01-01"), collapse=""), paste(c(end_yr, "-12-31"), collapse="")) }} else if (months_range != "" && years_range == "") {{ # get certain months from all years. we have to find the last possible day. yr <- year(today()) end_day <- lubridate::days_in_month(paste(c(yr, "-", end_month, "-01"), collapse="")) date_filter <- c(paste(c("*-", start_month, "-01"), collapse=""), paste(c("*-", end_month, "-", end_day), collapse="")) }} # prep bounding box ------------------------------------------------------- # make a full earth extent for use below earth <- c(-180, -90, 180, 90) bbox <- NULL if (query_polygon == "" && taxon_polygon == "") {{ bbox <- earth }} else if (query_polygon != "" && taxon_polygon == "") {{ bbox <- st_bbox(st_as_sfc(query_polygon)) }} else if (query_polygon == "" && taxon_polygon != "") {{ bbox <- st_bbox(st_as_sfc(taxon_polygon)) }} else if (query_polygon != "" && taxon_polygon != "") {{ # Get/use the intersection of the two polygons filter_polygon <- st_as_sfc(query_polygon) sp_polygon <- st_as_sfc(taxon_polygon) bbox <- st_bbox(st_intersection(filter_polygon, sp_polygon)) }} # prep bounding box vector for filter if lat and lon ranges were provided, # and if other polygons were not if (lat_range == "" || lon_range == "") {{ null_box <- TRUE }} else {{ null_box <- FALSE }} if (bbox == earth && null_box == FALSE) {{ lat_min <- as.numeric(strsplit(lat_range, ",")[[1]][1]) lat_max <- as.numeric(strsplit(lat_range, ",")[[1]][2]) lng_min <- as.numeric(strsplit(lon_range, ",")[[1]][1]) lng_max <- as.numeric(strsplit(lon_range, ",")[[1]][2]) bbox <- c(lng_min, lat_min, lng_max, lat_max) names(bbox) <- c("xmin", "ymin", "xmax", "ymax") attr(bbox, "class") = "bbox" }} # prep country ------------------------------------------------------------ if (country == "") {{country <- "US"}} # prep distance ----------------------------------------------------------- # a gps precision for eBird checklists must be assumed, since not given, # for estimation of coordinateUncertaintyInMeters EBD_gps_precision <- 10 # account for gps precision in distance filter. error could exist on # either end of a straight line path, so double precision when subtracting. max_distance <- as.integer(ceiling((max_coordinate_uncertainty-(2*EBD_gps_precision))/1000)) print(max_distance) # query ------------------------------------------------------------------- records0 <- EBD_file %>% # 1. reference file auk_ebd() %>% # 2. define filters auk_species(species=c(species)) %>% auk_date(date=date_filter) %>% auk_country(country=country) %>% auk_bbox(bbox=bbox) %>% auk_distance(distance=c(0, max_distance)) %>% # 3. run filtering auk_filter(file = queried_ebd, overwrite = TRUE) %>% # 4. read text file into r data frame read_ebd(unique=TRUE) # prep data frame for python ---------------------------------------------- # add column for eBird species code ebird_code <- select(filter(ebird_taxonomy, common_name==species), species_code)[[1]] ebd_data <- records0 %>% mutate(eBird_sp_code = ebird_code, retrieval_date = auk_ebd_version(EBD_file)[1][1]) %>% select(eBird_sp_code, global_unique_identifier, checklist_id, project_code, last_edited_date, common_name, observation_count, locality, latitude, longitude, observation_date, observer_id, effort_distance_km, protocol_type, effort_area_ha, trip_comments, species_comments) %>% mutate(effort_distance_m = as.numeric(effort_distance_km)*1000) %>% filter(month(observation_date) %in% ok_months) %>% write_csv(processed_ebd) endtime = Sys.time() print(endtime - starttime) '''.format(EBD_file, queried_ebd, processed_ebd, taxon_info['EBIRD_ID'], filter_set["country"], filter_set["months_range"], filter_set["years_range"], filter_set["lon_range"], filter_set["lat_range"], filter_set["max_coordinate_uncertainty"], taxon_info["TAXON_EOO"], filter_set["query_polygon"]) # Run code timestamp = datetime.now() robjects.r(code) print("Ran EBD query with Auk: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< READ OUTPUT records0 = pd.read_csv(processed_ebd) ''' This should eventually be usable (or something similar) to avoid having to write the R data frame and then read it in with pandas. It is supposed to be possible to convert robject data frames to pandas data frames but the rpy2 available from conda 2.x doesn't actually work. # ************************************************************************* # Retrieve the filtered ebird data frame --- this should work, but doesn't rdf = robjects.globalenv['ebd_data'] # Using a conversion context in which the pandas conversion is # added to the default conversion rules, the rpy2 object # (an R data frame) is converted to a pandas data frame. from rpy2.robjects import pandas2ri robjects.pandas2ri.activate() # should automatically convert r data frame to pandas from rpy2.robjects import default_converter from rpy2.robjects.conversion import localconverter with localconverter(robjects.default_converter + pandas2ri.converter): records0 = robjects.conversion.ri2py(rdf) ''' # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< APPLY SPATIAL FILTER timestamp = datetime.now() # Make data frame spatial gdf = gpd.GeoDataFrame(records0, geometry=gpd.points_from_xy(records0['longitude'], records0['latitude'])) # It could be that user opted not to use species geometry. if filter_set['use_taxon_geometry'] == False: EOO = None # A geometry could be stated for the species, assess what to do # Replace "" values in fitler_set with None to fit Python code. for x in filter_set.keys(): if filter_set[x] == "": filter_set[x] = None for x in taxon_info.keys(): if taxon_info[x] == "": taxon_info[x] = None EOO = taxon_info["TAXON_EOO"] AOI = filter_set["query_polygon"] if AOI is None and EOO is None: filter_polygon = None elif AOI is not None and EOO is None: filter_polygon = shapely.wkt.loads(AOI) elif AOI is None and EOO is not None: filter_polygon = shapely.wkt.loads(EOO) elif AOI is not None and EOO is not None: # Get/use the intersection of the two polygons in this case AOI_polygon = shapely.wkt.loads(AOI) EOO_polygon = shapely.wkt.loads(EOO) filter_polygon = AOI_polygon.intersection(EOO_polygon) print("Calculated the spatial filter polygon: " + str(datetime.now() - timestamp)) # Find which records have coordinates that fall within the polygon timestamp = datetime.now() if filter_polygon is not None: gdf = gdf[gdf["geometry"].within(filter_polygon)] print("Applied spatial filter: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SUMMARIZE timestamp = datetime.now() df_populated1 = pd.DataFrame(records0.count(axis=0).T.iloc[1:]) df_populated1['included(n)'] = len(records0) df_populated1['populated(n)'] = df_populated1[0] df_populated2 = df_populated1.filter(items=['included(n)', 'populated(n)'], axis='columns') df_populated2.index.name = 'attribute' conn = sqlite3.connect(output_database, isolation_level='DEFERRED') df_populated2.to_sql(name='eBird_fields_returned', con=conn, if_exists='replace') print("Summarized fields returned: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< PREP FOR OUTPUT timestamp = datetime.now() # Rename columns gdf = gdf.rename({'eBird_sp_code': 'ebird_id', 'global_unique_identifier': 'record_id', 'latitude': 'decimalLatitude', 'longitude': 'decimalLongitude', 'observation_count': 'individualCount', 'observation_date': 'eventDate', 'project_code': 'collectionCode', 'protocol_type': 'samplingProtocol', 'species_comments': 'identifiedRemarks', 'trip_comments': 'eventRemarks'}, axis=1) # Drop columns records1 = gdf.filter(list(output_schema.keys()), axis=1) # Populate columns records1["institutionID"] = "clo" records1["collectionCode"] = "EBIRD" records1["datasetName"] = "EBD" records1["source"] = "eBird" records1["basisOfRecord"] = "HUMAN_OBSERVATION" records1["GBIF_download_doi"] = "bypassed" records1["occurrenceStatus"] = "PRESENT" records1 = (records1 .fillna({"effort_distance_m": 0, "gps_accuracy_m": 30}) .replace({"individualCount": {"X": 1}})) # Add EBD records to a template data frame schema_df = pd.DataFrame(columns=list(output_schema.keys())) records2 = schema_df.combine_first(records1) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Results print("Prepared the eBird records for processing: " + str(datetime.now() - timestamp)) return records2 def get_GBIF_records(taxon_info, filter_set, query_name, working_directory, username, password, email): ''' Retrieves species occurrence records from GBIF. Filters occurrence records, buffers the xy points, and saves them in a database. Finally, exports some Shapefiles. Gets species occurrence records from GBIF. Can accomodate use of the GBIF API or Darwin Core Archive download via email. Some filters can be applied during the query, but others have to be applied to the query results. Parameters ---------- taxon_info : your taxon concept; dictionary filter_set : name of the filter set to apply; dictionary query_name : the name you chose for your query; string working_directory : path to use for table of filtered query results; string username : your GBIF username; string password : your GBIF password; string email : the email account associated with your GBIF account; string Returns ------- Data frame of GBIF occurrence records ''' pd.set_option('display.width', 1000) os.chdir('/') timestamp = datetime.now() # Some prep output_database = working_directory + query_name + '.sqlite' conn = sqlite3.connect(output_database, isolation_level='DEFERRED') cursor = conn.cursor() # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< TAXON INFO gbif_id = taxon_info["GBIF_ID"] # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< PREP FILTERS years = filter_set["years_range"] months = filter_set["months_range"] latRange = filter_set["lat_range"] lonRange = filter_set["lon_range"] geoIssue = filter_set["geoissue"] country = filter_set["country"] dwca_download = filter_set["get_dwca"] EOO = taxon_info["TAXON_EOO"] AOI = filter_set["query_polygon"] # It could be that user opted not to use species geometry. if filter_set['use_taxon_geometry'] == False: EOO = None # A geometry could be stated for the species, assess what to do if AOI is None and EOO is None: filter_polygon = None elif AOI is not None and EOO is None: filter_polygon = AOI elif AOI is None and EOO is not None: filter_polygon = EOO elif AOI is not None and EOO is not None: # Get/use the intersection of the two polygons in this case AOI_polygon = shapely.wkt.loads(AOI) EOO_polygon = shapely.wkt.loads(EOO) intersection = AOI_polygon.intersection(EOO_polygon) # Make the polygon's outer ring counter clockwise if intersection.exterior.is_ccw == False: print("Reordered filter polygon coordinates") intersection = shapely.geometry.polygon.orient(intersection, sign=1.0) # Get the well-known text version of the polygon filter_polygon = shapely.wkt.dumps(intersection) else: filter_polygon = shapely.wkt.dumps(intersection) print("Prepared filter set and sorted out geometry constraints: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< GET RECORD COUNT timestamp = datetime.now() # First, find out how many records there are that meet criteria occ_search = occurrences.search(taxonKey=gbif_id, year=years, month=months, decimalLatitude=latRange, decimalLongitude=lonRange, hasGeospatialIssue=geoIssue, hasCoordinate=True, country=country, geometry=filter_polygon) record_count = occ_search["count"] # Return a message if number of records excedes the known dwca-reader limit print(str(record_count) + " records available") if record_count > 4500000: print("!!!!!!! Too many records to proceed. Break up the query", " with year or other parameters.") if record_count <= 0 or record_count > 4500000: # no records available so delete database and return empty data frame conn.close() os.remove(output_database) return pd.DataFrame() # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< API QUERY if dwca_download == False: # Get records in batches, saving into master list. all_jsons = [] batches = range(0, record_count, 300) for i in batches: batch = occurrences.search(gbif_id, limit=300, offset=i, year=years, month=months, decimalLatitude=latRange, decimalLongitude=lonRange, hasGeospatialIssue=geoIssue, hasCoordinate=True, country=country, geometry=filter_polygon) occs = batch['results'] all_jsons = all_jsons + occs # Get a list of keys that were returned api_keys = set([]) for j in all_jsons: api_keys = api_keys | set(j.keys()) # Load json records into a data frame, via a dictionary insertDict = {} for k in list(api_keys): insertDict[k] = [] for j in all_jsons: present_keys = list(set(j.keys()) & api_keys) for prk in present_keys: insertDict[prk] = insertDict[prk] + [str(j[prk])] missing_keys = list(api_keys - set(j.keys())) for mik in missing_keys: insertDict[mik] = insertDict[mik] + ["UNKNOWN"] dfRaw = pd.DataFrame(insertDict).rename({"occurrenceID": "record_id"}, axis=1) print("Downloaded records: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< EMAIL QUERY if dwca_download == True: timestamp = datetime.now() ''' Request data using the download function. Results are emailed as a zip file containing the Darwin Core files. The download can take a while to generate and is not immediately available once the download_get command has been issued. Use a while and try loop to handle the wait. The zipdownload variable will be a dictionary of the path, the file size, and the download key unique code. It can be used to change the file name, unzip the file, etc. ''' # First, build a query list. NoneType values cause problems, so only # add arguments if their value isn't NoneType. download_filters = ['taxonKey = {0}'.format(gbif_id)] download_filters.append('hasCoordinate = True') if country is not None: download_filters.append('country = {0}'.format(country)) if years is not None: download_filters.append('year >= {0}'.format(years.split(",")[0])) download_filters.append('year <= {0}'.format(years.split(",")[1])) if months is not None: download_filters.append('month >= {0}'.format(months.split(",")[0])) download_filters.append('month <= {0}'.format(months.split(",")[1])) if filter_polygon is not None: download_filters.append("geometry = {0}".format(filter_polygon)) if geoIssue is not None: download_filters.append('hasGeospatialIssue = {0}'.format(geoIssue)) if latRange is not None: download_filters.append('decimalLatitude >= {0}'.format(latRange.split(",")[0])) download_filters.append('decimalLatitude <= {0}'.format(latRange.split(",")[1])) if lonRange is not None: download_filters.append('decimalLongitude >= {0}'.format(lonRange.split(",")[0])) download_filters.append('decimalLongitude <= {0}'.format(lonRange.split(",")[1])) # Get the value of the download key try: d = occurrences.download(download_filters, pred_type='and', user=username, pwd=password, email=email) dkey = d[0] except Exception as e: print(e) print(download_filters) # Get the download, if not ready, keep trying print("Waiting for the Darwin Core Archive.....") timestamp2 = datetime.now() gotit = False while gotit == False: try: # Download the file timestamp = datetime.now() zipdownload = occurrences.download_get(key=dkey, path=working_directory) print("Wait time for DWcA creation: " + str(datetime.now() - timestamp2)) print("Wait time for DWcA download: " + str(datetime.now() - timestamp)) gotit = True except: wait = datetime.now() - timestamp2 if wait.seconds > 60*1440: gotit = True print("FAILED!!! -- timed out after 24 hrs. ", "Try again later or split up query with ", "year paramters") # Read the relevant files from within the Darwin Core archive timestamp = datetime.now() with DwCAReader(zipdownload["path"]) as dwca: try: dfRaw = dwca.pd_read('occurrence.txt', low_memory=False) except Exception as e: print("Read error:") print(e) try: doi = dwca.metadata.attrib["packageId"] except Exception as e: print("DOI error:") print(e) try: citations = dwca.open_included_file('citations.txt').read() except Exception as e: citations = "Failed" print("Citation error:") print(e) try: rights = dwca.open_included_file('rights.txt').read() except Exception as e: rights = "Failed" print("Rights error:") print(e) print("Wait time for reading the DwCA: " + str(datetime.now() - timestamp)) # Record DWCA metadata # Store the value summary for the selected fields in a table. timestamp = datetime.now() cursor.executescript("""CREATE TABLE GBIF_download_info (download_key TEXT, doi TEXT, citations TEXT, rights TEXT);""") cursor.execute('''INSERT INTO GBIF_download_info (doi, download_key) VALUES ("{0}", "{1}")'''.format(doi, dkey)) try: cursor.execute('''UPDATE GBIF_download_info SET citations = "{0}" WHERE doi = "{1}"'''.format(citations, doi)) except Exception as e: print(e) cursor.execute('''UPDATE GBIF_download_info SET citations = "Failed" WHERE doi = "{0}"'''.format(doi)) try: cursor.execute('''UPDATE GBIF_download_info SET rights = "{0}" WHERE doi = "{1}"'''.format(rights, doi)) except Exception as e: print(e) cursor.execute('''UPDATE GBIF_download_info SET rights = "Failed" WHERE doi = "{0}"'''.format(doi)) print("Stored GBIF Download DOI etc.: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SUMMARIZE timestamp = datetime.now() # We don't want to count the "UNKNOWNS" we added if dwca_download == False: df_raw2 = dfRaw.replace({"UNKNOWN": np.nan}) df_populated1 = pd.DataFrame(df_raw2.count(axis=0).T.iloc[1:]) df_populated1['included(n)'] = df_populated1[0] df_populated1['populated(n)'] = df_populated1[0] if dwca_download == True: df_raw2 = dfRaw.copy() df_populated1 = pd.DataFrame(df_raw2.count(axis=0).T.iloc[1:]) df_populated1['included(n)'] = len(dfRaw) df_populated1['populated(n)'] = df_populated1[0] df_populated2 = df_populated1.filter(items=['included(n)', 'populated(n)'], axis='columns') df_populated2.index.name = 'attribute' df_populated2.to_sql(name='gbif_fields_returned', con=conn, if_exists='replace') print("Summarized fields returned: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< PREPARE timestamp = datetime.now() # Rename columns records1 = dfRaw.rename({"issue": "issues", "id": "record_id"}, axis=1) # Drop columns records1 = records1.filter(items=output_schema.keys(), axis=1) # Populate columns records1["retrieval_date"] = str(datetime.now()) if filter_set["get_dwca"] == True: records1["GBIF_download_doi"] = doi else: records1["GBIF_download_doi"] = "bypassed" records1["source"] = "GBIF" # Add GBIF records to template; replace and fillna to support astype() records2 = (pd.DataFrame(columns=output_schema.keys()) .combine_first(records1) # this replace is needed for API method .replace({"coordinateUncertaintyInMeters": {"UNKNOWN": np.nan}, "radius_m": {"UNKNOWN": np.nan}, "coordinatePrecision": {"UNKNOWN": np.nan}, "nominal_xy_precision": {"UNKNOWN": np.nan}, "individualCount": {"UNKNOWN": 1}, "weight": {"UNKNOWN": 10}, "detection_distance_m": {"UNKNOWN": 0}}) .fillna({"coordinateUncertaintyInMeters": 0, "radius_m": 0, "individualCount": 1, "weight": 10, "detection_distance_m": 0, "effort_distance_m": 0, "coordinate_precision": 1, "gps_accuracy_m": 30}) .astype(output_schema)) print("Prepared GBIF records for processing: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Results return records2 def process_records(ebird_data, gbif_data, filter_set, taxon_info, working_directory, query_name): ''' Summarizes the values in the data frames, populates some fields, apply filters, summarize what values persisted after filtering. Insert results into the output db. Parameters ---------- ebird_data : a data frame of records from eBird gbif_data : a data frame of records from GBIF output_database : path to the output database; string filter_set : the filter set dictionary taxon_info : the taxon information dictionary Returns ------- filtered_records : a data frame of filtered records. ''' timestamp = datetime.now() # Create or connect to the database output_database = working_directory + query_name + ".sqlite" conn = sqlite3.connect(output_database, isolation_level='DEFERRED') # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< MANAGE DATA TYPES schema = output_schema string_atts = {key:value for (key, value) in schema.items() if schema[key] == 'str'} if ebird_data is not None: ebird_data = ebird_data.astype(string_atts) if gbif_data is not None: gbif_data = gbif_data.astype(string_atts) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< REMOVE EBIRD FROM GBIF if gbif_data is not None: if ebird_data is not None: gbif_data = gbif_data[gbif_data["collectionCode"].str.contains("EBIRD*") == False] # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< COMBINE DATA FRAMES if ebird_data is None: df_unfiltered = gbif_data if gbif_data is None: df_unfiltered = ebird_data if gbif_data is not None and ebird_data is not None: # Concatenate the gbif and ebird tables df_unfiltered = pd.concat([ebird_data, gbif_data]) print("Prepared data frames for processing: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SUMMARIZE VALUES timestamp = datetime.now() # Make a list of columns to summarize values from do_not_summarize = ['decimalLatitude', 'decimalLongitude', 'GBIF_download_doi', 'coordinateUncertaintyInMeters', 'detection_distance_m', 'eventDate', 'eventRemarks', 'filter_set_name', 'footprintSRS', 'footprintWKT', 'gbif_id', 'ebird_id', "effort_distance_m", 'general_remarks', 'georeferencedBy', 'habitat', 'georeferenceRemarks', 'identificationQualifier', 'identifiedBy', 'identifiedRemarks', 'individualCount', 'informationWitheld', 'locality', 'locationAccordingTo', 'locationRemarks', "modified", 'occurrenceRemarks', 'radius_m', 'record_id', 'recordedBy', 'retrieval_date', 'taxonConceptID', 'verbatimLocality', 'weight', 'weight_notes'] # Make a function to do the summarizing def summarize_values(dataframe, step): """ Loops through columns and gets a count of unique values. Packages in a df. """ attributes = [] summarize = [x for x in dataframe.columns if x not in do_not_summarize] for column in summarize: value_count = dataframe['record_id'].groupby(dataframe[column]).count() value_df = (pd.DataFrame(value_count) .reset_index() .rename({'record_id': step, column: 'value'}, axis=1)) value_df["attribute"] = column value_df = value_df[["attribute", "value", step]] if value_df.empty == False: attributes.append(value_df) result = pd.concat(attributes) return result # Store value summary in a data frame acquired = summarize_values(dataframe=df_unfiltered, step='acquired') # Summarize sources source_df1 = df_unfiltered[['institutionID', 'collectionCode', 'datasetName', 'record_id']] source_summary1 = (source_df1 .groupby(by=['institutionID', 'collectionCode', 'datasetName']) .size() .reset_index(name='acquired')) print("Summarized values acquired: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< POPULATE SOME COLUMNS timestamp = datetime.now() df_unfiltered.fillna(value={'individualCount': int(1)}, inplace=True) df_unfiltered["weight"] = 10 df_unfiltered["weight_notes"] = "" df_unfiltered["taxon_id"] = taxon_info["ID"] df_unfiltered["gbif_id"] = taxon_info["GBIF_ID"] df_unfiltered["ebird_id"] = taxon_info["EBIRD_ID"] df_unfiltered["detection_distance_m"] = taxon_info["detection_distance_m"] df_unfiltered["filter_set_name"] = filter_set["name"] # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< COORDINATE PRECISION '''In WGS84, coordinate precision is limited by longitude and varies across latitudes and number of digits provided. Thus, coordinates have a nominal precision that may limit values. Populate a column for this...''' # Trim decimal length to 5 digits (lat and long). # Anything more is false precision. df_unfiltered["decimalLatitude"] = df_unfiltered["decimalLatitude"].apply(lambda x: coord_rounded(x, 5)) df_unfiltered["decimalLongitude"] = df_unfiltered["decimalLongitude"].apply(lambda x: coord_rounded(x, 5)) # Drop rows without a valid latitude or longitude df_unfiltered.dropna(subset=["decimalLatitude", "decimalLongitude"], inplace=True) # Calculate the number of digits for latitude and longitude df_unfiltered['digits_latitude'] = [len(x.split(".")[1]) for x in df_unfiltered['decimalLatitude']] df_unfiltered['digits_longitude'] = [len(x.split(".")[1]) for x in df_unfiltered['decimalLongitude']] # Estimate longitude precisions df_unfiltered = nominal_x_precision(dataframe=df_unfiltered, lat_column="decimalLatitude", digits_column="digits_longitude", output_column="nominal_x_precision") # Latitude precision; lookup for latitude precision digitsY = {1: 11112.0, 2: 1111.2, 3: 111.1, 4: 11.1, 5: 1.1} df_unfiltered["nominal_y_precision"] = df_unfiltered["digits_latitude"].apply(lambda x: digitsY[x]) # Put the larger of the two nominal precisions in a column df_unfiltered["nominal_xy_precision"] = np.where(df_unfiltered["nominal_y_precision"] > df_unfiltered["nominal_x_precision"], df_unfiltered["nominal_y_precision"], df_unfiltered["nominal_x_precision"]) # Clean up df_unfiltered.drop(["temp", "temp2", "digits_latitude", "digits_longitude", "nominal_x_precision", "nominal_y_precision"], axis=1, inplace=True) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< BUFFER RADIUS ''' Calculate a buffer distance from various parameters for the point-radius method. Compilation has to differ with data source and whether the user chose to use a default coordinate uncertainty. Components of radius may include coordinateUncertaintyInMeters, coordinatePrecision, GPS_accuracy_m, effort_distance_m, detection_distance_m. Records are broken apart by source (GBIF, GBIF/EOD, EBD), processed, and then concatenated in order to account for all conditions. If footprintWKT is provided, it will be used by spatial_output instead of point buffering. ''' # Records from GBIF with coordinate uncertainty (georeferenced) georef = df_unfiltered[df_unfiltered["coordinateUncertaintyInMeters"] > 0.0].copy() if georef.empty == False: #georef.fillna({"coordinatePrecision": 0.00001}, inplace=True) georef["gps_accuracy_m"] = np.where(georef["eventDate"].apply(lambda x: datetime.strptime(x, "%Y-%m-%dT%H:%M:%S").year) < 2000, 100, 30) georef["radius_m"] = georef["coordinateUncertaintyInMeters"] print("Number of georeferenced GBIF records: " + str(len(georef))) # Records from GBIF without coordinate uncertainty gbif_nogeo = df_unfiltered[(df_unfiltered["coordinateUncertaintyInMeters"] == 0.0) & (df_unfiltered["collectionCode"].str.contains("EBIRD*") == False)].copy() if gbif_nogeo.empty == False: gbif_nogeo["gps_accuracy_m"] = np.where(gbif_nogeo["eventDate"].apply(lambda x: datetime.strptime(x, "%Y-%m-%dT%H:%M:%S").year) < 2000, 100, 30) if filter_set["default_coordUncertainty"] is not None: print("Applying default coordinate uncertainties for GBIF records") #gbif_nogeo.fillna({"coordinatePrecision": 0.00001}, inplace=True) gbif_nogeo["radius_m"] = filter_set["default_coordUncertainty"] if filter_set["default_coordUncertainty"] is None: print("Approximating coordinate uncertanties for GBIF records") #gbif_nogeo.fillna({"coordinatePrecision": 0.00001}, inplace=True) gbif_nogeo["radius_m"] = gbif_nogeo["gps_accuracy_m"] + gbif_nogeo["detection_distance_m"] + gbif_nogeo["effort_distance_m"] # Records from EBD ebd_geo = df_unfiltered[df_unfiltered["source"] == "eBird"].copy() if ebd_geo.empty == False: #ebd_geo.fillna({"coordinatePrecision": 0.00001}, inplace=True) ebd_geo["gps_accuracy_m"] = np.where(ebd_geo["eventDate"].apply(lambda x: datetime.strptime(x, "%Y-%m-%d").year) < 2000, 100, 30) ebd_geo["radius_m"] = ebd_geo["effort_distance_m"] + ebd_geo["gps_accuracy_m"] + ebd_geo["detection_distance_m"] # Records from EOD (via GBIF) eod_nogeo = df_unfiltered[(df_unfiltered["source"] == "GBIF") & (df_unfiltered["collectionCode"].str.contains("EBIRD*") == True)].copy() if eod_nogeo.empty == False: #eod_nogeo.fillna({"coordinatePrecision": 0.00001}, inplace=True) eod_nogeo["gps_accuracy_m"] = np.where(eod_nogeo["eventDate"].apply(lambda x: datetime.strptime(x, "%Y-%m-%dT%H:%M:%S").year) < 2000, 100, 30) eod_nogeo["effort_distance_m"] = 8047 # eBird best practices allows distance up to 5 mi length. eod_nogeo["radius_m"] = eod_nogeo["effort_distance_m"] + eod_nogeo["gps_accuracy_m"] + eod_nogeo["detection_distance_m"] # Concat df's if necessary if filter_set['has_coordinate_uncertainty'] == True: df_unfiltered2 = georef to_concat = [] for x in [gbif_nogeo, georef, eod_nogeo, ebd_geo]: if x.empty == False: to_concat.append(x) if len(to_concat) > 1: df_unfiltered2 = pd.concat(to_concat) if len(to_concat) == 1: df_unfiltered2 = to_concat[0] # Where coordinate precision is poor, overwrite the radius to be the precision. df_unfiltered2["radius_m"] = np.where(df_unfiltered2["nominal_xy_precision"] > df_unfiltered2["radius_m"], df_unfiltered2["nominal_xy_precision"], df_unfiltered2["radius_m"]) #df_unfiltered2["radius_m"] = np.where(df_unfiltered2["coordinatePrecision"] > df_unfiltered2["radius_m"], df_unfiltered2["coordinatePrecision"], df_unfiltered2["radius_m"]) # Test to make sure that no records were lost in the previous steps if len(df_unfiltered2) != len(df_unfiltered): print("AN ERROR OCCURRED !!!!!!!!!!!!!") else: print("Prepared records and calculated radii:" + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< FILTER timestamp = datetime.now() # Some filters to be prepped for use for x in ['bases_omit', 'collection_codes_omit', 'datasets_omit', 'institutions_omit', 'issues_omit', 'sampling_protocols_omit']: if filter_set[x] == None: filter_set[x] = [] df_filter2 = (df_unfiltered2[df_unfiltered2['radius_m'] <= filter_set['max_coordinate_uncertainty']] [lambda x: x['collectionCode'].isin(filter_set['collection_codes_omit']) == False] [lambda x: x['institutionID'].isin(filter_set['institutions_omit']) == False] [lambda x: x['basisOfRecord'].isin(filter_set['bases_omit']) == False] [lambda x: x['samplingProtocol'].isin(filter_set['sampling_protocols_omit']) == False] [lambda x: x['datasetName'].isin(filter_set['datasets_omit']) == False] [lambda x: x['occurrenceStatus'] != "ABSENT"] ) # Case where user demands records had coordinate uncertainty if filter_set['has_coordinate_uncertainty'] == True: df_filter2 = df_filter2[df_filter2["coordinateUncertaintyInMeters"] > 0] ''' ISSUES are more complex because multiple issues can be listed per record Method used is complex, but hopefully faster than simple iteration over all records ''' df_filter2.fillna(value={'issues': ""}, inplace=True) # Format of issues entries differ by method, change json format to email # format if filter_set['get_dwca'] == True: df_filter2['issues'] = [x.replace(', ', ';').replace('[', '').replace(']', '').replace("'", "") for x in df_filter2['issues']] unique_issue = list(df_filter2['issues'].unique()) violations = [x for x in unique_issue if len(set(str(x).split(";")) & set(filter_set['issues_omit'])) != 0] # entries that contain violations df_filter3 = df_filter2[df_filter2['issues'].isin(violations) == False] # Records without entries that are violations. print("Performed filtering: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< REMOVE SPACE-TIME DUPLICATES # Prep some columns by changing data type df_filter3 = (df_filter3 .astype({'decimalLatitude': 'str', 'decimalLongitude': 'str'}) .reset_index(drop=True)) if filter_set["duplicate_coord_date_OK"] == False: df_filterZ = drop_duplicates_latlongdate(df_filter3) if filter_set["duplicate_coord_date_OK"] == True: df_filterZ = df_filter3.copy() print("DUPLICATES ON LATITUDE, LONGITUDE, DATE-TIME INCLUDED") # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SPATIAL FILTERING # Spatial filtering happens in the get functions (ebird and gbif), not here # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SUMMARIZE VALUES AGAIN timestamp = datetime.now() # Store value summary in a data frame if df_filterZ.empty == False: retained = summarize_values(dataframe=df_filterZ, step='retained') if df_filterZ.empty == True: retained = acquired.copy().drop(["acquired"], axis=1) retained["retained"] = 0 # Concat acquired and retained data frames summary_df = pd.merge(retained, acquired, on=['attribute', 'value'], how='inner') # Calculate a difference column summary_df['removed'] = summary_df['acquired'] - summary_df['retained'] summary_df = summary_df[['attribute', 'value', 'acquired', 'removed', 'retained']] # Summarize sources if df_filterZ.empty == False: source_df2 = df_filterZ[['institutionID', 'collectionCode', 'datasetName', 'record_id']] source_summary2 = (source_df2 .groupby(by=['institutionID', 'collectionCode', 'datasetName']) .size() .reset_index(name='retained')) if df_filterZ.empty == True: print(source_summary1) source_summary2 = source_summary1.copy().drop(["acquired"], axis=1) source_summary2["retained"] = 0 # Concat acquired and retained source summary data frames source_summaries = pd.merge(source_summary1, source_summary2, on=['institutionID', 'collectionCode', 'datasetName'], how='inner') # Calculate a difference column source_summaries['removed'] = source_summaries['acquired'] - source_summaries['retained'] source_summaries = source_summaries[['institutionID', 'collectionCode', 'datasetName', 'acquired', 'removed', 'retained']] # Save the summaries in the output database summary_df.to_sql(name='attribute_value_counts', con=conn, if_exists='replace') source_summaries.to_sql(name='sources', con=conn, if_exists='replace') print("Saved summary of filtering results: " + str(datetime.now() - timestamp)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< SAVE # Reformat data to strings and insert into db. df_filterZ.replace("nan", pd.NA).applymap(str).to_sql(name='occurrence_records', con=conn, if_exists='replace') conn.close() return None def nominal_precisions(longitude, latitude, produce): ''' Calculates the nominal precisions based on WGS84 coordinates. Method is based on information from wikipedia page on latitude and posts at https://gis.stackexchange.com/questions/8650/measuring-accuracy-of-latitude-and-longitude https://wiki.openstreetmap.org/wiki/Precision_of_coordinates Parameters ---------- latitude : decimal degrees (EPSG:4326) latitude as string. longitude : decimal degrees (EPSG:4326) longitude as string. produce : 'longitude', 'latitude', or 'both' Returns ------- x : uncertainty in longitude (meters) as float. y : uncertianty in latitude (meters) as float. EXAMPLE ------- x, y = nominal_precisions("-93.455", "26.3455", produce="both") ''' lat = latitude.split(".") long = longitude.split(".") # Longitude - decimal gets moved based on digits. digitsX = {1: 10, 2: 100, 3: 1000, 4: 10000, 5: 100000} x = (111321 * np.cos(float(latitude) * np.pi/180))/digitsX[len(long[1])] # Latitude lookup digitsY = {1: 11112.0, 2: 1111.2, 3: 111.1, 4: 11.1, 5: 1.1} y = digitsY[len(lat[1])] if produce == "both": return x, y if produce == "longitude": return x if produce == "latitude": return y def drop_duplicates_latlongdate(df): ''' Function to find and remove duplicate occurrence records within the wildlife wrangler workflow. When duplicates exist, the record with the higher decimal precision is kept, and if precision values are equal, then the record with the smallest radius_m is retained. Accounts for existence of records with a mix of decimal precision in latitude and longitude values. The process is a little complex. The first data frame is cleaned up by dropping duplicates based on which record has smaller buffer radius. Before doing that, records with unequal decimal precision in the latitude and longitude fields and those fields are rounded to the coarser precision present. An input data frame likely contains records with equal decimal precision in latitude and longitude fields, but that is lower than the rest (i.e. latitude and longitude have 3 places right of the decimal whereas most records have 4). Duplication may occur between lower and higher precision records at the lower precision. Therefore, duplication must be assessed at each of the lower precision levels present. The strategy for that is to, at each precision level, split the main data frame in two: one with records having the precision level of the investigation and another with records greater than the precision level. The "greater than" data frame records' latitude and longitude values are then rounded to the precision level. Records are identified from the "equals precision" data frame that have their latitude, longitude, and date values represented in the "greater than" df, and such records ID’s are collected in a list of records to be removed from the input/main data frame. This process is iterated over all precision levels present in the data. Parameters ---------- df : input pandas data frame. Returns ------- df2 : a data frame equal to df but without duplicates. Use to drop records from the occurrences table. ''' startduptime = datetime.now() # Record df length before removing duplicates initial_length = len(df) """ ############ RECTIFY UNEQUAL LAT-LONG PRECISION First, trim decimal length in cases where decimal length differs between latitude and longitude values, result is equal latitude and longitude length. Record the trimmed decimal precision in a temp column for use later as a record to "verbatim" precision. """ df['dup_latPlaces'] = [len(x.split(".")[1]) for x in df['decimalLatitude']] df['dup_lonPlaces'] = [len(x.split(".")[1]) for x in df['decimalLongitude']] df['dup_OGprec'] = df['dup_latPlaces'] prec_unequal = df[df['dup_latPlaces'] != df['dup_lonPlaces']] for i in prec_unequal.index: x = prec_unequal.loc[i] if x['dup_latPlaces'] < x['dup_lonPlaces']: trim_len = int(x['dup_latPlaces']) else: trim_len = int(x['dup_lonPlaces']) df.loc[i, 'decimalLatitude'] = x['decimalLatitude'][:trim_len + 3] df.loc[i, 'decimalLongitude'] = x['decimalLongitude'][:trim_len + 4] # Record the resulting precision for reference later df.loc[i, 'dup_OGprec'] = trim_len df.drop(['dup_latPlaces', 'dup_lonPlaces'], axis=1, inplace=True) """ ######## INITIAL DROP OF DUPLICATES Initial drop of duplicates on 'latitude', 'longitude', 'eventDate', keeping the first (lowest radius_m) Sort so that the lowest radius_m is first """ df = (df .sort_values(by=['decimalLatitude', 'decimalLongitude', 'eventDate', 'radius_m'], ascending=True, kind='mergesort', na_position='last') .drop_duplicates(subset=['decimalLatitude', 'decimalLongitude', 'eventDate'], keep='first')) """ ######### FIND IMPRECISE DUPLICATES Get a list of "verbatim" precisions that are present in the data to loop through. Next, iterate through this list collecting id's of records that need to be removed from the main df. """ # Get list of unique precisions. Order is important: descending. precisions = list(set(df['dup_OGprec'])) precisions.sort(reverse=True) # The highest precisions listed at this point has been done: drop it. precisions = precisions[1:] # List for collecting records that are duplicates duplis = [] # The precision-specific duplicate testing happens repeatedly, so make it a # function. def drop_duplicate_coord_date(precision, df): """ Function to find undesirable duplicates at a particular decimal precision Parameters ---------- precision : The level of precision (places right of decimal) in decimalLatitude and longitude values for the assessment of duplicates. df : data frame to assess and drop duplicates from. This function works 'inplace'. Returns ------- A data frame without duplicates """ # Create a df with records from the input df having decimal # precision > the precision level being assessed. dfLonger = df[df['dup_OGprec'] > precision].copy() # Round lat and long values dfLonger['decimalLatitude'] = [str(round(float(x), precision)) for x in dfLonger['decimalLatitude']] dfLonger['decimalLongitude'] = [str(round(float(x), precision)) for x in dfLonger['decimalLongitude']] # Create a df with records having the precision being # investigated dfShorter1 = df[df['dup_OGprec'] == precision] # Find records in dfShorter1 with latitude, longitude, date combo # existing in dfLonger and append to list of duplis dfduplis = pd.merge(dfShorter1, dfLonger, how='inner', on=['decimalLatitude', 'decimalLongitude', 'eventDate']) dups_ids = dfduplis['record_id_x'] for d in dups_ids: duplis.append(d) # Drop latitude longitude duplicates at lower decimal precisions for p in precisions: drop_duplicate_coord_date(p, df) # Drop rows from the current main df that were identified as duplicates df2 = df[df['record_id'].isin(duplis) == False].copy() # Drop excess columns df2.drop(columns=['dup_OGprec'], axis=1, inplace=True) # Print status duptime = datetime.now() - startduptime print(str(initial_length - len(df2)) + " duplicate records dropped: {0}".format(duptime)) return df2 def verify_results(database): ''' Compares the occurrence record attributes to the filters that were supposed to be applied. Parameters ---------- database : path to a wrangler output database; string. Like "Z:/Occurrence_Records/test1.sqlite" RESULTS ------- prints messages if tests are failed. No output indicates all tests were passed. ''' # Connect to a database conn = sqlite3.connect(database) # Get the taxon concept --------------------------------------------------- taxon_concept = (
pd.read_sql(sql="SELECT * FROM taxon_concept;", con=conn)
pandas.read_sql
import dask.array as da import dask.dataframe as dd import numpy as np import numpy.linalg as LA import pandas as pd import pytest import sklearn.linear_model from dask.dataframe.utils import assert_eq from dask_glm.regularizers import Regularizer from sklearn.pipeline import make_pipeline import dask_ml.linear_model from dask_ml.datasets import make_classification, make_counts, make_regression from dask_ml.linear_model import LinearRegression, LogisticRegression, PoissonRegression from dask_ml.linear_model.utils import add_intercept from dask_ml.model_selection import GridSearchCV @pytest.fixture(params=[r() for r in Regularizer.__subclasses__()]) def solver(request): """Parametrized fixture for all the solver names""" return request.param @pytest.fixture(params=[r() for r in Regularizer.__subclasses__()]) def regularizer(request): """Parametrized fixture for all the regularizer names""" return request.param class DoNothingTransformer: def fit(self, X, y=None): return self def transform(self, X, y=None): return X def fit_transform(self, X, y=None): return X def get_params(self, deep=True): return {} def test_lr_init(solver): LogisticRegression(solver=solver) def test_pr_init(solver): PoissonRegression(solver=solver) @pytest.mark.parametrize("fit_intercept", [True, False]) def test_fit(fit_intercept, solver): X, y = make_classification(n_samples=100, n_features=5, chunks=50) lr = LogisticRegression(fit_intercept=fit_intercept) lr.fit(X, y) lr.predict(X) lr.predict_proba(X) @pytest.mark.parametrize( "solver", ["admm", "newton", "lbfgs", "proximal_grad", "gradient_descent"] ) def test_fit_solver(solver): import dask_glm import packaging.version if packaging.version.parse(dask_glm.__version__) <= packaging.version.parse( "0.2.0" ): pytest.skip("FutureWarning for dask config.") X, y = make_classification(n_samples=100, n_features=5, chunks=50) lr = LogisticRegression(solver=solver) lr.fit(X, y) @pytest.mark.parametrize("fit_intercept", [True, False]) def test_lm(fit_intercept): X, y = make_regression(n_samples=100, n_features=5, chunks=50) lr = LinearRegression(fit_intercept=fit_intercept) lr.fit(X, y) lr.predict(X) if fit_intercept: assert lr.intercept_ is not None @pytest.mark.parametrize("fit_intercept", [True, False]) def test_big(fit_intercept): X, y = make_classification(chunks=50) lr = LogisticRegression(fit_intercept=fit_intercept) lr.fit(X, y) lr.decision_function(X) lr.predict(X) lr.predict_proba(X) if fit_intercept: assert lr.intercept_ is not None @pytest.mark.parametrize("fit_intercept", [True, False]) def test_poisson_fit(fit_intercept): X, y = make_counts(n_samples=100, chunks=500) pr = PoissonRegression(fit_intercept=fit_intercept) pr.fit(X, y) pr.predict(X) pr.get_deviance(X, y) if fit_intercept: assert pr.intercept_ is not None def test_in_pipeline(): X, y = make_classification(n_samples=100, n_features=5, chunks=50) pipe = make_pipeline(DoNothingTransformer(), LogisticRegression()) pipe.fit(X, y) def test_gridsearch(): X, y = make_classification(n_samples=100, n_features=5, chunks=50) grid = {"logisticregression__C": [1000, 100, 10, 2]} pipe = make_pipeline(DoNothingTransformer(), LogisticRegression()) search = GridSearchCV(pipe, grid, cv=3) search.fit(X, y) def test_add_intercept_dask_dataframe(): X = dd.from_pandas(pd.DataFrame({"A": [1, 2, 3]}), npartitions=2) result = add_intercept(X) expected = dd.from_pandas( pd.DataFrame( {"intercept": [1, 1, 1], "A": [1, 2, 3]}, columns=["intercept", "A"] ), npartitions=2, ) assert_eq(result, expected) df = dd.from_pandas(
pd.DataFrame({"intercept": [1, 2, 3]})
pandas.DataFrame
from __future__ import division import numpy as np import pandas as pd import pickle import os from math import ceil import matplotlib import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import seaborn as sns import warnings from sklearn.metrics import r2_score warnings.simplefilter("ignore") # colors = ["#3366cc", "#dc3912", "#109618", "#990099", "#ff9900"] colors = sns.color_palette('muted') labels = ['Remaining', 'First','Last'] def density_plot(df, Accuracy_base, Accuracy_LSTM, Accuracy_NG, save_fig, Out_put_name,model_name_list, Mean_or_median): model = model_name_list sns.set(font_scale=1.5) sns.set_style("white", {"legend.frameon": True}) plt.figure(figsize=(14, 7)) ax1 = plt.subplot(1, 2, 1) cols1 = [df, Accuracy_base, Accuracy_LSTM, Accuracy_NG] for i in range(len(cols1)): data = cols1[i]['first'] sns.kdeplot(data, ax=ax1, shade=True, color=colors[i], label=model[i],linewidth=2) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 1: if 'duration' in Out_put_name: plt.text(med - 0.02, 3.0, '{}'.format(round(med, 3)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) elif i== 2: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.1, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.1, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 0: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.3, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 3: if 'duration' in Out_put_name: plt.text(med - 0.02, 3.0, '{}'.format(round(med, 3)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) plt.xlim(0, 1.0) plt.ylim(0, 3.5) if 'location' in Out_put_name: ax1.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.xlabel('Prediction accuracy', fontsize=20) else: plt.xlabel('R'+r'$^2$', fontsize=20) plt.ylabel('Density', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) #, loc='upper right' else: plt.legend(fontsize=18) # plt.title('First activities',fontsize=20) # plt.text(-0.1, 1.05, '(a)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax1.transAxes) ax2 = plt.subplot(1, 2, 2) for i in range(len(cols1)): data = cols1[i]['Middle'] sns.kdeplot(data, ax=ax2, shade=True, color=colors[i], label=model[i], linewidth=2) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2, alpha = 1) if i == 1: if 'duration' in Out_put_name: plt.text(med - 0.01, 3.3, '{}'.format(round(med, 3)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i== 2: if 'duration' in Out_put_name: plt.text(med + 0.023, 3.0, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 0: if 'duration' in Out_put_name: plt.text(med + 0.01, 3.0, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.0, '{}%'.format(round(med* 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 3: if 'duration' in Out_put_name: plt.text(med + 0.01, 3.3, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med* 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) plt.xlim(0, 1.0) plt.ylim(0, 3.5) if 'location' in Out_put_name: ax2.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.xlabel('Prediction accuracy', fontsize=20) else: plt.xlabel('R'+r'$^2$', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) plt.ylabel('Density', fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) #, loc='upper right' else: plt.legend(fontsize=18) # plt.title('Remaining activities',fontsize=20) # plt.text(-0.1, 1.05, '(b)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax2.transAxes) plt.tight_layout() if save_fig == 0: plt.show() else: plt.savefig('img/' + Out_put_name, dpi=200) def density_plot_duration_error(df, Accuracy_base, Accuracy_LSTM, save_fig, Out_put_name, model_name_list, Mean_or_median): model = model_name_list sns.set(font_scale=1.5) sns.set_style("white", {"legend.frameon": True}) plt.figure(figsize=(14, 7)) ax1 = plt.subplot(1, 2, 1) cols1 = [df, Accuracy_base, Accuracy_LSTM] for i in range(len(cols1)): data = cols1[i]['first'] sns.kdeplot(data, ax=ax1, shade=True, color=colors[i], label=model[i]) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 0: plt.text(med + 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 2: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) # plt.xlim(0, 1.0) # plt.ylim(0, 3.5) # ax1.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) # plt.xlabel('Prediction Accuracy', fontsize=20) plt.ylabel('Density (Users)', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) # , loc='upper right' else: plt.legend(fontsize=18, loc='center right') # plt.title('First Activities', fontsize=20) # plt.text(-0.1, 1.05, '(a)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax1.transAxes) ax2 = plt.subplot(1, 2, 2) for i in range(len(cols1)): data = cols1[i]['Remaining'] sns.kdeplot(data, ax=ax2, shade=True, color=colors[i], label=model[i]) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 1: if 'duration' in Out_put_name: plt.text(med - 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 2: if 'duration' in Out_put_name: plt.text(med + 0.023, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) # plt.xlim(0, 1.0) # plt.ylim(0, 3.5) # ax2.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.yticks(fontsize=20) plt.xticks(fontsize=20) # plt.xlabel('Prediction Accuracy', fontsize=20) plt.ylabel('Density (User-level)', fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) # , loc='upper right' else: plt.legend(fontsize=18, loc='center right') # plt.title('Remaining Activities', fontsize=20) # plt.text(-0.1, 1.05, '(b)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax2.transAxes) plt.tight_layout() if save_fig == 0: plt.show() else: plt.savefig('img/' + Out_put_name, dpi=200) def density_plot_not_seperate_mid_first(df, Accuracy_base, Accuracy_LSTM, save_fig, Out_put_name, model_name_list): model = model_name_list sns.set(font_scale=1.5) sns.set_style("white", {"legend.frameon": True}) plt.figure(figsize=(7, 7)) ax1 = plt.subplot(1, 1, 1) cols1 = [df, Accuracy_base, Accuracy_LSTM] for i in range(len(cols1)): data = cols1[i]['all'] sns.kdeplot(data, ax=ax1, shade=True, color=colors[i], label=model[i]) med = data.mean() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 0: plt.text(med + 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 2: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) plt.xlim(0, 1.0) plt.ylim(0, 3.5) ax1.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.xlabel('Prediction Accuracy', fontsize=20) plt.ylabel('Density (Users)', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) # , loc='upper right' else: plt.legend(fontsize=18) # plt.tight_layout() if save_fig == 0: plt.show() else: plt.savefig('img/' + Out_put_name, dpi=200) def data_process_continuous(data): error_first_temp = (data['Predict1'].loc[data['activity_index']==0] - data['Ground_truth'].loc[data['activity_index']==0])/3600 Accuracy_first_temp = sum(np.array(data['Correct'].loc[data['activity_index']==0]))/data['Correct'].loc[data['activity_index']==0].count() data_temp = data.loc[data['activity_index']!=0] # data_temp = data error_Remaining_temp = (data_temp['Predict1'] - data_temp['Ground_truth'])/3600 Accuracy_temp = sum(np.array(data_temp['Correct']))/data_temp['Correct'].count() accuracy_all = sum(np.array(data['Correct']))/data['Correct'].count() return error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp,accuracy_all def calculate_error(result_df): # correct error data result_df.loc[result_df['Predict_duration'] > 86400, 'Predict_duration'] = 86400 result_df.loc[result_df['Predict_duration'] <= 0, 'Predict_duration'] = 1 ###### result_df['error_sq'] = (result_df['Predict_duration'] - result_df['Ground_truth_duration']) ** 2 result_df['error_abs'] = np.abs(result_df['Predict_duration'] - result_df['Ground_truth_duration']) RMSE = np.sqrt(np.mean(result_df['error_sq'])) MAPE = np.mean(result_df['error_abs'] / result_df['Ground_truth_duration']) MAE = np.mean(result_df['error_abs']) if len(result_df) > 0: R_sq = r2_score(result_df['Ground_truth_duration'], result_df['Predict_duration']) else: R_sq = None return RMSE, MAPE, MAE, R_sq def r_sq_for_two_parts(data,y_mean): data['RES'] = (data['Ground_truth_duration'] - data['Predict_duration'])**2 data['TOT'] = (data['Ground_truth_duration'] - y_mean)**2 R_sq = 1 - sum(data['RES'])/sum(data['TOT']) return R_sq def data_process_continuous_R_sq(data): _, _, _, R_sq_all = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_Remaining = data.loc[data['activity_index']!=0].copy() mean_y = np.mean(data['Ground_truth_duration']) R_sq_first = r_sq_for_two_parts(data_first, mean_y) if len(data_Remaining)>0: R_sq_Remaining = r_sq_for_two_parts(data_Remaining, mean_y) else: R_sq_Remaining = None return R_sq_first, R_sq_Remaining, R_sq_all def data_process_continuous_RMSE(data): RMSE_all, _, _, _ = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_Remaining = data.loc[data['activity_index']!=0].copy() RMSE_first, _, _, R_sq_first = calculate_error(data_first) RMSE_Remaining, _, _, R_sq_Remaining = calculate_error(data_Remaining) return RMSE_first, RMSE_Remaining, RMSE_all def data_process_continuous_MAPE(data): _, MAPE_all, _, _ = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_Remaining = data.loc[data['activity_index']!=0].copy() _, MAPE_first, _, R_sq_first = calculate_error(data_first) _, MAPE_Remaining, _, R_sq_Remaining = calculate_error(data_Remaining) return MAPE_first, MAPE_Remaining, MAPE_all def data_process_discrete(data): error_first_temp = (data['Predict1'].loc[data['activity_index']==0] - data['Ground_truth'].loc[data['activity_index']==0]) Accuracy_first_temp = sum(np.array(data['Correct'].loc[data['activity_index']==0]))/data['Correct'].loc[data['activity_index']==0].count() data_temp = data.loc[data['activity_index']!=0] # data_temp = data error_Remaining_temp = (data_temp['Predict1'] - data_temp['Ground_truth']) Accuracy_temp = sum(np.array(data_temp['Correct']))/data_temp['Correct'].count() accuracy_all = sum(np.array(data['Correct'])) / data['Correct'].count() return error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp, accuracy_all def generate_accuracy_file(individual_ID_list, output_fig, duration_error): error_list=[] total=0 error_Remaining =
pd.DataFrame({'Remaining':[]})
pandas.DataFrame
import pandas from collections import Counter from tqdm import tqdm user_df = pandas.read_csv('processed_data/prj_user.csv') tweets_df = pandas.read_csv('original_data/prj_tweet.csv') ids = user_df["id"] ids = list(ids.values) hobby_1_list = [] hobby_2_list = [] def get_users_most_popular_hashtags_list(tweets_df, user_id, number_of_wanted_hashtags=2): """ :param user_id: id of user for which we want to get :return: list of strings, size of number_of_wanted_hashtags or smaller if user doesn't have enough hashtags """ tweets = list(tweets_df.loc[tweets_df['userID'] == int(user_id)]["tweet"].values) tweets_with_hashtag = [tweet for tweet in tweets if "#" in tweet] user_hashtags = [] for tweet in tweets_with_hashtag: user_hashtags += [i[1:] for i in tweet.split() if i.startswith("#")] users_most_common_hashtags = [word for word, word_count in Counter(user_hashtags).most_common(number_of_wanted_hashtags)] return users_most_common_hashtags for id in tqdm(ids): users_most_common_hashtags = get_users_most_popular_hashtags_list(tweets_df=tweets_df, user_id = id, number_of_wanted_hashtags=2) if len(users_most_common_hashtags) < 2: while len(users_most_common_hashtags) < 2: users_most_common_hashtags.append(None) hobby_1_list.append(users_most_common_hashtags[0]) hobby_2_list.append(users_most_common_hashtags[1]) hobby_df =
pandas.read_csv('processed_data/prj_user.csv')
pandas.read_csv
import sys, os import unittest import pandas as pd import numpy import sys from sklearn import datasets from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, Imputer, LabelEncoder, LabelBinarizer, MinMaxScaler, MaxAbsScaler, RobustScaler,\ Binarizer, PolynomialFeatures, OneHotEncoder, KBinsDiscretizer from sklearn_pandas import CategoricalImputer from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR, OneClassSVM from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.naive_bayes import GaussianNB from sklearn_pandas import DataFrameMapper from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor, RandomForestClassifier,\ RandomForestRegressor, IsolationForest from sklearn.linear_model import LinearRegression, LogisticRegression, RidgeClassifier, SGDClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.gaussian_process import GaussianProcessClassifier from nyoka.preprocessing import Lag from nyoka import skl_to_pmml from nyoka import PMML44 as pml class TestMethods(unittest.TestCase): def test_sklearn_01(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "svc_pmml.pmml" model = SVC() pipeline_obj = Pipeline([ ('svm',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name,True) ## 1 svms = pmml_obj.SupportVectorMachineModel[0].SupportVectorMachine for mod_val, recon_val in zip(model.intercept_, svms): self.assertEqual("{:.16f}".format(mod_val), "{:.16f}".format(recon_val.Coefficients.absoluteValue)) ## 2 svm = pmml_obj.SupportVectorMachineModel[0] self.assertEqual(svm.RadialBasisKernelType.gamma,model._gamma) def test_sklearn_02(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "knn_pmml.pmml" pipeline_obj = Pipeline([ ('scaling',StandardScaler()), ('knn',KNeighborsClassifier(n_neighbors = 5)) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name,True) ##1 self.assertIsNotNone(pmml_obj.NearestNeighborModel[0].ComparisonMeasure.euclidean) ##2 self.assertEqual(pmml_obj.NearestNeighborModel[0].ComparisonMeasure.kind, "distance") ##3 self.assertEqual(pipeline_obj.steps[-1][-1].n_neighbors, pmml_obj.NearestNeighborModel[0].numberOfNeighbors) def test_sklearn_03(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "rf_pmml.pmml" model = RandomForestClassifier(n_estimators = 100) pipeline_obj = Pipeline([ ("mapping", DataFrameMapper([ (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , (['petal length (cm)', 'petal width (cm)'], Imputer()) ])), ("rfc", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ## 1 self.assertEqual(model.n_estimators,pmml_obj.MiningModel[0].Segmentation.Segment.__len__()) ##2 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.multipleModelMethod, "majorityVote") def test_sklearn_04(self): titanic = pd.read_csv("nyoka/tests/titanic_train.csv") features = titanic.columns target = 'Survived' f_name = "gb_pmml.pmml" pipeline_obj = Pipeline([ ("imp", Imputer(strategy="median")), ("gbc", GradientBoostingClassifier(n_estimators = 10)) ]) pipeline_obj.fit(titanic[features],titanic[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ##1 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.multipleModelMethod, "modelChain") ##2 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.Segment.__len__(), 2) ##3 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.Segment[1].RegressionModel.normalizationMethod, "logit") def test_sklearn_05(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg'],axis=1) y = df['mpg'] features = [name for name in df.columns if name not in ('mpg')] target = 'mpg' pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ ('car name', TfidfVectorizer()) ])), ('model',DecisionTreeRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"dtr_pmml.pmml") self.assertEqual(os.path.isfile("dtr_pmml.pmml"),True) def test_sklearn_06(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' f_name = "linearregression_pmml.pmml" model = LinearRegression() pipeline_obj = Pipeline([ ('model',model) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name, True) ## 1 reg_tab = pmml_obj.RegressionModel[0].RegressionTable[0] self.assertEqual(reg_tab.intercept,model.intercept_) ## 2 for model_val, pmml_val in zip(model.coef_, reg_tab.NumericPredictor): self.assertEqual("{:.16f}".format(model_val),"{:.16f}".format(pmml_val.coefficient)) def test_sklearn_07(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "logisticregression_pmml.pmml" model = LogisticRegression() pipeline_obj = Pipeline([ ("mapping", DataFrameMapper([ (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , (['petal length (cm)', 'petal width (cm)'], Imputer()) ])), ("lr", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ## 1 segmentation = pmml_obj.MiningModel[0].Segmentation self.assertEqual(segmentation.Segment.__len__(), model.classes_.__len__()+1) ## 2 self.assertEqual(segmentation.multipleModelMethod, "modelChain") ##3 self.assertEqual(segmentation.Segment[-1].RegressionModel.normalizationMethod, "simplemax") ##4 for i in range(model.classes_.__len__()): self.assertEqual(segmentation.Segment[i].RegressionModel.normalizationMethod, "logit") self.assertEqual("{:.16f}".format(model.intercept_[i]),\ "{:.16f}".format(segmentation.Segment[i].RegressionModel.RegressionTable[0].intercept)) def test_sklearn_08(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = [i%2 for i in range(iris.data.shape[0])] features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ('pca',PCA(2)), ('mod',LogisticRegression()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "logisticregression_pca_pmml.pmml") self.assertEqual(os.path.isfile("logisticregression_pca_pmml.pmml"),True) def test_sklearn_09(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("SGD", SGDClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "sgdclassifier_pmml.pmml") self.assertEqual(os.path.isfile("sgdclassifier_pmml.pmml"),True) def test_sklearn_10(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("lsvc", LinearSVC()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "linearsvc_pmml.pmml") self.assertEqual(os.path.isfile("linearsvc_pmml.pmml"),True) def test_sklearn_11(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',LinearSVR()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"linearsvr_pmml.pmml") self.assertEqual(os.path.isfile("linearsvr_pmml.pmml"),True) def test_sklearn_12(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',GradientBoostingRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"gbr.pmml") self.assertEqual(os.path.isfile("gbr.pmml"),True) def test_sklearn_13(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("SGD", DecisionTreeClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "dtr_clf.pmml") self.assertEqual(os.path.isfile("dtr_clf.pmml"),True) def test_sklearn_14(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',RandomForestRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"rfr.pmml") self.assertEqual(os.path.isfile("rfr.pmml"),True) def test_sklearn_15(self): df =
pd.read_csv('nyoka/tests/auto-mpg.csv')
pandas.read_csv
""" Module: LMR_proxy_preprocess.py Purpose: Takes proxy data in their native format (e.g. .pckl file for PAGES2k or collection of NCDC-templated .txt files) and generates Pandas DataFrames stored in pickle files containing metadata and actual data from proxy records. The "pickled" DataFrames are used as input by the Last Millennium Reanalysis software. Currently, the data is stored as *annual averages* for original records with subannual data. Originator : <NAME> | Dept. of Atmospheric Sciences, Univ. of Washington | January 2016 (Based on code written by <NAME> (U. of Washington) to handle PAGES(2013) proxies) Revisions : - Addition of proxy types corresponding to "deep-times" proxy records, which are being included in the NCDC-templated proxy collection. [R. Tardif, U. of Washington, March 2017] - Addition of recognized time/age definitions used in "deep-times" proxy records and improved conversion of time/age data to year CE (convention used in LMR). [R. Tardif, U. of Washington, March 2017] - Improved detection & treatment of missing data, now using tags found (or not) in each data file. [R. Tardif, U. of Washington, March 2017] - Added functionalities related to the merging of proxies coming from two sources (PAGES2k phase 2 data contained in a single compressed pickle file and "in-house" collections contained in NCDC-templated text files). The possibility to "gaussianize" records and to calculate annual averages on "tropical year" (Apr to Mar) or calendar year have also been implemented. [R. Tardif, U. of Washington, Michael Erb, USC, May 2017] - Renamed the proxy databases to less-confusing convention. 'pages' renamed as 'PAGES2kv1' and 'NCDC' renamed as 'LMRdb' [R. Tardif, U. of Washington, Sept 2017] """ import glob import os import os.path import numpy as np import pandas as pd import time as clock from copy import deepcopy from scipy import stats import string import re import six import ast from os.path import join import pickle as pickle import gzip import calendar # LMR imports from LMR_utils import gaussianize # ========================================================================================= class EmptyError(Exception): print(Exception) # ========================================================================================= # ---------------------------------------- MAIN ------------------------------------------- # ========================================================================================= def main(): # ******************************************************************************** # Section for User-defined options: begin # #proxy_data_source = 'PAGES2Kv1' # proxies from PAGES2k phase 1 (2013) # --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- proxy_data_source = 'LMRdb' # proxies from PAGES2k phase 2 (2017) + # "in-house" collection in NCDC-templated files # Determine which dataset(s) (NCDC and/or PAGES2kv2) to include in the DF. # - Both : include_NCDC = True, include_PAGES2kphase2 = True # - Only NCDC : include_NCDC = True, include_PAGES2kphase2 = False # - Only PAGES2kv2 : include_NCDC = False, include_PAGES2kphase2 = True include_NCDC = True include_PAGES2kphase2 = True #PAGES2kphase2file = 'PAGES2k_v2.0.0_tempOnly.pklz' # compressed version of the file PAGES2kphase2file = 'PAGES2k_v2.0.0_tempOnly.pckl' # version of the LMRdb proxy db to process # - first set put together, including PAGES2k2013 trees #LMRdb_dbversion = 'v0.0.0' # - PAGES2k2013 trees taken out, but with NCDC-templated records from PAGES2k phase 2, version 1.9.0 #LMRdb_dbversion = 'v0.1.0' # - NCDC collection for LMR + published PAGES2k phase 2 proxies (version 2.0.0). stored in .pklz file #LMRdb_dbversion = 'v0.2.0' #LMRdb_dbversion = 'v0.3.0' # LMRdb_dbversion = 'v0.4.0' LMRdb_dbversion = 'v1.0.0' # File containing info on duplicates in proxy records infoDuplicates = 'Proxy_Duplicates_PAGES2kv2_NCDC_LMR'+LMRdb_dbversion+'.xlsx' # This option transforms all data to a Gaussian distribution. It should only be used for # linear regressions, not physically-based PSMs. gaussianize_data = False # Specify the type of year to use for data averaging. "calendar year" (Jan-Dec) # or "tropical year" (Apr-Mar) year_type = "calendar year" #year_type = "tropical year" eliminate_duplicates = True # --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- #proxy_data_source = 'DTDA' dtda_dbversion = 'v0.0.0' # --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- *** --- # datadir: directory where the original proxy datafiles are located datadir = '/home/katabatic/wperkins/data/LMR/data/proxies/' # outdir: directory where the proxy database files will be created # The piece before /data/proxies should correspond to your "lmr_path" set in LMR_config.py outdir = '/home/katabatic/wperkins/data/LMR/data/proxies/' # # Section for User-defined options: end # *************************************************************** main_begin_time = clock.time() # first checking that input and output directories exist on disk if not os.path.isdir(datadir): print('ERROR: Directory <<datadir>> does not exist. Please revise your' ' entry for this user-defined parameter.') raise SystemExit(1) else: # check that datadir ends with '/' -> expected thereafter if not datadir[-1] == '/': datadir = datadir+'/' if not os.path.isdir(outdir): print('ERROR: Directory <<outdir>> does not exist. Please revise your' ' entry for this user-defined parameter.') raise SystemExit(1) else: # check that outdir ends with '/' -> expected thereafter if not outdir[-1] == '/': outdir = outdir+'/' if proxy_data_source == 'PAGES2Kv1': # ============================================================================ # PAGES2Kv1 proxy data ------------------------------------------------------- # ============================================================================ take_average_out = False fname = datadir + 'Pages2k_DatabaseS1-All-proxy-records.xlsx' meta_outfile = outdir + 'Pages2kv1_Metadata.df.pckl' outfile = outdir + 'Pages2kv1_Proxies.df.pckl' pages_xcel_to_dataframes(fname, meta_outfile, outfile, take_average_out) elif proxy_data_source == 'LMRdb': # ============================================================================ # LMRdb proxy data ----------------------------------------------------------- # ============================================================================ datadir = datadir+'LMRdb/ToPandas_'+LMRdb_dbversion+'/' infoDuplicates = datadir+infoDuplicates # Some checks if not os.path.isdir(datadir): print('ERROR: Directory % is not found. Directory structure' ' <<datadir>>/LMRdb/ToPandas_vX.Y.Z is expected.' ' Please revise your set-up.' %datadir) raise SystemExit(1) if eliminate_duplicates and not os.path.isfile(infoDuplicates): print('ERROR: eliminate_duplicates parameter set to True but' ' required file %s not found! Please rectify.' %infoDuplicates) raise SystemExit(1) meta_outfile = outdir + 'LMRdb_'+LMRdb_dbversion+'_Metadata.df.pckl' data_outfile = outdir + 'LMRdb_'+LMRdb_dbversion+'_Proxies.df.pckl' # Specify all proxy types & associated proxy measurements to look for & extract from the data files # This is to take into account all the possible different names found in the PAGES2kv2 and NCDC data files. proxy_def = \ { #old 'Tree Rings_WidthPages' : ['TRW','ERW','LRW'],\ 'Tree Rings_WidthPages2' : ['trsgi'],\ 'Tree Rings_WidthBreit' : ['trsgi'],\ 'Tree Rings_WoodDensity' : ['max_d','min_d','early_d','earl_d','late_d','MXD','density'],\ 'Tree Rings_Isotopes' : ['d18O'],\ 'Corals and Sclerosponges_d18O' : ['d18O','delta18O','d18o','d18O_stk','d18O_int','d18O_norm','d18o_avg','d18o_ave','dO18','d18O_4'],\ 'Corals and Sclerosponges_SrCa' : ['Sr/Ca','Sr_Ca','Sr/Ca_norm','Sr/Ca_anom','Sr/Ca_int'],\ 'Corals and Sclerosponges_Rates' : ['ext','calc','calcification','calcification rate', 'composite'],\ 'Ice Cores_d18O' : ['d18O','delta18O','delta18o','d18o','d18o_int','d18O_int','d18O_norm','d18o_norm','dO18','d18O_anom'],\ 'Ice Cores_dD' : ['deltaD','delD','dD'],\ 'Ice Cores_Accumulation' : ['accum','accumu'],\ 'Ice Cores_MeltFeature' : ['MFP','melt'],\ 'Lake Cores_Varve' : ['varve', 'varve_thickness', 'varve thickness', 'thickness'],\ 'Lake Cores_BioMarkers' : ['Uk37', 'TEX86', 'tex86'],\ 'Lake Cores_GeoChem' : ['Sr/Ca', 'Mg/Ca','Cl_cont'],\ 'Lake Cores_Misc' : ['RABD660_670','X_radiograph_dark_layer','massacum'],\ 'Marine Cores_d18O' : ['d18O'],\ 'Marine Cores_tex86' : ['tex86'],\ 'Marine Cores_uk37' : ['uk37','UK37'],\ 'Speleothems_d18O' : ['d18O'],\ 'Bivalve_d18O' : ['d18O'],\ # DADT proxies # 'Marine Cores_d18Opachyderma' : ['d18O_pachyderma'],\ # 'Marine Cores_d18Obulloides' : ['d18O_bulloides'],\ # 'Marine Cores_tex86' : ['tex86'],\ # Proxy types present in the database but which should not be included/assimilated # 'Corals and Sclerosponges_d14C' : ['d14C','d14c','ac_d14c'],\ # 'Corals and Sclerosponges_d13C' : ['d13C','d13c','d13c_ave','d13c_ann_ave','d13C_int'],\ # 'Corals and Sclerosponges_Sr' : ['Sr'],\ # 'Corals and Sclerosponges_BaCa' : ['Ba/Ca'],\ # 'Corals and Sclerosponges_CdCa' : ['Cd/Ca'],\ # 'Corals and Sclerosponges_MgCa' : ['Mg/Ca'],\ # 'Corals and Sclerosponges_UCa' : ['U/Ca','U/Ca_anom'],\ # 'Corals and Sclerosponges_Pb' : ['Pb'],\ # 'Speleothems_d13C' : ['d13C'],\ # 'Borehole_Temperature' : ['temperature'],\ # 'Hybrid_Temperature' : ['temperature'],\ # 'Documents_Temperature' : ['temperature'],\ # 'Tree Rings_Temperature' : ['temperature'],\ # 'Lake Cores_Temperature' : ['temperature'],\ # 'Marine Cores_Temperature' : ['temperature'],\ # 'Corals and Sclerosponges_Temperature' : ['temperature'],\ # 'Climate Reconstructions' : ['sst_ORSTOM','sss_ORSTOM','temp_anom'],\ } # --- data from LMR's NCDC-templated files if include_NCDC: ncdc_dict = ncdc_txt_to_dict(datadir, proxy_def, year_type, gaussianize_data) else: ncdc_dict = [] # --- PAGES2k phase2 (2017) data if include_PAGES2kphase2: pages2kv2_dict = pages2kv2_pickle_to_dict(datadir, PAGES2kphase2file, proxy_def, year_type, gaussianize_data) else: pages2kv2_dict = [] # --- Merge datasets, scrub duplicates and write metadata & data to file merge_dicts_to_dataframes(proxy_def, ncdc_dict, pages2kv2_dict, meta_outfile, data_outfile, infoDuplicates, eliminate_duplicates) elif proxy_data_source == 'DTDA': # ============================================================================ # DTDA project proxy data ---------------------------------------------------- # ============================================================================ take_average_out = False datadir = datadir+'DTDA/' fname = datadir + 'DTDA_proxies_'+dtda_dbversion+'.xlsx' meta_outfile = outdir + 'DTDA_'+dtda_dbversion+'_Metadata.df.pckl' outfile = outdir + 'DTDA_'+dtda_dbversion+'_Proxies.df.pckl' DTDA_xcel_to_dataframes(fname, meta_outfile, outfile, take_average_out) else: raise SystemExit('ERROR: Unkown proxy data source! Exiting!') elapsed_time = clock.time() - main_begin_time print('Build of integrated proxy database completed in %s mins' %str(elapsed_time/60.)) # ========================================================================================= # ------------------------------------- END OF MAIN --------------------------------------- # ========================================================================================= # ========================================================================================= def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.numeric(s) return True except (TypeError, ValueError): pass return False # ========================================================================================= def compute_annual_means(time_raw,data_raw,valid_frac,year_type): """ Computes annual-means from raw data. Inputs: time_raw : Original time axis data_raw : Original data valid_frac : The fraction of sub-annual data necessary to create annual mean. Otherwise NaN. year_type : "calendar year" (Jan-Dec) or "tropical year" (Apr-Mar) Outputs: time_annual, data_annual Authors: <NAME>, Univ. of Washington; <NAME>, Univ. of Southern California """ # Check if dealing with multiple chronologies in one data stream (for NCDC files) array_shape = data_raw.shape if len(array_shape) == 2: nbtimes, nbvalid = data_raw.shape elif len(array_shape) == 1: nbtimes, = data_raw.shape nbvalid = 1 else: raise SystemExit('ERROR in compute_annual_means: Unrecognized shape of data input array.') time_between_records = np.diff(time_raw, n=1) # Temporal resolution of the data, calculated as the mode of time difference. time_resolution = abs(stats.mode(time_between_records)[0][0]) # check if time_resolution = 0.0 !!! sometimes adjacent records are tagged at same time ... if time_resolution == 0.0: print('***WARNING! Found adjacent records with same times!') inderr = np.where(time_between_records == 0.0) print(inderr) time_between_records = np.delete(time_between_records,inderr) time_resolution = abs(stats.mode(time_between_records)[0][0]) max_nb_per_year = int(1.0/time_resolution) if time_resolution <=1.0: proxy_resolution = int(1.0) # coarse-graining to annual else: proxy_resolution = int(time_resolution) # Get rounded integer values of all years present in record. years_all = [int(np.floor(time_raw[k])) for k in range(0,len(time_raw))] years = list(set(years_all)) # 'set' is used to get unique values in list years = sorted(years) # sort the list years = np.insert(years,0,years[0]-1) # <NAME> # bounds, for calendar year : [years_beg,years_end[ years_beg = np.asarray(years,dtype=np.float64) # inclusive lower bound years_end = years_beg + 1. # exclusive upper bound # If some of the time values are floats (sub-annual resolution) # and year_type is tropical_year, adjust the years to cover the # tropical year (Apr-Mar). if np.equal(np.mod(time_raw,1),0).all() == False and year_type == 'tropical year': print("Tropical year averaging...") # modify bounds defining the "year" for i, yr in enumerate(years): # beginning of interval if calendar.isleap(yr): years_beg[i] = float(yr)+((31+29+31)/float(366)) else: years_beg[i] = float(yr)+((31+28+31)/float(365)) # end of interval if calendar.isleap(yr+1): years_end[i] = float(yr+1)+((31+29+31)/float(366)) else: years_end[i] = float(yr+1)+((31+28+31)/float(365)) time_annual = np.asarray(years,dtype=np.float64) data_annual = np.zeros(shape=[len(years),nbvalid], dtype=np.float64) # fill with NaNs for default values data_annual[:] = np.NAN # Calculate the mean of all data points with the same year. for i in range(len(years)): ind = [j for j, year in enumerate(time_raw) if (year >= years_beg[i]) and (year < years_end[i])] nbdat = len(ind) # TODO: check nb of non-NaN values !!!!! ... ... ... ... ... ... if time_resolution <= 1.0: frac = float(nbdat)/float(max_nb_per_year) if frac > valid_frac: data_annual[i,:] = np.nanmean(data_raw[ind],axis=0) else: if nbdat > 1: print('***WARNING! Found multiple records in same year in data with multiyear resolution!') print(' year= %d %d' %(years[i], nbdat)) # Note: this calculates the mean if multiple entries found data_annual[i,:] = np.nanmean(data_raw[ind],axis=0) # check and modify time_annual array to reflect only the valid data present in the annual record # for correct tagging of "Oldest" and "Youngest" data indok = np.where(np.isfinite(data_annual))[0] keep = np.arange(indok[0],indok[-1]+1,1) return time_annual[keep], data_annual[keep,:], proxy_resolution # =================================================================================== # For PAGES2k S1 proxy data --------------------------------------------------------- # =================================================================================== def pages_xcel_to_dataframes(filename, metaout, dataout, take_average_out): """ Takes in Pages2K CSV and converts it to dataframe storage. This increases size on disk due to the joining along the time index (lots of null values). Makes it easier to query and grab data for the proxy experiments. :param filename: :param metaout: :param dataout: :return: Author: <NAME>, Univ. of Washington """ # check that file <<filename>> exists if not os.path.isfile(filename): print('ERROR: File %s does not exist. Please make sure' ' input file is located in right directory.' %filename) raise SystemExit(1) meta_sheet_name = 'Metadata' metadata = pd.read_excel(filename, meta_sheet_name) # rename 'PAGES ID' column header to more general 'Proxy ID' metadata.rename(columns = {'PAGES ID':'Proxy ID'},inplace=True) metadata.to_pickle(metaout) record_sheet_names = ['AntProxies', 'ArcProxies', 'AsiaProxies', 'AusProxies', 'EurProxies', 'NAmPol', 'NAmTR', 'SAmProxies'] for i, sheet in enumerate(record_sheet_names): tmp = pd.read_excel(filename, sheet) # for key, series in tmp.iteritems(): # h5store[key] = series[series.notnull()] if i == 0: df = tmp else: # SQL like table join along index df = df.merge(tmp, how='outer', on='PAGES 2k ID') #fix index and column name col0 = df.columns[0] newcol0 = df[col0][0] df.set_index(col0, drop=True, inplace=True) df.index.name = newcol0 df = df.ix[1:] df.sort_index(inplace=True) if take_average_out: # copy of dataframe df_tmp = df # fill dataframe with new values where temporal averages over proxy records are subtracted df = df_tmp.sub(df_tmp.mean(axis=0), axis=1) # TODO: make sure year index is consecutive #write data to file df = df.to_sparse() df.to_pickle(dataout) # =================================================================================== # For PAGES2k v2.0.0 proxy data --------------------------------------------------------- # =================================================================================== def pages2kv2_pickle_to_dataframes(datadir, metaout, dataout, eliminate_duplicates, year_type, gaussianize_data): """ Takes in a Pages2k pckl file and converts it to dataframe storage. Authors: <NAME>, Univ. of Washington, Jan 2016. <NAME>, Univ. of Southern California, Feb 2017 """ # =============================================================================== # Upload proxy data from Pages2k v2 pickle file # =============================================================================== # Open the pickle file containing the Pages2k data f = gzip.open(datadir+'PAGES2k_v2.0.0_tempOnly.pklz','rb') pages2k_data = pickle.load(f) f.close() # =============================================================================== # Produce a summary of uploaded proxy data & # generate integrated database in pandas DataFrame format # =============================================================================== # Summary of the final_proxy_list nbsites = len(pages2k_data) print('----------------------------------------------------------------------') print(' SUMMARY: ') print(' Total nb of records : ', nbsites) print(' ------------------------------------------------------') tot = [] # Loop over proxy types specified in *main* counter = 0 # Build up pandas DataFrame metadf = pd.DataFrame() headers = ['NCDC ID','Site name','Lat (N)','Lon (E)','Elev','Archive type','Proxy measurement','Resolution (yr)',\ 'Oldest (C.E.)','Youngest (C.E.)','Location','climateVariable','Realm','Relation_to_climateVariable',\ 'Seasonality', 'Databases'] nb = [] for counter in range(0,len(pages2k_data)): #counter = 13 # An example of a sub-annual record # Give each record a unique descriptive name pages2k_data[counter]['siteID'] = "PAGES2kv2_"+pages2k_data[counter]['dataSetName']+"_"+pages2k_data[counter]['paleoData_pages2kID']+":"+pages2k_data[counter]['paleoData_variableName'] nb.append(pages2k_data[counter]['siteID']) print("Processing metadata", counter+1, "/", len(pages2k_data), ":", pages2k_data[counter]['paleoData_pages2kID']) # If the time axis goes backwards (i.e. newer to older), reverse it. if pages2k_data[counter]['year'][-1] - pages2k_data[counter]['year'][-2] < 0: pages2k_data[counter]['year'].reverse() pages2k_data[counter]['paleoData_values'].reverse() # If subannual, average up to annual -------------------------------------------------------- time_raw = np.array(pages2k_data[counter]['year'],dtype=np.float) data_raw = np.array(pages2k_data[counter]['paleoData_values'],dtype=np.float) # Remove values where either time or data is nan. nan_indices = np.isnan(time_raw)+np.isnan(data_raw) time_raw = time_raw[~nan_indices] data_raw = data_raw[~nan_indices] valid_frac = 0.5 # Use the following function to make annual-means. # Inputs: time_raw, data_raw, valid_frac, year_type. Outputs: time_annual, data_annual time_annual, data_annual, proxy_resolution = compute_annual_means(time_raw,data_raw,valid_frac,year_type) # If gaussianize_data is set to true, transform the proxy data to Gaussian. # This option should only be used when using regressions, not physically-based PSMs. if gaussianize_data == True: data_annual = gaussianize.gaussianize(data_annual) # Write the annual data to the dictionary, so they can use written to # the data file outside of this loop. pages2k_data[counter]['time_annual'] = time_annual pages2k_data[counter]['data_annual'] = data_annual # Rename the proxy types in the same convention as the NCDC dataset. # Proxy types not renamed: bivalve, borehole, documents, hybrid if (pages2k_data[counter]['archiveType'] == 'coral') or (pages2k_data[counter]['archiveType'] == 'sclerosponge'): pages2k_data[counter]['archiveType'] = 'Corals and Sclerosponges' elif pages2k_data[counter]['archiveType'] == 'glacier ice': pages2k_data[counter]['archiveType'] = 'Ice Cores' elif pages2k_data[counter]['archiveType'] == 'lake sediment': pages2k_data[counter]['archiveType'] = 'Lake Cores' elif pages2k_data[counter]['archiveType'] == 'marine sediment': pages2k_data[counter]['archiveType'] = 'Marine Cores' elif pages2k_data[counter]['archiveType'] == 'speleothem': pages2k_data[counter]['archiveType'] = 'Speleothems' elif pages2k_data[counter]['archiveType'] == 'tree': pages2k_data[counter]['archiveType'] = 'Tree Rings' # Rename some of the the proxy measurements to be more standard. if (pages2k_data[counter]['archiveType'] == 'Ice Cores') and (pages2k_data[counter]['paleoData_variableName'] == 'd18O1'): pages2k_data[counter]['paleoData_variableName'] = 'd18O' elif (pages2k_data[counter]['archiveType'] == 'Lake Cores') and (pages2k_data[counter]['paleoData_variableName'] == 'temperature1'): pages2k_data[counter]['paleoData_variableName'] = 'temperature' elif (pages2k_data[counter]['archiveType'] == 'Lake Cores') and (pages2k_data[counter]['paleoData_variableName'] == 'temperature3'): pages2k_data[counter]['paleoData_variableName'] = 'temperature' # Not all records have data for elevation. In these cases, set elevation to nan. if 'geo_meanElev' not in pages2k_data[counter]: pages2k_data[counter]['geo_meanElev'] = np.nan # Ensure lon is in [0,360] domain if pages2k_data[counter]['geo_meanLon'] < 0.0: pages2k_data[counter]['geo_meanLon'] = 360 + pages2k_data[counter]['geo_meanLon'] # Determine the seasonality of the record. # Seasonal names were mapped the three-month climatological seasons. # 'early summer' was mapped to the first two months of summer only. Is this right???????????? # 'growing season' was mapped to summer. season_orig = pages2k_data[counter]['climateInterpretation_seasonality'] if any(char.isdigit() for char in season_orig): pages2k_data_seasonality = map(int,season_orig.split(' ')) elif season_orig == 'annual': if year_type == 'tropical year': pages2k_data_seasonality = [4,5,6,7,8,9,10,11,12,13,14,15] else: pages2k_data_seasonality = [1,2,3,4,5,6,7,8,9,10,11,12] elif season_orig == 'summer': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [6,7,8] else: pages2k_data_seasonality = [-12,1,2] elif season_orig == 'winter': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [-12,1,2] else: pages2k_data_seasonality = [6,7,8] elif season_orig == 'winter/spring': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [-12,1,2,3,4,5] else: pages2k_data_seasonality = [6,7,8,9,10,11] elif season_orig == 'early summer': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [6,7] else: pages2k_data_seasonality = [-12,1] elif season_orig == 'growing season': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [6,7,8] else: pages2k_data_seasonality = [-12,1,2] else: if year_type == 'tropical year': pages2k_data_seasonality = [4,5,6,7,8,9,10,11,12,13,14,15] else: pages2k_data_seasonality = [1,2,3,4,5,6,7,8,9,10,11,12] # Spell out the name of the interpretation variable. if pages2k_data[counter]['climateInterpretation_variable'] == 'T': pages2k_data[counter]['climateInterpretation_variable'] = 'temperature' # Save to a dataframe frame = pd.DataFrame({'a':pages2k_data[counter]['siteID'], 'b':pages2k_data[counter]['geo_siteName'], 'c':pages2k_data[counter]['geo_meanLat'], \ 'd':pages2k_data[counter]['geo_meanLon'], 'e':pages2k_data[counter]['geo_meanElev'], \ 'f':pages2k_data[counter]['archiveType'], 'g':pages2k_data[counter]['paleoData_variableName'], \ 'h':proxy_resolution, 'i':pages2k_data[counter]['time_annual'][0], 'j':pages2k_data[counter]['time_annual'][-1], \ 'k':pages2k_data[counter]['geo_pages2kRegion'], 'l':pages2k_data[counter]['climateInterpretation_variable'], \ 'm':pages2k_data[counter]['climateInterpretation_variableDetail'], \ 'n':pages2k_data[counter]['climateInterpretation_interpDirection'], 'o':None, 'p':None}, index=[counter]) # To get seasonality & databases *lists* into columns 'o' and 'p' of DataFrame frame.set_value(counter,'o',pages2k_data_seasonality) frame.set_value(counter,'p',['PAGES2kv2']) # Append to main DataFrame metadf = metadf.append(frame) #print ' ', '{:40}'.format(key), ' : ', len(nb) tot.append(len(nb)) nbtot = sum(tot) print(' ------------------------------------------------------') print(' ','{:40}'.format('Total:'), ' : ', nbtot) print('----------------------------------------------------------------------') print(' ') # Redefine column headers metadf.columns = headers # Write metadata to file print('Now writing metadata to file:', metaout) metadf.to_pickle(metaout) # ----------------------------------------------------- # Build the proxy **data** DataFrame and output to file # ----------------------------------------------------- print(' ') print('Now creating & loading the data in the pandas DataFrame...') print(' ') for counter in range(0,len(pages2k_data)): print("Processing metadata", counter+1, "/", len(pages2k_data), ":", pages2k_data[counter]['paleoData_pages2kID']) nbdata = len(pages2k_data[counter]['time_annual']) # Load data in numpy array frame_data = np.zeros(shape=[nbdata,2]) frame_data[:,0] = pages2k_data[counter]['time_annual'] frame_data[:,1] = pages2k_data[counter]['data_annual'] if counter == 0: # Build up pandas DataFrame header = ['NCDC ID', pages2k_data[counter]['siteID']] df = pd.DataFrame({'a':frame_data[:,0], 'b':frame_data[:,1]}) df.columns = header else: frame = pd.DataFrame({'NCDC ID':frame_data[:,0], pages2k_data[counter]['siteID']:frame_data[:,1]}) df = df.merge(frame, how='outer', on='NCDC ID') # Fix DataFrame index and column name col0 = df.columns[0] df.set_index(col0, drop=True, inplace=True) df.index.name = 'Year C.E.' df.sort_index(inplace=True) # Write data to file print('Now writing to file:', dataout) df.to_pickle(dataout) print(' ') print('Done!') # =================================================================================== # For DTDA project proxy data ------------------------------------------------------- # =================================================================================== def DTDA_xcel_to_dataframes(filename, metaout, dataout, take_average_out): """ Takes in Pages2K CSV and converts it to dataframe storage. This increases size on disk due to the joining along the time index (lots of null values). Makes it easier to query and grab data for the proxy experiments. :param filename: :param metaout: :param dataout: :return: Author: <NAME>, Univ. of Washington Based on pages_xcel_to_dataframes function written by <NAME> (Univ. of Washington) """ meta_sheet_name = 'Metadata' metadata = pd.read_excel(filename, meta_sheet_name) # add a "Databases" column and set to LMR metadata.loc[:,'Databases'] = '[LMR]' # add a "Seasonality" column and set to [1,2,3,4,5,6,7,8,9,10,11,12] metadata.loc[:,'Seasonality'] = '[1,2,3,4,5,6,7,8,9,10,11,12]' metadata.loc[:,'Elev'] = 0.0 nbrecords = len(metadata) # One proxy record per sheet, all named as DataXXX record_sheet_names = ['Data'+str("{0:03d}".format(i+1)) for i in range(nbrecords)] for i, sheet in enumerate(record_sheet_names): pdata = pd.read_excel(filename, sheet) # rounding age data to nearest year (<NAME>, pers. comm.) age = (pdata[pdata.columns[0]][1:]).astype('float').round() pdata[pdata.columns[0]][1:] = age # -- just for print out - looking into time axis for each record # age difference between consecutive data diff = np.diff(pdata[pdata.columns[0]][1:], 1) print('{:10s}'.format(pdata.columns[1]), ' : temporal resolution : mean=', '{:7.1f}'.format(np.mean(diff)), ' median=', '{:7.1f}'.format(np.median(diff)),\ ' min=', '{:7.1f}'.format(np.min(diff)), ' max=', '{:7.1f}'.format(np.max(diff))) resolution = np.mean(diff) # take average difference as representative "resolution" # update resolution info in the metadata metadata.loc[i,'Resolution (yr)'] = int(resolution) if i == 0: df = pdata else: # SQL like table join along index df = df.merge(pdata, how='outer', on='Proxy ID') #fix index and column name col0 = df.columns[0] # check time definition and convert to year CE if needed newcol0 = df[col0][0] if newcol0 == 'Year C.E.' or newcol0 == 'Year CE': # do nothing pass elif newcol0 == 'Year BP': newcol0 = 'Year C.E.' df[col0][1:] = 1950. - df[col0][1:] else: print('Unrecognized time definition...') raise SystemExit() df.set_index(col0, drop=True, inplace=True) df.index.name = newcol0 df = df.ix[1:] df.sort_index(inplace=True) # Checkin for duplicate ages in proxy record. If present, calculate average (<NAME>, pers. comm.) df = df.astype(float) df_f = df.groupby(df.index).mean() if take_average_out: # copy of dataframe df_tmp = df_f # fill dataframe with new values where temporal averages over proxy records are subtracted df_f = df_tmp.sub(df_tmp.mean(axis=0), axis=1) # TODO: make sure year index is consecutive #write data to file df_f.to_pickle(dataout) # Make sure ... metadata['Archive type'] = metadata['Archive type'].astype(str) # Add 'Youngest (C.E.)', 'Oldest (C.E.)' 'Elev' and 'Seasonality' info to metadata sites = list(df_f) for s in sites: # 'Youngest' and 'Oldest' info based on the age data values = df_f[s] values = values[values.notnull()] times = values.index.values meta_ind = metadata[metadata['Proxy ID'] == s].index metadata.loc[meta_ind,'Oldest (C.E.)'] = np.min(times) metadata.loc[meta_ind,'Youngest (C.E.)'] = np.max(times) # write metadata to file metadata.to_pickle(metaout) # =================================================================================== # For PAGES2k phase 2 (2017) proxy data --------------------------------------------- # =================================================================================== def pages2kv2_pickle_to_dict(datadir, pages2kv2_file, proxy_def, year_type, gaussianize_data): """ Takes in a Pages2k pickle (pklz) file and converts it to python dictionary storage. Authors: <NAME>, Univ. of Washington, Jan 2016. <NAME>, Univ. of Southern California, Feb 2017 Revisions: - Modified output, storing proxy information in dictionary returned by the function, instead of storing in pandas dataframe dumped to pickle file, as done in the original version by <NAME>. [<NAME>, U. of Washington, May 2017] """ valid_frac = 0.5 # =============================================================================== # Upload proxy data from Pages2k v2 pickle file # =============================================================================== begin_time = clock.time() # Open the pickle file containing the Pages2k data, if it exists in target directory infile = os.path.join(datadir, pages2kv2_file) if os.path.isfile(infile): print('Data from PAGES2k phase 2:') print(' Uploading data from %s ...' %infile) try: # try to read as a straight pckl file pages2k_data = pd.read_pickle(infile) # f = open(infile,'rb') # pages2k_data = pickle.load(f) # f.close() except: # failed to read so try as a compressed pckl (pklz) file try: f = gzip.open(infile,'rb') pages2k_data = pickle.load(f) f.close() except: raise SystemExit(('ERROR: Could not read the PAGES2kv2 proxy file {}' ' as a regular or compressed pickle file. Unrecognized format!').format(pages2kv2_file)) else: raise SystemExit(('ERROR: Option to include PAGES2kv2 proxies enabled' ' but corresponding data file could not be found!' ' Please place file {} in directory {}').format(pages2kv2_file,datadir)) # Summary of the uploaded data nbsites = len(pages2k_data) proxy_dict_pagesv2 = {} tot = [] nb = [] for counter in range(0,nbsites): # Give each record a unique descriptive name pages2k_data[counter]['siteID'] = "PAGES2kv2_"+pages2k_data[counter]['dataSetName']+\ "_"+pages2k_data[counter]['paleoData_pages2kID']+\ ":"+pages2k_data[counter]['paleoData_variableName'] nb.append(pages2k_data[counter]['siteID']) print(' Processing %s/%s : %s' %(str(counter+1), str(len(pages2k_data)), pages2k_data[counter]['paleoData_pages2kID'])) # Look for publication title & authors if 'NEEDS A TITLE' not in pages2k_data[counter]['pub1_title']: pages2k_data[counter]['pub_title'] = pages2k_data[counter]['pub1_title'] pages2k_data[counter]['pub_author'] = pages2k_data[counter]['pub1_author'] else: if 'NEEDS A TITLE' not in pages2k_data[counter]['pub2_title']: pages2k_data[counter]['pub_title'] = pages2k_data[counter]['pub2_title'] pages2k_data[counter]['pub_author'] = pages2k_data[counter]['pub2_author'] else: pages2k_data[counter]['pub_title'] = 'Unknown' pages2k_data[counter]['pub_author'] = 'Unknown' # If the time axis goes backwards (i.e. newer to older), reverse it. if pages2k_data[counter]['year'][-1] - pages2k_data[counter]['year'][-2] < 0: pages2k_data[counter]['year'].reverse() pages2k_data[counter]['paleoData_values'].reverse() # If subannual, average up to annual -------------------------------------------------------- time_raw = np.array(pages2k_data[counter]['year'],dtype=np.float) data_raw = np.array(pages2k_data[counter]['paleoData_values'],dtype=np.float) # Remove values where either time or data is nan. nan_indices = np.isnan(time_raw)+np.isnan(data_raw) time_raw = time_raw[~nan_indices] data_raw = data_raw[~nan_indices] # Use the following function to make annual-means. # Inputs: time_raw, data_raw, valid_frac, year_type. Outputs: time_annual, data_annual time_annual, data_annual, proxy_resolution = compute_annual_means(time_raw,data_raw,valid_frac,year_type) data_annual = np.squeeze(data_annual) # If gaussianize_data is set to true, transform the proxy data to Gaussian. # This option should only be used when using regressions, not physically-based PSMs. if gaussianize_data == True: data_annual = gaussianize(data_annual) # Write the annual data to the dictionary, so they can use written to # the data file outside of this loop. pages2k_data[counter]['time_annual'] = time_annual pages2k_data[counter]['data_annual'] = data_annual # Rename the proxy types in the same convention as the LMR's NCDC dataset. # Proxy types not renamed, except capitalizing 1st letter: bivalve, borehole, documents, hybrid if (pages2k_data[counter]['archiveType'] == 'coral') or (pages2k_data[counter]['archiveType'] == 'sclerosponge'): pages2k_data[counter]['archiveType'] = 'Corals and Sclerosponges' elif pages2k_data[counter]['archiveType'] == 'glacier ice': pages2k_data[counter]['archiveType'] = 'Ice Cores' elif pages2k_data[counter]['archiveType'] == 'lake sediment': pages2k_data[counter]['archiveType'] = 'Lake Cores' elif pages2k_data[counter]['archiveType'] == 'marine sediment': pages2k_data[counter]['archiveType'] = 'Marine Cores' elif pages2k_data[counter]['archiveType'] == 'speleothem': pages2k_data[counter]['archiveType'] = 'Speleothems' elif pages2k_data[counter]['archiveType'] == 'tree': pages2k_data[counter]['archiveType'] = 'Tree Rings' elif pages2k_data[counter]['archiveType'] == 'bivalve': pages2k_data[counter]['archiveType'] = 'Bivalve' elif pages2k_data[counter]['archiveType'] == 'borehole': pages2k_data[counter]['archiveType'] = 'Borehole' elif pages2k_data[counter]['archiveType'] == 'documents': pages2k_data[counter]['archiveType'] = 'Documents' elif pages2k_data[counter]['archiveType'] == 'hybrid': pages2k_data[counter]['archiveType'] = 'Hybrid' # Rename some of the the proxy measurements to be more standard. if (pages2k_data[counter]['archiveType'] == 'Ice Cores') and (pages2k_data[counter]['paleoData_variableName'] == 'd18O1'): pages2k_data[counter]['paleoData_variableName'] = 'd18O' elif (pages2k_data[counter]['archiveType'] == 'Tree Rings') and (pages2k_data[counter]['paleoData_variableName'] == 'temperature1'): pages2k_data[counter]['paleoData_variableName'] = 'temperature' elif (pages2k_data[counter]['archiveType'] == 'Lake Cores') and (pages2k_data[counter]['paleoData_variableName'] == 'temperature1'): pages2k_data[counter]['paleoData_variableName'] = 'temperature' elif (pages2k_data[counter]['archiveType'] == 'Lake Cores') and (pages2k_data[counter]['paleoData_variableName'] == 'temperature3'): pages2k_data[counter]['paleoData_variableName'] = 'temperature' # Not all records have data for elevation. In these cases, set elevation to nan. if 'geo_meanElev' not in pages2k_data[counter]: pages2k_data[counter]['geo_meanElev'] = np.nan # Ensure lon is in [0,360] domain if pages2k_data[counter]['geo_meanLon'] < 0.0: pages2k_data[counter]['geo_meanLon'] = 360 + pages2k_data[counter]['geo_meanLon'] # Determine the seasonality of the record. # Seasonal names were mapped the three-month climatological seasons. # 'early summer' was mapped to the first two months of summer only. Is this right???????????? # 'growing season' was mapped to summer. season_orig = pages2k_data[counter]['climateInterpretation_seasonality'] if any(char.isdigit() for char in season_orig): pages2k_data_seasonality = list(map(int,season_orig.split(' '))) elif season_orig == 'annual': if year_type == 'tropical year': pages2k_data_seasonality = [4,5,6,7,8,9,10,11,12,13,14,15] else: pages2k_data_seasonality = [1,2,3,4,5,6,7,8,9,10,11,12] elif season_orig == 'summer': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [6,7,8] else: pages2k_data_seasonality = [-12,1,2] elif season_orig == 'winter': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [-12,1,2] else: pages2k_data_seasonality = [6,7,8] elif season_orig == 'winter/spring': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [-12,1,2,3,4,5] else: pages2k_data_seasonality = [6,7,8,9,10,11] elif season_orig == 'early summer': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [6,7] else: pages2k_data_seasonality = [-12,1] elif season_orig == 'growing season': if pages2k_data[counter]['geo_meanLat'] >= 0: pages2k_data_seasonality = [6,7,8] else: pages2k_data_seasonality = [-12,1,2] else: if year_type == 'tropical year': pages2k_data_seasonality = [4,5,6,7,8,9,10,11,12,13,14,15] else: pages2k_data_seasonality = [1,2,3,4,5,6,7,8,9,10,11,12] # If the year type is "tropical", change all records tagged as "annual" to be tropical-year. if year_type == 'tropical year' and pages2k_data_seasonality == [1,2,3,4,5,6,7,8,9,10,11,12]: pages2k_data_seasonality = [4,5,6,7,8,9,10,11,12,13,14,15] # Some code to fix two erroneous seasonality metadata found in the PAGES2kv2 file: # The data in the file itself should be fixed, but error dealt with here in the mean time. if pages2k_data_seasonality == [6,7,2008]: pages2k_data_seasonality = [6,7,8] elif pages2k_data_seasonality == [7,8,2009]: pages2k_data_seasonality = [7,8,9] # Spell out the name of the interpretation variable. if pages2k_data[counter]['climateInterpretation_variable'] == 'T': pages2k_data[counter]['climateInterpretation_variable'] = 'temperature' tot.append(len(nb)) # ---------------------------------------------------------------------- # Filter the records which correspond to the proxy types & measurements # specified in proxy_def dictionary. For records retained, transfer # a subset of the available information to elements used in used in # theLMR proxy database. # ---------------------------------------------------------------------- for key in sorted(proxy_def.keys()): proxy_archive = key.split('_')[0] if pages2k_data[counter]['archiveType'] == proxy_archive \ and pages2k_data[counter]['paleoData_variableName'] in proxy_def[key]: proxy_name = pages2k_data[counter]['siteID'] proxy_dict_pagesv2[proxy_name] = {} # metadata proxy_dict_pagesv2[proxy_name]['Archive'] = pages2k_data[counter]['archiveType'] proxy_dict_pagesv2[proxy_name]['Measurement'] = pages2k_data[counter]['paleoData_variableName'] proxy_dict_pagesv2[proxy_name]['SiteName'] = pages2k_data[counter]['geo_siteName'] proxy_dict_pagesv2[proxy_name]['StudyName'] = pages2k_data[counter]['pub_title'] proxy_dict_pagesv2[proxy_name]['Investigators'] = pages2k_data[counter]['pub_author'] proxy_dict_pagesv2[proxy_name]['Location'] = pages2k_data[counter]['geo_pages2kRegion'] proxy_dict_pagesv2[proxy_name]['Resolution (yr)'] = proxy_resolution proxy_dict_pagesv2[proxy_name]['Lat'] = pages2k_data[counter]['geo_meanLat'] proxy_dict_pagesv2[proxy_name]['Lon'] = pages2k_data[counter]['geo_meanLon'] proxy_dict_pagesv2[proxy_name]['Elevation'] = pages2k_data[counter]['geo_meanElev'] proxy_dict_pagesv2[proxy_name]['YearRange'] = (int('%.0f' %pages2k_data[counter]['time_annual'][0]),int('%.0f' %pages2k_data[counter]['time_annual'][-1])) proxy_dict_pagesv2[proxy_name]['Databases'] = ['PAGES2kv2'] proxy_dict_pagesv2[proxy_name]['Seasonality'] = pages2k_data_seasonality proxy_dict_pagesv2[proxy_name]['climateVariable'] = pages2k_data[counter]['climateInterpretation_variable'] proxy_dict_pagesv2[proxy_name]['Realm'] = pages2k_data[counter]['climateInterpretation_variableDetail'] proxy_dict_pagesv2[proxy_name]['climateVariableDirec'] = pages2k_data[counter]['climateInterpretation_interpDirection'] # data proxy_dict_pagesv2[proxy_name]['Years'] = pages2k_data[counter]['time_annual'] proxy_dict_pagesv2[proxy_name]['Data'] = pages2k_data[counter]['data_annual'] nbtot = sum(tot) print('----------------------------------------------------------------------') print(' PAGES2kv2 SUMMARY: ') print(' Total nb of records found in file : %d' %nbsites) print(' Number of proxy chronologies included in df : %d' %(len(proxy_dict_pagesv2))) print(' ------------------------------------------------------') print(' ') tot = [] for key in sorted(proxy_def.keys()): proxy_archive = key.split('_')[0] proxy_measurement = proxy_def[key] # change the associated between proxy type and proxy measurement for Breitenmoser tree ring data if key == 'Tree Rings_WidthBreit': proxy_measurement = [item+'_breit' for item in proxy_measurement] nb = [] for siteID in list(proxy_dict_pagesv2.keys()): if proxy_dict_pagesv2[siteID]['Archive'] == proxy_archive and proxy_dict_pagesv2[siteID]['Measurement'] in proxy_measurement: nb.append(siteID) print((' %s : %d' %('{:40}'.format(key), len(nb)))) tot.append(len(nb)) nbtot = sum(tot) print(' ------------------------------------------------------') print((' %s : %d' %('{:40}'.format('Total:'), nbtot))) print('----------------------------------------------------------------------') print(' ') elapsed_time = clock.time() - begin_time print('PAGES2k phase2 data extraction completed in %s secs' %str(elapsed_time)) return proxy_dict_pagesv2 # =================================================================================== # For NCDC-templated proxy data files ----------------------------------------------- # =================================================================================== def contains_blankspace(str): return True in [c in str for c in string.whitespace] # =================================================================================== def colonReader(string, fCon, fCon_low, end): '''This function seeks a specified string (or list of strings) within the transcribed file fCon (lowercase version fCon_low) until a specified character (typically end of the line) is found.x If a list of strings is provided, make sure they encompass all possibilities From <NAME> (Univ. of Southern California) ''' if isinstance(string, str): lstr = string + ': ' # append the annoying stuff Index = fCon_low.find(lstr) Len = len(lstr) if Index != -1: endlIndex = fCon_low[Index:].find(end) rstring = fCon[Index+Len:Index+endlIndex] # returned string if rstring[-1:] == '\r': # strip the '\r' character if it appears rstring = rstring[:-1] return rstring.strip() else: return "" else: num_str = len(string) rstring = "" # initialize returned string for k in range(0,num_str): # loop over possible strings lstr = string[k] + ': ' # append the annoying stuff Index = fCon_low.find(lstr) Len = len(lstr) if Index != -1: endlIndex = fCon_low[Index:].find(end) rstring = fCon[Index+Len:Index+endlIndex] if rstring[-1:] == '\r': # strip the '\r' character if it appears rstring = rstring[:-1] if rstring == "": return "" else: return rstring.strip() # =================================================================================== # =================================================================================== def read_proxy_data_NCDCtxt(site, proxy_def, year_type=None, gaussianize_data=False): #==================================================================================== # Purpose: Reads data from a selected site (chronology) in NCDC proxy dataset # # Input : # - site : Full name of proxy data file, including the directory where # file is located. # - proxy_def : Dictionary containing information on proxy types to look for # and associated characteristics, such as possible proxy # measurement labels for the specific proxy type # (ex. ['d18O','d18o','d18o_stk','d18o_int','d18o_norm'] # for delta 18 oxygen isotope measurements) # # Returns : # - id : Site id read from the data file # - lat/lon : latitude & longitude of the site # - alt : Elevation of the site # - time : Array containing the time of uploaded data # - value : Array of uploaded proxy data # # Author(s): <NAME>, Univ. of Washington, Dept. of Atmospheric Sciences # based on "ncdc_file_parser.py" code from <NAME> # (Univ. of Southern California) # # Date : March 2015 # # Revision : None # #==================================================================================== # Possible header definitions of time in data files ... time_defs = ['age', 'age_int', 'year', \ 'y_ad','Age_AD','age_AD','age_AD_ass','age_AD_int','Midpt_year','AD',\ 'age_yb1950','yb_1950','yrb_1950',\ 'kyb_1950',\ 'yb_1989','age_yb1989',\ 'yb_2000','yr_b2k','yb_2k','ky_b2k','kyb_2000','kyb_2k','kab2k','ka_b2k','kyr_b2k',\ 'ky_BP','kyr_BP','ka_BP','age_kaBP','yr_BP','calyr_BP','Age(yrBP)','age_calBP','cal yr BP'] filename = site valid_frac = 0.5 if os.path.isfile(filename): print(' ') print('File: %s' % filename) # Define root string for filename file_s = filename.replace(" ", '_') # strip all whitespaces if present fileroot = '_'.join(file_s.split('.')[:-1]) # Open the file and port content to a string object # Changed assumed encoding to UTF-8, anything not readable replaced with # a '?' --AP Jan 2018 filein = open(filename, encoding='utf-8', errors='replace') fileContent = filein.read() fileContent_low = fileContent.lower() # Initialize empty dictionary d = {} # Assign default values to some metadata d['ElevationUnit'] = 'm' d['TimeUnit'] = 'y_ad' # note: 8240/2030 ASCII code for "permil" # =========================================================================== # =========================================================================== # Extract metadata from file ------------------------------------------------ # =========================================================================== # =========================================================================== try: # 'Archive' is the proxy type archive_tag = colonReader('archive', fileContent, fileContent_low, '\n') # to match definitions of records from original NCDC-templeated files and those # provided by <NAME> (U. of Arizona) if archive_tag == 'Paleoceanography': archive_tag = 'Marine Cores' d['Archive'] = archive_tag # Other info study_name = colonReader('study_name', fileContent, fileContent_low, '\n') d['Title'] = study_name investigators = colonReader('investigators', fileContent, fileContent_low, '\n') investigators.replace(';',' and') # take out the ; so that turtle doesn't freak out. d['Investigators'] = investigators d['PubDOI'] = colonReader('doi', fileContent, fileContent_low, '\n') # =========================================================================== # Extract information from the "Site_Information" section of the file ------- # =========================================================================== # Find beginning of block sline_begin = fileContent.find('# Site_Information:') if sline_begin == -1: sline_begin = fileContent.find('# Site_Information') if sline_begin == -1: sline_begin = fileContent.find('# Site Information') # Find end of block sline_end = fileContent.find('# Data_Collection:') if sline_end == -1: sline_end = fileContent.find('# Data_Collection\n') if sline_end == -1: sline_end = fileContent.find('# Data_Collection\n') if sline_end == -1: sline_end = fileContent.find('# Data_Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data_Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data_Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data_Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data Collection\n') if sline_end == -1: sline_end = fileContent.find('# Data Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data Collection \n') if sline_end == -1: sline_end = fileContent.find('# Data Collection \n') SiteInfo = fileContent[sline_begin:sline_end] SiteInfo_low = SiteInfo.lower() d['SiteName'] = colonReader('site_name', SiteInfo, SiteInfo_low, '\n') d['Location'] = colonReader('location', SiteInfo, SiteInfo_low, '\n') # get lat/lon info try: str_lst = ['northernmost_latitude', 'northernmost latitude'] # documented instances of this field property d['NorthernmostLatitude'] = float(colonReader(str_lst, SiteInfo, SiteInfo_low, '\n')) str_lst = ['southernmost_latitude', 'southernmost latitude'] # documented instances of this field property d['SouthernmostLatitude'] = float(colonReader(str_lst, SiteInfo, SiteInfo_low, '\n')) str_lst = ['easternmost_longitude', 'easternmost longitude'] # documented instances of this field property d['EasternmostLongitude'] = float(colonReader(str_lst, SiteInfo, SiteInfo_low, '\n')) str_lst = ['westernmost_longitude', 'westernmost longitude'] # documented instances of this field property d['WesternmostLongitude'] = float(colonReader(str_lst, SiteInfo, SiteInfo_low, '\n')) except (EmptyError,TypeError,ValueError) as err: print('*** %s' % err.args) print('*** WARNING ***: Valid values of lat/lon were not found! Skipping proxy record...') return (None, None) # get elevation info elev = colonReader('elevation', SiteInfo, SiteInfo_low, '\n') if 'nan' not in elev and len(elev)>0: elev_s = elev.split(' ') # is elevation negative (depth)? if '-' in elev_s[0] or d['Archive'] == 'Marine Cores': negative = True sign = '-' else: negative = False sign = '' # is there a decimal in elev_s? if '.' in elev_s[0]: elev_s_split = elev_s[0].split('.') elev_s_int = ''.join(c for c in elev_s_split[0] if c.isdigit()) elev_s_dec = ''.join(c for c in elev_s_split[1] if c.isdigit()) d['Elevation'] = float(sign+elev_s_int+'.'+elev_s_dec) else: d['Elevation'] = float(sign+''.join(c for c in elev_s[0] if c.isdigit())) # to only keep digits ... else: d['Elevation'] = float('NaN') # =========================================================================== # Extract information from the "Data_Collection" section of the file -------- # =========================================================================== # Find beginning of block sline_begin = fileContent.find('# Data_Collection:') if sline_begin == -1: sline_begin = fileContent.find('# Data_Collection') if sline_begin == -1: sline_begin = fileContent.find('# Data_Collection\n') # Find end of block sline_end = fileContent.find('# Variables:') if sline_end == -1: sline_end = fileContent.find('# Variables\n') if sline_end == -1: sline_end = fileContent.find('# Variables \n') if sline_end == -1: sline_end = fileContent.find('# Variables') if sline_end == -1: sline_end = fileContent.find('# Variables ') DataColl = fileContent[sline_begin:sline_end] DataColl_low = DataColl.lower() d['CollectionName'] = colonReader('collection_name', DataColl, DataColl_low, '\n') if not d['CollectionName']: d['CollectionName'] = filename.split('/')[-1].rstrip('.txt') EarliestYearStr = colonReader('earliest_year', DataColl, DataColl_low, '\n') MostRecentYearStr = colonReader('most_recent_year', DataColl, DataColl_low, '\n') d['EarliestYear'] = None d['MostRecentYear'] = None if EarliestYearStr: d['EarliestYear'] = float(EarliestYearStr) if EarliestYearStr: d['MostRecentYear'] = float(MostRecentYearStr) d['TimeUnit'] = colonReader('time_unit', DataColl, DataColl_low, '\n') if not d['TimeUnit']: d['TimeUnit'] = colonReader('time unit', DataColl, DataColl_low, '\n') if d['TimeUnit'] not in time_defs: print('***Time_Unit *%s* not in recognized time definitions! Exiting!' %d['TimeUnit']) return (None, None) # Get Notes: information, if it exists notes = colonReader('notes', DataColl, DataColl_low, '\n') if notes: # not empty # database info is in form {"database":db1}{"database":db2} ... # extract fields that are in {}. This produces a list. jsdata = re.findall('\{.*?\}',notes) bad_chars = '{}"' jsdata = [item.translate(str.maketrans("", "", bad_chars)) for item in jsdata] # Look for database information # ----------------------------- # item in jsdata list with database info? # TODO: ... think about using try/except instead ... dbinfo = None jsdata_db = [item for i, item in enumerate(jsdata) if 'database:' in item] if jsdata_db: db_lst = re.sub('database:', '', jsdata_db[0]).split(',') if len(db_lst) > 1: dbinfo = [item.split(':')[1] for item in db_lst] else: dbinfo = db_lst # check if some db info exists if dbinfo: d['Databases'] = dbinfo else: # Set to default value if not found. #d['Databases'] = None d['Databases'] = ['LMR'] # Look for information on "climate interpretation" of proxy record # ---------------------------------------------------------------- # Initialize metadata to be extracted seasonality = [1,2,3,4,5,6,7,8,9,10,11,12] # annual (calendar) climateVariable = None climateVariableRealm = None climateVariableDirec = None jsdata_clim = [item for i, item in enumerate(jsdata) if 'climateInterpretation:' in item] if jsdata_clim: clim_lst = re.sub('climateInterpretation:', '', jsdata_clim[0]) clim_lst = clim_lst.replace('[','(').replace(']',')') tmp = re.split(r',\s*(?![^()]*\))',clim_lst) clim_elements = [item.replace('(','[').replace(')',']') for item in tmp] seasonality = [item.split(':')[1] for item in clim_elements if 'seasonality:' in item][0] climateVariable = [item.split(':')[1] for item in clim_elements if 'climateVariable:' in item][0] climateVariableRealm = [item.split(':')[1] for item in clim_elements if 'climateVariableDetail:' in item][0] climateVariableDirec = [item.split(':')[1] for item in clim_elements if 'interpDirection:' in item][0] if len(seasonality) == 0: seasonality = [1,2,3,4,5,6,7,8,9,10,11,12] if len(climateVariable) == 0: climateVariable = None if len(climateVariableRealm) == 0: climateVariableRealm = None if len(climateVariableDirec) == 0: climateVariableDirec = None # Some translation... if climateVariable == 'T': climateVariable = 'temperature' if climateVariable == 'M': climateVariable = 'moisture' # test whether seasonality is a string or already a list # if a string, convert to list if type(seasonality) is not list: if isinstance(seasonality,six.string_types): seasonality = ast.literal_eval(seasonality) else: print('Problem with seasonality metadata! Exiting!') SystemExit(1) d['Seasonality'] = seasonality d['climateVariable'] = climateVariable d['climateVariableRealm'] = climateVariableRealm d['climateVariableDirec'] = climateVariableDirec # Look for information about duplicate proxy records # -------------------------------------------------- dup_lst = [] jsdata_dup = [item for i, item in enumerate(jsdata) if 'duplicate:' in item] if jsdata_dup: tmp = re.sub('duplicate:', '', jsdata_dup[0]).split(',') if len(tmp) > 1: dup_lst = [item.split(':')[1].rstrip('.txt') for item in tmp] else: dup_lst = [item.rstrip('.txt') for item in tmp] d['Duplicates'] = dup_lst """ # Old code that worked for NCDC v0.0.0 # Look for information on relation to temperature # ----------------------------------------------- clim_temp_relation = [item.split(':')[1] for item in jsdata if item.split(':')[0] == 'relationship'] if clim_temp_relation: d['Relation_to_temp'] = clim_temp_relation[0] else: d['Relation_to_temp'] = None # Look for information on the nature of sensitivity of the proxy data # (i.e. temperature or moisture or etc.) # ------------------------------------------------------------------- clim_sensitivity = [item.split(':')[1] for item in jsdata if item.split(':')[0] == 'sensitivity'] if clim_sensitivity: d['Sensitivity'] = clim_sensitivity[0] else: d['Sensitivity'] = None """ d['Relation_to_temp'] = None d['Sensitivity'] = None else: # Default values if not found. #d['Databases'] = None d['Databases'] = ['LMR'] d['Seasonality'] = [1,2,3,4,5,6,7,8,9,10,11,12] d['climateVariable'] = None d['climateVariableRealm'] = None d['climateVariableDirec'] = None d['Duplicates'] = [] d['Relation_to_temp'] = None d['Sensitivity'] = None # If the year type is "tropical", change all annual records to the tropical-year mean. if year_type == 'tropical year' and d['Seasonality'] == [1,2,3,4,5,6,7,8,9,10,11,12]: d['Seasonality'] = [4,5,6,7,8,9,10,11,12,13,14,15] except EmptyError as e: print(e) return (None, None) # =========================================================================== # =========================================================================== # Extract the data from file ------------------------------------------------ # =========================================================================== # =========================================================================== # =========================================================================== # Extract information from the "Variables" section of the file -------------- # =========================================================================== # Find beginning of block sline_begin = fileContent.find('# Variables:') if sline_begin == -1: sline_begin = fileContent.find('# Variables') # Find end of block sline_end = fileContent.find('# Data:') if sline_end == -1: sline_end = fileContent.find('# Data\n') VarDesc = fileContent[sline_begin:sline_end].splitlines() nvar = 0 # counter for variable number for line in VarDesc: # handle all the NCDC convention changes # (TODO: more clever/general exception handling) if line and line[0] != '' and line[0] != ' ' and line[0:2] != '#-' and line[0:2] != '# ' and line != '#': nvar = nvar + 1 line2 = line.replace('\t',',') # clean up sp_line = line2.split(',') # split line along commas if len(sp_line) < 9: continue else: d['DataColumn' + format(nvar, '02') + '_ShortName'] = sp_line[0].strip('#').strip(' ') d['DataColumn' + format(nvar, '02') + '_LongName'] = sp_line[1] d['DataColumn' + format(nvar, '02') + '_Material'] = sp_line[2] d['DataColumn' + format(nvar, '02') + '_Uncertainty'] = sp_line[3] d['DataColumn' + format(nvar, '02') + '_Units'] = sp_line[4] d['DataColumn' + format(nvar, '02') + '_Seasonality'] = sp_line[5] d['DataColumn' + format(nvar, '02') + '_Archive'] = sp_line[6] d['DataColumn' + format(nvar, '02') + '_Detail'] = sp_line[7] d['DataColumn' + format(nvar, '02') + '_Method'] = sp_line[8] d['DataColumn' + format(nvar, '02') + '_CharOrNum'] = sp_line[9].strip(' ') print('Site ID: %s Archive: %s' %(d['CollectionName'], d['Archive'])) # Cross-reference "ShortName" entries with possible proxy measurements specified in proxy_def dictionary proxy_types_all = list(proxy_def.keys()) # Restrict to those matching d['Archive'] proxy_types_keep = [s for s in proxy_types_all if d['Archive'] in s or d['Archive'] in s.lower()] # Which columns contain the important data (time & proxy values) to be extracted? # Referencing variables (time/age & proxy data) with data column IDsx # Time/age TimeColumn_ided = False for ivar in range(nvar): if d['DataColumn' + format(ivar+1, '02') + '_ShortName'] in time_defs: TimeColumn_ided = True TimeColumn_id = ivar if TimeColumn_ided: print(' Time/Age data in data column: %d' %TimeColumn_id) else: print(' ') # Proxy data # Dictionary containing info on proxy type and column ID where to find the data DataColumns_ided = False proxy_types_in_file = {} for ivar in range(nvar): proxy_types = [s for s in proxy_types_keep if d['DataColumn' + format(ivar+1, '02') + '_ShortName'] in proxy_def[s]] if proxy_types: # if non-empty list # Crude logic to distinguish between PAGES2kv2 vs Breitenmoser Tree Rings data at proxy type level if len(proxy_types) > 1 and [item for item in proxy_types if 'Tree Rings' in item ]: if 'Breitenmoser' in d['Investigators'].split(',')[0]: treetag = '_WidthBreit' else: treetag = '_WidthPages2' ind = [i for i, s in enumerate(proxy_types) if s.endswith(treetag)][0] proxy_types_in_file[proxy_types[ind]] = (d['DataColumn' + format(ivar+1, '02') + '_ShortName'], ivar) else: proxy_types_in_file[proxy_types[0]] = (d['DataColumn' + format(ivar+1, '02') + '_ShortName'], ivar) dkeys = list(proxy_types_in_file.keys()) nbvalid = len(dkeys) if nbvalid > 0: DataColumns_ided = True print(' Found %d valid proxy variables:' %nbvalid) for i in range(nbvalid): print(' %d : %s %s' %(i,dkeys[i],proxy_types_in_file[dkeys[i]])) # Check status of what has been found in the data file # If nothing found, just return (exit function by returning None) if not TimeColumn_ided or not DataColumns_ided: print('*** WARNING *** Valid data was not found in file!') return (None, None) # -- Checking time/age definition -- tdef = d['TimeUnit'] # Crude sanity checks on make-up of tdef string if contains_blankspace(tdef): tdef = tdef.replace(' ', '_') tdef_parsed = tdef.split('_') if len(tdef_parsed) != 2: tdef_parsed = tdef.split('_') if tdef_parsed[0] == 'cal' and tdef_parsed[1] == 'yr': tdef = tdef_parsed[0]+tdef_parsed[1]+'_'+tdef_parsed[2] tdef_parsed = tdef.split('_') else: print('*** WARNING *** Unrecognized time definition. Skipping proxy record...') return (None, None) # =========================================================================== # Extract the numerical data from the "Data" section of the file ------------ # =========================================================================== # Find line number at beginning of data block sline = fileContent.find('# Data:') if sline == -1: sline = fileContent.find('# Data\n') fileContent_datalines = fileContent[sline:].splitlines() # Look for missing value info missing_info_line= [line for line in fileContent_datalines if 'missing value' in line.lower()] if len(missing_info_line) > 0: missing_info = missing_info_line[0].split(':')[-1].replace(' ', '') if len(missing_info) > 0: missing_values = np.array([float(missing_info)]) else: # Line present but no value found missing_values = np.array([-999.0, np.nan]) else: # Line not found missing_values = np.array([-999.0, np.nan]) # Find where the actual data begin start_line_index = 0 line_nb = 0 for line in fileContent_datalines: # skip lines without actual data if not line or line[0]=='#' or line[0] == ' ': start_line_index += 1 else: start_line_index2 = line_nb break line_nb +=1 # Extract column descriptions (headers) of the data matrix DataColumn_headers = fileContent_datalines[start_line_index].splitlines()[0].split('\t') # Strip possible blanks in column headers DataColumn_headers = [item.strip() for item in DataColumn_headers] nc = len(DataColumn_headers) # --------------------- # -- Now the data !! -- # --------------------- inds_to_extract = [] for dkey in dkeys: inds_to_extract.append(proxy_types_in_file[dkey][1]) # from start of data block to end, in a list datalist = fileContent_datalines[start_line_index+1:] # Strip any empty lines datalist = [x for x in datalist if x] nbdata = len(datalist) # into numpy arrays time_raw = np.zeros(shape=[nbdata]) data_raw = np.zeros(shape=[nbdata,nbvalid]) # fill with NaNs for default values data_raw[:] = np.NAN for i in range(nbdata): tmp = datalist[i].split('\t') # any empty element replaced by NANs tmp = ['NAN' if x == '' else x for x in tmp] time_raw[i] = tmp[TimeColumn_id] # strip possible "()" in data before conversion to float # not sure why these are found sometimes ... sigh... tmp = [tmp[j].replace('(','') for j in range(len(tmp))] tmp = [tmp[j].replace(')','') for j in range(len(tmp))] data_raw[i,:] = [float(tmp[j]) for j in inds_to_extract] # -- Double check data validity -- # (time/age in particular as some records have entries w/ undefined age) # Eliminate entries for which time/age is not defined (tagged as missing) mask = np.in1d(time_raw, missing_values, invert=True) time_raw = time_raw[mask] data_raw = data_raw[mask,:] # Making sure remaining entries in data array with missing values are converted to NaN. ntime, ncols = data_raw.shape for c in range(ncols): data_raw[np.in1d(data_raw[:,c], missing_values), c] = np.NAN # --- Modify "time" array into "years CE" if not already --- # Here, tdef_parsed *should* have the expected structure if len(tdef_parsed) == 2 and tdef_parsed[0] and tdef_parsed[1]: if tdef_parsed[0] == 'yb' and is_number(tdef_parsed[1]): time_raw = float(tdef_parsed[1]) - time_raw elif tdef_parsed[0] == 'kyb' and is_number(tdef_parsed[1]): time_raw = float(tdef_parsed[1]) - 1000.0*time_raw elif tdef_parsed[0] == 'calyr' and tdef_parsed[1] == 'BP': time_raw = 1950.0 - time_raw elif tdef_parsed[0] == 'kyr' and tdef_parsed[1] == 'BP': time_raw = 1950.0 - 1000.*time_raw elif tdef_parsed[0] == 'kyr' and tdef_parsed[1] == 'b2k': time_raw = 2000.0 - 1000.*time_raw elif tdef_parsed[0] == 'y' and tdef_parsed[1] == 'ad': pass # do nothing, time already in years_AD else: print('*** WARNING *** Unrecognized time definition. Skipping proxy record...') return (None, None) else: print('*** WARNING *** Unexpected time definition. Skipping proxy record...') return (None, None) # Making sure the tagged earliest and most recent years of the record are consistent with the data, # already transformed in year CE, common to all records before inclusion in the pandas DF. d['EarliestYear'] = np.min(time_raw) d['MostRecentYear'] = np.max(time_raw) # Initial range in years for which data is available yearRange = (int('%.0f' % d['EarliestYear']),int('%.0f' %d['MostRecentYear'])) # proxy identifier and geo location id = d['CollectionName'] alt = d['Elevation'] # Something crude in assignement of lat/lon: if d['NorthernmostLatitude'] != d['SouthernmostLatitude']: lat = (d['NorthernmostLatitude'] + d['SouthernmostLatitude'])/2.0 else: lat = d['NorthernmostLatitude'] if d['EasternmostLongitude'] != d['WesternmostLongitude']: lon = (d['EasternmostLongitude'] + d['WesternmostLongitude'])/2.0 else: lon = d['EasternmostLongitude'] # Ensure lon is in [0,360] domain if lon < 0.0: lon = 360 + lon # If subannual, average up to annual -------------------------------------------------------- time_annual, data_annual, proxy_resolution = compute_annual_means(time_raw,data_raw,valid_frac,year_type) # If gaussianize_data is set to true, transform the proxy data to Gaussian. # This option should only be used when using regressions, not physically-based PSMs. if gaussianize_data == True: data_annual = gaussianize(data_annual) # update to yearRange given availability of annual data yearRange = (int('%.0f' %time_annual[0]),int('%.0f' %time_annual[-1])) # Define and fill list of dictionaries to be returned by function returned_list = [] duplicate_list = [] for k in range(len(dkeys)): key = dkeys[k] ind = proxy_types_in_file[key][1] proxy_units = d['DataColumn' + format(ind+1, '02') + '_Units'] proxy_archive = key.split('_')[0] proxy_measurement = key.split('_')[1] proxy_measurement = d['DataColumn' + format(ind+1, '02') + '_ShortName'] if key == 'Tree Rings_WidthBreit': proxy_measurement = proxy_measurement + '_breit' proxy_name = d['CollectionName']+':'+proxy_measurement proxydata_dict = {} proxydata_dict[proxy_name] = {} if d['Archive'] != proxy_archive: d['Archive'] = proxy_archive proxydata_dict[proxy_name]['Archive'] = d['Archive'] proxydata_dict[proxy_name]['SiteName'] = d['SiteName'] proxydata_dict[proxy_name]['StudyName'] = d['Title'] proxydata_dict[proxy_name]['Investigators'] = d['Investigators'] proxydata_dict[proxy_name]['Location'] = d['Location'] proxydata_dict[proxy_name]['Resolution (yr)'] = proxy_resolution proxydata_dict[proxy_name]['Lat'] = lat proxydata_dict[proxy_name]['Lon'] = lon proxydata_dict[proxy_name]['Elevation'] = alt proxydata_dict[proxy_name]['YearRange'] = yearRange proxydata_dict[proxy_name]['Measurement'] = proxy_measurement proxydata_dict[proxy_name]['DataUnits'] = proxy_units proxydata_dict[proxy_name]['Databases'] = d['Databases'] proxydata_dict[proxy_name]['Seasonality'] = d['Seasonality'] proxydata_dict[proxy_name]['climateVariable'] = d['climateVariable'] proxydata_dict[proxy_name]['Realm'] = d['climateVariableRealm'] proxydata_dict[proxy_name]['climateVariableDirec'] = d['climateVariableDirec'] # *** for v.0.1.0: #proxydata_dict[proxy_name]['Relation_to_temp'] = d['Relation_to_temp'] #proxydata_dict[proxy_name]['Sensitivity'] = d['Sensitivity'] proxydata_dict[proxy_name]['Years'] = time_annual proxydata_dict[proxy_name]['Data'] = data_annual[:, k] if d['Duplicates']: duplicate_list.extend(d['Duplicates']) # append to list of dictionaries returned_list.append(proxydata_dict) else: print('***File NOT FOUND: %s' % filename) returned_list = [] duplicate_list = [] return returned_list, duplicate_list # ========================================================================================= def ncdc_txt_to_dict(datadir, proxy_def, year_type, gaussianize_data): """ Read proxy data from collection of NCDC-templated text files and store the data in a python dictionary. :param datadir : :param proxy_def : :param metaout : :param dataout : :return: Author: <NAME>, Univ. of Washington, Jan 2016. """ # =============================================================================== # Upload proxy data from NCDC-formatted text files # =============================================================================== begin_time = clock.time() print('Data from LMR NCDC-templated text files:') valid_frac = 0.5 # List filenames im the data directory (dirname) # files is a python list contining file names to be read sites_data = glob.glob(datadir+"/*.txt") nbsites = len(sites_data) if nbsites == 0: print('ERROR: NCDC-templated proxy data files not found in directory:' ' %s. Please revise your user-defined parameters or directory/' ' data set-up.' %datadir) raise SystemExit(1) # Master dictionary containing all proxy chronologies extracted from the data files. proxy_dict_ncdc = {} dupelist = [] # Loop over files nbsites_valid = 0 for file_site in sites_data: proxy_list, duplicate_list = read_proxy_data_NCDCtxt(file_site,proxy_def,year_type,gaussianize_data) if proxy_list: # if returned list is not empty # extract data from list and populate the master proxy dictionary for item in proxy_list: proxy_name = list(item.keys())[0] # test if dict element already exists if proxy_name in list(proxy_dict_ncdc.keys()): dupelist.append(proxy_name) else: proxy_dict_ncdc[proxy_name] = item[proxy_name] nbsites_valid = nbsites_valid + 1 else: # returned list is empty, just move to next site pass # =============================================================================== # Produce a summary of uploaded proxy data & # generate integrated database in pandas DataFrame format # =============================================================================== # Summary nbchronol = len(proxy_dict_ncdc) print(' ') print(' ') print('----------------------------------------------------------------------') print(' NCDC SUMMARY: ') print(' Total nb of files found & queried : %d' % nbsites) print(' Total nb of files with valid data : %d' % nbsites_valid) print(' Number of proxy chronologies included in df : %d' % nbchronol) print(' ------------------------------------------------------') print(' ') tot = [] for key in sorted(proxy_def.keys()): proxy_archive = key.split('_')[0] proxy_measurement = proxy_def[key] # change the association between proxy type and proxy measurement for Breitenmoser tree ring data if key == 'Tree Rings_WidthBreit': proxy_measurement = [item+'_breit' for item in proxy_measurement] nb = [] for siteID in list(proxy_dict_ncdc.keys()): if proxy_dict_ncdc[siteID]['Archive'] == proxy_archive and proxy_dict_ncdc[siteID]['Measurement'] in proxy_measurement: nb.append(siteID) print(' %s : %d' %('{:40}'.format(key), len(nb))) tot.append(len(nb)) nbtot = sum(tot) print(' ------------------------------------------------------') print(' %s : %d' %('{:40}'.format('Total:'), nbtot)) print('----------------------------------------------------------------------') print(' ') if dupelist: print('***WARNING***: Proxy records with these names were found multiple times:') print(dupelist) elapsed_time = clock.time() - begin_time print('NCDC data extraction completed in %s secs' %str(elapsed_time)) return proxy_dict_ncdc # ========================================================================================= def merge_dicts_to_dataframes(proxy_def, ncdc_dict, pages2kv2_dict, meta_outfile, data_outfile, \ duplicates_file, eliminate_duplicates): """ Merges two dictionaries containing proxy metadata and data from two data sources (PAGES2k phase 2 and NCDC-templated proxy data files) into one, and writes out metadata and data into pickled pandas DataFrames. Originator: <NAME>, Univ. of Washington, May 2017 """ if len(ncdc_dict) > 0: merged_dict = deepcopy(ncdc_dict) if len(pages2kv2_dict) > 0: merged_dict.update(pages2kv2_dict) elif len(pages2kv2_dict) > 0: merged_dict = deepcopy(pages2kv2_dict) else: raise SystemExit('No dataset has been selected for inclusion in the proxy database!') totchronol = len(merged_dict) dupecount = 0 if eliminate_duplicates: print(' ') print('Checking list of duplicate/bad records:') # load info on duplicate records dupes = pd.read_excel(duplicates_file,'ProxyDuplicates') # numpy array containing names of proxy records to eliminate toflush = dupes['Record_To_Eliminate'].values for siteID in list(merged_dict.keys()): if siteID in toflush: try: del merged_dict[siteID] print(' -- deleting: %s' % siteID) dupecount += 1 except KeyError: print(' -- not found: %s' % siteID) pass print(' ') print('----------------------------------------------------------------------') print(' FINAL SUMMARY: ') print(' Total number of merged proxy chronologies : %d' %totchronol) print(' Total number of eliminated chronologies : %d' %dupecount) print(' Number of proxy chronologies included in df : %d' %len(merged_dict)) print(' ------------------------------------------------------') tot = [] for key in sorted(proxy_def.keys()): proxy_archive = key.split('_')[0] proxy_measurement = proxy_def[key] # change the association between proxy type and proxy measurement for Breitenmoser tree ring data if key == 'Tree Rings_WidthBreit': proxy_measurement = [item+'_breit' for item in proxy_measurement] nb = [] for siteID in list(merged_dict.keys()): if merged_dict[siteID]['Archive'] == proxy_archive and merged_dict[siteID]['Measurement'] in proxy_measurement: nb.append(siteID) print(' %s : %d' %('{:40}'.format(key), len(nb))) tot.append(len(nb)) nbtot = sum(tot) print(' ------------------------------------------------------') print(' %s : %d' %('{:40}'.format('Total:'), nbtot)) print('----------------------------------------------------------------------') print(' ') # --------------------------------------------------------------------- # Preparing pandas DataFrames containing merged proxy metadata and data # and output to pickle files # --------------------------------------------------------------------- # Loop over proxy types specified in *main* counter = 0 # Build up pandas DataFrame metadf = pd.DataFrame() # headers = ['Proxy ID','Site name','Lat (N)','Lon (E)','Elev','Archive type','Proxy measurement','Resolution (yr)',\ # 'Oldest (C.E.)','Youngest (C.E.)','Location','climateVariable','Realm','Relation_to_climateVariable',\ # 'Seasonality', 'Databases'] headers = ['Proxy ID','Study name','Investigators','Site name','Lat (N)','Lon (E)','Elev','Archive type','Proxy measurement',\ 'Resolution (yr)','Oldest (C.E.)','Youngest (C.E.)','Location','climateVariable','Realm','Relation_to_climateVariable',\ 'Seasonality', 'Databases'] for key in sorted(proxy_def.keys()): proxy_archive = key.split('_')[0] # change the associated between proxy type and proxy measurement for Breitenmoser tree ring data if key == 'Tree Rings_WidthBreit': proxy_def[key] = [item+'_breit' for item in proxy_def[key]] for siteID in list(merged_dict.keys()): if merged_dict[siteID]['Archive'] == proxy_archive and merged_dict[siteID]['Measurement'] in proxy_def[key]: frame = pd.DataFrame({'a':siteID, 'b':merged_dict[siteID]['StudyName'], 'c':merged_dict[siteID]['Investigators'], \ 'd':merged_dict[siteID]['SiteName'], 'e':merged_dict[siteID]['Lat'], 'f':merged_dict[siteID]['Lon'], \ 'g':merged_dict[siteID]['Elevation'], 'h':merged_dict[siteID]['Archive'], 'i':merged_dict[siteID]['Measurement'], \ 'j':merged_dict[siteID]['Resolution (yr)'], 'k':merged_dict[siteID]['YearRange'][0], \ 'l':merged_dict[siteID]['YearRange'][1], 'm':merged_dict[siteID]['Location'], \ 'n':merged_dict[siteID]['climateVariable'], 'o':merged_dict[siteID]['Realm'], \ 'p':merged_dict[siteID]['climateVariableDirec'], \ 'q':None, 'r':None}, index=[counter]) # To get seasonality & databases *lists* into columns 'o' and 'p' of DataFrame # To be deprecated - frame.set_value(counter,'q',merged_dict[siteID]['Seasonality']) # To be deprecated - frame.set_value(counter,'r',merged_dict[siteID]['Databases']) frame.at[counter,'q'] = merged_dict[siteID]['Seasonality'] frame.at[counter,'r'] = merged_dict[siteID]['Databases'] # Append to main DataFrame metadf = metadf.append(frame) counter = counter + 1 # Redefine column headers metadf.columns = headers # Write metadata to file print('Now writing metadata to file: %s' %meta_outfile) metadf.to_pickle(meta_outfile) # ----------------------------------------------------- # Build the proxy **data** DataFrame and output to file # ----------------------------------------------------- print(' ') print('Now creating & loading the data in the pandas DataFrame...') print(' ') counter = 0 for siteID in list(merged_dict.keys()): years = merged_dict[siteID]['Years'] data = merged_dict[siteID]['Data'] [nbdata,] = years.shape # Load data in numpy array frame_data = np.zeros(shape=[nbdata,2]) frame_data[:,0] = years frame_data[:,1] = data if counter == 0: # Build up pandas DataFrame header = ['Proxy ID', siteID] df = pd.DataFrame({'a':frame_data[:,0], 'b':frame_data[:,1]}) df.columns = header else: frame = pd.DataFrame({'Proxy ID':frame_data[:,0], siteID:frame_data[:,1]}) df = df.merge(frame, how='outer', on='Proxy ID') counter = counter + 1 # Fix DataFrame index and column name col0 = df.columns[0] df.set_index(col0, drop=True, inplace=True) df.index.name = 'Year C.E.' df.sort_index(inplace=True) # Write data to file print('Now writing to file:', data_outfile) df = df.to_sparse() df.to_pickle(data_outfile) print('Done!') # ========================================================================================= def ncdc_txt_to_dataframes(datadir, proxy_def, metaout, dataout, eliminate_duplicates): """ Takes in NCDC text proxy data and converts it to dataframe storage. Caveat: This increases size on disk due to the joining along the time index (lots of null values). But: Makes it easier to query and grab data for the proxy data assimilation experiments. :param datadir : :param proxy_def : :param metaout : :param dataout : :return: Author: <NAME>, Univ. of Washington, Jan 2016. """ # =============================================================================== # Upload proxy data from NCDC-formatted text files # =============================================================================== # List filenames im the data directory (dirname) # files is a python list contining file names to be read sites_data = glob.glob(datadir+"/*.txt") nbsites = len(sites_data) # Master list containing dictionaries of all proxy chronologies extracted from the data files. master_proxy_list = [] master_duplicate_list = [] # Loop over files nbsites_valid = 0 duplicate_list = [] for file_site in sites_data: proxy_list, duplicate_list = read_proxy_data_NCDCtxt(file_site,proxy_def) if eliminate_duplicates and duplicate_list: master_duplicate_list.extend(duplicate_list) if proxy_list: # if returned list is not empty # extract dictionary and populate the master proxy list for item in proxy_list: master_proxy_list.append(item) nbsites_valid = nbsites_valid + 1 else: # returned list is empty, just move to next site pass nbduplicates = len(master_duplicate_list) nbextracted = len(master_proxy_list) # eliminate duplicates if option activated if eliminate_duplicates: final_proxy_list = [] master_proxy_siteIDs = [list(item.keys())[0].split(':')[0] for item in master_proxy_list] inds = [i for i, item in enumerate(master_proxy_siteIDs) if item not in master_duplicate_list] nbduplicates = len(master_proxy_list) - len(inds) # extract those not in list of duplicates for k in inds: final_proxy_list.append(master_proxy_list[k]) else: final_proxy_list = master_proxy_list # =============================================================================== # Produce a summary of uploaded proxy data & # generate integrated database in pandas DataFrame format # =============================================================================== # Summary of the final_proxy_list nbchronol = len(final_proxy_list) print(' ') print(' ') print('----------------------------------------------------------------------') print(' SUMMARY: ') print(' Total nb of files found & queried : ', nbsites) print(' Total nb of files with valid data : ', nbsites_valid) print(' Number of proxy chronologies extracted : ', nbextracted) print(' Number of identified duplicate chronologies : ', nbduplicates) print(' Number of proxy chronologies included in df : ', nbchronol) print(' ------------------------------------------------------') tot = [] # Loop over proxy types specified in *main* counter = 0 # Build up pandas DataFrame metadf = pd.DataFrame() # for v0.0.0: #headers = ['Proxy ID','Site name','Lat (N)','Lon (E)','Elev','Archive type','Proxy measurement','Resolution (yr)',\ # 'Oldest (C.E.)','Youngest (C.E.)','Location','Sensitivity','Relation_to_temp','Databases'] # for v0.1.0: headers = ['Proxy ID','Site name','Lat (N)','Lon (E)','Elev','Archive type','Proxy measurement','Resolution (yr)',\ 'Oldest (C.E.)','Youngest (C.E.)','Location','climateVariable','Realm','Relation_to_climateVariable',\ 'Seasonality', 'Databases'] for key in sorted(proxy_def.keys()): proxy_archive = key.split('_')[0] # change the associated between proxy type and proxy measurement for Breitenmoser tree ring data if key == 'Tree Rings_WidthBreit': proxy_def[key] = [item+'_breit' for item in proxy_def[key]] nb = [] for item in final_proxy_list: siteID = list(item.keys())[0] if item[siteID]['Archive'] == proxy_archive and item[siteID]['Measurement'] in proxy_def[key]: nb.append(siteID) # *** for v.0.0.0: #frame = pd.DataFrame({'a':siteID, 'b':item[siteID]['SiteName'], 'c':item[siteID]['Lat'], 'd':item[siteID]['Lon'], \ # 'e':item[siteID]['Elevation'], 'f':item[siteID]['Archive'], 'g':item[siteID]['Measurement'], \ # 'h':item[siteID]['Resolution (yr)'], 'i':item[siteID]['YearRange'][0], \ # 'j':item[siteID]['YearRange'][1], 'k':item[siteID]['Location'], \ # 'l':item[siteID]['Sensitivity'], 'm':item[siteID]['Relation_to_temp'], 'n':None}, index=[counter]) ## To get database *list* into column 'm' of DataFrame #frame.set_value(counter,'n',item[siteID]['Databases']) ## Append to main DataFrame #metadf = metadf.append(frame) # *** for v.0.1.0: frame = pd.DataFrame({'a':siteID, 'b':item[siteID]['SiteName'], 'c':item[siteID]['Lat'], 'd':item[siteID]['Lon'], \ 'e':item[siteID]['Elevation'], 'f':item[siteID]['Archive'], 'g':item[siteID]['Measurement'], \ 'h':item[siteID]['Resolution (yr)'], 'i':item[siteID]['YearRange'][0], \ 'j':item[siteID]['YearRange'][1], 'k':item[siteID]['Location'], \ 'l':item[siteID]['climateVariable'], 'm':item[siteID]['Realm'], \ 'n':item[siteID]['climateVariableDirec'], 'o':None, 'p':None}, index=[counter]) # To get seasonality & databases *lists* into columns 'o' and 'p' of DataFrame frame.set_value(counter,'o',item[siteID]['Seasonality']) frame.set_value(counter,'p',item[siteID]['Databases']) # Append to main DataFrame metadf = metadf.append(frame) counter = counter + 1 print(' ', '{:40}'.format(key), ' : ', len(nb)) tot.append(len(nb)) nbtot = sum(tot) print(' ------------------------------------------------------') print(' ','{:40}'.format('Total:'), ' : ', nbtot) print('----------------------------------------------------------------------') print(' ') # Redefine column headers metadf.columns = headers # Write metadata to file print('Now writing metadata to file:', metaout) metadf.to_pickle(metaout) # ----------------------------------------------------- # Build the proxy **data** DataFrame and output to file # ----------------------------------------------------- print(' ') print('Now creating & loading the data in the pandas DataFrame...') print(' ') counter = 0 for item in final_proxy_list: siteID = list(item.keys())[0] years = item[siteID]['Years'] data = item[siteID]['Data'] [nbdata,] = years.shape # Load data in numpy array frame_data = np.zeros(shape=[nbdata,2]) frame_data[:,0] = years frame_data[:,1] = data if counter == 0: # Build up pandas DataFrame header = ['Proxy ID', siteID] df =
pd.DataFrame({'a':frame_data[:,0], 'b':frame_data[:,1]})
pandas.DataFrame
""" Train VGG19 import os os.system("pip install -U efficientnet") """ import argparse import configparser import datetime import os import keras.backend as K import numpy as np import pandas as pd import tensorflow as tf from efficientnet import EfficientNetB5, preprocess_input from keras.applications.densenet import DenseNet201 from keras.applications.densenet import \ preprocess_input as densenet_preprocess_input from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input as vgg16_preprocess_input from keras.applications.vgg19 import VGG19 from keras.applications.vgg19 import preprocess_input as vgg19_preprocess_input from keras.callbacks import (EarlyStopping, LearningRateScheduler, ModelCheckpoint, TensorBoard) from keras.layers import Dense, Dropout, GlobalAveragePooling2D from keras.models import Model, Sequential, load_model from keras.optimizers import SGD, Adam from keras.preprocessing.image import ImageDataGenerator, load_img from keras.utils.data_utils import get_file from PIL import Image, ImageFile from sklearn.metrics import (classification_report, cohen_kappa_score, confusion_matrix) from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer ImageFile.LOAD_TRUNCATED_IMAGES = True ################################################################################################### # Arguments for setting parameters while running array batch job ################################################################################################### OPTIMISER_MODE = "Adam" PARSER = argparse.ArgumentParser() PARSER.add_argument("-c", "--config_file", type=str, required=True, help="Configuration file path") PARSER.add_argument("-e", "--epochs", type=int, default=None, help="Epochs") ARGS = vars(PARSER.parse_args()) CONFIG_FILE = ARGS["config_file"] CONFIG = configparser.ConfigParser() CONFIG.read(CONFIG_FILE) # Set verbosity NAME = CONFIG["general"]["name"] VERBOSITY = int(CONFIG["general"]["verbosity"]) # Set model configuration PRETRAINED_WEIGHTS = CONFIG["model"].get( "pretrained_weights_path", fallback=None) LOSS = CONFIG["model"]["loss"] METRICS = CONFIG["model"]["metrics"].split(",") # Dataset folder information TRAINING_CSV = "../input/training-labels.csv" DATASET_FOLDER = "../input/train/output_combined2" TESTSET_FOLDER = "../input/test/Test" CURRENT_TIMESTAMP = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S") OUTPUT_FOLDER = "../output" CURRENT_OUTPUT = os.path.join(OUTPUT_FOLDER, f"{NAME}_{CURRENT_TIMESTAMP}") LOGS_FOLDER = os.path.join(CURRENT_OUTPUT, "./logs") WEIGHTS_FOLDER = os.path.join(CURRENT_OUTPUT, "./weights") REPORTS_FOLDER = os.path.join(CURRENT_OUTPUT, "./reports") os.makedirs(OUTPUT_FOLDER, exist_ok=True) os.makedirs(CURRENT_OUTPUT, exist_ok=True) os.makedirs(LOGS_FOLDER, exist_ok=True) os.makedirs(WEIGHTS_FOLDER, exist_ok=True) os.makedirs(REPORTS_FOLDER, exist_ok=True) CLASSIFICATION_REPORT_FILE = os.path.join( REPORTS_FOLDER, "classification_report.txt") CONFUSION_MATRIX_FILE = os.path.join(REPORTS_FOLDER, "confusion_matrix.txt") COHEN_KAPPA_SCORE_FILE = os.path.join(REPORTS_FOLDER, "cohen_kappa_metric.txt") # Image augmentation parameters IMAGE_AUGMENTATION = CONFIG["image_augmentation"] HEIGHT = int(IMAGE_AUGMENTATION["height"]) WIDTH = int(IMAGE_AUGMENTATION["width"]) DEPTH = int(IMAGE_AUGMENTATION["depth"]) SHIFT = float(IMAGE_AUGMENTATION["shift"]) ROTATION = float(IMAGE_AUGMENTATION["rotation"]) VAL_AUG_FACTOR = float( IMAGE_AUGMENTATION["validation_data_augmentation_factor"]) # Hyperparameters HYPERPARAMETERS = CONFIG["hyperparameters"] # Set epochs from args if set else from config file EPOCHS = ARGS["epochs"] if ARGS["epochs"] else int(HYPERPARAMETERS["epochs"]) BATCH_SIZE = int(HYPERPARAMETERS["batch_size"]) LEARNING_RATE = float(HYPERPARAMETERS["learning_rate"]) DROP_EVERY = float(HYPERPARAMETERS["learning_rate_decay_after_x_epoch"]) DROP_FACTOR = float(HYPERPARAMETERS["decay_rate"]) MOMENTUM = float(HYPERPARAMETERS["momentum"]) # Image generator information TRAIN_TEST_VAL_SPLIT = CONFIG["train_test_val_split"] DEBUG_MODE = "DEBUG" in CONFIG TEST_SPLIT = float(TRAIN_TEST_VAL_SPLIT["test_split"]) VALIDATION_SPLIT = float(TRAIN_TEST_VAL_SPLIT["validation_split"]) ################################################################################################## # Switch models ################################################################################################### BASE_MODEL = None preprocessing_function = None if NAME == "VGG19": HEIGHT, WIDTH = 224, 224 BASE_MODEL = VGG19(include_top=False, weights="imagenet", input_shape=(HEIGHT, WIDTH, DEPTH)) preprocessing_function = vgg19_preprocess_input elif NAME == "VGG16": HEIGHT, WIDTH = 224, 224 BASE_MODEL = VGG16(include_top=False, weights="imagenet", input_shape=(HEIGHT, WIDTH, DEPTH)) preprocessing_function = vgg16_preprocess_input elif NAME == "Densenet": HEIGHT, WIDTH = 128, 128 BASE_MODEL = DenseNet201(include_top=False, weights="imagenet", input_shape=(HEIGHT, WIDTH, DEPTH)) preprocessing_function = densenet_preprocess_input elif NAME == "efficientnet": HEIGHT, WIDTH = 128, 128 BASE_MODEL = EfficientNetB5(include_top=False, weights="imagenet", input_shape=(HEIGHT, WIDTH, DEPTH)) preprocessing_function = preprocess_input else: HEIGHT, WIDTH = 224, 224 BASE_MODEL = VGG19(include_top=False, weights="imagenet", input_shape=(HEIGHT, WIDTH, DEPTH)) preprocessing_function = vgg19_preprocess_input ################################################################################################## # Read details from CSV ################################################################################################### DATASET = pd.read_csv(TRAINING_CSV, dtype=str) # DEBUG_MODE SET DATASET = DATASET[:BATCH_SIZE*12] if DEBUG_MODE else DATASET TRAIN_VALIDATION, TEST = train_test_split(DATASET, test_size=TEST_SPLIT) TRAIN, VALIDATION = train_test_split( TRAIN_VALIDATION, test_size=VALIDATION_SPLIT) # KAGGLE TESTSET TESTSET_ARRAY = [[filename, "0"] for filename in os.listdir(TESTSET_FOLDER)] TESTSET =
pd.DataFrame(TESTSET_ARRAY, columns=["Id", "Expected"])
pandas.DataFrame
""" This script reproduces content of Fig. 4 & Table 1 in the manuscript. """ import mne import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes import helper plt.ion() results_dir = '../results/model_bursts/' channels = ['C3-lap', 'C4-lap', 'Pz-lap'] labels = ['Laplacian %s' % (channel.split('-')[0]) for channel in channels] fs = 512 mask_params = dict(marker='.', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4, alpha=0.9) patterns =
pd.read_csv('../results/mean_laplacian_patterns.csv', index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 import nose import numpy as np from numpy import nan import pandas as pd from distutils.version import LooseVersion from pandas import (Index, Series, DataFrame, Panel, isnull, date_range, period_range) from pandas.core.index import MultiIndex import pandas.core.common as com from pandas.compat import range, zip from pandas import compat from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_panel_equal, assert_equal) import pandas.util.testing as tm def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: raise nose.SkipTest('scipy.interpolate.pchip missing') # ---------------------------------------------------------------------- # Generic types test cases class Generic(object): _multiprocess_can_split_ = True def setUp(self): pass @property def _ndim(self): return self._typ._AXIS_LEN def _axes(self): """ return the axes for my object typ """ return self._typ._AXIS_ORDERS def _construct(self, shape, value=None, dtype=None, **kwargs): """ construct an object for the given shape if value is specified use that if its a scalar if value is an array, repeat it as needed """ if isinstance(shape, int): shape = tuple([shape] * self._ndim) if value is not None: if np.isscalar(value): if value == 'empty': arr = None # remove the info axis kwargs.pop(self._typ._info_axis_name, None) else: arr = np.empty(shape, dtype=dtype) arr.fill(value) else: fshape = np.prod(shape) arr = value.ravel() new_shape = fshape / arr.shape[0] if fshape % arr.shape[0] != 0: raise Exception("invalid value passed in _construct") arr = np.repeat(arr, new_shape).reshape(shape) else: arr = np.random.randn(*shape) return self._typ(arr, dtype=dtype, **kwargs) def _compare(self, result, expected): self._comparator(result, expected) def test_rename(self): # single axis for axis in self._axes(): kwargs = {axis: list('ABCD')} obj = self._construct(4, **kwargs) # no values passed # self.assertRaises(Exception, o.rename(str.lower)) # rename a single axis result = obj.rename(**{axis: str.lower}) expected = obj.copy() setattr(expected, axis, list('abcd')) self._compare(result, expected) # multiple axes at once def test_get_numeric_data(self): n = 4 kwargs = {} for i in range(self._ndim): kwargs[self._typ._AXIS_NAMES[i]] = list(range(n)) # get the numeric data o = self._construct(n, **kwargs) result = o._get_numeric_data() self._compare(result, o) # non-inclusion result = o._get_bool_data() expected = self._construct(n, value='empty', **kwargs) self._compare(result, expected) # get the bool data arr = np.array([True, True, False, True]) o = self._construct(n, value=arr, **kwargs) result = o._get_numeric_data() self._compare(result, o) # _get_numeric_data is includes _get_bool_data, so can't test for # non-inclusion def test_get_default(self): # GH 7725 d0 = "a", "b", "c", "d" d1 = np.arange(4, dtype='int64') others = "e", 10 for data, index in ((d0, d1), (d1, d0)): s = Series(data, index=index) for i, d in zip(index, data): self.assertEqual(s.get(i), d) self.assertEqual(s.get(i, d), d) self.assertEqual(s.get(i, "z"), d) for other in others: self.assertEqual(s.get(other, "z"), "z") self.assertEqual(s.get(other, other), other) def test_nonzero(self): # GH 4633 # look at the boolean/nonzero behavior for objects obj = self._construct(shape=4) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) obj = self._construct(shape=4, value=1) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) obj = self._construct(shape=4, value=np.nan) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) # empty obj = self._construct(shape=0) self.assertRaises(ValueError, lambda: bool(obj)) # invalid behaviors obj1 = self._construct(shape=4, value=1) obj2 = self._construct(shape=4, value=1) def f(): if obj1: com.pprint_thing("this works and shouldn't") self.assertRaises(ValueError, f) self.assertRaises(ValueError, lambda: obj1 and obj2) self.assertRaises(ValueError, lambda: obj1 or obj2) self.assertRaises(ValueError, lambda: not obj1) def test_numpy_1_7_compat_numeric_methods(self): # GH 4435 # numpy in 1.7 tries to pass addtional arguments to pandas functions o = self._construct(shape=4) for op in ['min', 'max', 'max', 'var', 'std', 'prod', 'sum', 'cumsum', 'cumprod', 'median', 'skew', 'kurt', 'compound', 'cummax', 'cummin', 'all', 'any']: f = getattr(np, op, None) if f is not None: f(o) def test_downcast(self): # test close downcasting o = self._construct(shape=4, value=9, dtype=np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) o = self._construct(shape=4, value=9.) expected = o.astype(np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, expected) o = self._construct(shape=4, value=9.5) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) # are close o = self._construct(shape=4, value=9.000000000005) result = o.copy() result._data = o._data.downcast(dtypes='infer') expected = o.astype(np.int64) self._compare(result, expected) def test_constructor_compound_dtypes(self): # GH 5191 # compound dtypes should raise not-implementederror def f(dtype): return self._construct(shape=3, dtype=dtype) self.assertRaises(NotImplementedError, f, [("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) # these work (though results may be unexpected) f('int64') f('float64') f('M8[ns]') def check_metadata(self, x, y=None): for m in x._metadata: v = getattr(x, m, None) if y is None: self.assertIsNone(v) else: self.assertEqual(v, getattr(y, m, None)) def test_metadata_propagation(self): # check that the metadata matches up on the resulting ops o = self._construct(shape=3) o.name = 'foo' o2 = self._construct(shape=3) o2.name = 'bar' # TODO # Once panel can do non-trivial combine operations # (currently there is an a raise in the Panel arith_ops to prevent # this, though it actually does work) # can remove all of these try: except: blocks on the actual operations # ---------- # preserving # ---------- # simple ops with scalars for op in ['__add__', '__sub__', '__truediv__', '__mul__']: result = getattr(o, op)(1) self.check_metadata(o, result) # ops with like for op in ['__add__', '__sub__', '__truediv__', '__mul__']: try: result = getattr(o, op)(o) self.check_metadata(o, result) except (ValueError, AttributeError): pass # simple boolean for op in ['__eq__', '__le__', '__ge__']: v1 = getattr(o, op)(o) self.check_metadata(o, v1) try: self.check_metadata(o, v1 & v1) except (ValueError): pass try: self.check_metadata(o, v1 | v1) except (ValueError): pass # combine_first try: result = o.combine_first(o2) self.check_metadata(o, result) except (AttributeError): pass # --------------------------- # non-preserving (by default) # --------------------------- # add non-like try: result = o + o2 self.check_metadata(result) except (ValueError, AttributeError): pass # simple boolean for op in ['__eq__', '__le__', '__ge__']: # this is a name matching op v1 = getattr(o, op)(o) v2 = getattr(o, op)(o2) self.check_metadata(v2) try: self.check_metadata(v1 & v2) except (ValueError): pass try: self.check_metadata(v1 | v2) except (ValueError): pass def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex]: axis = o._get_axis_name(0) setattr(o, axis, index(len(getattr(o, axis)))) # Panel + dims try: o.head() except (NotImplementedError): raise nose.SkipTest('not implemented on {0}'.format( o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[0:0]) self._compare(o.tail(0), o.iloc[0:0]) # bounded self._compare(o.head(len(o) + 1), o) self._compare(o.tail(len(o) + 1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7)) def test_sample(self): # Fixes issue: 2419 o = self._construct(shape=10) ### # Check behavior of random_state argument ### # Check for stability when receives seed or random state -- run 10 # times. for test in range(10): seed = np.random.randint(0, 100) self._compare( o.sample(n=4, random_state=seed), o.sample(n=4, random_state=seed)) self._compare( o.sample(frac=0.7, random_state=seed), o.sample( frac=0.7, random_state=seed)) self._compare( o.sample(n=4, random_state=np.random.RandomState(test)), o.sample(n=4, random_state=np.random.RandomState(test))) self._compare( o.sample(frac=0.7, random_state=np.random.RandomState(test)), o.sample(frac=0.7, random_state=np.random.RandomState(test))) # Check for error when random_state argument invalid. with tm.assertRaises(ValueError): o.sample(random_state='astring!') ### # Check behavior of `frac` and `N` ### # Giving both frac and N throws error with tm.assertRaises(ValueError): o.sample(n=3, frac=0.3) # Check that raises right error for negative lengths with tm.assertRaises(ValueError): o.sample(n=-3) with tm.assertRaises(ValueError): o.sample(frac=-0.3) # Make sure float values of `n` give error with tm.assertRaises(ValueError): o.sample(n=3.2) # Check lengths are right self.assertTrue(len(o.sample(n=4) == 4)) self.assertTrue(len(o.sample(frac=0.34) == 3)) self.assertTrue(len(o.sample(frac=0.36) == 4)) ### # Check weights ### # Weight length must be right with tm.assertRaises(ValueError): o.sample(n=3, weights=[0, 1]) with tm.assertRaises(ValueError): bad_weights = [0.5] * 11 o.sample(n=3, weights=bad_weights) with tm.assertRaises(ValueError): bad_weight_series = Series([0, 0, 0.2]) o.sample(n=4, weights=bad_weight_series) # Check won't accept negative weights with tm.assertRaises(ValueError): bad_weights = [-0.1] * 10 o.sample(n=3, weights=bad_weights) # Check inf and -inf throw errors: with tm.assertRaises(ValueError): weights_with_inf = [0.1] * 10 weights_with_inf[0] = np.inf o.sample(n=3, weights=weights_with_inf) with tm.assertRaises(ValueError): weights_with_ninf = [0.1] * 10 weights_with_ninf[0] = -np.inf o.sample(n=3, weights=weights_with_ninf) # All zeros raises errors zero_weights = [0] * 10 with tm.assertRaises(ValueError): o.sample(n=3, weights=zero_weights) # All missing weights nan_weights = [np.nan] * 10 with tm.assertRaises(ValueError): o.sample(n=3, weights=nan_weights) # A few dataframe test with degenerate weights. easy_weight_list = [0] * 10 easy_weight_list[5] = 1 df = pd.DataFrame({'col1': range(10, 20), 'col2': range(20, 30), 'colString': ['a'] * 10, 'easyweights': easy_weight_list}) sample1 = df.sample(n=1, weights='easyweights') assert_frame_equal(sample1, df.iloc[5:6]) # Ensure proper error if string given as weight for Series, panel, or # DataFrame with axis = 1. s = Series(range(10)) with tm.assertRaises(ValueError): s.sample(n=3, weights='weight_column') panel = pd.Panel(items=[0, 1, 2], major_axis=[2, 3, 4], minor_axis=[3, 4, 5]) with tm.assertRaises(ValueError): panel.sample(n=1, weights='weight_column') with tm.assertRaises(ValueError): df.sample(n=1, weights='weight_column', axis=1) # Check weighting key error with tm.assertRaises(KeyError): df.sample(n=3, weights='not_a_real_column_name') # Check np.nan are replaced by zeros. weights_with_nan = [np.nan] * 10 weights_with_nan[5] = 0.5 self._compare( o.sample(n=1, axis=0, weights=weights_with_nan), o.iloc[5:6]) # Check None are also replaced by zeros. weights_with_None = [None] * 10 weights_with_None[5] = 0.5 self._compare( o.sample(n=1, axis=0, weights=weights_with_None), o.iloc[5:6]) # Check that re-normalizes weights that don't sum to one. weights_less_than_1 = [0] * 10 weights_less_than_1[0] = 0.5 tm.assert_frame_equal( df.sample(n=1, weights=weights_less_than_1), df.iloc[:1]) ### # Test axis argument ### # Test axis argument df = pd.DataFrame({'col1': range(10), 'col2': ['a'] * 10}) second_column_weight = [0, 1] assert_frame_equal( df.sample(n=1, axis=1, weights=second_column_weight), df[['col2']]) # Different axis arg types assert_frame_equal(df.sample(n=1, axis='columns', weights=second_column_weight), df[['col2']]) weight = [0] * 10 weight[5] = 0.5 assert_frame_equal(df.sample(n=1, axis='rows', weights=weight), df.iloc[5:6]) assert_frame_equal(df.sample(n=1, axis='index', weights=weight), df.iloc[5:6]) # Check out of range axis values with tm.assertRaises(ValueError): df.sample(n=1, axis=2) with tm.assertRaises(ValueError): df.sample(n=1, axis='not_a_name') with tm.assertRaises(ValueError): s = pd.Series(range(10)) s.sample(n=1, axis=1) # Test weight length compared to correct axis with tm.assertRaises(ValueError): df.sample(n=1, axis=1, weights=[0.5] * 10) # Check weights with axis = 1 easy_weight_list = [0] * 3 easy_weight_list[2] = 1 df = pd.DataFrame({'col1': range(10, 20), 'col2': range(20, 30), 'colString': ['a'] * 10}) sample1 = df.sample(n=1, axis=1, weights=easy_weight_list) assert_frame_equal(sample1, df[['colString']]) # Test default axes p = pd.Panel(items=['a', 'b', 'c'], major_axis=[2, 4, 6], minor_axis=[1, 3, 5]) assert_panel_equal( p.sample(n=3, random_state=42), p.sample(n=3, axis=1, random_state=42)) assert_frame_equal( df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42)) # Test that function aligns weights with frame df = DataFrame( {'col1': [5, 6, 7], 'col2': ['a', 'b', 'c'], }, index=[9, 5, 3]) s = Series([1, 0, 0], index=[3, 5, 9]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s)) # Weights have index values to be dropped because not in # sampled DataFrame s2 = Series([0.001, 0, 10000], index=[3, 5, 10]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s2)) # Weights have empty values to be filed with zeros s3 = Series([0.01, 0], index=[3, 5]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s3)) # No overlap in weight and sampled DataFrame indices s4 = Series([1, 0], index=[1, 2]) with tm.assertRaises(ValueError): df.sample(1, weights=s4) def test_size_compat(self): # GH8846 # size property should be defined o = self._construct(shape=10) self.assertTrue(o.size == np.prod(o.shape)) self.assertTrue(o.size == 10 ** len(o.axes)) def test_split_compat(self): # xref GH8846 o = self._construct(shape=10) self.assertTrue(len(np.array_split(o, 5)) == 5) self.assertTrue(len(np.array_split(o, 2)) == 2) def test_unexpected_keyword(self): # GH8597 from pandas.util.testing import assertRaisesRegexp df = DataFrame(np.random.randn(5, 2), columns=['jim', 'joe']) ca = pd.Categorical([0, 0, 2, 2, 3, np.nan]) ts = df['joe'].copy() ts[2] = np.nan with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.drop('joe', axis=1, in_place=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.reindex([1, 0], inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ca.fillna(0, inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ts.fillna(0, in_place=True) class TestSeries(tm.TestCase, Generic): _typ = Series _comparator = lambda self, x, y: assert_series_equal(x, y) def setUp(self): self.ts = tm.makeTimeSeries() # Was at top level in test_series self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' def test_rename_mi(self): s = Series([11, 21, 31], index=MultiIndex.from_tuples( [("A", x) for x in ["a", "B", "c"]])) s.rename(str.lower) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = Series([1, 2, 3]) result = o._get_numeric_data() self._compare(result, o) o = Series([1, '2', 3.]) result = o._get_numeric_data() expected = Series([], dtype=object, index=pd.Index([], dtype=object)) self._compare(result, expected) o = Series([True, False, True]) result = o._get_numeric_data() self._compare(result, o) o = Series([True, False, True]) result = o._get_bool_data() self._compare(result, o) o = Series(date_range('20130101', periods=3)) result = o._get_numeric_data() expected = Series([], dtype='M8[ns]', index=pd.Index([], dtype=object)) self._compare(result, expected) def test_nonzero_single_element(self): # allow single item via bool method s = Series([True]) self.assertTrue(s.bool()) s = Series([False]) self.assertFalse(s.bool()) # single item nan to raise for s in [Series([np.nan]), Series([pd.NaT]), Series([True]), Series([False])]: self.assertRaises(ValueError, lambda: bool(s)) for s in [Series([np.nan]), Series([pd.NaT])]: self.assertRaises(ValueError, lambda: s.bool()) # multiple bool are still an error for s in [
Series([True, True])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Thu Dec 27 14:35:44 2018 @author: RUFIAR1 """ import pandas as pd import locale locale.setlocale(locale.LC_TIME, "en_US.UTF-8") def plot_finance_data(finance_data): finance_data['All Data']=finance_data['Material'].astype('str')+','+finance_data['Fiscal year/period'] tras_finance_data=finance_data.drop(['Fiscal year/period','Material'],axis=1).set_index('All Data').T tras_finance_data.index=pd.to_datetime(tras_finance_data.index,format='%b %Y') tras_finance_data=tras_finance_data.sort_index() tras_finance_data.plot.line(title='Finance data') '''done''' def plot_market_data(market_data): market_data['All Data']=market_data['Molecule']+','+market_data['Manufacturer']+','+market_data['Product']+','+market_data['Pack'] market_data=market_data.drop(columns=['Molecule','Manufacturer','Product','Pack']) market_data=market_data.set_index("All Data").T market_data.index=pd.to_datetime(market_data.index,format='%d/%m/%Y') market_data=market_data.sort_index() market_data.sort_index().plot.line(title='Market data',subplots=True) '''done''' def plot_sales_data(sales_data): sales_data['All Data']=sales_data['Product'].astype('str')+','+sales_data['material'].astype('str')+','+ sales_data['CAUSALE'] sales_data=sales_data.drop(columns=['CAUSALE','NOTE','material','Product','inc IMS','AVG VENDUTO 2018','AVG FCST Q1','%','%','Stock','LF2','LF2 YTG (from JULY)','TOTALE']) sales_data=sales_data.set_index("All Data").T sales_data.index=pd.to_datetime(sales_data.index,format='%b') sales_data.sort_index().plot.line(title='Sales data') def plot_transformed_sales_data(transformed_data): transformed_data.index=pd.to_datetime(transformed_data.index,format='%b %Y') transformed_data.sort_index().plot.line(title='Sales data transformed') '''done''' def plot_forecast_data(forecast_data): forecast_data['All Data']=forecast_data['Material'].astype('str') forecast_data=forecast_data.drop(columns=['Material']) forecast_data=forecast_data.set_index("All Data").T forecast_data.index=
pd.to_datetime(forecast_data.index)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ########## Processing ########## *Created on Thu Jun 1 14:15 2017 by <NAME>* Processing results from the CellPainting Assay in the Jupyter notebook. This module provides the DataSet class and its methods. Additional functions in this module act on pandas DataFrames.""" import time import glob import os.path as op from collections import Counter import xml.etree.ElementTree as ET import pickle import pandas as pd import numpy as np from rdkit.Chem import AllChem as Chem from rdkit import DataStructs from IPython.core.display import HTML from . import tools as cpt from .config import ACT_PROF_PARAMETERS from .config import LIMIT_SIMILARITY_L, LIMIT_CELL_COUNT_L, LIMIT_ACTIVITY_L try: from misc_tools import apl_tools AP_TOOLS = True #: Library version VERSION = apl_tools.get_commit(__file__) # I use this to keep track of the library versions I use in my project notebooks print("{:45s} (commit: {})".format(__name__, VERSION)) except ImportError: AP_TOOLS = False print("{:45s} ({})".format(__name__, time.strftime("%y%m%d-%H:%M", time.localtime(op.getmtime(__file__))))) try: from . import resource_paths as cprp except ImportError: from . import resource_paths_templ as cprp print("* Resource paths not found, stub loaded.") print(" Automatic loading of resources will not work,") print(" please have a look at resource_paths_templ.py") FINAL_PARAMETERS = ['Metadata_Plate', 'Metadata_Well', 'plateColumn', 'plateRow', "Compound_Id", 'Container_Id', "Well_Id", "Producer", "Pure_Flag", "Toxic", "Rel_Cell_Count", "Known_Act", "Trivial_Name", 'WellType', 'Conc_uM', "Activity", "Act_Profile", "Plate", "Smiles"] DROP_FROM_NUMBERS = ['plateColumn', 'plateRow', 'Conc_uM', "Compound_Id"] DROP_GLOBAL = ["PathName_CellOutlines", "URL_CellOutlines", 'FileName_CellOutlines', 'ImageNumber', 'Metadata_Site', 'Metadata_Site_1', 'Metadata_Site_2'] QUANT = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] DEBUG = False def debug_print(txt, val): if DEBUG: txt = txt + ":" print("DEBUG {:20s}".format(txt), val) class DataSet(): def __init__(self, log=True): self.data = pd.DataFrame() self.fields = {"plateColumn": "Metadata_Plate", "WellType": "WellType", "ControlWell": "Control", "CompoundWell": "Compound"} self.log = log def __getitem__(self, item): res = self.data[item] if isinstance(res, pd.DataFrame): result = DataSet() result.data = res result.print_log("subset") else: result = res return result def __getattr__(self, name): """Try to call undefined methods on the underlying pandas DataFrame.""" def method(*args, **kwargs): res = getattr(self.data, name)(*args, **kwargs) if isinstance(res, pd.DataFrame): result = DataSet() result.data = res result.print_log(name) else: result = res return result return method def show(self): parameters = [k for k in FINAL_PARAMETERS if k in self.data] print("Shape: ", self.shape) print("Parameters:", parameters) return HTML(self.data[parameters]._repr_html_()) def head(self, n=5): parameters = [k for k in FINAL_PARAMETERS if k in self.data] res = self.data[parameters].head(n) result = DataSet() result.data = res result.print_log("head") return result def drop_cols(self, cols, inplace=False): """Drops the list of columns from the DataFrame. Listed columns that are not present in the DataFrame are simply ignored (no error is thrown).""" if inplace: drop_cols(self.data, cols, inplace=True) self.print_log("drop cols (inplace)") else: result = DataSet() result.data = drop_cols(self.data, cols, inplace=False) result.print_log("drop cols") return result def keep_cols(self, cols, inplace=False): if inplace: self.data = self.data[cols] self.print_log("keep cols (inplace)") else: result = DataSet() result.data = self.data[cols] result.print_log("keep cols") return result def print_log(self, component, add_info=""): if self.log: print_log(self.data, component, add_info) def load(self, fn, sep="\t"): """Read one or multiple result files and concatenate them into one dataset. `fn` is a single filename (string) or a list of filenames.""" self.data = load(fn, sep=sep).data self.print_log("load data") def write_csv(self, fn, parameters=None, sep="\t"): result = self.data.copy() if isinstance(parameters, list): result = result[parameters] result.to_csv(fn, sep=sep, index=False) def write_pkl(self, fn): self.data.to_pickle(fn) def write_parameters(self, fn="parameters.txt"): parameters = sorted(self.measurements) with open("parameters.txt", "w") as f: f.write('"') f.write('",\n"'.join(parameters)) f.write('"') print(len(parameters), "parameters written.") def describe(self, times_mad=3.0): df = numeric_parameters(self.data) stats = pd.DataFrame() stats["Min"] = df.min() stats["Max"] = df.max() stats["Median"] = df.median() stats["MAD"] = df.mad() stats["Outliers"] = df[(((df - df.median()).abs() - times_mad * df.mad()) > 0)].count() print(self.shape) return stats def well_type_from_position(self): """Assign the WellType from the position on the plate. Controls are in column 11 and 12""" result = DataSet(log=self.log) result.data = well_type_from_position(self.data) result.print_log("well type from pos") return result def well_from_position(self, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Assign Metadata_Well from plateRow, plateColumn""" result = DataSet(log=self.log) result.data = well_from_position(self.data, well_name=well_name, row_name=row_name, col_name=col_name) result.print_log("well from pos") return result def position_from_well(self, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Generate plateRow and plateColumn from Metatadata_Well""" result = DataSet(log=self.log) result.data = position_from_well(self.data, well_name=well_name, row_name=row_name, col_name=col_name) result.print_log("pos from well") return result def join_layout_384(self, layout_fn, on="Address_384"): result = DataSet(log=self.log) result.data = join_layout_384(self.data, layout_fn, on=on) result.print_log("join layout 384") return result def join_layout_1536(self, plate, quadrant, on="Address_384", how="inner"): """Cell Painting is always run in 384er plates. COMAS standard screening plates are format 1536. With this function, the 1536-to-384 reformatting file with the smiles added by join_smiles_to_layout_1536() can be used directly to join the layout to the individual 384er plates.""" result = DataSet(log=self.log) result.data = join_layout_1536(self.data, plate, quadrant, on=on, how=how) result.print_log("join layout 1536") return result def numeric_parameters(self): result = DataSet() result.data = numeric_parameters(self.data) return result def flag_toxic(self, cutoff=LIMIT_CELL_COUNT_L / 100): """Flag data rows of toxic compounds""" result = DataSet() result.data = flag_toxic(self.data, cutoff=cutoff) flagged = result.data["Toxic"].sum() result.print_log("flag toxic", "{:3d} flagged".format(flagged)) return result def remove_toxic(self, cutoff=LIMIT_CELL_COUNT_L / 100): """Remove data rows of toxic compounds""" result = DataSet() toxic = DataSet() result.data, toxic.data = remove_toxic(self.data, cutoff=cutoff) result.print_log("remove toxic", "{:3d} removed".format(toxic.shape[0])) return result, toxic def remove_impure(self, strict=False, reset_index=True): """Remove entries with `Pure_Flag == "Fail"`""" result = DataSet() flagged = DataSet() result.data, flagged.data = remove_impure(self.data) result.print_log("remove impure", "{:3d} removed".format(flagged.shape[0])) return result, flagged def remove_outliers(self, times_dev=3.0, group_by=None, method="median"): """Returns the filtered dataframe as well as the outliers. method can be `median`or `mean` """ result = DataSet() outliers = DataSet() result.data, outliers.data = remove_outliers(self.data, times_dev=times_dev, group_by=group_by, method=method) result.print_log("remove outliers", "{:3d} removed".format(outliers.shape[0])) return result, outliers def remove_skipped_echo_direct_transfer(self, fn): """Remove wells that were reported as skipped in the Echo protocol (xml). This functions works with Echo direct transfer protocols. Function supports using wildcards in the filename, the first file will be used. Returns a new dataframe without the skipped wells.""" result = DataSet() result.data, skipped = remove_skipped_echo_direct_transfer(self.data, fn=fn) skipped_str = "(" + ", ".join(skipped) + ")" result.print_log("remove skipped", "{:3d} skipped {}".format(self.shape[0] - result.shape[0], skipped_str)) return result def drop_dups(self, cpd_id="Compound_Id"): """Drop duplicate Compound_Ids""" result = DataSet() result.data = self.data.drop_duplicates(cpd_id) result.print_log("drop dups") return result def group_on_well(self, group_by=FINAL_PARAMETERS): """Group results on well level.""" result = DataSet() result.data = group_on_well(self.data, group_by=group_by) result.print_log("group on well") return result def join_batch_data(self, df_data=None, how="left", fillna="n.d."): """Join data by Batch_Id.""" result = DataSet() result.data = join_batch_data(self.data, df_data=df_data, how=how, fillna=fillna) result.print_log("join batch data") return result def join_container_data(self, df_data=None, how="left", fillna=""): """Join data by Container_Id.""" result = DataSet() result.data = join_container_data(self.data, df_data=df_data, how=how, fillna=fillna) result.print_log("join cntnr data") return result def join_container(self, cont_data=None, how="inner"): result = DataSet(log=self.log) result.data = join_container(self.data, cont_data=cont_data, how=how) result.print_log("join container") return result def join_smiles(self, df_smiles=None, how="left"): """Join Smiles from Compound_Id.""" result = DataSet() result.data = join_smiles(self.data, df_smiles=df_smiles, how=how) result.print_log("join smiles") return result def join_annotations(self): """Join Annotations from Compound_Id.""" result = DataSet() result.data = join_annotations(self.data) result.print_log("join annotations") return result def add_dmso(self): """Add DMSO to references.""" result = DataSet() result.data = add_dmso(self.data) result.print_log("add DMSO") return result def poc(self, group_by=None, well_type="WellType", control_name="Control"): """Normalize the data set to Percent-Of-Control per group (e.g. per plate) based on the median of the controls. Parameters: group_by (string or None): optional column by which the calculation should be grouped, e.g. the column with plate name.""" result = DataSet() result.data = poc(self.data, group_by=group_by) self.print_log("POC") return result def activity_profile(self, mad_mult=3.5, parameters=ACT_PROF_PARAMETERS, only_final=True): """Generates the `Act_Profile` column. The byte is set when the parameter's value is greater (or smaller) than parameter_ctrl.median() + (or -) `mad_mult`* parameter.mad() If a list of parameters is given, then the activity profile will be calculated for these parameters. If `only_final` == `True`, then only the parameters listed in `FINAL_PARAMETERS` are kept in the output_table. Returns a new Pandas DataFrame.""" result = DataSet() result.data = activity_profile(self.data, mad_mult=mad_mult, parameters=parameters, only_final=only_final) result.print_log("activity profile") return result def relevant_parameters(self, ctrls_std_rel_min=0.001, ctrls_std_rel_max=0.10): result = DataSet() result.data = relevant_parameters(self.data, ctrls_std_rel_min=ctrls_std_rel_min, ctrls_std_rel_max=ctrls_std_rel_max) num_parm = len(result.measurements) result.print_log("relevant parameters", "{:.3f}/{:.3f}/{:4d}" .format(ctrls_std_rel_min, ctrls_std_rel_max, num_parm)) return result def correlation_filter(self, cutoff=0.9, method="pearson"): """The correlation removes all highly correlated columns from the dataframe. The function was implemented according to the description of the corresponding KNIME component. Parameters: cutoff (float): correlation cutoff method (string): "pearson", "kendall", "spearman" (very slow) Returns a new DataFrame with only the non-correlated columns""" result = DataSet() result.data, iterations = correlation_filter(self.data, cutoff=cutoff, method=method) num_parm = len(result.measurements) result.print_log("correl. filter (mad)", "{:3d} iterations/{:4d}" .format(iterations, num_parm)) return result def correlation_filter_std(self, cutoff=0.9, method="pearson"): """The correlation removes all highly correlated columns from the dataframe. The function was implemented according to the description of the corresponding KNIME component. Parameters: cutoff (float): correlation cutoff method (string): "pearson", "kendall", "spearman" (very slow) Returns a new DataFrame with only the non-correlated columns""" result = DataSet() result.data, iterations = correlation_filter_std(self.data, cutoff=cutoff, method=method) num_parm = len(result.measurements) result.print_log("correl. filter (std)", "{:3d} iterations/{:4d}" .format(iterations, num_parm)) return result def add_act_profile_for_control(self, parameters=ACT_PROF_PARAMETERS): # Compound_Id DMSO: 245754 control = {"Compound_Id": 245754, "Trivial_Name": "Control", "Activity": 0, "Act_Profile": "".join(["1"] * len(parameters))} ck = control.keys() for k in ck: if k not in self.data.keys(): control.pop(k) tmp =
pd.DataFrame(control)
pandas.DataFrame
import pytest from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG, _period_code_map from pandas.errors import OutOfBoundsDatetime from pandas import Period, Timestamp, offsets class TestFreqConversion: """Test frequency conversion of date objects""" @pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"]) def test_asfreq_near_zero(self, freq): # GH#19643, GH#19650 per = Period("0001-01-01", freq=freq) tup1 = (per.year, per.hour, per.day) prev = per - 1 assert prev.ordinal == per.ordinal - 1 tup2 = (prev.year, prev.month, prev.day) assert tup2 < tup1 def test_asfreq_near_zero_weekly(self): # GH#19834 per1 = Period("0001-01-01", "D") + 6 per2 = Period("0001-01-01", "D") - 6 week1 = per1.asfreq("W") week2 = per2.asfreq("W") assert week1 != week2 assert week1.asfreq("D", "E") >= per1 assert week2.asfreq("D", "S") <= per2 def test_to_timestamp_out_of_bounds(self): # GH#19643, used to incorrectly give Timestamp in 1754 per = Period("0001-01-01", freq="B") msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): per.to_timestamp() def test_asfreq_corner(self): val = Period(freq="A", year=2007) result1 = val.asfreq("5t") result2 = val.asfreq("t") expected = Period("2007-12-31 23:59", freq="t") assert result1.ordinal == expected.ordinal assert result1.freqstr == "5T" assert result2.ordinal == expected.ordinal assert result2.freqstr == "T" def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq="A", year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq="Q", year=2007, quarter=1) ival_A_to_Q_end = Period(freq="Q", year=2007, quarter=4) ival_A_to_M_start = Period(freq="M", year=2007, month=1) ival_A_to_M_end = Period(freq="M", year=2007, month=12) ival_A_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_A_to_W_end = Period(freq="W", year=2007, month=12, day=31) ival_A_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_A_to_B_end = Period(freq="B", year=2007, month=12, day=31) ival_A_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_A_to_D_end = Period(freq="D", year=2007, month=12, day=31) ival_A_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_A_to_T_end = Period( freq="Min", year=2007, month=12, day=31, hour=23, minute=59 ) ival_A_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_A_to_S_end = Period( freq="S", year=2007, month=12, day=31, hour=23, minute=59, second=59 ) ival_AJAN_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq="D", year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq="D", year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq="D", year=2006, month=12, day=1) assert ival_A.asfreq("Q", "S") == ival_A_to_Q_start assert ival_A.asfreq("Q", "e") == ival_A_to_Q_end assert ival_A.asfreq("M", "s") == ival_A_to_M_start assert ival_A.asfreq("M", "E") == ival_A_to_M_end assert ival_A.asfreq("W", "S") == ival_A_to_W_start assert ival_A.asfreq("W", "E") == ival_A_to_W_end assert ival_A.asfreq("B", "S") == ival_A_to_B_start assert ival_A.asfreq("B", "E") == ival_A_to_B_end assert ival_A.asfreq("D", "S") == ival_A_to_D_start assert ival_A.asfreq("D", "E") == ival_A_to_D_end assert ival_A.asfreq("H", "S") == ival_A_to_H_start assert ival_A.asfreq("H", "E") == ival_A_to_H_end assert ival_A.asfreq("min", "S") == ival_A_to_T_start assert ival_A.asfreq("min", "E") == ival_A_to_T_end assert ival_A.asfreq("T", "S") == ival_A_to_T_start assert ival_A.asfreq("T", "E") == ival_A_to_T_end assert ival_A.asfreq("S", "S") == ival_A_to_S_start assert ival_A.asfreq("S", "E") == ival_A_to_S_end assert ival_AJAN.asfreq("D", "S") == ival_AJAN_to_D_start assert ival_AJAN.asfreq("D", "E") == ival_AJAN_to_D_end assert ival_AJUN.asfreq("D", "S") == ival_AJUN_to_D_start assert ival_AJUN.asfreq("D", "E") == ival_AJUN_to_D_end assert ival_ANOV.asfreq("D", "S") == ival_ANOV_to_D_start assert ival_ANOV.asfreq("D", "E") == ival_ANOV_to_D_end assert ival_A.asfreq("A") == ival_A def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq="Q", year=2007, quarter=1) ival_Q_end_of_year = Period(freq="Q", year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq="A", year=2007) ival_Q_to_M_start = Period(freq="M", year=2007, month=1) ival_Q_to_M_end = Period(freq="M", year=2007, month=3) ival_Q_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq="W", year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq="B", year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq="D", year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_Q_to_T_end = Period( freq="Min", year=2007, month=3, day=31, hour=23, minute=59 ) ival_Q_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_Q_to_S_end = Period( freq="S", year=2007, month=3, day=31, hour=23, minute=59, second=59 ) ival_QEJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq="D", year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq="D", year=2006, month=9, day=30) assert ival_Q.asfreq("A") == ival_Q_to_A assert ival_Q_end_of_year.asfreq("A") == ival_Q_to_A assert ival_Q.asfreq("M", "S") == ival_Q_to_M_start assert ival_Q.asfreq("M", "E") == ival_Q_to_M_end assert ival_Q.asfreq("W", "S") == ival_Q_to_W_start assert ival_Q.asfreq("W", "E") == ival_Q_to_W_end assert ival_Q.asfreq("B", "S") == ival_Q_to_B_start assert ival_Q.asfreq("B", "E") == ival_Q_to_B_end assert ival_Q.asfreq("D", "S") == ival_Q_to_D_start assert ival_Q.asfreq("D", "E") == ival_Q_to_D_end assert ival_Q.asfreq("H", "S") == ival_Q_to_H_start assert ival_Q.asfreq("H", "E") == ival_Q_to_H_end assert ival_Q.asfreq("Min", "S") == ival_Q_to_T_start assert ival_Q.asfreq("Min", "E") == ival_Q_to_T_end assert ival_Q.asfreq("S", "S") == ival_Q_to_S_start assert ival_Q.asfreq("S", "E") == ival_Q_to_S_end assert ival_QEJAN.asfreq("D", "S") == ival_QEJAN_to_D_start assert ival_QEJAN.asfreq("D", "E") == ival_QEJAN_to_D_end assert ival_QEJUN.asfreq("D", "S") == ival_QEJUN_to_D_start assert ival_QEJUN.asfreq("D", "E") == ival_QEJUN_to_D_end assert ival_Q.asfreq("Q") == ival_Q def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq="M", year=2007, month=1) ival_M_end_of_year = Period(freq="M", year=2007, month=12) ival_M_end_of_quarter = Period(freq="M", year=2007, month=3) ival_M_to_A =
Period(freq="A", year=2007)
pandas.Period
import json import pandas as pd import argparse import os import numpy as np # from pretrained_model_list import MODEL_PATH_LIST # import promptsource.templates from tqdm import tqdm import ipdb def clean_up_tokenization(out_string: str) -> str: """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms. Args: out_string (:obj:`str`): The text to clean up. Returns: :obj:`str`: The cleaned-up string. """ out_string = ( out_string.replace(" .", ".") .replace(" ?", "?") .replace(" !", "!") .replace(" ,", ",") .replace(" ' ", "'") .replace(" n't", "n't") .replace(" 'm", "'m") .replace(" 's", "'s") .replace(" 've", "'ve") .replace(" 're", "'re") .replace("\n\n", " ") .replace("\n", " ") .replace("\r", " ") ) return out_string def load_prompts(opt): if opt.prompt_set == "nlibias": return load_bbnli(opt) prompts = [] if opt.prompt_set == "bold": pth = os.path.join("data", opt.prompt_set, "prompts", opt.prompt_domain+"_prompt.json") with open(pth) as f: for line in f: prompts.append(json.loads(line)) prompts = prompts[0] prompts_df = pd.DataFrame(columns = ["Name", "Group", "Prompt"]) for group, content in prompts.items(): for name, prompt_l in content.items(): for prompt in prompt_l: if prompt.strip != "": prompts_df.loc[len(prompts_df)] = [name, group, prompt] elif opt.prompt_set == "honest": pth = os.path.join("honest/resources/en_template.tsv") prompts_df =
pd.read_csv(pth, sep="\t")
pandas.read_csv
import pandas as pd from sklearn.ensemble import AdaBoostRegressor from sklearn.model_selection import RepeatedKFold from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import mean_absolute_error as mae from sklearn.metrics import median_absolute_error as mdae from sklearn.metrics import explained_variance_score as evs from sklearn.metrics import r2_score as r2 import numpy as np def rmse(y, p): return mse(y, p)**0.5 rkf = RepeatedKFold(n_splits=10, n_repeats=10) data =
pd.read_csv('C:\\Users\\<NAME>\\Documents\\Research Projects\\Forecast of Rainfall Quantity and its variation using Envrionmental Features\\Data\\Normalized & Combined Data\\All Districts.csv')
pandas.read_csv
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class CoercionBase(object): klasses = ['index', 'series'] dtypes = ['object', 'int64', 'float64', 'complex128', 'bool', 'datetime64', 'datetime64tz', 'timedelta64', 'period'] @property def method(self): raise NotImplementedError(self) def _assert(self, left, right, dtype): # explicitly check dtype to avoid any unexpected result if isinstance(left, pd.Series): tm.assert_series_equal(left, right) elif isinstance(left, pd.Index): tm.assert_index_equal(left, right) else: raise NotImplementedError self.assertEqual(left.dtype, dtype) self.assertEqual(right.dtype, dtype) def test_has_comprehensive_tests(self): for klass in self.klasses: for dtype in self.dtypes: method_name = 'test_{0}_{1}_{2}'.format(self.method, klass, dtype) if not hasattr(self, method_name): msg = 'test method is not defined: {0}, {1}' raise AssertionError(msg.format(type(self), method_name)) class TestSetitemCoercion(CoercionBase, tm.TestCase): method = 'setitem' def _assert_setitem_series_conversion(self, original_series, loc_value, expected_series, expected_dtype): """ test series value's coercion triggered by assignment """ temp = original_series.copy() temp[1] = loc_value tm.assert_series_equal(temp, expected_series) # check dtype explicitly for sure self.assertEqual(temp.dtype, expected_dtype) # .loc works different rule, temporary disable # temp = original_series.copy() # temp.loc[1] = loc_value # tm.assert_series_equal(temp, expected_series) def test_setitem_series_object(self): obj = pd.Series(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Series(['a', 1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Series(['a', 1.1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = pd.Series(['a', 1 + 1j, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = pd.Series(['a', True, 'c', 'd']) self._assert_setitem_series_conversion(obj, True, exp, np.object) def test_setitem_series_int64(self): obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1, exp, np.int64) # int + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.int64) # int + complex -> complex exp = pd.Series([1, 1 + 1j, 3, 4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # int + bool -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, True, exp, np.int64) def test_setitem_series_float64(self): obj = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Series([1.1, 1.1, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.float64) # float + complex -> complex exp = pd.Series([1.1, 1 + 1j, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # float + bool -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, True, exp, np.float64) def test_setitem_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) def test_setitem_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1, exp, np.bool) # TODO_GH12747 The result must be int # assigning int greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 3, exp, np.bool) # bool + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1., 1.1, 1., 0.])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.bool) # bool + complex -> complex (buggy, results in bool) # TODO_GH12747 The result must be complex # tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 1, 0])) # self.assertEqual(temp.dtype, np.complex128) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.bool) # bool + bool -> bool exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, True, exp, np.bool) def test_setitem_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2011-01-02', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz -> datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_setitem_series_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp(1, tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns, US/Eastern]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_timedelta64(self): pass def test_setitem_series_period(self): pass def _assert_setitem_index_conversion(self, original_series, loc_key, expected_index, expected_dtype): """ test index's coercion triggered by assign key """ temp = original_series.copy() temp[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) temp = original_series.copy() temp.loc[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) def test_setitem_index_object(self): obj = pd.Series([1, 2, 3, 4], index=list('abcd')) self.assertEqual(obj.index.dtype, np.object) # object + object -> object exp_index = pd.Index(list('abcdx')) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) # object + int -> IndexError, regarded as location temp = obj.copy() with tm.assertRaises(IndexError): temp[5] = 5 # object + float -> object exp_index = pd.Index(['a', 'b', 'c', 'd', 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.object) def test_setitem_index_int64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.index.dtype, np.int64) # int + int -> int exp_index = pd.Index([0, 1, 2, 3, 5]) self._assert_setitem_index_conversion(obj, 5, exp_index, np.int64) # int + float -> float exp_index = pd.Index([0, 1, 2, 3, 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.float64) # int + object -> object exp_index = pd.Index([0, 1, 2, 3, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_float64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(obj.index.dtype, np.float64) # float + int -> int temp = obj.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 5.1]) self._assert_setitem_index_conversion(obj, 5.1, exp_index, np.float64) # float + object -> object exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_complex128(self): pass def test_setitem_index_bool(self): pass def test_setitem_index_datetime64(self): pass def test_setitem_index_datetime64tz(self): pass def test_setitem_index_timedelta64(self): pass def test_setitem_index_period(self): pass class TestInsertIndexCoercion(CoercionBase, tm.TestCase): klasses = ['index'] method = 'insert' def _assert_insert_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by insert """ target = original.copy() res = target.insert(1, value) tm.assert_index_equal(res, expected) self.assertEqual(res.dtype, expected_dtype) def test_insert_index_object(self): obj = pd.Index(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Index(['a', 1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Index(['a', 1.1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1.1, exp, np.object) # object + bool -> object res = obj.insert(1, False) tm.assert_index_equal(res, pd.Index(['a', False, 'b', 'c', 'd'])) self.assertEqual(res.dtype, np.object) # object + object -> object exp = pd.Index(['a', 'x', 'b', 'c', 'd']) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_int64(self): obj = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Index([1, 1, 2, 3, 4]) self._assert_insert_conversion(obj, 1, exp, np.int64) # int + float -> float exp = pd.Index([1, 1.1, 2, 3, 4]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # int + bool -> int exp = pd.Index([1, 0, 2, 3, 4]) self._assert_insert_conversion(obj, False, exp, np.int64) # int + object -> object exp = pd.Index([1, 'x', 2, 3, 4]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_float64(self): obj = pd.Float64Index([1., 2., 3., 4.]) self.assertEqual(obj.dtype, np.float64) # float + int -> int exp = pd.Index([1., 1., 2., 3., 4.]) self._assert_insert_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Index([1., 1.1, 2., 3., 4.]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # float + bool -> float exp = pd.Index([1., 0., 2., 3., 4.]) self._assert_insert_conversion(obj, False, exp, np.float64) # float + object -> object exp = pd.Index([1., 'x', 2., 3., 4.]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_complex128(self): pass def test_insert_index_bool(self): pass def test_insert_index_datetime64(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_datetime64tz(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') val = pd.Timestamp('2012-01-01', tz='US/Eastern') self._assert_insert_conversion(obj, val, exp, 'datetime64[ns, US/Eastern]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='Asia/Tokyo')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_timedelta64(self): obj = pd.TimedeltaIndex(['1 day', '2 day', '3 day', '4 day']) self.assertEqual(obj.dtype, 'timedelta64[ns]') # timedelta64 + timedelta64 => timedelta64 exp = pd.TimedeltaIndex(['1 day', '10 day', '2 day', '3 day', '4 day']) self._assert_insert_conversion(obj, pd.Timedelta('10 day'), exp, 'timedelta64[ns]') # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_period(self): obj = pd.PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M') self.assertEqual(obj.dtype, 'period[M]') # period + period => period exp = pd.PeriodIndex(['2011-01', '2012-01', '2011-02', '2011-03', '2011-04'], freq='M') self._assert_insert_conversion(obj, pd.Period('2012-01', freq='M'), exp, 'period[M]') # period + datetime64 => object exp = pd.Index([pd.Period('2011-01', freq='M'), pd.Timestamp('2012-01-01'), pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, np.object) # period + int => object exp = pd.Index([pd.Period('2011-01', freq='M'), 1, pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, 1, exp, np.object) # period + object => object exp = pd.Index([pd.Period('2011-01', freq='M'), 'x', pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, 'x', exp, np.object) class TestWhereCoercion(CoercionBase, tm.TestCase): method = 'where' def _assert_where_conversion(self, original, cond, values, expected, expected_dtype): """ test coercion triggered by where """ target = original.copy() res = target.where(cond, values) self._assert(res, expected, expected_dtype) def _where_object_common(self, klass): obj = klass(list('abcd')) self.assertEqual(obj.dtype, np.object) cond = klass([True, False, True, False]) # object + int -> object exp = klass(['a', 1, 'c', 1]) self._assert_where_conversion(obj, cond, 1, exp, np.object) values = klass([5, 6, 7, 8]) exp = klass(['a', 6, 'c', 8]) self._assert_where_conversion(obj, cond, values, exp, np.object) # object + float -> object exp = klass(['a', 1.1, 'c', 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.object) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass(['a', 6.6, 'c', 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.object) # object + complex -> object exp = klass(['a', 1 + 1j, 'c', 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.object) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass(['a', 6 + 6j, 'c', 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.object) if klass is pd.Series: exp = klass(['a', 1, 'c', 1]) self._assert_where_conversion(obj, cond, True, exp, np.object) values = klass([True, False, True, True]) exp = klass(['a', 0, 'c', 1]) self._assert_where_conversion(obj, cond, values, exp, np.object) elif klass is pd.Index: # object + bool -> object exp = klass(['a', True, 'c', True]) self._assert_where_conversion(obj, cond, True, exp, np.object) values = klass([True, False, True, True]) exp = klass(['a', False, 'c', True]) self._assert_where_conversion(obj, cond, values, exp, np.object) else: NotImplementedError def test_where_series_object(self): self._where_object_common(pd.Series) def test_where_index_object(self): self._where_object_common(pd.Index) def _where_int64_common(self, klass): obj = klass([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) cond = klass([True, False, True, False]) # int + int -> int exp = klass([1, 1, 3, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.int64) values = klass([5, 6, 7, 8]) exp = klass([1, 6, 3, 8]) self._assert_where_conversion(obj, cond, values, exp, np.int64) # int + float -> float exp = klass([1, 1.1, 3, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass([1, 6.6, 3, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # int + complex -> complex if klass is pd.Series: exp = klass([1, 1 + 1j, 3, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass([1, 6 + 6j, 3, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # int + bool -> int exp = klass([1, 1, 3, 1]) self._assert_where_conversion(obj, cond, True, exp, np.int64) values = klass([True, False, True, True]) exp = klass([1, 0, 3, 1]) self._assert_where_conversion(obj, cond, values, exp, np.int64) def test_where_series_int64(self): self._where_int64_common(pd.Series) def test_where_index_int64(self): self._where_int64_common(pd.Index) def _where_float64_common(self, klass): obj = klass([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) cond = klass([True, False, True, False]) # float + int -> float exp = klass([1.1, 1.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, 1, exp, np.float64) values = klass([5, 6, 7, 8]) exp = klass([1.1, 6.0, 3.3, 8.0]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # float + float -> float exp = klass([1.1, 1.1, 3.3, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass([1.1, 6.6, 3.3, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # float + complex -> complex if klass is pd.Series: exp = klass([1.1, 1 + 1j, 3.3, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass([1.1, 6 + 6j, 3.3, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # float + bool -> float exp = klass([1.1, 1.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, True, exp, np.float64) values = klass([True, False, True, True]) exp = klass([1.1, 0.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, values, exp, np.float64) def test_where_series_float64(self): self._where_float64_common(pd.Series) def test_where_index_float64(self): self._where_float64_common(pd.Index) def test_where_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) cond = pd.Series([True, False, True, False]) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.complex128) values = pd.Series([5, 6, 7, 8]) exp = pd.Series([1 + 1j, 6.0, 3 + 3j, 8.0]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.complex128) values = pd.Series([5.5, 6.6, 7.7, 8.8]) exp = pd.Series([1 + 1j, 6.6, 3 + 3j, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = pd.Series([1 + 1j, 6 + 6j, 3 + 3j, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, True, exp, np.complex128) values = pd.Series([True, False, True, True]) exp = pd.Series([1 + 1j, 0, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) def test_where_index_complex128(self): pass def test_where_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) cond = pd.Series([True, False, True, False]) # bool + int -> int exp = pd.Series([1, 1, 1, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.int64) values = pd.Series([5, 6, 7, 8]) exp = pd.Series([1, 6, 1, 8]) self._assert_where_conversion(obj, cond, values, exp, np.int64) # bool + float -> float exp = pd.Series([1.0, 1.1, 1.0, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = pd.Series([5.5, 6.6, 7.7, 8.8]) exp = pd.Series([1.0, 6.6, 1.0, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # bool + complex -> complex exp = pd.Series([1, 1 + 1j, 1, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = pd.Series([1, 6 + 6j, 1, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # bool + bool -> bool exp = pd.Series([True, True, True, True]) self._assert_where_conversion(obj, cond, True, exp, np.bool) values = pd.Series([True, False, True, True]) exp = pd.Series([True, False, True, True]) self._assert_where_conversion(obj, cond, values, exp, np.bool) def test_where_index_bool(self): pass def test_where_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') cond = pd.Series([True, False, True, False]) # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-01')]) self._assert_where_conversion(obj, cond, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') values = pd.Series([pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03'), pd.Timestamp('2012-01-04')]) exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') # ToDo: coerce to object msg = "cannot coerce a Timestamp with a tz on a naive Block" with tm.assertRaisesRegexp(TypeError, msg): obj.where(cond, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: do not coerce to UTC, must be object values = pd.Series([pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2012-01-03', tz='US/Eastern'), pd.Timestamp('2012-01-04', tz='US/Eastern')]) exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02 05:00'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04 05:00')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') def test_where_index_datetime64(self): obj = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') cond = pd.Index([True, False, True, False]) # datetime64 + datetime64 -> datetime64 # must support scalar msg = "cannot coerce a Timestamp with a tz on a naive Block" with tm.assertRaises(TypeError): obj.where(cond, pd.Timestamp('2012-01-01')) values = pd.Index([pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03'), pd.Timestamp('2012-01-04')]) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') # ToDo: coerce to object msg = ("Index\\(\\.\\.\\.\\) must be called with a collection " "of some kind") with tm.assertRaisesRegexp(TypeError, msg): obj.where(cond, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: do not ignore timezone, must be object values = pd.Index([pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2012-01-03', tz='US/Eastern'), pd.Timestamp('2012-01-04', tz='US/Eastern')]) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') def test_where_series_datetime64tz(self): pass def test_where_series_timedelta64(self): pass def test_where_series_period(self): pass def test_where_index_datetime64tz(self): pass def test_where_index_timedelta64(self): pass def test_where_index_period(self): pass class TestFillnaSeriesCoercion(CoercionBase, tm.TestCase): # not indexing, but place here for consisntency method = 'fillna' def _assert_fillna_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by fillna """ target = original.copy() res = target.fillna(value) self._assert(res, expected, expected_dtype) def _fillna_object_common(self, klass): obj = klass(['a', np.nan, 'c', 'd']) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = klass(['a', 1, 'c', 'd']) self._assert_fillna_conversion(obj, 1, exp, np.object) # object + float -> object exp = klass(['a', 1.1, 'c', 'd']) self._assert_fillna_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = klass(['a', 1 + 1j, 'c', 'd']) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = klass(['a', True, 'c', 'd']) self._assert_fillna_conversion(obj, True, exp, np.object) def test_fillna_series_object(self): self._fillna_object_common(pd.Series) def test_fillna_index_object(self): self._fillna_object_common(pd.Index) def test_fillna_series_int64(self): # int can't hold NaN pass def test_fillna_index_int64(self): pass def _fillna_float64_common(self, klass): obj = klass([1.1, np.nan, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = klass([1.1, 1.0, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1, exp, np.float64) # float + float -> float exp = klass([1.1, 1.1, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1.1, exp, np.float64) if klass is pd.Series: # float + complex -> complex exp = klass([1.1, 1 + 1j, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.complex128) elif klass is pd.Index: # float + complex -> object exp = klass([1.1, 1 + 1j, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.object) else: NotImplementedError # float + bool -> float exp = klass([1.1, 1.0, 3.3, 4.4]) self._assert_fillna_conversion(obj, True, exp, np.float64) def test_fillna_series_float64(self): self._fillna_float64_common(pd.Series) def test_fillna_index_float64(self): self._fillna_float64_common(pd.Index) def test_fillna_series_complex128(self): obj = pd.Series([1 + 1j, np.nan, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, 1, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, True, exp, np.complex128) def test_fillna_index_complex128(self): self._fillna_float64_common(pd.Index) def test_fillna_series_bool(self): # bool can't hold NaN pass def test_fillna_index_bool(self): pass def test_fillna_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_fillna_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + datetime64tz => object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) value = pd.Timestamp('2012-01-01', tz='US/Eastern') self._assert_fillna_conversion(obj, value, exp, np.object) # datetime64 + int => object # ToDo: must be coerced to object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_fillna_conversion(obj, 1, exp, 'datetime64[ns]') # datetime64 + object => object exp = pd.Series([pd.Timestamp('2011-01-01'), 'x', pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_fillna_conversion(obj, 'x', exp, np.object) def test_fillna_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.NaT, pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz => datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_fillna_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64 => object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01') self._assert_fillna_conversion(obj, value, exp, np.object) # datetime64tz + datetime64tz(different tz) => object exp = pd.Series([
pd.Timestamp('2011-01-01', tz=tz)
pandas.Timestamp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(
pd.DataFrame(data['diff'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 15 16:46:50 2021 @author: <NAME> """ #This script prepares phenotypes and covariates for associtatoin analysis """Several filtering and QC steps are applied, filter masks and overview plots created. As last steps files are reformatted to BGENIE standards """ #Import stuff import pandas as pd import os import numpy as np from statsmodels import robust import matplotlib.pyplot as plt import seaborn as sns import csv #------------------------------------------- # create directory for DTI output #------------------------------------------ pathDTI='/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/final/european/DTI' if not os.path.exists(pathDTI): os.mkdir(pathDTI) #------------------------------------------------------------------------------ # 1 Get the overall sample #------------------------------------------------------------------------------ #Load list of IDs that survived genetic QC gen_filter_wb = pd.read_csv ('/data/workspaces/lag/workspaces/lg-ukbiobank/derived_data/genetic_data/snp/subset_imagingT1_40k/v1_white_british_ancestry/SQC/imagingT1_ind_list_sqc_postrelatedness.txt',header = None, names=['eid']) #Load ID's of current sample eid = pd.read_csv('/data/workspaces/lag/workspaces/lg-ukbiobank/primary_data/current_release/ukb43760/ukb43760.csv', sep =",", usecols =[0]) mask_current_release = eid['eid'].isin(gen_filter_wb['eid']) # EUROPEAN SAMPLE #Load list of IDs that survived genetic QC gen_filter_we = pd.read_csv ('/data/workspaces/lag/workspaces/lg-ukbiobank/derived_data/genetic_data/snp/subset_imagingT1_40k/v2_white_ancestry/SQC/imagingT1_wa_ind_list_sqc_postrelatedness.txt',header = None, names=['eid']) #Load ID's of current sample mask_european = eid['eid'].isin(gen_filter_we['eid']) # #Load health related filter: We only want neuro healthy particpants mask_neurohealthy = pd.read_csv ('/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/UKBB/ICD_diagnosis/ukb43760/mask_neuro_healthy_ukb43760.dat', header = None) #also load the list of unusable T1's and fitler by these as the freesurfer output is likely corrupted unusable_t1 = pd.read_fwf ('/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/UKBB/unusable_T1/noT1_log.txt', header = None) unusable_t1.columns =['eid'] mask_unusable = ~eid['eid'].isin(unusable_t1['eid']) #--------------------------------------------------------------------- # now get overal maske and EID of current sample enigma_evol_european_DTI = pd.concat([mask_european, mask_neurohealthy, mask_unusable], axis =1) enigma_evol_european_DTI = enigma_evol_european_DTI.all(axis =1) eid_enigma_evol_european_DTI = eid[enigma_evol_european_DTI] #save enigma_evol_european_DTI.to_csv('/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/final/european/preprocessing/mask_enigmaEvol_europeanDTI_ukb43760.dat', index = False, header = False) eid_enigma_evol_european_DTI.to_csv('/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/final/european/preprocessing/eid_enigmaEvol_europeanDTI_ukb43760.dat',header =False, index = False) #--------------------------------------------------------- #2 Now we extract DTI TBSS mean FA values #-------------------------------------------------------------- DTI_TBSS =pd.read_csv('/data/workspaces/lag/workspaces/lg-ukbiobank/primary_data/current_release/ukb43760/ukb43760.csv',usecols=[0,*range(5290,5385,2)], dtype = object) #now we filter the phenotype by availability of DTI metrics and previous exclusioin criteria DTI_european = DTI_TBSS[enigma_evol_european_DTI].copy() DTI_european_noNaN=DTI_european.dropna(how = 'any').copy() cols=list(DTI_european_noNaN.iloc[:,1:]) DTI_european_noNaN[cols]=DTI_european_noNaN[cols].astype(float) DTI_european_noNaN['eid']=DTI_european_noNaN.eid.astype(str) #save as a CSV excel file DTI_european_noNaN.to_excel('/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/final/european/DTI/european_DTITBSS.xlsx', index= None) #-------------------------------------------------------------------------------- # 3 PHENOTYPE QUALITY CONTROL #----------------------------------------------------------------------------------- global_DTI=DTI_european_noNaN.iloc[:,1:7] right_DTI=DTI_european_noNaN.iloc[:,7:48:2] left_DTI=DTI_european_noNaN.iloc[:,8:49:2] lower_bound =[] upper_bound =[] for column in global_DTI.iloc[:,0:]: lower = global_DTI[column].median() - 5*robust.mad(global_DTI[column]) upper= global_DTI[column].median() + 5*robust.mad(global_DTI[column]) lower_bound.append(lower) upper_bound.append(upper) ##empty dataframe global_DTI_qc = pd.DataFrame() #check each column for outliers, make qc'ed dataframe for ind, column in enumerate(global_DTI.iloc[:,0:].columns): global_DTI_qc[column] = global_DTI[column].mask((global_DTI[column] < lower_bound[ind]) | (global_DTI[column] > upper_bound[ind])) # do the same thing for left right but here we keep the N similar across hemispheres lofdfs = [right_DTI, left_DTI] rep_pheno_qc = {} for key,df in enumerate(lofdfs): #QC each by using the IQR lower_bound =[] upper_bound =[] for column in df.iloc[:,0:]: lower =df[column].median() - 5*robust.mad(df[column]) upper= df[column].median() + 5*robust.mad(df[column]) lower_bound.append(lower) upper_bound.append(upper) qc=pd.DataFrame() for ind, column in enumerate(df.iloc[:,0:].columns): qc[column] = df[column].mask((df[column] < lower_bound[ind]) | (df[column] > upper_bound[ind])) #also immediatelly delete the global outliers rep_pheno_qc[key]=qc right_DTI_qc=rep_pheno_qc[0] left_DTI_qc=rep_pheno_qc[1] # quirk of pandas - can't work on columns in a global way otherwise so we save them to a list dtiLE_col =left_DTI_qc.columns.values.tolist() dtiRE_col =right_DTI_qc.columns.values.tolist() #and replace them with numbers left_DTI_qc.columns=np.arange(len(left_DTI_qc.columns)) right_DTI_qc.columns=np.arange(len(right_DTI_qc.columns)) #now we replace outliers with NAN by checking each dataframe frame and get sumstats dtiLE_masked = left_DTI_qc.mask(right_DTI_qc.isna()).copy() dtiRE_masked = right_DTI_qc.mask(left_DTI_qc.isna()).copy() #now name the columns again dtiLE_masked.columns = dtiLE_col dtiRE_masked.columns = dtiRE_col #get all the QCed data in one dataframe, add eid for later use final_DTI_qc =pd.concat([DTI_european_noNaN['eid'],global_DTI_qc,dtiLE_masked,dtiRE_masked],axis=1) dtifinalsumstats = final_DTI_qc.iloc[:,1:].describe() dtifinalsumstats.loc['percentange',:] =dtifinalsumstats.loc['count',:] / len(DTI_european_noNaN.index) dtifinalsumstats.to_csv('{}/ukb43760_dtiTBSS_QCed_sumstats.csv'.format(pathDTI)) #save EIDs for later use final_DTI_qc['eid'].to_csv('{}/eid_ukb43760_dtiTBSS.dat'.format(pathDTI),index=None,header=None) #get the overall ID list to create final mask eid = pd.read_csv('/data/workspaces/lag/workspaces/lg-ukbiobank/primary_data/current_release/ukb43760/ukb43760.csv', sep =",", usecols =[0]) mask_QCed = eid['eid'].isin(final_DTI_qc['eid']) #let's print out the N just as a sanity check mask_QCed.sum() #save the final mask - this combines neuro healthy, imaging, pheno QC and genetic sample QC mask_QCed.to_csv('{}/mask_ukb43760_dtiTBSS.dat'.format(pathDTI),index=None,header=None) final_DTI_qc.to_excel('{}/ukb43760_dtiTBSS_qced.xlsx'.format(pathDTI),sheet_name='ukb43760_dtiTBSS_FA') # quick check if all used EIDs have been used for surface based metrics --> do we need to rerun subsetting? eid_surfacebased=pd.read_csv('/data/workspaces/lag/workspaces/lg-ukbiobank/projects/enigma_evol/final/european/preprocessing/eid_afterQC_european_ukb43760.dat',header=None,dtype=str) eid_surfacebased.columns=['eid'] #chekch the overlap overlap=final_DTI_qc['eid'].isin(eid_surfacebased['eid']) print ('the differnce between this and the original sample is',len(final_DTI_qc) - overlap.sum()) #--------------------------------------------------------------------------- # 4 PLOT all regional metrics after QC as well #-------------------------------------------------------------------------- # make violinplot with Seaborn # loop over it to make it more readable plt.figure(figsize=(30,7)) bplot=sns.violinplot(y='value', x='variable', data=
pd.melt(final_DTI_qc.iloc[:,1:])
pandas.melt
# standard imports import os import glob import inspect from pprint import pprint import pickle as pkl import copy import pandas as pd import numpy as np from tqdm import tqdm import logging import subprocess import warnings import itertools import matplotlib.pyplot as plt from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord, match_coordinates_sky from astropy.visualization import ZScaleInterval from astropy import units as u from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', AstropyWarning) try: from p_tqdm import p_map _parallel = True except ModuleNotFoundError: print('package "p_tqdm" not installed, cannot do parallel processing') _parallel = False # internal imports import LOSSPhotPypeline import LOSSPhotPypeline.utils as LPPu from LOSSPhotPypeline.image import Phot, FitsInfo, FileNames # setup tqdm for pandas tqdm.pandas() class LPP(object): '''Lick Observatory Supernova Search Photometry Reduction Pipeline''' def __init__(self, targetname, interactive = True, parallel = True, cal_diff_tol = 0.05, force_color_term = False, max_display_phase = 120, wdir = '.', cal_use_common_ref_stars = False, sep_tol = 8, pct_increment = 0.05, in_pct_floor = 0.8, autoloadsave = False): '''Instantiation instructions''' # basics from instantiation self.targetname = targetname.replace(' ', '') self.config_file = targetname + '.conf' self.interactive = interactive self.wdir = os.path.abspath(wdir) # working directory for running (particularly idl code) if (parallel is True) and (_parallel) is True: self.parallel = True else: self.parallel = False self.cal_diff_tol = cal_diff_tol # starting calibration difference tolerance self.abs_cal_tol = 0.2 # do not proceed with the pipeline if in non-interactive mode and cal tol exceeds this self.min_ref_num = 2 # minimum number of ref stars self.pct_increment = pct_increment # amount to increment percentage requirement down by if doing ref check self.in_pct_floor = in_pct_floor # minimum percentage of images ref stars must be in if doing ref check self.checks = ['filter', 'date'] # default checks to perform on image list self.phase_limits = (-60, 2*365) # phase bounds in days relative to disc. date to keep if "date" check performed self.cal_use_common_ref_stars = cal_use_common_ref_stars # override requirement that each image have all ref stars self.sep_tol = sep_tol # radius around target in arcseconds to exclude candidate reference stars from # log file self.logfile = self.targetname.replace(' ', '') + '.log' self.build_log() # sourced from configuration file self.targetra = None self.targetdec = None self.photsub = False self.photmethod = 'all' self.refname = 'TBD' self.photlistfile = 'TBD' # discovery date (mjd) self.disc_date_mjd = None # check if config file exists -- if not then generate template if not os.path.exists(self.config_file): self.log.warn('No configuration file detected, complete template ({}) before proceeding.'.format(self.config_file + '.template')) LPPu.genconf(targetname = self.targetname, config_file = self.config_file + '.template') return # general variables self.filter_set_ref = ['B', 'V', 'R', 'I', 'CLEAR'] self.first_obs = None self.phot_cols = {'3.5p': 3, '5p': 5, '7p': 7, '9p': 9, '1fh': 11, '1.5fh': 13, '2fh': 15, 'psf': 17} self.calmethod = 'psf' # can be set to any key in phot_cols, but recommended is 'psf' self.image_list = [] # list of image file names self.phot_instances = [] # Phot instance for each image self.aIndex = [] # indices of all images in phot_instances self.wIndex = [] # subset of aIndex to work on self.bfIndex = [] # indices of images with unsupported filters self.ucIndex = [] # indices of WCS fail images, even though _c self.bdIndex = [] # indices of images with dates outside of phase boundaries self.pfIndex = [] # indices of photometry failures self.psfIndex = [] # indices of photometry (sub) failures self.cfIndex = [] # indices of calibration failures self.csfIndex = [] # indices of calibration (sub) failures self.noIndex = [] self.nosIndex = [] self.mrIndex = pd.Index([]) # keep track of indices to remove manually self.run_success = False # track run success # calibration variables self.cal_source = 'auto' self.calfile = 'TBD' self.calfile_use = 'TBD' self.force_color_term = force_color_term self.calibration_dir = 'calibration' if not os.path.isdir(self.calibration_dir): os.makedirs(self.calibration_dir) self.radecfile = os.path.join(self.calibration_dir, self.targetname + '_radec.txt') self.radec = None self.cal_IDs = 'all' self.cal_arrays = None self.cal_force_clear = False self.max_display_phase = max_display_phase # num days to show rel to disc for interactive calibration # keep track of counts of color terms self.color_terms = {'kait1': 0, 'kait2': 0, 'kait3': 0, 'kait4': 0, 'nickel1': 0, 'nickel2': 0, 'Landolt': 0} self.color_terms_used = None # load configuration file loaded = False while not loaded: try: self.loadconf() loaded = True except FileNotFoundError: LPPu.genconf(targetname = self.targetname, config_file = self.config_file + '.template') print('Configuration could not be loaded. Template generated: {}'.format(self.config_file + '.template')) response = input('Specify configuration file (*****.conf) or q to quit > ') if 'q' == response.lower(): return else: self.config_file = response # lightcurve variables self.lc_dir = 'lightcurve' self.lc_base = os.path.join(self.lc_dir, 'lightcurve_{}_'.format(self.targetname)) self.lc_ext = {'raw': '_natural_raw.dat', 'bin': '_natural_bin.dat', 'group': '_natural_group.dat', 'standard': '_standard.dat', 'ul': '_natural_ul.dat'} # galaxy subtraction variables self.template_images = None self.templates_dir = 'templates' # data directories self.data_dir = os.path.dirname(self.refname) self.error_dir = self.data_dir + '_sim' # steps in standard reduction procedure self.current_step = 0 self.steps = [self.load_images, self.check_images, self.find_ref_stars, self.match_refcal_stars, self.do_galaxy_subtraction_all_image, self.do_photometry_all_image, self.get_sky_all_image, self.do_calibration, self.get_zeromag_all_image, self.get_limmag_all_image, self.generate_lc, self.write_summary] # save file self.savefile = self.targetname.replace(' ', '') + '.sav' if os.path.exists(self.savefile): if self.interactive: load = input('Load saved state from {}? ([y]/n) > '.format(self.savefile)) else: load = 'n' # run fresh if in non-interactive mode if autoloadsave : load = 'y' # run fresh if in non-interactive mode, unless this keyword is set if 'n' not in load.lower(): self.load() # make sure that the selected calmethod is one of the photmethods if self.calmethod not in self.photmethod: self.log.warn('Calibration method must be one of the photometry methods. Exiting.') return ################################################################################################### # Configuration File Methods ################################################################################################### def loadconf(self): ''' reads config file and sets class attributes accordingly the most accurate accounting of system state is stored in the binary savefile ''' # load config file and try to standardize keys conf = pd.read_csv(self.config_file, header = None, delim_whitespace = True, comment = '#', index_col = 0, squeeze = True).replace(np.nan, '') conf.index = conf.index.str.lower() # read and set values (including the type) self.targetra = float(conf['targetra']) self.targetdec = float(conf['targetdec']) if conf['photsub'].lower() == 'yes': # defaults to False in all other cases self.photsub = True if conf['calsource'].lower() in ['psf','sdss','apass']: # only set if a known source is specified self.cal_source = conf['calsource'].lower() if conf['photmethod'].lower() == 'all': self.photmethod = list(self.phot_cols.keys()) elif ',' not in conf['photmethod'].lower(): if conf['photmethod'].lower().strip() in self.phot_cols.keys(): self.photmethod = [conf['photmethod'].lower().strip()] else: print('{} is not a valid photometry method. Available options are:'.format(conf['photmethod'].strip())) print(', '.join(self.phot_col.keys())) self.photmethod = input('Enter selection(s) > ').strip().replace(' ', '').split(',') else: proposed = conf['photmethod'].strip().split(',') if set(proposed).issubset(set(self.phot_cols.keys())): self.photmethod = proposed else: print('At least one of {} is not a valid photometry method. Available options are:'.format(conf['photmethod'].strip())) print(', '.join(self.phot_cols.keys())) self.photmethod = input('Enter selection(s) > ').strip().replace(' ', '').split(',') self.refname = conf['refname'] self.photlistfile = conf['photlistfile'] if conf['forcecolorterm'].strip() in self.color_terms.keys(): self.force_color_term = conf['forcecolorterm'].strip() self.log.info('{} loaded'.format(self.config_file)) ################################################################################################### # Logging ################################################################################################### def build_log(self): '''starts and sets up log''' self.log = logging.getLogger('LOSSPhotPypeline') self.log.setLevel(logging.DEBUG) # don't duplicate entries if self.log.hasHandlers(): self.log.handlers.clear() # internal logging fh = logging.FileHandler(self.logfile) fh.setFormatter(logging.Formatter('%(asctime)s in %(funcName)s with level %(levelname)s ::: %(message)s')) self.log.addHandler(fh) # if in interactive mode, print log at or above INFO on screen if self.interactive: sh = logging.StreamHandler() sh.setLevel(logging.INFO) sh.setFormatter(logging.Formatter('\n'+'*'*60+'\n%(message)s\n'+'*'*60)) self.log.addHandler(sh) # used by contextlib to log all idl and bash outputs, while hiding from screen self.log.write = lambda msg: self.log.debug('[external] ' + msg) if msg != '\n' else None self.log.info('Welcome to the LOSS Photometry Pypeline (LPP)') ################################################################################################### # UI / Automation Methods ################################################################################################### def __iter__(self): return self def next(self, *args, **kwargs): '''performs next reduction step (arguments for that step can be passed through)''' if self.current_step < len(self.steps): self.steps[self.current_step](*args, **kwargs) self.current_step += 1 self.save() self.summary() else: raise StopIteration def skip(self): '''skip current step''' self.log.info('skipping step: {}'.format(self.steps[self.current_step].__name__)) self.go_to(self.current_step + 1) self.summary() def go_to(self, step = None): '''go to specified step, or choose interactively''' if type(step) == int: self.current_step = step self.summary() else: self.summary() print('\nChoose an option:\n') print('primary reduction steps:') for i, step in enumerate(self.steps): if i == self.current_step: print('{} --- {} (current step)'.format(i, step.__name__)) else: print('{} --- {}'.format(i, step.__name__)) print('\nadditional options:') print('n --- add new image(s) by filename(s)') print('nf --- add new images from file of names') print('p --- plot light curve from file') print('c --- cut points from specific light curve') print('cr --- cut points from specific raw light curve and regenerate subsequent light curves') print('q --- quit\n') resp = input('selection > ').lower() if 'n' == resp: new_images = input('enter name(s) or new images (comma separated) > ') if ',' not in new_images: new_image_list = [new_images] else: new_image_list = [fl.strip() for fl in new_images.split(',')] self.process_new_images(new_image_list = new_image_list) elif 'nf' == resp: new_image_file = input('enter name of new image file > ') self.process_new_images(new_image_file = new_image_file) elif 'p' == resp: lc_file = input('enter light curve file (including relative path) to plot > ') self.plot_lc([lc_file]) elif (resp == 'c') or (resp == 'cr'): lc_file = input('enter light curve file (including relative path) to cut points from > ') regenerate = False if resp == 'cr': regenerate = True self.cut_lc_points(lc_file, regenerate = True) else: try: self.current_step = int(resp) except ValueError: return self.summary() def save(self): '''saves current state of pipeline''' vs = vars(self).copy() vs.pop('steps') vs.pop('log') with open(self.savefile, 'wb') as f: pkl.dump(vs, f) self.log.info('{} written'.format(self.savefile)) def load(self, savefile = None, summary = True): '''re-initializes pipeline from saved state in file''' if savefile is None: savefile = self.savefile with open(savefile, 'rb') as f: vs = pkl.load(f) for v in vs.keys(): s = 'self.{} = vs["{}"]'.format(v, v) exec(s) self.log.info('{} loaded'.format(savefile)) if summary: self.summary() def summary(self): '''print summary of pipeline status''' print('\n' + '*'*60) print('Reduction status for {}'.format(self.targetname)) print('Interactive: {}'.format(self.interactive)) print('Photsub Mode: {}'.format(self.photsub)) print('*'*60 + '\n') if self.current_step == 0: print('Beginning of reduction pipeline.\n') else: print('Previous step: {}'.format(self.steps[self.current_step - 1].__name__)) print(self.steps[self.current_step - 1].__doc__ + '\n') try: print('--> Next step: {}'.format(self.steps[self.current_step].__name__)) print(self.steps[self.current_step].__doc__ + '\n') except IndexError: print('End of reduction pipeline.') self.save() return try: print('----> Subsequent step: {}'.format(self.steps[self.current_step + 1].__name__)) print(self.steps[self.current_step + 1].__doc__ + '\n') except IndexError: print('End of reduction pipeline.') def run(self, skips = []): '''run through reduction steps''' while True: if self.current_step in skips: self.skip() else: try: self.next() except StopIteration: break def show_variables(self): '''prints instance variables''' pprint(vars(self)) def show_methods(self): '''show available methods''' print('method: docstring') for name in LPP.__dict__.keys(): if name[:2] != '__' and name != 'show_methods': print('{}: {}'.format(name, LPP.__dict__[name].__doc__)) ################################################################################################### # Reduction Pipeline Methods ################################################################################################### def load_images(self): '''reads image list file to generate lists of image names and Phot instances''' self.image_list = pd.read_csv(self.photlistfile, header = None, delim_whitespace = True, comment = '#', squeeze = True) if self.interactive: print('\nSelected image files') print('*'*60 + '\n') print(self.image_list) print('\n') self.log.info('image list loaded from {}'.format(self.photlistfile)) self.log.info('generating list of Phot instances from image list') self.phot_instances = self._im2inst(self.image_list) # radec is None if running in order # set indices self.aIndex = self.image_list.index self.wIndex = self.aIndex def check_images(self): '''only keep images that are in a supported filter and without file format issues''' # filter check if 'filter' in self.checks: filter_check = lambda img: True if img.filter.upper() in self.filter_set_ref else False self.log.info('checking filters') bool_idx = self.phot_instances.loc[self.wIndex].progress_apply(filter_check) self.bfIndex = self.wIndex[~pd.Series(bool_idx)] self.log.info('dropping {} images due to unsupported filter'.format(len(self.bfIndex))) self.wIndex = self.wIndex.drop(self.bfIndex) # uncal check if 'uncal' in self.checks: cal_check = lambda img: True if ('RADECSYS' not in img.header) else (False if (img.header['RADECSYS'] == '-999') else True) self.log.info('checking images for WCS') bool_idx = self.phot_instances.loc[self.wIndex].progress_apply(cal_check) self.ucIndex = self.wIndex[~pd.Series(bool_idx)] self.log.info('dropping {} images for failed WCS'.format(len(self.ucIndex))) self.wIndex = self.wIndex.drop(self.ucIndex) if 'date' in self.checks: if self.disc_date_mjd is None: self.log.warn('discovery date not set, cannot do date check') return date_check = lambda img: True if ((img.mjd >= (self.disc_date_mjd + self.phase_limits[0])) and (img.mjd <= (self.disc_date_mjd + self.phase_limits[1]))) else False self.log.info('checking phases') bool_idx = self.phot_instances.loc[self.wIndex].progress_apply(date_check) self.bdIndex = self.wIndex[~pd.Series(bool_idx)] self.log.info('dropping {} images that are outside of phase bounds'.format(len(self.bdIndex))) self.wIndex = self.wIndex.drop(self.bdIndex) # if there are none left, end pipeline if len(self.wIndex) == 0: self.log.warn('all images removed by checks --- cannot proceed') self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return def find_ref_stars(self): '''identify all suitable stars in ref image, compute ra & dec, write radecfile, store in instance''' # if radecfile already exists, no need to do it if os.path.exists(self.radecfile): self.log.info('radecfile already exists, loading only') self.radec = pd.read_csv(self.radecfile, delim_whitespace=True, skiprows = (0,1,3,4,5), names = ['RA','DEC']) # set radec in Phot instances for img in self.phot_instances.loc[self.wIndex]: img.radec = self.radec return if self.refname == '' : self.log.warn('refname has not been assigned, please do it first!') return # instantiate object to manage names ref = Phot(self.refname, calmethod = self.calmethod) # use sextractor to extract all stars to be used as refstars sxcp = os.path.join(os.path.dirname(inspect.getfile(LOSSPhotPypeline)), 'conf', 'sextractor_config') config = os.path.join(sxcp, 'kait.sex') filt = os.path.join(sxcp, 'gauss_2.0_5x5.conv') par = os.path.join(sxcp, 'kait.par') star = os.path.join(sxcp, 'default.nnw') cmd_list = ['sex', self.refname, '-c', config, '-PARAMETERS_NAME', par, '-FILTER_NAME', filt, '-STARNNW_NAME', star, '-CATALOG_NAME', ref.sobj, '-CHECKIMAGE_NAME', ref.skyfit] p = subprocess.Popen(cmd_list, stdout = subprocess.PIPE, stderr = subprocess.PIPE, universal_newlines = True) stdout, stderr = p.communicate() self.log.debug(stdout) self.log.debug(stderr) # make sure process succeeded if not os.path.exists(ref.sobj): self.log.warn('SExtractor failed --- no sobj file generated, check!') return # read sobj file of X_IMAGE and Y_IMAGE columns, as well as MAG_APER for sort with fits.open(ref.sobj) as hdul: data = hdul[1].data # sort according to magnitude, from small/bright to hight/faint data.sort(order = 'MAG_APER') imagex = data.X_IMAGE imagey = data.Y_IMAGE # transform to RA and DEC using ref image header information cs = WCS(header = ref.header) imagera, imagedec = cs.all_pix2world(imagex, imagey, 0) # remove any identified "stars" that are too close to target coords = SkyCoord(imagera, imagedec, unit = (u.deg, u.deg)) target_coords = SkyCoord(self.targetra, self.targetdec, unit = (u.deg, u.deg)) offsets = coords.separation(target_coords).arcsecond imagera = imagera[offsets > self.sep_tol] imagedec = imagedec[offsets > self.sep_tol] # write radec file with open(self.radecfile, 'w') as f: f.write('TARGET\n') f.write(' RA DEC\n') f.write(' {:.7f} {:.7f}\n'.format(self.targetra, self.targetdec)) f.write('\nREFSTARS\n') f.write(' RA DEC\n') for i in range(len(imagera)): f.write(' {:.7f} {:.7f}\n'.format(imagera[i], imagedec[i])) self.log.info('{} written'.format(self.radecfile)) self.radec = pd.read_csv(self.radecfile, delim_whitespace=True, skiprows = (0,1,3,4,5), names = ['RA','DEC']) # set radec in Phot instances for img in self.phot_instances.loc[self.wIndex]: img.radec = self.radec def match_refcal_stars(self): '''get calibration catalog, and match stars to ref stars -- only do if needed''' if os.path.exists(os.path.join(self.calibration_dir, self.calfile)) is False: # get calibration catalog catalog = LPPu.astroCatalog(self.targetname, self.targetra, self.targetdec, relative_path = self.calibration_dir) catalog.get_cal(method = self.cal_source) self.calfile = catalog.cal_filename self.cal_source = catalog.cal_source self.log.info('calibration data sourced') self.log.info('matching ref stars to catalog stars and selecting 40 brightest') self.get_cal_info() radec = SkyCoord(self.radec.loc[1:, 'RA'], self.radec.loc[1:, 'DEC'], unit = (u.deg, u.deg)) cal_cat = pd.read_csv(os.path.join(self.calibration_dir, self.calfile), delim_whitespace = True) cal = SkyCoord(cal_cat.loc[:, 'ra'], cal_cat.loc[:, 'dec'], unit = (u.deg, u.deg)) idx, d2d, d3d = match_coordinates_sky(cal, radec) cal_use = cal_cat.iloc[d2d.arcsecond < 5] # calibration stars that match within 5" cal_use.index = self.radec.loc[1:].iloc[idx[d2d.arcsecond < 5]].index - 1 # don't count sn and align indices with radecfile cal_use.insert(0, 'starID', cal_use.index) cal_use = cal_use.sort_values(by = 'r').drop_duplicates(subset = 'starID', keep = 'first') self.cal_use = cal_use.iloc[:40] # select top 40 brightest # write "use" files with open(os.path.join(self.calibration_dir, self.calfile_use), 'w') as outfile: outfile.write(self.cal_use.to_string(index = False)) catalog = LPPu.astroCatalog(self.targetname, self.targetra, self.targetdec, relative_path = self.calibration_dir) catalog.cal_filename = self.calfile_use catalog.cal_source = self.cal_source catalog.to_natural() self.cal_arrays = catalog.get_cal_arrays(index_order = self.cal_use.index) # show ref stars (and cut if interactive mode) if self.interactive: self._display_refstars(icut = True) else: self._display_refstars() def do_galaxy_subtraction_all_image(self, subreg = 0.9): '''performs galaxy subtraction on all selected image files''' if not self.photsub: self.log.warn('not in photsub mode, skipping galaxy subtraction') return self.log.info('starting galaxy subtraction') if self.template_images is None: self.load_templates() if self.template_images is None: self.log.warn('could not get suitable template images, running without galaxy subtraction') self.photsub = False return # set up for parallelization ti = self.template_images fn = lambda img: img.galaxy_subtract(ti, subreg = subreg) # do galaxy subtraction in the appropriate mode if self.parallel is True: res = p_map(fn, self.phot_instances.loc[self.wIndex].tolist()) else: res = [] for img in tqdm(self.phot_instances.loc[self.wIndex].tolist()): res.append(fn(img)) # extract results, log, and determine if successful res = pd.DataFrame(res, columns = ['success', 'log']) res['log'].apply(lambda log_entry: self._log_idl(*log_entry)) if not res['success'].all(): self.log.warn('photsub failed (probably b/c of missing templates), running without galaxy subtraction') self._get_template_candidates() self.photsub = False self.log.info('galaxy subtraction done') def do_photometry_all_image(self, forcesky = False): '''performs photometry on all selected image files''' self.log.info('starting photometry (galsub: {})'.format(self.photsub)) # set up for parallelization ps = self.photsub fn = lambda img: img.do_photometry(photsub = ps, forcesky = forcesky) # do photometry in the appropriate mode if self.parallel is True: res = p_map(fn, self.phot_instances.loc[self.wIndex].tolist()) else: res = [] for img in tqdm(self.phot_instances.loc[self.wIndex].tolist()): res.append(fn(img)) # extract results, log, and remove failures res = pd.DataFrame(res, columns = ['unsub', 'sub', 'log']) res['log'].apply(lambda log_entry: self._log_idl(*log_entry)) self.pfIndex = self.wIndex[~res['unsub']] self.log.warn('photometry failed on {} out of {} images'.format(len(self.pfIndex), len(self.wIndex))) if self.photsub is False: self.wIndex = self.wIndex.drop(self.pfIndex) else: self.psfIndex = self.wIndex[~res['sub']] self.log.warn('photometry (sub) failed on {} out of {} images'.format(len(self.psfIndex), len(self.wIndex))) self.wIndex = self.wIndex.drop(self.pfIndex.intersection(self.psfIndex)) if len(self.wIndex) == 0: self.log.warn('all images failed, cannot proceed') self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return self.log.info('photometry done') def get_sky_all_image(self): '''get and set sky value for every phot instance''' self.log.info('getting sky value for each image') self.phot_instances.loc[self.wIndex].progress_apply(lambda img: img.get_sky()) def calibrate(self, final_pass = False): '''performs calibration on all images included in photlistfile, using outputs from do_photometry_all_image''' if not final_pass: self.log.info('performing calibration') else: self.log.info('doing final calibration') # reset trackers self.cfIndex = [] self.csfIndex = [] # calibration list cal_list = [] # iterate through image list and execute calibration script on each for idx, img in tqdm(self.phot_instances.loc[self.wIndex].iteritems(), total = len(self.wIndex)): # set photsub mode appropriately if self.photsub is False: ps = False elif (self.photsub is True) and (idx in self.psfIndex): ps = False else: ps = True # do calibration phot = img.calibrate(self.cal_IDs, self.cal_arrays[img.color_term].loc[:, img.filter.upper()], self.cal_arrays[img.color_term].loc[:, 'E'+img.filter.upper()], sub = ps, write_dat = final_pass) phot.rename(columns = {self.calmethod: 'Mag_obs'}, inplace = True) # add comparison information phot.insert(0, 'Filter', img.filter.upper()) phot.loc[self.cal_IDs, 'RA_cal'] = self.cal_arrays[img.color_term].loc[self.cal_IDs, 'RA'] phot.loc[self.cal_IDs, 'DEC_cal'] = self.cal_arrays[img.color_term].loc[self.cal_IDs, 'DEC'] phot.loc[self.cal_IDs, 'Mag_cal'] = self.cal_arrays[img.color_term].loc[self.cal_IDs, img.filter.upper()] phot.loc[self.cal_IDs, 'RA_diff'] = np.abs(phot.loc[self.cal_IDs, 'RA_obs'] - phot.loc[self.cal_IDs, 'RA_cal']) phot.loc[self.cal_IDs, 'DEC_diff'] = np.abs(phot.loc[self.cal_IDs, 'DEC_obs'] - phot.loc[self.cal_IDs, 'DEC_cal']) cal_list.append(phot.loc[self.cal_IDs, ['Filter', 'RA_diff', 'DEC_diff', 'Mag_obs', 'Mag_cal', 'ref_in', 'system']]) # check for success if in final pass mode if final_pass: if (os.path.exists(img.psfdat) is False): self.cfIndex.append(idx) if (self.photsub is True) and (os.path.exists(img.psfsubdat) is False): self.csfIndex.append(idx) # organize calibrators and compute globabl metrics self.calibrators = pd.concat([df.loc[self.cal_IDs, :] for df in cal_list], keys = self.wIndex) self.calibrators['Mag_diff'] = self.calibrators['Mag_obs'] - self.calibrators['Mag_cal'] # remove failures if in final pass mode if final_pass: self.cfIndex = pd.Index(self.cfIndex) self.csfIndex = pd.Index(self.csfIndex) self.log.warn('calibration failed on {} out of {} images'.format(len(self.cfIndex), len(self.wIndex))) self.wIndex = self.wIndex.drop(self.cfIndex) # processing based only on non-subtracted images if self.photsub is True: self.log.warn('calibration (sub) failed on {} out of {} images'.format(len(self.csfIndex), len(self.wIndex))) if len(self.wIndex) == 0: self.log.warn('all images failed, cannot proceed') self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return def do_calibration(self, use_filts = 'all', sig = 3, min_cut_diff = 0.5, quality_cuts = True): '''check calibration and make cuts as needed''' self.log.info('performing calibration') # get filters used self.filters = set(self.phot_instances.loc[self.wIndex].apply(lambda img: img.filter.upper())) if use_filts == 'all': use_filts = self.filters if self.cal_IDs == 'all': self.cal_IDs = self.cal_arrays['kait4'].index # choice of color term here is arbitrary # iterate until acceptable tolerance is reached accept_tol = False skip_calibrate = False iter_cnt = -1 while not accept_tol: iter_cnt += 1 # run calibration if not skip_calibrate: self.calibrate() skip_calibrate = False # find indices (img, cal_ID) where Mag_obs failed to measure locs = self.calibrators.loc[self.calibrators['Mag_obs'].isnull(), :].index # pct of succ meas as a function of img img_succ = (1 - locs.levels[0][locs.labels[0]].value_counts() / len(self.cal_IDs)) # pct of succ meas as a function of cal_ID cal_succ = (1 - locs.levels[1][locs.labels[1]].value_counts() / len(self.wIndex)) # run minimal quality cuts if requested --- these are the first and second iterations if (quality_cuts is True) and (iter_cnt < 2): # remove any cal IDs or images with a very low success rate ID_cut = cal_succ.index[cal_succ < 0.4] if (len(ID_cut) > 0) and (iter_cnt == 0): self.cal_IDs = self.cal_IDs.drop(ID_cut) self.log.info('cut ID(s): {} from minimal quality cut'.format(ID_cut)) continue elif iter_cnt == 0: self.log.info('all IDs passed minimal quality cut') iter_cnt = 1 img_cut = img_succ.index[img_succ < 0.4] if (len(img_cut) > 0) and (iter_cnt == 1): self.manual_remove(img_cut) self.log.info('cut image(s): {} from minimal quality cut'.format(img_cut)) continue elif iter_cnt == 1: self.log.info('all images passed minimal quality cut') iter_cnt = 2 elif iter_cnt < 2: iter_cnt = 2 # cut to use common ref stars if requested --- these is the fourth iteration # iteration 3 is used to remove outlier images before applying this cut if (self.cal_use_common_ref_stars is True) and (iter_cnt == 3): self.log.info('finding common ref stars') accept = False cnt = 0 while not accept: current_pct = 1 - cnt * self.pct_increment tmp = cal_succ[cal_succ >= current_pct] if len(tmp) > self.min_ref_num: self.log.info('{} ref stars are in at least {} pct of images, using these'.format(len(tmp), 100*current_pct)) accept = True elif current_pct < self.in_pct_floor: self.log.warn('reached minimum tolerance for pct image including ref stars, quitting') self.run_succss = False self.current_step = self.steps.index(self.write_summary) - 1 return cnt += 1 if len(tmp) < len(self.cal_IDs): self.cal_IDs = tmp.index continue # instantiate trackers cut_list = [] # store IDs that will be cut nan_list = [] # IDs of NaN to be cut immediately full_list = [] bad_img_list = [] # indices of images that are <sig> outliers single_cut_idx = None tmp_max = self.cal_diff_tol df_list = [] # group by filter and perform comparison for filt, group in self.calibrators.groupby('Filter', sort = False): # use specific filters if specified if filt not in use_filts: continue # if clear is not the only filter, skip it in comparison unless forced to use if (len(self.filters) > 1) and ('CLEAR' in self.filters) and (filt == 'CLEAR') and (not self.cal_force_clear): continue # compute metrics df = group.median(level = 1) df.loc[:, 'pct_im'] = group['Mag_obs'].notnull().sum(level=1) / len(group['Mag_obs'].groupby(level=0)) df.loc[:, 'std_obs'] = group.std(level = 1).loc[:, 'Mag_obs'] df = df.sort_index() df.loc[:, 'Diff'] = np.abs(df.loc[:, 'Mag_diff']) # identify possible exclusions cut_list.extend(list(df.index[df.loc[:, 'Diff'] > self.cal_diff_tol])) nan_list.extend(list(df.index[df.loc[:, 'Diff'].isnull()])) if len(nan_list) > 0: break full_list = list(df.index) # ok to overwrite b/c same each time ## exclude outlier images by iterating through all cal IDs and finding images of <sig> outliers for id in self.cal_IDs: selection = self.calibrators.loc[self.calibrators['Filter'] == filt, :].loc[(self.wIndex, id),['Mag_obs', 'system']] for sys, grp in selection.groupby('system', sort = False): grp = grp.loc[grp['Mag_obs'].notnull(), :] mags = grp.loc[:, 'Mag_obs'].values index = grp.index.levels[0][grp.index.labels[0]] # image indices if len(mags) > 0: bad_img_list.extend(index[np.abs(mags - mags.mean()) > np.max([min_cut_diff, sig * mags.std()])]) if self.interactive: print('\nFilter: {}'.format(filt)) print('*'*60) rnd = pd.Series([2,4,4,3,3,3,3], index = ['pct_im', 'RA_diff', 'DEC_diff', 'Mag_cal', 'Mag_obs', 'std_obs', 'Mag_diff']) print(df.loc[:, ['pct_im', 'RA_diff', 'DEC_diff', 'Mag_cal', 'Mag_obs', 'std_obs', 'Mag_diff']].round(rnd)) else: # find index and value of maximum diff maxi = df.loc[:, 'Diff'].idxmax() maxd = df.loc[maxi, 'Diff'] if maxd > tmp_max: single_cut_idx = maxi tmp_max = maxd df.insert(0, 'Filter', filt) df_list.append(df) cut_list = list(set(cut_list)) bad_img_list = list(set(bad_img_list)) # remove NaN if len(nan_list) > 0: self.log.info('cutting ID(s) {} for NaN'.format(', '.join([str(i) for i in nan_list]))) self.cal_IDs = self.cal_IDs.drop(nan_list) continue # make cuts to refstars as needed if self.interactive: # show ref stars and calibrated light curves fig, ax = plt.subplots(1, 2, figsize = (12, 6)) self._display_refstars(ax = ax[0], display = True) if self.photsub: r = self.phot_instances.loc[self.wIndex].apply(lambda img: pd.Series([img.mjd, img.filter, img.phot_sub.loc[-1, self.calmethod], img.phot_sub.loc[-1, self.calmethod + '_err'], img.color_term])) else: r = self.phot_instances.loc[self.wIndex].apply(lambda img: pd.Series([img.mjd, img.filter, img.phot.loc[-1, 'Mag_obs'], img.phot.loc[-1, self.calmethod + '_err'], img.color_term])) r.columns = ('mjd', 'filter', 'mag', 'emag', 'system') p = LPPu.plotLC(offset_scale = 2) for idx, ct in enumerate(set(r['system'])): fs = 'full' if 'nickel' in ct: fs = 'none' for filt in set(r['filter']): selector = (r['filter'] == filt) & r['mag'].notnull() & (r['system'] == ct) if (self.max_display_phase != 0) and (self.max_display_phase != 'all'): selector = selector & (r['mjd'] - r['mjd'].min() < self.max_display_phase) line, = ax[1].plot(r.loc[selector, 'mjd'], r.loc[selector, 'mag'] + p._offset(filt), c = p._color(filt), marker = ['o', 'D', 's', 'v', '^'][idx], linestyle = 'None', picker = 3, label = '{},{}'.format(filt, ct), fillstyle = fs) ax[1].invert_yaxis() ax[1].set_xticks(()) ax[1].set_yticks(()) x0, x1 = ax[1].get_xlim() y0, y1 = ax[1].get_ylim() ax[1].set_aspect(np.abs((x1-x0)/(y1-y0))) plt.tight_layout() def onpick(event): ind = event.ind[0] filt, sys = event.artist._label.split(',') row = r.loc[(r['filter'] == filt) & (r['system'] == sys) & (r['mjd'] == event.artist._x[ind]), :] id = row.index[0] cal = self.phot_instances.loc[id].phot.loc[self.cal_IDs, 'Mag_obs'] print('\nClicked Point Information:') print('\tImage ID: {}'.format(id)) print('\tImage Name: {}'.format(self.image_list.loc[id])) print('\tMJD: {:.1f}'.format(row['mjd'].item())) print('\tMag: {:.1f} pm {:.1f}'.format(row['mag'].item(), row['emag'].item())) print('\tFilter: {}'.format(filt)) print('\tSystem: {}'.format(sys)) print('\tcal IDs used: {}/{}'.format(len(cal.loc[cal.notnull()]), len(cal))) print('\tfailed cal IDs: {}'.format(', '.join([str(i) for i in sorted(cal.loc[cal.isnull()].index)]))) print('\nChoice >') cid = fig.canvas.mpl_connect('pick_event', lambda event: onpick(event)) print('*'*60) nshow = np.min([len(cal_succ), len(img_succ), 10]) if nshow > 0: print('\nSuccess Rate Per (worst {})'.format(nshow)) print('{:<12} {:<12}'.format('cal ID', 'image')) for c, i in itertools.zip_longest(cal_succ.iloc[:nshow].index, img_succ.iloc[:nshow].index): print('{:<4} {:<7} {:<4} {:<7}'.format(c, round(cal_succ.loc[c], 3), i, round(img_succ.loc[i], 3))) # warn if any individual images have too few ref stars ref_counts = self.calibrators['Mag_obs'].notnull().sum(level = 0) if (ref_counts < self.min_ref_num).sum() > 0: print('\nWarning - the following image(s) have below the minimum number of ref stars ({}):'.format(self.min_ref_num)) print(ref_counts.index[ref_counts < self.min_ref_num]) if (ref_counts == self.min_ref_num).sum() > 0: print('\nWarning - the following image(s) have the minimum number of ref stars ({}):'.format(self.min_ref_num)) print(ref_counts.index[ref_counts == self.min_ref_num]) print('\nDo not cut the following ID(s) to avoid falling below the minimum:') idx_selector = (ref_counts.index[ref_counts == self.min_ref_num], self.cal_IDs) num_affected = self.calibrators.loc[idx_selector, 'Mag_obs'].notnull().sum(level=1) print(num_affected.index[num_affected > 0].sort_values()) if len(bad_img_list) > 0: print('\nWarning - the following image(s) are outliers:') print(bad_img_list) print('\nAt tolerance {}, {} ID(s) (out of {}) will be cut'.format(self.cal_diff_tol, len(cut_list), len(full_list))) print(sorted(cut_list)) print('\nSelect an option below (or click on light curve points to get info):') print('\tAccept cuts with tolerance of {} mag ([y])'.format(self.cal_diff_tol)) print('\tAdjust tolerance [enter float between 0 and 1]') print('\tCut calibration star(s) by ID(s) [comma separated list of IDs to cut]') print('\tDisplay image ["d" followed by index (e.g. d162)]') print('\tCut image(s) ["c" followed by comma separated indexes (e.g. c162,163)]') print('\tView measured mags for specific cal star ["<passband>" followed by cal ID (e.g. B5)]') response = input('\nChoice > '.format(self.cal_diff_tol)) fig.canvas.mpl_disconnect(cid) plt.ioff() plt.close() if (response == '') or ('y' in response.lower()): self.cal_IDs = self.cal_IDs.drop(cut_list) accept_tol = True elif '.' in response: self.cal_diff_tol = float(response) skip_calibrate = True elif response.lower()[0] == 'd': self.compare_image2ref(int(response[1:])) skip_calibrate = True elif (response.lower()[0] == 'c') and (response.lower()[1] != 'l'): self.manual_remove([int(i) for i in response[1:].split(',')]) elif response[0] in self.filters: self._display_obs_cal_mags(response[0], int(response[1:])) skip_calibrate = True elif response[:5].lower() == 'clear': self._display_obs_cal_mags(response[:5], int(response[5:])) else: self.cal_IDs = self.cal_IDs.drop([int(i) for i in response.split(',')]) elif (len(bad_img_list) > 0): self.log.info('removing {} outlier image(s): {}'.format(len(bad_img_list), bad_img_list)) self.manual_remove(bad_img_list) elif single_cut_idx is None: accept_tol = True elif len(full_list) > self.min_ref_num: self.log.info('cutting ID {} for exceeding tolerance and re-running calibration'.format(single_cut_idx)) self.cal_IDs = self.cal_IDs.drop([single_cut_idx]) elif self.cal_diff_tol <= self.abs_cal_tol: self.log.info('increasing tolerance to {} and re-running calibration'.format(self.cal_diff_tol)) self.cal_diff_tol += 0.05 else: self.log.warn('calibration tolerance exceeds {}, cannot proceed'.format(self.abs_cal_tol)) self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return with open(os.path.join(self.calibration_dir, 'final_ref_stars.dat'), 'w') as outfile: outfile.write(pd.concat([df.loc[self.cal_IDs, :] for df in df_list], sort = False).to_string()) # make final pass on calibration to track failures and write .dat files self.calibrate(final_pass = True) # write final "use" files with open(os.path.join(self.calibration_dir, self.calfile_use), 'w') as outfile: outfile.write(self.cal_use.loc[self.cal_IDs, :].to_string(index = False)) catalog = LPPu.astroCatalog(self.targetname, self.targetra, self.targetdec, relative_path = self.calibration_dir) catalog.cal_filename = self.calfile_use catalog.cal_source = self.cal_source catalog.to_natural() # show new ref stars plt.ioff() self._display_refstars() def get_zeromag_all_image(self): '''get and set zeromag for every phot instance''' self.log.info('getting zeromag for each image') self.phot_instances.loc[self.wIndex].progress_apply(lambda img: img.get_zeromag()) def get_limmag_all_image(self): '''get and set limiting mag for every phot instance''' self.log.info('getting limiting mag for each image') self.phot_instances.loc[self.wIndex].progress_apply(lambda img: img.calc_limmag()) def generate_raw_lcs(self, color_term, photsub_mode = False): '''builds raw light curve files from calibrated results''' # light curve containers columns = (';; MJD','etburst', 'mag', '-emag', '+emag', 'limmag', 'filter', 'imagename') lc = {name: [] for name in columns} lcs = {m: copy.deepcopy(lc) for m in self.photmethod} # limiting mag containers lm = {name: [] for name in columns} lms = {m: copy.deepcopy(lm) for m in self.photmethod} # iterate through files and extract LC information for idx, img in self.phot_instances.loc[self.wIndex].iteritems(): # immediately skip if not the appropriate color term unless being forced if (color_term != img.color_term) and (self.force_color_term is False): continue # skip failed images if (idx in self.cfIndex) and (photsub_mode is False): continue elif ((idx in self.psfIndex) or (idx in self.csfIndex)) and (photsub_mode is True): continue # read photometry results cols = (0,) + sum(((self.phot_cols[m], self.phot_cols[m] + 1) for m in self.photmethod), ()) col_names = ('ID',) + sum(((m + '_mag', m + '_err') for m in self.photmethod), ()) if photsub_mode is False: dat = img.psfdat else: dat = img.psfsubdat d = pd.read_csv(dat, header = None, delim_whitespace = True, comment = ';', usecols=cols, names = col_names) # detect if no target in file if 1 not in d['ID'].values: self.log.warn('no object in calibrated photometry file: {}'.format(dat)) if photsub_mode is False: self.noIndex.append(idx) else: self.nosIndex.append(idx) # setup columns for each raw file for m in self.photmethod: if 1 not in d['ID'].values: continue # skip these ones mag = d[d['ID'] == 1][m + '_mag'].item() err = d[d['ID'] == 1][m + '_err'].item() if np.isnan(mag): record = lms[m] else: record = lcs[m] record['mag'].append(round(mag,5)) record['-emag'].append(round(mag - err,5)) record['+emag'].append(round(mag + err,5)) record[';; MJD'].append(round(img.mjd, 6)) record['etburst'].append(round(img.exptime / (60 * 24), 5)) # exposure time in days record['filter'].append(img.filter.upper()) record['imagename'].append(img.cimg) record['limmag'].append(round(img.limmag, 5)) # write raw lc files for m in self.photmethod: lc_raw_name = self._lc_fname(color_term, m, 'raw', sub = photsub_mode) lc_raw = pd.DataFrame(lcs[m]) lc_raw.to_csv(lc_raw_name, sep = '\t', columns = columns, index = False, na_rep = 'NaN') lm_raw_name = self._lc_fname(color_term, m, 'ul', sub = photsub_mode) lm_raw = pd.DataFrame(lms[m]) lm_raw.to_csv(lm_raw_name, sep = '\t', columns = columns, index = False, na_rep = 'NaN') p = LPPu.plotLC(lc_file = lc_raw_name, lm_file = lm_raw_name, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) def generate_bin_lc(self, infile, outfile): '''wraps IDL lightcurve binning routine''' idl_cmd = '''idl -e "lpp_dat_res_bin, '{}', '{}', OUTFILE='{}', /OUTPUT"'''.format(infile, outfile, outfile) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) def generate_group_lc(self, infile, outfile): '''wraps IDL lightcurve grouping routine''' idl_cmd = '''idl -e "lpp_dat_res_group, '{}', '{}', OUTFILE='{}'"'''.format(infile, outfile, outfile) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) if (', not doing group' in stdout) or (os.path.exists(outfile) is False): return False else: return True def generate_final_lc(self, color_term, infile, outfile): '''wraps IDL routine to convert from natural system''' idl_cmd = '''idl -e "lpp_invert_natural_stand_objonly, '{}', '{}', OUTFILE='{}', /OUTPUT"'''.format(infile, color_term, outfile) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) if not os.path.exists(outfile): return False else: return True def raw2standard_lc(self, infile): '''wrap intermediate steps that transform light curves from "raw" to "standard"''' # assign convenience variables tmp = infile.split('_') ct = tmp[tmp.index('natural') - 2] # get color term m = tmp[tmp.index('natural') - 1] # get phot aperture binfile = infile.replace('raw', 'bin') groupfile = binfile.replace('bin', 'group') lc = groupfile.replace('natural_group', 'standard') # do intermediate light curve steps self.generate_bin_lc(infile, binfile) grp_result = self.generate_group_lc(binfile, groupfile) if grp_result is False: self.log.warn('no groupfile generated, skipping') return False, False std_result = self.generate_final_lc(ct, groupfile, lc) if std_result is False: self.log.warn('no standard lc generated, skipping') return True, False # plot p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) return True, True def get_color_term_used(self): '''get dictionary counting use of each color term''' ct = self.phot_instances.loc[self.wIndex].apply(lambda img: img.color_term) self.color_terms_used = dict(ct.value_counts()) def generate_lc(self, sub = False): '''performs all functions to transform image photometry into calibrated light curve of target''' self.log.info('generating and plotting light curves (sub mode: {})'.format(sub)) # set up file system if not os.path.isdir(self.lc_dir): os.makedirs(self.lc_dir) self.get_color_term_used() # generate raw light curves self.log.info('generating raw light curves for the following color terms: {}'.format(', '.join(self.color_terms_used.keys()))) for ct in tqdm(self.color_terms_used.keys()): self.generate_raw_lcs(ct, photsub_mode = sub) # generate intermediate and final light curves self.log.info('generating "standard" light curves') for m in tqdm(self.photmethod): all_nat = [] all_std = [] for ct in self.color_terms_used.keys(): group_succ, standard_succ = self.raw2standard_lc(self._lc_fname(ct, m, 'raw', sub = sub)) # only add group and standard if group has been updated if group_succ is True: all_nat.append((ct, self._lc_fname(ct, m, 'group', sub = sub))) if standard_succ is True: all_std.append(self._lc_fname(ct, m, 'standard', sub = sub)) # make "all" light curves lc_nat = self._lc_fname('all', m, 'group', sub = sub) concat_list = [] for row in all_nat: tmp = pd.read_csv(row[1], delim_whitespace = True) tmp.insert(3, 'SYSTEM', row[0]) concat_list.append(tmp) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc_nat, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc_nat, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) lc = self._lc_fname('all', m, 'standard', sub = sub) concat_list = [] for fl in all_std: concat_list.append(pd.read_csv(fl, delim_whitespace = True)) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) self.log.info('done with light curves') self.run_success = True # use recursion to handle sub if needed if (self.photsub is True) and (sub is False): self.generate_lc(sub = True) def get_errors(self, method = 'sn6', kpix_rad = 20, skip_photsub = False, photsub = 'auto', ps = 0.7965, host_ra = None, host_dec = None, rseed = None): '''inject artificial stars of same mag as SN at each epoch and compute mags''' self.log.info('doing artificial star simulation to determine errors') # set seed if rseed is not None: np.random.seed(rseed) # make directory for new generated data if not os.path.exists(self.error_dir): os.makedirs(self.error_dir) if (photsub == 'auto') or (type(photsub) != type(True)): photsub = self.photsub # hard coded n_stars = 30 # compute coords of n_stars around host def handle_img(img, ret_xy = False, method = method): cs = WCS(header = img.header) # get pix coords of sn sn_x, sn_y = cs.all_world2pix(self.targetra, self.targetdec, 0) # select appropriate method if method == 'snhost': # ring of radius equal to distance between sn and nucleus n_stars = 10 host_x, host_y = cs.all_world2pix(host_ra, host_dec, 0) theta_sn = np.arctan2(sn_y - host_y, sn_x - host_x) # angle relative to hose # coordinates of artificial stars dtheta = np.linspace(2*np.pi/n_stars, 2*np.pi - 2*np.pi/n_stars, n_stars) x = host_x + np.sqrt((sn_y - host_y)**2 + (sn_x - host_x)**2) * np.cos(theta_sn + dtheta) y = host_y + np.sqrt((sn_y - host_y)**2 + (sn_x - host_x)**2) * np.sin(theta_sn + dtheta) elif method == 'squares': # square distribution as discussed w/ zwk and TdG x_comp = np.cos(np.linspace(np.pi/4, 2*np.pi - np.pi / 4, 4)) x = sn_x + (kpix_rad * ps / img.pixscale) * np.concatenate([x_comp, 2 * x_comp, 2 * np.cos(np.pi/4) * np.array([1,0,-1,0])]) y_comp = np.sin(np.linspace(np.pi/4, 2*np.pi - np.pi / 4, 4)) y = sn_y + (kpix_rad * ps / img.pixscale) * np.concatenate([y_comp, 2 * y_comp, 2 * np.sin(np.pi/4) * np.array([0,1,0,-1])]) n_stars = len(x) else: # preferred method of concentric hexagons with radius increments of 20 KAIT pixels dtheta = np.linspace(0, 2*np.pi, 7)[:-1] x = sn_x + (kpix_rad * ps / img.pixscale) * np.concatenate((np.cos(dtheta), 2 * np.cos(dtheta + np.pi/6), 3 * np.cos(dtheta), 4 * np.cos(dtheta + np.pi/6), 5 * np.cos(dtheta))) y = sn_y + (kpix_rad * ps / img.pixscale) * np.concatenate((np.sin(dtheta), 2 * np.sin(dtheta + np.pi/6), 3 * np.sin(dtheta), 4 * np.sin(dtheta + np.pi/6), 5 * np.sin(dtheta))) n_stars = len(x) # if just want pixel coords, return them along with WCS instance if ret_xy is True: return cs, x, y # get magnitude of sn at this epoch mag = np.nan try: if photsub is False: mag = img.phot_raw.loc[-1, self.calmethod] emag = img.phot_raw.loc[-1, self.calmethod + '_err'] else: mag = img.phot_sub_raw.loc[-1, self.calmethod] emag = img.phot_sub_raw.loc[-1, self.calmethod + '_err'] except AttributeError: pass if (np.isnan(mag)) or (np.isinf(mag)): return False, None # if random seed given, injected mags drawn from a gaussian of width set by uncertainty if rseed is None: inj_mags = [mag]*n_stars else: inj_mags = np.random.normal(mag, emag, n_stars).tolist() assert n_stars == len(x) # IDL call leads to new images in new directory idl_cmd = '''idl -e "lpp_sim_fake_star, '{}', {}, {}, {}, OUTFILE='{}', PSFFITARRFILE='{}', /USENATURALMAG"'''.format(img.cimg, x.tolist(), y.tolist(), inj_mags, os.path.join(self.error_dir, os.path.basename(img.cimg)), img.psffitarr) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) # do checks on success then return if os.path.exists(os.path.join(self.error_dir, os.path.basename(img.cimg))): return True, inj_mags else: return False, None self.log.info('creating images with artificial stars') succ = [] mags = [] for img in tqdm(self.phot_instances.loc[self.wIndex].tolist()): s, m = handle_img(img) succ.append(s) if m is not None: mags.append(m) # drop images with no mag self.wIndex = self.wIndex[pd.Series(succ)] # instantiate pipeline instance and inherit many parent attributes sn = LPP(self.targetname, interactive = False, parallel = self.parallel, cal_diff_tol = self.cal_diff_tol, force_color_term = self.force_color_term, wdir = self.wdir, cal_use_common_ref_stars = self.cal_use_common_ref_stars, autoloadsave = False, sep_tol = self.sep_tol) vs = vars(self).copy() vs.pop('steps') vs.pop('log') vs.pop('phot_instances') for v in vs.keys(): s = 'sn.{} = vs["{}"]'.format(v, v) exec(s) sn.interactive = False self.log.info('running pipeline steps on images with artificial stars') # change image paths and load instances sn.image_list = sn.image_list.apply(lambda fl: os.path.join(self.error_dir, os.path.basename(fl))) sn.phot_instances = sn._im2inst(sn.image_list.loc[sn.wIndex], mode = 'quiet') # include artificial stars in radec cs, x, y = handle_img(Phot(self.refname, calmethod = self.calmethod), ret_xy = True) fake_ra, fake_dec = cs.all_pix2world(x, y, 0) for img in sn.phot_instances.loc[sn.wIndex]: img.radec = self.radec.append(pd.DataFrame({'RA': fake_ra, 'DEC': fake_dec}), ignore_index = True) # run needed pipeline steps on those new images if (skip_photsub is False) and (photsub is True): sn.do_galaxy_subtraction_all_image() sn.do_photometry_all_image() sn.get_sky_all_image() sn.calibrate(final_pass = True) # don't really care about calibration, but need to do to read results # gather, organize and write sn.lc_dir = self.lc_dir + '_sim' sn.lc_base = os.path.join(sn.lc_dir, 'lightcurve_{}_'.format(self.targetname)) if not os.path.exists(sn.lc_dir): os.makedirs(sn.lc_dir) def get_res(idx, ps): img = sn.phot_instances.loc[idx] if ps is False: #tmp = img.phot.iloc[-n_stars:].loc[:, 'Mag_obs'] tmp = img.phot_raw.iloc[-n_stars:].loc[:, sn.calmethod] else: #tmp = img.phot_sub.iloc[-n_stars:].loc[:, sn.calmethod] tmp = img.phot_sub_raw.iloc[-n_stars:].loc[:, sn.calmethod] self.phot_instances.loc[idx].sim_err = tmp.std() return tmp res = [] for idx in sn.wIndex: res.append(get_res(idx, photsub)) res = pd.DataFrame(res, index = sn.wIndex) res.columns = sn.phot_instances.loc[sn.wIndex[0]].phot.index[-n_stars:] # put mags into DataFrame mags = pd.DataFrame(mags, index = self.wIndex) mags.columns = sn.phot_instances.loc[sn.wIndex[0]].phot.index[-n_stars:] # write results with open(os.path.join(sn.lc_dir, 'sim_{}_injmags.dat'.format(sn.calmethod)), 'w') as f: f.write(mags.to_string()) with open(os.path.join(sn.lc_dir, 'sim_{}_recmags.dat'.format(sn.calmethod)), 'w') as f: f.write(res.to_string()) # write updated errors to lc self.write_sim_lc(sn = sn, mags = mags, res = res, photsub = photsub) # save image with inj stars labeled sn._display_refstars(x = x, y = y, labels = res.columns, save_fig = os.path.join(sn.lc_dir, 'inj_stars.png')) sn.savefile = sn.savefile.replace('.sav', '_sim.sav') sn.save() self.save() def write_sim_lc(self, sn = None, mags = None, res = None, photsub = 'auto', drop_inj = []): '''write sim errs to light curves''' if (photsub == 'auto') or (type(photsub) != type(True)): photsub = self.photsub # instantiate if needed if sn is None: sn = LPP(self.targetname, interactive = False) sn.savefile = sn.savefile.replace('.sav', '_sim.sav') sn.load() # read mags and sim results if needed if mags is None: mags = pd.read_csv(os.path.join(sn.lc_dir, 'sim_{}_injmags.dat'.format(sn.calmethod)), delim_whitespace = True, index_col = 0) mags.columns = mags.columns.astype('int') if res is None: res = pd.read_csv(os.path.join(sn.lc_dir, 'sim_{}_recmags.dat'.format(sn.calmethod)), delim_whitespace = True, index_col = 0) res.columns = res.columns.astype('int') # drop any specied injected stars mags = mags.drop(drop_inj, axis = 1) res = res.drop(drop_inj, axis = 1) # compute result metrics residuals = mags.loc[sn.wIndex] - res.loc[sn.wIndex] r = pd.concat([sn.image_list.loc[sn.wIndex], res.mean(axis = 1), res.median(axis = 1), res.std(axis = 1), residuals.mean(axis = 1)], axis = 1) r.columns = ('imagename', 'sim_mean_mag', 'sim_med_mag', 'sim_std_mag', 'mean_residual') with open(os.path.join(sn.lc_dir, 'sim_{}_results.dat'.format(sn.calmethod)), 'w') as f: f.write(r.to_string(index = False)) with open(os.path.join(sn.lc_dir, 'sim_{}_summary.dat'.format(sn.calmethod)), 'w') as f: f.write(r.describe().round(3).to_string()) with open(os.path.join(sn.lc_dir, 'sim_{}_rec_mean_mags.dat'.format(sn.calmethod)), 'w') as f: f.write(res.mean(axis = 0).round(3).to_string()) r['imagename'] = r['imagename'].str.replace(self.error_dir, self.data_dir) # do all light curves (with full uncertainty as quadrature sum of three sources) all_nat = [] all_std = [] columns = (';; MJD', 'etburst', 'mag', '-emag', '+emag', 'limmag', 'filter', 'imagename') ps_choice = photsub self.log.info('updating LC errors') for ct in tqdm(self.color_terms_used.keys()): # generate raw light curves lc = pd.read_csv(self._lc_fname(ct, sn.calmethod, 'raw', sub = ps_choice), delim_whitespace = True, comment = ';', names = columns) tmp = pd.merge(lc, r, on = 'imagename', how = 'left') orig_stat_err = (tmp['+emag'] - tmp['-emag'])/2 new_err = np.sqrt(orig_stat_err**2 + tmp['sim_std_mag']**2) tmp['-emag'] = round(tmp['mag'] - new_err, 5) tmp['+emag'] = round(tmp['mag'] + new_err, 5) lc_raw_name = sn._lc_fname(ct, sn.calmethod, 'raw', sub = ps_choice) tmp.drop(['sim_mean_mag', 'sim_med_mag', 'sim_std_mag', 'mean_residual'], axis = 'columns').to_csv(lc_raw_name, sep = '\t', columns = columns, index = False, na_rep = 'NaN') p = LPPu.plotLC(lc_file = lc_raw_name, name = self.targetname, photmethod = self.calmethod) p.plot_lc(extensions = ['.ps', '.png']) # generate remaining light curves group_succ, standard_succ = self.raw2standard_lc(lc_raw_name) if group_succ is True: all_nat.append((ct, sn._lc_fname(ct, sn.calmethod, 'group', sub = ps_choice))) if standard_succ is True: all_std.append(sn._lc_fname(ct, sn.calmethod, 'standard', sub = ps_choice)) # make "all" light curves lc_nat = sn._lc_fname('all', sn.calmethod, 'group', sub = ps_choice) concat_list = [] for row in all_nat: tmp = pd.read_csv(row[1], delim_whitespace = True) tmp.insert(3, 'SYSTEM', row[0]) concat_list.append(tmp) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc_nat, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc_nat, name = self.targetname, photmethod = self.calmethod) p.plot_lc(extensions = ['.ps', '.png']) lc = sn._lc_fname('all', self.calmethod, 'standard', sub = ps_choice) concat_list = [] for fl in all_std: concat_list.append(pd.read_csv(fl, delim_whitespace = True)) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = self.calmethod) p.plot_lc(extensions = ['.ps', '.png']) def write_summary(self): '''write summary file''' # get filters used self.filters = set(self.phot_instances.loc[self.wIndex].apply(lambda img: img.filter.upper())) ctu = self.color_terms_used if ctu is not None: ctu = ', '.join(ctu.keys()) stars = self.cal_IDs if stars != 'all': stars = ', '.join(self.cal_IDs.astype(str)) self.summary_file = self.targetname + '.summary' with open(self.summary_file, 'w') as f: f.write('{:<25}{}\n'.format('targetname', self.targetname)) f.write('{:<25}{}\n'.format('photsub', self.photsub)) f.write('{:<25}{}\n'.format('filters', ', '.join(self.filters))) f.write('{:<25}{}\n'.format('apertures', ', '.join(self.photmethod))) f.write('{:<25}{}\n'.format('calmethod', self.calmethod)) f.write('{:<25}{}\n'.format('color_terms', ctu)) f.write('{:<25}{}\n'.format('num images', len(self.phot_instances))) f.write('{:<25}{}\n'.format('num failures', len(self.aIndex) - len(self.wIndex))) f.write('{:<25}{}\n'.format('num non-sup. filt.', len(self.bfIndex))) f.write('{:<25}{}\n'.format('num excl. by date', len(self.bdIndex))) f.write('{:<25}{}\n'.format('num phot failures', len(self.pfIndex))) f.write('{:<25}{}\n'.format('num cal failures', len(self.cfIndex))) f.write('{:<25}{}\n'.format('num no obj', len(self.noIndex))) f.write('{:<25}{}\n'.format('num manually removed', len(self.mrIndex))) f.write('{:<25}{}\n'.format('cal source', self.cal_source)) f.write('{:<25}{}\n'.format('cal stars', stars)) f.write('{:<25}{}\n'.format('cal tolerance', round(self.cal_diff_tol, 2))) f.write('{:<25}{}\n'.format('run successful', self.run_success)) self.log.info('pipeline complete, summary file written') self.save() def get_host_photometry(self, tel = 'nickel'): '''do photometry of the host galaxy''' # instantiate pipeline instance and inherit many parent attributes sn = LPP(self.targetname, interactive = False, parallel = False, cal_diff_tol = self.cal_diff_tol, force_color_term = self.force_color_term, wdir = self.wdir, cal_use_common_ref_stars = self.cal_use_common_ref_stars, autoloadsave = False, sep_tol = self.sep_tol) # setup sn.radec = self.radec sn.image_list = pd.Series([self.template_images['{}_{}'.format(filt, tel)] for filt in 'B V R I'.split(' ')]) sn.phot_instances = sn._im2inst(sn.image_list, mode = 'quiet') sn.wIndex = sn.image_list.index sn.cal_arrays = self.cal_arrays sn.cal_IDs = self.cal_IDs # do photometry sn.photsub = False sn.do_photometry_all_image(forcesky = True) sn.get_sky_all_image() sn.calibrate(final_pass = True) sn.get_zeromag_all_image() sn.get_limmag_all_image() sn.lc_dir = 'host_photometry' sn.lc_base = os.path.join(sn.lc_dir, 'lightcurve_{}_host_'.format(sn.targetname)) sn.lc_ext = {'raw': '_natural_raw.dat', 'bin': '_natural_bin.dat', 'group': '_natural_group.dat', 'standard': '_standard.dat', 'ul': '_natural_ul.dat'} sn.generate_lc() ################################################################################################### # Utility Methods ################################################################################################### def manual_remove(self, id, save_img = True): '''manually remove an index (or list of indices) from consideration''' if type(id) is int: id = [id] id =
pd.Index(id)
pandas.Index
# -*- coding: utf-8 -*- """ Created on Mon Feb 14 13:14:38 2022 @author: mauro """ def plot_boxplot(input_data, fig_name): import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size' : 10}) axis_font = {'fontname' : 'Arial', 'size' : '16'} sns.boxplot(data=input_data) #plt.ylim(0,22) plt.xlabel("Case", **axis_font) plt.ylabel("RMSE", **axis_font) plt.savefig(fig_name) plt.show() if __name__ == '__main__': import glob import numpy as np import pandas as pd #file_path = glob.glob('./data/[!_]*.xlsx') file_path = glob.glob('./data/*.xlsx') df = pd.read_excel(file_path[0]) # XGBoost xgboost_labic = df.values[1:,:1].reshape(-1).astype(np.float32) xgboost_uci = df.values[1:,1:2].reshape(-1).astype(np.float32) xgboost_dincon = df.values[1:,2:3].reshape(-1).astype(np.float32) # Random Forest rf_labic = df.values[1:,3:4].reshape(-1).astype(np.float32) rf_uci = df.values[1:,4:5].reshape(-1).astype(np.float32) rf_dincon = df.values[1:,5:6].reshape(-1).astype(np.float32) # LSTM lstm_labic = df.values[1:,6:7].reshape(-1).astype(np.float32) lstm_uci = df.values[1:,7:8].reshape(-1).astype(np.float32) lstm_dincon = df.values[1:,8:9].reshape(-1).astype(np.float32) # Labic labic =
pd.DataFrame()
pandas.DataFrame