prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#%% [markdown] # # Matching when including the contralateral connections #%% [markdown] # ## Preliminaries #%% import datetime import os import time from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from giskard.plot import adjplot, matched_stripplot, matrixplot from numba import jit from pkg.data import load_maggot_graph, load_matched from pkg.io import OUT_PATH from pkg.io import glue as default_glue from pkg.io import savefig from pkg.match import BisectedGraphMatchSolver, GraphMatchSolver from pkg.plot import method_palette, set_theme from pkg.utils import get_paired_inds, get_paired_subgraphs, get_seeds from scipy.optimize import linear_sum_assignment from scipy.stats import wilcoxon FILENAME = "larva_brain" DISPLAY_FIGS = True OUT_PATH = OUT_PATH / FILENAME def glue(name, var, **kwargs): default_glue(name, var, FILENAME, **kwargs) def gluefig(name, fig, **kwargs): savefig(name, foldername=FILENAME, **kwargs) glue(name, fig, figure=True) if not DISPLAY_FIGS: plt.close() t0 = time.time() set_theme() rng = np.random.default_rng(8888) #%% [markdown] # ### Load the data #%% left_adj, left_nodes = load_matched("left") right_adj, right_nodes = load_matched("right") left_nodes["inds"] = range(len(left_nodes)) right_nodes["inds"] = range(len(right_nodes)) seeds = get_seeds(left_nodes, right_nodes) all_nodes = pd.concat((left_nodes, right_nodes)) all_nodes["inds"] = range(len(all_nodes)) left_nodes.iloc[seeds[0]]["pair_id"] assert len(left_nodes) == len(right_nodes) #%% mg = load_maggot_graph() mg = mg.node_subgraph(all_nodes.index) adj = mg.sum.adj n = len(left_nodes) left_inds = np.arange(n) right_inds = np.arange(n) + n glue("n_nodes", n) #%% [markdown] # ### Run the graph matching experiment n_sims = 25 glue("n_initializations", n_sims) RERUN_SIMS = False if RERUN_SIMS: seeds = rng.integers(np.iinfo(np.int32).max, size=n_sims) rows = [] for sim, seed in enumerate(seeds): for Solver, method in zip( [BisectedGraphMatchSolver, GraphMatchSolver], ["BGM", "GM"] ): run_start = time.time() solver = Solver(adj, left_inds, right_inds, rng=seed) solver.solve() match_ratio = (solver.permutation_ == np.arange(n)).mean() elapsed = time.time() - run_start print(f"{elapsed:.3f} seconds elapsed.") rows.append( { "match_ratio": match_ratio, "sim": sim, "method": method, "seed": seed, "elapsed": elapsed, "converged": solver.converged, "n_iter": solver.n_iter, "score": solver.score_, } ) results =
pd.DataFrame(rows)
pandas.DataFrame
import numpy as np import pandas as pd from scipy.stats import pearsonr,spearmanr from scipy.stats import entropy as kl from sklearn.metrics import roc_auc_score, f1_score, mean_squared_error from math import sqrt import os import multiprocessing as mp def get_annotator_ensemble_baseline(annotations, k, agg_function, eval_function, n_t, n_p): assert(n_t + n_p <=k) np.random.seed() annotations = annotations.dropna() groups = annotations.groupby(annotations.index) groups = [e[1] for e in groups if e[1].shape[0]>=k] d_ts = [] d_ps = [] for g in groups: g = g.iloc[np.random.permutation(len(g))] d_ts.append(g[0:n_t]) d_ps.append(g[n_t:(n_t+n_p)]) d_t =
pd.concat(d_ts)
pandas.concat
''' @Author: mendeslbruno Date: 2021-01-26 Descr: Performs some simple analyzes for several actions of the index SP500. ''' import pandas as pd import yfinance as yf import streamlit as st import datetime as dt import plotly.graph_objects as go from plotly.subplots import make_subplots snp500 =
pd.read_csv("datasets/SP500.csv")
pandas.read_csv
import torch import os import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm import torchvision import math import numpy as np import pandas as pd from .adversarial import fgsm_image, fgsm_k_image, boundary_attack_image from tqdm import tqdm, trange import time import copy from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import cohen_kappa_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from seaborn import heatmap # Adapted from zeiss_umbrella.resnet.train_model def train_model(model, dataloaders, dataset_sizes, criterion, optimizer, device, fundus_dataset=None, valid=True, ex=None, seed=None, scheduler=None, adv_training_config=None, num_epochs=25, return_best=False): """ Trains the given model, and returns it. model: model to be trained dataloaders: dictionary of pytorch DataLoader objects, should contain typically data for training and validation. format: dataloaders['train'] -> dataloader object for training dataset dataset_sizes: sizes of dataset. Dictionary of integer indicating sizes of datasets used for different stage. format: dataset_sizes['train'] -> size of training dataset criterion: loss function of torch.nn e.g. nn.CrossEntropyLoss() optimizer: optimizers in torch.optim e.g. optim.Adam() device: device used for computation (cuda:0 or cuda or cpu) fundus_dataset: data.FundusDataset object (needed for decision boundary attack) valid: perform validation stage if true, only perform training stage if false ex: sacred.Experiment object seed: seed for control of randomness scheduler: optim.scheduler object, used for customising optimizer. adv_training_config: dictionary containing setting for adversarial training. Details can be found in training script. num_epoch: number of epochs return_best: if true will return weights with best balanced validation accuracy in addition to the weights at the last epoch. """ if seed: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) since = time.time() # best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 epochbar = trange(num_epochs) for epoch in epochbar: if scheduler: epochbar.set_description('Epoch {}/{}, learning rate: {}'.format(epoch, num_epochs - 1, scheduler.get_lr())) else: epochbar.set_description('Epoch {}/{}'.format(epoch, num_epochs - 1)) # Each epoch has a training and validation phase if valid is true, only training if valid is false. if valid: phase_list = ['train', 'valid'] else: phase_list = ['train'] for phase in phase_list: if phase == 'train': # scheduler.step() model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 num_attacks = 0 ground_truth = torch.Tensor().type(torch.long).to(device) predictions = torch.Tensor().type(torch.long).to(device) # Iterate over data. batches = tqdm(dataloaders[phase], total=dataset_sizes[phase] / dataloaders[phase].batch_size) for inputs, labels in batches: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): # if model if model.__class__.__name__ == 'Inception3' and phase == 'train': outputs, aux = model(inputs) else: outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase BATCH_ACC_TOL = adv_training_config.get('batch_acc_tol', 0.8) ADVERSARIAL_WEIGHT = adv_training_config.get('weight', 0.5) batch_acc = (preds == labels).type(torch.float).sum() / labels.shape[0] if phase == 'train': if batch_acc > BATCH_ACC_TOL and adv_training_config['type'] != 'baseline' \ and adv_training_config is not None: adversarial_examples, adversarial_labels = get_adversarial_samples(inputs, labels, model, criterion, device, fundus_dataset, adv_training_config, seed=seed) if adversarial_examples is not None and adversarial_labels is not None: num_attacks += 1 adversarial_loss = criterion(model(adversarial_examples), adversarial_labels) loss = loss * (1 - ADVERSARIAL_WEIGHT) + ADVERSARIAL_WEIGHT * adversarial_loss # clean up model gradients model.zero_grad() loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) ground_truth = torch.cat((ground_truth, labels)) predictions = torch.cat((predictions, preds)) batches.set_description("Running loss:{},Running corrects:{}".format(running_loss, running_corrects)) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] balanced_acc = balanced_accuracy_score(ground_truth.cpu().tolist(), predictions.cpu().tolist()) cks = cohen_kappa_score(ground_truth.cpu().tolist(), predictions.cpu().tolist(), weights='quadratic') # Output metrics using sacred ex if ex: record_training_info(ex, phase, epoch_loss, epoch_acc, balanced_acc, cks) if phase == 'train': print("number of attack performed: {}".format(num_attacks)) print('{} Loss: {:.4f} Acc: {:.4f} Balanced Acc: {:.4f} cohen kappa score: {}' .format(phase, epoch_loss, epoch_acc, balanced_acc, cks)) # deep copy the model if phase == 'valid' and balanced_acc > best_acc: best_acc = balanced_acc best_model_wts = copy.deepcopy(model.state_dict()) if scheduler: scheduler.step() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights # model.load_state_dict(best_model_wts) if return_best: return model, best_model_wts, optimizer else: return model, optimizer def record_training_info(ex, phase, epoch_loss, epoch_acc, balanced_acc, cks): if phase == 'train': ex.log_scalar("train loss", epoch_loss) ex.log_scalar("train accuracy", epoch_acc.item()) ex.log_scalar("train balanced accuracy", balanced_acc) elif phase == 'valid': ex.log_scalar("valid loss", epoch_loss) ex.log_scalar("valid accuracy", epoch_acc.item()) ex.log_scalar("valid balanced accuracy", balanced_acc) ex.log_scalar("valid cohen square kappa", cks) def get_adversarial_samples(inputs, labels, model, criterion, device, fundus_dataset, adv_training_config, seed): EPSILON_fgsm = adv_training_config.get('epsilon_fgsm', 1.0 / 255.0) ALPHA_fgsm = adv_training_config.get('alpha_fgsm', None) STEPS = adv_training_config.get('steps', None) EPSILON_dba = adv_training_config.get('epsilon_dba', 1.) DELTA_dba = adv_training_config.get('delta_dba', 0.1) N_STEP_MAX_dba = adv_training_config.get('n_step_max_dba', 250) E_STEP_MAX_dba = adv_training_config.get('e_step_max_dba', 20) D_STEP_MAX_dba = adv_training_config.get('d_step_max_dba', 10) UQSRT = adv_training_config.get('unqualified_sample_ratio_tol_dba', 0.4) DIFF_TOL_dba = adv_training_config.get('diff_tol_dba', 10) if adv_training_config['type'] == 'fgsm': adversarial_samples = fgsm_image(inputs, labels, EPSILON_fgsm, model, criterion, device=device) adversarial_labels = labels.clone().detach() elif adv_training_config['type'] == 'fgsm_k_image': adversarial_samples = fgsm_k_image(inputs, labels, model, criterion, device=device, epsilon=EPSILON_fgsm, steps=STEPS, alpha=ALPHA_fgsm) adversarial_labels = labels.clone().detach() elif adv_training_config['type'] == 'pgd': adversarial_samples = fgsm_k_image(inputs, labels, model, criterion, device=device, epsilon=EPSILON_fgsm, steps=STEPS, rand=True) adversarial_labels = labels.clone().detach() elif adv_training_config['type'] == 'boundary_attack': adversarial_samples, adversarial_labels = boundary_attack_image(model, device, inputs, labels, seed=seed, fundus_dataset=fundus_dataset, epsilon=EPSILON_dba, delta=DELTA_dba, n_step_max=N_STEP_MAX_dba, e_step_max=E_STEP_MAX_dba, diff_tol=DIFF_TOL_dba, d_step_max=D_STEP_MAX_dba, unqualified_sample_ratio_tol=UQSRT) else: adversarial_samples, adversarial_labels = None, None return adversarial_samples, adversarial_labels def find_lr(model, optimizer, criterion, trn_loader, device, init_value=1e-8, final_value=10., beta=0.98): """ Basic learning rate finder implemented in fastai quoted from https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html :param model: model to be trained :param optimizer: optimizer to be used :param criterion: loss function :param trn_loader: training loader :param device: 'cpu' or 'cuda' :param init_value: the initial value for the learning rate :param final_value: the final value for the learning rate :param beta: a weighted parameter :return: log10 of the lrs and the corresponding loss, good to pick the lr an order of magnitude smaller than the best """ num = len(trn_loader) - 1 mult = (final_value / init_value) ** (1 / num) lr = init_value optimizer.param_groups[0]['lr'] = lr avg_loss = 0. best_loss = 0. batch_num = 0 losses = [] log_lrs = [] for data in trn_loader: batch_num += 1 # As before, get the loss for this mini-batch of inputs/outputs inputs, labels = data inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) # Compute the smoothed loss avg_loss = beta * avg_loss + (1 - beta) * loss.data smoothed_loss = avg_loss / (1 - beta ** batch_num) # Stop if the loss is exploding if batch_num > 1 and smoothed_loss > 4 * best_loss: return log_lrs, losses # Record the best loss if smoothed_loss < best_loss or batch_num == 1: best_loss = smoothed_loss # Store the values losses.append(smoothed_loss) log_lrs.append(math.log10(lr)) # Do the SGD step loss.backward() optimizer.step() # Update the lr for the next step lr *= mult optimizer.param_groups[0]['lr'] = lr return log_lrs, losses class FocalLoss_SM(nn.Module): """ Focal loss for softmax function. Note that in our case the labels are mutually exclusive. Another possibility is the focal loss for sigmoid function which assumes that the labels are not mutually exclusive. """ def __init__(self, gamma=2, alpha=None, size_average=True): super(FocalLoss_SM, self).__init__() self.gamma = gamma self.alpha = alpha self.size_average = size_average def forward(self, input, target): logpt = F.log_softmax(input, dim=1) logpt = logpt.gather(1, target.view(-1, 1)) logpt = logpt.view(-1) pt = logpt.exp() if self.alpha is not None: logpt = logpt * self.alpha.gather(0, target) loss = -1. * (1. - pt) ** self.gamma * logpt if self.size_average: return loss.mean() else: return loss.sum() def test_model(model, dataloader, dataset_size, criterion, device, plot_confusion_matrix=True, confusion_matrix_name=None, ex=None): """ Test the performance of the given model at the given dataset (in form of data loader). """ since = time.time() model.eval() with torch.no_grad(): running_loss = 0.0 running_corrects = 0 ground_truth = torch.Tensor().type(torch.long).to(device) predictions = torch.Tensor().type(torch.long).to(device) # Iterate over data. # i=0 batches = tqdm(dataloader) for inputs, labels in batches: inputs = inputs.to(device) labels = labels.to(device) # forward # track history if only in train outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) ground_truth = torch.cat((ground_truth, labels)) predictions = torch.cat((predictions, preds)) batches.set_description('Batch loss {:.4f}, batch accuracy {:.4f}'.format(loss.item() * inputs.size(0), torch.sum( preds == labels.data).type( torch.float) / len(labels))) loss = running_loss / dataset_size acc = running_corrects.double() / dataset_size balanced_acc = balanced_accuracy_score(ground_truth.cpu().tolist(), predictions.cpu().tolist()) chs = cohen_kappa_score(ground_truth.cpu().tolist(), predictions.cpu().tolist(), weights='quadratic') if ex: ex.log_scalar('loss', loss) ex.log_scalar('accuracy', acc.item()) ex.log_scalar('balanced accuracy', balanced_acc) ex.log_scalar('cohen kappa score', chs) if plot_confusion_matrix: cm_analysis(ground_truth.cpu().tolist(), predictions.cpu().tolist(), confusion_matrix_name, labels=None) print('Loss: {:.4f} Acc: {:.4f} Balanced Acc: {:.4f} cohen kappa: {:.4f}' .format(loss, acc, balanced_acc, chs)) time_elapsed = time.time() - since print('Testing complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) # confusion matrix plot and save untility from https://gist.github.com/hitvoice/36cf44689065ca9b927431546381a3f7 def cm_analysis(y_true, y_pred, filename, labels, ymap=None, figsize=(10, 10)): """ Generate matrix plot of confusion matrix with pretty annotations. The plot image is saved to disk. args: y_true: true label of the data, with shape (nsamples,) y_pred: prediction of the data, with shape (nsamples,) filename: filename of figure file to save labels: string array, name the order of class labels in the confusion matrix. use `clf.classes_` if using scikit-learn models. with shape (nclass,). ymap: dict: any -> string, length == nclass. if not None, map the labels & ys to more understandable strings. Caution: original y_true, y_pred and labels must align. figsize: the size of the figure plotted. """ if ymap is not None: y_pred = [ymap[yi] for yi in y_pred] y_true = [ymap[yi] for yi in y_true] labels = [ymap[yi] for yi in labels] cm = confusion_matrix(y_true, y_pred, labels=labels) cm_sum = np.sum(cm, axis=1, keepdims=True) cm_perc = cm / cm_sum.astype(float) * 100 annot = np.empty_like(cm).astype(str) nrows, ncols = cm.shape for i in range(nrows): for j in range(ncols): c = cm[i, j] p = cm_perc[i, j] if i == j: s = cm_sum[i] annot[i, j] = '%.1f%%\n%d/%d' % (p, c, s) elif c == 0: annot[i, j] = '' else: annot[i, j] = '%.1f%%\n%d' % (p, c) cm =
pd.DataFrame(cm, index=labels, columns=labels)
pandas.DataFrame
import re import os import string from read import * import pandas as pd from pandas import ExcelWriter, ExcelFile import numpy as np import matplotlib.pyplot as plt import spacy from nltk.corpus import stopwords import nltk from sklearn.linear_model import LinearRegression from sklearn.cross_validation import train_test_split from sklearn.metrics import mean_squared_error from sklearn.externals import joblib class Reach(object): def __init__(self): pass def custom_sum(self, df_list): #Custom sum function to calculate likes as some fields have video views as well in dataset summ = 0 #Initialising value to zero for val in df_list: #Running through the entire column if(type(val)!=int): #Checking if the value is a pure integer or not continue #If not, then continue to next value summ += val #Else add the val to summ return summ def custom_time_sum(self, df_list): #Custom time sum function to calculate the sum of times in the dataset by removing " hours" summ = 0 for val in df_list: #Checking for every value in the column val = val.replace(u' hours',u'') #Replacing " hours" with a null string summ += int(val) #Adding the integral value of hours to summ return summ def custom_time_list(self, df_list): #Custom time sum function to calculate the sum of times in the dataset by removing " hours" #print(df_list) for i in range(0,len(df_list)): #Checking for every value in the column df_list[i] = df_list[i].replace(u' hours',u'') #Replacing " hours" with a null string df_list[i] = int(df_list[i]) #Adding the integral value of hours to summ return df_list def caption_hashtag_generator(self, sentence): nlp = spacy.load("en_core_web_sm") stopw = stopwords.words("english") noun_list = [] sentence = re.sub(r'https?:\/\/.*\/\w*','',sentence) # Remove hyperlinks sentence = re.sub(r'['+string.punctuation+']+', ' ',sentence) # Remove puncutations like 's sentence = sentence.replace("#","") emoji_pattern = re.compile("["u"\U0001F600-\U0001F64F" u"\U0001F300-\U0001F5FF" u"\U0001F680-\U0001F6FF" u"\U0001F1E0-\U0001F1FF""]+", flags=re.UNICODE) #Removes emoji sentence = emoji_pattern.sub(r'', sentence) # no emoji doc = nlp(sentence) temp_list = [] for sent in doc.sents: for token in sent: token_temp = str(token) #print(sent) print(token.text, token.pos_) if(token.pos_=="NOUN" and token.text not in stopw): #print(sent) #print(i, token.text) temp_list.append(token.text) noun_list.append(temp_list) temp_list = [] #print(noun_list) return noun_list def model(self, frame_df, no_followers=400): custom_time_list(frame_df['Time since posted']) inp = frame_df[['Followers', 'Time since posted']] op = frame_df[['Likes']] train_x, test_x, train_y, test_y = train_test_split(inp, op, test_size = 0.2, random_state = 999) lr = LinearRegression().fit(train_x, train_y) #Fitting and creating a model pred = lr.predict(test_x) #Predicting the answers for valdiation data mse = mean_squared_error(pred, test_y) #finding the mean squared error model = joblib.load("../models/reach_model") reach_pred = model.predict([[no_followers,10]]) #print(reach_pred, mse) expected_reach = "Expected Reach is " + str(int(reach_pred-round(mse**0.5))) + "-" + str(int(reach_pred+round(mse**0.5))) return expected_reach def combine(self, followers, caption): df = pd.read_csv("d../atasets/combined_hashtag.csv") #Reading the new csv file frame_df =
pd.DataFrame(df)
pandas.DataFrame
# coding: utf-8 # # Example 01: Basic Queries # # Retrieving data from Socrata databases using sodapy # ## Setup # In[1]: import os import pandas as pd import numpy as np from sodapy import Socrata # ## Find some data # # Though any organization can host their own data with Socrata's tools, Socrata also hosts several open datasets themselves: # # https://opendata.socrata.com/browse # # The following search options can help you find some great datasets for getting started: # * Limit to data sets (pre-analyzed stuff is great, but if you're using sodapy you probably want the raw numbers!) # * Sort by "Most Accessed" # # [Here's](https://opendata.socrata.com/browse?limitTo=datasets&sortBy=most_accessed&utf8=%E2%9C%93&page=1) a link that applies those filters automatically. # # Click on a few listings until you find one that looks interesting. Then click API and extract the following bits of data from the displayed url. # # https://<**opendata.socrata.com**>/dataset/Santa-Fe-Contributors/<**f92i-ik66**>.json # # ![Socrata Interface](socrata_interface.png) # In[4]: # Enter the information from those sections here socrata_domain = "opendata.socrata.com" socrata_dataset_identifier = "f92i-ik66" # App Tokens can be generated by creating an account at https://opendata.socrata.com/signup # Tokens are optional (`None` can be used instead), though requests will be rate limited. # # If you choose to use a token, run the following command on the terminal (or add it to your .bashrc) # $ export SODAPY_APPTOKEN=<token> socrata_token = os.environ.get("SODAPY_APPTOKEN") # ## Get all the data # In[5]: client = Socrata(socrata_domain, socrata_token) print( "Domain: {domain:}\nSession: {session:}\nURI Prefix: {uri_prefix:}".format( **client.__dict__ ) ) # In[6]: results = client.get(socrata_dataset_identifier) df = pd.DataFrame.from_dict(results) df.head() # Success! Let's do some minimal cleaning and analysis just to justify the bandwidth used. # In[7]: df["amount"] = df["amount"].astype(float) # In[8]: by_candidate = ( df.groupby("recipient").amount.aggregate([np.sum, np.mean, np.size]).round(0) ) by_candidate.sort_values("sum", ascending=False).head() # ## Multiple Data Sources # # That was much less annoying than downloading a CSV, though you can always save the dataframe to a CSV if you'd like. Where sodapy really shines though is in grabbing different data sources and mashing them together. # # For example, let's compare 311 calls between [New York City](https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9) and [Chattanooga, TN](https://data.chattlibrary.org/Government/311-Service-Requests/9iep-6yhz). Socrata makes it so easy, you'd be crazy _not_ to do it! # In[12]: nyc_domain = "data.cityofnewyork.us" nyc_dataset_identifier = "fhrw-4uyv" nyc_client = Socrata(nyc_domain, socrata_token) nyc_results = nyc_client.get(nyc_dataset_identifier) nyc_df = pd.DataFrame.from_dict(nyc_results) print(nyc_df.shape) chatt_domain = "data.chattlibrary.org" chatt_dataset_identifier = "sf89-4qcw" chatt_client = Socrata(chatt_domain, socrata_token) chatt_results = chatt_client.get(chatt_dataset_identifier) chatt_df =
pd.DataFrame.from_dict(chatt_results)
pandas.DataFrame.from_dict
""" Import spatio-temporal data """ import glob from random import choice, sample from typing import List, Tuple from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import cartopy.crs as ccrs import matplotlib.patches as patches import matplotlib.pyplot as plt from matplotlib import colors import numpy as np import pandas as pd from netCDF4 import Dataset from matplotlib.gridspec import GridSpec Coordinate = Tuple[float, float] CoordinateRange = Tuple[float, float] features = ['lat', 'lon', 'H2O', 'delD'] flags = ['flag_srf', 'flag_cld', 'flag_qual'] # create a random colormap for nice color separation np.random.seed(45) random_colors = colors.ListedColormap(np.random.rand(256, 3)) class GeographicArea: """Provides methods to import and plot data of a given area""" def __init__(self, lat: CoordinateRange = (90, -90), lon: CoordinateRange = (90, -90), level=4): """Extend of area in lat lon. Per default all coordinate are included :param lat : Tupel(south, north) :param lon : Tupel(west, east) :param level: atmospheric level (0..8). 4 = 4.2 km """ self.lat = lat self.lon = lon self.level = level def import_dataset(self, file_pattern: str) -> pd.DataFrame: """Import and filter measurements in area matching file pattern""" frames = [] for file in glob.glob(file_pattern): frame = pd.DataFrame() with Dataset(file) as nc: # lat and lon for feature in features[:2]: var = nc[feature][...] assert not var.mask.any() frame[feature] = var.data # H2O and delD for feature in features[2:]: var = nc[feature][:, self.level] assert not var.mask.any() frame[feature] = var.data for flag in flags: flag_data = nc['/FLAGS/' + flag][...] frame[flag] = flag_data.data for flag in ['flag_vres', 'flag_resp']: flag_data = nc['/FLAGS/' + flag][:, self.level] frame[flag] = flag_data.data frame = self.filter_location(frame) frame = self.filter_flags(frame) frames.append(frame) return
pd.concat(frames, ignore_index=True)
pandas.concat
import requests import deeptrade import pandas as pd class StockPrice(): def __init__(self): self.head = {'Authorization': "Token %s" %deeptrade.api_key} def by_date(self,date,dataframe=False): """ :parameters: - date: a day date in the format %YYYY-%MM-%DD - dataframe: whehter result in json (False) or pandas dataframe :returns: json or pandas dataframe with all the tickers of the day date and their corresponding stock price (OHLC) """ endpoint = deeptrade.api_base+"stock_date/"+date g = requests.get(endpoint, headers=self.head).json() if dataframe: df = pd.DataFrame(g) return df else: return g def by_ticker(self,ticker,dataframe=False): """ :parameters: - ticker: a ticker such as 'AMZN' - dataframe: whehter result in json (False) or pandas dataframe :returns: json or pandas dataframe with all the hist. OHLC information of the ticker """ endpoint = deeptrade.api_base+"stocks/"+ticker g = requests.get(endpoint, headers=self.head).json() if dataframe: df =
pd.DataFrame(g)
pandas.DataFrame
import pandas as pd chrom_sizes = pd.Series( {1: 249250621, 10: 135534747, 11: 135006516, 12: 133851895, 13: 115169878, 14: 107349540, 15: 102531392, 16: 90354753, 17: 81195210, 18: 78077248, 19: 59128983, 2: 243199373, 20: 63025520, 21: 48129895, 22: 51304566, 3: 198022430, 4: 191154276, 5: 180915260, 6: 171115067, 7: 159138663, 8: 146364022, 9: 141213431, } ) chrom_sizes_norm = chrom_sizes / chrom_sizes.max() def _make_tableau20(): # tableau20 from # http://www.randalolson.com/2014/06/28/how-to-make-beautiful-data-visualizations-in-python-with-matplotlib/ tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib # accepts. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) return tableau20 tableau20 = _make_tableau20() def generate_null_snvs(df, snvs, num_null_sets=5): """ Generate a set of null SNVs based on an input list of SNVs and categorical annotations. Parameters ---------- df : pandas.DataFrame Pandas dataframe where each column is a categorization of SNPs. The index should be SNPs of the form chrom:pos. snvs : list List of input SNVs in the format chrom:pos. Entries that aren't in the index of df will be dropped. num_null_sets : int Number of sets of null SNVs to generate. Returns ------- null_sets : pandas.Dataframe Pandas dataframe with input SNVs as first column and null SNVs as following columns. """ import numpy as np import random random.seed(20151007) input_snvs = list(set(df.index) & set(snvs)) sig = df.ix[input_snvs] not_sig = df.ix[set(df.index) - set(snvs)] sig['group'] = sig.apply(lambda x: '::'.join(x), axis=1) not_sig['group'] = not_sig.apply(lambda x: '::'.join(x), axis=1) null_sets = [] vc = sig.group.value_counts() bins = {c:sorted(list(df[c].value_counts().index)) for c in df.columns} ordered_inputs = [] for i in vc.index: ordered_inputs += list(sig[sig.group == i].index) tdf = not_sig[not_sig.group == i] count = vc[i] for n in range(num_null_sets): if tdf.shape[0] == 0: groups = [i] while tdf.shape[0] == 0: # If there are no potential null SNVs in this group, we'll # expand the group randomly. g = groups[-1] # Choose random bin. cols = list(not_sig.columns) cols.remove('group') b = random.choice(cols) # Get possibilities for that bin. t = bins[b] # Get last set of bin values and the value for the bin we # want to change. d = dict(list(zip(not_sig.columns, g.split('::')))) cat = d[b] # Randomly walk away from bin value. ind = t.index(cat) if ind == 0: ind += 1 elif ind == len(t) - 1: ind -= 1 else: ind += random.choice([-1, 1]) d[b] = t[ind] groups.append('::'.join(pd.Series(d)[not_sig.columns].astype(str))) tdf = not_sig[not_sig.group.apply(lambda x: x in groups)] if count <= tdf.shape[0]: ind = random.sample(tdf.index, count) else: ind = list(np.random.choice(tdf.index, size=count, replace=True)) if i == vc.index[0]: null_sets.append(ind) else: null_sets[n] += ind null_sets =
pd.DataFrame(null_sets)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import time from sklearn.model_selection import train_test_split import string import nltk from nltk.corpus import stopwords plt.style.use(style='seaborn') #%matplotlib inline df=pd.read_csv('all-data.csv',encoding = "ISO-8859-1") print(df.head()) y=df['Sentiment'].values x=df['News Headline'].values (x_train,x_test,y_train,y_test)=train_test_split(x,y,test_size=0.4) # Train df1=pd.DataFrame(x_train) df1=df1.rename(columns={0:'news'}) df2=pd.DataFrame(y_train) df2=df2.rename(columns={0:'sentiment'}) df_train=
pd.concat([df1,df2],axis=1)
pandas.concat
#!/usr/bin/env python ''' Calculates the total number of character occurances at each position within the set of sequences passed. ''' from __future__ import division import argparse import numpy as np import sys import pandas as pd import mpathic.qc as qc import mpathic.io as io from mpathic import SortSeqError def main(dataset_df, bin=None, start=0, end=None): """ Computes character counts at each position Arguments: dataset_df (pd.DataFrame): A dataframe containing a valid dataset. bin (int): A bin number specifying which counts to use start (int): An integer specifying the sequence start position end (int): An integer specifying the sequence end position Returns: counts_df (pd.DataFrame): A dataframe containing counts for each nucleotide/amino acid character at each position. """ # Validate dataset_df qc.validate_dataset(dataset_df) # Retrieve type of sequence seq_cols = [c for c in dataset_df.columns if qc.is_col_type(c,'seqs')] if not len(seq_cols)==1: raise SortSeqError('Dataset dataframe must have only one seq colum.') colname = seq_cols[0] seqtype = qc.colname_to_seqtype_dict[colname] alphabet = qc.seqtype_to_alphabet_dict[seqtype] num_chars = len(alphabet) # Retrieve sequence length if not dataset_df.shape[0] > 1: raise SortSeqError('Dataset dataframe must have at least one row.') total_seq_length = len(dataset_df[colname].iloc[0]) # Validate start and end if start<0: raise SortSeqError('start=%d is negative.'%start) elif start>=total_seq_length: raise SortSeqError('start=%d >= total_seq_length=%d'%\ (start,total_seq_length)) if end is None: end=total_seq_length elif end<=start: raise SortSeqError('end=%d <= start=%d.'%(end,start)) elif end>total_seq_length: raise SortSeqError('end=%d > total_seq_length=%d'%\ (start,total_seq_length)) # Set positions poss = pd.Series(range(start,end),name='pos') num_poss = len(poss) # Retrieve counts if bin is None: ct_col = 'ct' else: ct_col = 'ct_%d'%bin if not ct_col in dataset_df.columns: raise SortSeqError('Column "%s" is not in columns=%s'%\ (ct_col,str(dataset_df.columns))) counts = dataset_df[ct_col] # Compute counts profile counts_array = np.zeros([num_poss,num_chars]) counts_cols = ['ct_'+a for a in alphabet] for i,pos in enumerate(range(start,end)): char_list = dataset_df[colname].str.slice(pos,pos+1) counts_array[i,:] = [np.sum(counts[char_list==a]) for a in alphabet] temp_df = pd.DataFrame(counts_array,columns=counts_cols) counts_df =
pd.concat([poss,temp_df],axis=1)
pandas.concat
import os from unittest import TestCase import annotator import commons from annotator.annot import Annotator import experiments.alpha_eval_one as aone import math import pandas as pd class AlphaOneTest(TestCase): def test_compute_class_alpha_accuracy(self): arr = [ ["abc1.txt", 0, 0, 0.1, 0.2], ["abc2.txt", 0, 0, 0.8, 0.9], ["abc3.txt", 0, 0, 0.7, 0.9], ] df = pd.DataFrame(arr, columns=['fname', 'colid', 'fsid', 'from_alpha', 'to_alpha']) acc = aone.compute_class_alpha_accuracy(df, {'mean': 0.85, 'median': 0.82}) self.assertEqual(acc['mean'], 2.0/3) def test_compute_accuracy_for_all_classes(self): arr = [ ["abc1.txt", 0, 0, 0.1, 0.2], ["abc2.txt", 0, 0, 0.8, 0.9], ["abc3.txt", 0, 0, 0.7, 0.9], ["abc4.txt", 0, 0, 0.1, 0.2], ["abc5.txt", 0, 0, 0.8, 0.9], ["abc6.txt", 0, 0, 0.7, 0.9], ] df =
pd.DataFrame(arr, columns=['fname', 'colid', 'fsid', 'from_alpha', 'to_alpha'])
pandas.DataFrame
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return DataFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(df, result) # column is mi df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(df, result) # dup column names? df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1])
tm.assert_frame_equal(df, result)
pandas._testing.assert_frame_equal
#!/usr/bin/env python """ Module Docstring """ __author__ = "<NAME>" __version__ = "0.1.0" __license__ = "MIT" filters = ['all', 'to', 'from', 'ghosted'] def get_chat_history(message_filter:str, Heading:str = 'Users', username:str = ''): """ Main entry point of the app """ import pandas as pd import heatmap as map import json from settings import RAW_CHAT_HIST as rch from settings import CLEANED_DATA_PATH as cdp try: global filters # validate username input if message_filter not in filters: print('filter not set to valid option') return if username != '': if filter == 'ghosted': print('ghosted filter cannot be used with a specified username.') print('Please filter by To, From, or All messages when specifying a username') return username_list = username else: username_list = get_chat_usernames(message_filter) # Opening JSON file f = open(rch) # returns JSON object as # a dictionary data = json.load(f) # Collect timestamps of sent and received messages for a particular user createdlist = [] if 'Received Chat History' in data and filter != 'to': for i in data['Received Chat History']: if i['From'] in username_list: createdlist.append([i['Created']]) if 'Sent Chat History' in data and filter != 'from': for i in data['Sent Chat History']: if i['To'] in username_list: createdlist.append([i['Created']]) f.close() # Organize data by date and count of messages sent&received for that date. Output as csv df = pd.DataFrame(createdlist, columns=['Date']) df['Date'] =
pd.to_datetime(df['Date'], yearfirst=True)
pandas.to_datetime
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ | This file contains SDC overloads for common algorithms used internally """ import numpy import pandas from pandas.core.indexing import IndexingError import numba from numba.misc import quicksort from numba import types from numba.core.errors import TypingError from numba.extending import register_jitable from numba.np import numpy_support from numba.typed import Dict import sdc from sdc.hiframes.api import isna from sdc.hiframes.pd_series_type import SeriesType from sdc.functions import numpy_like from sdc.str_arr_type import string_array_type, StringArrayType from sdc.datatypes.range_index_type import RangeIndexType from sdc.str_arr_ext import (num_total_chars, append_string_array_to, str_arr_is_na, pre_alloc_string_array, str_arr_set_na, string_array_type, cp_str_list_to_array, create_str_arr_from_list, get_utf8_size, str_arr_set_na_by_mask) from sdc.utilities.prange_utils import parallel_chunks from sdc.utilities.utils import sdc_overload, sdc_register_jitable from sdc.utilities.sdc_typing_utils import (find_common_dtype_from_numpy_dtypes, TypeChecker) class SDCLimitation(Exception): """Exception to be raised in case of SDC limitation""" pass def hpat_arrays_append(A, B): pass @sdc_overload(hpat_arrays_append, jit_options={'parallel': False}) def hpat_arrays_append_overload(A, B): """Function for appending underlying arrays (A and B) or list/tuple of arrays B to an array A""" A_is_range_index = isinstance(A, RangeIndexType) B_is_range_index = isinstance(B, RangeIndexType) if isinstance(A, (types.Array, RangeIndexType)): if isinstance(B, (types.Array, RangeIndexType)): def _append_single_numeric_impl(A, B): _A = A.values if A_is_range_index == True else A # noqa _B = B.values if B_is_range_index == True else B # noqa return numpy.concatenate((_A, _B,)) return _append_single_numeric_impl elif isinstance(B, (types.UniTuple, types.List)) and isinstance(B.dtype, (types.Array, RangeIndexType)): B_dtype_is_range_index = isinstance(B.dtype, RangeIndexType) numba_common_dtype = find_common_dtype_from_numpy_dtypes([A.dtype, B.dtype.dtype], []) # TODO: refactor to use numpy.concatenate when Numba supports building a tuple at runtime def _append_list_numeric_impl(A, B): total_length = len(A) + numpy.array([len(arr) for arr in B]).sum() new_data = numpy.empty(total_length, numba_common_dtype) stop = len(A) _A = numpy.array(A) if A_is_range_index == True else A # noqa new_data[:stop] = _A for arr in B: _arr = numpy.array(arr) if B_dtype_is_range_index == True else arr # noqa start = stop stop = start + len(_arr) new_data[start:stop] = _arr return new_data return _append_list_numeric_impl elif A == string_array_type: if B == string_array_type: def _append_single_string_array_impl(A, B): total_size = len(A) + len(B) total_chars = num_total_chars(A) + num_total_chars(B) new_data = sdc.str_arr_ext.pre_alloc_string_array(total_size, total_chars) pos = 0 pos += append_string_array_to(new_data, pos, A) pos += append_string_array_to(new_data, pos, B) return new_data return _append_single_string_array_impl elif (isinstance(B, (types.UniTuple, types.List)) and B.dtype == string_array_type): def _append_list_string_array_impl(A, B): array_list = [A] + list(B) total_size = numpy.array([len(arr) for arr in array_list]).sum() total_chars = numpy.array([num_total_chars(arr) for arr in array_list]).sum() new_data = sdc.str_arr_ext.pre_alloc_string_array(total_size, total_chars) pos = 0 pos += append_string_array_to(new_data, pos, A) for arr in B: pos += append_string_array_to(new_data, pos, arr) return new_data return _append_list_string_array_impl @sdc_register_jitable def fill_array(data, size, fill_value=numpy.nan, push_back=True): """ Fill array with given values to reach the size """ if push_back: return numpy.append(data, numpy.repeat(fill_value, size - data.size)) return numpy.append(numpy.repeat(fill_value, size - data.size), data) @sdc_register_jitable def fill_str_array(data, size, push_back=True): """ Fill StringArrayType array with given values to reach the size """ string_array_size = len(data) nan_array_size = size - string_array_size num_chars = sdc.str_arr_ext.num_total_chars(data) result_data = sdc.str_arr_ext.pre_alloc_string_array(size, num_chars) # Keep NaN values of initial array arr_is_na_mask = numpy.array([sdc.hiframes.api.isna(data, i) for i in range(string_array_size)]) data_str_list = sdc.str_arr_ext.to_string_list(data) nan_list = [''] * nan_array_size result_list = data_str_list + nan_list if push_back else nan_list + data_str_list cp_str_list_to_array(result_data, result_list) # Batch=64 iteration to avoid threads competition batch_size = 64 if push_back: for i in numba.prange(size//batch_size + 1): for j in range(i*batch_size, min((i+1)*batch_size, size)): if j < string_array_size: if arr_is_na_mask[j]: str_arr_set_na(result_data, j) else: str_arr_set_na(result_data, j) else: for i in numba.prange(size//batch_size + 1): for j in range(i*batch_size, min((i+1)*batch_size, size)): if j < nan_array_size: str_arr_set_na(result_data, j) else: str_arr_j = j - nan_array_size if arr_is_na_mask[str_arr_j]: str_arr_set_na(result_data, j) return result_data @numba.njit def _hpat_ensure_array_capacity(new_size, arr): """ Function ensuring that the size of numpy array is at least as specified Returns newly allocated array of bigger size with copied elements if existing size is less than requested """ k = len(arr) if k >= new_size: return arr n = k while n < new_size: n = 2 * n res = numpy.empty(n, arr.dtype) res[:k] = arr[:k] return res def sdc_join_series_indexes(left, right): pass @sdc_overload(sdc_join_series_indexes, jit_options={'parallel': False}) def sdc_join_series_indexes_overload(left, right): """Function for joining arrays left and right in a way similar to pandas.join 'outer' algorithm""" # check that both operands are of types used for representing Pandas indexes if not (isinstance(left, (types.Array, StringArrayType, RangeIndexType)) and isinstance(right, (types.Array, StringArrayType, RangeIndexType))): return None convert_left = isinstance(left, RangeIndexType) convert_right = isinstance(right, RangeIndexType) def _convert_to_arrays_impl(left, right): _left = left.values if convert_left == True else left # noqa _right = right.values if convert_right == True else right # noqa return sdc_join_series_indexes(_left, _right) if isinstance(left, RangeIndexType) and isinstance(right, RangeIndexType): def sdc_join_range_indexes_impl(left, right): if (left is right or numpy_like.array_equal(left, right)): joined = left.values lidx = numpy.arange(len(joined)) ridx = lidx return joined, lidx, ridx else: return sdc_join_series_indexes(left.values, right.values) return sdc_join_range_indexes_impl elif isinstance(left, RangeIndexType) and isinstance(right, types.Array): return _convert_to_arrays_impl elif isinstance(left, types.Array) and isinstance(right, RangeIndexType): return _convert_to_arrays_impl # TODO: remove code duplication below and merge numeric and StringArray impls into one # needs equivalents of numpy.arsort and _hpat_ensure_array_capacity for StringArrays elif isinstance(left, types.Array) and isinstance(right, types.Array): numba_common_dtype = find_common_dtype_from_numpy_dtypes([left.dtype, right.dtype], []) if isinstance(numba_common_dtype, types.Number): def sdc_join_series_indexes_impl(left, right): # allocate result arrays lsize = len(left) rsize = len(right) est_total_size = int(1.1 * (lsize + rsize)) lidx = numpy.empty(est_total_size, numpy.int64) ridx = numpy.empty(est_total_size, numpy.int64) joined = numpy.empty(est_total_size, numba_common_dtype) left_nan = [] right_nan = [] for i in range(lsize): if numpy.isnan(left[i]): left_nan.append(i) for i in range(rsize): if numpy.isnan(right[i]): right_nan.append(i) # sort arrays saving the old positions sorted_left = numpy.argsort(left, kind='mergesort') sorted_right = numpy.argsort(right, kind='mergesort') # put the position of the nans in an increasing sequence sorted_left[lsize-len(left_nan):] = left_nan sorted_right[rsize-len(right_nan):] = right_nan i, j, k = 0, 0, 0 while (i < lsize and j < rsize): joined = _hpat_ensure_array_capacity(k + 1, joined) lidx = _hpat_ensure_array_capacity(k + 1, lidx) ridx = _hpat_ensure_array_capacity(k + 1, ridx) left_index = left[sorted_left[i]] right_index = right[sorted_right[j]] if (left_index < right_index) or numpy.isnan(right_index): joined[k] = left_index lidx[k] = sorted_left[i] ridx[k] = -1 i += 1 k += 1 elif (left_index > right_index) or numpy.isnan(left_index): joined[k] = right_index lidx[k] = -1 ridx[k] = sorted_right[j] j += 1 k += 1 else: # find ends of sequences of equal index values in left and right ni, nj = i, j while (ni < lsize and left[sorted_left[ni]] == left_index): ni += 1 while (nj < rsize and right[sorted_right[nj]] == right_index): nj += 1 # join the blocks found into results for s in numpy.arange(i, ni, 1): block_size = nj - j to_joined = numpy.repeat(left_index, block_size) to_lidx = numpy.repeat(sorted_left[s], block_size) to_ridx = numpy.array([sorted_right[k] for k in numpy.arange(j, nj, 1)], numpy.int64) joined = _hpat_ensure_array_capacity(k + block_size, joined) lidx = _hpat_ensure_array_capacity(k + block_size, lidx) ridx = _hpat_ensure_array_capacity(k + block_size, ridx) joined[k:k + block_size] = to_joined lidx[k:k + block_size] = to_lidx ridx[k:k + block_size] = to_ridx k += block_size i = ni j = nj # fill the end of joined with remaining part of left or right if i < lsize: block_size = lsize - i joined = _hpat_ensure_array_capacity(k + block_size, joined) lidx = _hpat_ensure_array_capacity(k + block_size, lidx) ridx = _hpat_ensure_array_capacity(k + block_size, ridx) ridx[k: k + block_size] = numpy.repeat(-1, block_size) while i < lsize: joined[k] = left[sorted_left[i]] lidx[k] = sorted_left[i] i += 1 k += 1 elif j < rsize: block_size = rsize - j joined = _hpat_ensure_array_capacity(k + block_size, joined) lidx = _hpat_ensure_array_capacity(k + block_size, lidx) ridx = _hpat_ensure_array_capacity(k + block_size, ridx) lidx[k: k + block_size] = numpy.repeat(-1, block_size) while j < rsize: joined[k] = right[sorted_right[j]] ridx[k] = sorted_right[j] j += 1 k += 1 return joined[:k], lidx[:k], ridx[:k] return sdc_join_series_indexes_impl else: return None elif (left == string_array_type and right == string_array_type): def sdc_join_series_indexes_impl(left, right): # allocate result arrays lsize = len(left) rsize = len(right) est_total_size = int(1.1 * (lsize + rsize)) lidx = numpy.empty(est_total_size, numpy.int64) ridx = numpy.empty(est_total_size, numpy.int64) # use Series.sort_values since argsort for StringArrays not implemented original_left_series = pandas.Series(left) original_right_series =
pandas.Series(right)
pandas.Series
# # Imports # import pandas as pd # from matplotlib import pyplot as plt # import numpy as np # from sklearn.feature_selection import SelectKBest # from sklearn.feature_selection import chi2 # from sklearn.ensemble import RandomForestRegressor # from sklearn.cross_validation import cross_val_score, ShuffleSplit # from sklearn.feature_selection import RFE # from sklearn.linear_model import LinearRegression # from sklearn.decomposition import PCA, TruncatedSVD # from sklearn.model_selection import train_test_split # # # # # Read in player data and team ranks # fantasy_data_file = './resources/player_data.csv' # league_ranks_file = './resources/team_ranks.csv' # league_ranks = pd.read_csv(league_ranks_file) # fantasy_data = pd.read_csv(fantasy_data_file) # # # Only take players that have played over 0 minutes in each game, and separate into positions for models # Reliable_players = fantasy_data.loc[fantasy_data['minutes'] > 0] # Goalkeepers = Reliable_players.loc[Reliable_players['pos'] == 'Goalkeeper'] # Defenders = Reliable_players.loc[Reliable_players['pos'] == 'Defender'] # Midfielders = Reliable_players.loc[Reliable_players['pos'] == 'Midfielder'] # Forwards = Reliable_players.loc[Reliable_players['pos'] == 'Forward'] # # # Rename and drop unwanted Columns # league_ranks.rename(columns={'More': 'round'}, inplace=True) # league_ranks.rename(columns={'Club': 'team'}, inplace=True) # league_ranks.drop(['Played', 'Won', 'Drawn', 'Lost', 'GF', 'GA', 'GD', 'Points'], axis=1, inplace=True) # # # Position values show previous position, get rid of this and keep the original position # league_ranks['Position'] = league_ranks['Position'].str[0:2] # # # Give the league ranks a round value, this is the gameweek that each ranking belongs to # x = 1 # for i in range(0, 760, 20): # j = i + 20 # league_ranks.iloc[i:j, league_ranks.columns.get_loc('round')] = x # x = x + 1 # # # Merge the two DataFrames so that we have individual player data with opponent teams position in the table # DefenderModal = pd.merge(Defenders, league_ranks, how='left', left_on = ['round','team'], right_on = ['round','team']) # # DefenderModal.drop(['Unnamed: 0', 'saves','ict_index','big_chances_created', # 'selected','transfers_in','transfers_out'], axis=1, inplace=True) # # DefenderModal.rename(columns={'Position': 'team_rank'}, inplace=True) # league_ranks.rename(columns={'team': 'opponents'}, inplace=True) # # DefenderModal = pd.merge(DefenderModal, league_ranks, how='left', left_on = ['round','opponents'], right_on = ['round','opponents']) # # DefenderModal.rename(columns={'Position': 'opponent_team_rank'}, inplace=True) # # DefenderModal = DefenderModal[['player_id', 'name', 'team', 'pos', 'round', 'opponents', 'venue', # 'team_goals', 'opposition_goals', 'minutes', # 'goals_scored', 'assists', 'clean_sheets', 'bonus', 'value', # 'team_rank', 'opponent_team_rank', 'total_points']] # # # DefenderModal.to_csv('./resources/DefenderModal.csv', sep=',', encoding='utf-8') # # DefenderModal.drop(['value'], axis=1, inplace=True) # DefenderModal.drop(['pos'], axis=1, inplace=True) # DefenderModal.drop(['team'], axis=1, inplace=True) # DefenderModal.drop(['name'], axis=1, inplace=True) # DefenderModal.drop(['opponents'], axis=1, inplace=True) # # DefenderModal.columns = ['player_id', 'round', 'home', # 'team_goals', 'opposition_goals', 'minutes', 'goals', 'assists', # 'clean_sheets', 'bonus', 'team_rank', 'opponent_team_rank', # 'total_points'] # # DefenderModal[['round','team_rank', 'opponent_team_rank']] = \ # DefenderModal[['round','team_rank', 'opponent_team_rank']].apply(pd.to_numeric) # # home_away = {'H': True, 'A': False} # DefenderModal['home'] = DefenderModal['home'].map(home_away) # # DefenderModal.rename(columns={'total_points': 'prediction_points'}, inplace=True) # for index, row in DefenderModal.iterrows(): # if DefenderModal.loc[index, "prediction_points"] < 6: # DefenderModal.loc[index, "prediction_points"] = False # else: # DefenderModal.loc[index, "prediction_points"] = True # # # UNIVARIATE SELECTION # def univariate_selection(): # array = DefenderModal.values # X = array[:, 0:12] # Y = array[:, 12] # # test = SelectKBest(score_func=chi2, k=8) # fit = test.fit(X, Y.astype(int)) # # np.set_printoptions(precision=3) # print(fit.scores_) # # def model_based_ranking(): # array = DefenderModal.values # X = array[:, 0:12] # Y = array[:, 12] # names = DefenderModal.columns # # rf = RandomForestRegressor(n_estimators=20, max_depth=4) # scores = [] # for i in range(X.shape[1]): # score = cross_val_score(rf, X[:, i:i + 1], Y, scoring="r2", # cv=ShuffleSplit(len(X), 3, .3)) # scores.append((round(np.mean(score), 3), names[i])) # # print(sorted(scores, reverse=True)) # # def recursive_feature_elimination(): # array = DefenderModal.values # X = array[:,0:12] # Y = array[:,12] # # feature extraction # model = LinearRegression() # rfe = RFE(model, 9) # fit = rfe.fit(X, Y) # names = DefenderModal.columns # # print('Features sorted by their rank:') # print(sorted(zip(map(lambda x: round(x, 4), rfe.ranking_), names))) # # print("RECURSIVE FEATURE ELIMINATION:") # recursive_feature_elimination() # # def PCA(): # array = DefenderModal.values # X = array[:, 0:12] # Y = array[:, 12] # # reg = LinearRegression() # x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4) # reg.fit(x_train, y_train) # reg.score(x_test, y_test) # # def SVD(): # array = DefenderModal.values # X = array[:, 0:12] # Y = array[:, 12] # svd = TruncatedSVD(n_components=8) # x = svd.fit(X).transform(X) # reg = LinearRegression() # x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=4) # reg.fit(x_train, y_train) # # # Load dataframe value into array for best feature selection # # array = DefenderModal.values # # X = array[:, 0:12] # # Y = array[:, 12] # # # # test = SelectKBest(score_func=chi2, k=10) # # fit = test.fit(X, Y.astype(int)) # # # # np.set_printoptions(precision=3) # Imports import pandas as pd from pandas.plotting import scatter_matrix from matplotlib import pyplot as plt def clean_defender_data(): # Read in player data and team ranks fantasy_data_file = './resources/player_data.csv' league_ranks_file = './resources/team_ranks.csv' league_ranks = pd.read_csv(league_ranks_file) fantasy_data =
pd.read_csv(fantasy_data_file)
pandas.read_csv
import pandas as pd import os, sys, pickle from keras import models from keras import layers from keras import optimizers from keras.callbacks import ModelCheckpoint from keras.utils import multi_gpu_model import tensorflow as tf import subprocess, argparse from get_model import * from get_generators import * n_GPUs = str(subprocess.check_output(["nvidia-smi", "-L"])).count('UUID') config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) tf.keras.backend.clear_session() def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--img_size", type=int, default = 256, help="Input sky image resolution") parser.add_argument("--no_img", type=int, default= 2, help="Length of input image sequence") parser.add_argument("--train_batchsize", type=int, default= 64) parser.add_argument("--validation_batchsize", type=int, default= 64) parser.add_argument("--test_batchsize", type=int, default= 1) args = parser.parse_args() return args args = get_args() img_size = args.img_size no_img = args.no_img train_batchsize = args.train_batchsize validation_batchsize = args.validation_batchsize test_batchsize = args.test_batchsize start_train = pd.to_datetime('2012-01-01') end_train =
pd.to_datetime('2014-12-31')
pandas.to_datetime
import pandas as pd import numpy as np import math import re import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib as mpl import matplotlib.patches as mpatches import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.patches import Rectangle import io from IPython.display import display, HTML, Markdown, SVG from datetime import timedelta import scipy import scipy.signal plt.style.use('seaborn-darkgrid') plt.rcParams['figure.dpi'] = 300 plt.rcParams['font.size'] = 10 # controls default text sizes plt.rcParams['axes.titlesize'] = 'small' # fontsize of the axes title plt.rcParams['axes.labelsize'] = 'small' # fontsize of the x and y labels plt.rcParams['xtick.labelsize'] = 'x-small' # fontsize of the tick labels plt.rcParams['ytick.labelsize'] = 'x-small' # fontsize of the tick labels plt.rcParams['legend.fontsize'] = 'x-small' # legend fontsize plt.rcParams['figure.titlesize'] = 'small' # fontsize of the figure title plt.rcParams['axes.axisbelow'] = True # axis behind the graphs def get_admission(admissionid, con): sql_admissions_diagnoses = """ WITH diagnosis_groups AS ( SELECT admissionid, item, value as diagnosis_group, CASE WHEN itemid = 13110 AND valueid BETWEEN 1 AND 3 THEN 1 --D_Hoofdgroep WHEN itemid = 16651 AND valueid BETWEEN 7 AND 9 THEN 1 --DMC_Hoofdgroep WHEN itemid = 16997 AND valueid BETWEEN 11 AND 20 THEN 1 --APACHE IV Groepen WHEN itemid = 18588 AND valueid BETWEEN 1 AND 7 THEN 1 --Apache II Hoofdgroep ELSE 0 END AS surgical, ROW_NUMBER() OVER(PARTITION BY admissionid ORDER BY measuredat DESC) AS rownum FROM listitems WHERE itemid IN ( --MAIN GROUP - LEVEL 0 13110, --D_Hoofdgroep 16651 --DMC_Hoofdgroep, Medium Care ) ),diagnosis_subgroups AS ( SELECT admissionid, item, value as diagnosis_subgroup, ROW_NUMBER() OVER(PARTITION BY admissionid ORDER BY measuredat DESC) AS rownum FROM listitems WHERE itemid IN ( --SUB GROUP - LEVEL 1 13111, --D_Subgroep_Thoraxchirurgie 16669, --DMC_Subgroep_Thoraxchirurgie 13112, --D_Subgroep_Algemene chirurgie 16665, --DMC_Subgroep_Algemene chirurgie 13113, --D_Subgroep_Neurochirurgie 16667, --DMC_Subgroep_Neurochirurgie 13114, --D_Subgroep_Neurologie 16668, --DMC_Subgroep_Neurologie 13115, --D_Subgroep_Interne geneeskunde 16666 --DMC_Subgroep_Interne geneeskunde ) ), diagnoses AS ( SELECT admissionid, item, value as diagnosis, ROW_NUMBER() OVER(PARTITION BY admissionid ORDER BY measuredat DESC) AS rownum FROM listitems WHERE itemid IN ( -- Diagnosis - LEVEL 2 --SURGICAL 13116, --D_Thoraxchirurgie_CABG en Klepchirurgie 16671, --DMC_Thoraxchirurgie_CABG en Klepchirurgie 13117, --D_Thoraxchirurgie_Cardio anders 16672, --DMC_Thoraxchirurgie_Cardio anders 13118, --D_Thoraxchirurgie_Aorta chirurgie 16670, --DMC_Thoraxchirurgie_Aorta chirurgie 13119, --D_Thoraxchirurgie_Pulmonale chirurgie 16673, --DMC_Thoraxchirurgie_Pulmonale chirurgie 13141, --D_Algemene chirurgie_Algemeen 16642, --DMC_Algemene chirurgie_Algemeen 13121, --D_Algemene chirurgie_Buikchirurgie 16643, --DMC_Algemene chirurgie_Buikchirurgie 13123, --D_Algemene chirurgie_Endocrinologische chirurgie 16644, --DMC_Algemene chirurgie_Endocrinologische chirurgie 13145, --D_Algemene chirurgie_KNO/Overige 16645, --DMC_Algemene chirurgie_KNO/Overige 13125, --D_Algemene chirurgie_Orthopedische chirurgie 16646, --DMC_Algemene chirurgie_Orthopedische chirurgie 13122, --D_Algemene chirurgie_Transplantatie chirurgie 16647, --DMC_Algemene chirurgie_Transplantatie chirurgie 13124, --D_Algemene chirurgie_Trauma 16648, --DMC_Algemene chirurgie_Trauma 13126, --D_Algemene chirurgie_Urogenitaal 16649, --DMC_Algemene chirurgie_Urogenitaal 13120, --D_Algemene chirurgie_Vaatchirurgie 16650, --DMC_Algemene chirurgie_Vaatchirurgie 13128, --D_Neurochirurgie _Vasculair chirurgisch 16661, --DMC_Neurochirurgie _Vasculair chirurgisch 13129, --D_Neurochirurgie _Tumor chirurgie 16660, --DMC_Neurochirurgie _Tumor chirurgie 13130, --D_Neurochirurgie_Overige 16662, --DMC_Neurochirurgie_Overige --MEDICAL 13133, --D_Interne Geneeskunde_Cardiovasculair 16653, --DMC_Interne Geneeskunde_Cardiovasculair 13134, --D_Interne Geneeskunde_Pulmonaal 16658, --DMC_Interne Geneeskunde_Pulmonaal 13135, --D_Interne Geneeskunde_Abdominaal 16652, --DMC_Interne Geneeskunde_Abdominaal 13136, --D_Interne Geneeskunde_Infectieziekten 16655, --DMC_Interne Geneeskunde_Infectieziekten 13137, --D_Interne Geneeskunde_Metabool 16656, --DMC_Interne Geneeskunde_Metabool 13138, --D_Interne Geneeskunde_Renaal 16659, --DMC_Interne Geneeskunde_Renaal 13139, --D_Interne Geneeskunde_Hematologisch 16654, --DMC_Interne Geneeskunde_Hematologisch 13140, --D_Interne Geneeskunde_Overige 16657, --DMC_Interne Geneeskunde_Overige 13131, --D_Neurologie_Vasculair neurologisch 16664, --DMC_Neurologie_Vasculair neurologisch 13132, --D_Neurologie_Overige 16663, --DMC_Neurologie_Overige 13127 --D_KNO/Overige ) ), interventions AS ( SELECT admissionid, CASE WHEN SUM((item ILIKE \'%ECMO%\')::INT) > 0 THEN TRUE ELSE FALSE END AS ecmo, CASE WHEN SUM((item ILIKE \'%CVVH%\')::INT) > 0 THEN TRUE ELSE FALSE END AS crrt, CASE WHEN SUM((item ILIKE \'%SWAN%\')::INT) > 0 THEN TRUE ELSE FALSE END AS pac FROM processitems GROUP BY admissionid ) SELECT a.admissionid, a.admissioncount, a.location, a.urgency, a.origin, a.admittedat, a.admissionyeargroup, a.dischargedat, a.lengthofstay, a.destination, a.gender, a.agegroup, a.dateofdeath, a.weightgroup, a.heightgroup, a.specialty, diagnoses.diagnosis, diagnosis_subgroups.diagnosis_subgroup, diagnosis_groups.diagnosis_group, i.pac, i.ecmo, i.crrt FROM admissions a LEFT JOIN diagnoses ON a.admissionid = diagnoses.admissionid LEFT JOIN diagnosis_subgroups ON a.admissionid = diagnosis_subgroups.admissionid LEFT JOIN diagnosis_groups ON a.admissionid = diagnosis_groups.admissionid LEFT JOIN interventions i ON a.admissionid = i.admissionid WHERE (diagnoses.rownum = 1 OR diagnoses.rownum IS NULL) AND (diagnosis_subgroups.rownum = 1 OR diagnosis_subgroups.rownum IS NULL) AND (diagnosis_groups.rownum = 1 OR diagnosis_groups.rownum IS NULL) --only last updated record AND a.admissionid = {admissionid} """ return pd.read_sql(sql_admissions_diagnoses.format(admissionid=admissionid), con) def get_admissiondiags(con): #gets all admissions return get_admission("a.admissionid", con) # small utility function to 'apply' a new index to a (grouped) dataframe def reindex_by_date(df, index_start, index_end, interval, method=None, limit=None, fill_value=0): new_index = pd.date_range(index_start, index_end, freq=interval) return df.reindex(new_index, method=method, limit=limit, fill_value=fill_value) def add_section_box(axis, title): # adds section headers x = -0.5 y = 0 width = 0.075 height = 1 rect = Rectangle((x, y), width, height, transform=axis.transAxes, clip_on=False) axis.add_patch(rect) axis.text(s=title, x=(x + width / 2), y=height / 2, rotation=90, transform=axis.transAxes, color='white', fontweight='bold', horizontalalignment='center', verticalalignment='center') def twinax_match_ticks(ax, twin): # get info of primary axis ylim1 = ax.get_ylim() len1 = ylim1[1] - ylim1[0] yticks1 = ax.get_yticks() # gets the distances between ticks for the primary axis rel_dist = [(y - ylim1[0]) / len1 for y in yticks1] # gets info of secondary axis ylim2 = twin.get_ylim() len2 = ylim2[1] - ylim2[0] # sets the same distances for the ticks of the twin axis yticks2 = [ry * len2 + ylim2[0] for ry in rel_dist] # change the ticks of the twin axis (secondary y-axis) twin.set_yticks(yticks2) # changes the thicks twin.set_ylim(ylim2) # restores the previous limits twin.grid(False) # hides the unneccessary lines def show_chart(admissionid, con): admission = get_admission(admissionid, con) admittedat = admission['admittedat'].values[0] #size of medication action icons vs infusion bar scale_factor = 0.3 los = admission['lengthofstay'].values[0] los_rounded = math.ceil(los / 12) * 12 if los_rounded < 7*24: fluids_interval = timedelta(hours=8) else: fluids_interval = timedelta(hours=24) flowsheet_interval = timedelta(hours=int(los_rounded/5)) signals_interval = timedelta(minutes=10) drugs_info_interval = timedelta(hours=int(los_rounded/12)) # defines all subplots here for sharing the x-axis among them fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, sharex=True, figsize=(8, 12), constrained_layout=True, gridspec_kw={'height_ratios': [1.25, 0.75, 1, 1.25, 1, 1]}) # date format for x-axes ax1.xaxis_date() ax2.xaxis_date() ax3.xaxis_date() ax4.xaxis_date() ax5.xaxis_date() ax6.xaxis_date() ####################################### # Vitals ####################################### ax1_twin = ax1.twinx() # second axis sharing x-axis for SpO2 ax2_twin = ax2.twinx() # second axis sharing x-axis for SvO2 ax2_twin_right = ax2.twinx() # second axis for temperatures sql_signals = """ SELECT n.measuredat AS time, n.value, n.itemid, n.item, n.unit FROM numericitems n LEFT JOIN admissions a ON n.admissionid = a.admissionid WHERE n.admissionid = {admissionid} AND n.measuredat >= a.admittedat AND n.measuredat <= a.dischargedat --vital signs AND ( n.itemid IN ( --vitals 6640, --Heart rate 6642, -- mABP 6641, -- sABP 6643, -- dABP 6709, -- SpO2 --circulation 6656, --Cardiac Output 10053, --Lactaat (bloed) --temperatures 8658, --Temp Bloed 8659, --Temperatuur Perifeer 2 8662, --Temperatuur Perifeer 1 13058, --Temp Rectaal 13059, --Temp Lies 13060, --Temp Axillair 13061, --Temp Oraal 13062, --Temp Oor 13063, --Temp Huid 13952, --Temp Blaas 16110 --Temp Oesophagus ) ) UNION --query for getting (mixed/central) venous samples SELECT n.measuredat AS time, CASE WHEN n.itemid = 12311 THEN CASE WHEN n.value <= 1 THEN n.value*100 ELSE n.value END ELSE n.value END AS value, n.itemid, CASE WHEN n.itemid = 12311 THEN 'SvO2' ELSE n.item END AS item, n.unit FROM numericitems n LEFT JOIN freetextitems f ON n.admissionid = f.admissionid AND n.measuredat = f.measuredat AND f.itemid = 11646 --Afname (bloed): source of specimen LEFT JOIN admissions a ON n.admissionid = a.admissionid WHERE n.admissionid = {admissionid} AND n.measuredat >= a.admittedat AND n.measuredat <= a.dischargedat AND n.itemid IN ( 12311 --Saturatie (bloed) ) AND LOWER(f.value) LIKE '%ven%' -- source is (mixed) venous ORDER BY time """.format(admissionid=admissionid) signals = pd.read_sql(sql_signals, con) signals['time'] = pd.to_datetime(signals['time'], unit='ms') # downsample to 1-hour for readability of device data signals = signals.set_index(['time', 'item', 'itemid', 'unit']).groupby( ['item', 'itemid', 'unit']).resample('1H', level=0).mean().reset_index().dropna() # reasonable physiological limits for axes ax1.set_ylim(top=300, bottom=0) # vitals ax1_twin.set_ylim(top=100, bottom=40) # oxygenation ax2.set_ylim(top=10, bottom=0) # circulation ax2_twin.set_ylim(top=100, bottom=0) # SvO2 ax2_twin_right.set_ylim(top=42, bottom=32) # temperature # formatting of the twin axes ax1_twin.tick_params('y', colors='c') # cyan tick labels ax2_twin.spines["left"].set_position(("axes", 0)) # ax2_twin.yaxis.set_label_position('left') ax2_twin.yaxis.set_ticks_position('left') ax2_twin.spines["left"].set_visible(True) ax2_twin.tick_params('y', direction='in', pad=-2, colors='b') # blue tick labels plt.setp(ax2_twin.get_yticklabels(), ha="left") ax2_twin_right.tick_params('y', colors='r') # red tick labels signalids = [ ##itemid, color, z_order, axis, fill_between, id/value, id or value (6641, 'v-r', 10, ax1, 'no_fill'), # sbp (6642, '.-r', 11, ax1, 'no_fill'), # mabp (6643, '^-r', 12, ax1, 'no_fill'), # dabp (6641, 'r', 13, ax1, 'fill_between', 'fill_id', 6643), # fill in between SBP and DABP (6640, 'x-g', 14, ax1, 'no_fill'), # heart rate (6709, 'c', 15, ax1_twin, 'no_fill'), # SpO2 (6709, 'c', 16, ax1_twin, 'fill_between', 'fill_value', 100), # SpO2 fill between 100 (10053, 'o-m', 20, ax2, 'no_fill'), # lactate (10053, 'm', 20, ax2, 'fill_between', 'fill_value', 0), # lactate fill between 0 (6656, 'o-y', 21, ax2, 'no_fill'), # cadiac output (6656, 'y', 21, ax2, 'fill_between', 'fill_value', 0), # cadiac output fill between 0 (12311, 'o--b', 20, ax2_twin, 'no_fill'), # venous saturation (12311, 'b', 21, ax2_twin, 'fill_between', 'fill_value', 100), # cadiac output fill between 0 (8658, '-r', 20, ax2_twin_right, 'no_fill'), # Temp Bloed (8659, '--r', 20, ax2_twin_right, 'no_fill'), # Temperatuur Perifeer 2 (8662, '--r', 20, ax2_twin_right, 'no_fill'), # Temperatuur Perifeer 1 (13058, ':r', 20, ax2_twin_right, 'no_fill'), # Temp Rectaal (13059, '-.r', 20, ax2_twin_right, 'no_fill'), # Temp Lies (13060, '-.r', 20, ax2_twin_right, 'no_fill'), # Temp Axillair (13061, '-.r', 20, ax2_twin_right, 'no_fill'), # Temp Oraal (13062, '-.r', 20, ax2_twin_right, 'no_fill'), # Temp Oor (13063, '-.r', 20, ax2_twin_right, 'no_fill'), # Temp Huid (13952, '--r', 20, ax2_twin_right, 'no_fill'), # Temp Blaas (16110, ':r', 20, ax2_twin_right, 'no_fill') # Temp Oesophagus ] # English translations signal_labels = { 6641: 'ABP systolic', 6642: 'ABP mean', 6643: 'ABP diastolic', 6640: 'Heart rate', 6709: 'SpO2', 10053: 'Lactate', 6656: 'Cardiac output', 12311: 'SvO2', 8658: 'Temperature blood', 8659: 'Temperature peripheral 2', 8662: 'Temperature peripheral 1', 13058: 'Temperature rectal', 13059: 'Temperature inguinal', 13060: 'Temperature axillary', 13061: 'Temperature oral', 13062: 'Temperature tympanic', 13063: 'Temperature skin', 13952: 'Temperature bladder', 16110: 'Temperature esophaghus' } for s in signalids: ax = s[3] # axis signal = signals[signals['itemid'] == s[0]] if len(signal) == 0: continue if not s[4] == 'fill_between': # regular plot (not fill between) ax.plot(signal['time'], signal['value'], s[1], # fmt = '[marker][line][color]', markersize=0, # hide for readability label=signal_labels[s[0]], zorder=s[2]) else: # fill between if s[5] == 'fill_id': other_signal = signals[signals['itemid'] == s[6]] if len(other_signal) > len(signal): signal = signal.reindex(other_signal.index, method='nearest') elif len(signal) > len(other_signal): other_signal = other_signal.reindex(signal.index, method='nearest') other_signal_values = other_signal['value'] else: other_signal_values = s[6] ax.fill_between(signal['time'], other_signal_values, y2=signal['value'], facecolor=s[1], alpha=0.1, zorder=s[2]) # create the legends outside the axes ax1.legend(bbox_to_anchor=(-.1, 1), loc='upper right', borderaxespad=0, markerfirst=False) ax1_twin.legend(bbox_to_anchor=(1.1, 1), loc='upper left', borderaxespad=0) ax2.legend(bbox_to_anchor=(-.1, 1), loc='upper right', borderaxespad=0, markerfirst=False) ax2_twin.legend(bbox_to_anchor=(-.1, 0), loc='lower right', borderaxespad=0, markerfirst=False) plt.setp(ax2_twin.get_legend().get_texts(), color='b') ax2_twin_right.legend(bbox_to_anchor=(1.1, 1), loc='upper left', borderaxespad=0) # create a banner x = -0.5 y = 1.05 width = 2 height = 0.2 admissionyeargroup = admission['admissionyeargroup'].values[0] agegroup = admission['agegroup'].values[0] gender = admission['gender'].values[0] diagnosis = admission['diagnosis'].values[0] # translation if diagnosis == 'Na reanimatie': diagnosis = 'Post CPR' if gender == 'Man': gender = 'Male' elif gender == 'Vrouw': gender = 'Female' title = 'AmsterdamUMCdb admissionid: {} ({} - {} y - {})\nDiagnosis: {}'.format(admissionid, admissionyeargroup, agegroup, gender, diagnosis) rect = Rectangle((x, y), width, height, transform=ax1.transAxes, clip_on=False) ax1.add_patch(rect) ax1.text(s=title, x=0.5, y=(y + height / 2), rotation=0, transform=ax1.transAxes, color='white', fontweight='bold', horizontalalignment='center', verticalalignment='center') ############################################## # FLOWSHEET STYLE DATA ############################################## sql_flowsheet = """ WITH gcs_components AS ( SELECT eyes.admissionid, CASE eyes.itemid WHEN 6732 THEN 5 - eyes.valueid --Actief openen van de ogen END AS eyes_score, CASE motor.itemid WHEN 6734 THEN 7 - motor.valueid --Beste motore reactie van de armen END AS motor_score, CASE verbal.itemid WHEN 6735 THEN 6 - verbal.valueid --Beste verbale reactie END AS verbal_score, eyes.registeredby, eyes.measuredat AS time FROM listitems eyes LEFT JOIN listitems motor ON eyes.admissionid = motor.admissionid AND eyes.measuredat = motor.measuredat AND motor.itemid IN ( 6734 --Beste motore reactie van de armen ) LEFT JOIN listitems verbal ON eyes.admissionid = verbal.admissionid AND eyes.measuredat = verbal.measuredat AND verbal.itemid IN ( 6735 --Beste verbale reactie ) WHERE eyes.itemid IN ( 6732 --Actief openen van de ogen ) AND eyes.registeredby IN ( 'ICV_IC-Verpleegkundig', 'ICV_MC-Verpleegkundig' ) AND eyes.admissionid = {admissionid} ) SELECT time, 'GCS score' AS item, 'E' || eyes_score || 'M' || motor_score || 'V' || ( CASE WHEN verbal_score < 1 THEN 1 ELSE verbal_score END) --|| '=' || ( -- eyes_score + motor_score + ( -- CASE -- WHEN verbal_score < 1 THEN 1 -- ELSE verbal_score -- END -- ) --) AS value, eyes_score + motor_score + ( CASE WHEN verbal_score < 1 THEN 1 ELSE verbal_score END ) AS valueid, '00. Glasgow Coma Scale' AS category FROM gcs_components UNION SELECT measuredat AS time, item, value, valueid, CASE WHEN itemid IN ( 9534, --Type beademing Evita 1 6685, --Type Beademing Evita 4 12290 --Ventilatie Mode (Set) ) THEN '02-1. Respiratory support' WHEN itemid IN ( 8189 --Toedieningsweg ) THEN '03-1. Oxygen delivery device' WHEN itemid IN ( 6671 --Hartritme ) THEN '01. Heart rhythm' END AS category FROM listitems WHERE itemid IN ( 9534, --Type beademing Evita 1 6685, --Type Beademing Evita 4 12290, --Ventilatie Mode (Set) 8189, --Toedieningsweg 6671 --Hartritme ) AND admissionid = {admissionid} UNION SELECT measuredat AS time, item, CAST(value AS varchar), 0 AS valueid, --to allow UNION both tables CASE WHEN itemid IN ( 6699, --FiO2 %: setting on Evita ventilator 12279, --O2 concentratie --measurement by Servo-i/Servo-U ventilator 12369 --SET %O2: used with BiPap Vision ventilator ) THEN '02-2. FiO2' WHEN itemid IN ( -- Peak pressures on ventilator 8852, --P max 8877, --Peak druk -- Evita 12281, --Piek druk --Servo-i 16239 --Zephyros Ppeak ) THEN '02-3. P peak' WHEN itemid IN ( --PEEP settings on respiratory support 12284, --PEEP (Set): setting on Servo-i ventilator 8862, --PEEP/CPAP: setting on Evita ventilator --8879, --PEEP (gemeten): measured by Evita ventilator 16250 --Zephyros PEEP ) THEN '02-4. PEEP' WHEN itemid IN ( --Oxygen flow 8845, -- O2 l/min 10387, --Zuurstof toediening (bloed) 18587 --Zuurstof toediening ) THEN '03-2. Oxygen flow' END AS category FROM numericitems WHERE itemid IN ( -- FiO2 6699, --FiO2 %: setting on Evita ventilator 12279, --O2 concentratie --measurement by Servo-i/Servo-U ventilator 12369, --SET %O2: used with BiPap Vision ventilator -- Peak pressures on ventilator 8852, --P max 8877, --Peak druk -- Evita 12281, --Piek druk --Servo-i 16239, --Zephyros Ppeak --PEEP settings on respiratory support 12284, --PEEP (Set): setting on Servo-i ventilator 8862, --PEEP/CPAP: setting on Evita ventilator --8879, --PEEP (gemeten): measured by Evita ventilator 16250, --Zephyros PEEP --Oxygen flow 8845, -- O2 l/min 10387, --Zuurstof toediening (bloed) 18587 --Zuurstof toediening ) AND admissionid = {admissionid} """.format(admissionid=admissionid) flowsheet = pd.read_sql(sql_flowsheet, con) flowsheet['time'] = pd.to_datetime(flowsheet['time'], unit='ms') # downsample to hourly, re-index to create same numer of rows per category and the downsample to requested interval flowsheet_resampled_hourly = flowsheet.set_index(['time', 'category']).sort_values(['valueid'], ascending=False).groupby( ['category']).resample(timedelta(hours=1), level=0).first() index_start = flowsheet_resampled_hourly.index.get_level_values('time').min() index_end = flowsheet_resampled_hourly.index.get_level_values('time').max() flowsheet_reindexed_hourly = flowsheet_resampled_hourly.reset_index().set_index('time').groupby( ['category']).apply( reindex_by_date, index_start=index_start, index_end=index_end, interval=timedelta(hours=1), method=None, fill_value=np.NaN)[['value', 'valueid']] flowsheet_reindexed_hourly.index.set_names('time', level=1, inplace=True) flowsheet_resampled = flowsheet_reindexed_hourly.sort_values(['valueid'], ascending=False).groupby( ['category']).resample(flowsheet_interval, level=1).first() # translate some values: flowsheet_resampled.loc[flowsheet_resampled['value'] == 'Kunstneus', 'value'] = 'HME' flowsheet_resampled.loc[flowsheet_resampled['value'] == 'O2-bril', 'value'] = 'Prongs' labels = [] ticks = [] pos = 0 # display flowsheet flowsheet_groups = flowsheet_resampled.fillna('').reset_index().groupby(['category']) for name, group in flowsheet_groups: label = re.sub(r'[0-9\-].+\.\s', '', name) labels.append(label) # saves the label for ticks ticks.append(pos) ##saves the position for ticks for index, row in group.iterrows(): ax3.barh(pos, flowsheet_interval, left=row['time'], height=4, facecolor='white', alpha=0.0, edgecolor='white', linewidth=1) ax3.annotate(row['value'], xy=(row['time'] + flowsheet_interval / 2, pos), fontsize='x-small', color='black', horizontalalignment='center', verticalalignment='center') ax3.axhline(y=pos + 2, ls='-', color='white') # horizontal gridline pos = pos - 4 ax3.axhline(y=pos + 2, ls='-', color='white') # shows the labels and a flowsheet grid ax3.set_yticks(ticks) ax3.set_yticklabels(labels) ax3.grid(False, which='major', axis='y') ############################################## # CONTINUOUS INFUSIONS ############################################## sql_drugitems_continuous = """ SELECT ordercategoryid, ordercategory, itemid, item, CASE WHEN rate >= 0 THEN rate ELSE dose END AS rate, start AS time, stop - start AS duration, action FROM drugitems WHERE iscontinuous = B'1' AND NOT itemid IN ( --from ordercategoryid 65 (syringe pumps) 9424, --NaCL 0,9% spuit 19129, --Insuline aspart (Novorapid) 9001, --Kaliumchloride (KCL) 18783, --Calciumgluconaat 10% --other 7257, --Glucose 5 % 7291, --NaCl 0,45%/Glucose 2,5% 7293, --NaCl 0,9 % 7316, --Ri-Lac (Ringers lactaat) 8937, --Drukzak 8939, --Medicijnlijn medicatie 12610, --Nutrison Sterilized water 16904 --Drukzak IABP ) AND admissionid = {admissionid} ORDER BY itemid, start """.format(admissionid=admissionid) drugitems_continuous = pd.read_sql(sql_drugitems_continuous, con) drugitems_continuous['time'] = pd.to_datetime(drugitems_continuous['time'], unit='ms') drugitems_continuous['duration'] = pd.to_timedelta(drugitems_continuous['duration'], unit='ms') # resample for displaying annotations (rates) drugitems_continuous_resampled = drugitems_continuous.set_index( ['time', 'ordercategory', 'item', 'itemid']).groupby( ['ordercategory', 'item', 'itemid']).resample(fluids_interval, level=0).max().reset_index() drugitems_continuous_groups = drugitems_continuous.groupby(['ordercategory', 'itemid']) drugitems_continuous_groups_for_annotation = drugitems_continuous_resampled.groupby(['ordercategory', 'itemid']) drugitems_continous_labels = { 6964: 'Clonidine', # Clonidine (Catapresan) 7196: 'Enoximone', # Enoximon (Perfan) 7219: 'Fentanyl', # Fentanyl 7244: 'Furosemide', # Furosemide (Lasix) 7930: 'Heparin', # Heparine 7194: 'Midazolam', # Midazolam (Dormicum) 7229: 'Norepinephrine', # Noradrenaline (Norepinefrine) 7480: 'Propofol', # Propofol (Diprivan) 12588: 'Nutrison Protein Plus', # Nutrison Protein Plus } # display continuous infusions labels = [] ticks = [] pos = 0 last_rate = 0 last_annotation_time = 0 for name, group in drugitems_continuous_groups: # label = drugitems_continous_labels[name[1]] label = group['item'].values[0].split('(')[0] labels.append(label) # saves the label for ticks ticks.append(pos) ##saves the position for ticks for index, row in group.iterrows(): ax4.barh(pos, row['duration'], left=row['time'], height=10, facecolor='xkcd:slate blue', edgecolor='black', linewidth=0) if (last_annotation_time == 0) or (row[ 'time'] - last_annotation_time >= drugs_info_interval): # only display data when interval has passed if row['rate'] > last_rate: # up arrow ax4.annotate("{:.1f}".format(row['rate']), xy=(row['time'], pos + 5), xytext=(0, 0), textcoords='offset points', fontsize='xx-small', color='black', horizontalalignment='center', verticalalignment='bottom') ax4.plot(row['time'], pos, 's', markeredgecolor='black', markerfacecolor='white', markersize=22 * scale_factor, markeredgewidth=1) ax4.plot(row['time'], pos, 'r^', markersize=10 * scale_factor, markeredgewidth=1) elif row['rate'] < last_rate: # down arrow ax4.annotate("{:.1f}".format(row['rate']), xy=(row['time'], pos + 5), xytext=(0, 0), textcoords='offset points', fontsize='xx-small', color='black', horizontalalignment='center', verticalalignment='bottom') ax4.plot(row['time'], pos, 's', markeredgecolor='black', markerfacecolor='white', markersize=22 * scale_factor, markeredgewidth=1) ax4.plot(row['time'], pos, 'gv', markersize=10 * scale_factor, markeredgewidth=1) else: # start arrow ax4.annotate("{:.1f}".format(row['rate']), xy=(row['time'], pos + 5), xytext=(0, 0), textcoords='offset points', fontsize='xx-small', color='black', horizontalalignment='center', verticalalignment='bottom') ax4.plot(row['time'], pos, 's', markeredgecolor='black', markerfacecolor='white', markersize=22 * scale_factor, markeredgewidth=1) ax4.plot(row['time'], pos, 'y>', markersize=10 * scale_factor, markeredgewidth=1) last_annotation_time = row['time'] last_rate = row['rate'] pos = pos - 20 last_rate = 0 last_annotation_time = 0 ax4.set_yticks(ticks) ax4.set_yticklabels(labels) ############################################## # FLUIDS ############################################## # get the fluid IN sql_fluids_in = """ WITH fluids_in_categorised AS ( SELECT stop as time, --for simplicity assume everything has been infused at the stop time ordercategoryid, ordercategory, fluidin, CASE WHEN ordercategoryid IN ( 61 --Infuus - Bloedproducten ) THEN '01. Blood products' WHEN ordercategoryid IN ( 65, --2. Spuitpompen 26, --Injecties Tractus Digestivus 25, --Injecties Haematologisch 24, --Injecties Circulatie/Diuretica 15, --Injecties Antimicrobiele middelen 23, --Injecties CZS/Sedatie/Analgetica 55, --Infuus - Crystalloid 27, --Injecties Overig 67 --Injecties Hormonen/Vitaminen/Mineralen ) THEN '02. Crystalloids' WHEN ordercategoryid IN ( 17 --Infuus - Colloid ) THEN '03. Colloids' WHEN ordercategoryid IN ( 114, --Voeding Enteraal 63, --Voeding Enteraal oud 39, --Voeding Parenteraal 42 --Voeding Drinken ) THEN '04. Nutrition' WHEN ordercategoryid IN ( 70, --Niet iv Tractus Respiratorius 119, --Niet IV Groot Volume 21, --Niet iv Antimicrobiele middelen 71, --Niet iv Hormonen/Vitaminen/Mineralen 32, --Niet iv Overig 31, --Niet iv Tractus Digestivus 29, --Niet iv CZS/Sedatie/Analgetica 69 --Niet iv Zalven/Crèmes/Druppels ) THEN '05. Enteral medication' END AS category FROM drugitems WHERE fluidin > 0 --in ml AND admissionid = {admissionid} ) SELECT *, CASE category WHEN '01. Blood products' THEN 'xkcd:red' WHEN '02. Crystalloids' THEN 'xkcd:water blue' WHEN '03. Colloids' THEN 'xkcd:cream' WHEN '04. Nutrition' THEN 'xkcd:beige' WHEN '05. Enteral medication' THEN 'xkcd:grey' END AS colour FROM fluids_in_categorised ORDER BY category, time """.format(admissionid=admissionid) fluids_in = pd.read_sql(sql_fluids_in, con) fluids_in['time'] =
pd.to_datetime(fluids_in['time'], unit='ms')
pandas.to_datetime
from datetime import ( datetime, timedelta, ) import numpy as np import pytest from pandas._libs.tslibs.ccalendar import ( DAYS, MONTHS, ) from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG from pandas.compat import is_platform_windows from pandas import ( DatetimeIndex, Index, Series, Timestamp, date_range, period_range, ) import pandas._testing as tm from pandas.core.tools.datetimes import to_datetime import pandas.tseries.frequencies as frequencies import pandas.tseries.offsets as offsets @pytest.fixture( params=[ (timedelta(1), "D"), (timedelta(hours=1), "H"), (timedelta(minutes=1), "T"), (timedelta(seconds=1), "S"), (np.timedelta64(1, "ns"), "N"), (timedelta(microseconds=1), "U"), (timedelta(microseconds=1000), "L"), ] ) def base_delta_code_pair(request): return request.param freqs = ( [f"Q-{month}" for month in MONTHS] + [f"{annual}-{month}" for annual in ["A", "BA"] for month in MONTHS] + ["M", "BM", "BMS"] + [f"WOM-{count}{day}" for count in range(1, 5) for day in DAYS] + [f"W-{day}" for day in DAYS] ) @pytest.mark.parametrize("freq", freqs) @pytest.mark.parametrize("periods", [5, 7]) def test_infer_freq_range(periods, freq): freq = freq.upper() gen = date_range("1/1/2000", periods=periods, freq=freq) index = DatetimeIndex(gen.values) if not freq.startswith("Q-"): assert frequencies.infer_freq(index) == gen.freqstr else: inf_freq = frequencies.infer_freq(index) is_dec_range = inf_freq == "Q-DEC" and gen.freqstr in ( "Q", "Q-DEC", "Q-SEP", "Q-JUN", "Q-MAR", ) is_nov_range = inf_freq == "Q-NOV" and gen.freqstr in ( "Q-NOV", "Q-AUG", "Q-MAY", "Q-FEB", ) is_oct_range = inf_freq == "Q-OCT" and gen.freqstr in ( "Q-OCT", "Q-JUL", "Q-APR", "Q-JAN", ) assert is_dec_range or is_nov_range or is_oct_range def test_raise_if_period_index(): index = period_range(start="1/1/1990", periods=20, freq="M") msg = "Check the `freq` attribute instead of using infer_freq" with pytest.raises(TypeError, match=msg): frequencies.infer_freq(index) def test_raise_if_too_few(): index = DatetimeIndex(["12/31/1998", "1/3/1999"]) msg = "Need at least 3 dates to infer frequency" with pytest.raises(ValueError, match=msg): frequencies.infer_freq(index) def test_business_daily(): index =
DatetimeIndex(["01/01/1999", "1/4/1999", "1/5/1999"])
pandas.DatetimeIndex
from os.path import isfile from pandas import read_csv, DataFrame class DB: def __init__(self, csv_path: str): self.data: DataFrame self.csv_path = csv_path if isfile(self.csv_path): self.data = read_csv(csv_path, memory_map=True) else: open(self.csv_path, 'x') print("created new file at path - '{}'".format(self.csv_path)) self.data = read_csv(csv_path, memory_map=True) def AddRow(self, item, important_column=None): if important_column: ds = self.GetRowByColumnValue(important_column, item[important_column]) if ds is not None and not ds.empty: self.UpdateRow(item, ds.name) return if issubclass(type(item), dict): self.data = self.data.append(DataFrame(data=item, index=[self.GetUnusedIndex()]), ignore_index=not important_column) elif issubclass(type(item), DataFrame): self.data = self.data.append(item, ignore_index=not important_column) else: raise Exception('uncaught item type {}'.format(type(item))) def UpdateRow(self, item: dict, index: int): indexes_list = [index for _ in range(1)] self.data.update(DataFrame(data=item, index=indexes_list), overwrite=True) def UpdateRowByColumnValue(self, updated_row: dict, column_name: str, column_value): for row in self.data.iloc: if row[column_name] == column_value: self.data.update(DataFrame(data=updated_row, index=[row.name]), overwrite=True) def GetRowByColumnValue(self, column_name: str, column_value): frame_result = self.data.loc[self.data[column_name] == column_value] if frame_result.empty: return None row_result = frame_result.iloc[0] return row_result def GetUnusedIndex(self): if self.data.empty: return 0 return self.data.index.values.max() def SaveRow(self, row: int): self.data.to_csv(self.csv_path, index=False) def __save__(self): self.data.to_csv(self.csv_path, index=False) def __load__(self): self.data =
read_csv(self.csv_path, memory_map=True)
pandas.read_csv
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from base64 import b64encode from datetime import date, datetime, timedelta from io import BytesIO import os import re import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as ticker font = {'family': 'Open Sans Condensed'} matplotlib.rc('font',**font) la = matplotlib.font_manager.FontManager() lu = matplotlib.font_manager.FontProperties(family = "Open Sans Condensed") from matplotlib.dates import DateFormatter import matplotlib.colors as mcolors class LeanOutputReader(object): def __init__(self, data, dpi, output): self.data = data self.dpi = dpi self.output = output # Parse the input file and make sure the input file is complete self.is_drawable = False if "Strategy Equity" in data["Charts"] and "Benchmark" in data["Charts"]: # Get value series from the input file strategySeries = data["Charts"]["Strategy Equity"]["Series"]["Equity"]["Values"] benchmarkSeries = data["Charts"]["Benchmark"]["Series"]["Benchmark"]["Values"] df_strategy = pd.DataFrame(strategySeries).set_index('x') df_benchmark = pd.DataFrame(benchmarkSeries).set_index('x') df_strategy = df_strategy[df_strategy > 0] df_benchmark = df_benchmark[df_benchmark > 0] df_strategy = df_strategy[~df_strategy.index.duplicated(keep='first')] df_benchmark = df_benchmark[~df_benchmark.index.duplicated(keep='first')] df = pd.concat([df_strategy,df_benchmark],axis = 1) df.columns = ['Strategy','Benchmark'] df = df.set_index(
pd.to_datetime(df.index, unit='s')
pandas.to_datetime
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup import pandas as pd import time from datetime import date import re def is_time_format(str_input): try: time.strptime(str_input, '%H:%M') return True except ValueError: return False def scrape_cineman(cities=("Zürich")): """ This function opens a Selenium driver, goes to the cineman.ch Showtimes page. Then it scrapes the entries for a specified city. Optional argument: - cities: tuple of strings, specifies the cities for which showtimes will be scraped, defaults to ('Zürich') Returns: - content: html code of the page scraped with BeautifulSoup """ # Open the driver and go to the page with the showtimes options = Options() options.add_argument("--headless") driver = webdriver.Chrome(options=options) driver.get("https://www.cineman.ch/en/showtimes/time/") # Click the cookie button cookie_button = driver.find_element_by_class_name("cc-btn") cookie_button.click() time.sleep(2) # Click the region dropdown, select the city and save region_dropdown = driver.find_element_by_class_name("selectize-control") region_dropdown.click() input_div = driver.find_elements_by_xpath('//input[@type="text"]') for city in cities: input_div[6].send_keys(city) input_div[6].send_keys(Keys.RETURN) save_button = driver.find_element_by_class_name("select-region-save") save_button.click() time.sleep(5) # Scrape the content and close the driver content = BeautifulSoup(driver.page_source, features="html.parser") driver.close() return content def format_cineman_content(html_content): """ This function takes in content scraped from cineman.ch with BeautifulSoup and creates a dataframe from it. Required arguments: - content: html contents scraped from cineman.ch Returns: - movie_program_df: pandas dataframe containing the scraped data """ movies = html_content.findAll("div", {"class": "col-xs-12 col-sm-9"}) # Now create the data frame # Initialize the lists to store the details for each movie screening movies_list = [] genres_list = [] cinemas_list = [] places_list = [] age_limits = [] all_showtimes_lists = [] all_languages_lists = [] for movie in movies: # Movie title title = movie.find("h4").get_text() movies_list.append(title) # Movie genre genre = movie.find("p").get_text() genres_list.append(genre) # Cinemas and place cinemas = movie.findAll("h5") cinema_names = [] places = [] for cinema in cinemas: cinema_name = cinema.find("em").get_text() cinema_names.append(cinema_name) place = cinema.findAll("a")[1].get_text() places.append(place) cinemas_list.append(cinema_names) places_list.append(places) # Age limit age_links = movie.findAll("a", {"class": "link"}) age_limit = age_links[-1].get_text() if age_limit == "Reservation": age_limit = age_links[-2].get_text() if age_limit.find("Y.") == -1: age_limits.append("unknown") else: age_limits.append(age_limit) # Showtimes and languages showtimes_list_div = movie.find("div", {"class": "showtimes-list"}) showtimes_string = showtimes_list_div.prettify().split("h5") showtimes_list = [] languages_list = [] for string in showtimes_string: strings = re.sub('<[^<]+?>\n', '', string).split(" ") showtimes = [] languages = [] for s in strings: s = s.strip("<></–)") s = re.sub("\t", "", s) s = s.strip() if is_time_format(s): showtimes.append(s) elif (s.find("/") != -1 and s.find("Y.") == -1) or s in ["G", "F", "O", "I", "E"]: languages.append(s) if showtimes: showtimes_list.append(showtimes) if languages: languages_list.append(languages) if showtimes_list: all_showtimes_lists.append(showtimes_list) if languages_list: all_languages_lists.append(languages_list) # Initializing the dictionary to store the lists all_info_dict = dict() all_info_dict["movie"] = movies_list all_info_dict["genre"] = genres_list all_info_dict["age_limit"] = age_limits all_info_dict["language"] = all_languages_lists all_info_dict["showtime"] = all_showtimes_lists all_info_dict["date"] = f'{date.today()}' all_info_dict["cinema"] = cinemas_list all_info_dict["place"] = places_list movie_program_df =
pd.DataFrame(all_info_dict)
pandas.DataFrame
import os import sys import glob import random import numpy as np np.random.seed(23087) import pandas as pd import tensorflow as tf from keras import backend as k from keras.utils import np_utils from keras.optimizers import Adam from keras.models import Sequential, load_model from matplotlib import pyplot as plt from sklearn.decomposition import PCA from keras.callbacks import ModelCheckpoint from sklearn.metrics import confusion_matrix from sklearn.cross_validation import train_test_split from keras.layers.pooling import GlobalAveragePooling1D from keras.layers.normalization import BatchNormalization from keras.layers import Dropout, Activation, Dense, Flatten from keras.layers.convolutional import Convolution1D,AveragePooling1D,MaxPooling1D ''' ################################### config = tf.ConfigProto() # Don't pre-allocate memory; allocate as-needed config.gpu_options.allow_growth = True # Only allow a total of half the GPU memory to be allocated config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Create a session with the above options specified. k.tensorflow_backend.set_session(tf.Session(config=config)) ################################### ''' def train(argv): #Params epochs = 500 batch_size = 512 train_test_percent = 0.15 #optional folds = 10 max_aug = int(argv[2]) Mn_All,labels = load_data() for shift_aug_factor in range(1, max_aug+1): print("Performing {}x shifting data augmentation".format(shift_aug_factor)) if argv[3] != None: root_path = os.path.join("weights","cross_validation_results", argv[3]+str("_Shift_dataaug-x")+str(shift_aug_factor)) if not os.path.exists(root_path): os.mkdir(root_path) for fold in range(folds): model = build_neural_network_graph(graph_type=argv[1]) (X_train, y_train), (X_test, y_test) = preprocess_crossval_aug(Mn_All, labels, shift_aug_factor, cv=True, fold=fold,n_splits=folds, crop_spectra=True, pca_aug = False) save_dir = os.path.join(root_path,"weights_"+str(fold)) if not os.path.exists(save_dir): os.mkdir(save_dir) best_model_file = save_dir+"/highest_val_acc_weights_epoch{epoch:02d}-val_acc{val_acc:.3f}_.h5" best_model = ModelCheckpoint(best_model_file, monitor='val_acc', verbose = 1, save_best_only = True) hist = model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=epochs, batch_size=batch_size, callbacks = [best_model], shuffle = True, verbose=1) training_graphs(save_dir, hist) chemical_shift_test_acc=run_eval(root_path,Mn_All,labels,folds,shift_aug_factor) pd.DataFrame(chemical_shift_test_acc).to_csv(os.path.join(root_path,"chemical_shifts_acc.csv"), index=False, header=False) def run_eval(root_path,Mn_All,labels,folds,shift_aug_factor): print( root_path) weight = load_best_weights(model=root_path) num_bins_translate = 100 num_classes = 3 total_confusion_matrix=np.zeros((num_classes,num_classes)) acc = np.zeros(num_bins_translate) chemical_shift_test_acc= [] for fold in range(folds): model = load_model(weight[fold]) (X_train, y_train), (X_test, y_test) = preprocess_crossval_aug(Mn_All, labels, 0, cv=True, fold=fold,n_splits=folds, crop_spectra=False, pca_aug = False) run = chemical_shift_test(X_test, y_test, model, num_bins_translate)[:,1] acc += run print( run) total_confusion_matrix += confusion_matrix_generator(X_test[:,200:500], y_test, model) chemical_shift_test_acc.append(acc/len(weight)) for i in range(len(chemical_shift_test_acc)): plot_chemical_shift_test(root_path, num_bins_translate, chemical_shift_test_acc[i]) total_cv_confusion_matrix_generator(total_confusion_matrix) return chemical_shift_test_acc def preprocess_crossval_aug(x, y, shift_aug_factor, cv=True, fold=None, n_splits=0, train_test_percent=0.25, crop_spectra=True, pca_aug = False): if cv == True: from sklearn.model_selection import StratifiedKFold cv = StratifiedKFold(n_splits=n_splits, random_state=13, shuffle=False) X_train = [x[train_index] for train_index, test_index in cv.split(x, y)] X_test = [x[test_index] for train_index, test_index in cv.split(x, y)] y_train = [y[train_index] for train_index, test_index in cv.split(x, y)] y_test = [y[test_index] for train_index, test_index in cv.split(x, y)] else: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=train_test_percent, random_state=13, stratify=y) if fold != None: X_train, X_test, y_train, y_test = X_train[fold], X_test[fold], y_train[fold], y_test[fold] print("Samples will be from fold", (fold+1), " out of the", n_splits, " n_splits") print('Param train_test_percent will be ignored since folds are being used.') if pca_aug == True: from sklearn.decomposition import PCA noise = np.copy(X_train) mu = np.mean(noise, axis=0) pca = PCA() noise_model = pca.fit(noise) nComp = 10 Xhat = np.dot(pca.transform(noise)[:,:nComp], pca.components_[:nComp,:]) noise_level = np.dot(pca.transform(noise)[:,nComp:], pca.components_[nComp:,:]) Xhat += mu snr_num = 200 SNR = np.linspace(0,10,snr_num) noise_aug = [] for i in range(len(SNR)): noise_aug.append(SNR[i]*noise_level + Xhat) j = 0 for spectra in noise_aug[i]: noise_aug[i][j] = spectra/np.max(spectra) j += 1 X_train = np.array(noise_aug).reshape(snr_num*X_train.shape[0], X_train.shape[1]) y_train = [item for i in range(snr_num) for item in y_train] lower_bound,upper_bound=200,500 X_train, X_test, y_train, y_test = preprocess(X_train, X_test, y_train, y_test, lower_bound, upper_bound, shift_aug_factor=shift_aug_factor, crop=crop_spectra ,mean_center = True, norm = True ) return (X_train, y_train), (X_test, y_test) def preprocess(X_train, X_test, y_train, y_test, lower_bound, upper_bound, shift_aug_factor=None, crop=True, mean_center = False, norm = True): X_train = np.array(X_train).astype('float32') X_test = np.array(X_test).astype('float32') if mean_center == True: X_train -= np.mean(X_train) X_test -= np.mean(X_test) print( 'Data mean-centered') if norm == True: X_train /= np.max(X_train) X_test /= np.max(X_test) print( 'Data normalized') if shift_aug_factor != 0: print( "DATA AUG SHIFT") cropX_train,cropX_test=[],[] for i in range(len(X_train)): for j in range(shift_aug_factor): draw = int(random.random()*100) cropX_train.append(X_train[i,150+draw:450+draw]) X_train = np.array(cropX_train).reshape(len(X_train)*shift_aug_factor, 300) X_test = X_test[:,lower_bound:upper_bound] y_train = sorted([item for i in range(shift_aug_factor) for item in y_train]) elif crop==True and shift_aug_factor==1: X_train = X_train[:,lower_bound:upper_bound] #for test set, cropping to 635-665 eV, closer to qualitative X_test = X_test[:,lower_bound:upper_bound] #for test set, cropping to 635-665 eV, closer to qualitative elif shift_aug_factor==0: pass else: X_train = X_train[:,lower_bound:upper_bound] #for test set, cropping to 635-665 eV, closer to qualitative X_test = X_test[:,lower_bound:upper_bound] #for test set, cropping to 635-665 eV, closer to qualitative X_test = X_test.reshape(X_test.shape + (1,)) X_train = X_train.reshape(X_train.shape + (1,)) y_train = np.array(y_train) y_test = np.array(y_test) y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) print( 'Data one-hot encoded') print("Total of "+str(y_test.shape[1])+" classes.") print("Total of "+str(len(X_train))+" training samples.") print("Total of "+str(len(X_test))+" testing samples.") return X_train, X_test, y_train, y_test def chemical_shift_test(X_test, y_test, model, num_bins_translate): accuracy_on_shifted_test_set = [model.evaluate(x = X_test[:,150+i:450+i], y = y_test, verbose=0 ) for i in range(num_bins_translate)] accuracy_on_shifted_test_set = np.array(accuracy_on_shifted_test_set) return accuracy_on_shifted_test_set def plot_chemical_shift_test(path_to_output, num_bins_translate, acc1): delta_E = np.linspace(-5.,5.,100) plt.figure(1, figsize=(10,6)) plt.plot(delta_E, acc1, 'b', label='Dense Network with Shift Aug.', linewidth = 2) plt.axvline(x=0, c = 'black') plt.ylabel('10-fold Cross Validation Test Accuracy') plt.xlabel('Chemical Shift (eV)') #plt.legend(loc = 'lower left') plt.savefig(os.path.join(path_to_output, 'chemical_shift_test.png')) plt.close() def load_best_weights(model): root_path = model weight_folds=sorted(next(os.walk(root_path))[1]) weights=[] for fold in weight_folds: files_path = os.path.join(root_path, fold, '*.h5') cv_weights = sorted(glob.iglob(files_path), key=os.path.getctime, reverse=True) weights.append(cv_weights[0]) return weights def confusion_matrix_generator(X_test, y_test, model): y_test_pred, y_test_labels=[], [] for i in range(len(X_test)): y_test_pred.append(np.argmax(model.predict(X_test[i:i+1]))) y_test_labels.append(np.argmax(y_test[i])) print("Confusion Matrix of Test Set") conf_matrix = pd.DataFrame(confusion_matrix(y_pred=y_test_pred, y_true=y_test_labels)) conf_matrix.columns = ["Mn2+", "Mn3+", "Mn4+" ] conf_matrix =
pd.DataFrame.transpose(conf_matrix)
pandas.DataFrame.transpose
import sys import time import pandas as pd import numpy as np import copyreg, types from tqdm import tqdm import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-talk') plt.style.use('bmh') #plt.rcParams['font.family'] = 'DejaVu Sans Mono' plt.rcParams['font.size'] = 9.5 plt.rcParams['font.weight'] = 'medium' # ======================================================= # Symmetric CUSUM Filter [2.5.2.1] def getTEvents(gRaw, h): """cusum filter args ---- gRaw: array-like h: int() or float() returns ------- pd.DatetimeIndex() """ tEvents, sPos, sNeg = [], 0, 0 diff = np.log(gRaw).diff().dropna().abs() for i in tqdm(diff.index[1:]): try: pos, neg = float(sPos+diff.loc[i]), float(sNeg+diff.loc[i]) except Exception as e: print(e) print(sPos+diff.loc[i], type(sPos+diff.loc[i])) print(sNeg+diff.loc[i], type(sNeg+diff.loc[i])) break sPos, sNeg=max(0., pos), min(0., neg) if sNeg<-h: sNeg=0;tEvents.append(i) elif sPos>h: sPos=0;tEvents.append(i) return pd.DatetimeIndex(tEvents) # ======================================================= # Daily Volatility Estimator [3.1] ## for wtvr reason dates are not aligned for return calculation ## must account for it for computation def getDailyVol(close,span0=100): # daily vol reindexed to close df0=close.index.searchsorted(close.index-
pd.Timedelta(days=1)
pandas.Timedelta
import json import boto3 as bt import pandas as pd from io import StringIO import mechanize from lxml import etree import numpy as np from datetime import date import re import time import os def lambda_handler(event, context): start_time = time.time() client = bt.client( 's3', aws_access_key_id= os.getenv("ACCESS_KEY"), aws_secret_access_key= os.getenv("SECRET_KEY") ) ssm_client = bt.client('ssm', region_name="eu-west-2", aws_access_key_id= os.getenv("ACCESS_KEY"), aws_secret_access_key= os.getenv("SECRET_KEY") ) #Get a table of the IDs of previously downloaded jobs (these are not downloaded again - and this #file is updated at the end of this code) previous_ids = client.get_object(Bucket="civil-service-jobs", Key="existing_refs.csv") body = previous_ids['Body'] csv_string = body.read().decode('utf-8') previous_ids_df = pd.read_csv(StringIO(csv_string)) #User name and password is stored in parameter store and is used to log into Civil Service jobs csj_username = ssm_client.get_parameter( Name='/CivilServiceJobsExplorer/Toby/csjemail', WithDecryption=True) csj_password = ssm_client.get_parameter( Name='/CivilServiceJobsExplorer/Toby/csjpassword', WithDecryption=True) #Log in at the log in page br = mechanize.Browser() br.open("https://www.civilservicejobs.service.gov.uk/csr/login.cgi") br.select_form(nr=1) br.form['username'] = csj_username['Parameter']['Value'] br.form['password_login_window'] = csj_password['Parameter']['Value'] req = br.submit() search_url = "https://www.civilservicejobs.service.gov.uk/csr/index.cgi" #Preform a search of jobs that covers all of the UK and overseas br.open(search_url) br.select_form(nr=1) br.form['postcode'] = "Birmingham" br.form['postcodedistance'] = ["600"] br.form['postcodeinclusive'] = ["1"] ##Serach and extract html of search results req = br.submit() html = req.read() tree = etree.HTML(html) #Gets a list of all the search pages link_elements = tree.xpath("//div//div//div//a") link_urls = [link.get('href') for link in link_elements] link_titles = [link.get('title') for link in link_elements] links = tuple(zip(link_urls,link_titles)) links = [page for page in links if page[1] is not None] #This line finds those links that are search pages and removes duplicates search_links = list(dict.fromkeys([page[0] for page in links if page[1].find("Go to search results") != -1])) + [req.geturl()] basic_advert_results = [] for (i, page) in zip(range(1,len(search_links)+1), search_links): #This loop goes to each page in the search links and converts #the data there into a narrow dataframe of ref, variable,value print("Searching page " + str(i) + " of " + str(len(search_links))) open_page = br.open(page) html = open_page.read() tree = etree.HTML(html) xpath = "//ul//li//div | //ul//li//div//a" elements = tree.xpath(xpath) link = [link.get('href') for link in elements] node_class = [link.get('class') for link in elements] text = [link.text for link in elements] df = pd.DataFrame(data = list(zip(link, node_class, text)), columns = ["link", "variable", "value"]) df['job_ref'] = np.where(df['variable'] == "search-results-job-box-refcode", df['value'], None) df['job_ref'] = df['job_ref'].bfill() #upfill references df['job_ref'] = df['job_ref'].str.replace('Reference: ' ,'') #links are treated seperately as they are part of the href under the job title element links = df[~df['link'].isnull()] links = links[links['link'].str.contains("https://www.civilservicejobs.service.gov.uk/csr/index.cgi")] links['variable'] = "link" links = links[["job_ref","variable","link"]] links = links.rename(columns = {"link":"value"}) df['link'].fillna("", inplace = True) df['variable'].fillna("title", inplace = True) df = df[(df['variable'].str.contains("search-results-job-box-")) | (df['link'].str.contains("https://www.civilservicejobs.service.gov.uk/csr/index.cgi")) ] df = df[~df['value'].isnull()] df['variable'] = df['variable'].str.replace('search-results-job-box-','') df['variable'] = df['variable'].str.replace('stage','approach') df = df[["job_ref","variable","value"]] page_data = df.append(links, sort=False) basic_advert_results.append(page_data) basic_data = pd.concat(basic_advert_results, sort=False) #filter jobs to new jobs basic_new_data = basic_data[~basic_data["job_ref"].isin(previous_ids_df['job_ref'])] basic_new_data = basic_new_data[basic_new_data['job_ref'].notnull()] full_advert_results = [] new_links = basic_new_data[basic_new_data['variable'] == "link"] for (i, page, job_ref) in zip(range(1,len(new_links)+1), new_links['value'], new_links['job_ref'] ): #itterate over new links and get full jobs print("Scraping page " + str(i) + " of " + str(len(new_links))) open_page = br.open(page) html = open_page.read() tree = etree.HTML(html) elements = tree.cssselect('.vac_display_field_value , h3') node_tag = [e.tag for e in elements] node_text = [etree.tostring(e, encoding='unicode', method='text') for e in elements] node_html = [etree.tostring(e, encoding='unicode', method='html') for e in elements] df = pd.DataFrame(list(zip(node_tag, node_text, node_html)), columns =['tag', 'text','html']) #h3 elements are assumed to be teh variable headings and other elements (divs) and taken as the values #the values for a given heading are all the divs (that match the cssselect) below that heading, but #before another heading df['variable'] = np.where(df['tag'] == "h3", df['text'], None) df['variable'] = df['variable'].ffill() df['text'] = df['text'].str.strip().replace(r'\\n',' ') df['text'] = df['text'].apply(lambda x: re.sub(r'\x95',"",x)) df['text'] = df['text'].apply(lambda x: re.sub(r'\t'," ",x)) df['text'] = df['text'].apply(lambda x: re.sub(r'\r'," ",x)) #This html stuff is just here to handle roll types df['html'] = df['html'].apply(lambda x: re.sub("<div class=\"vac_display_field_value\">","",x)) df['html'] = df['html'].apply(lambda x: re.sub("</div>","",x)) df['html'] = df['html'].apply(lambda x: re.sub("<br>","!!!",x)) df['text'] = np.where(df['variable'] == "Type of role", df['html'], df['text']) df['variable'] = df['variable'].str.strip() df = df[df['tag'] != "h3"] df['value'] = df.groupby(['variable'])['text'].transform(lambda x : "!!!".join(x)) df = df[["variable","value"]] df = df.drop_duplicates() df['job_ref'] = job_ref df = df.append( {"variable": "date_downloaded", "value": str(date.today()) , "job_ref": job_ref}, ignore_index=True ) #need to check the time in here and if there is not enought time to save - is shoudl quite the looos #And then filter the basic data to the full data that it has managed to donwload before the concat full_advert_results.append(df) time_running = time.time() - start_time if time_running >= 740: print("time out") break #Join all new full advert dataframes together if(len(full_advert_results) < 1): return full_advert_data = pd.concat(full_advert_results, sort=False) basic_new_data = basic_data[basic_data["job_ref"].isin(full_advert_data['job_ref'])] full_and_basic_data =
pd.concat([full_advert_data, basic_new_data], sort=False)
pandas.concat
from flask import Flask from flask import request import pandas as pd app = Flask(__name__) DATA_FILE_NAME = "client_rate.json" @app.route("/") def default(): return "FIRST PROJECT - we have " + str(len(get_client_rates())) + " clients in total." def get_client_rates(): df = pd.read_json(DATA_FILE_NAME) return df.to_dict() @app.route("/rate/<client_id>") def get_client_rate(client_id) -> str: rates = get_client_rates() if client_id in rates: return str(rates[client_id]["rate"]) return "0" @app.route("/rate", methods=['POST']) def upsert_client_rate() -> str: param = request.get_json() client_id = param['client_id'] rate = param['rate'] update_client_rates(client_id, rate) return str(param) def update_client_rates(client_id: str, rate: float) -> None: """ update or insert a client_id - rate pair. :param client_id: string, e.g. 'client1' :param rate: float, e.g. 0.1 :return: """ rates = get_client_rates() rates[client_id] = {"rate": rate} df =
pd.DataFrame.from_dict(rates)
pandas.DataFrame.from_dict
from datetime import datetime from decimal import Decimal import numpy as np import pytest import pytz from pandas.compat import is_platform_little_endian from pandas import CategoricalIndex, DataFrame, Index, Interval, RangeIndex, Series import pandas._testing as tm class TestFromRecords: def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH#6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH#6140 expected = DataFrame({"EXPIRY": [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[ns]")] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[m]")] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in blocks.items(): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in blocks.items(): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = DataFrame.from_records(tuples, columns=columns).reindex( columns=df.columns ) # created recarray and with to_records recarray (have dtype info) result2 = DataFrame.from_records(recarray, columns=columns).reindex( columns=df.columns ) result3 = DataFrame.from_records(recarray2, columns=columns).reindex( columns=df.columns ) # list of tupels (no dtype info) result4 = DataFrame.from_records(lists, columns=columns).reindex( columns=df.columns ) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, RangeIndex(8)) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index("C"), columns.index("E1")] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result["C"], df["C"]) tm.assert_series_equal(result["E1"], df["E1"].astype("float64")) # empty case result = DataFrame.from_records([], columns=["foo", "bar", "baz"]) assert len(result) == 0 tm.assert_index_equal(result.columns, Index(["foo", "bar", "baz"])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in blocks.items(): columns.extend(b.columns) asdict = {x: y for x, y in df.items()} asdict2 = {x: y.values for x, y in df.items()} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records(asdict).reindex(columns=df.columns)) results.append( DataFrame.from_records(asdict, columns=columns).reindex(columns=df.columns) ) results.append( DataFrame.from_records(asdict2, columns=columns).reindex(columns=df.columns) ) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) # should pass df1 = DataFrame.from_records(df, index=["C"]) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index="C") tm.assert_index_equal(df1.index, Index(df.C)) # should fail msg = r"Shape of passed values is \(10, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(df, index=[2]) with pytest.raises(KeyError, match=r"^2$"): DataFrame.from_records(df, index=2) def test_from_records_non_tuple(self): class Record: def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = [tuple(rec) for rec in recs] result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # GH#2633 result = DataFrame.from_records([], index="foo", columns=["foo", "bar"]) expected = Index(["bar"]) assert len(result) == 0 assert result.index.name == "foo" tm.assert_index_equal(result.columns, expected) def test_from_records_series_list_dict(self): # GH#27358 expected = DataFrame([[{"a": 1, "b": 2}, {"a": 3, "b": 4}]]).T data = Series([[{"a": 1, "b": 2}], [{"a": 3, "b": 4}]]) result = DataFrame.from_records(data) tm.assert_frame_equal(result, expected) def test_from_records_series_categorical_index(self): # GH#32805 index = CategoricalIndex( [Interval(-20, -10), Interval(-10, 0), Interval(0, 10)] ) series_of_dicts = Series([{"a": 1}, {"a": 2}, {"b": 3}], index=index) frame = DataFrame.from_records(series_of_dicts, index=index) expected = DataFrame( {"a": [1, 2, np.NaN], "b": [np.NaN, np.NaN, 3]}, index=index ) tm.assert_frame_equal(frame, expected) def test_frame_from_records_utc(self): rec = {"datum": 1.5, "begin_time": datetime(2006, 4, 27, tzinfo=pytz.utc)} # it works DataFrame.from_records([rec], index="begin_time") def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=("i4,f4,a10")) arr[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(
DataFrame.from_records(arr2)
pandas.DataFrame.from_records
import os from datetime import datetime as dt from datetime import timedelta as td from uuid import uuid4 import json import pandas as pd import numpy as np from kivy.app import App from kivy.uix.screenmanager import ScreenManager, Screen from kivy.config import Config from kivy.uix.boxlayout import BoxLayout from kivy.properties import StringProperty, ObjectProperty, BooleanProperty from kivy.uix.behaviors import FocusBehavior from kivy.uix.recycleview.layout import LayoutSelectionBehavior from kivy.uix.recycleboxlayout import RecycleBoxLayout from kivy.uix.recycleview.views import RecycleDataViewBehavior from kivy.uix.label import Label from kivy.uix.modalview import ModalView from kivy.uix.filechooser import FileChooserListView import drive as drive Config.set("graphics", "width", "800") Config.set("graphics", "height", "480") Config.set("graphics", "borderless", "1") TEST_MODE = True plant_data_path = os.path.join(".", "data", "plants_data.csv") if TEST_MODE: jobs_file_path = os.path.join(".", "test_files", "test_jobs.json") log_file_path = os.path.join(".", "test_files", "test_logs.txt") else: jobs_file_path = os.path.join(".", "data", "jobs_data.json") log_file_path = os.path.join(".", "data", "logs.txt") if os.path.isfile(plant_data_path): plant_data = pd.read_csv(plant_data_path) else: plant_data = pd.DataFrame( columns=["experiment", "plant_name", "position", "allow_capture"] ) if os.path.isfile(jobs_file_path): with open(jobs_file_path, "r") as f: jobs_data = json.load(f) else: jobs_data = {"jobs": []} if os.path.isfile(log_file_path): with open(log_file_path, "r") as f: log_data = [ line.replace("\n", "") for line in f.readlines() if line != "\n" ] else: log_data = [] class RootWidget(BoxLayout): pass class ModalDialog(ModalView): modal_dialog_title = ObjectProperty(None) modal_dialog_body = ObjectProperty(None) class SelectableRecycleBoxLayout( FocusBehavior, LayoutSelectionBehavior, RecycleBoxLayout ): """ Adds selection and focus behavior to the view. """ class SelectableLabel(RecycleDataViewBehavior, Label): """ Add selection support to the Label """ index = None selected = BooleanProperty(False) selectable = BooleanProperty(True) guid = StringProperty("") def refresh_view_attrs(self, rv, index, data): """ Catch and handle the view changes """ self.index = index return super(SelectableLabel, self).refresh_view_attrs(rv, index, data) def on_touch_down(self, touch): """ Add selection on touch down """ if super(SelectableLabel, self).on_touch_down(touch): return True if self.collide_point(*touch.pos) and self.selectable: return self.parent.select_with_touch(self.index, touch) def apply_selection(self, rv, index, is_selected): """ Respond to the selection of items in the view. """ self.selected = is_selected if self.selected and hasattr(rv, "page"): if hasattr(rv.page, "update_data"): rv.page.update_data(guid=self.guid) elif hasattr(rv.page, "update_plants"): rv.page.update_plants(experiment=self.text) class MyPageManager(ScreenManager): bt_back = ObjectProperty(None) lbl_title = ObjectProperty(None) lbl_info = ObjectProperty(None) lbl_status = ObjectProperty(None) def on_back(self): self.current_screen.back() def back_text(self): return self.current_screen.back_text def format_text( self, text: str, is_bold: bool = False, font_size: int = 0 ): prefix = "[b]" if is_bold else "" prefix += f"[size={font_size}]" if font_size > 0 else "" suffix = "[/b]" if is_bold else "" suffix += "[/size]" if font_size > 0 else "" return f"{prefix}{text}{suffix}" def set_active_page(self, new_page_name: str, direction: str): self.transition.direction = direction self.current = new_page_name self.bt_back.text = self.current_screen.back_text self.lbl_title.text = self.format_text( self.current_screen.title_text, is_bold=True, font_size=30 ) self.lbl_info.text = self.current_screen.info_text self.lbl_status.text = "" class StartUpPage(Screen): back_text = "< Exit" title_text = "Start up" info_text = "Welcome to RobotRacine control center" modal_dialog = None def dialog_callback(self, instance): if instance.modal_result == 1: plant_data.to_csv(plant_data_path, index=False) with open(os.path.join(".", "data", "logs.txt"), "w") as f: f.writelines(log_data) with open(os.path.join(".", "data", "jobs_data.json"), "w") as f: json.dump(jobs_data, f, indent=2) App.get_running_app().stop() return False def back(self): self.modal_dialog = ModalDialog() self.modal_dialog.modal_dialog_title.text = self.manager.format_text( text="Confirmation required", is_bold=False, font_size=0 ) self.modal_dialog.modal_dialog_body.text = ( "Quit program?\nAll jobs will be stopped." ) self.modal_dialog.bind(on_dismiss=self.dialog_callback) self.modal_dialog.open() class MyScreen(Screen): def back(self): self.manager.set_active_page( new_page_name=self.back_target, direction="right" ) class ManualRoot(MyScreen): back_text = "< Back" back_target = "start_up" title_text = "Manual Override" info_text = "Take control of the robot" def go_home(self): self.manager.lbl_status.text = "Going Home" drive.go_home() self.manager.lbl_status.text = "Went Home" def run(self): self.manager.lbl_status.text = "Engine On" drive.run() def go_next(self): self.manager.lbl_status.text = "Setting next plant" drive.go_next() self.manager.lbl_status.text = "Next plant set" def stop(self): drive.stop() self.manager.lbl_status.text = "Engine stopped" class ManualCapture(MyScreen): back_text = "< Back" back_target = "manual_root" title_text = "Manual Capture" info_text = "Set the camera and take snapshots" bt_back = ObjectProperty(None) def snap(self): self.manager.lbl_status.text = "Oh, snap" class Jobs(MyScreen): back_text = "< Back" back_target = "start_up" title_text = "Jobs" info_text = "All about jobs" class PlantSelector(ModalView): available_plants = ObjectProperty(None) selected_plants = ObjectProperty(None) selected_plants_list = [] job = None def update_list_views(self): self.ids["available_plants"].data = [ {"text": j} for j in [ plant for plant in plant_data.plant_name.unique() if plant not in self.selected_plants_list ] ] self.ids["selected_plants"].data = [ {"text": j} for j in self.selected_plants_list ] def add_to_selection(self): selected_nodes = self.ids[ "available_plants" ].layout_manager.selected_nodes self.ids["available_plants"].layout_manager.selected_nodes = [] if selected_nodes: self.selected_plants_list.extend( [ self.ids["available_plants"].data[i]["text"] for i in selected_nodes ] ) self.update_list_views() def remove_from_selection(self): selected_nodes = [ self.ids["selected_plants"].data[i]["text"] for i in self.ids["selected_plants"].layout_manager.selected_nodes ] self.ids["selected_plants"].layout_manager.selected_nodes = [] if selected_nodes: self.selected_plants_list = [ p for p in self.selected_plants_list if p not in selected_nodes ] self.update_list_views() class JobsManage(MyScreen): back_text = "< Back" back_target = "jobs" title_text = "Manage jobs" info_text = "About the jobs..." jobs_list = "Take a snapshot" job_description = ObjectProperty(None) def init_jobs(self): set_index = not self.jobs_list.data self.jobs_list.data = [ {"text": j["name"], "guid": j["guid"]} for j in jobs_data["jobs"] ] if set_index and self.jobs_list.data: self.jobs_list.layout_manager.selected_nodes = [0] def get_current_description(self): return "description" def get_job(self, guid): for job in jobs_data["jobs"]: if job["guid"] == guid: return job else: return None def get_job_index(self, guid): for i, job in enumerate(jobs_data["jobs"]): if job["guid"] == guid: return i else: return -1 def new_job(self): if not jobs_data: jobs_data["jobs"] = [] jobs_data["jobs"].append( { "name": "Job " + dt.now().strftime("%Y%m%d %H:%M:%S"), "state": "active", "guid": str(uuid4()), "description": "", "owner": "", "mail_to": "", "repetition_mode": "every", "repetition_value": 6, "repetition_unit": "hours", "timestamp_start": dt.now().strftime("%Y%m%d %H:%M:%S"), "timestamp_end": (dt.now() + td(days=14)).strftime( "%Y%m%d %H:%M:%S" ), "plants": "", } ) self.init_jobs() self.update_data(guid=jobs_data["jobs"][-1]["guid"]) self.jobs_list.layout_manager.selected_nodes = [ len(jobs_data["jobs"]) - 1 ] def update_data(self, guid): job = self.get_job(guid=guid) if job is None: return self.job_name.input_text = job["name"] self.job_guid = guid self.job_state.text = "" if job["state"] == "active" else "paused" self.job_description.input_text = job["description"] self.job_owner.input_text = job["owner"] self.job_mail_list.input_text = "; ".join(job["mail_to"]) self.time_mode.text = job["repetition_mode"] self.time_value.text = str(job["repetition_value"]) self.time_unit.text = job["repetition_unit"] self.date_start.text = job["timestamp_start"] self.date_end.text = job["timestamp_end"] self.job_plant_list.text = ";".join(job["plants"]) def save_job(self, guid): index = self.get_job_index(guid=guid) if index < 0: return jobs_data["jobs"][index]["name"] = self.job_name.text_holder.text jobs_data["jobs"][index]["state"] = ( "paused" if self.job_state.text == "paused" else "active" ) jobs_data["jobs"][index][ "description" ] = self.job_description.text_holder.text jobs_data["jobs"][index]["owner"] = self.job_owner.text_holder.text jobs_data["jobs"][index][ "mail_to" ] = self.job_mail_list.text_holder.text.replace(" ", "").split(";") jobs_data["jobs"][index]["repetition_mode"] = self.time_mode.text try: jobs_data["jobs"][index]["repetition_value"] = int( self.time_value.text ) except: jobs_data["jobs"][index]["repetition_value"] = 0 jobs_data["jobs"][index]["repetition_unit"] = self.time_unit.text jobs_data["jobs"][index]["timestamp_start"] = self.date_start.text jobs_data["jobs"][index]["timestamp_end"] = self.date_end.text def resume_job(self, guid): job = self.get_job(guid=guid) if job is None: return job["state"] = "active" self.update_data(guid=guid) def pause_job(self, guid): job = self.get_job(guid=guid) if job is None: return job["state"] = "paused" self.update_data(guid=guid) def delete_job(self, guid): index = self.get_job_index(guid=guid) if index < 0: return jobs_data["jobs"].pop(index) self.init_jobs() self.update_data(guid=jobs_data["jobs"][-1]["guid"]) def close_plant_selection(self, instance): if instance.modal_result == 1: current_plants = [ d["text"] for d in instance.ids["selected_plants"].data ] instance.job["plants"] = current_plants self.update_data(guid=instance.job["guid"]) return False def select_plants(self, guid): job = self.get_job(guid=guid) if job is None: return self.plant_selector = PlantSelector() pl = job["plants"][:] if not pl: pl = [] self.plant_selector.selected_plants_list = pl self.plant_selector.job = job self.plant_selector.update_list_views() self.plant_selector.bind(on_dismiss=self.close_plant_selection) self.plant_selector.open() class JobsLog(MyScreen): back_text = "< Back" back_target = "jobs" title_text = "Jobs log" info_text = "Logs, logs everywhere" def init_logs(self): self.log_text.text = "\n".join(reversed(log_data)) class FileLoader(ModalView): file_name = ObjectProperty(None) class DataIn(MyScreen): back_text = "< Back" back_target = "start_up" title_text = "Data In" info_text = "View/add/remove Data In files" experiments_list = ObjectProperty(None) plants_list = ObjectProperty(None) def init_experiments(self): self.experiments_list.data = [ {"text": j} for j in plant_data.experiment.unique() ] def close_file_selection(self, instance): if instance.modal_result == 1: try: new_df =
pd.read_csv(instance.ids["file_name"].text)
pandas.read_csv
import cleaning_string import codecs import pandas as pd import subprocess import nltk import re as regex import string import collections from nltk.stem.wordnet import WordNetLemmatizer from nltk.wsd import lesk from nltk.corpus import wordnet import operator import numpy as np from nltk.stem.snowball import SnowballStemmer from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, RandomizedSearchCV import time import gensim from gensim import corpora import csv import _pickle as cPickle from nltk.corpus import words as wd def main(): string=str(input('enter tweet')) string =[string] file = codecs.open('data.txt', 'w', 'utf-8') doc_list=[] doc_clean=cleaning_string.get_clean_docs(string) for doc in doc_clean: document_text=" ".join(doc) file.write(document_text+'\n') file.close() p = subprocess.Popen(["sh", "runExample_1.sh"], shell=True) print(p.communicate()) result_doc=open("C:/Users/brohi/OneDrive/Desktop/BTM-master/output/model/k5.pz_d",'r') topic=[] for doc in result_doc.readlines(): doc_dist=doc.split() topic.append(doc_dist.index(max(doc_dist))) df = pd.DataFrame({'text':string}) se = pd.Series(topic) df['label'] = se df.to_csv('output_btm.csv') # Data Pre-processing for Sentiment Analysis data = TwitterData_Initialize() data.initialize("./script/output_btm.csv") data.processed_Traindata nltk.download('words') word_dictionary = list(set(wd.words())) for alphabet in "bcdefghjklmnopqrstuvwxyzBCDEFGHJKLMNOPQRSTUVWXYZ": word_dictionary.remove(alphabet) words = collections.Counter() for idx in data.processed_Traindata.index: words.update(data.processed_Traindata.loc[idx, "text"]) stopwords = nltk.corpus.stopwords.words("english") whitelist = ["n't", "not"] for idx, stop_word in enumerate(stopwords): if stop_word not in whitelist: del words[stop_word] words.most_common(5) data = WordList(data) data.buildWordlist() data = BagOfWords(data) bow, labels = data.buildDataModel() bow.head(5) data = ExtraFeatures() data.initialize("./output_btm.csv") data.build_features() data.cleaningData(DataPreprocessing()) data.tokenize() data.stem() data.buildWordlist() data_model, labels = data.build_data_model() print (data_model) # Load Naive-Bayes Library with open('../model/NaiveBayesClassifier.pkl', 'rb') as nid: nb_loaded = cPickle.load(nid) with open('../model/RandomForestClassifier.pkl', 'rb') as rid: rf_loaded = cPickle.load(rid) result_nb = nb_loaded.predict(data_model) print(type(result_nb)) print("Naive-Bayes Prediction : ", result_nb) result_rf = rf_loaded.predict(data_model) print("Random Forest Prediction : ", result_rf) df_csv = pd.read_csv("./output_btm.csv") df_csv['NaiveBayesSentiment'] = pd.DataFrame(result_nb) df_csv['RandomForestSentiment'] = pd.DataFrame(result_rf) df_csv.to_csv("./output_btm.csv") # Detecting Emoticons class EmoticonDetector: emoticons = {} def __init__(self, emoticon_file="../data/emoticons.txt"): from pathlib import Path content = Path(emoticon_file).read_text() positive = True for line in content.split("\n"): if "positive" in line.lower(): positive = True continue elif "negative" in line.lower(): positive = False continue self.emoticons[line] = positive def is_positive(self, emoticon): if emoticon in self.emoticons: return self.emoticons[emoticon] return False def is_emoticon(self, to_check): return to_check in self.emoticons class TwitterData_Initialize(): processed_Traindata = [] wordlist = [] data_model = None data_labels = None def initialize(self, csv_file, from_cached=None): if from_cached is not None: self.data_model = pd.read_csv(from_cached) return self.processed_Traindata =
pd.read_csv(csv_file, usecols=[0, 1])
pandas.read_csv
import pandas as pd from sklearn import cluster from sklearn import metrics import matplotlib.pyplot as plt from sklearn.manifold import TSNE def k_means(data_set, output_file, png_file, t_labels, score_file, set_name): model = cluster.KMeans(n_clusters=4, max_iter=100, n_jobs=4, init="k-means++") model.fit(data_set) # print(list(model.labels_)) p_labels = list(model.labels_) r = pd.concat([data_set, pd.Series(model.labels_, index=data_set.index)], axis=1) r.columns = list(data_set.columns) + [u'聚类类别'] print(r) r.to_excel(output_file) with open(score_file, "a") as sf: sf.write("By k-means, the f-m_score of " + set_name + " is: " + str(metrics.fowlkes_mallows_score(t_labels, p_labels))+"\n") sf.write("By k-means, the rand_score of " + set_name + " is: " + str(metrics.adjusted_rand_score(t_labels, p_labels))+"\n") t_sne = TSNE() t_sne.fit(data_set) t_sne = pd.DataFrame(t_sne.embedding_, index=data_set.index) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False dd = t_sne[r[u'聚类类别'] == 0] plt.plot(dd[0], dd[1], 'r.') dd = t_sne[r[u'聚类类别'] == 1] plt.plot(dd[0], dd[1], 'go') dd = t_sne[r[u'聚类类别'] == 2] plt.plot(dd[0], dd[1], 'b*') dd = t_sne[r[u'聚类类别'] == 3] plt.plot(dd[0], dd[1], 'o') plt.savefig(png_file) plt.clf() # plt.show() frog_data = pd.read_csv("../datas/Frogs_MFCCs.csv") tLabel = [] for family in frog_data['Family']: if family == "Leptodactylidae": tLabel.append(0) elif family == "Dendrobatidae": tLabel.append(1) elif family == "Hylidae": tLabel.append(2) else: tLabel.append(3) scoreFile = "../output/scoreOfClustering.txt" first_set = frog_data[['MFCCs_ 1', 'MFCCs_ 5', 'MFCCs_ 9', 'MFCCs_13', 'MFCCs_17', 'MFCCs_21']] k_means(first_set, "../output/kMeansSet_1.xlsx", "../output/kMeansSet_1.png", tLabel, scoreFile, "Set_1") second_set = frog_data[['MFCCs_ 3', 'MFCCs_ 7', 'MFCCs_11', 'MFCCs_15', 'MFCCs_19']] k_means(second_set, "../output/kMeansSet_2.xlsx", "../output/kMeansSet_2.png", tLabel, scoreFile, "Set_2") # DBSCAN begins db = cluster.DBSCAN(eps=0.1011, min_samples=115, n_jobs=-1) db.fit(first_set) r = pd.concat([first_set, pd.Series(db.labels_, index=first_set.index)], axis=1) r.columns = list(first_set.columns) + [u'聚类类别'] # print(r) r.to_excel("../output/dbscanSet_1.xlsx") p_labels = list(db.labels_) with open(scoreFile, "a") as sf: sf.write("By DBSCAN, the f-m_score of Set_1 is: " + str( metrics.fowlkes_mallows_score(tLabel, p_labels)) + "\n") sf.write("By DBSCAN, the rand_score of Set_1 is: " + str( metrics.adjusted_rand_score(tLabel, p_labels)) + "\n") t_sne_db_1 = TSNE() t_sne_db_1.fit(first_set) t_sne_db_1 = pd.DataFrame(t_sne_db_1.embedding_, index=first_set.index) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False dd = t_sne_db_1[r[u'聚类类别'] == 0] plt.plot(dd[0], dd[1], 'r.') dd = t_sne_db_1[r[u'聚类类别'] == 1] plt.plot(dd[0], dd[1], 'go') dd = t_sne_db_1[r[u'聚类类别'] == 2] plt.plot(dd[0], dd[1], 'b*') dd = t_sne_db_1[r[u'聚类类别'] == -1] plt.plot(dd[0], dd[1], 'o') plt.savefig("../output/dbscanSet_1.png") plt.clf() # dbscan of set 2 db = cluster.DBSCAN(eps=0.1020, min_samples=90, n_jobs=-1) db.fit(second_set) r = pd.concat([second_set, pd.Series(db.labels_, index=second_set.index)], axis=1) r.columns = list(second_set.columns) + [u'聚类类别'] # print(r) r.to_excel("../output/dbscanSet_2.xlsx") p_labels = list(db.labels_) with open(scoreFile, "a") as sf: sf.write("By DBSCAN, the f-m_score of Set_2 is: " + str( metrics.fowlkes_mallows_score(tLabel, p_labels)) + "\n") sf.write("By DBSCAN, the rand_score of Set_2 is: " + str( metrics.adjusted_rand_score(tLabel, p_labels)) + "\n") t_sne_db_2 = TSNE() t_sne_db_2.fit(second_set) t_sne_db_2 =
pd.DataFrame(t_sne_db_2.embedding_, index=second_set.index)
pandas.DataFrame
# HELPER FUNCTIONS FOR ATTENTION AND MEMORY ANALYSES import os import pickle import pandas as pd from matplotlib import pyplot as plt import ast import json import re from datetime import datetime import time import hypertools as hyp import numpy as np from matplotlib import patches as patches import seaborn as sb # BEHAVIORAL DATA ANALYSIS FUNCTIONS # Functions to Aggregate Subject Data and Verify Correct Stimuli were Presented def sum_pd(subdir): ''' input: subject directory (string) output: full experiment info (dataframe) ''' files = [ x for x in os.listdir(subdir) if 'pres' in x or 'mem' in x ] df_list = [ pd.read_csv(subdir+'/'+x) for x in files ] df = pd.concat(df_list, ignore_index=True) return(df) # Functions for Simple Behavioral Analyses def add_level(df): ''' input: subject dataframe output: subject dataframe w/ Attention Level string for each Memory trial row ''' for x in df.Run.unique(): mask = df['Run']==x df[mask] = run_level(df[mask]) return(df) def run_level(df): ''' input: df containing pres and mem from single run output: df with string in 'Attention Level' column in each Memory trial row ''' cued_cat = df[df['Trial Type']=='Presentation']['Cued Category'].tolist()[0] for index,row in df.iterrows(): if row['Trial Type']=='Memory': mem_image = row['Memory Image'] for cue in ['Cued ', 'Uncued ']: for cat in ['Face', 'Place']: if df.loc[df[cue+cat] == mem_image].shape[0]!=0: if cat == cued_cat: df['Category'][index]=cued_cat if cue == 'Cued ': attention = "Full" elif cue == 'Uncued ': attention = "Category" else: df['Category'][index]=cat if cue == 'Uncued ': attention = "None" elif cue == 'Cued ': attention = "Side" df['Attention Level'][index] = attention mem_mask = df['Trial Type']=='Memory' df.loc[mem_mask,'Attention Level'] = df.loc[mem_mask,'Attention Level'].fillna('Novel') return(df) def ROC(df, plot=True): ''' input: subject df output: ROC plot or ROC data dict ''' ratings = [1.0, 2.0, 3.0, 4.0] ROC = {} fig = plt.figure() ax1 = fig.add_subplot(111) # for each attention level for attn in ['Novel', 'None','Side','Full','Category']: ROC[attn] = [0, 1] # for each possible number rating for rate in ratings: # proportion of images in that attn level rated this rating or higher num = df.loc[(df['Attention Level'] == attn) & (df['Familiarity Rating'] >= rate)].shape[0] denom = df.loc[df['Attention Level'] == attn].shape[0] ROC[attn].append(float(num)/denom) ROC[attn].sort() # proportions of various attention-level images, by rating, on y-axis # proportions of novel images, by rating, on x-axis if attn != 'Novel': ax1.plot(ROC['Novel'], ROC[attn], '-o', label=attn) if plot: plt.legend(loc='upper left'); plt.ylim(0, 1) plt.xlim(0, 1) plt.gca().set_aspect('equal', adjustable='box') plt.show() else: return(ROC) # EYE GAZE DATA ANALYSIS FUNCTIONS class parseFile(): def __init__(self, file): self.file = file def parse(self): data = open(self.file).read() return(data) def load(path): ''' input: path to directory containing eye track data output: raw parsed eye data ''' data = [] files = [f for f in os.listdir(path)] for x in files: #if os.path.isfile(path+x): newFile = parseFile(path+x) data1 = newFile.parse() for a,b in zip(['true','false'], ['True', 'False']): data1 = data1.replace(a, b) data1 = data1.split('\n') data1 = [x for x in data1 if "tracker" in x] data.extend(data1) return(data) def df_create(data): """ input: raw parsed eye data output: dataframe of eye data (screen location in centimeters) """ dict_list = [ast.literal_eval(x) for x in data] dict_list = [x['values']['frame'] for x in dict_list if 'frame' in x['values']] df = pd.DataFrame(dict_list) # right and left eye for eye in ['righteye','lefteye']: for coord in ['x','y']: df[coord+'Raw_'+eye] = [df[eye][row]['raw'][coord] for row in df.index.values] # convert to centimeters df['av_x_coord'] = (59.8/2048)*(df[['xRaw_righteye', 'xRaw_lefteye']].mean(axis=1)) df['av_y_coord'] = (33.6/1152)*(df[['yRaw_righteye', 'yRaw_lefteye']].mean(axis=1)) # convert timestamp df['timestamp']=[time.mktime(time.strptime(x[:], "%Y-%m-%d %H:%M:%S.%f")) for x in df['timestamp']] return(df) def pres_gaze(subdir, eye_df, interval='images'): ''' input: subject's experiment df and eye track df output: list of eye data df's each df is either eye data from full pres block, or from single pres trial (interval='images') ''' pres_gaze = [] for f in os.listdir(subdir): if 'pres' in f: pres_df =
pd.read_csv(subdir+'/'+f)
pandas.read_csv
import requests import json import pandas as pd def get_espn_info(season, espn_league_id, cookies = None): r = requests.get('https://fantasy.espn.com/apis/v3/games/ffl/seasons/{}/segments/0/leagues/{}'.format(season, espn_league_id), params={ 'view': ['mTeam', 'mRoster', 'mSettings']}, cookies = cookies) if r.status_code in [400, 404]: raise Exception("League not found! Please check 'espn_league_id'") elif r.status_code == 401: raise Exception("This is a private ESPN league and you are not authorized to view this league. Please check or include the 'cookie' parameters.") elif r.status_code != 200: print(r.status_code) raise Exception("Unable to import ESPN League information.") data = r.json() teams, roster = get_league_teams(data) members = get_league_members(data) teams = teams.merge(members[['display_name', 'owner_id', 'owner_name']],on = 'owner_id', how = 'left') teams.drop(['location', 'nickname', 'owner_id'], axis = 1, inplace = True) roster = roster.astype(str).merge(teams[['team_id', 'team_name']], on = 'team_id', how = 'left') return teams, roster def get_league_teams(data): teams =
pd.DataFrame()
pandas.DataFrame
# %% markdown # Portfolio Optimization - Risk # %% add path if __name__ == '__main__' and __package__ is None: import sys, os.path sys.path # append parent of the directory the current file is in inputfilename1 = r"C:\Users\<NAME>\Documents\Onedrive\Python scripts\_01 Liam Stock Analysis Project\stock_analysis\Python_Core" inputfilename2 = r"C:\Users\l.morrow\OneDrive\Python scripts\_01 Liam Stock Analysis Project\stock_analysis\Python_Core" sys.path.append(inputfilename1) sys.path.append(inputfilename2) # %% imports import numpy as np import math import pandas as pd from pandas_datareader import data as wb import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime from pandas import ExcelWriter from pandas import ExcelFile from scipy.optimize import minimize import stock_utilities as su import scipy.optimize as sco sns.set(style="darkgrid") # %% fetch stock data # tickers="AFDIX,FXAIX,JLGRX,MEIKX,PGOYX,HFMVX,FCVIX,FSSNX,WSCGX,CVMIX,DOMOX,FSPSX,ODVYX,MINJX,FGDIX,CMJIX,FFIVX,FCIFX,FFVIX,FDIFX,FIAFX,BPRIX,CBDIX,OIBYX,PDBZX" # tickers="AFDIX,FXAIX,JLGRX,MEIKX" tickers = "PRHSX,IAU,VWIGX,GBF,TRBCF,PRSCX" start_date = pd.to_datetime('1/1/2016', utc=True) end_date = pd.to_datetime('1/6/2020', utc=True) stock_df = su.yahoo_stock_fetch(tickers, start_date, end_date) # %% make df analysis_df = {} for t in stock_df.keys(): analysis_df[t] = pd.DataFrame() analysis_df[t]['Adj Close'] = (stock_df[t]['Adj Close']) analysis_df[t]['Simple Returns'] = (stock_df[t]['Adj Close'].pct_change(1)) analysis_df[t]['Total ROI %'] = ((stock_df[t]['Adj Close']-stock_df[t]['Adj Close'].iloc[0])/stock_df[t]['Adj Close'].iloc[0])*100 analysis_df[t]['Log Returns'] = np.log(stock_df[t]['Adj Close']/stock_df[t]['Adj Close'].shift(1)) adj_close_df = pd.DataFrame() for t in stock_df.keys(): adj_close_df[t] = analysis_df[t]['Adj Close'] adj_close_df #%% covariance matrix class def cov_to_corr(cov_matrix): """ Convert a covariance matrix to a correlation matrix. :param cov_matrix: covariance matrix :type cov_matrix: pd.DataFrame :return: correlation matrix :rtype: pd.DataFrame """ if not isinstance(cov_matrix, pd.DataFrame): cov_matrix = pd.DataFrame(cov_matrix) Dinv = np.diag(1 / np.sqrt(np.diag(cov_matrix))) corr = np.dot(Dinv, np.dot(cov_matrix, Dinv)) return pd.DataFrame(corr, index=cov_matrix.index, columns=cov_matrix.index) def variation_over_time(prices,frequency=252,periods=8,covariance='ledoit_wolf',correlation=True,returns_data=False): date_delta = end_date - start_date divided_days = date_delta/periods times = pd.date_range(start_date, periods=periods, freq=divided_days,normalize=True) subset_df = {} counter=0 for i in times: counter+=1 #reset index and set timezone. sub_df = prices.tz_localize('UTC', level=0).reset_index() #spec start date subset_start_date = pd.to_datetime(i, utc= True) #specficy a subset subset_df[counter] = sub_df.loc[(sub_df['Date'] > subset_start_date) & (sub_df['Date'] < end_date)] for i in subset_df.keys(): subset_df[i].set_index('Date', inplace=True) if covariance == 'ledoit_wolf': matrix={} for i in subset_df.keys(): matrix[i] = covariance_models(subset_df[i],returns_data=returns_data, frequency=frequency).ledoit_wolf() else: #sample covariance matrix={} for i in subset_df.keys(): matrix[i] = subset_df[i].pct_change().dropna(how="all").cov()*frequency if correlation == True : for i in subset_df.keys(): matrix[i] = cov_to_corr(matrix[i]) else: pass return matrix,times def heatmap(x, y, size, scale, times): # Mapping from column names to integer coordinates x_labels = [v for v in sorted(x.unique())] y_labels = [v for v in sorted(y.unique())] x_to_num = {p[1]:p[0] for p in enumerate(x_labels)} y_to_num = {p[1]:p[0] for p in enumerate(y_labels)} size_scale = scale ax.scatter( x=x.map(x_to_num), # Use mapping for x y=y.map(y_to_num), # Use mapping for y s=size * size_scale, # Vector of square sizes, proportional to size parameter marker='s' # Use square as scatterplot marker ) # Show column labels on the axes ax.set(title='Variance Matrix \n'+ str(times)) ax.set_xticks([x_to_num[v] for v in x_labels]) ax.set_xticklabels(x_labels, rotation=45, horizontalalignment='right') ax.set_yticks([y_to_num[v] for v in y_labels]) ax.set_yticklabels(y_labels) ax.grid(False, 'major') ax.grid(True, 'minor') ax.set_xticks([t + 0.5 for t in ax.get_xticks()], minor=True) ax.set_yticks([t + 0.5 for t in ax.get_yticks()], minor=True) ax.set_xlim([-0.5, max([v for v in x_to_num.values()]) + 0.5]) ax.set_ylim([-0.5, max([v for v in y_to_num.values()]) + 0.5]) class covariance_models: def __init__(self, prices, returns_data=False, frequency=252): """ :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param returns_data: if true, the first argument is returns instead of prices. :type returns_data: bool, defaults to False. :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year) :type frequency: int, optional """ # Optional import try: from sklearn import covariance self.covariance = covariance except (ModuleNotFoundError, ImportError): raise ImportError("Please install scikit-learn via pip") if not isinstance(prices, pd.DataFrame): prices =
pd.DataFrame(prices)
pandas.DataFrame
import os from unittest.mock import patch import numpy as np import pandas as pd import pytest from skopt.space import Real from evalml.pipelines import BinaryClassificationPipeline, ComponentGraph @pytest.fixture def test_pipeline(): class TestPipeline(BinaryClassificationPipeline): component_graph = ['Simple Imputer', 'One Hot Encoder', 'Standard Scaler', 'Logistic Regression Classifier'] hyperparameters = { "penalty": ["l2"], "C": Real(.01, 10), "impute_strategy": ["mean", "median", "most_frequent"], } def __init__(self, parameters): super().__init__(parameters=parameters) @property def feature_importance(self): importance = [1.0, 0.2, 0.0002, 0.0, 0.0, -1.0] feature_names = range(len(importance)) f_i = list(zip(feature_names, importance)) df =
pd.DataFrame(f_i, columns=["feature", "importance"])
pandas.DataFrame
import traceback import argparse import re # regular expressions import gzip import pandas as pd ''' Load RNA sequence into memory. Reads a FASTA.gz file from GeneCode. Parses the transcript id (TID) from the FASTA defline. Returns a Pandas dataframe with columnts tid, class, sequence, seqlen. Typical input files from (https://www.gencodegenes.org/) - gencode.v38.lncRNA_transcripts.fa.gz - gencode.v38.pc_transcripts.fa.gz ''' class GenCodeLoader(): def __init__(self): self.pattern5=re.compile('.*UTR5:') self.pattern3=re.compile('.*UTR3:') self.check_list = None self.check_utr = False self.min_size = None self.max_size = None def set_label(self,label): ''' Set one label used for subsequent sequences. The value gets stored in the 'class' field. Usually use 1 for protein-coding and 0 for non-coding. ''' self.label=label def set_check_list(self,check_list): ''' Optionally provide a TID include list. Others are excluded. The parameter, type list, is used with pythin 'in' operator. ''' self.check_list=check_list def set_check_utr(self,check_utr): ''' Optionally require UTR. Equivalent to requiring an ORF. Include only deflines that specify 5'UTR and 3'UTR positions. (GenCode does have mRNA transcripts that lack an ORF!) Set this to false when loading non-coding RNA. The parameter is type boolean. ''' self.check_utr=check_utr def set_check_size(self,min,max): self.min_size = min self.max_size = max def __save_previous(self,one_def,one_seq): ''' For internal use only. FASTA sequence records are multi-line starting with a defline. This is called just before parsing a new defline to optionally save the previously parsed sequence record. ''' if one_def is None: return if self.check_utr: if self.pattern5.match(one_def) is None: return if self.pattern3.match(one_def) is None: return seq_len = len(one_seq) if self.min_size is not None and seq_len < self.min_size: return if self.max_size is not None and seq_len > self.max_size: return VERSION = '.' one_id = one_def[1:].split(VERSION)[0] if self.check_list is not None: if one_id not in self.check_list: return self.labels.append(self.label) self.seqs.append(one_seq) self.lens.append(len(one_seq)) self.ids.append(one_id) def load_file(self,filename): ''' Parse the given file and return a data structure. Given file assumed GenCode FASTA file. Returns a Pandas dataframe with four fields. ''' self.labels=[] # usually 1 for protein-coding or 0 for non-coding self.seqs=[] # usually strings of ACGT self.lens=[] # sequence length self.ids=[] # GenCode transcript ID, always starts ENST, excludes version DEFLINE='>' # start of line with ids in a FASTA FILE EMPTY='' one_def = None one_seq = '' with gzip.open (filename,'rt') as infile: for line in infile: if line[0]==DEFLINE: self.__save_previous(one_def,one_seq) one_def=line one_seq = EMPTY else: # Continue loading sequence lines till next defline. additional = line.rstrip() one_seq = one_seq + additional # Don't forget to save the last sequence after end-of-file. self.__save_previous(one_def,one_seq) df1=pd.DataFrame(self.ids,columns=['tid']) df2=pd.DataFrame(self.labels,columns=['class']) df3=pd.DataFrame(self.seqs,columns=['sequence']) df4=pd.DataFrame(self.lens,columns=['seqlen']) df=
pd.concat((df1,df2,df3,df4),axis=1)
pandas.concat
###what's left: find data path, save raw results (predictions) save efficiency calculations, check imports are correct import pickle import sys path_to_save = sys.argv[1] import tensorflow as tf import pandas as pd import numpy as np # Keras import keras import keras.backend as K from keras.models import Sequential from keras.layers import LSTM from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential, Model, load_model from keras.layers import LSTM, Dense, RepeatVector, Input, BatchNormalization, Bidirectional,multiply, concatenate, Flatten, Activation, dot,Layer from src.subpackages.ts_process.validate import Rolling_Validation from src.subpackages.ts_process.scale import WindowMinMaxScaler from src.subpackages.model.baseline import interval_baseline from src.subpackages.model.fuzzy_intervals import fuzzy_interval data = pd.read_csv('processed_dataset_local.csv',parse_dates = True,index_col = "DATE") ###defining sub-models def seq2seq(time_steps,n_hidden,n_features): input = Input(shape = (time_steps,n_features)) encoder_stack_h, encoder_last_h, encoder_last_c = LSTM( n_hidden, activation='elu', return_state=True, return_sequences=True,dropout = .2, recurrent_dropout = .2)(input) ###does more wild stuff(cross etc. with lower momentum) #encoder_last_h = BatchNormalization(momentum=0.2)(encoder_last_h) #encoder_last_c = BatchNormalization(momentum=0.2)(encoder_last_c) decoder_input = RepeatVector(1)(encoder_last_h) decoder_stack_h = LSTM(n_hidden, activation='elu', return_state=False, return_sequences=True,dropout = .2,recurrent_dropout = .2)( decoder_input, initial_state=[encoder_last_h, encoder_last_c]) attention = dot([decoder_stack_h, encoder_stack_h], axes=[2, 2]) attention = Activation('softmax')(attention) context = dot([attention, encoder_stack_h], axes=[2,1]) #context = BatchNormalization(momentum=0.2)(context) decoder_combined_context = concatenate([context, decoder_stack_h]) decoder_combined_context = Flatten()(decoder_combined_context) #decoder_combined_context = BatchNormalization(momentum = .2)(decoder_combined_context) #dense_1 = Dense(64)(decoder_combined_context) out = Dense(2)(decoder_combined_context) model = Model(inputs = input,outputs = out) return model def bidirectional_regression(time_steps=0,n_hidden=0,n_features=0): input = Input(shape = (time_steps,n_features)) lstm1 = Bidirectional(LSTM(units = n_hidden,return_sequences = False,dropout = .2))(input) dense1 = Dense(128)(lstm1) out = Dense(1)(dense1) model = Model(inputs = input,outputs = out) return model ###sub-model objects class EarlyStopByAbsVal(keras.callbacks.Callback): def __init__(self, min_delta = 0, verbose = 0): super(keras.callbacks.Callback, self).__init__() self.min_delta = min_delta self.verbose = verbose self.last_loss = 0 def on_epoch_end(self, epoch, logs={}): epoch_loss = logs['loss'] if abs(epoch_loss-self.last_loss) > self.min_delta: if self.verbose >0: print("Epoch %05d: early stopping Threshold" % epoch) self.model.stop_training = True else: self.last_loss = epoch_loss interval_opt = tf.keras.optimizers.Adam(lr = .001,clipnorm = 1) interval_callback = EarlyStopByAbsVal(min_delta = 10**(-7)) ###Define Global Parameters start_date = "2000-01-01" end_date = "2021-06-30" #get a list of sector tickers ''' communication services: XLC consumer discretionary: XLY consumer staples: XLP Energy: XLE Financials: XLF Healthcare: XLV Industrials: XLI Information Technology: XLK Materials: XLB Real Estate: IYR Utilities: XLU ''' #interval_mod = bidirectional(40,256,120) fixed_parameter_dict_model = {"regressor_model":bidirectional_regression, "regressor_window":10, "regress_model_dict" : {"time_steps":10,"n_hidden":512,"n_features":119}, "regress_compile_dict": {"optimizer":'adam', "loss":'mean_squared_error',"metrics":["mean_absolute_percentage_error"]}, "regress_fit_dict":{"verbose":True, "epochs":125}, "clusters":3, "cluster_alpha":.045, "vol_scale":.8, "interval_model":seq2seq, "interval_model_dict": {"time_steps":40,"n_hidden":256,"n_features":120}, "interval_window":40, "interval_fit_dict":{"epochs":150,"batch_size":32,"verbose":True,'callbacks':[interval_callback]}, "interval_compile_dict":{"loss":"mean_squared_error","optimizer":interval_opt}, } fixed_parameter_dict_baseline = {"alpha":.05} standardizer = WindowMinMaxScaler() ###experimental global params length = len(data) window_length = (1/8)*length shift = (1/12)*length train_test_val_split = (1/6,2/3,1/6) ###main model_result_dict = {} baseline_result_dict = {} truth_dict = {} input_columns = [x for x in data if 'target' not in x] target_etfs = ['XLY', 'XLP', 'XLE', 'XLF', 'XLV', 'XLI', 'XLK', 'XLB', 'XLU'] for etf in target_etfs: window_model = WindowGenerator(data,10,1,1,input_columns,[etf+"_target"]) window_baseline = WindowGenerator(data,1,1,1,input_columns,[etf + "_target"]) e_model = Rolling_Validation(window_model.inputs,window_model.targets,window_length,shift,fuzzy_interval,fixed_parameter_dict_model,standardization =standardizer) e_baseline =Rolling_Validation(window_baseline.inputs,window_baseline.targets,window_length,shift,interval_baseline,fixed_parameter_dict_baseline) model_result_dict[etf]=e_model.experiment_dict baseline_result_dict[etf] = e_baseline.experiment_dict truth_dict[etf] = e_baseline.true_dict # create a binary pickle file f_truth = open("/reports/truth_dict.pkl","wb") pickle.dump(truth_dict,f_truth) f_truth.close() f_baseline = open("/reports/baseline_dict","wb") pickle.dump(baseline_result_dict,f_baseline) f_baseline.close() f_model =open("/reports/model_dict","wb") pickle.dump(model_result_dict,f_model) f_model.close() test_index = pd.MultiIndex.from_product([[],[],[]], names=["etf","experiment", "bound"]) truth_index = pd.MultiIndex.from_product([[],[]], names=["etf","experiment"]) model_result = pd.DataFrame(columns = test_index) baseline_result = pd.DataFrame(columns = test_index) truth_result = pd.DataFrame(columns = truth_index) for etf in model_result_dict.keys(): for experiment in model_result_dict[etf].keys(): sub_index = pd.MultiIndex.from_product([[etf],[experiment],['lower','upper']],names = ['etf','experiment','bound']) truth_index = pd.MultiIndex.from_product([[etf],[experiment]],names = ['etf','experiment']) model_lower = pd.Series(model_result_dict[etf][experiment][:,0],name = 'lower') model_upper = pd.Series(model_result_dict[etf][experiment][:,1],name = 'upper') model_sub_result = pd.concat([model_lower,model_upper],axis =1) model_sub_result.columns = sub_index model_result = pd.concat([model_result,model_sub_result],axis =1) baseline_lower = pd.Series(baseline_result_dict[etf][experiment][:,0],name = 'lower') baseline_upper = pd.Series(baseline_result_dict[etf][experiment][:,1],name = 'upper') baseline_sub_result = pd.concat([baseline_lower,baseline_upper],axis =1) baseline_sub_result.columns = sub_index baseline_result =
pd.concat([baseline_result,baseline_sub_result],axis =1)
pandas.concat
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pickle pd.set_option('display.max_columns', 100) pd.options.mode.chained_assignment = None train_path = '../input/forest-cover-type-prediction/train.csv' test_path = '../input/forest-cover-type-prediction/test.csv' submit_path = '../input/forest-cover-type-prediction/sampleSubmission.csv' dtrain =
pd.read_csv(train_path, index_col=0)
pandas.read_csv
""" Module for interacting with the NHL's open but undocumented API. """ import streamlit as st import pandas as pd from pandas.io.json import json_normalize import requests as rqsts ## data ingestion def get_seasons(streamlit=False): """ returns all seasons on record """ seasons_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/seasons') try: seasons_response.raise_for_status() except rqsts.exceptions.HTTPError as e: if streamlit: st.write(e) else: print(e) raise e seasons = seasons_response.content seasons_df = pd.read_json(seasons) seasons_df = json_normalize(seasons_df.seasons) seasons_df.set_index('seasonId', inplace=True) return seasons_df def get_current_season(): season_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/seasons/current') season = season_response.content season_df = pd.read_json(season) season_df = json_normalize(season_df.seasons) season_id = season_df.seasonId season_start = season_df.regularSeasonStartDate season_end = season_df.regularSeasonEndDate return season_id, season_start, season_end def get_teams(streamlit=False): """returns all teams FOR THE CURRENT SEASON""" teams_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/teams') try: teams_response.raise_for_status() except rqsts.exceptions.HTTPError as e: if streamlit: st.write(e) else: print(e) raise e teams = teams_response.content teams_df = pd.read_json(teams) teams_df = json_normalize(teams_df.teams) return teams_df def get_schedule(start_date, end_date): # teams = get_teams() # st.dataframe(teams) # output_df = pd.DataFrame() schedule_response = rqsts.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate={0}&endDate={1}'.format(start_date, end_date)) schedule = schedule_response.content schedule = pd.read_json(schedule) schedule = json_normalize(schedule.dates) output_df = pd.DataFrame() for game in schedule.games: game_df =
json_normalize(game)
pandas.io.json.json_normalize
# Authors: dodoarg <<EMAIL>> from typing import List, Optional, Union import pandas as pd from pandas.api.types import is_datetime64_any_dtype as is_datetime from pandas.api.types import is_numeric_dtype as is_numeric from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_is_fitted from feature_engine.dataframe_checks import ( _check_contains_na, _check_X_matches_training_df, check_X, ) from feature_engine.datetime._datetime_constants import ( FEATURES_DEFAULT, FEATURES_FUNCTIONS, FEATURES_SUFFIXES, FEATURES_SUPPORTED, ) from feature_engine._docstrings.methods import ( _fit_not_learn_docstring, _fit_transform_docstring, ) from feature_engine._docstrings.fit_attributes import ( _feature_names_in_docstring, _n_features_in_docstring, ) from feature_engine._docstrings.substitute import Substitution from feature_engine.variable_manipulation import ( _check_input_parameter_variables, _find_or_check_datetime_variables, _is_categorical_and_is_datetime, ) @Substitution( feature_names_in_=_feature_names_in_docstring, n_features_in_=_n_features_in_docstring, fit=_fit_not_learn_docstring, fit_transform=_fit_transform_docstring, ) class DatetimeFeatures(BaseEstimator, TransformerMixin): """ DatetimeFeatures extracts date and time features from datetime variables, adding new columns to the dataset. DatetimeFeatures can extract datetime information from existing datetime or object-like variables or from the dataframe index. DatetimeFeatures uses `pandas.to_datetime` to convert object variables to datetime and pandas.dt to extract the features from datetime. The transformer supports the extraction of the following features: - "month" - "quarter" - "semester" - "year" - "week" - "day_of_week" - "day_of_month" - "day_of_year" - "weekend" - "month_start" - "month_end" - "quarter_start" - "quarter_end" - "year_start" - "year_end" - "leap_year" - "days_in_month" - "hour" - "minute" - "second" More details in the :ref:`User Guide <datetime_features>`. Parameters ---------- variables: str, list, default=None List with the variables from which date and time information will be extracted. If None, the transformer will find and select all datetime variables, including variables of type object that can be converted to datetime. If "index", the transformer will extract datetime features from the index of the dataframe. features_to_extract: list, default=None The list of date features to extract. If None, the following features will be extracted: "month", "year", "day_of_week", "day_of_month", "hour", "minute" and "second". If "all", all supported features will be extracted. Alternatively, you can pass a list with the names of the features you want to extract. drop_original: bool, default="True" If True, the original datetime variables will be dropped from the dataframe. missing_values: string, default='raise' Indicates if missing values should be ignored or raised. If 'raise' the transformer will return an error if the the datasets to `fit` or `transform` contain missing values. If 'ignore', missing data will be ignored when performing the feature extraction. Missing data is only evaluated in the variables that will be used to derive the date and time features. If features are derived from the dataframe index, missing data will be checked in the index. dayfirst: bool, default="False" Specify a date parse order if arg is str or is list-like. If True, parses dates with the day first, e.g. 10/11/12 is parsed as 2012-11-10. Same as in `pandas.to_datetime`. yearfirst: bool, default="False" Specify a date parse order if arg is str or is list-like. Same as in `pandas.to_datetime`. - If True parses dates with the year first, e.g. 10/11/12 is parsed as 2010-11-12. - If both dayfirst and yearfirst are True, yearfirst is preceded. utc: bool, default=None Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well). Same as in `pandas.to_datetime`. Attributes ---------- variables_: List of variables from which date and time features will be extracted. If None, features will be extracted from the dataframe index. features_to_extract_: The date and time features that will be extracted from each variable or the index. {feature_names_in_} {n_features_in_} Methods ------- {fit} {fit_transform} transform: Add the date and time features. See also -------- pandas.to_datetime pandas.dt """ def __init__( self, variables: Union[None, int, str, List[Union[str, int]]] = None, features_to_extract: Union[None, str, List[str]] = None, drop_original: bool = True, missing_values: str = "raise", dayfirst: bool = False, yearfirst: bool = False, utc: Union[None, bool] = None, ) -> None: if features_to_extract: if not ( isinstance(features_to_extract, list) or features_to_extract == "all" ): raise ValueError( "features_to_extract must be a list of strings or 'all'. " f"Got {features_to_extract} instead." ) elif isinstance(features_to_extract, list) and any( feat not in FEATURES_SUPPORTED for feat in features_to_extract ): raise ValueError( "Some of the requested features are not supported. " "Supported features are {}.".format(", ".join(FEATURES_SUPPORTED)) ) if not isinstance(drop_original, bool): raise ValueError( "drop_original takes only booleans True or False. " f"Got {drop_original} instead." ) if missing_values not in ["raise", "ignore"]: raise ValueError( "missing_values takes only values 'raise' or 'ignore'. " f"Got {missing_values} instead." ) if utc is not None and not isinstance(utc, bool): raise ValueError("utc takes only booleans or None. " f"Got {utc} instead.") self.variables = _check_input_parameter_variables(variables) self.drop_original = drop_original self.missing_values = missing_values self.dayfirst = dayfirst self.yearfirst = yearfirst self.utc = utc self.features_to_extract = features_to_extract def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ This transformer does not learn any parameter. Finds datetime variables or checks that the variables selected by the user can be converted to datetime. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training input samples. Can be the entire dataframe, not just the variables to transform. y: pandas Series, default=None It is not needed in this transformer. You can pass y or None. """ # check input dataframe X = check_X(X) # special case index if self.variables == "index": if not ( is_datetime(X.index) or ( not
is_numeric(X.index)
pandas.api.types.is_numeric_dtype
#IMPORT LIBRARIES import requests import pandas as pd import boto3 import re import os from datetime import datetime import selenium from selenium import webdriver from bs4 import BeautifulSoup from secrets import access_key, secret_access_key #Create User-Agent for requests headers = { 'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36" } def uk_cities_name(): #URL with 20 top cities url = 'https://www.tripadvisor.co.uk/Restaurants-g186216-United_Kingdom.html' #result of the URL request result_cities = requests.get(url, headers=headers ) #SET html.parser and text to result soup = BeautifulSoup( result_cities.text, 'html.parser' ) #Cities Name = Find the tag DIV with class='geo_name' allcities = soup.find_all( 'div', class_='geo_name') #Take the CITIES NAME allcitiesname = [p.get_text() for p in allcities] #Replace \n and Restaurant to nothing allcitiesname = [s.replace('\n', '') for s in allcitiesname] allcitiesname = [s.replace('Restaurants', '') for s in allcitiesname] #Take the LINK allcities[0].find('a').get('href') allcitieslinks = [p.find('a').get('href') for p in allcities] #Take the City ID city_id = [i.split('-')[1] for i in allcitieslinks] #Take the City URL city_url = [i.split('-')[2] for i in allcitieslinks] #Create DataFrame with feauters data = pd.DataFrame([allcitiesname,city_id,city_url]).T #Alter columns name data.columns = ['city','city_id','city_url'] #Code VEGAN data['code_vegan'] = 'zfz10697' #Add new colum with datetime data['scrap_datetime'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S') return data def colect_data_cities(): #get data from uk_cities_name function data = uk_cities_name() #empty data frame df_details = pd.DataFrame() for i in range( len ( data ) ): print(range(len(data))) print(i) #URL with 20 top cities url = 'https://www.tripadvisor.co.uk/Restaurants-'+ data.loc[i, 'city_id']+'-'+ data.loc[i, 'code_vegan']+'-'+ data.loc[i, 'city_url']+'' #result of the URL request result_cities = requests.get(url, headers=headers ) soup = BeautifulSoup(result_cities.text, 'html.parser') #Take the City URL city_url2 = url.split('-') city_url2 = city_url2[1] city_url2 #Take the SORT BY sortby = soup.find( 'div', class_='_1NO-LVmX _1xde6MOz') sortby = sortby.text #Get the AMOUNT of the RESTAURANTS path = 'selenium\chromedriver.exe' #driver = webdriver.Chrome(executable_path="chromedriver\chromedriver.exe") driver = webdriver.Chrome(path) driver.get(url) #Find class name _1D_QUaKi total_rest = driver.find_element_by_class_name("_1D_QUaKi") #Get text without html code. results_restaurants = total_rest.text #close the browser screen driver.quit() #Get first 5 restaurants list_item = soup.find( 'div', class_='_1kXteagE') #Get first 5 restaurants - each item list each_item = soup.find_all('div', attrs={'data-test':re.compile("^[1-5]_list_item")}) #get the name of the restaurantes restaurant_name = [r.find('a', class_='_15_ydu6b').get_text() for r in each_item] #create the restaurants name DataFrame restaurant_name = pd.DataFrame(restaurant_name) #rename the columns restaurant_name.columns = ['Restaurants'] #Create DataFrame with feauters data2 =
pd.DataFrame([city_url2,sortby,results_restaurants, restaurant_name])
pandas.DataFrame
"""Test script that saves results from 26 vehicles currently in master branch of FASTSim as of 17 December 2019 for 3 standard cycles. From command line, pass True (default if left blank) or False argument to use JIT compilation or not, respectively.""" import pandas as pd import time import numpy as np import re import os import sys import inspect from pathlib import Path # local modules from fastsim import simdrive, vehicle, cycle def main(use_jitclass=True, err_tol=1e-4): """Runs test test for 26 vehicles and 3 cycles. Test compares cumulative positive and negative energy values to a benchmark from earlier. Arguments: ---------- use_jitclass : use numba or not, default True err_tol : error tolerance default of 1e-4 was selected to prevent minor errors from showing. As of 31 December 2020, a recent python update caused errors that are smaller than this and therefore ok to neglect. """ t0 = time.time() cycles = ['udds', 'hwfet', 'us06'] vehicles = np.arange(1, 27) print('Instantiating classes.') print() veh = vehicle.Vehicle(1) if use_jitclass: veh_jit = veh.get_numba_veh() cyc = cycle.Cycle('udds') if use_jitclass: cyc_jit = cyc.get_numba_cyc() energyAuditErrors = [] iter = 0 for vehno in vehicles: print('vehno =', vehno) for cycname in cycles: if not((vehno == 1) and (cycname == 'udds')): cyc.set_standard_cycle(cycname) if use_jitclass: cyc_jit = cyc.get_numba_cyc() veh.load_veh(vehno) if use_jitclass: veh_jit = veh.get_numba_veh() if use_jitclass: sim_drive = simdrive.SimDriveJit(cyc_jit, veh_jit) sim_drive.sim_drive() else: sim_drive = simdrive.SimDriveClassic(cyc, veh) sim_drive.sim_drive() sim_drive_post = simdrive.SimDrivePost(sim_drive) # sim_drive_post.set_battery_wear() diagno = sim_drive_post.get_diagnostics() energyAuditErrors.append(sim_drive.energyAuditError) if iter == 0: dict_diag = {} dict_diag['vnum'] = [vehno] dict_diag['cycle'] = [cycname] for key in diagno.keys(): dict_diag[key] = [diagno[key]] iter += 1 else: dict_diag['vnum'].append(vehno) dict_diag['cycle'].append(cycname) for key in diagno.keys(): dict_diag[key].append(diagno[key]) df =
pd.DataFrame.from_dict(dict_diag)
pandas.DataFrame.from_dict
#!/usr/bin/env python # coding: utf-8 # ------------------------------------------------------------------- # **TD DSA 2021 de <NAME> - rapport de <NAME>** # ------------------------- ------------------------------------- # # Analyse descriptive # ## Setup # In[5]: get_ipython().system('pip install textblob') # In[6]: get_ipython().system('pip install emot') # In[7]: get_ipython().system('pip install wordcloud') # In[8]: #Temps et fichiers import os import warnings import time from datetime import timedelta #Manipulation de données import pandas as pd import numpy as np # Text from collections import Counter import nltk nltk.download('punkt') from nltk.tokenize import word_tokenize nltk.download('stopwords') from nltk.corpus import stopwords nltk.download('vader_lexicon') from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.stem import WordNetLemmatizer nltk.download('wordnet') from nltk.util import ngrams from textblob import TextBlob import string import re import spacy from emot.emo_unicode import UNICODE_EMO, EMOTICONS #Visualisation import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import seaborn as sns import plotly.express as px import plotly.graph_objects as go from wordcloud import WordCloud #Tracking d'expérience import mlflow import mlflow.sklearn from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfTransformer # ### Utilisation du package # In[9]: #Cette cellule permet d'appeler la version packagée du projet et d'en assurer le reload avant appel des fonctions get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[10]: from dsa_sentiment.scripts.make_dataset import load_data from dsa_sentiment.scripts.evaluate import eval_metrics from dsa_sentiment.scripts.make_dataset import Preprocess_StrLower, Preprocess_transform_target # ### Configuration de l'experiment MLFlow # In[11]: mlflow.tracking.get_tracking_uri() # ### Chargement des données # In[12]: # On Importe les données #df df_train=pd.read_parquet('/mnt/data/interim/df_train.gzip') df_val=pd.read_parquet('/mnt/data/interim/df_val.gzip') df_test=pd.read_parquet('/mnt/data/interim/df_test.gzip') #X X_train=pd.read_parquet('/mnt/data/interim/X_train.gzip') X_val=pd.read_parquet('/mnt/data/interim/X_val.gzip') X_test=pd.read_parquet('/mnt/data/interim/X_test.gzip') #y y_train=pd.read_parquet('/mnt/data/interim/y_train.gzip') y_val=pd.read_parquet('/mnt/data/interim/y_val.gzip') y_test=pd.read_parquet('/mnt/data/interim/y_test.gzip') # ## EDA # On commence par nalyser l'équilibre des différentes classes de sentiments # In[13]: df = df_train df.head() # ### Analyse de l'équilibre du jeu d'entrainement par label # In[14]: fig = px.histogram(df, x="sentiment", color="sentiment", title = 'Nombre de tweets par sentiment') fig.show() # Il existe un léger déséquilibre dans les classes en faveur des sentiments `neutral` # ### Analyse des champs lexicaux par label # Pour la suite des travaux, on créée un corpus contenant la concaténation de tous les tweets d'une certaine tonalité. # In[15]: def create_corpus(text_series): text = text_series.apply(lambda x : x.split()) text = sum(text, []) return text # In[16]: positive_text = create_corpus(df['text'][df['sentiment']=='positive']) negative_text = create_corpus(df['text'][df['sentiment']=='negative']) neutral_text = create_corpus(df['text'][df['sentiment']=='neutral']) # Il devient alors possible de crééer des histogrammes représentant la fréquence de N-grams dans un corpus =donné # In[17]: def plot_freq_dist(text_corpus, nb=30, ngram=1, title=''): ''' Plot the most common words inputs: text_corpus : a corpus of words nb : number of words to plot title : graph title returns: nothing, plots the graph ''' freq_pos=Counter(ngrams(create_corpus(pd.Series(text_corpus)),ngram)) pos_df = pd.DataFrame({ "words":[' '.join(items) for items in list(freq_pos.keys())], "Count":list(freq_pos.values()) }) common_pos= pos_df.nlargest(columns="Count", n=30) fig = px.bar(common_pos, x="words", y="Count", labels={"words": "Words", "Count":"Frequency"}, title=title) fig.show(); # In[18]: plot_freq_dist(positive_text, title = 'Most common words associated with positive tweets') # Le résultat montre la prépondérance des `stopwords`, ces mots d'articulation, qui sont très communs et gènent l'identifiaction de mots clefs propres à un document / ensemble de documents spécifiques. # # Il convient donc d'effectuer des opérations de retraitement du texte pour analyse. # ### Preprocessing # Parmi les éléments propres aux tweets qui peuvent avoir un impact sur la suite on compte : # # - les mots clefs marqués par un `#` # - les noms d'utilisateurs commençant par un `@` # - les emoticons et emojis # - les nombre de mots en MAJUSCULES # - la répétition de caractères pour marquer l'emphase `!!!!`, `looooong`, ou l'autocensure `f***` # - les fautes de frappes (mots de moins de 2 caractères) # Afin de disposer de traitements homogènes, repoductibles et paramétrables, une fonction spécifique est créée. Les différenst paramètres pourront être testés dans les phase de modélistaion ultérieures. # source [preprocess](https://www.kaggle.com/stoicstatic/twitter-sentiment-analysis-for-beginners) # In[57]: def preprocess_text(text_series, apply_lemmatizer=True, apply_lowercase=True, apply_url_standerdisation=True, apply_user_standerdisation=True, apply_emoticon_to_words=True, apply_stopwords_removal=True, apply_shortwords_removal=True, apply_non_alphabetical_removal=True, apply_only_2_consecutive_charac=True ): ''' Main preprocess function inputs: text_series : a pandas Series object with text to preprocess outputs: a preprocessed pandas Series object ''' processedText = [] if apply_lemmatizer: # Create Lemmatizer and Stemmer. wordLemm = WordNetLemmatizer() # Defining regex patterns. urlPattern = r"((http://)[^ ]*|(https://)[^ ]*|( www\.)[^ ]*)" userPattern = '@[^\s]+' alphaPattern = r"[^(\w|\*|(!){2}|#)]" sequencePattern = r"(.)\1\1+" seqReplacePattern = r"\1\1" for tweet in text_series: if apply_lowercase: tweet = tweet.lower() if apply_url_standerdisation: # Replace all URls with 'URL' tweet = re.sub(urlPattern,' URL',tweet) if apply_user_standerdisation: # Replace @USERNAME to 'USER'. tweet = re.sub(userPattern,' USER', tweet) if apply_emoticon_to_words: # Replace all emojis. for emo in EMOTICONS: #refactor outputs so that we come up with a single word when/if text spliting afterwards val = "_".join(EMOTICONS[emo].replace(",","").split()) val='EMO_'+val tweet = tweet.replace(emo, ' '+val+' ') for emot in UNICODE_EMO: val = "_".join(UNICODE_EMO[emot].replace(",","").replace(":","").split()) val='EMO_'+val tweet = tweet.replace(emo, ' '+val+' ') if apply_only_2_consecutive_charac: # Replace 3 or more consecutive letters by 2 letter. tweet = re.sub(sequencePattern, seqReplacePattern, tweet) if apply_non_alphabetical_removal: # Replace all non alphabets. tweet = re.sub(alphaPattern, " ", tweet) tweetwords = '' for word in tweet.split(): # Checking if the word is a stopword. if apply_stopwords_removal: if word in stopwords.words('english'): word='' else: word=word #if word not in stopwordlist: if apply_shortwords_removal: if len(word)<=1: word='' else: word=word # Lemmatizing the word. if apply_lemmatizer: word = wordLemm.lemmatize(word) else: word=word tweetwords += (word+' ') processedText.append(tweetwords) return processedText # In[20]: positive_text_prepro = preprocess_text(df['text'][df['sentiment']=='positive'], apply_lemmatizer=False, apply_non_alphabetical_removal=True) # In[56]: pd.Series(positive_text_prepro).head() # In[21]: neutral_text_prepro = preprocess_text(df['text'][df['sentiment']=='neutral'], apply_lemmatizer=False, apply_non_alphabetical_removal=True) # In[58]:
pd.Series(neutral_text_prepro)
pandas.Series
# -*- coding: utf-8 -*- """ Methods to perform coverage analysis. @author: <NAME> <<EMAIL>> """ import pandas as pd import numpy as np import geopandas as gpd from typing import List, Optional from shapely import geometry as geo from datetime import datetime, timedelta from skyfield.api import load, wgs84, EarthSatellite from ..schemas.point import Point from ..schemas.satellite import Satellite from ..schemas.instrument import Instrument, DutyCycleScheme from ..utils import ( compute_min_altitude, swath_width_to_field_of_regard, compute_max_access_time, compute_orbit_period, ) def collect_observations( point: Point, satellite: Satellite, instrument: Instrument, start: datetime, end: datetime, omit_solar: bool = True, sample_distance: Optional[float] = None, ) -> gpd.GeoDataFrame: """ Collect single satellite observations of a geodetic point of interest. :param point: The ground point of interest :type point: :class:`tatc.schemas.point.Point` :param satellite: The observing satellite :type satellite: :class:`tatc.schemas.satellite.Satellite` :param instrument: The instrument used to make observations :type instrument::`tatc.schemas.instrument.instrument` :param start: The start of the mission window :type start::`datetime.datetime` :param end: The end of the mission window :type end::`datetime.datetime` :param omit_solar: True, if solar angles should be omitted to improve computational efficiency, defaults to True :type omit_solar: bool, optional :param sample_distance: Ground sample distance (m) to override instrument field of regard, defaults to None :type sample_distance: int, optional :return: An instance of :class:`geopandas.GeoDataFrame` containing all recorded reduce_observations :rtype::`geopandas.GeoDataFrame` """ # build a topocentric point at the designated geodetic point topos = wgs84.latlon(point.latitude, point.longitude) # load the timescale and define starting and ending points ts = load.timescale() t0 = ts.from_datetime(start) t1 = ts.from_datetime(end) # load the ephemerides eph = load("de421.bsp") # convert orbit to tle orbit = satellite.orbit.to_tle() # construct a satellite for propagation sat = EarthSatellite(orbit.tle[0], orbit.tle[1], satellite.name) # compute the initial satellite height (altitude) satellite_height = wgs84.subpoint(sat.at(t0)).elevation.m # compute the minimum altitude angle required for observation min_altitude = compute_min_altitude( satellite_height, instrument.field_of_regard if sample_distance is None else swath_width_to_field_of_regard(satellite_height, sample_distance), ) # compute the maximum access time to filter bad data max_access_time = timedelta( seconds=compute_max_access_time(satellite_height, min_altitude) ) # TODO: consider instrument operational intervals ops_intervals = pd.Series( [pd.Interval(
pd.Timestamp(start)
pandas.Timestamp
import os import pandas as pd import numpy as np import rasterio from mapBiomas_dictionaries import year_band def reclassified_pixels(year): band = year_band.get(year) open_band = wp_raster.read(band) pixels = np.count_nonzero(open_band) converted = open_band * (open_band != wp_raster.read(band - 1)) data.append(round(np.count_nonzero(converted) / pixels * 100, 2)) parks = pd.read_csv('../output/ceara_wind_parks.csv') column_names = ['wp_id', 'comm_year', 'share', 'no_classes', 'max_class', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017'] dataset =
pd.DataFrame(columns=column_names)
pandas.DataFrame
from unittest import TestCase import pandas as pd import numpy as np import pandas_validator as pv from pandas_validator.core.exceptions import ValidationError class BaseSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.BaseSeriesValidator(series_type=np.int64) def test_is_valid_when_given_int64_series(self): series = pd.Series([0, 1]) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_when_given_float_series(self): series = pd.Series([0., 1.]) self.assertFalse(self.validator.is_valid(series)) def test_should_return_true_when_given_int64_series(self): series = pd.Series([0, 1]) self.assertIsNone(self.validator.validate(series)) def test_should_return_false_when_given_float_series(self): series = pd.Series([0., 1.]) self.assertRaises(ValidationError, self.validator.validate, series) class IntegerSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.IntegerSeriesValidator(min_value=0, max_value=2) def test_is_valid(self): series = pd.Series([0, 1, 2]) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_by_too_low_value(self): series = pd.Series([-1, 0, 1, 2]) self.assertFalse(self.validator.is_valid(series)) def test_is_invalid_by_too_high_value(self): series = pd.Series([0, 1, 2, 3]) self.assertFalse(self.validator.is_valid(series)) class FloatSeriesValidatorTest(TestCase): def setUp(self): self.validator = pv.FloatSeriesValidator(min_value=0, max_value=2) def test_is_valid(self): series = pd.Series([0., 1., 2.]) self.assertTrue(self.validator.is_valid(series)) def test_is_invalid_when_given_integer_series(self): series = pd.Series([0, 1, 2]) self.assertFalse(self.validator.is_valid(series)) def test_is_invalid_by_too_low_value(self): series = pd.Series([-0.1, 0., 1.]) self.assertFalse(self.validator.is_valid(series)) def test_is_invalid_by_too_high_value(self): series =
pd.Series([0., 1., 2.1])
pandas.Series
# -*- encoding: utf-8 -*- from json import encoder import multiprocessing import time import json import yaml import os import math import numpy as np import pandas as pd from pandas import DataFrame as df from itertools import product from random import random, choice, seed from typing import Tuple from deap import creator, base, tools, algorithms from wtpy import WtBtEngine, EngineType from wtpy.apps import WtBtAnalyst def fmtNAN(val, defVal=0): if math.isnan(val): return defVal return val class ParamInfo: ''' 参数信息类 ''' def __init__(self, name: str, start_val=None, end_val=None, step_val=None, ndigits=1, val_list: list = None): self.name = name # 参数名 self.start_val = start_val # 起始值 self.end_val = end_val # 结束值 self.step_val = step_val # 变化步长 self.ndigits = ndigits # 小数位 self.val_list = val_list # 指定参数 def gen_array(self): if self.val_list is not None: return self.val_list values = list() curVal = round(self.start_val, self.ndigits) while curVal < self.end_val: values.append(curVal) curVal += self.step_val curVal = round(curVal, self.ndigits) if curVal >= self.end_val: curVal = self.end_val break values.append(round(curVal, self.ndigits)) return values creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) class WtCtaGAOptimizer: ''' 参数优化器\n 主要用于做策略参数优化的 ''' def __init__(self, worker_num: int = 2, MU: int = 80, population_size: int = 100, ngen_size: int = 20, cx_prb: float = 0.9, mut_prb: float = 0.1): ''' 构造函数\n @worker_num 工作进程个数,默认为2,可以根据CPU核心数设置,由于计算回测值是从文件里读取,因此进程过多可能会出现冲突\n @MU 每一代选择的个体数\n @population_size 种群数\n @ngen_size 进化代数\n @cx_prb 交叉概率\n @mut_prb 变异概率 ''' self.worker_num = worker_num self.running_worker = 0 self.mutable_params = dict() self.fixed_params = dict() self.env_params = dict() # 遗传算法优化参数设置 self.optimizing_target = "胜率" self.optimizing_target_func = None # 适应度函数,原则上要求为非负 self.population_size = population_size # 种群数 self.ngen_size = ngen_size # 进化代数,即优化迭代次数,根据population_size大小设定 self.MU = MU # 每一代选择的个体数,可以取个体数的0.8倍 self.lambda_ = self.population_size # 下一代产生的个体数 self.cx_prb = cx_prb # 建议取0.4~0.99之间 self.mut_prb = mut_prb # 建议取0.0001~0.1之间 self.cpp_stra_module = None self.cache_dict = multiprocessing.Manager().dict() # 缓存中间结果 def add_mutable_param(self, name: str, start_val, end_val, step_val, ndigits=1): ''' 添加可变参数\n @name 参数名\n @start_val 起始值\n @end_val 结束值\n @step_val 步长\n @ndigits 小数位 ''' self.mutable_params[name] = ParamInfo(name=name, start_val=start_val, end_val=end_val, step_val=step_val, ndigits=ndigits) def add_listed_param(self, name: str, val_list: list): ''' 添加限定范围的可变参数\n @name 参数名\n @val_list 参数值列表 ''' self.mutable_params[name] = ParamInfo(name=name, val_list=val_list) def add_fixed_param(self, name: str, val): ''' 添加固定参数\n @name 参数名\n @val 值\n ''' self.fixed_params[name] = val def generate_settings(self): ''' 生成优化参数组合 ''' # 参数名列表 name_list = self.mutable_params.keys() param_list = [] for name in name_list: paramInfo = self.mutable_params[name] values = paramInfo.gen_array() param_list.append(values) # 使用迭代工具产生参数对组合 products = list(product(*param_list)) # 把参数对组合打包到字典列表里 settings = [] [settings.append(dict(zip(name_list, p))) for p in products] return settings def set_optimizing_target(self, target: str): ''' 设置优化目标名称,可从summary中已有数据中选取优化目标 ''' self.optimizing_target = target def set_optimizing_func(self, calculator, target_name: str = None): ''' 根据summary数据自定义优化目标值 ''' self.optimizing_target_func = calculator if target_name is None: target_name = "适应值" self.set_optimizing_target(target_name) def mututate_individual(self, individual, indpb): """ 变异函数 :param individual: 个体,实际为策略参数 :param indpb: 变异概率 :return: 变异后的个体 """ size = len(individual) param_list = self.generate_settings() settings = [list(item.items()) for item in param_list] for i in range(size): if random() < indpb: individual[i] = settings[i] return individual, def evaluate_func(self, start_time, end_time, cache_dict: dict, params): """ 适应度函数 :return: """ # 参数传递可能出现异常 # 比如[(k1, 0.1), (k2, 0.1)]可能在编码出新的参数组时变为[[(k1, 0.1), (k2, 0.2)], (k2, 0.3)]的情况 tmp_params = dict() temp = [] [[temp.append(jj) for jj in ii] if isinstance(ii, list) else temp.append(ii) for ii in params] names = [itm[0] for itm in temp] names1 = list({}.fromkeys(names).keys()) if len(names1) < len(names): indexes = [names.index(ii) for ii in names1] temp = [temp[i] for i in indexes] if len(temp) < 1: print(f"Empty parameters: {params}") return 0, for cell in temp: tmp_params[cell[0]] = cell[1] # strategy name strName = [self.name_prefix[:-1]] [strName.extend([key, tmp_params[key]]) for key in tmp_params.keys()] strName.extend([start_time, end_time]) strName = [str(item) for item in strName] strName = "_".join(strName) is_yaml = True fname = "logcfg_tpl.yaml" if not os.path.exists(fname): is_yaml = True fname = "logcfg_tpl.json" f = open(fname, "r") content = f.read() f.close() content = content.replace("$NAME$", strName) if is_yaml: content = json.dumps(yaml.full_load(content)) engine = WtBtEngine(eType=EngineType.ET_CTA, logCfg=content, isFile=False) engine.init(self.env_params["deps_dir"], self.env_params["cfgfile"]) engine.configBacktest(int(start_time), int(end_time)) engine.configBTStorage(mode=self.env_params["storage_type"], path=self.env_params["storage_path"], storage=self.env_params["storage"]) time_range = (int(start_time), int(end_time)) tmp_params["name"] = strName tmp_params.update(self.fixed_params) if self.cpp_stra_module is not None: tmp_params.pop("name") engine.setExternalCtaStrategy(strName, self.cpp_stra_module, self.cpp_stra_type, tmp_params) else: straInfo = self.strategy_type(**tmp_params) engine.set_cta_strategy(straInfo) engine.commitBTConfig() engine.run_backtest() engine.release_backtest() summary = self.__ayalyze_result__(strName, time_range, tmp_params) if self.optimizing_target_func: result = self.optimizing_target_func(summary) # tuple类型 else: result = summary[self.optimizing_target], # if strName not in cache_dict.keys(): # 缓存结果 # tmp_params.update({self.optimizing_target: result[0]}) # cache_dict[strName] = tmp_params tmp_params.update({self.optimizing_target: result[0]}) cache_dict[strName] = tmp_params return result def set_strategy(self, typeName: type, name_prefix: str): ''' 设置策略\n @typeName 策略类名\n @name_prefix 命名前缀,用于自动命名用,一般为格式为"前缀_参数1名_参数1值_参数2名_参数2值" ''' self.strategy_type = typeName self.name_prefix = name_prefix return def set_cpp_strategy(self, module: str, type_name: type, name_prefix: str): ''' 设置CPP策略\n @module 模块文件\n @typeName 策略类名\n @name_prefix 命名前缀,用于自动命名用,一般为格式为"前缀_参数1名_参数1值_参数2名_参数2值" ''' self.cpp_stra_module = module self.cpp_stra_type = type_name self.name_prefix = name_prefix return def config_backtest_env(self, deps_dir: str, cfgfile: str = "configbt.yaml", storage_type: str = "csv", storage_path: str = None, storage: dict = None): ''' 配置回测环境\n @deps_dir 依赖文件目录\n @cfgfile 配置文件名\n @storage_type 存储类型,csv/bin等\n @storage_path 存储路径 ''' self.env_params["deps_dir"] = deps_dir self.env_params["cfgfile"] = cfgfile self.env_params["storage_type"] = storage_type self.env_params["storage"] = storage self.env_params["storage_path"] = storage_path def config_backtest_time(self, start_time: int, end_time: int): ''' 配置回测时间,可多次调用配置多个回测时间区间\n @start_time 开始时间,精确到分钟,格式如201909100930\n @end_time 结束时间,精确到分钟,格式如201909100930 ''' if "time_ranges" not in self.env_params: self.env_params["time_ranges"] = [] self.env_params["time_ranges"].append([start_time, end_time]) def gen_params(self, markerfile: str = "strategies.json"): ''' 生成回测任务 ''' # name_list = self.mutable_params.keys() param_list = self.generate_settings() stra_names = dict() time_range = self.env_params["time_ranges"] start_time = time_range[0][0] end_time = time_range[0][1] thisGrp = self.fixed_params.copy() # 复制固定参数 for setting in param_list: straName = self.name_prefix temp_setting = [] [temp_setting.extend([key, setting[key]]) for key in setting.keys()] temp_setting.extend([start_time, end_time]) straName += "_".join([str(i) for i in temp_setting]) thisGrp["name"] = straName thisGrp["start_time"] = start_time thisGrp["end_time"] = end_time stra_names[straName] = thisGrp param_group = {"start_time": start_time, "end_time": end_time} # 将每一组参数和对应的策略ID落地到文件中,方便后续的分析 f = open(markerfile, "w") f.write(json.dumps(obj=stra_names, sort_keys=True, indent=4)) f.close() return param_group def __ayalyze_result__(self, strName: str, time_range: tuple, params: dict): folder = "./outputs_bt/%s/" % (strName) try: df_closes = pd.read_csv(folder + "closes.csv", engine="python") df_funds = pd.read_csv(folder + "funds.csv", engine="python") except Exception as e: # 如果读取csv文件出现异常,则按文本格式读取 df_closes = read_closes(folder + "closes.csv") df_funds = read_funds(folder + "funds.csv") df_wins = df_closes[df_closes["profit"] > 0] df_loses = df_closes[df_closes["profit"] <= 0] ay_WinnerBarCnts = df_wins["closebarno"] - df_wins["openbarno"] ay_LoserBarCnts = df_loses["closebarno"] - df_loses["openbarno"] total_winbarcnts = ay_WinnerBarCnts.sum() total_losebarcnts = ay_LoserBarCnts.sum() total_fee = df_funds.iloc[-1]["fee"] totaltimes = len(df_closes) # 总交易次数 wintimes = len(df_wins) # 盈利次数 losetimes = len(df_loses) # 亏损次数 winamout = df_wins["profit"].sum() # 毛盈利 loseamount = df_loses["profit"].sum() # 毛亏损 trdnetprofit = winamout + loseamount # 交易净盈亏 accnetprofit = trdnetprofit - total_fee # 账户净盈亏 winrate = wintimes / totaltimes if totaltimes > 0 else 0 # 胜率 avgprof = trdnetprofit / totaltimes if totaltimes > 0 else 0 # 单次平均盈亏 avgprof_win = winamout / wintimes if wintimes > 0 else 0 # 单次盈利均值 avgprof_lose = loseamount / losetimes if losetimes > 0 else 0 # 单次亏损均值 winloseratio = abs(avgprof_win / avgprof_lose) if avgprof_lose != 0 else "N/A" # 单次盈亏均值比 max_consecutive_wins = 0 # 最大连续盈利次数 max_consecutive_loses = 0 # 最大连续亏损次数 avg_bars_in_winner = total_winbarcnts / wintimes if wintimes > 0 else "N/A" avg_bars_in_loser = total_losebarcnts / losetimes if losetimes > 0 else "N/A" consecutive_wins = 0 consecutive_loses = 0 for idx, row in df_closes.iterrows(): profit = row["profit"] if profit > 0: consecutive_wins += 1 consecutive_loses = 0 else: consecutive_wins = 0 consecutive_loses += 1 max_consecutive_wins = max(max_consecutive_wins, consecutive_wins) max_consecutive_loses = max(max_consecutive_loses, consecutive_loses) summary = params.copy() summary["开始时间"] = time_range[0] summary["结束时间"] = time_range[1] summary["总交易次数"] = totaltimes summary["盈利次数"] = wintimes summary["亏损次数"] = losetimes summary["毛盈利"] = float(winamout) summary["毛亏损"] = float(loseamount) summary["交易净盈亏"] = float(trdnetprofit) summary["胜率"] = winrate * 100 summary["单次平均盈亏"] = avgprof summary["单次盈利均值"] = avgprof_win summary["单次亏损均值"] = avgprof_lose summary["单次盈亏均值比"] = winloseratio summary["最大连续盈利次数"] = max_consecutive_wins summary["最大连续亏损次数"] = max_consecutive_loses summary["平均盈利周期"] = avg_bars_in_winner summary["平均亏损周期"] = avg_bars_in_loser summary["平均账户收益率"] = accnetprofit / totaltimes if totaltimes > 0 else 0 f = open(folder + "summary.json", mode="w") f.write(json.dumps(obj=summary, indent=4)) f.close() return summary def run_ga_optimizer(self, params: dict = None): """ 执行GA优化 """ # 遗传算法参数空间 buffer = self.generate_settings() settings = [list(itm.items()) for itm in buffer] def generate_parameter(): return choice(settings) pool = multiprocessing.Pool(self.worker_num) # 多线程设置 toolbox = base.Toolbox() toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", self.evaluate_func, params["start_time"], params["end_time"], self.cache_dict) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", self.mututate_individual, indpb=0.05) toolbox.register("select", tools.selNSGA2) toolbox.register("map", pool.map) # 多线程优化,可能会报错 # seed(12555888) # 固定随机数种子 pop = toolbox.population(self.population_size) # hof = tools.ParetoFront() # 非占优最优集 hof = tools.HallOfFame(1) stats = tools.Statistics(lambda ind: ind.fitness.values) # stats.register("avg", np.mean, axis=0) # stats.register("std", np.std, axis=0) # stats.register("min", np.min, axis=0) stats.register("max", np.max, axis=0) # Run ga optimization print("*" * 50) print(f"开始执行遗传算法优化...") print(f"参数优化空间: {len(settings)}") print(f"每代族群总数: {self.population_size}") print(f"优良个体筛选数: {self.MU}") print(f"迭代次数: {self.ngen_size}") print(f"交叉几率: {self.cx_prb:.2%}") print(f"变异几率: {self.mut_prb:.2%}") begin = time.perf_counter() _, logbook = algorithms.eaMuPlusLambda(pop, toolbox, self.MU, self.lambda_, self.cx_prb, self.mut_prb, self.ngen_size, stats, verbose=False, halloffame=hof) end = time.perf_counter() print(f"算法优化完成,耗时: {end - begin: .2f} 秒") print("*" * 50) # # 处理结果 # optimizing_value = [item['max'][0] for item in logbook] # optimizing_params = [{item[0]: item[1]} for item in hof[0]] # optimizing_params.append({f"{self.optimizing_target}": max(optimizing_value)}) return def go(self, out_marker_file: str = "strategies.json", out_summary_file: str = "total_summary.csv"): ''' 启动优化器\n @markerfile 标记文件名,回测完成以后分析会用到 ''' params = self.gen_params(out_marker_file) self.run_ga_optimizer(params) # 获取所有的值 results = list(self.cache_dict.values()) header = list(results[0].keys()) data = [list(itm.values()) for itm in results] df_results = pd.DataFrame(data, columns=header) df_results = df_results[["name", self.optimizing_target]] # 开始汇总回测结果 f = open(out_marker_file, "r") content = f.read() f.close() obj_stras = json.loads(content) total_summary = list() for straName in obj_stras: filename = "./outputs_bt/%s/summary.json" % (straName) if not os.path.exists(filename): # print("%s不存在,请检查数据" % (filename)) continue f = open(filename, "r") content = f.read() f.close() obj_summary = json.loads(content) total_summary.append(obj_summary) df_summary = df(total_summary) # 汇总结果 df_summary =
pd.merge(df_summary, df_results, how="inner", on="name")
pandas.merge
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory # import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # library import os, warnings, random from sklearn.preprocessing import LabelEncoder warnings.filterwarnings('ignore') ## Seeder # :seed to make all processes deterministic # type: int def seed_everything(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) ## ------------------- ## Memory Reducer # :df pandas dataframe to reduce size # type: pd.DataFrame() # :verbose # type: bool def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df ## ------------------- ### set up SEED = 42 seed_everything(SEED) LOCAL_TEST = False ################################################################################# print('Load Data') train_df = pd.read_csv('data/train_transaction.csv') test_df = pd.read_csv('data/test_transaction.csv') test_df['isFraud'] = 0 train_identity = pd.read_csv('data/train_identity.csv') test_identity = pd.read_csv('data/test_identity.csv') ########################### Base check ############################################ if LOCAL_TEST: for df2 in [train_df, test_df, train_identity, test_identity]: df = reduce_mem_usage(df2) for col in list(df): if not df[col].equals(df2[col]): print('Bad transformation', col) ########################### Base Minification #################################### train_df = reduce_mem_usage(train_df) test_df = reduce_mem_usage(test_df) train_identity = reduce_mem_usage(train_identity) test_identity = reduce_mem_usage(test_identity) ########################### card4, card6, ProductCD################################# # Converting Strings to ints(or floats if nan in column) using frequency encoding # We will be able to use these columns as category or as numerical feature for col in ['card4', 'card6', 'ProductCD']: print('Encoding', col) temp_df = pd.concat([train_df[[col]], test_df[[col]]]) col_encoded = temp_df[col].value_counts().to_dict() train_df[col] = train_df[col].map(col_encoded) test_df[col] = test_df[col].map(col_encoded) print(col_encoded) ########################### M columns ######################################### # Converting Strings to ints(or floats if nan in column) for col in ['M1','M2','M3','M5','M6','M7','M8','M9']: train_df[col] = train_df[col].map({'T':1, 'F':0}) test_df[col] = test_df[col].map({'T':1, 'F':0}) for col in ['M4']: print('Encoding', col) temp_df =
pd.concat([train_df[[col]], test_df[[col]]])
pandas.concat
import pandas as pd import numpy as np s = pd.Series(['丁一', '王二', '张三']) print(s) a = pd.DataFrame([[1, 2], [3, 4], [5, 6]]) print(f'\n{a}') b = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=['date', 'score'], index=['A', 'B', 'C']) print(f'\n{b}') c =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import contextlib import datetime import hypothesis.extra.numpy as hyp_np import hypothesis.strategies as hyp_st import numpy as np import pandas as pd from kartothek.core.uuid import gen_uuid_object try: from freezegun.api import real_date as date except ImportError: from datetime import date try: # python 3: from unittest import mock except ImportError: import mock TIME_TO_FREEZE = datetime.datetime(2000, 1, 1, 1, 1, 1, 1) TIME_TO_FREEZE_ISO = "2000-01-01T01:01:01.000001" TIME_TO_FREEZE_ISO_QUOTED = "2000-01-01T01%3A01%3A01.000001" def get_dataframe_alltypes(): """ Return a pandas DataFrame of length one with a column for each commonly used data types """ # fmt: off not_nested = get_dataframe_not_nested() nested_types = pd.DataFrame( { "array_int8": pd.Series([np.array([1], dtype=np.int8)], dtype=object), "array_int16": pd.Series([np.array([1], dtype=np.int16)], dtype=object), "array_int32": pd.Series([np.array([1], dtype=np.int32)], dtype=object), "array_int64": pd.Series([np.array([1], dtype=np.int64)], dtype=object), "array_uint8": pd.Series([np.array([1], dtype=np.uint8)], dtype=object), "array_uint16": pd.Series([np.array([1], dtype=np.uint16)], dtype=object), "array_uint32": pd.Series([np.array([1], dtype=np.uint32)], dtype=object), "array_uint64": pd.Series([np.array([1], dtype=np.uint64)], dtype=object), "array_float32": pd.Series([np.array([1], dtype=np.float32)], dtype=object), "array_float64": pd.Series([np.array([1], dtype=np.float64)], dtype=object), "array_unicode": pd.Series([np.array(["Ö"], dtype=object)], dtype=object), } ) return
pd.concat([not_nested, nested_types], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """System transmission plots. This code creates transmission line and interface plots. @author: <NAME>, <NAME> """ import os import logging import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors import matplotlib.dates as mdates import marmot.config.mconfig as mconfig from marmot.plottingmodules.plotutils.plot_library import PlotLibrary from marmot.plottingmodules.plotutils.plot_data_helper import PlotDataHelper from marmot.plottingmodules.plotutils.plot_exceptions import (MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData) class MPlot(PlotDataHelper): """transmission MPlot class. All the plotting modules use this same class name. This class contains plotting methods that are grouped based on the current module name. The transmission.py module contains methods that are related to the transmission network. MPlot inherits from the PlotDataHelper class to assist in creating figures. """ def __init__(self, argument_dict: dict): """ Args: argument_dict (dict): Dictionary containing all arguments passed from MarmotPlot. """ # iterate over items in argument_dict and set as properties of class # see key_list in Marmot_plot_main for list of properties for prop in argument_dict: self.__setattr__(prop, argument_dict[prop]) # Instantiation of MPlotHelperFunctions super().__init__(self.Marmot_Solutions_folder, self.AGG_BY, self.ordered_gen, self.PLEXOS_color_dict, self.Scenarios, self.ylabels, self.xlabels, self.gen_names_dict, self.TECH_SUBSET, Region_Mapping=self.Region_Mapping) self.logger = logging.getLogger('marmot_plot.'+__name__) self.font_defaults = mconfig.parser("font_settings") def line_util(self, **kwargs): """Creates a timeseries line plot of transmission lineflow utilization for each region. Utilization is plotted between 0 and 1 on the y-axis. The plot will default to showing the 10 highest utilized lines. A Line category can also be passed instead, using the property field in the Marmot_plot_select.csv Each scenarios is plotted on a separate Facet plot. This methods calls _util() to create the figure. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = self._util(**kwargs) return outputs def line_hist(self, **kwargs): """Creates a histogram of transmission lineflow utilization for each region. Utilization is plotted between 0 and 1 on the x-axis, with # lines on the y-axis. Each bar is equal to a 0.05 utilization rate The plot will default to showing all lines. A Line category can also be passed instead using the property field in the Marmot_plot_select.csv Each scenarios is plotted on a separate Facet plot. This methods calls _util() and passes the hist=True argument to create the figure. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = self._util(hist=True, **kwargs) return outputs def _util(self, hist: bool = False, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Creates utilization plots, line plot and histograms This methods is called from line_util() and line_hist() Args: hist (bool, optional): If True creates a histogram of utilization. Defaults to False. prop (str, optional): Optional PLEXOS line category to display. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"line_Flow",self.Scenarios), (True,"line_Import_Limit",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() # sets up x, y dimensions of plot ncols, nrows = self.set_facet_col_row_dimensions(facet=True, multi_scenario=self.Scenarios) grid_size = ncols*nrows # Used to calculate any excess axis to delete plot_number = len(self.Scenarios) excess_axs = grid_size - plot_number for zone_input in self.Zones: self.logger.info(f"For all lines touching Zone = {zone_input}") mplt = PlotLibrary(nrows, ncols, sharey=True, squeeze=False, ravel_axs=True) fig, axs = mplt.get_figure() plt.subplots_adjust(wspace=0.1, hspace=0.25) data_table=[] for n, scenario in enumerate(self.Scenarios): self.logger.info(f"Scenario = {str(scenario)}") # gets correct metadata based on area aggregation if self.AGG_BY=='zone': zone_lines = self.meta.zone_lines(scenario) else: zone_lines = self.meta.region_lines(scenario) try: zone_lines = zone_lines.set_index([self.AGG_BY]) except: self.logger.warning("Column to Aggregate by is missing") continue try: zone_lines = zone_lines.xs(zone_input) zone_lines=zone_lines['line_name'].unique() except KeyError: self.logger.warning('No data to plot for scenario') outputs[zone_input] = MissingZoneData() continue flow = self["line_Flow"].get(scenario).copy() #Limit to only lines touching to this zone flow = flow[flow.index.get_level_values('line_name').isin(zone_lines)] if self.shift_leapday == True: flow = self.adjust_for_leapday(flow) limits = self["line_Import_Limit"].get(scenario).copy() limits = limits.droplevel('timestamp').drop_duplicates() limits.mask(limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value # This checks for a nan in string. If no scenario selected, do nothing. if pd.notna(prop): self.logger.info(f"Line category = {str(prop)}") line_relations = self.meta.lines(scenario).rename(columns={"name":"line_name"}).set_index(["line_name"]) flow=pd.merge(flow,line_relations, left_index=True, right_index=True) flow=flow[flow["category"] == prop] flow=flow.drop('category',axis=1) flow = pd.merge(flow,limits[0].abs(),on = 'line_name',how='left') flow['Util']=(flow['0_x'].abs()/flow['0_y']).fillna(0) #If greater than 1 because exceeds flow limit, report as 1 flow['Util'][flow['Util'] > 1] = 1 annual_util=flow['Util'].groupby(["line_name"]).mean().rename(scenario) # top annual utilized lines top_utilization = annual_util.nlargest(10, keep='first') color_dict = dict(zip(self.Scenarios,self.color_list)) if hist == True: mplt.histogram(annual_util, color_dict,label=scenario, sub_pos=n) else: for line in top_utilization.index.get_level_values(level='line_name').unique(): duration_curve = flow.loc[line].sort_values(by='Util', ascending=False).reset_index(drop=True) mplt.lineplot(duration_curve, 'Util' ,label=line, sub_pos=n) axs[n].set_ylim((0,1.1)) data_table.append(annual_util) mplt.add_legend() #Remove extra axes mplt.remove_excess_axs(excess_axs,grid_size) # add facet labels mplt.add_facet_labels(xlabels=self.xlabels, ylabels = self.ylabels) if hist == True: if pd.notna(prop): prop_name = 'All Lines' else: prop_name = prop plt.ylabel('Number of lines', color='black', rotation='vertical', labelpad=30) plt.xlabel(f'Line Utilization: {prop_name}', color='black', rotation='horizontal', labelpad=30) else: if pd.notna(prop): prop_name ='Top 10 Lines' else: prop_name = prop plt.ylabel(f'Line Utilization: {prop_name}', color='black', rotation='vertical', labelpad=60) plt.xlabel('Intervals', color='black', rotation='horizontal', labelpad=20) if mconfig.parser("plot_title_as_region"): mplt.add_main_title(zone_input) try: del annual_util, except: continue Data_Out = pd.concat(data_table) outputs[zone_input] = {'fig': fig,'data_table':Data_Out} return outputs def int_flow_ind(self, figure_name: str = None, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Creates a line plot of interchange flows and their import and export limits. Each interchange is potted on a separate facet plot. The plot includes every interchange that originates or ends in the aggregation zone. This can be adjusted by passing a comma separated string of interchanges to the property input. The code will create either a timeseries or duration curve depending on if the word 'duration_curve' is in the figure_name. To make a duration curve, ensure the word 'duration_curve' is found in the figure_name. Args: figure_name (str, optional): User defined figure output name. Defaults to None. prop (str, optional): Comma separated string of interchanges. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table """ duration_curve=False if 'duration_curve' in figure_name: duration_curve = True # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"interface_Flow",self.Scenarios), (True,"interface_Import_Limit",self.Scenarios), (True,"interface_Export_Limit",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() scenario = self.Scenarios[0] outputs = {} if pd.notna(start_date_range): self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") for zone_input in self.Zones: self.logger.info(f"For all interfaces touching Zone = {zone_input}") Data_Table_Out = pd.DataFrame() # gets correct metadata based on area aggregation if self.AGG_BY=='zone': zone_lines = self.meta.zone_lines(scenario) else: zone_lines = self.meta.region_lines(scenario) try: zone_lines = zone_lines.set_index([self.AGG_BY]) except: self.logger.info("Column to Aggregate by is missing") continue zone_lines = zone_lines.xs(zone_input) zone_lines = zone_lines['line_name'].unique() #Map lines to interfaces all_ints = self.meta.interface_lines(scenario) #Map lines to interfaces all_ints.index = all_ints.line ints = all_ints.loc[all_ints.index.intersection(zone_lines)] #flow = flow[flow.index.get_level_values('interface_name').isin(ints.interface)] #Limit to only interfaces touching to this zone #flow = flow.droplevel('interface_category') export_limits = self["interface_Export_Limit"].get(scenario).copy().droplevel('timestamp') export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value export_limits = export_limits[export_limits.index.get_level_values('interface_name').isin(ints.interface)] export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced interfaces. #Drop unnecessary columns. export_limits.reset_index(inplace = True) export_limits.drop(columns=['interface_category', 'units'], inplace=True) export_limits.set_index('interface_name',inplace = True) import_limits = self["interface_Import_Limit"].get(scenario).copy().droplevel('timestamp') import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value import_limits = import_limits[import_limits.index.get_level_values('interface_name').isin(ints.interface)] import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced interfaces. reported_ints = import_limits.index.get_level_values('interface_name').unique() #Drop unnecessary columns. import_limits.reset_index(inplace = True) import_limits.drop(columns=['interface_category', 'units'], inplace=True) import_limits.set_index('interface_name',inplace = True) #Extract time index ti = self["interface_Flow"][self.Scenarios[0]].index.get_level_values('timestamp').unique() if pd.notna(prop): interf_list = prop.split(',') self.logger.info('Plotting only interfaces specified in Marmot_plot_select.csv') self.logger.info(interf_list) else: interf_list = reported_ints.copy() self.logger.info('Plotting full time series results.') xdim,ydim = self.set_x_y_dimension(len(interf_list)) mplt = PlotLibrary(ydim, xdim, squeeze=False, ravel_axs=True) fig, axs = mplt.get_figure() grid_size = xdim * ydim excess_axs = grid_size - len(interf_list) plt.subplots_adjust(wspace=0.05, hspace=0.2) missing_ints = 0 chunks = [] n = -1 for interf in interf_list: n += 1 #Remove leading spaces if interf[0] == ' ': interf = interf[1:] if interf in reported_ints: chunks_interf = [] single_exp_lim = export_limits.loc[interf] / 1000 #TODO: Use auto unit converter single_imp_lim = import_limits.loc[interf] / 1000 #Check if all hours have the same limit. check = single_exp_lim.to_numpy() identical = check[0] == check.all() limits = pd.concat([single_exp_lim,single_imp_lim],axis = 1) limits.columns = ['export limit','import limit'] limits.index = ti for scenario in self.Scenarios: flow = self["interface_Flow"].get(scenario) single_int = flow.xs(interf, level='interface_name') / 1000 single_int.index = single_int.index.droplevel(['interface_category','units']) single_int.columns = [interf] single_int = single_int.reset_index().set_index('timestamp') limits = limits.reset_index().set_index('timestamp') if self.shift_leapday == True: single_int = self.adjust_for_leapday(single_int) if pd.notna(start_date_range): single_int = single_int[start_date_range : end_date_range] limits = limits[start_date_range : end_date_range] if duration_curve: single_int = self.sort_duration(single_int,interf) mplt.lineplot(single_int, interf, label=f"{scenario}\n interface flow", sub_pos=n) # Only print limits if it doesn't change monthly or if you are plotting a time series. # Otherwise the limit lines could be misleading. if not duration_curve or identical[0]: if scenario == self.Scenarios[-1]: #Only plot limits for last scenario. limits_color_dict = {'export limit': 'red', 'import limit': 'green'} mplt.lineplot(limits, 'export limit', label='export limit', color=limits_color_dict, linestyle='--', sub_pos=n) mplt.lineplot(limits, 'import limit', label='import limit', color=limits_color_dict, linestyle='--', sub_pos=n) #For output time series .csv scenario_names = pd.Series([scenario] * len(single_int), name='Scenario') single_int_out = single_int.set_index([scenario_names], append=True) chunks_interf.append(single_int_out) Data_out_line = pd.concat(chunks_interf,axis = 0) Data_out_line.columns = [interf] chunks.append(Data_out_line) else: self.logger.warning(f"{interf} not found in results. Have you tagged " "it with the 'Must Report' property in PLEXOS?") excess_axs += 1 missing_ints += 1 continue axs[n].set_title(interf) if not duration_curve: mplt.set_subplot_timeseries_format(sub_pos=n) if missing_ints == len(interf_list): outputs = MissingInputData() return outputs Data_Table_Out = pd.concat(chunks,axis = 1) Data_Table_Out = Data_Table_Out.reset_index() index_name = 'level_0' if duration_curve else 'timestamp' Data_Table_Out = Data_Table_Out.pivot(index = index_name,columns = 'Scenario') #Limits_Out = pd.concat(limits_chunks,axis = 1) #Limits_Out.index = ['Export Limit','Import Limit'] # Data_Table_Out = Data_Table_Out.reset_index() # Data_Table_Out = Data_Table_Out.groupby(Data_Table_Out.index // 24).mean() # Data_Table_Out.index = pd.date_range(start = '1/1/2024',end = '12/31/2024',freq = 'D') mplt.add_legend() plt.ylabel('Flow (GW)', color='black', rotation='vertical', labelpad=30) if duration_curve: plt.xlabel('Sorted hour of the year', color='black', labelpad=30) plt.tight_layout(rect=[0, 0.03, 1, 0.97]) if mconfig.parser("plot_title_as_region"): mplt.add_main_title(zone_input) outputs[zone_input] = {'fig': fig, 'data_table': Data_Table_Out} #Limits_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Interface_Limits.csv')) return outputs def int_flow_ind_seasonal(self, figure_name: str = None, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """#TODO: Finish Docstring Args: figure_name (str, optional): User defined figure output name. Defaults to None. prop (str, optional): Comma separated string of interchanges. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table """ #TODO: Use auto unit converter in method duration_curve=False if 'duration_curve' in figure_name: duration_curve = True # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"interface_Flow",self.Scenarios), (True,"interface_Import_Limit",self.Scenarios), (True,"interface_Export_Limit",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() scenario = self.Scenarios[0] outputs = {} for zone_input in self.Zones: self.logger.info("For all interfaces touching Zone = "+zone_input) Data_Table_Out =
pd.DataFrame()
pandas.DataFrame
# TODO decide whether include MAX PV and MAX ST or the percentage of area usage import pandas as pd import os def create_decentral_overview(components_csv_data): # defining columns of the sheet including decentralized components decentral_columns = ["Building", "PV 1", "Max. PV 1", "PV 2", "Max. PV 2", "PV 3", "Max. PV 3", "PV 4", "Max. PV 4", "PV 5", "Max. PV 5", "Installed PV", "Max. PV", "STC 1", "Max. STC 1", "STC 2", "Max. STC 2", "STC 3", "Max. STC 3", "STC 4", "Max. STC 4", "STC 5", "Max. STC 5", "Installed STC", "Max. STC", "Gasheating-System", "ASHP", "GCHP", "Battery-Storage", "Heat Transformer", "Electric Heating"] # defining units for decentral components decentral_columns_units = {"Building": "", "PV 1": "(kW)", "Max. PV 1": "(kW)", "PV 2": "(kW)", "Max. PV 2": "(kW)", "PV 3": "(kW)", "Max. PV 3": "(kW)", "PV 4": "(kW)", "Max. PV 4": "(kW)", "PV 5": "(kW)", "Max. PV 5": "(kW)", "Installed PV": "(kW)", "Max. PV": "(kW)", "STC 1": "(kW)", "Max. STC 1": "(kW)", "STC 2": "(kW)", "Max. STC 2": "(kW)", "STC 3": "(kW)", "Max. STC 3": "(kW)", "STC 4": "(kW)", "Max. STC 4": "(kW)", "STC 5": "(kW)", "Max. STC 5": "(kW)", "Installed STC": "(kW)", "Max. STC": "(kW)", "Gasheating-System": "(kW)", "ASHP": "(kW)", "GCHP": "(kW)", "Battery-Storage": "(kWh)", "Heat Transformer": "(kW)", "Electric Heating": "(kW)"} decentral_components =
pd.DataFrame(columns=decentral_columns)
pandas.DataFrame
from enum import Enum from random import random import pandas from aisoccer.team import * class Game: def __init__(self, blue_brain, red_brain, game_length=Constants.GAME_LENGTH, quiet_mode=False, record_game=False): self.quiet_mode = quiet_mode self.game_length = game_length self.teams = [Team(blue_brain, 0), Team(red_brain, 1)] self.state = PhyState(Constants.FIELD_LENGTH, Constants.FIELD_HEIGHT) self.ball = None self.move_df = {} self.record_game = record_game self.score = { 'red': 0, 'blue': 0 } if self.record_game: self.init_df() self.start() def start(self): self.state.clear() self.ball = Ball(Constants.BALL_RADIUS, Constants.FIELD_LENGTH / 2, Constants.FIELD_HEIGHT / 2) for team in self.teams: for player in team.players: self.state.add_body(player.body) team.reset() self.state.add_body(self.ball.body) self.ball.body.velocity = np.array([random() - 0.5, random() - 0.5]) def tick(self): if self.state.ticks >= self.game_length: if not self.quiet_mode: print("Game Over!") return GameResult.end elif self.is_red_goal(): self.score['red'] += 1 if not self.quiet_mode: print("GOAL! Red!") print('Score: Blue {0:2d} / Red {1:2d} (at {2:3.2f}%)' .format(self.score['blue'], self.score['red'], self.game_time_complete() * 100)) self.start() return GameResult.goal_red elif self.is_blue_goal(): self.score['blue'] += 1 if not self.quiet_mode: print("GOAL! Blue!") print('Score: Blue {0:2d} / Red {1:2d} (at {2:3.2f}%)' .format(self.score['blue'], self.score['red'], self.game_time_complete() * 100)) self.start() return GameResult.goal_blue else: self.run_brains() self.limit_velocities() self.state.tick() return GameResult.nothing def is_red_goal(self): return self.ball.body.position[0] < Constants.GOAL_WIDTH + Constants.BALL_RADIUS def is_blue_goal(self): return self.ball.body.position[0] > (Constants.FIELD_LENGTH - 1) - ( Constants.GOAL_WIDTH + Constants.BALL_RADIUS) def game_time_complete(self): return float(self.state.ticks) / float(self.game_length) def run_brains(self): blue_team = self.teams[0] red_team = self.teams[1] blue_players_pos = blue_team.position_matrix() blue_players_vel = blue_team.velocity_matrix() red_players_pos = red_team.position_matrix() red_players_vel = red_team.velocity_matrix() ball_pos = self.ball.body.position ball_vel = self.ball.body.velocity blue_score = self.score['blue'] red_score = self.score['red'] game_time = self.game_time_complete() blue_brain = blue_team.brain red_brain = red_team.brain blue_move = blue_brain.move(blue_players_pos, blue_players_vel, red_players_pos, red_players_vel, ball_pos, ball_vel, blue_score, red_score, game_time) blue_team.apply_move(blue_move) if self.record_game: self.record_move(blue_players_pos, blue_players_vel, red_players_pos, red_players_vel, ball_pos, ball_vel, blue_score, red_score, game_time, blue_brain.last_move) # TODO: translate red positions and velocities # so that both brains think that they are playing from left (0,y) to right (MAX_X,y) red_move = red_brain.move(flip_pos(red_players_pos), flip_vel(red_players_vel), flip_pos(blue_players_pos), flip_vel(blue_players_vel), flip_pos(ball_pos), flip_vel(ball_vel), red_score, blue_score, game_time) red_move = flip_acc(red_move) red_team.apply_move(red_move) def limit_velocities(self): ball_velocity = self.ball.body.normal_velocity() if ball_velocity > Constants.MAX_BALL_VELOCITY: self.ball.body.velocity = np.multiply(self.ball.body.velocity, Constants.MAX_BALL_VELOCITY / ball_velocity) for t in self.teams: for p in t.players: player_velocity = p.body.normal_velocity() if player_velocity > Constants.MAX_PLAYER_VELOCITY: p.body.velocity = np.multiply(p.body.velocity, Constants.MAX_PLAYER_VELOCITY / player_velocity) def play(self): while True: status = self.tick() if status == GameResult.end: break return self.score def record_move(self, my_players_pos, my_players_vel, opp_players_pos, opp_players_vel, ball_pos, ball_vel, my_score, opp_score, game_time, moves): self.move_df["bp_x"].append(ball_pos[0]) self.move_df["bp_y"].append(ball_pos[1]) self.move_df["bv_x"].append(ball_vel[0]) self.move_df["bv_y"].append(ball_vel[1]) self.move_df["ms"].append(my_score) self.move_df["os"].append(opp_score) self.move_df["gt"].append(game_time) for i in range(5): self.move_df["mpp_" + str(i) + "_x"].append(my_players_pos[i][0]) self.move_df["mpp_" + str(i) + "_y"].append(my_players_pos[i][1]) self.move_df["mpv_" + str(i) + "_x"].append(my_players_vel[i][0]) self.move_df["mpv_" + str(i) + "_y"].append(my_players_vel[i][1]) self.move_df["opp_" + str(i) + "_x"].append(opp_players_pos[i][0]) self.move_df["opp_" + str(i) + "_y"].append(opp_players_pos[i][1]) self.move_df["opv_" + str(i) + "_x"].append(opp_players_vel[i][0]) self.move_df["opv_" + str(i) + "_y"].append(opp_players_vel[i][1]) self.move_df["m_" + str(i) + "_x"].append(moves[i][0]) self.move_df["m_" + str(i) + "_y"].append(moves[i][1]) def init_df(self): df = {"bp_x": [], "bp_y": [], "bv_x": [], "bv_y": [], "ms": [], "os": [], "gt": []} for i in range(5): df["mpp_" + str(i) + "_x"] = [] df["mpp_" + str(i) + "_y"] = [] df["mpv_" + str(i) + "_x"] = [] df["mpv_" + str(i) + "_y"] = [] df["opp_" + str(i) + "_x"] = [] df["opp_" + str(i) + "_y"] = [] df["opv_" + str(i) + "_x"] = [] df["opv_" + str(i) + "_y"] = [] df["m_" + str(i) + "_x"] = [] df["m_" + str(i) + "_y"] = [] self.move_df = df def save_game(self, save_file): pandas_df =
pandas.DataFrame(self.move_df)
pandas.DataFrame
"""dfenriching This module illustrate examples that enrich a dataset using pandas. """ import pandas as pd df = pd.read_csv('scooter.csv') # Take a subset of the data new = pd.DataFrame(df['start_location_name'].value_counts().head()) new.reset_index(inplace=True) new.columns=['address', 'count'] print("First entries:\n" "--------------\n" "{0}".format(new)) print("") # Collect only the street address (necessary to geocode) # It also replaces the '@' with the word 'and' n = new['address'].str.split(pat=',', n=1, expand=True) replaced = n[0].str.replace("@", "and") new['street'] = replaced print("Adding a well formated 'street' column:\n" "---------------------------------------\n" "{0}".format(new)) print("") # Enriching the dataset combining with other resources (geocodestreet.csv file) geo =
pd.read_csv('geocodestreet.csv')
pandas.read_csv
import os import pandas as pd BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, 'data') CACHE_DIR = os.path.join(BASE_DIR, 'cache') os.makedirs(CACHE_DIR, exist_ok=True) new_dataframes = [] csv_files = [x for x in sorted(os.listdir(DATA_DIR), reverse=True) if x.endswith(".csv")] for filename in csv_files: year = filename.replace(".csv", "") csv_path = os.path.join(DATA_DIR, filename) this_df = pd.read_csv(csv_path) this_df['filename'] = filename this_df['year'] = year new_dataframes.append(this_df) all_dataframes =
pd.concat(new_dataframes)
pandas.concat
import unittest import numpy as np # type: ignore import pandas as pd # type: ignore from gpxpy.gpx import GPXTrackPoint, GPXTrackSegment # type: ignore from gpx_data_utils import ( gpx_point_to_array, gpx_segment_to_array, gpx_segment_from_array ) from gpx_stats import convert_path_to_feature, smoothen_coordinates class TestConvertPathToArray(unittest.TestCase): def setUp(self): self.segment_1 = GPXTrackSegment([GPXTrackPoint(longitude=.1, latitude=1, elevation=10), GPXTrackPoint(longitude=.2, latitude=2, elevation=20), GPXTrackPoint(longitude=.3, latitude=3, elevation=30)]) self.expected_path_1 = \ np.array([[0., 0., 0.], [1.0049875621, 0., 10], [2.00997512422, 0., 20], [0., 0., 0.]]) def test_segment_empty(self): with self.assertRaises(AssertionError): convert_path_to_feature(GPXTrackSegment(), 1) def test_segment_too_long(self): with self.assertRaises(AssertionError): convert_path_to_feature(self.segment_1, 1) def test_segment_short(self): path = convert_path_to_feature(self.segment_1, 4) np.testing.assert_array_almost_equal(path, self.expected_path_1) class TestSmoothenCoordinatesShort(unittest.TestCase): def setUp(self): self.segment_1 = GPXTrackSegment([GPXTrackPoint(longitude=.1, latitude=1, elevation=10), GPXTrackPoint(longitude=.2, latitude=2, elevation=20), GPXTrackPoint(longitude=.3, latitude=3, elevation=30), GPXTrackPoint(longitude=.5, latitude=-1, elevation=0)]) self.expected_1 = GPXTrackSegment([GPXTrackPoint(longitude=.2, latitude=2, elevation=20), GPXTrackPoint(longitude=1./3, latitude=4./3, elevation=50./3)]) def test_segment_list_empty(self): smoothen_coordinates([]) def test_segment_empty(self): smoothen_coordinates([GPXTrackSegment()]) def test_segment_short_1(self): input = [GPXTrackSegment(self.segment_1.points[0:3])] smoothen_coordinates(input) expected_result = [GPXTrackSegment([self.expected_1.points[0]])] self.assertEqual(len(input), 1) self.assertEqual(len(input[0].points), 1) np.testing.assert_array_almost_equal(gpx_point_to_array(input[0].points[0]), gpx_point_to_array(expected_result[0].points[0])) def test_segment_short_2(self): input = [GPXTrackSegment(self.segment_1.points)] smoothen_coordinates(input) expected_result = [self.expected_1] self.assertEqual(len(input), 1) self.assertEqual(len(input[0].points), len(expected_result[0].points)) np.testing.assert_array_almost_equal(gpx_point_to_array(input[0].points[0]), gpx_point_to_array(expected_result[0].points[0])) class TestSmoothenCoordinatesLonger(unittest.TestCase): def setUp(self): segment_1_as_array = np.random.normal(scale=5, size=(25, 3)) segment_1 = gpx_segment_from_array(segment_1_as_array) segment_2_as_array = np.random.normal(scale=2, size=(9, 3)) segment_2 = gpx_segment_from_array(segment_2_as_array) self.segments = [segment_1, segment_2] self.segments_as_arrays = [segment_1_as_array, segment_2_as_array] def test_window_size_3(self): expected_as_df = [pd.DataFrame(self.segments_as_arrays[i]).rolling(3).mean()[2:] for i in range(len(self.segments_as_arrays))] smoothen_coordinates(self.segments, window_size=3) for i in range(len(self.segments)): np.testing.assert_array_almost_equal(expected_as_df[i].values, gpx_segment_to_array(self.segments[i])) def test_window_size_5(self): expected_as_df = [
pd.DataFrame(self.segments_as_arrays[i])
pandas.DataFrame
import numpy as np import pandas as pd import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc def spinner_graph(*args, **kwargs): return dbc.Spinner(dcc.Graph(*args, **kwargs)) def add_quarters(df): df['Quarter'] =
pd.to_datetime(df['DT_FIM_EXERC'])
pandas.to_datetime
import pandas as pd import torch from torch.utils.data import Dataset from tqdm import tqdm from evaluation.tasks.auto_task import AutoTask class CrowSPairsDataset(Dataset): def __init__(self): super().__init__() # TODO: maybe implement using HuggingFace Datasets # https://huggingface.co/datasets/crows_pairs # Load CrowS-Pairs dataset from URL url = "https://raw.githubusercontent.com/nyu-mll/crows-pairs/master/data/crows_pairs_anonymized.csv" df =
pd.read_csv(url)
pandas.read_csv
from donbot import Donbot from lxml import html, cssselect from getvotes import GetVotes import numpy as np import pandas as pd import texthero as hero obj = GetVotes(username="skitter30", password="*") target_user = "Auro" #City that never sleeps, BoTC, White flag, Newbie 1900, Mini 2040 threads = { # town 'name': ['city', 'botc', 'white flag', 'newbie 1900', 'mini 2040', \ # scum 'covid', 'downtown train', 'nomination mafia', 'jungle republic', 'newbie 1893', 'newbie 1898', 'crown of misery', # 'unknown' 'game of thrones'], # town 'thread': ["https://forum.mafiascum.net/viewtopic.php?f=54&t=82824", \ "https://forum.mafiascum.net/viewtopic.php?f=84&t=83094", \ "https://forum.mafiascum.net/viewtopic.php?f=150&t=81775", \ "https://forum.mafiascum.net/viewtopic.php?f=50&t=77781", \ "https://forum.mafiascum.net/viewtopic.php?f=53&t=77634", # scum "https://forum.mafiascum.net/viewtopic.php?f=3&t=82957", \ "https://forum.mafiascum.net/viewtopic.php?f=54&t=78257", \ "https://forum.mafiascum.net/viewtopic.php?f=52&t=78999", \ "https://forum.mafiascum.net/viewtopic.php?f=52&t=78634", \ "https://forum.mafiascum.net/viewtopic.php?f=50&t=77453", \ "https://forum.mafiascum.net/viewtopic.php?f=50&t=77673", \ "https://forum.mafiascum.net/viewtopic.php?f=52&t=78009", # 'unknown' "https://forum.mafiascum.net/viewtopic.php?f=3&t=83318"], 'alignment': ['town', 'town', 'town', 'town', 'town', 'scum', 'scum', 'scum', 'scum', 'scum', 'scum', 'scum', 'unknown'] } threads = pd.DataFrame(threads, columns = ['name', 'thread', 'alignment']) temp_posts = [] df = pd.DataFrame() for ind in threads.index: temp_posts = [] temp_posts.append(obj.getISOs(usernames = [target_user], thread=threads['thread'][ind])) for posts in temp_posts: temp_df =
pd.DataFrame([[post, threads['alignment'][ind], threads['name'][ind]] for post in posts])
pandas.DataFrame
import os import subprocess from math import floor from textwrap import dedent import pandas as pd import numpy as np from plotnine import * from qiime2 import ( Artifact, Metadata ) from qiime2.plugins.taxa.methods import collapse from qiime2.plugins.feature_table.methods import rarefy from scripts.qiime2_helper.metadata_helper import ( load_metadata, load_env_metadata, convert_col_dtype ) from scripts.qiime2_helper.artifact_helper import ( VALID_COLLAPSE_LEVELS, check_artifact_type, filter_by_abundance, rename_taxa ) from scripts.qiime2_helper.plotnine_helper import ( add_fill_colours_from_users ) # Custom exception from exceptions.exception import AXIOME3Error VEGDIST_OPTIONS = { "Manhattan": "manhattan", "Euclidean": "euclidean", "Canberra": "canberra", "Bray-Curtis": "bray", "Binomial": "binomial", "Kulczynski": "kulczynski", "Jaccard": "jaccard", "Gower": "gower", "altGower": "altGower", "Morisita": "morisita", "Horn-Morisita": "horn", "Chao": "chao", "Cao": "cao", "Mahalanobis":"mahalanobis" } def collapse_taxa(feature_table_artifact, taxonomy_artifact, sampling_depth=0, collapse_level="asv"): """ Collapse feature table to user specified taxa level (ASV by default). Input: - QIIME2 artifact of type FeatureData[Taxonomy] Returns: - pd.DataFrame (taxa/ASV as rows, samples as columns, numeric index, appends 'Taxon' column) """ collapse_level = collapse_level.lower() if(collapse_level not in VALID_COLLAPSE_LEVELS): raise AXIOME3Error("Specified collapse level, {collapse_level}, is NOT valid!".format(collapse_level=collapse_level)) # Rarefy the table to user specified sampling depth if(sampling_depth < 0): raise AXIOME3Error("Sampling depth cannot be a negative number!") # don't rarefy is sampling depth equals 0 if(sampling_depth > 0): try: rarefied = rarefy(feature_table_artifact, sampling_depth=sampling_depth) except ValueError: raise AXIOME3Error("No samples or features left after rarefying at {}".format(sampling_depth)) feature_table_artifact = rarefied.rarefied_table # handle ASV case if(collapse_level == "asv"): # By default, feature table has samples as rows, and ASV as columns feature_table_df = feature_table_artifact.view(pd.DataFrame) # Transpose feature table feature_table_df_T = feature_table_df.T # By default, taxonomy has ASV as rows, and metadata as columns taxonomy_df = taxonomy_artifact.view(pd.DataFrame) # Combine the two df (joins on index (ASV)) combined_df = feature_table_df_T.join(taxonomy_df, how='inner') # Drop "Confidence" column and use numeric index final_df = combined_df.drop(["Confidence"], axis="columns").reset_index(drop=True) if(final_df.shape[0] == 0 or final_df.shape[1] == 0): raise AXIOME3Error("No data to process. Please check if 1. input feature table is empty, 2. input taxonomy is empty, 3. input feature table and taxonomy share common ASVs.") return final_df try: table_artifact = collapse(table=feature_table_artifact, taxonomy=taxonomy_artifact, level=VALID_COLLAPSE_LEVELS[collapse_level]) except ValueError: raise AXIOME3Error("No data to process. Please check if 1. input feature table is empty, 2. input taxonomy is empty, 3. input feature table and taxonomy share common features.") # By default, it has samples as rows, and taxa as columns collapsed_df = table_artifact.collapsed_table.view(pd.DataFrame) # Transpose collapsed_df_T = collapsed_df.T # Append "Taxon" column collapsed_df_T["Taxon"] = collapsed_df_T.index # Reset index final_df = collapsed_df_T.reset_index(drop=True) return final_df def filter_by_total_count(feature_table_df, sum_axis=1): """ Remove samples that have total counts <= 5 (R complains if total count <= 5) Inputs - feature_table_df: feature table in pandas DataFrame - sum_axis: axis to sum over. Do axis=0 if sample as columns, taxa/ASV as rows (index) Do axis=1 if sample as rows (index), taxa/ASV as columns Default option assumes sample as row (index), taxa/ASV as columns """ row_sum = feature_table_df.sum(sum_axis) to_keep = row_sum > 5 filtered_df = feature_table_df.loc[to_keep, ] return filtered_df def find_sample_intersection(feature_table_df, abundance_df, sample_metadata_df, environmental_metadata_df): """ Find intersection of feature table, sample metadata, and environmental metadata. Inputs: - feature_table_df: feature table in pandas DataFrame (samples as row, taxa/ASV as columns) - abundance_df: feature table in pandas DataFrame (samples as row, taxa/ASV as columns; to overlay as taxa bubbles later) - sample_metadata_df: sample metadata in pandas DataFrame (samples as row, metadata as columns) - environmental_metadata_df: environmental metadata in pandas DataFrame (samples as row, metadata as columns) Assumes sampleID as index """ combined_df = pd.concat([feature_table_df, abundance_df, sample_metadata_df, environmental_metadata_df], join="inner", axis=1) intersection_samples = combined_df.index if(len(intersection_samples) == 0): raise AXIOME3Error("Feature table, sample metadata, and environmental metadata do NOT share any samples...") intersection_feature_table_df = feature_table_df.loc[intersection_samples, ] intersection_abundance_df = abundance_df.loc[intersection_samples, ] intersection_sample_metadata_df = sample_metadata_df.loc[intersection_samples, ] intersection_environmental_metadata_df = environmental_metadata_df.loc[intersection_samples, ] # summary about samples not used feature_table_omitted_samples = ','.join([str(sample) for sample in feature_table_df.index if sample not in intersection_samples]) sample_metadata_omitted_samples = ','.join([str(sample) for sample in sample_metadata_df.index if sample not in intersection_samples]) environmental_metadata_omitted_samples = ','.join([str(sample) for sample in environmental_metadata_df.index if sample not in intersection_samples]) sample_summary = dedent("""\ Omitted samples in feature table,{feature_table_omitted_samples} Omitted samples in sample metadata,{sample_metadata_omitted_samples} Omitted samples in environmental metadata,{environmental_metadata_omitted_samples} """.format( feature_table_omitted_samples=feature_table_omitted_samples, sample_metadata_omitted_samples=sample_metadata_omitted_samples, environmental_metadata_omitted_samples=environmental_metadata_omitted_samples )) return intersection_feature_table_df, intersection_abundance_df, intersection_sample_metadata_df, intersection_environmental_metadata_df, sample_summary def calculate_dissimilarity_matrix(feature_table, method="Bray-Curtis"): """ Calculates dissimilarity matarix using the feature table. It uses R's vegan package (using rpy2 interface) Inputs: - feature_table_df: feature table (rpy2.robjects) - method: dissimilarity index (see 'vegdist' R documentation for supported methods) Outputs: - distance matrix (rpy2.robjects) """ vegan = importr('vegan') if (method not in VEGDIST_OPTIONS): raise AXIOME3Error("Specified dissmilarity method, {method} is not supported!".format(method=method)) return vegan.vegdist(feature_table, VEGDIST_OPTIONS[method]) def calculate_ordination(dissimilarity_matrix): """ Calculates ordination. It uses R's stats package (using rpy2 interface) Inputs: - dissimilarity_matrix: distance matrix of type rpy2.robjects. Outputs: - ordination (rpy2.robjects.) """ stats = importr('stats') ordination = stats.cmdscale(dissimilarity_matrix, k=10, eig=True) return ordination def calculate_weighted_average(ordination, feature_table): """ Calculate weighted average scores of each taxa/ASV onto ordination """ vegan = importr('vegan') points = ordination[ordination.names.index('points')] wascores = vegan.wascores(points, feature_table) return wascores def project_env_metadata_to_ordination(ordination, env_metadata, PC_axis_one, PC_axis_two): """ """ vegan = importr('vegan') pc_axes = (PC_axis_one, PC_axis_two) projection = vegan.envfit(ordination, env_metadata, choices=IntVector(pc_axes)) return projection def combine_projection_arrow_with_r_sqr(projection): """ Cbind R2 with arrow matrix """ base = importr('base') projection_vectors = projection[projection.names.index('vectors')] arrow = projection_vectors[projection_vectors.names.index('arrows')] r_sqr = projection_vectors[projection_vectors.names.index('r')] pvals = projection_vectors[projection_vectors.names.index('pvals')] projection_matrix = base.cbind(arrow, R2=r_sqr, pvals=pvals) return projection_matrix def generate_vector_arrow_df(projection_df, R2_threshold, pval_threshold): """ Generate vector arrows to overlay on triplot, and optionally filter it by user specified threshold Inputs: - projection_df: pandas DataFrame environmental variables as row, PC dimensions and R2 value as columns Returns: - pandas DataFrame environmental variables as row, PC dimensions as columns (labeled as PC1, PC2, ...) """ #if((projection_df['R2'] > R2_threshold).any() == False): # raise ValueError("No entries left after applying R2 threshold, {}".format(R2_threshold)) filter_criteria = (projection_df['R2'] >= R2_threshold) & (projection_df['pvals'] <= pval_threshold) filtered_df = projection_df.loc[filter_criteria, ] vector_arrow_df = filtered_df.drop(columns=['R2', 'pvals']) vector_arrow_df = vector_arrow_df.mul(np.sqrt(filtered_df['R2']), axis=0) return vector_arrow_df def rename_as_PC_columns(df, PC_axis_one=None, PC_axis_two=None): """ Rename pandas DataFrame column names as PC1, PC2, ... """ # Special case for environmental projection df # It needs to be hardcoded because of the way df is created (refer to 'project_env_metadata_to_ordination()'') if(PC_axis_one is not None and PC_axis_two is not None): new_col_names = ['PC' + str(PC_axis_one), 'PC' + str(PC_axis_two)] df.columns = new_col_names return df num_col = df.shape[1] if(num_col == 0): raise ValueError("Specified dataframe has zero columns...") new_col_names = ['PC' + str(i) for i in range(1, num_col+1)] df.columns = new_col_names return df def normalized_taxa_total_abundance(wascores_df, feature_table_df): """ Calculate normalized, total abundance of each taxa Inputs: - wascores_df: weighted average scores in pandas DataFrame (taxa as index, coordinates as columns) - feature_table_df: feature table in pandas DataFrame (sample as index, taxa as columns) """ total_abundance = feature_table_df.to_numpy().sum() taxa_count = feature_table_df.sum(axis=0) # pandas treats 0/0 as 0 (does not raise ZeroDivisionError) normalized_taxa_count = taxa_count / total_abundance wascores_df['abundance'] = normalized_taxa_count return wascores_df def filter_by_wascore_threshold(normalized_wascores_df, wa_threshold): """ Filter weighted average DataFrame by normalized abundance """ if('abundance' not in normalized_wascores_df.columns): raise AXIOME3Error("normalized taxa count column does not exist") filtered_df = normalized_wascores_df[normalized_wascores_df['abundance'] > wa_threshold] return filtered_df def get_variance_explained(eig_vals): """ Calculate proportion explained per PC axis Inputs: - eig_vals: eigenvalues per PC axis. pandas Series """ num_row = eig_vals.shape[0] total_variance = eig_vals.sum() proportion_explained = eig_vals / total_variance proportion_explained = proportion_explained * 100 new_index_names = ['PC' + str(i) for i in range(1, num_row+1)] proportion_explained.index = new_index_names proportion_explained.columns = ['proportion_explained'] return proportion_explained def prep_triplot_input(sample_metadata_path, env_metadata_path, feature_table_artifact_path, taxonomy_artifact_path, sampling_depth=0, ordination_collapse_level="asv", wascores_collapse_level="phylum", dissmilarity_index="Bray-Curtis", R2_threshold=0.1, pval_threshold=0.05, wa_threshold=0.1, PC_axis_one=1, PC_axis_two=2, output_dir='.'): # Load sample metadata sample_metadata_df = load_metadata(sample_metadata_path) # Load environmental metadata # and drop rows with missing values (WARN users?) env_metadata_df = load_env_metadata(env_metadata_path) env_metadata_df = env_metadata_df.dropna() # Load feature table and collapse feature_table_artifact = check_artifact_type(feature_table_artifact_path, "feature_table") taxonomy_artifact = check_artifact_type(taxonomy_artifact_path, "taxonomy") ordination_collapsed_df = collapse_taxa(feature_table_artifact, taxonomy_artifact, sampling_depth, ordination_collapse_level) abundance_collapsed_df = collapse_taxa(feature_table_artifact, taxonomy_artifact, sampling_depth, wascores_collapse_level) # Rename taxa for wascores collapsed df original_taxa =
pd.Series(abundance_collapsed_df["Taxon"])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================================= # # DS_generator.py # # Author: <NAME> # # Creation Date: 03/10/2020 # # ============================================================================================= # """ Imports original DECAGON database and translates it into adjaceny matrices and enumeration dictionaries. First the original dataset is filtered so it has no unlinked nodes creating a consistent network. Then a fraction of the dataset is chosen, selecting a fixed number of polypharmacy side effects given by parameter N (defaults to 964). With the reduced network, the adjacency matrices and the node enumeration dictionaries are created and exported as a pickle python3 readable file. Parameters ---------- number of side effects : int, default=964 Number of joint drug side effects to be chosen from the complete dataset. If not given, the program uses the maximum number of side effects used by the authors of DECAGON. """ # ============================================================================================= # import argparse import numpy as np import pandas as pd import scipy.sparse as sp import pickle from joblib import Parallel, delayed parser = argparse.ArgumentParser(description='Remove outliers from datasets') parser.add_argument('N', nargs='?',default =964,type=int, help="Number of side effects") args = parser.parse_args() N = args.N # Import databases as pandas dataframes PPI = pd.read_csv('original_data/bio-decagon-ppi.csv',sep=',') DTI = pd.read_csv('original_data/bio-decagon-targets-all.csv',sep=',') DDI = pd.read_csv('original_data/bio-decagon-combo.csv',sep=',') DSE = pd.read_csv('original_data/bio-decagon-mono.csv',sep=',') print('\nData loaded\n') # Original number of interactions orig_ppi = len(PPI.index) orig_dti = len(DTI.index) orig_ddi = len(DDI.index) orig_dse = len(DSE.index) # ============================================================================================= # # REMOVING OUTLIERS # PPI genes PPI_genes = pd.unique(np.hstack((PPI['Gene 1'].values,PPI['Gene 2'].values))) orig_genes_ppi = len(PPI_genes) # Original number of genes # REDUCE DDI AND DSE DATABASES TO COMMON DRUGS ONLY # DDI drugs DDI_drugs = pd.unique(DDI[["STITCH 1", "STITCH 2"]].values.ravel()) orig_drugs_ddi = len(DDI_drugs) # Original number of drugs orig_se_combo = len(pd.unique(DDI['Polypharmacy Side Effect'].values)) # Drugs with single side effects DSE_drugs = pd.unique(DSE['STITCH'].values) orig_drug_dse = len(DSE_drugs) # Original number of drugs orig_se_mono = len(pd.unique(DSE['Side Effect Name'])) # Calculate the instersection of the DDI and DSE # (i.e., the drugs in the interaction network that have single side effect) inter_drugs = np.intersect1d(DDI_drugs,DSE_drugs,assume_unique=True) # Choose only the entries in DDI that are in the intersection DDI = DDI[np.logical_and(DDI['STITCH 1'].isin(inter_drugs).values, DDI['STITCH 2'].isin(inter_drugs).values)] # Some drugs in DDI that are common to all 3 datasets may only interact with genes that are # non-common (outsiders). That is why we need to filter a second time using this array. DDI_drugs = pd.unique(DDI[["STITCH 1", "STITCH 2"]].values.ravel()) DSE = DSE[DSE['STITCH'].isin(DDI_drugs)] new_drugs_ddi = len(pd.unique(DDI[['STITCH 1','STITCH 2']].values.ravel())) new_drugs_dse = len(pd.unique(DSE['STITCH'].values)) new_se_combo = len(pd.unique(DDI['Polypharmacy Side Effect'].values)) new_se_mono = len(pd.unique(DSE['Side Effect Name'])) # SELECT ONLY ENTRIES FROM DTI DATABASE THAT ARE PRESENT IN PREVIOUSLY REDUCED DATABASES orig_genes_dti = len(
pd.unique(DTI['Gene'].values)
pandas.unique
# Created Date: 12/09/2018 # Modified Date: # # Implements the Early Warning Alert Algorithm of Fire Crisis Classification module # based on the forecasting weather data from FMI. It calculates the Fire Weather Index # of Canadian Rating System. # Also, it calculates the Fire Overall Crisis Level (PFRCL_Predicted Fire Crisis Level) # based on FWI over the 9 days period # #---------------------------------------------------------------------------------------------------------- # Inputs: a) ftp files from EFFIS # # Outputs: TOP104_METRIC_REPORT which contains the .... # # Early Warning Alert Algorithm from Crisis Classification #---------------------------------------------------------------------------------------------------------- # import json, time, re import os, errno, sys import glob, gzip, pickle, shutil, tempfile, re, tarfile import numpy as np import pandas as pd import matplotlib.pyplot as plt from bus.bus_producer import BusProducer from pathlib import Path from datetime import datetime, timedelta from collections import OrderedDict from CRCL.FireCRisisCLassification.Topic104_Metric_Report import Top104_Metric_Report from CRCL.FireCRisisCLassification.topic104Fire import topic104Fire from CRCL.FireCRisisCLassification.Auxiliary_functions import Forest_Fire_Weather_Index, Fire_Overall_Crisis_Level from CRCL.FireCRisisCLassification.Auxiliary_functions import open_netcdf, get_nc_file_contents, geo_idx, get_ftp, calc_Index from CRCL.FireCRisisCLassification.Create_Queries_FirePilot import extract_forecasts_grid, extract_gribs from CRCL.FireCRisisCLassification.parse_XML_dict import parse_XML_dict from ftplib import FTP from scipy.interpolate import griddata from scipy.interpolate import Rbf from scipy import interpolate from netCDF4 import Dataset, num2date def CrisisClassificationFire_PreEmerg(): #----------------------------------------------------------------- ver = 'Ver11_2nd_Period' # Create a directory to store the output files and TOPICS #root_path = Path.cwd() # Create a path current_dirs_parent = os.getcwd() root_path = current_dirs_parent + "/" + "CRCL/FireCRisisCLassification" + "/" now = datetime.now() directory = root_path + "TOPICS" + ver + "_" + str(now.year) + "_" + str(now.month) + "_" + str(now.day) os.makedirs(directory, exist_ok=True) # Start Timing Step 1 start_step1 = time.time() # Store the time steps time_duration_step = [] print("\n STEP 1: Fetch data from the ftp files from EFFIS \n") #----------------------------------------------------------------------------------- # STEP 1: Fetch data from the ftp files from EFFIS # # #parameters for the get_ftp url='dissemination.ecmwf.int' Username='fire' Password='<PASSWORD>' # Points of Interest points = [{'Name': 'Sueca', 'lat': 39.253509, 'long': -0.310381}, {'Name': 'Sollana', 'lat': 39.303946, 'long': -0.379010}, {'Name': 'Silla1', 'lat': 39.340604, 'long': -0.395129}, {'Name': 'Silla2', 'lat': 39.364153, 'long': -0.371332}, {'Name': 'Catarroja', 'lat': 39.371835, 'long': -0.350579}, {'Name':'<NAME>', 'lat':39.355179, 'long':-0.320472}, {'Name':'<NAME>', 'lat':39.386909, 'long': -0.331496} ] # Center of the points of interest N = float(len(points)) avglat = 0 avgln = 0 for p in points: avglat = avglat + p['lat'] avgln = avgln + p['long'] center_points = [ round(avglat/N,5), round(avgln/N,5) ] file_type = '*fwi.nc.gz' fieldNames = ['fwi'] # ['danger_risk', 'fwi'] # fieldNames = ['danger_risk','bui','ffmc','dc', 'dmc','isi', 'dsr', 'fwi'] ncep_data = dict() ncep_data['date_time'] = list() # get the file name we dll from the ftp ftp_dict = get_ftp(url, Username, Password) # PATH variable include / at the end... path = ftp_dict['PATH'] + str(ftp_dict['Date']) + '_fwi/fc/' iter = [0] * len(fieldNames) # Create data frame for all the points and FWI estimations FWI = pd.DataFrame() for pnt in range(len(points)): datetime_x = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) days_x = 1 tempFWI = pd.DataFrame() fwi_date = [] fwi_val =
pd.DataFrame(columns=['FWI_lin', 'FWI_near', 'FWI_cubic', 'FWI_max', 'FWI_min', 'FWI_std', 'FWI_mean'])
pandas.DataFrame
"""Tests for `mllaunchpad.resource` module.""" # Stdlib imports import json import logging import os from collections import OrderedDict from random import random from unittest import mock # Third-party imports import numpy as np import pandas as pd import pytest # Project imports from mllaunchpad import resource as r # Test ModelStore # fmt: off @pytest.fixture() def modelstore_config(): return { "model_store": { "location": "./model_store", }, "model": { "name": "IrisModel", "version": '0.0.2', "module": "tree_model", "train_options": {}, "predict_options": {}, }, "api": { "name": "tree" } } # fmt: on @mock.patch("{}.os.path.exists".format(r.__name__), return_value=False) @mock.patch("{}.os.makedirs".format(r.__name__)) def test_modelstore_create(makedirs, path_exists, modelstore_config): ms = r.ModelStore(modelstore_config) ms._ensure_location() makedirs.assert_called_once_with( modelstore_config["model_store"]["location"] ) path_exists.reset_mock() makedirs.reset_mock() path_exists.return_value = True ms = r.ModelStore(modelstore_config) ms._ensure_location() assert not makedirs.called @mock.patch("{}.os.path.exists".format(r.__name__), return_value=False) @mock.patch("{}.os.makedirs".format(r.__name__)) @mock.patch("{}.shutil.copy".format(r.__name__)) @mock.patch( "{}.glob.glob".format(r.__name__), return_value=["old.pkl", "old.json"] ) def test_modelstore_dump(glob, copy, makedirs, path_exists, modelstore_config): with mock.patch( "{}.open".format(r.__name__), mock.mock_open(), create=True ) as mo: ms = r.ModelStore(modelstore_config) ms.dump_trained_model( modelstore_config, {"pseudo_model": 1}, {"pseudo_metrics": 2} ) model_conf = modelstore_config["model"] base_name = os.path.join( modelstore_config["model_store"]["location"], "{}_{}".format(model_conf["name"], model_conf["version"]), ) calls = [ mock.call("{}.pkl".format(base_name), "wb"), mock.call("{}.json".format(base_name), "w", encoding="utf-8"), ] mo.assert_has_calls(calls, any_order=True) @mock.patch("{}.os.path.exists".format(r.__name__), return_value=True) @mock.patch("{}.pickle.dump".format(r.__name__)) @mock.patch("{}.json.dump".format(r.__name__)) def test_modelstore_dump_extra_model_keys( jsond, pickled, path_exists, modelstore_config ): modelstore_config["model"]["extraparam"] = 42 modelstore_config["model"]["anotherparam"] = 23 modelstore_config["model"]["created"] = "colliding keys should not occur" with mock.patch( "{}.open".format(r.__name__), mock.mock_open(), create=True ) as _: ms = r.ModelStore(modelstore_config) ms.dump_trained_model( modelstore_config, {"pseudo_model": 1}, {"pseudo_metrics": 2} ) dumped = jsond.call_args[0][0] print(modelstore_config) print(dumped) assert "extraparam" in dumped assert dumped["extraparam"] == 42 assert "anotherparam" in dumped assert dumped["anotherparam"] == 23 assert dumped["created"] != "colliding keys should not occur" @mock.patch("{}.os.path.exists".format(r.__name__), return_value=True) @mock.patch("{}.pickle.dump".format(r.__name__)) @mock.patch("{}.json.dump".format(r.__name__)) def test_modelstore_train_report( jsond, pickled, path_exists, modelstore_config ): with mock.patch( "{}.open".format(r.__name__), mock.mock_open(), create=True ) as _: ms = r.ModelStore(modelstore_config) ms.add_to_train_report("report_key", "report_val") ms.dump_trained_model( modelstore_config, {"pseudo_model": 1}, {"pseudo_metrics": 2} ) dumped = jsond.call_args[0][0] print(modelstore_config) print(dumped) assert "train_report" in dumped assert "report_key" in dumped["train_report"] assert dumped["train_report"]["report_key"] == "report_val" assert "system" in dumped assert "mllaunchpad_version" in dumped["system"] assert "platform" in dumped["system"] assert "packages" in dumped["system"] @mock.patch("{}.os.path.exists".format(r.__name__), return_value=True) @mock.patch( "{}.ModelStore._load_metadata".format(r.__name__), side_effect=lambda _: {"the_json": round(random() * 1000)}, ) def test_list_models(_load_metadata, path_exists, modelstore_config, caplog): model_jsons = [ "mymodel_1.0.0.json", "mymodel_1.1.0.json", "anothermodel_0.0.1.json", ] backup_jsons = [ "mymodel_1.0.0_2021-08-01_18-00-00.json", "mymodel_1.0.0_2021-07-31_12-00-00", ] def my_glob(pattern): if "previous" in pattern.lower(): return backup_jsons else: return model_jsons with mock.patch( "{}.glob.glob".format(r.__name__), side_effect=my_glob, ): with caplog.at_level(logging.DEBUG): ms = r.ModelStore(modelstore_config) models = ms.list_models() print(models) assert ( len(models) == 2 ) # one model ID named "mymodel" and one named "anothermodel" assert models["mymodel"]["latest"] == models["mymodel"]["1.1.0"] assert len(models["mymodel"]["backups"]) == 2 assert models["anothermodel"]["backups"] == [] assert "ignoring" not in caplog.text.lower() @mock.patch("{}.os.path.exists".format(r.__name__), return_value=True) @mock.patch( "{}.ModelStore._load_metadata".format(r.__name__), side_effect=lambda _: {"the_json": round(random() * 1000)}, ) def test_list_models_ignore_obsolete_backups( _load_metadata, path_exists, modelstore_config, caplog ): model_jsons = [ "mymodel_1.0.0.json", "mymodel_1.1.0.json", "anothermodel_0.0.1.json", ] backup_jsons = [ "mymodel_1.0.0_2021-08-01_18-00-00.json", "OBSOLETE-IGNORED_1.0.0_2021-07-31_12-00-00", ] def my_glob(pattern): if "previous" in pattern.lower(): return backup_jsons else: return model_jsons with mock.patch( "{}.glob.glob".format(r.__name__), side_effect=my_glob, ): with caplog.at_level(logging.DEBUG): ms = r.ModelStore(modelstore_config) models = ms.list_models() print(models) assert "ignoring" in caplog.text.lower() @mock.patch("{}.pickle.load".format(r.__name__), return_value="pickle") @mock.patch("{}.json.load".format(r.__name__), return_value={"json": 0}) def test_modelstore_load(json, pkl, modelstore_config): with mock.patch( "{}.open".format(r.__name__), mock.mock_open(), create=True ) as mo: ms = r.ModelStore(modelstore_config) ms.load_trained_model(modelstore_config["model"]) model_conf = modelstore_config["model"] base_name = os.path.join( modelstore_config["model_store"]["location"], "{}_{}".format(model_conf["name"], model_conf["version"]), ) calls = [ mock.call("{}.pkl".format(base_name), "rb"), mock.call("{}.json".format(base_name), "r", encoding="utf-8"), ] mo.assert_has_calls(calls, any_order=True) @mock.patch( "{}.ModelStore._load_metadata".format(r.__name__), return_value={"metrics": {"a": 0}, "metrics_history": {"0123": {"a": 0}}}, ) @mock.patch("{}.ModelStore._dump_metadata".format(r.__name__)) def test_modelstore_update_model_metrics(dump, load, modelstore_config): new_metrics = {"a": 1} ms = r.ModelStore(modelstore_config) ms.update_model_metrics(modelstore_config["model"], new_metrics) load.assert_called_once() dump.assert_called_once() name, contents = dump.call_args[0] assert contents["metrics"] == new_metrics hist = contents["metrics_history"] assert len(hist) == 2 del hist["0123"] assert hist.popitem()[1] == new_metrics def test___get_all_classes(): """Retrieve a type which subclasses the given type""" config = {"plugins": ["tests.mock_plugin"]} classes = r._get_all_classes(config, r.DataSource) assert "food" in classes classes = r._get_all_classes(config, r.DataSink) assert "food" in classes def test_create_data_sources_and_sinks(): conf = { "plugins": ["tests.mock_plugin"], "datasources": { "bla": {"type": "food", "path": "some/path", "tags": "train"}, }, "datasinks": { "foo": {"type": "food", "path": "some/path"}, "blargh": { "type": "food", "path": "some/path", "tags": "weirdtag", }, }, } src, snk = r.create_data_sources_and_sinks(conf, tags=["weirdtag"]) assert "bla" not in src assert "foo" in snk assert "blargh" in snk src, snk = r.create_data_sources_and_sinks(conf) assert "bla" in src assert "foo" in snk assert "blargh" in snk with pytest.raises(ValueError, match="available"): conf["datasources"]["bla"]["type"] = "will_not_be_found" r.create_data_sources_and_sinks(conf) # Test DataSource caching # fmt: off @pytest.fixture() def datasource_expires_config(): def _res(expires): return { "type": "mock", "expires": expires, "tags": ["train"], } return _res # fmt: on class MockDataSource(r.DataSource): serves = ["mock"] def get_dataframe(self, params=None, chunksize=None): df = pd.DataFrame(params) return df def get_raw(self, params=None, chunksize=False): raw = params return raw @pytest.mark.parametrize( "expires, expected_cached", [(0, False), (100000, True), (-1, True)] ) def test_datasource_expires_df( expires, expected_cached, datasource_expires_config ): args = {"a": [1, 2, 3], "b": [3, 4, 5]} ds = MockDataSource("mock", datasource_expires_config(expires)) # 1st DF read df1 = ds.get_dataframe(params=args.copy()) pd.testing.assert_frame_equal(df1, pd.DataFrame(args)) assert df1 is not pd.DataFrame(args) # 2nd DF read df2 = ds.get_dataframe(params=args.copy()) pd.testing.assert_frame_equal(df2, pd.DataFrame(args)) assert (df2 is df1) == expected_cached # 3rd DF read df3 = ds.get_dataframe(params=args.copy()) pd.testing.assert_frame_equal(df3, pd.DataFrame(args)) assert (df3 is df1) == expected_cached def test_datasource_expires_chunksize_error(datasource_expires_config): """chunksize must not be used with expires != 0""" ds1 = MockDataSource("mock", datasource_expires_config(-1)) with pytest.raises(ValueError, match="incompatible"): _ = ds1.get_dataframe(chunksize=5) ds2 = MockDataSource("mock", datasource_expires_config(20000)) with pytest.raises(ValueError, match="incompatible"): _ = ds2.get_dataframe(chunksize=5) ds3 = MockDataSource("mock", datasource_expires_config(0)) _ = ds3.get_dataframe(chunksize=5) ds4 = MockDataSource("mock", datasource_expires_config(20000)) _ = ds4.get_dataframe() @pytest.mark.parametrize( "expires, expected_cached", [(0, False), (100000, True), (-1, True)] ) def test_datasource_expires_raw( expires, expected_cached, datasource_expires_config ): args = {"a": [1, 2, 3], "b": [3, 4, 5]} ds = MockDataSource("mock", datasource_expires_config(expires)) # 1st raw read raw1 = ds.get_raw(params=args.copy()) assert raw1 == args # 2nd raw read raw2 = ds.get_raw(params=args.copy()) assert raw2 == args assert (raw2 is raw1) == expected_cached def test_datasource_memoization_df(datasource_expires_config): args1 = {"a": [1, 2, 3], "b": [3, 4, 5]} args2_same = {"a": [1, 2, 3], "b": [3, 4, 5]} args3_different = {"A": [3, 2, 1], "B": [3, 4, 5]} args4_again_different = {"C": [3, 2, 1], "D": [3, 4, 5]} cfg = datasource_expires_config(-1) # use cache cfg["cache_size"] = 2 ds = MockDataSource("mock", cfg) # 1st DF read (cached as 1st cache element) df1 = ds.get_dataframe(params=args1.copy()) pd.testing.assert_frame_equal(df1, pd.DataFrame(args1)) assert df1 is not pd.DataFrame(args1) # not from cache # 2nd DF read (getting from cache) df2 = ds.get_dataframe(params=args2_same.copy()) pd.testing.assert_frame_equal(df2, pd.DataFrame(args2_same)) assert df2 is df1 # from cache # 3rd DF read (different params passed, will be cached as 2nd cache element) df3 = ds.get_dataframe(params=args3_different.copy()) pd.testing.assert_frame_equal(df3, pd.DataFrame(args3_different)) assert df3 is not df2 # not from cache assert df3 is not df1 # not from cache # 4rth DF read (original params passed again -- it is still in the cache due to size of 2) df4 = ds.get_dataframe(params=args1.copy()) pd.testing.assert_frame_equal(df4,
pd.DataFrame(args1)
pandas.DataFrame
import pandas as pd from pathlib import Path from datetime import datetime url="https://www.dshs.state.tx.us/coronavirus/TexasCOVID19DailyCountyFatalityCountData.xlsx" #get data from 2020, 2021, and 2022: could be cleaned more df_2020 = pd.read_excel(url,sheet_name=0, index_col=0,parse_dates=[0]) df_2020 = df_2020[1:] df_2020=df_2020.T df_2020=df_2020[["County", "Hays", "Bastrop", "Caldwell", "Travis", "Williamson"]] df_2021 = pd.read_excel(url,sheet_name=1, index_col=0,parse_dates=[0]) df_2021 = df_2021[1:] df_2021=df_2021.T df_2021=df_2021[["County", "Hays", "Bastrop", "Caldwell", "Travis", "Williamson"]] df_2022 = pd.read_excel(url,sheet_name=2, index_col=0,parse_dates=[0]) df_2022 = df_2022[1:] df_2022=df_2022.T df_2022=df_2022[["County", "Hays", "Bastrop", "Caldwell", "Travis", "Williamson"]] #df_all has all of the data for 5 counties from 2020-2022 df_all=df_2020.append(df_2021) df_all=df_all.append(df_2022) dict = {'County' : 'date'} df_all.rename(columns=dict, inplace=True) df_all['date'] =
pd.to_datetime(df_all.date, format='%m/%d/%Y')
pandas.to_datetime
import streamlit as st from bs4 import BeautifulSoup import requests import pandas as pd import re import ast import base64 def local_css(file_name): with open(file_name) as f: st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) local_css("style.css") st.write(""" # Steam Community Market - Advanced Price Helper App """) scm_url = st.text_input('Please enter the url address of Steam Community Market Listing', 'https://steamcommunity.com/market/listings/440/The%20Killing%20Tree') # Scraping and Storing Objects # Input from user will need to be a url for steam community market #resp_object = requests.get('https://steamcommunity.com/market/listings/440/The%20Killing%20Tree') #url will be an input from user resp_object = requests.get(scm_url) #url will be an input from user soup = BeautifulSoup(resp_object.text,'html.parser') market_listing_largeimage_url = soup.find("div",{"class":"market_listing_largeimage"}).contents[1]['src'] # item image url price_history_string = ast.literal_eval(re.findall('(?<=line1=)(.+?\]\])',resp_object.text)[0]) # price history string item_name = re.findall('(?<=<title>Steam Community Market :: Listings for )(.+?(?=<\/))',resp_object.text)[0] # name of item # constructing a df with entire price history times = [] prices = [] solds = [] for row in range(len(price_history_string)): timestamp = price_history_string[row][0] median_price_sold = price_history_string[row][1] number_sold = price_history_string[row][2] times.append(timestamp) prices.append(median_price_sold) solds.append(number_sold) final_df = pd.DataFrame(list(zip(times,prices,solds)),columns=['timestamp','price_median (USD)','quantity_sold']) # constructing a dataframe with all attributes final_df['timestamp'] = [x[:14] for x in final_df['timestamp']] # removing +0s final_df['timestamp'] =
pd.to_datetime(final_df['timestamp'],format='%b %d %Y %H')
pandas.to_datetime
import pickle import random import string import warnings import numpy as np from numpy.testing import assert_allclose import pandas as pd import pytest from scipy import stats import linearmodels from linearmodels.shared.exceptions import missing_warning from linearmodels.shared.hypotheses import ( InapplicableTestStatistic, InvalidTestStatistic, WaldTestStatistic, ) from linearmodels.shared.io import add_star, format_wide from linearmodels.shared.linalg import has_constant, inv_sqrth from linearmodels.shared.utility import AttrDict, ensure_unique_column, panel_to_frame MISSING_PANEL = "Panel" not in dir(pd) def test_missing_warning(): missing = np.zeros(500, dtype=bool) with warnings.catch_warnings(record=True) as w: missing_warning(missing) assert len(w) == 0 missing[0] = True with warnings.catch_warnings(record=True) as w: missing_warning(missing) assert len(w) == 1 original = linearmodels.WARN_ON_MISSING linearmodels.WARN_ON_MISSING = False with warnings.catch_warnings(record=True) as w: missing_warning(missing) assert len(w) == 0 linearmodels.WARN_ON_MISSING = original def test_hasconstant(): x = np.random.randn(100, 3) hc, loc = has_constant(x) assert bool(hc) is False assert loc is None x[:, 0] = 1 hc, loc = has_constant(x) assert hc is True assert loc == 0 x[:, 0] = 2 hc, loc = has_constant(x) assert hc is True assert loc == 0 x[::2, 0] = 0 x[:, 1] = 1 x[1::2, 1] = 0 hc, loc = has_constant(x) assert hc is True def test_wald_statistic(): ts = WaldTestStatistic(1.0, "_NULL_", 1, name="_NAME_") assert str(hex(id(ts))) in ts.__repr__() assert "_NULL_" in str(ts) assert ts.stat == 1.0 assert ts.df == 1 assert ts.df_denom is None assert ts.dist_name == "chi2(1)" assert isinstance(ts.critical_values, dict) assert_allclose(1 - stats.chi2.cdf(1.0, 1), ts.pval) ts = WaldTestStatistic(1.0, "_NULL_", 1, 1000, name="_NAME_") assert ts.df == 1 assert ts.df_denom == 1000 assert ts.dist_name == "F(1,1000)" assert_allclose(1 - stats.f.cdf(1.0, 1, 1000), ts.pval) def test_invalid_test_statistic(): ts = InvalidTestStatistic("_REASON_", name="_NAME_") assert str(hex(id(ts))) in ts.__repr__() assert "_REASON_" in str(ts) assert np.isnan(ts.pval) assert ts.critical_values is None def test_inapplicable_test_statistic(): ts = InapplicableTestStatistic(reason="_REASON_", name="_NAME_") assert str(hex(id(ts))) in ts.__repr__() assert "_REASON_" in str(ts) assert np.isnan(ts.pval) assert ts.critical_values is None ts = InapplicableTestStatistic() assert "not applicable" in str(ts) def test_inv_sqrth(): x = np.random.randn(1000, 10) xpx = x.T @ x invsq = inv_sqrth(xpx) prod = invsq @ xpx @ invsq - np.eye(10) assert_allclose(1 + prod, np.ones((10, 10))) def test_ensure_unique_column(): df = pd.DataFrame({"a": [0, 1, 0], "b": [1.0, 0.0, 1.0]}) out = ensure_unique_column("a", df) assert out == "_a_" out = ensure_unique_column("c", df) assert out == "c" out = ensure_unique_column("a", df, "=") assert out == "=a=" df["_a_"] = -1 out = ensure_unique_column("a", df) assert out == "__a__" def test_attr_dict(): ad = AttrDict() ad["one"] = "one" ad[1] = 1 ad[("a", 2)] = ("a", 2) assert list(ad.keys()) == ["one", 1, ("a", 2)] assert len(ad) == 3 plk = pickle.dumps(ad) pad = pickle.loads(plk) assert list(pad.keys()) == ["one", 1, ("a", 2)] assert len(pad) == 3 ad2 = ad.copy() assert list(ad2.keys()) == list(ad.keys()) assert ad.get("one", None) == "one" assert ad.get("two", False) is False k, v = ad.popitem() assert k == "one" assert v == "one" items = ad.items() assert (1, 1) in items assert (("a", 2), ("a", 2)) in items assert len(items) == 2 values = ad.values() assert 1 in values assert ("a", 2) in values assert len(values) == 2 ad2 = AttrDict() ad2[1] = 3 ad2["one"] = "one" ad2["a"] = "a" ad.update(ad2) assert ad[1] == 3 assert "a" in ad ad.__str__() with pytest.raises(AttributeError): ad.__private_dict__ = None with pytest.raises(AttributeError): ad.some_other_key with pytest.raises(KeyError): ad["__private_dict__"] = None del ad[1] assert 1 not in ad.keys() ad.new_value = "new_value" assert "new_value" in ad.keys() assert ad.new_value == ad["new_value"] for key in ad.keys(): if isinstance(key, str): assert key in dir(ad) new_value = ad.pop("new_value") assert new_value == "new_value" del ad.one assert "one" not in ad.keys() ad.clear() assert list(ad.keys()) == [] def test_format_wide(): k = 26 inputs = [chr(65 + i) * (20 + i) for i in range(k)] out = format_wide(inputs, 80) assert max([len(v) for v in out]) <= 80 out = format_wide(["a"], 80) assert out == [["a"]] def test_panel_to_midf(): x = np.random.standard_normal((3, 7, 100)) df = panel_to_frame(x, list(range(3)), list(range(7)), list(range(100))) mi = pd.MultiIndex.from_product([list(range(7)), list(range(100))]) expected = pd.DataFrame(index=mi, columns=[0, 1, 2]) for i in range(3): expected[i] = x[i].ravel() expected.index.names = ["major", "minor"] pd.testing.assert_frame_equal(df, expected) expected2 = expected.copy() expected2 = expected2.sort_index(level=[1, 0]) expected2.index = expected2.index.swaplevel(0, 1) expected2.index.names = ["major", "minor"] df2 = panel_to_frame(x, list(range(3)), list(range(7)), list(range(100)), True) pd.testing.assert_frame_equal(df2, expected2) entities = list( map( "".join, [ [random.choice(string.ascii_lowercase) for __ in range(10)] for _ in range(100) ], ) ) times =
pd.date_range("1999-12-31", freq="A-DEC", periods=7)
pandas.date_range
# category: ["region","city","parent_category_name","category_name","user_type","image_top_1","param_1","param_2","param_3"]("user_id"?) # 1. category base count features # 2. category embedding. from utils import * import pandas as pd import gc train = pd.read_csv("../input/train.csv", parse_dates = ["activation_date"]).drop(["deal_probability", "image", "image_top_1"],axis=1) test = pd.read_csv("../input/test.csv", parse_dates = ["activation_date"]).drop(["image", "image_top_1"],axis=1) train_active = pd.read_csv("../input/train_active.csv", parse_dates = ["activation_date"]) test_active = pd.read_csv("../input/test_active.csv", parse_dates = ["activation_date"]) all_df = pd.concat([train, test, train_active, test_active]) del train_active, test_active;gc.collect() all_df["dayofweek"] = all_df.activation_date.dt.weekday train["dayofweek"] = train.activation_date.dt.weekday test["dayofweek"] = test.activation_date.dt.weekday all_df["one"] = 1 print("Done Reading All Data") def get_category_df(col): tmp = pd.DataFrame() all_df[col] = all_df[col].fillna("NAN") tmp["{}_count".format(col)] = all_df.groupby(col)["one"].sum() tmp["{}_unique_user_count".format(col)] = all_df[["user_id", col]].groupby(col).agg(pd.Series.nunique) tmp["{}_price_median".format(col)] = all_df[[col, "price"]].groupby(col).agg(np.median) tmp["{}_price_std".format(col)] = all_df[[col, "price"]].groupby(col).agg(np.std) tmp["{}_price_max".format(col)] = all_df[[col, "price"]].groupby(col).agg(np.max) tmp["{}_price_min".format(col)] = all_df[[col, "price"]].groupby(col).agg(np.min) tmp["latest_date"] = all_df[[col, "activation_date"]].groupby(col).max() tmp["first_date"] = all_df[[col, "activation_date"]].groupby(col).min() tmp["{}_diff".format(col)] = (tmp["latest_date"] - tmp["first_date"]).dt.days tmp["{}_average_period".format(col)] = tmp["{}_diff".format(col)] / tmp["{}_count".format(col)] tmp.drop(["latest_date", "first_date"], axis=1, inplace=True) return tmp.reset_index() print("Categorical Features...") region = get_category_df("region") city = get_category_df("city") parent_category_name = get_category_df("parent_category_name") category_name = get_category_df("category_name") user_type = get_category_df("user_type") param_1 = get_category_df("param_1") param_2 = get_category_df("param_2") param_3 = get_category_df("param_3") category = {"region":region, "city":city, "parent_category_name":parent_category_name ,"category_name":category_name,"user_type":user_type, "param_1":param_1 , "param_2":param_2, "param_3":param_3} cate_col = list(category.keys()) train = train[cate_col] test = test[cate_col] for col, d in category.items(): train = pd.merge(train, d, on=col, how="left") test = pd.merge(test, d, on=col, how="left") train.drop(cate_col, axis=1, inplace=True) test.drop(cate_col, axis=1, inplace=True) to_parquet(train, "../features/fe_categorical_base_features_train.parquet") to_parquet(test, "../features/fe_categorical_base_features_test.parquet") # weekday def get_category_weekday_df(col): all_df[col] = all_df[col].fillna("NAN") tmp = pd.DataFrame() tmp["{}_{}_count".format(*col)] = all_df.groupby(col)["one"].sum() tmp["{}_{}_unique_user_count".format(*col)] = all_df[["user_id"] + col].groupby(col).agg(pd.Series.nunique) tmp["{}_{}_price_median".format(*col)] = all_df[["price"] + col].groupby(col).agg(np.median) tmp["{}_{}_price_std".format(*col)] = all_df[["price"] + col].groupby(col).agg(np.std) tmp["{}_{}_price_max".format(*col)] = all_df[["price"] + col].groupby(col).agg(np.max) tmp["{}_{}_price_min".format(*col)] = all_df[["price"] + col].groupby(col).agg(np.min) tmp = tmp.reset_index() return tmp print("Categorical Weekday Features...") region = get_category_weekday_df(["region", "dayofweek"]) city = get_category_weekday_df(["city", "dayofweek"]) parent_category_name = get_category_weekday_df(["parent_category_name", "dayofweek"]) category_name = get_category_weekday_df(["category_name", "dayofweek"]) user_type = get_category_weekday_df(["user_type", "dayofweek"]) param_1 = get_category_weekday_df(["param_1", "dayofweek"]) param_2 = get_category_weekday_df(["param_2", "dayofweek"]) param_3 = get_category_weekday_df(["param_3", "dayofweek"]) category = {"region":region, "city":city, "parent_category_name":parent_category_name ,"category_name":category_name,"user_type":user_type, "param_1":param_1 , "param_2":param_2, "param_3":param_3} cate_col = list(category.keys())+["dayofweek"] train = pd.read_csv("../input/train.csv", parse_dates = ["activation_date"]).drop(["deal_probability", "image", "image_top_1"],axis=1) test = pd.read_csv("../input/test.csv", parse_dates = ["activation_date"]).drop(["image", "image_top_1"],axis=1) train["dayofweek"] = train.activation_date.dt.weekday test["dayofweek"] = test.activation_date.dt.weekday train = train[cate_col] test = test[cate_col] for col, d in category.items(): train =
pd.merge(train, d, on=[col, "dayofweek"], how="left")
pandas.merge
import numpy as np import pandas as pd from sklearn.ensemble import ExtraTreesClassifier from cause.plotter import Plotter from cause.predictor import ClassificationSet class Breakdown(): def __init__(self, data, weights, algos, name): self.__data = data self.__weights = weights self.__algos = algos self.__name = name # todo validate input: # data is an np.array with dims (num algos, num weights) @property def data(self): return self.__data @property def weights(self): return self.__weights @property def algos(self): return self.__algos @property def name(self): return self.__name def save_to_latex(self, outfolder="/tmp", weight=1.): outfile = "%s/breakdown_%s" % (outfolder, self.name) index = np.where(self.weights==weight)[0][0] # location for lambda=weight breakdown_perc = self.data[:,index] * 100. / self.data[:,index].sum() # write latex table to file with open(outfile, "w") as f: for algo in range(self.data.shape[0]): f.write("&\t%s\t&\t%.2f\\%%\t\t\n" % ( self.data[algo, index], breakdown_perc[algo])) def plot(self, outfolder="/tmp"): Plotter.plot_breakdown(self, outfolder) class Postprocessor(): def __init__(self, dataset): self.__dataset = dataset @property def dataset(self): return self.__dataset def breakdown(self): breakdown = np.empty(shape=(0,0)) for weight in self.dataset.weights: column = self.dataset.lstats[weight].get_breakdown(self.dataset.algos) if breakdown.shape[0] == 0: breakdown = column else: breakdown = np.vstack([breakdown, column]) breakdown = np.transpose(breakdown) return Breakdown(breakdown, self.dataset.weights, self.dataset.algos, self.dataset.name) class FeatsPostprocessor(Postprocessor): def __init__(self, dataset, features): super().__init__(dataset) self.__features = features @property def features(self): return self.__features def save_feature_importances_by_weight(self, outfolder, weight): lstats = self.dataset.lstats[weight] clsset = ClassificationSet.sanitize_and_init( self.features.features, lstats.winners, lstats.costs) clf = ExtraTreesClassifier() clf = clf.fit(clsset.X, clsset.y.ravel()) importances = pd.DataFrame(data=clf.feature_importances_.reshape( (1, len(clf.feature_importances_)) ), columns=self.features.features.columns) # sort feature names by average importance sorted_feature_names = [name for _,name in sorted(zip(importances.mean(axis=0), self.features.features.columns)) ][::-1] importances = importances[sorted_feature_names] feats =
pd.DataFrame(columns=["order", "value", "name"])
pandas.DataFrame
import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from application import model_builder def test_validate_types_numeric_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [3, 4, 5] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = new_expect["Some Feature"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Numeric"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_numeric_string_converts_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [3, 4, 5] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = ["3", "4", "5"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Numeric"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_numeric_string_converts_throws_error(): # Arrange df = pd.DataFrame() df["Some Feature"] = ["3d", "4d", "5d"] df["Answer"] = [1, 2, 3] fields = [["Some Feature", "Numeric"], ["Answer", "Response Variable"]] # Act and Assert with pytest.raises(ValueError): model_builder.validate_types(df, fields) def test_validate_types_percentage_converts_throws_value_error(): # Arrange df = pd.DataFrame() df["Some Feature"] = ["0.3s c", "0.4", "0.5"] df["Answer"] = [1, 2, 3] fields = [["Some Feature", "Percentage"], ["Answer", "Response Variable"]] # Act and Assert with pytest.raises(ValueError): model_builder.validate_types(df, fields) def test_validate_types_percentage_converts_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [30.0, 40.0, 50.0] new_expect["Some Feature 2"] = [30.0, 40.0, 50.0] new_expect["Some Feature 3"] = [30.0, 40.0, 50.0] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = [0.3, 0.4, 0.5] df["Some Feature 2"] = ["0.3%", "0.4 %", " 0.5 %"] df["Some Feature 3"] = ["30", "40", " 50"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Percentage"], ["Some Feature 2", "Percentage"], ["Some Feature 3", "Percentage"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_money_converts_throws_value_error(): # Arrange df = pd.DataFrame() df["Some Feature"] = ["0.3s$", "$0.4", "0.5"] df["Answer"] = [1, 2, 3] fields = [["Some Feature", "Money"], ["Answer", "Response Variable"]] # Act and Assert with pytest.raises(ValueError): model_builder.validate_types(df, fields) def test_validate_types_percentage_converts_success(): # Arrange df = pd.DataFrame() new_expect =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from iexfinance.base import _IEXBase from iexfinance.utils import _handle_lists, no_pandas from iexfinance.utils.exceptions import IEXSymbolError, IEXEndpointError class StockReader(_IEXBase): """ Base class for obtaining data from the Stock endpoints of IEX. """ # Possible option values (first is default) _ENDPOINTS = ["chart", "quote", "book", "open-close", "previous", "company", "stats", "peers", "relevant", "news", "financials", "earnings", "dividends", "splits", "logo", "price", "delayed-quote", "effective-spread", "volume-by-venue", "ohlc"] def __init__(self, symbols=None, **kwargs): """ Initialize the class Parameters ---------- symbols : string, array-like object (list, tuple, Series), or DataFrame Desired symbols for retrieval """ self.symbols = list(map(lambda x: x.upper(), _handle_lists(symbols))) self.n_symbols = len(self.symbols) self.endpoints = [] super(StockReader, self).__init__(**kwargs) def get_all(self): """ Returns all endpoints, indexed by endpoint title for each symbol Notes ----- Only allows JSON format (pandas not supported). """ self.optional_params = {} self.endpoints = self._ENDPOINTS[:10] json_data = self.fetch(fmt_p=no_pandas) self.endpoints = self._ENDPOINTS[10:20] json_data_2 = self.fetch(fmt_p=no_pandas) for symbol in self.symbols: if symbol not in json_data: raise IEXSymbolError(symbol) json_data[symbol].update(json_data_2[symbol]) return json_data[self.symbols[0]] if self.n_symbols == 1 else json_data @property def url(self): return 'stock/market/batch' @property def params(self): temp = { "symbols": ','.join(self.symbols), "types": ','.join(self.endpoints) } temp.update(self.optional_params) if "filter_" in temp: if isinstance(temp["filter_"], list): temp["filter"] = ",".join(temp.pop("filter_")) else: temp["filter"] = temp.pop("filter_") if "range_" in temp: temp["range"] = temp.pop("range_") params = {k: str(v).lower() if v is True or v is False else str(v) for k, v in temp.items()} return params def _get_endpoint(self, endpoint, params={}, fmt_p=None, fmt_j=None, filter_=None): result = {} if filter_: params.update({"filter": filter_}) self.optional_params = params self.endpoints = [endpoint] data = self.fetch(fmt_j=fmt_j, fmt_p=no_pandas) for symbol in self.symbols: if symbol not in data: raise IEXSymbolError(symbol) if endpoint not in data[symbol]: result[symbol] = [] else: result[symbol] = data[symbol][endpoint] return self._output_format_one(result, fmt_p=fmt_p, fmt_j=fmt_j) def _get_field(self, endpoint, field): data = getattr(self, "get_%s" % endpoint)(filter_=field) if self.output_format == 'json': if self.n_symbols == 1: data = data[field] else: data = {symbol: data[symbol][field] for symbol in self.symbols} return data def _output_format_one(self, out, fmt_p=None, fmt_j=None): data = super(StockReader, self)._output_format(out, fmt_p=fmt_p) if len(self.symbols) == 1 and self.output_format == 'json': return data[self.symbols[0]] return data def get_endpoints(self, endpoints=[]): """ Universal selector method to obtain specific endpoints from the data set. Parameters ---------- endpoints: str or list Desired valid endpoints for retrieval Notes ----- Only allows JSON format (pandas not supported). Raises ------ IEXEndpointError If an invalid endpoint is specified IEXSymbolError If a symbol is invalid IEXQueryError If issues arise during query """ if isinstance(endpoints, str) and endpoints in self._ENDPOINTS: endpoints = list(endpoints) if not endpoints or not set(endpoints).issubset(self._ENDPOINTS): raise IEXEndpointError("Please provide a valid list of endpoints") elif len(endpoints) > 10: raise ValueError("Please input up to 10 valid endpoints") self.optional_params = {} self.endpoints = endpoints json_data = self.fetch(fmt_p=no_pandas) for symbol in self.symbols: if symbol not in json_data: raise IEXSymbolError(symbol) return json_data[self.symbols[0]] if self.n_symbols == 1 else json_data def get_book(self, **kwargs): """ Reference: https://iextrading.com/developer/docs/#book Returns ------- dict or pandas.DataFrame Stocks Book endpoint data """ return self._get_endpoint("book", params=kwargs) def get_chart(self, **kwargs): """ Reference: https://iextrading.com/developer/docs/#chart Parameters ---------- range: str, default '1m', optional Chart range to return. See docs. chartReset: boolean, default True, optional If true, 1d chart will reset at midnight instead of the default behavior of 9:30am EST. chartSimplify: boolean, default True, optional If true, runs polyline simplification using Douglas-Peucker algorithm. Useful for plotting spotline charts chartInterval: int, default None, optional Chart data will return every nth element (where n is chartInterval) changeFromClose: bool, default False, optional If true, changeOverTime and marketChangeOverTime will be relative to previous day close instead of the first value. chartLast: int, optional return the last N elements Returns ------- list Stocks Chart endpoint data """ def fmt_p(out): result = {} for symbol in self.symbols: d = out.pop(symbol) df = pd.DataFrame(d) df.set_index(
pd.DatetimeIndex(df["date"])
pandas.DatetimeIndex
import sys import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler from Phase2Vec import Phase2Vec from Atom2Vec.Atom2Vec_encoder import Atom2Vec from AtomicModel import Endtoend from utils import * def get_phases(datafile=None, phases=None, mode='classify', maxlength=None): """ Reads datafile, trains or reads atomic features, vectorises phase fields. Parameters ---------- datafile: str; filename of database to process to aggregate compositions into phase fields default: None load_phase_vectors: str; filename to read phase fields, or their vectors default: None mode: str; mode of use of atomic features - parameter is passed to Atom2Vec and End2End model default: 'classify' - derive during End2End training from Atom2Vec enviroments 'rank' - re-use embeddings calculated in 'classify' mode maxlength: int; maximum size of a phase field in the dataset default: None """ return Phase2Vec(dbfile=datafile, load_phases=phases, maxlength=maxlength, mode=mode) def get_dataset(phases, parameter, t_type='max Tc', T=None, scaler=None): """ Selects data for training, X. If threshold T is specified, selects target values, y, from dataframe. Parameters ---------- phases: Phase2Vec obj parameter: str; name of the column in phases.dt where phase vectors are stored values:'onehot' or 'phase_vectors' t_type: str; name of the column (property), which is used for data classification default: 'max_Tc' T: float; threshold value used for binary partitioning of the dataset scaler: sklearn obj; perform normalisation on X data; default: None """ X = np.array([i for i in phases.dt[parameter].values]) print('X shape:', X.shape) print(X[0]) if scaler: X = scaler.fit_transform(X) return X, np.where(phases.dt[t_type].values > T, 1, 0) if T else X def generate_test(phases, natoms=3, atoms=None, exclude=None, mode='classify'): """ Generates a list of phase fields not in training set. Parameters ---------- phases: Phase2Vec obj natoms: int; number of elements in a phase field atoms: list; constituent elements of the phase fields; default: None - use the same elements as in training exclude: list; phase fields to exclude from the test set; default: None - exclude phases listed in ICSD """ if not exclude: exclude = pd.read_csv('DATA/icsd_phases.csv')['phases'] if not atoms: atoms = phases.atoms test = generate(atoms, natoms, exclude) test =
pd.DataFrame({'phases': test})
pandas.DataFrame
from evalutils.exceptions import ValidationError from evalutils.io import CSVLoader, FileLoader, ImageLoader import json import nibabel as nib import numpy as np import os.path from pathlib import Path from pandas import DataFrame, MultiIndex import scipy.ndimage from scipy.ndimage.interpolation import map_coordinates, zoom from surface_distance import * ##### paths ##### DEFAULT_INPUT_PATH = Path("/input/") DEFAULT_GROUND_TRUTH_PATH = Path("/opt/evaluation/ground-truth/") DEFAULT_EVALUATION_OUTPUT_FILE_PATH = Path("/output/metrics.json") ##### metrics ##### def jacobian_determinant(disp): _, _, H, W, D = disp.shape gradx = np.array([-0.5, 0, 0.5]).reshape(1, 3, 1, 1) grady = np.array([-0.5, 0, 0.5]).reshape(1, 1, 3, 1) gradz = np.array([-0.5, 0, 0.5]).reshape(1, 1, 1, 3) gradx_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], gradx, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], gradx, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], gradx, mode='constant', cval=0.0)], axis=1) grady_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], grady, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], grady, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], grady, mode='constant', cval=0.0)], axis=1) gradz_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], gradz, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], gradz, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], gradz, mode='constant', cval=0.0)], axis=1) grad_disp = np.concatenate([gradx_disp, grady_disp, gradz_disp], 0) jacobian = grad_disp + np.eye(3, 3).reshape(3, 3, 1, 1, 1) jacobian = jacobian[:, :, 2:-2, 2:-2, 2:-2] jacdet = jacobian[0, 0, :, :, :] * (jacobian[1, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[1, 2, :, :, :] * jacobian[2, 1, :, :, :]) -\ jacobian[1, 0, :, :, :] * (jacobian[0, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[2, 1, :, :, :]) +\ jacobian[2, 0, :, :, :] * (jacobian[0, 1, :, :, :] * jacobian[1, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[1, 1, :, :, :]) return jacdet def compute_tre(x, y, spacing): return np.linalg.norm((x - y) * spacing, axis=1) ##### file loader ##### class NiftiLoader(ImageLoader): @staticmethod def load_image(fname): return nib.load(str(fname)) @staticmethod def hash_image(image): return hash(image.get_fdata().tostring()) class NumpyLoader(ImageLoader): @staticmethod def load_image(fname): return np.load(str(fname))['arr_0'] @staticmethod def hash_image(image): return hash(image.tostring()) class CURIOUSLmsLoader(FileLoader): def load(self, fname): lms_fixed = [] lms_moving = [] f = open(fname, 'r') for line in f.readlines()[5:]: lms = [float(lm) for lm in line.split(' ')[1:-1]] lms_fixed.append(lms[:3]) lms_moving.append(lms[3:]) return {'lms_fixed': lms_fixed, 'lms_moving': lms_moving} class L2RLmsLoader(FileLoader): def load(self, fname): lms_fixed = [] lms_moving = [] f = open(fname, 'r') for line in f.readlines(): lms = [float(lm) for lm in line.split(',')] lms_fixed.append(lms[:3]) lms_moving.append(lms[3:]) return {'lms_fixed': lms_fixed, 'lms_moving': lms_moving} ##### validation errors ##### def raise_missing_file_error(fname): message = ( f"The displacement field {fname} is missing. " f"Please provide all required displacement fields." ) raise ValidationError(message) def raise_dtype_error(fname, dtype): message = ( f"The displacement field {fname} has a wrong dtype ('{dtype}'). " f"All displacement fields should have dtype 'float16'." ) raise ValidationError(message) def raise_shape_error(fname, shape, expected_shape): message = ( f"The displacement field {fname} has a wrong shape ('{shape[0]}x{shape[1]}x{shape[2]}x{shape[3]}'). " f"The expected shape of displacement fields for this task is {expected_shape[0]}x{expected_shape[1]}x{expected_shape[2]}x{expected_shape[3]}." ) raise ValidationError(message) ##### eval val ##### class EvalVal(): def __init__(self): self.ground_truth_path = DEFAULT_GROUND_TRUTH_PATH self.predictions_path = DEFAULT_INPUT_PATH self.output_file = DEFAULT_EVALUATION_OUTPUT_FILE_PATH self.csv_loader = CSVLoader() self.nifti_loader = NiftiLoader() self.numpy_loader = NumpyLoader() self.curious_lms_loader = CURIOUSLmsLoader() self.l2r_lms_loader = L2RLmsLoader() self.pairs_task_01 = DataFrame() self.imgs_task_01 = DataFrame() self.lms_task_01 = DataFrame() self.disp_fields_task_01 = DataFrame() self.cases_task_01 = DataFrame() self.pairs_task_02 =
DataFrame()
pandas.DataFrame
import math import copy import numpy as np import pandas as pd import scipy.interpolate as interp import scipy.fftpack as fft from .base import QualityControlBaseAccessor from .utils import * #=============================General Accessors==============================# @pd.api.extensions.register_series_accessor("qc") class QualityControlSeriesAccessor(QualityControlBaseAccessor): def describe(self): out_dict = dict(mean = self._obj.mean(), std = self._obj.std(), skew= self._obj.skew(), kurt= self._obj.kurtosis(), pct_null = self._obj.isna().sum()/self._obj.size, stationarity_measure = self.stationarity_measure, pct_spike_flag = self.spike_mask.sum()/self._obj.size, pct_hist_flag = self.hist_mask.sum()/self._obj.size) return
pd.Series(out_dict, name=self._obj.name)
pandas.Series
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from .example import replace_all_nulls_with_value @pytest.fixture def df_none_missing(): """ return a 3x3 dataframe with no missing values """ cols = ['a', 'b', 'c'] data = [[0, 1, 0], [0, 0, 1], [1, 1, 1]] return pd.DataFrame(data, columns=cols) @pytest.fixture def df_missing(): """ return a 3x3 dataframe with a couple of NaNs """ df = df_none_missing() df.ix[0, 2] = np.nan df.ix[2, 1] = np.nan return df def test_replace_all_nulls_does_nothing_if_no_nulls(df_none_missing): new_df = replace_all_nulls_with_value(df_none_missing, -1) assert (df_none_missing.values == new_df.values).all() assert
pd.notnull(new_df.values)
pandas.notnull
import datetime import numpy as np import pytest import pytz import pandas as pd from pandas import Timedelta, merge_asof, read_csv, to_datetime import pandas._testing as tm from pandas.core.reshape.merge import MergeError class TestAsOfMerge: def read_data(self, datapath, name, dedupe=False): path = datapath("reshape", "merge", "data", name) x = read_csv(path) if dedupe: x = x.drop_duplicates(["time", "ticker"], keep="last").reset_index( drop=True ) x.time = to_datetime(x.time) return x @pytest.fixture(autouse=True) def setup_method(self, datapath): self.trades = self.read_data(datapath, "trades.csv") self.quotes = self.read_data(datapath, "quotes.csv", dedupe=True) self.asof = self.read_data(datapath, "asof.csv") self.tolerance = self.read_data(datapath, "tolerance.csv") self.allow_exact_matches = self.read_data(datapath, "allow_exact_matches.csv") self.allow_exact_matches_and_tolerance = self.read_data( datapath, "allow_exact_matches_and_tolerance.csv" ) def test_examples1(self): """ doc-string examples """ left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 3, 7]} ) result = pd.merge_asof(left, right, on="a") tm.assert_frame_equal(result, expected) def test_examples2(self): """ doc-string examples """ trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.038", "20160525 13:30:00.048", "20160525 13:30:00.048", "20160525 13:30:00.048", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.048", "20160525 13:30:00.049", "20160525 13:30:00.072", "20160525 13:30:00.075", ] ), "ticker": [ "GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT", ], "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03], }, columns=["time", "ticker", "bid", "ask"], ) pd.merge_asof(trades, quotes, on="time", by="ticker") pd.merge_asof( trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms") ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.038", "20160525 13:30:00.048", "20160525 13:30:00.048", "20160525 13:30:00.048", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.97, np.nan, np.nan, np.nan], "ask": [np.nan, 51.98, np.nan, np.nan, np.nan], }, columns=["time", "ticker", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof( trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("10ms"), allow_exact_matches=False, ) tm.assert_frame_equal(result, expected) def test_examples3(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 6, np.nan]} ) result = pd.merge_asof(left, right, on="a", direction="forward") tm.assert_frame_equal(result, expected) def test_examples4(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 6, 7]} ) result = pd.merge_asof(left, right, on="a", direction="nearest") tm.assert_frame_equal(result, expected) def test_basic(self): expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_categorical(self): expected = self.asof trades = self.trades.copy() trades.ticker = trades.ticker.astype("category") quotes = self.quotes.copy() quotes.ticker = quotes.ticker.astype("category") expected.ticker = expected.ticker.astype("category") result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_left_index(self): # GH14253 expected = self.asof trades = self.trades.set_index("time") quotes = self.quotes result = merge_asof( trades, quotes, left_index=True, right_on="time", by="ticker" ) # left-only index uses right"s index, oddly expected.index = result.index # time column appears after left"s columns expected = expected[result.columns] tm.assert_frame_equal(result, expected) def test_basic_right_index(self): expected = self.asof trades = self.trades quotes = self.quotes.set_index("time") result = merge_asof( trades, quotes, left_on="time", right_index=True, by="ticker" ) tm.assert_frame_equal(result, expected) def test_basic_left_index_right_index(self): expected = self.asof.set_index("time") trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") result = merge_asof( trades, quotes, left_index=True, right_index=True, by="ticker" ) tm.assert_frame_equal(result, expected) def test_multi_index_on(self): def index_by_time_then_arbitrary_new_level(df): df = df.set_index("time") df = pd.concat([df, df], keys=["f1", "f2"], names=["f", "time"]) return df.reorder_levels([1, 0]).sort_index() trades = index_by_time_then_arbitrary_new_level(self.trades) quotes = index_by_time_then_arbitrary_new_level(self.quotes) expected = index_by_time_then_arbitrary_new_level(self.asof) result = merge_asof(trades, quotes, on="time", by=["ticker"]) tm.assert_frame_equal(result, expected) def test_on_and_index(self): # "on" parameter and index together is prohibited trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") with pytest.raises(MergeError): merge_asof( trades, quotes, left_on="price", left_index=True, right_index=True ) trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") with pytest.raises(MergeError): merge_asof( trades, quotes, right_on="bid", left_index=True, right_index=True ) def test_basic_left_by_right_by(self): # GH14253 expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof( trades, quotes, on="time", left_by="ticker", right_by="ticker" ) tm.assert_frame_equal(result, expected) def test_missing_right_by(self): expected = self.asof trades = self.trades quotes = self.quotes q = quotes[quotes.ticker != "MSFT"] result = merge_asof(trades, q, on="time", by="ticker") expected.loc[expected.ticker == "MSFT", ["bid", "ask"]] = np.nan tm.assert_frame_equal(result, expected) def test_multiby(self): # GH13936 trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "exch", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.045", "20160525 13:30:00.049", ] ), "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL"], "exch": ["BATS", "NSDQ", "ARCA", "ARCA", "NSDQ", "ARCA"], "bid": [720.51, 51.95, 51.97, 51.99, 720.50, 97.99], "ask": [720.92, 51.96, 51.98, 52.00, 720.93, 98.01], }, columns=["time", "ticker", "exch", "bid", "ask"], ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.95, 720.50, 720.51, np.nan], "ask": [np.nan, 51.96, 720.93, 720.92, np.nan], }, columns=["time", "ticker", "exch", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof(trades, quotes, on="time", by=["ticker", "exch"]) tm.assert_frame_equal(result, expected) def test_multiby_heterogeneous_types(self): # GH13936 trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": [0, 0, 1, 1, 2], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "exch", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.045", "20160525 13:30:00.049", ] ), "ticker": [1, 0, 0, 0, 1, 2], "exch": ["BATS", "NSDQ", "ARCA", "ARCA", "NSDQ", "ARCA"], "bid": [720.51, 51.95, 51.97, 51.99, 720.50, 97.99], "ask": [720.92, 51.96, 51.98, 52.00, 720.93, 98.01], }, columns=["time", "ticker", "exch", "bid", "ask"], ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": [0, 0, 1, 1, 2], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.95, 720.50, 720.51, np.nan], "ask": [np.nan, 51.96, 720.93, 720.92, np.nan], }, columns=["time", "ticker", "exch", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof(trades, quotes, on="time", by=["ticker", "exch"]) tm.assert_frame_equal(result, expected) def test_multiby_indexed(self): # GH15676 left = pd.DataFrame( [ [pd.to_datetime("20160602"), 1, "a"], [pd.to_datetime("20160602"), 2, "a"], [pd.to_datetime("20160603"), 1, "b"], [pd.to_datetime("20160603"), 2, "b"], ], columns=["time", "k1", "k2"], ).set_index("time") right = pd.DataFrame( [ [pd.to_datetime("20160502"), 1, "a", 1.0], [pd.to_datetime("20160502"), 2, "a", 2.0], [pd.to_datetime("20160503"), 1, "b", 3.0], [pd.to_datetime("20160503"), 2, "b", 4.0], ], columns=["time", "k1", "k2", "value"], ).set_index("time") expected = pd.DataFrame( [ [pd.to_datetime("20160602"), 1, "a", 1.0], [pd.to_datetime("20160602"), 2, "a", 2.0], [pd.to_datetime("20160603"), 1, "b", 3.0], [pd.to_datetime("20160603"), 2, "b", 4.0], ], columns=["time", "k1", "k2", "value"], ).set_index("time") result = pd.merge_asof( left, right, left_index=True, right_index=True, by=["k1", "k2"] ) tm.assert_frame_equal(expected, result) with pytest.raises(MergeError): pd.merge_asof( left, right, left_index=True, right_index=True, left_by=["k1", "k2"], right_by=["k1"], ) def test_basic2(self, datapath): expected = self.read_data(datapath, "asof2.csv") trades = self.read_data(datapath, "trades2.csv") quotes = self.read_data(datapath, "quotes2.csv", dedupe=True) result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_no_by(self): f = ( lambda x: x[x.ticker == "MSFT"] .drop("ticker", axis=1) .reset_index(drop=True) ) # just use a single ticker expected = f(self.asof) trades = f(self.trades) quotes = f(self.quotes) result = merge_asof(trades, quotes, on="time") tm.assert_frame_equal(result, expected) def test_valid_join_keys(self): trades = self.trades quotes = self.quotes with pytest.raises(MergeError): merge_asof(trades, quotes, left_on="time", right_on="bid", by="ticker") with pytest.raises(MergeError): merge_asof(trades, quotes, on=["time", "ticker"], by="ticker") with pytest.raises(MergeError): merge_asof(trades, quotes, by="ticker") def test_with_duplicates(self, datapath): q = ( pd.concat([self.quotes, self.quotes]) .sort_values(["time", "ticker"]) .reset_index(drop=True) ) result = merge_asof(self.trades, q, on="time", by="ticker") expected = self.read_data(datapath, "asof.csv") tm.assert_frame_equal(result, expected) def test_with_duplicates_no_on(self): df1 = pd.DataFrame({"key": [1, 1, 3], "left_val": [1, 2, 3]}) df2 = pd.DataFrame({"key": [1, 2, 2], "right_val": [1, 2, 3]}) result = merge_asof(df1, df2, on="key") expected = pd.DataFrame( {"key": [1, 1, 3], "left_val": [1, 2, 3], "right_val": [1, 1, 3]} ) tm.assert_frame_equal(result, expected) def test_valid_allow_exact_matches(self): trades = self.trades quotes = self.quotes with pytest.raises(MergeError): merge_asof( trades, quotes, on="time", by="ticker", allow_exact_matches="foo" ) def test_valid_tolerance(self): trades = self.trades quotes = self.quotes # dti merge_asof(trades, quotes, on="time", by="ticker", tolerance=Timedelta("1s")) # integer merge_asof( trades.reset_index(), quotes.reset_index(), on="index", by="ticker", tolerance=1, ) # incompat with pytest.raises(MergeError): merge_asof(trades, quotes, on="time", by="ticker", tolerance=1) # invalid with pytest.raises(MergeError): merge_asof( trades.reset_index(), quotes.reset_index(), on="index", by="ticker", tolerance=1.0, ) # invalid negative with pytest.raises(MergeError): merge_asof( trades, quotes, on="time", by="ticker", tolerance=-Timedelta("1s") ) with pytest.raises(MergeError): merge_asof( trades.reset_index(), quotes.reset_index(), on="index", by="ticker", tolerance=-1, ) def test_non_sorted(self): trades = self.trades.sort_values("time", ascending=False) quotes = self.quotes.sort_values("time", ascending=False) # we require that we are already sorted on time & quotes assert not trades.time.is_monotonic assert not quotes.time.is_monotonic with pytest.raises(ValueError): merge_asof(trades, quotes, on="time", by="ticker") trades = self.trades.sort_values("time") assert trades.time.is_monotonic assert not quotes.time.is_monotonic with pytest.raises(ValueError): merge_asof(trades, quotes, on="time", by="ticker") quotes = self.quotes.sort_values("time") assert trades.time.is_monotonic assert quotes.time.is_monotonic # ok, though has dupes merge_asof(trades, self.quotes, on="time", by="ticker") @pytest.mark.parametrize( "tolerance", [Timedelta("1day"), datetime.timedelta(days=1)], ids=["pd.Timedelta", "datetime.timedelta"], ) def test_tolerance(self, tolerance): trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on="time", by="ticker", tolerance=tolerance) expected = self.tolerance tm.assert_frame_equal(result, expected) def test_tolerance_forward(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, np.nan, 11]} ) result = pd.merge_asof(left, right, on="a", direction="forward", tolerance=1) tm.assert_frame_equal(result, expected) def test_tolerance_nearest(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, np.nan, 11]} ) result = pd.merge_asof(left, right, on="a", direction="nearest", tolerance=1) tm.assert_frame_equal(result, expected) def test_tolerance_tz(self): # GH 14844 left = pd.DataFrame( { "date": pd.date_range( start=pd.to_datetime("2016-01-02"), freq="D", periods=5, tz=pytz.timezone("UTC"), ), "value1": np.arange(5), } ) right = pd.DataFrame( { "date": pd.date_range( start=pd.to_datetime("2016-01-01"), freq="D", periods=5, tz=pytz.timezone("UTC"), ), "value2": list("ABCDE"), } ) result = pd.merge_asof(left, right, on="date", tolerance=pd.Timedelta("1 day")) expected = pd.DataFrame( { "date": pd.date_range( start=pd.to_datetime("2016-01-02"), freq="D", periods=5, tz=pytz.timezone("UTC"), ), "value1": np.arange(5), "value2": list("BCDEE"), } ) tm.assert_frame_equal(result, expected) def test_tolerance_float(self): # GH22981 left = pd.DataFrame({"a": [1.1, 3.5, 10.9], "left_val": ["a", "b", "c"]}) right = pd.DataFrame( {"a": [1.0, 2.5, 3.3, 7.5, 11.5], "right_val": [1.0, 2.5, 3.3, 7.5, 11.5]} ) expected = pd.DataFrame( { "a": [1.1, 3.5, 10.9], "left_val": ["a", "b", "c"], "right_val": [1, 3.3, np.nan], } ) result = pd.merge_asof(left, right, on="a", direction="nearest", tolerance=0.5) tm.assert_frame_equal(result, expected) def test_index_tolerance(self): # GH 15135 expected = self.tolerance.set_index("time") trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") result = pd.merge_asof( trades, quotes, left_index=True, right_index=True, by="ticker", tolerance=pd.Timedelta("1day"), ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches(self): result = merge_asof( self.trades, self.quotes, on="time", by="ticker", allow_exact_matches=False ) expected = self.allow_exact_matches tm.assert_frame_equal(result, expected) def test_allow_exact_matches_forward(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [2, 7, 11]} ) result = pd.merge_asof( left, right, on="a", direction="forward", allow_exact_matches=False ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_nearest(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [2, 3, 11]} ) result = pd.merge_asof( left, right, on="a", direction="nearest", allow_exact_matches=False ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance(self): result = merge_asof( self.trades, self.quotes, on="time", by="ticker", tolerance=Timedelta("100ms"), allow_exact_matches=False, ) expected = self.allow_exact_matches_and_tolerance tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance2(self): # GH 13695 df1 = pd.DataFrame( {"time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"]} ) df2 = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.000", "2016-07-15 13:30:00.030"] ), "version": [1, 2], } ) result = pd.merge_asof(df1, df2, on="time") expected = pd.DataFrame( { "time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"], "version": [2], } ) tm.assert_frame_equal(result, expected) result = pd.merge_asof(df1, df2, on="time", allow_exact_matches=False) expected = pd.DataFrame( { "time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"], "version": [1], } ) tm.assert_frame_equal(result, expected) result = pd.merge_asof( df1, df2, on="time", allow_exact_matches=False, tolerance=pd.Timedelta("10ms"), ) expected = pd.DataFrame( { "time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"], "version": [np.nan], } ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance3(self): # GH 13709 df1 = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.030", "2016-07-15 13:30:00.030"] ), "username": ["bob", "charlie"], } ) df2 = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.000", "2016-07-15 13:30:00.030"] ), "version": [1, 2], } ) result = pd.merge_asof( df1, df2, on="time", allow_exact_matches=False, tolerance=pd.Timedelta("10ms"), ) expected = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.030", "2016-07-15 13:30:00.030"] ), "username": ["bob", "charlie"], "version": [np.nan, np.nan], } ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance_forward(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 3, 4, 6, 11], "right_val": [1, 3, 4, 6, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [np.nan, 6, 11]} ) result = pd.merge_asof( left, right, on="a", direction="forward", allow_exact_matches=False, tolerance=1, ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance_nearest(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 3, 4, 6, 11], "right_val": [1, 3, 4, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [np.nan, 4, 11]} ) result = pd.merge_asof( left, right, on="a", direction="nearest", allow_exact_matches=False, tolerance=1, ) tm.assert_frame_equal(result, expected) def test_forward_by(self): # GH14887 left = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Y", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], } ) right = pd.DataFrame( { "a": [1, 6, 11, 15, 16], "b": ["X", "Z", "Y", "Z", "Y"], "right_val": [1, 6, 11, 15, 16], } ) expected = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Y", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], "right_val": [1, np.nan, 11, 15, 16], } ) result = pd.merge_asof(left, right, on="a", by="b", direction="forward") tm.assert_frame_equal(result, expected) def test_nearest_by(self): # GH14887 left = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Z", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], } ) right = pd.DataFrame( { "a": [1, 6, 11, 15, 16], "b": ["X", "Z", "Z", "Z", "Y"], "right_val": [1, 6, 11, 15, 16], } ) expected = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Z", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], "right_val": [1, 1, 11, 11, 16], } ) result = pd.merge_asof(left, right, on="a", by="b", direction="nearest") tm.assert_frame_equal(result, expected) def test_by_int(self): # we specialize by type, so test that this is correct df1 = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.020", "20160525 13:30:00.030", "20160525 13:30:00.040", "20160525 13:30:00.050", "20160525 13:30:00.060", ] ), "key": [1, 2, 1, 3, 2], "value1": [1.1, 1.2, 1.3, 1.4, 1.5], }, columns=["time", "key", "value1"], ) df2 = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.015", "20160525 13:30:00.020", "20160525 13:30:00.025", "20160525 13:30:00.035", "20160525 13:30:00.040", "20160525 13:30:00.055", "20160525 13:30:00.060", "20160525 13:30:00.065", ] ), "key": [2, 1, 1, 3, 2, 1, 2, 3], "value2": [2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8], }, columns=["time", "key", "value2"], ) result = pd.merge_asof(df1, df2, on="time", by="key") expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.020", "20160525 13:30:00.030", "20160525 13:30:00.040", "20160525 13:30:00.050", "20160525 13:30:00.060", ] ), "key": [1, 2, 1, 3, 2], "value1": [1.1, 1.2, 1.3, 1.4, 1.5], "value2": [2.2, 2.1, 2.3, 2.4, 2.7], }, columns=["time", "key", "value1", "value2"], ) tm.assert_frame_equal(result, expected) def test_on_float(self): # mimics how to determine the minimum-price variation df1 = pd.DataFrame( { "price": [5.01, 0.0023, 25.13, 340.05, 30.78, 1040.90, 0.0078], "symbol": list("ABCDEFG"), }, columns=["symbol", "price"], ) df2 = pd.DataFrame( {"price": [0.0, 1.0, 100.0], "mpv": [0.0001, 0.01, 0.05]}, columns=["price", "mpv"], ) df1 = df1.sort_values("price").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="price") expected = pd.DataFrame( { "symbol": list("BGACEDF"), "price": [0.0023, 0.0078, 5.01, 25.13, 30.78, 340.05, 1040.90], "mpv": [0.0001, 0.0001, 0.01, 0.01, 0.01, 0.05, 0.05], }, columns=["symbol", "price", "mpv"], ) tm.assert_frame_equal(result, expected) def test_on_specialized_type(self, any_real_dtype): # see gh-13936 dtype = np.dtype(any_real_dtype).type df1 = pd.DataFrame( {"value": [5, 2, 25, 100, 78, 120, 79], "symbol": list("ABCDEFG")}, columns=["symbol", "value"], ) df1.value = dtype(df1.value) df2 = pd.DataFrame( {"value": [0, 80, 120, 125], "result": list("xyzw")}, columns=["value", "result"], ) df2.value = dtype(df2.value) df1 = df1.sort_values("value").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="value") expected = pd.DataFrame( { "symbol": list("BACEGDF"), "value": [2, 5, 25, 78, 79, 100, 120], "result": list("xxxxxyz"), }, columns=["symbol", "value", "result"], ) expected.value = dtype(expected.value) tm.assert_frame_equal(result, expected) def test_on_specialized_type_by_int(self, any_real_dtype): # see gh-13936 dtype = np.dtype(any_real_dtype).type df1 = pd.DataFrame( { "value": [5, 2, 25, 100, 78, 120, 79], "key": [1, 2, 3, 2, 3, 1, 2], "symbol": list("ABCDEFG"), }, columns=["symbol", "key", "value"], ) df1.value = dtype(df1.value) df2 = pd.DataFrame( {"value": [0, 80, 120, 125], "key": [1, 2, 2, 3], "result": list("xyzw")}, columns=["value", "key", "result"], ) df2.value = dtype(df2.value) df1 = df1.sort_values("value").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="value", by="key") expected = pd.DataFrame( { "symbol": list("BACEGDF"), "key": [2, 1, 3, 3, 2, 2, 1], "value": [2, 5, 25, 78, 79, 100, 120], "result": [np.nan, "x", np.nan, np.nan, np.nan, "y", "x"], }, columns=["symbol", "key", "value", "result"], ) expected.value = dtype(expected.value) tm.assert_frame_equal(result, expected) def test_on_float_by_int(self): # type specialize both "by" and "on" parameters df1 = pd.DataFrame( { "symbol": list("AAABBBCCC"), "exch": [1, 2, 3, 1, 2, 3, 1, 2, 3], "price": [ 3.26, 3.2599, 3.2598, 12.58, 12.59, 12.5, 378.15, 378.2, 378.25, ], }, columns=["symbol", "exch", "price"], ) df2 = pd.DataFrame( { "exch": [1, 1, 1, 2, 2, 2, 3, 3, 3], "price": [0.0, 1.0, 100.0, 0.0, 5.0, 100.0, 0.0, 5.0, 1000.0], "mpv": [0.0001, 0.01, 0.05, 0.0001, 0.01, 0.1, 0.0001, 0.25, 1.0], }, columns=["exch", "price", "mpv"], ) df1 = df1.sort_values("price").reset_index(drop=True) df2 = df2.sort_values("price").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="price", by="exch") expected = pd.DataFrame( { "symbol": list("AAABBBCCC"), "exch": [3, 2, 1, 3, 1, 2, 1, 2, 3], "price": [ 3.2598, 3.2599, 3.26, 12.5, 12.58, 12.59, 378.15, 378.2, 378.25, ], "mpv": [0.0001, 0.0001, 0.01, 0.25, 0.01, 0.01, 0.05, 0.1, 0.25], }, columns=["symbol", "exch", "price", "mpv"], ) tm.assert_frame_equal(result, expected) def test_merge_datatype_error_raises(self): msg = r"incompatible merge keys \[0\] .*, must be the same type" left = pd.DataFrame({"left_val": [1, 5, 10], "a": ["a", "b", "c"]}) right = pd.DataFrame({"right_val": [1, 2, 3, 6, 7], "a": [1, 2, 3, 6, 7]}) with pytest.raises(MergeError, match=msg): merge_asof(left, right, on="a") def test_merge_datatype_categorical_error_raises(self): msg = ( r"incompatible merge keys \[0\] .* both sides category, " "but not equal ones" ) left = pd.DataFrame( {"left_val": [1, 5, 10], "a": pd.Categorical(["a", "b", "c"])} ) right = pd.DataFrame( { "right_val": [1, 2, 3, 6, 7], "a": pd.Categorical(["a", "X", "c", "X", "b"]), } ) with pytest.raises(MergeError, match=msg): merge_asof(left, right, on="a") def test_merge_groupby_multiple_column_with_categorical_column(self): # GH 16454 df = pd.DataFrame({"x": [0], "y": [0], "z": pd.Categorical([0])}) result = merge_asof(df, df, on="x", by=["y", "z"]) expected = pd.DataFrame({"x": [0], "y": [0], "z": pd.Categorical([0])}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "func", [lambda x: x, lambda x: to_datetime(x)], ids=["numeric", "datetime"] ) @pytest.mark.parametrize("side", ["left", "right"]) def test_merge_on_nans(self, func, side): # GH 23189 msg = f"Merge keys contain null values on {side} side" nulls = func([1.0, 5.0, np.nan]) non_nulls = func([1.0, 5.0, 10.0]) df_null = pd.DataFrame({"a": nulls, "left_val": ["a", "b", "c"]}) df = pd.DataFrame({"a": non_nulls, "right_val": [1, 6, 11]}) with pytest.raises(ValueError, match=msg): if side == "left": merge_asof(df_null, df, on="a") else: merge_asof(df, df_null, on="a") def test_merge_by_col_tz_aware(self): # GH 21184 left = pd.DataFrame( { "by_col": pd.DatetimeIndex(["2018-01-01"]).tz_localize("UTC"), "on_col": [2], "values": ["a"], } ) right = pd.DataFrame( { "by_col": pd.DatetimeIndex(["2018-01-01"]).tz_localize("UTC"), "on_col": [1], "values": ["b"], } ) result = pd.merge_asof(left, right, by="by_col", on="on_col") expected = pd.DataFrame( [[pd.Timestamp("2018-01-01", tz="UTC"), 2, "a", "b"]], columns=["by_col", "on_col", "values_x", "values_y"], ) tm.assert_frame_equal(result, expected) def test_by_mixed_tz_aware(self): # GH 26649 left = pd.DataFrame( { "by_col1": pd.DatetimeIndex(["2018-01-01"]).tz_localize("UTC"), "by_col2": ["HELLO"], "on_col": [2], "value": ["a"], } ) right = pd.DataFrame( { "by_col1": pd.DatetimeIndex(["2018-01-01"]).tz_localize("UTC"), "by_col2": ["WORLD"], "on_col": [1], "value": ["b"], } ) result = pd.merge_asof(left, right, by=["by_col1", "by_col2"], on="on_col") expected = pd.DataFrame( [[pd.Timestamp("2018-01-01", tz="UTC"), "HELLO", 2, "a"]], columns=["by_col1", "by_col2", "on_col", "value_x"], ) expected["value_y"] = np.array([np.nan], dtype=object)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import arcpy import pandas as pd import ppa_input_params as p import npmrds_data_conflation as ndc def get_wtdavg_truckdata(in_df, col_name): len_cols = ['{}_calc_len'.format(dirn) for dirn in p.directions_tmc] val_cols = ['{}{}'.format(dirn, col_name) for dirn in p.directions_tmc] wtd_dict = dict(zip(len_cols, val_cols)) wtd_val_sum = 0 dist_sum = 0 for dirlen, dirval in wtd_dict.items(): dir_val2 = 0 if
pd.isnull(in_df[dirval][0])
pandas.isnull
# -*- coding: utf-8 -*- # @File : plot_utils.py # @Author : <NAME> # @Time : 2021/10/29 下午9:56 # @Disc : import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import os from xgboost.sklearn import XGBModel from typing import List from sklearn.metrics import roc_curve, classification_report, roc_auc_score, confusion_matrix from src.utils.confusion_matrix_pretty_print import pretty_plot_confusion_matrix def count_plot(df: pd.DataFrame, col: str, xytext=(0, 0), show_details=True) -> None: ''' custom count plot Args: df: col: xytext: Returns: ''' ax = sns.countplot(data=df, x=col) if show_details: for bar in ax.patches: ax.annotate('%{:.2f}\n{:.0f}'.format(100*bar.get_height()/len(df),bar.get_height()), (bar.get_x() + bar.get_width() / 2, bar.get_height()), ha='center', va='center', size=11, xytext=xytext, textcoords='offset points') plt.show() def plot_feature_importances(model: XGBModel, feature_cols: List[str], show_feature_num=10, figsize=(20, 10), fig_dir=None): """ plot feature importance of xgboost model Args: model: feature_cols: show_feature_num: figsize: Returns: """ feature_imp =
pd.Series(model.feature_importances_, index=feature_cols)
pandas.Series
import pandas as pd import csv def save_table_dict_csv(fn, table_dict): fn_csv = fn + '.csv' with open(fn_csv, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=table_dict.keys(), lineterminator='\n') writer.writeheader() for id in range(0, len(list(table_dict.values())[0])): tmp_dict = {} for key, values in table_dict.items(): tmp_dict[key] = values[id] writer.writerow(tmp_dict) def save_table_dict(fn, table_dict): fn_xls = fn + '.xlsx' df =
pd.DataFrame(table_dict)
pandas.DataFrame
import calendar from ..utils import search_quote from datetime import datetime, timedelta from ..utils import process_dataframe_and_series import rich from jsonpath import jsonpath from retry import retry import pandas as pd import requests import multitasking import signal from tqdm import tqdm from typing import (Dict, List, Union) from ..shared import session from ..common import get_quote_history as get_quote_history_for_stock from ..common import get_history_bill as get_history_bill_for_stock from ..common import get_today_bill as get_today_bill_for_stock from ..common import get_realtime_quotes_by_fs from ..utils import (to_numeric, get_quote_id) from .config import EASTMONEY_STOCK_DAILY_BILL_BOARD_FIELDS, EASTMONEY_STOCK_BASE_INFO_FIELDS from ..common.config import ( FS_DICT, MARKET_NUMBER_DICT, EASTMONEY_REQUEST_HEADERS, EASTMONEY_QUOTE_FIELDS ) signal.signal(signal.SIGINT, multitasking.killall) @to_numeric def get_base_info_single(stock_code: str) -> pd.Series: """ 获取单股票基本信息 Parameters ---------- stock_code : str 股票代码 Returns ------- Series 单只股票基本信息 """ fields = ",".join(EASTMONEY_STOCK_BASE_INFO_FIELDS.keys()) secid = get_quote_id(stock_code) if not secid: return pd.Series(index=EASTMONEY_STOCK_BASE_INFO_FIELDS.values()) params = ( ('ut', 'fa5fd1943c7b386f172d6893dbfba10b'), ('invt', '2'), ('fltt', '2'), ('fields', fields), ('secid', secid), ) url = 'http://push2.eastmoney.com/api/qt/stock/get' json_response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() s = pd.Series(json_response['data']).rename( index=EASTMONEY_STOCK_BASE_INFO_FIELDS) return s[EASTMONEY_STOCK_BASE_INFO_FIELDS.values()] def get_base_info_muliti(stock_codes: List[str]) -> pd.DataFrame: """ 获取股票多只基本信息 Parameters ---------- stock_codes : List[str] 股票代码列表 Returns ------- DataFrame 多只股票基本信息 """ @multitasking.task @retry(tries=3, delay=1) def start(stock_code: str): s = get_base_info_single(stock_code) dfs.append(s) pbar.update() pbar.set_description(f'Processing => {stock_code}') dfs: List[pd.DataFrame] = [] pbar = tqdm(total=len(stock_codes)) for stock_code in stock_codes: start(stock_code) multitasking.wait_for_tasks() df = pd.DataFrame(dfs) df = df.dropna(subset=['股票代码']) return df @to_numeric def get_base_info(stock_codes: Union[str, List[str]]) -> Union[pd.Series, pd.DataFrame]: """ Parameters ---------- stock_codes : Union[str, List[str]] 股票代码或股票代码构成的列表 Returns ------- Union[Series, DataFrame] - ``Series`` : 包含单只股票基本信息(当 ``stock_codes`` 是字符串时) - ``DataFrane`` : 包含多只股票基本信息(当 ``stock_codes`` 是字符串列表时) Raises ------ TypeError 当 ``stock_codes`` 类型不符合要求时 Examples -------- >>> import efinance as ef >>> # 获取单只股票信息 >>> ef.stock.get_base_info('600519') 股票代码 600519 股票名称 贵州茅台 市盈率(动) 39.38 市净率 12.54 所处行业 酿酒行业 总市值 2198082348462.0 流通市值 2198082348462.0 板块编号 BK0477 ROE 8.29 净利率 54.1678 净利润 13954462085.610001 毛利率 91.6763 dtype: object >>> # 获取多只股票信息 >>> ef.stock.get_base_info(['600519','300715']) 股票代码 股票名称 市盈率(动) 市净率 所处行业 总市值 流通市值 板块编号 ROE 净利率 净利润 毛利率 0 300715 凯伦股份 42.29 3.12 水泥建材 9.160864e+09 6.397043e+09 BK0424 3.97 12.1659 5.415488e+07 32.8765 1 600519 贵州茅台 39.38 12.54 酿酒行业 2.198082e+12 2.198082e+12 BK0477 8.29 54.1678 1.395446e+10 91.6763 """ if isinstance(stock_codes, str): return get_base_info_single(stock_codes) elif hasattr(stock_codes, '__iter__'): return get_base_info_muliti(stock_codes) raise TypeError(f'所给的 {stock_codes} 不符合参数要求') def get_quote_history(stock_codes: Union[str, List[str]], beg: str = '19000101', end: str = '20500101', klt: int = 101, fqt: int = 1, **kwargs) -> Union[pd.DataFrame, Dict[str, pd.DataFrame]]: """ 获取股票的 K 线数据 Parameters ---------- stock_codes : Union[str,List[str]] 股票代码、名称 或者 股票代码、名称构成的列表 beg : str, optional 开始日期,默认为 ``'19000101'`` ,表示 1900年1月1日 end : str, optional 结束日期,默认为 ``'20500101'`` ,表示 2050年1月1日 klt : int, optional 行情之间的时间间隔,默认为 ``101`` ,可选示例如下 - ``1`` : 分钟 - ``5`` : 5 分钟 - ``15`` : 15 分钟 - ``30`` : 30 分钟 - ``60`` : 60 分钟 - ``101`` : 日 - ``102`` : 周 - ``103`` : 月 fqt : int, optional 复权方式,默认为 ``1`` ,可选示例如下 - ``0`` : 不复权 - ``1`` : 前复权 - ``2`` : 后复权 Returns ------- Union[DataFrame, Dict[str, DataFrame]] 股票的 K 线数据 - ``DataFrame`` : 当 ``stock_codes`` 是 ``str`` 时 - ``Dict[str, DataFrame]`` : 当 ``stock_codes`` 是 ``List[str]`` 时 Examples -------- >>> import efinance as ef >>> # 获取单只股票日 K 行情数据 >>> ef.stock.get_quote_history('600519') 股票名称 股票代码 日期 开盘 收盘 最高 最低 成交量 成交额 振幅 涨跌幅 涨跌额 换手率 0 贵州茅台 600519 2001-08-27 -89.74 -89.53 -89.08 -90.07 406318 1.410347e+09 -1.10 0.92 0.83 56.83 1 贵州茅台 600519 2001-08-28 -89.64 -89.27 -89.24 -89.72 129647 4.634630e+08 -0.54 0.29 0.26 18.13 2 贵州茅台 600519 2001-08-29 -89.24 -89.36 -89.24 -89.42 53252 1.946890e+08 -0.20 -0.10 -0.09 7.45 3 贵州茅台 600519 2001-08-30 -89.38 -89.22 -89.14 -89.44 48013 1.775580e+08 -0.34 0.16 0.14 6.72 4 贵州茅台 600519 2001-08-31 -89.21 -89.24 -89.12 -89.28 23231 8.623100e+07 -0.18 -0.02 -0.02 3.25 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4756 贵州茅台 600519 2021-07-23 1937.82 1900.00 1937.82 1895.09 47585 9.057762e+09 2.20 -2.06 -40.01 0.38 4757 贵州茅台 600519 2021-07-26 1879.00 1804.11 1879.00 1780.00 98619 1.789436e+10 5.21 -5.05 -95.89 0.79 4758 贵州茅台 600519 2021-07-27 1803.00 1712.89 1810.00 1703.00 86577 1.523081e+10 5.93 -5.06 -91.22 0.69 4759 贵州茅台 600519 2021-07-28 1703.00 1768.90 1788.20 1682.12 85369 1.479247e+10 6.19 3.27 56.01 0.68 4760 贵州茅台 600519 2021-07-29 1810.01 1749.79 1823.00 1734.34 63864 1.129957e+10 5.01 -1.08 -19.11 0.51 >>> # 获取多只股票历史行情 >>> stock_df = ef.stock.get_quote_history(['600519','300750']) >>> type(stock_df) <class 'dict'> >>> stock_df.keys() dict_keys(['300750', '600519']) >>> stock_df['600519'] 股票名称 股票代码 日期 开盘 收盘 最高 最低 成交量 成交额 振幅 涨跌幅 涨跌额 换手率 0 贵州茅台 600519 2001-08-27 -89.74 -89.53 -89.08 -90.07 406318 1.410347e+09 -1.10 0.92 0.83 56.83 1 贵州茅台 600519 2001-08-28 -89.64 -89.27 -89.24 -89.72 129647 4.634630e+08 -0.54 0.29 0.26 18.13 2 贵州茅台 600519 2001-08-29 -89.24 -89.36 -89.24 -89.42 53252 1.946890e+08 -0.20 -0.10 -0.09 7.45 3 贵州茅台 600519 2001-08-30 -89.38 -89.22 -89.14 -89.44 48013 1.775580e+08 -0.34 0.16 0.14 6.72 4 贵州茅台 600519 2001-08-31 -89.21 -89.24 -89.12 -89.28 23231 8.623100e+07 -0.18 -0.02 -0.02 3.25 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4756 贵州茅台 600519 2021-07-23 1937.82 1900.00 1937.82 1895.09 47585 9.057762e+09 2.20 -2.06 -40.01 0.38 4757 贵州茅台 600519 2021-07-26 1879.00 1804.11 1879.00 1780.00 98619 1.789436e+10 5.21 -5.05 -95.89 0.79 4758 贵州茅台 600519 2021-07-27 1803.00 1712.89 1810.00 1703.00 86577 1.523081e+10 5.93 -5.06 -91.22 0.69 4759 贵州茅台 600519 2021-07-28 1703.00 1768.90 1788.20 1682.12 85369 1.479247e+10 6.19 3.27 56.01 0.68 4760 贵州茅台 600519 2021-07-29 1810.01 1749.79 1823.00 1734.34 63864 1.129957e+10 5.01 -1.08 -19.11 0.51 """ df = get_quote_history_for_stock( stock_codes, beg=beg, end=end, klt=klt, fqt=fqt ) if isinstance(df, pd.DataFrame): df.rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) elif isinstance(df, dict): for stock_code in df.keys(): df[stock_code].rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) # NOTE 扩展接口 设定此关键词即返回 DataFrame 而不是 dict if kwargs.get('return_df'): df: pd.DataFrame = pd.concat(df, axis=0, ignore_index=True) return df @process_dataframe_and_series(remove_columns_and_indexes=['市场编号']) @to_numeric def get_realtime_quotes(fs: Union[str, List[str]] = None) -> pd.DataFrame: """ 获取单个或者多个市场行情的最新状况 Parameters ---------- fs : Union[str, List[str]], optional 行情名称或者多个行情名列表 可选值及示例如下 - ``None`` 沪深京A股市场行情 - ``'沪深A股'`` 沪深A股市场行情 - ``'沪A'`` 沪市A股市场行情 - ``'深A'`` 深市A股市场行情 - ``北A`` 北证A股市场行情 - ``'可转债'`` 沪深可转债市场行情 - ``'期货'`` 期货市场行情 - ``'创业板'`` 创业板市场行情 - ``'美股'`` 美股市场行情 - ``'港股'`` 港股市场行情 - ``'中概股'`` 中国概念股市场行情 - ``'新股'`` 沪深新股市场行情 - ``'科创板'`` 科创板市场行情 - ``'沪股通'`` 沪股通市场行情 - ``'深股通'`` 深股通市场行情 - ``'行业板块'`` 行业板块市场行情 - ``'概念板块'`` 概念板块市场行情 - ``'沪深系列指数'`` 沪深系列指数市场行情 - ``'上证系列指数'`` 上证系列指数市场行情 - ``'深证系列指数'`` 深证系列指数市场行情 - ``'ETF'`` ETF 基金市场行情 - ``'LOF'`` LOF 基金市场行情 Returns ------- DataFrame 单个或者多个市场行情的最新状况 Raises ------ KeyError 当参数 ``fs`` 中含有不正确的行情类型时引发错误 Examples -------- >>> import efinance as ef >>> ef.stock.get_realtime_quotes() 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 688787 N海天 277.59 139.48 172.39 139.25 171.66 102.54 85.62 - 78.93 74519 1110318832.0 36.94 5969744000 1213908667 1.688787 沪A 1 301045 N天禄 149.34 39.42 48.95 39.2 48.95 23.61 66.66 - 37.81 163061 683878656.0 15.81 4066344240 964237089 0.301045 深A 2 300532 今天国际 20.04 12.16 12.16 10.69 10.69 2.03 8.85 3.02 -22.72 144795 171535181.0 10.13 3322510580 1989333440 0.300532 深A 3 300600 国瑞科技 20.02 13.19 13.19 11.11 11.41 2.2 18.61 2.82 218.75 423779 541164432.0 10.99 3915421427 3003665117 0.300600 深A 4 300985 致远新能 20.01 47.08 47.08 36.8 39.4 7.85 66.65 2.17 58.37 210697 897370992.0 39.23 6277336472 1488300116 0.300985 深A ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4598 603186 华正新材 -10.0 43.27 44.09 43.27 43.99 -4.81 1.98 0.48 25.24 27697 120486294.0 48.08 6146300650 6063519472 1.603186 沪A 4599 688185 康希诺-U -10.11 476.4 534.94 460.13 530.0 -53.6 6.02 2.74 -2088.07 40239 1960540832.0 530.0 117885131884 31831479215 1.688185 沪A 4600 688148 芳源股份 -10.57 31.3 34.39 31.3 33.9 -3.7 26.07 0.56 220.01 188415 620632512.0 35.0 15923562000 2261706043 1.688148 沪A 4601 300034 钢研高纳 -10.96 43.12 46.81 42.88 46.5 -5.31 7.45 1.77 59.49 323226 1441101824.0 48.43 20959281094 18706911861 0.300034 深A 4602 300712 永福股份 -13.71 96.9 110.94 95.4 109.0 -15.4 6.96 1.26 511.21 126705 1265152928.0 112.3 17645877600 17645877600 0.300712 深A >>> ef.stock.get_realtime_quotes(['创业板','港股']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 00859 中昌国际控股 49.02 0.38 0.38 0.26 0.26 0.125 0.08 86.85 -2.83 938000 262860.0 0.255 427510287 427510287 128.00859 None 1 01058 粤海制革 41.05 1.34 1.51 0.9 0.93 0.39 8.34 1.61 249.89 44878000 57662440.0 0.95 720945460 720945460 128.01058 None 2 00713 世界(集团) 27.94 0.87 0.9 0.68 0.68 0.19 1.22 33.28 3.64 9372000 7585400.0 0.68 670785156 670785156 128.00713 None 3 08668 瀛海集团 24.65 0.177 0.179 0.145 0.145 0.035 0.0 10.0 -9.78 20000 3240.0 0.142 212400000 212400000 128.08668 None 4 08413 亚洲杂货 24.44 0.28 0.28 0.25 0.25 0.055 0.01 3.48 -20.76 160000 41300.0 0.225 325360000 325360000 128.08413 None ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5632 08429 冰雪集团 -16.75 0.174 0.2 0.166 0.2 -0.035 2.48 3.52 -21.58 11895000 2074645.0 0.209 83520000 83520000 128.08429 None 5633 00524 长城天下 -17.56 0.108 0.118 0.103 0.118 -0.023 0.45 15.43 -6.55 5961200 649171.0 0.131 141787800 141787800 128.00524 None 5634 08377 申酉控股 -17.71 0.395 0.46 0.39 0.46 -0.085 0.07 8.06 -5.07 290000 123200.0 0.48 161611035 161611035 128.08377 None 5635 00108 国锐地产 -19.01 1.15 1.42 1.15 1.42 -0.27 0.07 0.78 23.94 2376000 3012080.0 1.42 3679280084 3679280084 128.00108 None 5636 08237 华星控股 -25.0 0.024 0.031 0.023 0.031 -0.008 0.43 8.74 -2.01 15008000 364188.0 0.032 83760000 83760000 128.08237 None >>> ef.stock.get_realtime_quotes(['ETF']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 513050 中概互联网ETF 4.49 1.444 1.455 1.433 1.452 0.062 6.71 0.92 - 12961671 1870845984.0 1.382 27895816917 27895816917 1.513050 沪A 1 513360 教育ETF 4.38 0.5 0.502 0.486 0.487 0.021 16.89 1.7 - 1104254 54634387.0 0.479 326856952 326856952 1.513360 沪A 2 159766 旅游ETF 3.84 0.974 0.988 0.95 0.95 0.036 14.46 1.97 - 463730 45254947.0 0.938 312304295 312304295 0.159766 深A 3 159865 养殖ETF 3.8 0.819 0.828 0.785 0.791 0.03 12.13 0.89 - 1405871 114254714.0 0.789 949594189 949594189 0.159865 深A 4 516670 畜牧养殖ETF 3.76 0.856 0.864 0.825 0.835 0.031 24.08 0.98 - 292027 24924513.0 0.825 103803953 103803953 1.516670 沪A .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 549 513060 恒生医疗ETF -4.12 0.861 0.905 0.86 0.902 -0.037 47.96 1.57 - 1620502 141454355.0 0.898 290926128 290926128 1.513060 沪A 550 515220 煤炭ETF -4.46 2.226 2.394 2.194 2.378 -0.104 14.39 0.98 - 2178176 487720560.0 2.330 3369247992 3369247992 1.515220 沪A 551 513000 日经225ETF易方达 -4.49 1.212 1.269 1.21 1.269 -0.057 5.02 2.49 - 25819 3152848.0 1.269 62310617 62310617 1.513000 沪A 552 513880 日经225ETF -4.59 1.163 1.224 1.162 1.217 -0.056 16.93 0.94 - 71058 8336846.0 1.219 48811110 48811110 1.513880 沪A 553 513520 日经ETF -4.76 1.2 1.217 1.196 1.217 -0.06 27.7 1.79 - 146520 17645828.0 1.260 63464640 63464640 1.513520 沪A Notes ----- 无论股票、可转债、期货还是基金。第一列表头始终叫 ``股票代码`` """ fs_list: List[str] = [] if fs is None: fs_list.append(FS_DICT['stock']) if isinstance(fs, str): fs = [fs] if isinstance(fs, list): for f in fs: if not FS_DICT.get(f): raise KeyError(f'指定的行情参数 `{fs}` 不正确') fs_list.append(FS_DICT[f]) # 给空列表时 试用沪深A股行情 if not fs_list: fs_list.append(FS_DICT['stock']) fs_str = ','.join(fs_list) df = get_realtime_quotes_by_fs(fs_str) df.rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_history_bill(stock_code: str) -> pd.DataFrame: """ 获取单只股票历史单子流入流出数据 Parameters ---------- stock_code : str 股票代码 Returns ------- DataFrame 沪深市场单只股票历史单子流入流出数据 Examples -------- >>> import efinance as ef >>> ef.stock.get_history_bill('600519') 股票名称 股票代码 日期 主力净流入 小单净流入 中单净流入 大单净流入 超大单净流入 主力净流入占比 小单流入净占比 中单流入净占比 大单流入净占比 超大单流入净占比 收盘价 涨跌幅 0 贵州茅台 600519 2021-03-04 -3.670272e+06 -2282056.0 5.952143e+06 1.461528e+09 -1.465199e+09 -0.03 -0.02 0.04 10.99 -11.02 2013.71 -5.05 1 贵州茅台 600519 2021-03-05 -1.514880e+07 -1319066.0 1.646793e+07 -2.528896e+07 1.014016e+07 -0.12 -0.01 0.13 -0.19 0.08 2040.82 1.35 2 贵州茅台 600519 2021-03-08 -8.001702e+08 -877074.0 8.010473e+08 5.670671e+08 -1.367237e+09 -6.29 -0.01 6.30 4.46 -10.75 1940.71 -4.91 3 贵州茅台 600519 2021-03-09 -2.237770e+08 -6391767.0 2.301686e+08 -1.795013e+08 -4.427571e+07 -1.39 -0.04 1.43 -1.11 -0.27 1917.70 -1.19 4 贵州茅台 600519 2021-03-10 -2.044173e+08 -1551798.0 2.059690e+08 -2.378506e+08 3.343331e+07 -2.02 -0.02 2.03 -2.35 0.33 1950.72 1.72 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 97 贵州茅台 600519 2021-07-26 -1.564233e+09 13142211.0 1.551091e+09 -1.270400e+08 -1.437193e+09 -8.74 0.07 8.67 -0.71 -8.03 1804.11 -5.05 98 贵州茅台 600519 2021-07-27 -7.803296e+08 -10424715.0 7.907544e+08 6.725104e+07 -8.475807e+08 -5.12 -0.07 5.19 0.44 -5.56 1712.89 -5.06 99 贵州茅台 600519 2021-07-28 3.997645e+08 2603511.0 -4.023677e+08 2.315648e+08 1.681997e+08 2.70 0.02 -2.72 1.57 1.14 1768.90 3.27 100 贵州茅台 600519 2021-07-29 -9.209842e+08 -2312235.0 9.232964e+08 -3.959741e+08 -5.250101e+08 -8.15 -0.02 8.17 -3.50 -4.65 1749.79 -1.08 101 贵州茅台 600519 2021-07-30 -1.524740e+09 -6020099.0 1.530761e+09 1.147248e+08 -1.639465e+09 -11.63 -0.05 11.68 0.88 -12.51 1678.99 -4.05 """ df = get_history_bill_for_stock(stock_code) df.rename(columns={ '代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_today_bill(stock_code: str) -> pd.DataFrame: """ 获取单只股票最新交易日的日内分钟级单子流入流出数据 Parameters ---------- stock_code : str 股票代码 Returns ------- DataFrame 单只股票最新交易日的日内分钟级单子流入流出数据 Examples -------- >>> import efinance as ef >>> ef.stock.get_today_bill('600519') 股票代码 时间 主力净流入 小单净流入 中单净流入 大单净流入 超大单净流入 0 600519 2021-07-29 09:31 -3261705.0 -389320.0 3651025.0 -12529658.0 9267953.0 1 600519 2021-07-29 09:32 6437999.0 -606994.0 -5831006.0 -42615994.0 49053993.0 2 600519 2021-07-29 09:33 13179707.0 -606994.0 -12572715.0 -85059118.0 98238825.0 3 600519 2021-07-29 09:34 15385244.0 -970615.0 -14414632.0 -86865209.0 102250453.0 4 600519 2021-07-29 09:35 7853716.0 -970615.0 -6883104.0 -75692436.0 83546152.0 .. ... ... ... ... ... ... ... 235 600519 2021-07-29 14:56 -918956019.0 -1299630.0 920255661.0 -397127393.0 -521828626.0 236 600519 2021-07-29 14:57 -920977761.0 -2319213.0 923296987.0 -397014702.0 -523963059.0 237 600519 2021-07-29 14:58 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 238 600519 2021-07-29 14:59 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 239 600519 2021-07-29 15:00 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 """ df = get_today_bill_for_stock(stock_code) df.rename(columns={ '代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_latest_quote(stock_codes: List[str]) -> pd.DataFrame: """ 获取沪深市场多只股票的实时涨幅情况 Parameters ---------- stock_codes : List[str] 多只股票代码列表 Returns ------- DataFrame 沪深市场、港股、美股多只股票的实时涨幅情况 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_quote(['600519','300750']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 市场类型 0 600519 贵州茅台 0.59 1700.04 1713.0 1679.0 1690.0 10.04 0.30 0.72 43.31 37905 6.418413e+09 1690.0 2135586507912 2135586507912 沪A 1 300750 宁德时代 0.01 502.05 529.9 480.0 480.0 0.05 1.37 1.75 149.57 277258 1.408545e+10 502.0 1169278366994 1019031580505 深A Notes ----- 当需要获取多只沪深 A 股 的实时涨跌情况时,最好使用 ``efinance.stock.get_realtime_quptes`` """ if isinstance(stock_codes, str): stock_codes = [stock_codes] secids: List[str] = [get_quote_id(stock_code) for stock_code in stock_codes] columns = EASTMONEY_QUOTE_FIELDS fields = ",".join(columns.keys()) params = ( ('OSVersion', '14.3'), ('appVersion', '6.3.8'), ('fields', fields), ('fltt', '2'), ('plat', 'Iphone'), ('product', 'EFund'), ('secids', ",".join(secids)), ('serverVersion', '6.3.6'), ('version', '6.3.8'), ) url = 'https://push2.eastmoney.com/api/qt/ulist.np/get' json_response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() rows = jsonpath(json_response, '$..diff[:]') if rows is None: return pd.DataFrame(columns=columns.values()).rename({ '市场编号': '市场类型' }) df = pd.DataFrame(rows)[columns.keys()].rename(columns=columns) df['市场类型'] = df['市场编号'].apply(lambda x: MARKET_NUMBER_DICT.get(str(x))) del df['市场编号'] return df @to_numeric def get_top10_stock_holder_info(stock_code: str, top: int = 4) -> pd.DataFrame: """ 获取沪深市场指定股票前十大股东信息 Parameters ---------- stock_code : str 股票代码 top : int, optional 最新 top 个前 10 大流通股东公开信息, 默认为 ``4`` Returns ------- DataFrame 个股持仓占比前 10 的股东的一些信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_top10_stock_holder_info('600519',top = 1) 股票代码 更新日期 股东代码 股东名称 持股数 持股比例 增减 变动率 0 600519 2021-03-31 80010298 中国贵州茅台酒厂(集团)有限责任公司 6.783亿 54.00% 不变 -- 1 600519 2021-03-31 80637337 香港中央结算有限公司 9594万 7.64% -841.1万 -8.06% 2 600519 2021-03-31 80732941 贵州省国有资本运营有限责任公司 5700万 4.54% -182.7万 -3.11% 3 600519 2021-03-31 80010302 贵州茅台酒厂集团技术开发公司 2781万 2.21% 不变 -- 4 600519 2021-03-31 80475097 中央汇金资产管理有限责任公司 1079万 0.86% 不变 -- 5 600519 2021-03-31 80188285 中国证券金融股份有限公司 803.9万 0.64% -91 0.00% 6 600519 2021-03-31 78043999 深圳市金汇荣盛财富管理有限公司-金汇荣盛三号私募证券投资基金 502.1万 0.40% 不变 -- 7 600519 2021-03-31 70400207 中国人寿保险股份有限公司-传统-普通保险产品-005L-CT001沪 434.1万 0.35% 44.72万 11.48% 8 600519 2021-03-31 005827 中国银行股份有限公司-易方达蓝筹精选混合型证券投资基金 432万 0.34% 新进 -- 9 600519 2021-03-31 78083830 珠海市瑞丰汇邦资产管理有限公司-瑞丰汇邦三号私募证券投资基金 416.1万 0.33% 不变 -- """ def gen_fc(stock_code: str) -> str: """ Parameters ---------- stock_code : str 股票代码 Returns ------- str 指定格式的字符串 """ _type, stock_code = get_quote_id(stock_code).split('.') _type = int(_type) # 深市 if _type == 0: return f'{stock_code}02' # 沪市 return f'{stock_code}01' def get_public_dates(stock_code: str) -> List[str]: """ 获取指定股票公开股东信息的日期 Parameters ---------- stock_code : str 股票代码 Returns ------- List[str] 公开日期列表 """ quote_id = get_quote_id(stock_code) stock_code = quote_id.split('.')[-1] fc = gen_fc(stock_code) data = {"fc": fc} url = 'https://emh5.eastmoney.com/api/GuBenGuDong/GetFirstRequest2Data' json_response = requests.post( url, json=data).json() dates = jsonpath(json_response, f'$..BaoGaoQi') if not dates: return [] return dates fields = { 'GuDongDaiMa': '股东代码', 'GuDongMingCheng': '股东名称', 'ChiGuShu': '持股数', 'ChiGuBiLi': '持股比例', 'ZengJian': '增减', 'BianDongBiLi': '变动率', } quote_id = get_quote_id(stock_code) stock_code = quote_id.split('.')[-1] fc = gen_fc(stock_code) dates = get_public_dates(stock_code) dfs: List[pd.DataFrame] = [] empty_df = pd.DataFrame(columns=['股票代码', '日期']+list(fields.values())) for date in dates[:top]: data = {"fc": fc, "BaoGaoQi": date} url = 'https://emh5.eastmoney.com/api/GuBenGuDong/GetShiDaLiuTongGuDong' response = requests.post(url, json=data) response.encoding = 'utf-8' items: List[dict] = jsonpath( response.json(), f'$..ShiDaLiuTongGuDongList[:]') if not items: continue df = pd.DataFrame(items) df.rename(columns=fields, inplace=True) df.insert(0, '股票代码', [stock_code for _ in range(len(df))]) df.insert(1, '更新日期', [date for _ in range(len(df))]) del df['IsLink'] dfs.append(df) if len(dfs) == 0: return empty_df return pd.concat(dfs, axis=0, ignore_index=True) def get_all_report_dates() -> pd.DataFrame: """ 获取沪深市场的全部股票报告期信息 Returns ------- DataFrame 沪深市场的全部股票报告期信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_all_report_dates() 报告日期 季报名称 0 2021-06-30 2021年 半年报 1 2021-03-31 2021年 一季报 2 2020-12-31 2020年 年报 3 2020-09-30 2020年 三季报 4 2020-06-30 2020年 半年报 5 2020-03-31 2020年 一季报 6 2019-12-31 2019年 年报 7 2019-09-30 2019年 三季报 8 2019-06-30 2019年 半年报 9 2019-03-31 2019年 一季报 10 2018-12-31 2018年 年报 11 2018-09-30 2018年 三季报 12 2018-06-30 2018年 半年报 13 2018-03-31 2018年 一季报 14 2017-12-31 2017年 年报 15 2017-09-30 2017年 三季报 16 2017-06-30 2017年 半年报 17 2017-03-31 2017年 一季报 18 2016-12-31 2016年 年报 19 2016-09-30 2016年 三季报 20 2016-06-30 2016年 半年报 21 2016-03-31 2016年 一季报 22 2015-12-31 2015年 年报 24 2015-06-30 2015年 半年报 25 2015-03-31 2015年 一季报 26 2014-12-31 2014年 年报 27 2014-09-30 2014年 三季报 28 2014-06-30 2014年 半年报 29 2014-03-31 2014年 一季报 30 2013-12-31 2013年 年报 31 2013-09-30 2013年 三季报 32 2013-06-30 2013年 半年报 33 2013-03-31 2013年 一季报 34 2012-12-31 2012年 年报 35 2012-09-30 2012年 三季报 36 2012-06-30 2012年 半年报 37 2012-03-31 2012年 一季报 38 2011-12-31 2011年 年报 39 2011-09-30 2011年 三季报 """ fields = { 'REPORT_DATE': '报告日期', 'DATATYPE': '季报名称' } params = ( ('type', 'RPT_LICO_FN_CPD_BBBQ'), ('sty', ','.join(fields.keys())), ('p', '1'), ('ps', '2000'), ) url = 'https://datacenter.eastmoney.com/securities/api/data/get' response = requests.get( url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: pd.DataFrame(columns=fields.values()) df = pd.DataFrame(items) df = df.rename(columns=fields) df['报告日期'] = df['报告日期'].apply(lambda x: x.split()[0]) return df @to_numeric def get_all_company_performance(date: str = None) -> pd.DataFrame: """ 获取沪深市场股票某一季度的表现情况 Parameters ---------- date : str, optional 报告发布日期 部分可选示例如下(默认为 ``None``) - ``None`` : 最新季报 - ``'2021-06-30'`` : 2021 年 Q2 季度报 - ``'2021-03-31'`` : 2021 年 Q1 季度报 Returns ------- DataFrame 获取沪深市场股票某一季度的表现情况 Examples --------- >>> import efinance as ef >>> # 获取最新季度业绩表现 >>> ef.stock.get_all_company_performance() 股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 每股经营现金流量 0 688981 中芯国际 2021-08-28 00:00:00 1.609039e+10 22.253453 20.6593 5.241321e+09 278.100000 307.8042 0.6600 11.949525 5.20 26.665642 1.182556 1 688819 天能股份 2021-08-28 00:00:00 1.625468e+10 9.343279 23.9092 6.719446e+08 -14.890000 -36.8779 0.7100 11.902912 6.15 17.323263 -1.562187 2 688789 宏华数科 2021-08-28 00:00:00 4.555604e+08 56.418441 6.5505 1.076986e+08 49.360000 -7.3013 1.8900 14.926761 13.51 43.011243 1.421272 3 688681 科汇股份 2021-08-28 00:00:00 1.503343e+08 17.706987 121.9407 1.664509e+07 -13.100000 383.3331 0.2100 5.232517 4.84 47.455511 -0.232395 4 688670 金迪克 2021-08-28 00:00:00 3.209423e+07 -63.282413 -93.1788 -2.330505e+07 -242.275001 -240.1554 -0.3500 3.332254 -10.10 85.308531 1.050348 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3720 600131 国网信通 2021-07-16 00:00:00 2.880378e+09 6.787087 69.5794 2.171389e+08 29.570000 296.2051 0.1800 4.063260 4.57 19.137437 -0.798689 3721 600644 乐山电力 2021-07-15 00:00:00 1.257030e+09 18.079648 5.7300 8.379727e+07 -14.300000 25.0007 0.1556 3.112413 5.13 23.645137 0.200906 3722 002261 拓维信息 2021-07-15 00:00:00 8.901777e+08 47.505282 24.0732 6.071063e+07 68.320000 30.0596 0.0550 2.351598 2.37 37.047968 -0.131873 3723 601952 苏垦农发 2021-07-13 00:00:00 4.544138e+09 11.754570 47.8758 3.288132e+08 1.460000 83.1486 0.2400 3.888046 6.05 15.491684 -0.173772 3724 601568 北元集团 2021-07-09 00:00:00 6.031506e+09 32.543303 30.6352 1.167989e+09 61.050000 40.8165 0.3200 3.541533 9.01 27.879243 0.389860 >>> # 获取指定日期的季度业绩表现 >>> ef.stock.get_all_company_performance('2020-03-31') 股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 每股经营现金流量 0 605033 美邦股份 2021-08-25 00:00:00 2.178208e+08 NaN NaN 4.319814e+07 NaN NaN 0.4300 NaN NaN 37.250416 NaN 1 301048 金鹰重工 2021-07-30 00:00:00 9.165528e+07 NaN NaN -2.189989e+07 NaN NaN NaN NaN -1.91 20.227118 NaN 2 001213 中铁特货 2021-07-29 00:00:00 1.343454e+09 NaN NaN -3.753634e+07 NaN NaN -0.0100 NaN NaN -1.400708 NaN 3 605588 冠石科技 2021-07-28 00:00:00 1.960175e+08 NaN NaN 1.906751e+07 NaN NaN 0.3500 NaN NaN 16.324650 NaN 4 688798 艾为电子 2021-07-27 00:00:00 2.469943e+08 NaN NaN 2.707568e+07 NaN NaN 0.3300 NaN 8.16 33.641934 NaN ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4440 603186 华正新材 2020-04-09 00:00:00 4.117502e+08 -6.844813 -23.2633 1.763252e+07 18.870055 -26.3345 0.1400 5.878423 2.35 18.861255 0.094249 4441 002838 道恩股份 2020-04-09 00:00:00 6.191659e+08 -8.019810 -16.5445 6.939886e+07 91.601624 76.7419 0.1700 2.840665 6.20 22.575224 0.186421 4442 600396 金山股份 2020-04-08 00:00:00 2.023133e+09 0.518504 -3.0629 1.878432e+08 114.304022 61.2733 0.1275 1.511012 8.81 21.422393 0.085698 4443 002913 奥士康 2020-04-08 00:00:00 4.898977e+08 -3.883035 -23.2268 2.524717e+07 -47.239162 -58.8136 0.1700 16.666749 1.03 22.470020 0.552624 4444 002007 华兰生物 2020-04-08 00:00:00 6.775414e+08 -2.622289 -36.1714 2.472864e+08 -4.708821 -22.6345 0.1354 4.842456 3.71 61.408522 0.068341 Notes ----- 当输入的日期不正确时,会输出可选的日期列表。 你也可以通过函数 ``efinance.stock.get_all_report_dates`` 来获取可选日期 """ # TODO 加速 fields = { 'SECURITY_CODE': '股票代码', 'SECURITY_NAME_ABBR': '股票简称', 'NOTICE_DATE': '公告日期', 'TOTAL_OPERATE_INCOME': '营业收入', 'YSTZ': '营业收入同比增长', 'YSHZ': '营业收入季度环比', 'PARENT_NETPROFIT': '净利润', 'SJLTZ': '净利润同比增长', 'SJLHZ': '净利润季度环比', 'BASIC_EPS': '每股收益', 'BPS': '每股净资产', 'WEIGHTAVG_ROE': '净资产收益率', 'XSMLL': '销售毛利率', 'MGJYXJJE': '每股经营现金流量' # 'ISNEW':'是否最新' } dates = get_all_report_dates()['报告日期'].to_list() if date is None: date = dates[0] if date not in dates: rich.print('日期输入有误,可选日期如下:') rich.print(dates) return pd.DataFrame(columns=fields.values()) date = f"(REPORTDATE=\'{date}\')" page = 1 dfs: List[pd.DataFrame] = [] while 1: params = ( ('st', 'NOTICE_DATE,SECURITY_CODE'), ('sr', '-1,-1'), ('ps', '500'), ('p', f'{page}'), ('type', 'RPT_LICO_FN_CPD'), ('sty', 'ALL'), ('token', '<KEY>'), # ! 只选沪深A股 ('filter', f'(SECURITY_TYPE_CODE in ("058001001","058001008")){date}'), ) url = 'http://datacenter-web.eastmoney.com/api/data/get' response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: break df = pd.DataFrame(items) dfs.append(df) page += 1 if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df =
pd.concat(dfs, axis=0, ignore_index=True)
pandas.concat
import os import csv import pandas as pd import numpy as np import librosa import tqdm def load_audio_file(path): audio_data, sample_rate = librosa.load(path) return audio_data, sample_rate def extract_features(audio_data, sample_rate): sig_mean = np.mean(abs(audio_data)) sig_std = np.std(audio_data) rmse = librosa.feature.rms(audio_data + 0.0001)[0] audio_data_harmonic = librosa.effects.hpss(audio_data)[0] silence = 0 for e in rmse: if e <= 0.4 * np.mean(rmse): silence += 1 silence /= float(len(rmse)) # based on the pitch detection algorithm mentioned here: # http://access.feld.cvut.cz/view.php?cisloclanku=2009060001 cl = 0.45 * sig_mean center_clipped = [] for s in audio_data: if s >= cl: center_clipped.append(s - cl) elif s <= -cl: center_clipped.append(s + cl) elif np.abs(s) < cl: center_clipped.append(0) auto_corrs = librosa.core.autocorrelate(np.array(center_clipped)) return { 'sig_mean': sig_mean, 'sig_std': sig_std, 'rmse_mean': np.mean(rmse), 'rmse_std': np.std(rmse), 'silence': silence, 'harmonic': 1e3 * np.mean(audio_data_harmonic), 'auto_corr_max': 1e3 * np.max(auto_corrs)/len(auto_corrs), 'auto_corr_std': np.std(auto_corrs), } def featurize_dataframe(df): features = [] for idx, path in tqdm.tqdm(df['path'].items(), total=df.shape[0]): audio_data, sample_rate = load_audio_file(os.path.join(os.path.dirname(__file__), '..', path)) features.append(extract_features(audio_data=audio_data, sample_rate=sample_rate)) return df.join(
pd.DataFrame(data=features, index=df.index)
pandas.DataFrame
import numpy as np import pandas as pd from PyEMD import EMD, Visualisation import scipy import math import scipy.io import scipy.linalg import sklearn.metrics import sklearn.neighbors from sklearn import metrics from sklearn import svm import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import DataLoader, Dataset, TensorDataset import ipdb # Utilities def normalize(V): return ( V - min(V.flatten()) ) / ( max(V.flatten()) - min(V.flatten()) ) def sliding_window(T, T_org, seq_len, label_seq_len): # seq_len is equal to window_size # T (np.array) has dim: population, seq_len (window length) TT = T.reshape(-1, 1) K = TT.shape[0] - seq_len - label_seq_len + 1 # Li, et al., 2021, TRJ part C, pp. 8 TT_org = T_org.reshape(-1, 1) # TT has dim: n, 1 # assemble the data into 2D x_set = np.vstack(TT[i : K+i, 0] for i in range(seq_len)).T y_set = np.vstack(TT_org[i+seq_len : K+seq_len+i, 0] for i in range(label_seq_len)).T assert x_set.shape[0] == y_set.shape[0] # return size: n_samp, seq_len return x_set, y_set def var_name(var, all_var=locals()): # get the name of the variable return [var_name for var_name in all_var if all_var[var_name] is var][0] def np2csv(A): # store numpy to local csv file if type(A) == torch.Tensor: np.savetxt('./outputs/BDA/'+var_name(A)+'.csv', A.detach().numpy(), delimiter=',') elif type(A) == np.ndarray: np.savetxt('./outputs/BDA/'+var_name(A)+'.csv', A, delimiter=',') # BDA part def kernel(ker, X1, X2, gamma): K = None if not ker or ker == 'primal': K = X1 elif ker == 'linear': if X2 is not None: K = sklearn.metrics.pairwise.linear_kernel( np.asarray(X1).T, np.asarray(X2).T) else: K = sklearn.metrics.pairwise.linear_kernel(np.asarray(X1).T) elif ker == 'rbf': if X2 is not None: K = sklearn.metrics.pairwise.rbf_kernel( np.asarray(X1).T, np.asarray(X2).T, gamma) else: K = sklearn.metrics.pairwise.rbf_kernel( np.asarray(X1).T, None, gamma) return K def proxy_a_distance(source_X, target_X): """ Compute the Proxy-A-Distance of a source/target representation """ nb_source = np.shape(source_X)[0] nb_target = np.shape(target_X)[0] train_X = np.vstack((source_X, target_X)) train_Y = np.hstack((np.zeros(nb_source, dtype=int), np.ones(nb_target, dtype=int))) clf = svm.LinearSVC(random_state=0) clf.fit(train_X, train_Y) y_pred = clf.predict(train_X) error = metrics.mean_absolute_error(train_Y, y_pred) dist = 2 * (1 - 2 * error) return dist def estimate_mu(_X1, _Y1, _X2, _Y2): adist_m = proxy_a_distance(_X1, _X2) C = len(np.unique(_Y1)) epsilon = 1e-3 list_adist_c = [] for i in range(1, C + 1): ind_i, ind_j = np.where(_Y1 == i), np.where(_Y2 == i) Xsi = _X1[ind_i[0], :] Xtj = _X2[ind_j[0], :] adist_i = proxy_a_distance(Xsi, Xtj) list_adist_c.append(adist_i) adist_c = sum(list_adist_c) / C mu = adist_c / (adist_c + adist_m) if mu > 1: mu = 1 if mu < epsilon: mu = 0 return mu class BDA: def __init__(self, kernel_type='primal', dim=30, lamb=1, mu=0.5, gamma=1, T=10, mode='BDA', estimate_mu=False): ''' Init func :param kernel_type: kernel, values: 'primal' | 'linear' | 'rbf' :param dim: dimension after transfer :param lamb: lambda value in equation :param mu: mu. Default is -1, if not specificied, it calculates using A-distance :param gamma: kernel bandwidth for rbf kernel :param T: iteration number :param mode: 'BDA' | 'WBDA' :param estimate_mu: True | False, if you want to automatically estimate mu instead of manally set it ''' self.kernel_type = kernel_type self.dim = dim self.lamb = lamb self.mu = mu self.gamma = gamma self.T = T self.mode = mode self.estimate_mu = estimate_mu def fit(self, Xs, Ys, Xt, Yt): ''' Transform and Predict using 1NN as JDA paper did :param Xs: ns * n_feature, source feature :param Ys: ns * 1, source label :param Xt: nt * n_feature, target feature :param Yt: nt * 1, target label :return: acc, y_pred, list_acc ''' #ipdb.set_trace() list_acc = [] X = np.hstack((Xs.T, Xt.T)) # X.shape: [n_feature, ns+nt] X /= np.linalg.norm(X, axis=0) # why it's axis=0? m, n = X.shape ns, nt = len(Xs), len(Xt) e = np.vstack((1 / ns * np.ones((ns, 1)), -1 / nt * np.ones((nt, 1)))) C = len(np.unique(Ys)) H = np.eye(n) - 1 / n * np.ones((n, n)) mu = self.mu M = 0 Y_tar_pseudo = None Xs_new = None for t in range(self.T): N = 0 M0 = e * e.T * C if Y_tar_pseudo is not None and len(Y_tar_pseudo) == nt: for c in range(1, C + 1): e = np.zeros((n, 1)) Ns = len(Ys[np.where(Ys == c)]) Nt = len(Y_tar_pseudo[np.where(Y_tar_pseudo == c)]) if self.mode == 'WBDA': Ps = Ns / len(Ys) Pt = Nt / len(Y_tar_pseudo) alpha = Pt / Ps mu = 1 else: alpha = 1 tt = Ys == c e[np.where(tt == True)] = 1 / Ns yy = Y_tar_pseudo == c ind = np.where(yy == True) inds = [item + ns for item in ind] e[tuple(inds)] = -alpha / Nt e[np.isinf(e)] = 0 # ? N = N + np.dot(e, e.T) # In BDA, mu can be set or automatically estimated using A-distance # In WBDA, we find that setting mu=1 is enough if self.estimate_mu and self.mode == 'BDA': if Xs_new is not None: mu = estimate_mu(Xs_new, Ys, Xt_new, Y_tar_pseudo) else: mu = 0 M = (1 - mu) * M0 + mu * N M /= np.linalg.norm(M, 'fro') K = kernel(self.kernel_type, X, None, gamma=self.gamma) n_eye = m if self.kernel_type == 'primal' else n a, b = np.linalg.multi_dot( [K, M, K.T]) + self.lamb * np.eye(n_eye), np.linalg.multi_dot([K, H, K.T]) w, V = scipy.linalg.eig(a, b) ind = np.argsort(w) A = V[:, ind[:self.dim]] Z = np.dot(A.T, K) Z /= np.linalg.norm(Z, axis=0) # why it's axis=0? Xs_new, Xt_new = Z[:, :ns].T, Z[:, ns:].T ''' clf = sklearn.neighbors.KNeighborsClassifier(n_neighbors=1) clf.fit(Xs_new, Ys.ravel()) Y_tar_pseudo = clf.predict(Xt_new) acc = sklearn.metrics.accuracy_score(Yt, Y_tar_pseudo) list_acc.append(acc) print('{} iteration [{}/{}]: Acc: {:.4f}'.format(self.mode, t + 1, self.T, acc)) ''' return Xs_new, Xt_new, A #, acc, Y_tar_pseudo, list_acc class LSTM(nn.Module): def __init__(self, inp_dim, out_dim, hid_dim, layers): super(LSTM, self).__init__() self.out_dim = out_dim self.lstm = nn.LSTM(inp_dim, hid_dim, layers, dropout=0.3, batch_first=True) self.fc = nn.Sequential( nn.ReLU(), nn.Linear(hid_dim, hid_dim*2), nn.ReLU(), nn.Linear(hid_dim*2, out_dim) ) # regression def forward(self, x): # input: (batchsize, seq_len, input_dim) # output: (batchsize, seq_len, hid_dim) #ipdb.set_trace() y = self.lstm(x)[0] # y, (h, c) = self.rnn(x) y = self.fc(y[:, :, :]) # fully connected layer return y[:, -1, :] def mape_loss_func(preds, labels): try: if preds.device.type == 'cuda': preds = preds.cpu().detach().numpy() if labels.device.type == 'cuda': labels = labels.cpu().detach().numpy() except: None mask = labels > .05 return np.mean(np.fabs(labels[mask]-preds[mask])/labels[mask]) def smape_loss_func(preds, labels): try: if preds.device.type == 'cuda': preds = preds.cpu().detach().numpy() if labels.device.type == 'cuda': labels = labels.cpu().detach().numpy() except: None mask= labels > .05 return np.mean(2*np.fabs(labels[mask]-preds[mask])/(np.fabs(labels[mask])+np.fabs(preds[mask]))) def mae_loss_func(preds, labels): try: if preds.device.type == 'cuda': preds = preds.cpu().detach().numpy() if labels.device.type == 'cuda': labels = labels.cpu().detach().numpy() except: None mask= labels > .05 return np.fabs((labels[mask]-preds[mask])).mean() def eliminate_nan(b): a = np.array(b) c = a[~np.isnan(a)] return c def main(mu): # load data weekdays = np.array([np.arange(2+7*i,7+7*i,1) for i in range(4)]).flatten() weekends = np.array([np.arange(7+7*i,9+7*i,1) for i in range(3)]).flatten()[:-1] src_domain = np.array(
pd.read_csv('../TCA_traffic/data/siteM4_2168B_20210101_20210131.csv')
pandas.read_csv
from lxml import etree import requests from io import BytesIO import pandas from zipfile import ZipFile popoular_name_url = "https://uscode.house.gov/popularnames/popularnames.htm" table3_zip_url = "https://uscode.house.gov/table3/table3-xml-bulk.zip" if __name__ == "__main__": print("Downloading Popular Name List") popular_names = requests.get(popoular_name_url) print("Downloaded popularnames.htm", len(popular_names.content), "bytes") parser = etree.HTMLParser(huge_tree=True) tree = etree.parse(BytesIO(popular_names.content), parser) items = tree.xpath("//div[@class='popular-name-table-entry']") print("Detected", len(items), "acts") res = [{ "Name": item.getchildren()[0].text, "PubL": item.getchildren()[1].getchildren()[0].text, } for item in items if len(item.getchildren()) > 1 and item.getchildren()[1].text == "Pub. L. "] print("Detected", len(res), "PubL acts") pop_df =
pandas.DataFrame.from_records(res)
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- """ @author: <NAME> """ import pandas as pd import numpy as np from sklearn.feature_selection import SelectKBest, f_classif from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier class FeatureImportance: def __init__(self, df, resp): self.dataframe = df self.response = resp self.predictors = pd.Series(self.dataframe.columns) self._rf_imp = [] self._boosting_imp = [] self._rpe_imp = [] self._kbest_imp = [] self._rf_param = [] self._boosting_param = [] self._rpe_param = [] self._kbest_param = [] def rf(self, n_estimators=500, criterion='gini', max_features='auto'): """ Returns the importances calculated by a random forest classifier. To make the method more effective, the result is stored in a private property, so if it is used with the same parameters again, it will only have to print the result. Parameters: * n_estimators: number of trees in the forest * criterion: optimization criterion when building the trees. 'gini' (default) for Gini impurity 'entropy' for the information gain * max_features: number of features to select at each split """ if self._rf_param == [n_estimators, criterion, max_features]: return
pd.DataFrame({'Predictors': self.predictors, 'RF': self._rf_imp})
pandas.DataFrame
import pandas as pd import numpy as np import mapping as mp from . import strategy def get_relative_to_expiry_instrument_weights(dates, root_generics, expiries, offsets, all_monthly=False, holidays=None): """ Generate instrument weights for each root generic where the position is rolled entirely in one day based on an offset from the earlier of the contracts First Notice Date and Last Trade Date. Parameters ---------- dates: Iterable Iterable of pandas.Timestamps, dates to generate instrument weights for. root_generics: dict Dictionary with key as root generic and value as list of future generics, e.g. {"CL": ["CL1", "CL2"]} expiries: pd.DataFrame A pd.DataFrame with columns ["contract", "first_notice", "last_trade"] where "first_notice" and "last_trade" must be parseable to datetimes with format %Y-%m-%d and "contract" must be a string in the form YYYYNNC representing the contract name, e.g. "2007ESU". offsets: int or dict Number of business days to roll relative to earlier of the instruments First Notice and Last Trade date. If int is given use the same number for all futures, if dict is given keys must cover all root generics and contain an integer for each. all_monthly: boolean Whether to roll each contract individually based on the offset from the earlier of its First Notice and Last Trade date or to roll all contracts with the same month code based on the earliest date. holidays: list list of timezone aware pd.Timestamps used for holidays when calculating relative date roll logic. Returns ------- A dictionary of DataFrames of instrument weights indexed by root generic, see mapper.mappings.roller() Examples -------- >>> import strategy.rebalance as rebal >>> import pandas as pd >>> dts = pd.date_range("2018-01-01", "2018-02-01", freq="B") >>> rg = {"CL": ["CL1"], "ES": ["ES1"]} >>> exp = pd.DataFrame( ... [["2018CLF", "2018-01-28", "2018-01-27"], ... ["2018CLG", "2018-02-28", "2018-02-27"], ... ["2018ESF", "2018-01-20", "2018-01-21"], ... ["2018ESG", "2018-02-20", "2018-02-21"]], ... columns=["contract", "first_notice", "last_trade"] ... ) >>> offsets = -5 >>> rebal.get_relative_to_expiry_instrument_weights(dts, rg, exp, offsets) """ close_by = _close_by_dates(expiries, all_monthly) cntrct_close_by_dates = {} for grp, dts in close_by.groupby("root_generic"): cntrct_close_by_dates[grp] = dts.loc[:, "close_by"] wts = {} for root in root_generics: gnrcs = root_generics[root] cols = pd.MultiIndex.from_product([gnrcs, ['front', 'back']]) if not isinstance(offsets, int): offset = offsets[root] else: offset = offsets idx = [offset, offset + 1] trans = np.tile(np.array([[1.0, 0.0], [0.0, 1.0]]), len(gnrcs)) transition = pd.DataFrame(trans, index=idx, columns=cols) wts[root] = mp.mappings.roller(dates, cntrct_close_by_dates[root], mp.mappings.static_transition, transition=transition, holidays=holidays) return wts def get_relative_to_expiry_rebalance_dates(start_date, end_date, expiries, offsets, all_monthly=False, holidays=None): """ Rebalance days for trading strategy. These are defined as the offset given from the earlier of the instruments First Notice and Last Trade date. If all_monthly=True then then roll all monthly contracts together based on earliest date for this set of contracts. The start_date or if this is not a business day the following business day is also included in the rebalance days. Parameters ---------- start_date: pandas.Timestamp Date to generate rebalance dates starting from end_date: pandas.Timestamp Date to generate rebalance dates until expiries: pd.DataFrame A pd.DataFrame with columns ["contract", "first_notice", "last_trade"] where "first_notice" and "last_trade" must be parseable to datetimes with format %Y-%m-%d and "contract" must be a string in the form YYYYNNC representing the contract name, e.g. "2007ESU". offsets: int or dict Number of business days to roll relative to earlier of the instruments First Notice and Last Trade date. If int is given use the same number for all futures, if dict is given keys must cover all root generics and contain an integer for each. all_monthly: boolean Whether to roll each contract individually based on the offset from the earlier of its First Notice and Last Trade date or to roll all contracts with the same month code based on the earliest date. holidays: list list of timezone aware pd.Timestamps used for holidays when calculating relative date roll logic. Returns ------- pandas.DatetimeIndex Examples -------- >>> import strategy.rebalance as rebal >>> import pandas as pd >>> sd = pd.Timestamp("2018-01-01") >>> ed = pd.Timestamp("2018-02-01") >>> exp = pd.DataFrame( ... [["2018CLF", "2018-01-28", "2018-01-27"], ... ["2018CLG", "2018-02-28", "2018-02-27"], ... ["2018ESF", "2018-01-20", "2018-01-21"], ... ["2018ESG", "2018-02-20", "2018-02-21"]], ... columns=["contract", "first_notice", "last_trade"] ... ) >>> offsets = -5 >>> rebal.get_relative_to_expiry_rebalance_dates(sd, ed, exp, offsets) """ if not holidays: holidays = [] close_by = _close_by_dates(expiries, all_monthly) gnrc_close_by = close_by.groupby(["root_generic"]) rebal_dates = [] for root, close_by_dates in gnrc_close_by: if not isinstance(offsets, int): offset = offsets[root] else: offset = offsets dates = ( close_by_dates.loc[:, "close_by"].values.astype('datetime64[D]') ) dates = np.busday_offset(dates, offsets=offset, roll='preceding', holidays=holidays) rebal_dates.append(dates) rebal_dates = np.concatenate(rebal_dates) rebal_dates = pd.DatetimeIndex(rebal_dates).unique().sort_values() rebal_dates = rebal_dates[rebal_dates >= start_date] rebal_dates = rebal_dates[rebal_dates <= end_date] first_date = np.busday_offset(start_date.date(), 0, roll="following", holidays=holidays) rebal_dates = rebal_dates.union([first_date]) return rebal_dates def _close_by_dates(expiries, all_monthly): # hacky, should refactor such that not using private method # _validate_expiries expiries = strategy.Exposures._validate_expiries(expiries) close_by = expiries.set_index("contract") close_by.loc[:, "close_by"] = ( close_by[["first_notice", "last_trade"]].min(axis=1) ) close_by = close_by.sort_values("close_by") if all_monthly: close_by = ( close_by.join(close_by.groupby(["year", "month"]).first(), on=["year", "month"], rsuffix="_earliest_cntrct") ) close_by = close_by[["root_generic", "close_by_earliest_cntrct"]] close_by.columns = ["root_generic", "close_by"] close_by = close_by.loc[:, ["root_generic", "close_by"]] return close_by def get_fixed_frequency_rebalance_dates(start_date, end_date, frequency, offset): """ Generate reblance dates according to a fixed frequency, e.g. Wednesday of every week. Parameters ---------- start_date: pandas.Timestamp Date to generate rebalance dates starting from end_date: pandas.Timestamp Date to generate rebalance dates until frequency: string Fixed frequency for reblance, supports {"weekly", "monthly"} offset: int or list Relative offsets based on the frequency. E.g. [0, 1] for weekly gives the first two days of the week, [-5] for monthly gives the fifth last day of the month. Returns ------- pandas.DatetimeIndex Examples -------- >>> import strategy.rebalance as rebal >>> import pandas as pd >>> sd = pd.Timestamp("2018-01-01") >>> ed = pd.Timestamp("2018-02-01") >>> freq = "weekly" >>> offsets = 2 >>> rebal.get_fixed_frequency_rebalance_dates(sd, ed, freq, offsets) """ if frequency == "monthly": groups = ["year", "month"] sd = start_date - pd.offsets.MonthBegin(1) ed = end_date +
pd.offsets.MonthEnd(1)
pandas.offsets.MonthEnd
from nlpsummarize import nlp import pandas as pd def test_init_1(): """ Test initialization of the class NLPFrame """ initial_df = nlp.NLPFrame({'text_col' : ['Today is a beautiful Monday and I would love getting a coffee. However, startbucks is closed.','It has been an amazing day today!']}, index = [0,1]) assert initial_df.column == 'text_col' def test_init_2(): """ Test initialization of the class NLPFrame """ initial_df = nlp.NLPFrame({'text_col' : ['Today is a beautiful Monday and I would love getting a coffee. However, startbucks is closed.','It has been an amazing day today!']}, index = [0,1], column = 'non_existing') assert initial_df.column == 'text_col' def test_init_3(): """ Test initialization of the class NLPFrame that doesn't have text column """ initial_df = nlp.NLPFrame({'text_col' : [5,6,8]}) assert initial_df.column == None def test_get_nlp_summary_1(): """ Tests get_nlp_summary function for NLPFrame without column with text """ initial_df = nlp.NLPFrame({'text_col' : [5,6,8]}) try: initial_df.get_nlp_summary() assert False except ValueError: pass def test_get_nlp_summary_2(): """ Tests get_nlp_summary function for NLPFrame with wrong column specified """ initial_df = nlp.NLPFrame({'text_col' : ['Today is a beautiful Monday and I would love getting a coffee. However, startbucks is closed.','It has been an amazing day today!']}, index = [0,1], column = 'non_existing') res = initial_df.get_nlp_summary(column = 'non_existing') assert res.equals(
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ api.py Provides the API for papermill """ from __future__ import unicode_literals import os import IPython from IPython.display import display as ip_display, Markdown import pandas as pd from six import string_types from .exceptions import PapermillException from .iorw import load_notebook_node, list_notebook_files RECORD_OUTPUT_TYPE = 'application/papermill.record+json' DISPLAY_OUTPUT_TYPE = 'application/papermill.display+json' def record(name, value): """ Record a value in the output notebook when a cell is executed. The recorded value can be retrieved during later inspection of the output notebook. Example ------- `record` provides a handy way for data to be stored with a notebook to be used later:: pm.record("hello", "world") pm.record("number", 123) pm.record("some_list", [1, 3, 5]) pm.record("some_dict", {"a": 1, "b": 2}) pandas can be used later to recover recorded values by reading the output notebook into a `dataframe`:: nb = pm.read_notebook('notebook.ipynb') nb.dataframe Parameters ---------- name : str Name of the value to record. value: str, int, float, list, dict The value to record. """ # IPython.display.display takes a tuple of objects as first parameter # `http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.display` data = {RECORD_OUTPUT_TYPE: {name: value}} ip_display(data, raw=True) def display(name, obj): """ Display an object with the reference `name`. Parameters ---------- name : str Name of the output. obj : object An object that can be displayed in the notebook. """ data, metadata = IPython.core.formatters.format_display_data(obj) metadata['papermill'] = dict(name=name) ip_display(data, metadata=metadata, raw=True) def read_notebook(path): """ Returns a Notebook object loaded from the location specified at `path`. Parameters ---------- path : str Path to a notebook `.ipynb` file. Returns ------- notebook : object A Notebook object. """ if not path.endswith(".ipynb"): raise PapermillException("Requires an '.ipynb' file extension. Provided path: '%s'", path) nb = Notebook() nb.path = path nb.node = load_notebook_node(path) return nb def read_notebooks(path): """ Returns a NotebookCollection including the notebooks read from the directory specified by `path`. Parameters ---------- path : str Path to directory containing notebook `.ipynb` files. Returns ------- nb_collection : object A `NotebookCollection` object. """ nb_collection = NotebookCollection() for notebook_path in list_notebook_files(path): fn = os.path.basename(notebook_path) nb_collection[fn] = read_notebook(notebook_path) return nb_collection class Notebook(object): """ Representation of a notebook. Parameters ---------- node : `nbformat.NotebookNode` a notebook object path : str, optional the path to the notebook Method ------ display_output """ def __init__(self, node=None, path=None): if path is not None and not node: raise ValueError('notebook must be defined when path is given') self.path = path or '' self.node = node @property def filename(self): """str: filename found a the specified path""" return os.path.basename(self.path) @property def directory(self): """str: directory name at the specified path""" return os.path.dirname(self.path) @property def version(self): """str: version of Jupyter notebook spec""" return _get_papermill_metadata(self.node, 'version', default=None) @property def parameters(self): """dict: parameters stored in the notebook metadata""" return _get_papermill_metadata(self.node, 'parameters', default={}) @property def environment_variables(self): """dict: environment variables used by the notebook execution""" return _get_papermill_metadata(self.node, 'environment_variables', default={}) @property def data(self): """dict: a dictionary of data found in the notebook""" return _fetch_notebook_data(self.node) @property def dataframe(self): """pandas dataframe: a dataframe of named parameters and values""" df = pd.DataFrame(columns=['name', 'value', 'type', 'filename']) # TODO: refactor to a Dict comprehension or list comprehensions i = 0 for name in sorted(self.parameters.keys()): df.loc[i] = name, self.parameters[name], 'parameter', self.filename i += 1 for name in sorted(self.data.keys()): df.loc[i] = name, self.data[name], 'record', self.filename i += 1 return df @property def metrics(self): """pandas dataframe: dataframe of cell execution counts and times""" df =
pd.DataFrame(columns=['filename', 'cell', 'value', 'type'])
pandas.DataFrame
import datetime import re from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, Int64Index, MultiIndex, RangeIndex, Series, _testing as tm, concat, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) from pandas.util import _test_decorators as td pytestmark = pytest.mark.single def test_format_type(setup_path): df = DataFrame({"A": [1, 2]}) with ensure_clean_path(setup_path) as path: with HDFStore(path) as store: store.put("a", df, format="fixed") store.put("b", df, format="table") assert store.get_storer("a").format_type == "fixed" assert store.get_storer("b").format_type == "table" def test_format_kwarg_in_constructor(setup_path): # GH 13291 msg = "format is not a defined argument for HDFStore" with tm.ensure_clean(setup_path) as path: with pytest.raises(ValueError, match=msg): HDFStore(path, format="table") def test_api_default_format(setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table msg = "Can only append to Tables" with pytest.raises(ValueError, match=msg): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError, match=msg): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_put(setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table msg = "Can only append to Tables" with pytest.raises(ValueError, match=msg): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError, match=msg): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError, match=msg): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(setup_path): with ensure_clean_store(setup_path) as store: index = Index([f"I am a very long string index: {i}" for i in range(20)]) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + [f"I am a very long string index: {i}" for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' msg = "Compression not supported on Fixed format stores" with pytest.raises(ValueError, match=msg): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' msg = "Compression not supported on Fixed format stores" with pytest.raises(ValueError, match=msg): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_put_mixed_type(setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) def test_store_index_types(setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) def test_column_multiindex(setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
import time import requests import numpy as np import pandas as pd from tradingfeatures import apiBase from tradingfeatures.apis.bitfinex.base import bitfinexBase class bitfinexShortLong(bitfinexBase): def __init__(self): super(bitfinexShortLong, self).__init__() self.name = 'bitfinex_shortlong' self.address = '/stats1' self.start = 1364778000 self.limit = 10000 # self.columns = ['timestamp', 'open', 'close', 'high', 'low', 'volume'] def get(self, limit=None, symbol=None, query=None, start=None, end=None, *args, **kwargs): # def get(self, # limit: int = None, # symbol: str = None, # address: str = None, # query: dict = None, # start: int = None, # end: int = None, # interval: str = '1h', # columns: list = None, # return_r: bool = False, # sort = -1, # ): address = f'{self.address}/pos.size:1h:tBTCUSD:long/hist' query = {'limit': 10000, 'sort': -1} r = super(bitfinexShortLong, self).get( address=address, query=query, start=start, end=end, return_r=True, *args, **kwargs ) data = r.json() df = pd.DataFrame(data, columns=['timestamp', 'values']) print('deu') start, end, out_of_range = self.calc_start(limit, start, end) if out_of_range: return self.get_hist(start=start, end=end) address = address or self.address address = self.base_address + address symbol = symbol or 'tBTCUSD' if query is None: limit = self.limit if limit is None else limit start, end = self.ts_to_mts(start), self.ts_to_mts(end) # Conver for Bitfinex address = address + f'/trade:{interval}:{symbol}/hist' query = {'limit': limit, 'start': start, 'end': end, 'sort': sort} r = self.response_handler(address, params=query, timeout=60) data = r.json() data.reverse() df =
pd.DataFrame(data, columns=self.columns)
pandas.DataFrame
import pandas as pd import numpy as np import pytest from sklearn.base import clone from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from pandas_transformers.transformers import PandasOneHotEncoder, PandasTfidfVectorizer class TestPandasOneHotEncoder: """ Tests for the PandasOneHotEncoder class """ @pytest.fixture def example_train_df(self): """Example training dataset.""" return pd.DataFrame({"cat": ["a", "a", "b"], "num": [3, 4, 4]}) @pytest.fixture def example_test_df(self): """Example testing dataset which contains a category not present in the training dataset (c).""" return pd.DataFrame({"cat": ["a", "b", "c"], "num": [3, 4, 3]}) @pytest.fixture def example_test_df_diff_column(self): """Example testing dataset which contains a column that is not present in the other example datasets""" return pd.DataFrame({"new_col": [3]}) @pytest.fixture def example_missing_values_df(self): """ Example dataset with missing value """ return pd.DataFrame({"cat": ["a", "a", None]}) def test_example(self, example_train_df): """ Tests a simple example. """ transformer = PandasOneHotEncoder() transformer.fit(example_train_df) transformed = transformer.transform(example_train_df) expected = pd.DataFrame( { "cat_a": pd.Series([1, 1, 0], dtype=np.uint8), "cat_b": pd.Series([0, 0, 1], dtype=np.uint8), "num": [3, 4, 4], } ) # The column order shouldnt matter (therefore we sort them) pd.testing.assert_frame_equal( transformed.sort_index(axis=1), expected.sort_index(axis=1) ) def test_min_frequency(self, example_train_df): """Example where we use min_frequency=2. This means that any category with less than two occurences should be ignored. """ transformer = PandasOneHotEncoder(min_frequency=2) transformer.fit(example_train_df) transformed = transformer.transform(example_train_df) expected = pd.DataFrame( {"cat_a": pd.Series([1, 1, 0], dtype=np.uint8), "num": [3, 4, 4]} ) # The column order shouldnt matter (therefore we sort them) pd.testing.assert_frame_equal( transformed.sort_index(axis=1), expected.sort_index(axis=1) ) def test_unseen_category(self, example_train_df, example_test_df): """ Example where we test the onehot encoder in the case where it encounters new categories during transform (in the test set) and we choose to ignore it """ transformer = PandasOneHotEncoder() transformer.fit(example_train_df) transformed_test = transformer.transform(example_test_df) expected = pd.DataFrame( { "cat_a": pd.Series([1, 0, 0], dtype=np.uint8), "cat_b": pd.Series([0, 1, 0], dtype=np.uint8), "num": [3, 4, 3], } ) # The column order shouldnt matter (therefore we sort them) pd.testing.assert_frame_equal( transformed_test.sort_index(axis=1), expected.sort_index(axis=1) ) def test_unseen_category_error(self, example_train_df, example_test_df): """ Example where we test the onehot encoder in the case where it encounters new categories during transform (in the test set) and we choose to raise an error """ transformer = PandasOneHotEncoder(handle_unknown="error") transformer.fit(example_train_df) with pytest.raises(ValueError): transformer.transform(example_test_df) def test_missing_column(self, example_train_df, example_test_df_diff_column): """ Test transformer when test set does not have the required columns. In that case, it should return a KeyError """ transformer = PandasOneHotEncoder() transformer.fit(example_train_df) with pytest.raises(KeyError): transformer.transform(example_test_df_diff_column) def test_zero_count_categories(self, example_train_df): """ Test transformer when categorical columns have categories that do not occur at all (e.g. in predefined categories) """ categ = pd.CategoricalDtype(["a", "b", "c"]) example_train_df_extra_cat = example_train_df.assign( cat=lambda _df: _df["cat"].astype(categ) ) transformer = PandasOneHotEncoder() transformer.fit(example_train_df_extra_cat) transformed = transformer.transform(example_train_df_extra_cat) expected = pd.DataFrame( { "cat_a": pd.Series([1, 1, 0], dtype=np.uint8), "cat_b":
pd.Series([0, 0, 1], dtype=np.uint8)
pandas.Series
#Modules to install via pip pandas,ipynb import os import sys import time from lib import trace_classification sys.path.append('../') import os import pandas as pd import numpy as np import json #Modules to install via pip pandas,ipynb import pandas as pd import numpy as np import matplotlib.pyplot as plt import json from pprint import pprint import os #import import_ipynb import sys sys.path.append('../') from pandas.plotting import scatter_matrix from lib import trace_analysis from node import * import sklearn.metrics as sm import pandas as pd import matplotlib.pyplot as plt import os from node import * from lib import plots_analysis from sklearn.metrics import confusion_matrix from sklearn.cluster import KMeans import sklearn.metrics as sm from sklearn.decomposition import PCA import random #Modules to install via pip pandas,ipynb import sys sys.path.append('../') from lib import plots_analysis from sklearn.cluster import KMeans import pandas as pd # scipy import sklearn.metrics as sm class node(object): ip = "" hop= 0 pkts=pd.DataFrame() # The class "constructor" - It's actually an initializer def __init__(self,ip,hop,pkts): self.ip = ip self.hop=hop self.pkts=pkts def make_node(ip,hop,pkts): node= node(ip,hop,pkts) return node ####### #Plotting Graphs ##### def saveFileFigures(fig,directory,namefile): directory=directory+"figures/" if not os.path.exists(directory): os.makedirs(directory) print(directory) fig.savefig(directory+namefile+".pdf") # save the figure to file #plt.show() #Prints on a file the big matrix (asked by professor) def printBigPlot(directory,data,figsize,namefile,colors,cases): print("Printing Big Plot for "+directory) fig, axs= plt.subplots(len(data),len(data[0]), figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): #print(i,j) ax=axs[i][j] d=data[i][j].pkts["rtt"] ax.set_ylabel("Density") ax.set_title("Node "+ str(data[i][j].ip) ) ax.set_xlabel("Time (ms)") if not d.empty | len(d)<2 : d.plot.kde( ax=ax, label="Case " +str(cases[i]), color=colors[i] ) d.hist(density=True,alpha=0.3,color=colors[i], ax=ax) ax.legend() #ax.set_xlim([-500, 8000]) plt.tight_layout() saveFileFigures(fig,directory,namefile) #Print on a file density by Hop (asked by professor) def printDensityByHop(directory,dataHop,hops,figsize,namefile,colors,cases): print("Printing Density by Hop for "+directory) #dataHop=hopPreparation(data) fig, axs= plt.subplots(len(dataHop[0]),1, figsize=(15,20),sharey=True, ) #print(len(dataHop),len(dataHop[0])) for i in range(len(dataHop)): for j in range(len(dataHop[i])): #print(i,j) d=dataHop[i][j].pkts['rtt'] axs[j].set_xlabel("Time (ms)") axs[j].set_title("Hop "+ str(j+1)) if not d.empty | len(d)<2 : d.plot.kde( ax=axs[j], label=cases[i],color=colors[i] ) d.hist(density=True,alpha=0.3, ax=axs[j],color=colors[i]) axs[j].legend() #axs[j].set_xlim([-40, 6000]) plt.tight_layout() saveFileFigures(fig,directory,namefile) #Print on a file density by Case (asked by professor) def printDensityByCase(directory,data,hops,figsize,namefile,colors,cases): print("Printing Density by case for "+directory) #print(len(data),len(data[0])) #data1=hopPreparation(data) dataHopT=[*zip(*hops)] #print(len(data1),len(data1[0])) #print(len(dataHopT),len(dataHopT[0])) fig, axs= plt.subplots(len(dataHopT[0]),1, figsize=(15,20),sharey=True, ) for i in range(len(dataHopT)): for j in range(len(dataHopT[0])): d=dataHopT[i][j] axs[j].set_title(""+ cases[i]) axs[j].set_xlabel("Time (ms)") axs[j].set_ylabel("Density") if not d.empty | len(d)<2 : #print(dataHopT[i][j]) #print(colors[i]) d=d["rtt"] try: d.plot.kde( ax=axs[j], label="Hop "+str(i), color=colors[i] ) d.hist(density=True,alpha=0.3, ax=axs[j],color=colors[i]) axs[j].legend() except:pass plt.tight_layout() #axs[j].set_xlim([-40, 6000]) saveFileFigures(fig,directory,namefile) #Print Density of delay without outliers in every node by Case def densityOfDelayByCaseNoOutliers(directory,data,figsize,namefile,colors,cases): print("Printing Density of delay without outliers in every node by Case for "+directory) fig, axs= plt.subplots(len(data[0]),1, figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): out=getStdValues(data[i][j].pkts) if not out.empty : ax=axs[j] out["rtt"].plot.kde( ax=ax, label=cases[i], color=colors[i] ) ax.set_ylabel("Density") out["rtt"].hist(density=True,alpha=0.3, ax=ax, color=colors[i]) ax.set_title("Node "+ str(data[i][j].ip)) ax.set_xlabel("Time (ms)") ax.legend() plt.tight_layout() saveFileFigures(fig,directory,namefile) #Density of outliers in every node by Case def densityOutliersByCase(directory,data,figsize,namefile,colors,cases): print("Printing Density of outliers in every node by Case for "+directory) fig, axs= plt.subplots(len(data),len(data[0]), figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): out=getOutliers(data[i][j].pkts) ax=axs[i][j] ax.set_ylabel("Density") ax.set_title("Node "+ str(data[i][j].ip)) ax.set_xlabel("Time (ms)") if not out.empty | len(out)<2 : out["rtt"].plot.kde( ax=ax, label=cases[i], color=colors[i] ) out["rtt"].hist(density=True,alpha=0.3, ax=ax, color=colors[i]) ax.legend() plt.tight_layout() saveFileFigures(fig,directory,namefile) #Distibution of the delay divided by Node in the differents Cases def densityOfDelayByCase(directory,data,figsize,namefile,colors,cases): print("Printing Density of delay in every node by Case for "+directory) fig, axs= plt.subplots(len(data[0]),1, figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): d=data[i][j].pkts["rtt"] axs[j].set_title("Node "+ str(data[i][j].ip)) axs[j].set_xlabel("Time (ms)") axs[j].set_ylabel("Density") if not d.empty | len(d)<2 : try: d.plot.kde( ax=axs[j], label=cases[i],color=colors[i] ) d.hist(density=True,alpha=0.3, ax=axs[j],color=colors[i]) axs[j].legend() except: pass plt.tight_layout() saveFileFigures(fig,directory,namefile) #RTT Graph def RTTGraph(directory,data,figsize,namefile,colors,cases): print("Printing RTT Graph for "+directory) # fig, axs= plt.subplots(len(data[0]),1, figsize=figsize,sharey=True, ) # for i in range(len(data)): # for j in range(len(data[i])): # axs[j].plot(data[i][j].pkts["seq"],data[i][j].pkts["rtt"],label=cases[i],color=colors[i] ) # axs[j].set_title("Node "+ str(data[i][j].ip)) # axs[j].set_xlabel("Packet Number") # axs[j].set_ylabel("Time (ms)") # axs[j].legend() # plt.tight_layout() # saveFileFigures(fig,directory,namefile) fig, axs= plt.subplots(len(data),len(data[0]), figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): #print(i,j) ax=axs[i][j] d=data[i][j].pkts["rtt"] ax.set_ylabel("Time (ms)") ax.set_title("Node "+ str(data[i][j].ip)) ax.set_xlabel("Packet Number") if not d.empty | len(d)<2 : ax.plot(data[i][j].pkts["seq"],data[i][j].pkts["rtt"],label=cases[i] #,color=colors[i] ) ax.legend() #ax.set_xlim([-500, 8000]) plt.tight_layout() saveFileFigures(fig,directory,namefile) #Not used anymore def coojaJsonImporter(dir): dataList=[] for file in os.listdir(dir): print("Importing "+ file) with open(dir+"/" + file, 'r') as f: dataList.append(json.load(f)) return dataList ###Function to create nodes, create a list of nodes ### def createNodes(dict): nodeList=[] #dfList(pd.DataFrame(dict)) for ip in dict.keys(): pkts=pd.DataFrame(dict[ip]['pkts']) hop=64-(int(pkts[0:1]["ttl"])) pkts = pkts.drop(['ttl'], axis=1) pkts=pkts.rename(columns={"pkt":"seq"}) #print(type(pkts[0:1]["ttl"])) #print(pkts[0:1]["ttl"]) n=node(ip,hop,pkts) nodeList.append(n) return nodeList def findMissingPackets(node): #print(node.pkts["pkt"]) print("Executed") maxP=-1 for el in node.pkts["seq"]: if(el>maxP): maxP=int(el) #print(maxP) pkt=[None]*(maxP+1) for i in range(len(node.pkts["seq"])): index=int(node.pkts["seq"][i]) #print(index) pkt[index]=node.pkts["rtt"][i] #pkt[)]=node.pkts["pkt"][i] return pkt def getIps(list): ips=[] for n in list: ips.append(n.ip) return ips def MLPreparation(data): # Calculate all the statistics statistics = {} # <node_id, statistics of the node> for network in data: for node in network: print(node.pkts["rtt"].describe()) def getOutliers(df): df1=df["rtt"] std=df1.std() mean=df1.mean() a1=df["rtt"]>mean+(2*std) a2=df["rtt"]<mean-(2*std) return(df[a1 | a2]) def get_IQR_Outliers(df): df1 = df["rtt"] lower = df1.quantile(.25) upper = df1.quantile(.75) a1 = df["rtt"]>upper a2 = df["rtt"]<lower return(df[a1 | a2]) def getStdValues(df): df1=df["rtt"] std=df1.std() mean=df1.mean() a1=df["rtt"]<mean+(2*std) a2=df["rtt"]>mean-(2*std) return(df[a1 & a2]) def getPings(data): pings=[] for i in range(len(data)): packetN=-1 for j in range(len(data[i])): if(len(data[i][j].pkts)>packetN): packetN=len(data[i][j].pkts) pings.append(packetN) return pings #Prepare the hop data def hopPreparation(data): hoplist=[] df_a = pd.DataFrame( ) dataHop=[] listoflists = [] #print("Hop Preparation") #print(len(data),len(data[0])) maxHopCase=[] for i in range(len(data)): maxHop=-1 for j in range(len(data[i])): if(data[i][j].hop>maxHop): maxHop=data[i][j].hop maxHopCase.append(maxHop) #print(maxHopCase) for i in range(len(data)): sublist = [] for j in range(maxHopCase[i]): sublist.append((df_a)) dataHop.append(sublist) #print (listoflists) for i in range(len(data)): col=[] for j in range(len(data[i])): hop=data[i][j].hop-1 dataHop[i][hop]= pd.concat([dataHop[i][hop],data[i][j].pkts],sort=True) #print(len(dataHop),len(dataHop[0])) return dataHop def getPercentageMissingPackets(node,lenght): missing=0 #print(len(node.pkts)) missing=lenght-len(node) #print(lenght,missing) if(missing!=0): result=missing/lenght else: result=0 #print(maxS/missing) return result*100 def accuracy_score_corrected(correction,labels): #print(np.array(correction)) labels_alt=[] sum_labels=0 sum_labels_alt=0 for el in labels: if (el==0): labels_alt.append(1) sum_labels_alt+=1 elif el==1: labels_alt.append(0) sum_labels+=1 accuracy=sm.accuracy_score(correction, labels) accuracy_alt=sm.accuracy_score(correction, labels_alt) #print(correction) if (sum_labels>sum_labels_alt): #print(accuracy) None else: #print(accuracy_alt) labels=labels_alt #print(np.array(labels)) confusionMatrix=sm.confusion_matrix(correction, labels) #pprint(confusionMatrix) return labels def ReplaceMissingPackets(node): #print(node.pkts["pkt"]) print("Executed") maxP=-1 for el in node.pkts["seq"]: if(el>maxP): maxP=int(el) #print(maxP) pkt=[None]*(maxP+1) for i in range(len(node.pkts["seq"])): index=int(node.pkts["seq"][i]) #print(index) pkt[index]=node.pkts["rtt"][i] #pkt[)]=node.pkts["pkt"][i] return pkt #Import from pings files to a dataframe def import_nodes_Cooja_2(directory,tracemask,node_defaults): #print(directory) #print(tracemask) files = [] # load all files and extract IPs of nodes for file in os.listdir(directory): try: if file.startswith(tracemask) and file.index("routes"): continue except: files.append(file) nodes = pd.DataFrame(columns=['node_id', 'rank']) packets_node = {} # Load the ICMP traces for file in files: packets = pd.read_csv(directory + '/' + file, sep=' |icmp_seq=|ttl=|time=', na_filter=True, header=None, skiprows=1, skipfooter=4, usecols=[3, 5, 7, 9], names=['node_id', 'seq', 'hop', 'rtt'], engine='python').dropna().drop_duplicates() if len(packets) < 1: # Nodes affected by a black hole did not receive any packet node_id = file[-24:-4] if(node_id=="fc00:e968:6179::de52:7100:7411:11:1111"): node_id="fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:7411:11:1111" packets = pd.DataFrame(columns=['node_id', 'seq', 'hop', 'rtt'], data=[[node_id, 1, node_defaults[node_id], 1]]) nodes.loc[len(nodes)] = [file[-24:-4], node_defaults[node_id]] packets_node[file[-24:-4]] = packets else: #print("qui") packets['node_id'] = packets.apply(lambda row: row['node_id'][:-1], axis=1) #print(packets["hop"].head()) #print(nodes) #nodes.loc[len(nodes)-1] = [packets['node_id'][0], 64-packets['hop'][0]] #print("ciao"+ str(64-packets['hop'][0])) #print(nodes.loc[7]) packets = packets.sort_values(by=['node_id', 'seq'], ascending=True, na_position='first') packets = packets[packets['rtt'] > 1] packets["hop"]= 64-packets['hop'] packets_node[packets['node_id'][0]] = packets nodes=nodes.sort_values(by=['rank', 'node_id']) #tranformation in node nodeList=[] for n in packets_node.keys(): #print((packets_node[n]).head()) pkts=packets_node[n].drop(["node_id","hop"],axis=1) #print(pkts) hop=int(packets_node[n]["hop"][0]) ip=packets_node[n]["node_id"][0] #print(hop) n=node(ip,hop,pkts) nodeList.append(n) return nodeList #calls import nodes cooja_2 def import_Cooja2(df,directory): data=[] node_defaults = { "aaaa::212:7403:3:303": 10, "aaaa::212:7402:2:202": 10, "aaaa::212:7404:4:404": 10, "aaaa::212:7406:6:606": 10, "aaaa::212:7405:5:505": 10, "aaaa::212:7407:7:707": 10, "aaaa::212:7409:9:909": 10, "aaaa::212:7408:8:808": 10, "aaaa::212:740a:a:a0a": 10, "aaaa::212:740b:b:b0b": 10, "fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:740f:f:f0f": 10, "fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:7411:11:1111": 10, "fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:740d:d:d0d": 10, } #for row in plots: #print("Importing ./"+row[0]+"/"+row[1]) #print(directory+df["directory"].values) for i in range(len(df["directory"].values)): nodeList=import_nodes_Cooja_2(directory+df["directory"].values[i],df["case"].values[i],node_defaults) data.append(nodeList) #print(len(data)) #print(len(data[0])) return data def analyze_network(directory, df, pings, window, features_to_drop): cases = [] casesAccuracy = df["case_accuracy"].values casesAccuracy2 = df["case_accuracy2"].values # for row in plots: # cases.append(row[1]) # casesAccuracy.append(row[2]) # data=import_Cooja2(plots) cases = df["case"].values folder = df["directory"].values + directory data = import_Cooja2(df, directory) # pings=getPings(data) # All data collection is in variable node that is a list of list of nodes # 3 nets input x 9 nodes by net print("Processing...") d = {"label": [], "type": [], "count": [], "std": [], "mean": [], "var": [], "hop": [], "packet loss": [], "outliers": [], "node": [], "window": [] } # count=[] labels = [] var = [] # window=100 # stats=pd.DataFrame(columns=columns) n = pings for i in range(len(data)): # window=pings[i] for j in range(len(data[i])): # n=pings[i] # print(n) for z in range(0, n, int(window)): # if(z+window>n):break # print(z,z+window) # df1 = df1.assign(e=p.Series(np.random.randn(sLength)).values) node = data[i][j].pkts name = str(j) + " " + cases[i] nodeWindow = node[(node["seq"] < z + window) & (node["seq"] >= z)] nodeWindowP = nodeWindow["rtt"] d["count"].append(nodeWindowP.count()) # Case without outliers # Case with outliers std = 0 if (nodeWindowP.std() > 10): std = 1 std = nodeWindowP.std() d["std"].append(std) mean = nodeWindowP.mean() # if(mean<1):print(mean) d["mean"].append(mean) var = 0 if (nodeWindowP.var() > var): var = nodeWindowP.var() d["var"].append(var) d["label"].append(cases[i]) d["hop"].append(data[i][j].hop) d["type"].append(casesAccuracy[i]) d["outliers"].append(getOutliers(nodeWindow)["rtt"].count()) missing = window - nodeWindow.count() d["node"].append(data[i][j].ip) mP = getPercentageMissingPackets(nodeWindow, window) PL = 0 if (mP > 30): PL = 1 PL = mP d["packet loss"].append(mP) d["window"].append(window) stats = pd.DataFrame(d) dataK = stats.drop(features_to_drop, axis=1) dataK = dataK.fillna(0) # print(dataK) correction = [] correction_alt = [] col = np.array(dataK["type"]) dataK = dataK.drop(["type"], axis=1) # Creating simple array to correct unsupervised learning # NB as it is unsupervised could happen that the correction are inverted for i in range(len(col)): el = d["type"][i] if el == "normal": correction.append(1) correction_alt.append(0) else: correction.append(0) correction_alt.append(1) dataC = stats["label"] kmeans = KMeans(n_clusters=2) kmeans.fit(dataK) labels = kmeans.predict(dataK) centroids = kmeans.cluster_centers_ labels = accuracy_score_corrected(correction, labels) predicted = [] for i in range(len(labels)): if (labels[i] == 1): predicted.append("normal") else: predicted.append("BH") # print(len(predicted)) stats["predicted"] = pd.Series(np.array(predicted)) stats["predicted number"] = pd.Series(np.array(labels)) stats["correction number"] = pd.Series(np.array(correction)) stats_csv = stats[[ "label", "type", "predicted", "packet loss", "outliers", "std", "hop", "node", "mean" ]] # stats_csv.to_csv("results_kmeans.csv", sep='\t', encoding='utf-8') stats.head() net_results = { "case": [], "normal_behaving_nodes_percentage": [], "predicted": [], "real": [], "pings": [], "window": [], } # print(stats["predicted number"]) correction = [] labels = [] for case in range(len(cases)): subset = stats[stats["label"] == cases[case]] mean_predicted = str(subset["predicted number"].mean() * 100) # +"% normal" net_results["case"].append(cases[case]) net_results["normal_behaving_nodes_percentage"].append(mean_predicted) net_results["pings"].append(pings) net_results["window"].append(window) if (float(mean_predicted) < 85): p = "abnormal" labels.append(0) else: p = "normal" labels.append(1) if (casesAccuracy[case] == "BH"): c = "abnormal" correction.append(0) elif (casesAccuracy[case] == "normal"): c = "normal" correction.append(1) net_results["predicted"].append(p) net_results["real"].append(c) results = pd.DataFrame(net_results) return results, stats, correction, labels def create_stats(directory, df, pings, window): cases = [] casesAccuracy = df["case_accuracy"].values casesAccuracy2 = df["case_accuracy2"].values cases = df["case"].values folder = df["directory"].values + directory data = import_Cooja2(df, directory) print("Processing...") d = {"experiment": [], "node_id": [], "label": [], "label_2":[], "loss": [], "count": [], "std": [], "mean": [], "var": [], "hop": [], "min":[], "max":[], "outliers": [], "window": [] } # count=[] labels = [] var = [] # window=100 # stats=pd.DataFrame(columns=columns) n = pings for i in range(len(data)): # window=pings[i] for j in range(len(data[i])): # n=pings[i] # print(n) for z in range(0, n, int(window)): # if(z+window>n):break # print(z,z+window) # df1 = df1.assign(e=p.Series(np.random.randn(sLength)).values) node = data[i][j].pkts name = str(j) + " " + cases[i] nodeWindow = node[(node["seq"] < z + window) & (node["seq"] >= z)] nodeWindowP = nodeWindow["rtt"] d["count"].append(nodeWindowP.count()) # Case without outliers # Case with outliers std = 0 if (nodeWindowP.std() > 10): std = 1 std = nodeWindowP.std() d["std"].append(std) mean=0 if(nodeWindowP.mean()>mean): mean=nodeWindowP.mean() # if(mean<1):print(mean) d["mean"].append(mean) var = 0 if (nodeWindowP.var() > var): var = nodeWindowP.var() d["var"].append(var) d["experiment"].append(cases[i]) d["hop"].append(data[i][j].hop) if(casesAccuracy[i]=="normal"): d["label"].append("Normal") else: d["label"].append("Attacked") if (casesAccuracy[i] == "normal"): d["label_2"].append("Normal") elif(casesAccuracy[i] == "BH"): d["label_2"].append("BH") else: d["label_2"].append("GH") d["outliers"].append(getOutliers(nodeWindow)["rtt"].count()) missing = window - nodeWindow.count() d["node_id"].append(data[i][j].ip) mP = getPercentageMissingPackets(nodeWindow, window) d["min"].append(data[i][j].pkts["rtt"].min()) d["max"].append(data[i][j].pkts["rtt"].max()) d["loss"].append(mP) d["window"].append(window) stats =
pd.DataFrame(d)
pandas.DataFrame
import click import logging import signal import time import code import os import re import subprocess import pdb import glob import IPython import bpython import collections import pandas as pd from config import user_config from typing import Optional, List, Dict, Callable, Union from pprint import pformat from .base import MenuOption, ControlMode, ControlAction from .error import RaspadorInputTimeoutError, RaspadorCannotInteractError, RaspadorQuit from .style import Styled, CustomStyled, CodeStyled, Format from datetime import datetime from enum import Enum class Interaction(MenuOption): html = 'h' image = 'i' python = 'p' script = 'r' debugger = 'd' log = 'l' @property def option_text(self) -> str: if self is Interaction.html: return '(H)TML current page view' elif self is Interaction.image: return '(I)mage of current page' elif self is Interaction.python: return '(P)ython interactive shell' elif self is Interaction.script: return '(R)un python script' elif self is Interaction.debugger: return '(D)ebugger session' elif self is Interaction.log: return '(L)og view' @property def styled(self) -> Styled: return CustomStyled(text=self.option_text, style=Format().blue()) class Console(code.InteractiveConsole): record: List = None def raw_input(self, prompt=''): result = super().raw_input(prompt=prompt) if self.record is None: self.record = [] self.record.append(result) return result class UserExceptionFormatter(logging.Formatter): style: Format = Format().red().bold() def formatException(self, exc_info): return self.style(super(UserExceptionFormatter, self).formatException(exc_info)) def format(self, record): s = super(UserExceptionFormatter, self).format(record) if record.exc_text: s = self.style(s) return s class UserInteractor: driver: Optional[any] locals: Dict[str, any] timeout: Optional[int] interactive: bool monitor: bool control_mode: ControlMode break_on_exceptions: bool retry: Optional[int] abbreviated_length: int _last_script_name: Optional[str]=None def __init__(self, driver: Optional[any]=None, locals: Dict[str, any]={}, timeout: Optional[int]=30, interactive: bool=True, monitor: bool=False, control_mode: ControlMode=ControlMode.automatic, break_on_exceptions: bool=False, retry: Optional[int]=None, abbreviated_length: int=2048): self.driver = driver self.timeout = timeout self.locals = self.python_locals self.locals.update(locals) self.interactive = interactive self.control_mode = control_mode self.break_on_exceptions = break_on_exceptions self.retry = retry self.abbreviated_length = abbreviated_length @classmethod def shell(cls, driver: Optional[any]=None, locals: Dict[str, any]={}): user = cls(driver=driver, locals=locals) user.present_python_shell() @property def python_locals(self) -> Dict[str, any]: python_locals = {} if self.driver is not None: python_locals['driver'] = self.driver def view_html(): self.view_html() python_locals['view_html'] = view_html return python_locals def present_prompt(self, prompt: str, response_type: any=str, default_response: Optional[any]=None, prompter: Optional[Callable[[str, any, Optional[any]], any]]=None): if prompter is None: def prompter(prompt: str, response_type:any, default_response: Optional[any]) -> any: return click.prompt(prompt, type=response_type, default=default_response) if self.interactive: if self.timeout is None: response = prompter(prompt, response_type, default_response) elif self.timeout <= 0: response = default_response else: def handle_alarm(signum, frame): raise RaspadorInputTimeoutError() original_handler = signal.getsignal(signal.SIGALRM) signal.signal(signal.SIGALRM, handle_alarm) original_time = time.time() original_alarm = signal.alarm(self.timeout) try: print(f'Will continue automaticially after {self.timeout} seconds with reponse [{default_response}]') response = prompter(prompt, response_type, default_response) signal.alarm(0) except RaspadorInputTimeoutError: print(f' => {default_response} (continuing automaticially after {self.timeout} seconds)') response = default_response signal.signal(signal.SIGALRM, original_handler) if original_alarm: new_alarm = original_alarm - round(time.time() - original_time) if new_alarm > 0: signal.alarm(new_alarm) else: signal.alarm(1) time.sleep(2) else: response = default_response return response def present_error(self, error: Exception): handler = logging.StreamHandler() formatter = UserExceptionFormatter() handler.setFormatter(formatter) root = logging.getLogger() root.addHandler(handler) logging.exception(error) root.removeHandler(handler) def present_message(self, message: Optional[str]=None, prompt: Optional[str]=None, error: Optional[Exception]=None, response_type: any=str, default_response: Optional[any]=None): response = None if error is not None: self.present_error(error) if message is not None: print(message) if prompt is not None: response = self.present_prompt(prompt=prompt, response_type=response_type, default_response=default_response) return response def present_confirmation(self, prompt: str='Continue', default_response: bool=False) -> bool: def prompter(prompt: str, response_type: any, default_response: bool) -> bool: return click.confirm(prompt, default=default_response) return self.present_prompt(prompt=prompt, response_type=bool, default_response=default_response, prompter=prompter) def present_report(self, report: Union[pd.DataFrame, pd.Series], title: Optional[str]=None, prefix: Optional[str]=None, suffix: Optional[str]=None): with pd.option_context('display.max_rows', None, 'display.max_columns', None): prefix = f'{prefix}\n' if prefix else '' report_text = report.to_string() if not report.empty else 'Empty report.' suffix = f'\n{suffix}' if suffix else '' self.present_title(title=title) self.present_message(f'{prefix}{report_text}{suffix}') def present_menu(self, options: List[MenuOption], default_option: Optional[MenuOption]=None, message: Optional[str]=None) -> MenuOption: prompt = '\n'.join([ (o.styled + Format().underline()).styled if o is default_option else o.styled.styled for o in options ] + [message if message is not None else '']) option_values = [o.value for o in options] assert default_option is None or default_option in options assert len(option_values) == len(set(option_values)), str([o for o in options if collections.Counter(option_values)[o.value] > 1]) choice = self.present_message( prompt=prompt, response_type=click.Choice(option_values, case_sensitive=False), default_response=default_option.value if default_option else None ) option = next(filter(lambda o: o.value == choice, options)) return option def interact(self, interaction: Interaction) -> bool: if interaction is Interaction.html: self.view_html() elif interaction is Interaction.image: # log = self.locals['log'] if 'log' in self.locals else pd.DataFrame() # file_name = f'{log}' self.save_image() elif interaction is Interaction.python: self.present_python_shell() elif interaction is Interaction.script: self.run_script() elif interaction is Interaction.debugger: self.debug() elif interaction is Interaction.log: log = self.locals['log'] if 'log' in self.locals else pd.DataFrame() self.present_log(log=log) def view_html(self): if self.driver is None: print('No driver') return time_text = self.date_file_name() path = os.path.join('output', 'html', f'{time_text}_{self.safe_file_name(self.driver.current_url)[:200]}.html') with open(path, 'w') as f: f.write(self.driver.page_source) subprocess.call([ *user_config['view_html_command'], path, ]) def save_image(self, file_name: Optional[str]=None, quiet: bool=False): def output(message: str): if not quiet: log.log(message) if 'browser' not in self.locals or self.locals['browser'] is None: output('No browser') return browser = self.locals['browser'] if file_name is None: file_name = self.frame_file_name() source = browser.current_source image_path = os.path.join('output', 'image', f'{file_name}.png') html_path = os.path.join('output', 'html', f'{file_name}.html') if self.locals['browser'].save_screenshot(path=image_path): output(f'Image saved to {image_path}') else: output('No display') if source: with open(html_path, 'w') as f: f.write(source) output(f'Source saved to {html_path}') else: output('No source') def python_shell(self) -> str: if not self.interactive: raise RaspadorCannotInteractError() print('Local variables:') for name, value in self.locals.items(): print(f' {name}:\n {pformat(value)}') if user_config['python_shell'].lower() == 'default': console = Console(locals=self.locals) console.interact(banner='Python shell. Type CTRL-D to exit.') return '\n'.join(console.record) elif user_config['python_shell'].lower() == 'ipython': print('IPython shell. Type CTRL-D to exit.') console = IPython.terminal.embed.InteractiveShellEmbed() import raspador console.mainloop(local_ns=self.locals, module=raspador) record = '' for index, line in enumerate(console.history_manager.input_hist_raw): record += f'{line}\n' if index in console.history_manager.output_hist: record += f'# {str(console.history_manager.output_hist[index])}\n' return record elif user_config['python_shell'].lower() == 'bpython': history_path = os.path.join('output', 'python', 'history.py') try: os.remove(history_path) except FileNotFoundError: pass bpython.embed(args=['--config=bpython_config'], locals_=self.locals, banner='bpython shell. Type CTRL-D to exit.') if os.path.isfile(history_path): with open(history_path, 'r') as f: record = f.read() else: record = '' return record else: raise ValueError('Invalid python_shell', user_config['python_shell']) def present_python_shell(self): record = self.python_shell() if not record.strip(): return choice = click.prompt('(S)ave, (E)dit, or (D)elete record of interaction?', type=click.Choice(['s', 'e', 'd'], case_sensitive=False), default='d').lower() if choice in ['s', 'e', 'd']: path = os.path.join('output', 'python', f'{self.date_file_name()}_interaction.py') with open(path, 'w') as f: f.write(record) if choice == 'e': subprocess.call([ *user_config['editor_command'], path, ]) while True: script_name = click.prompt('To save this interaction as a script enter a script name, or press return to continue.', default='') if not script_name: break script_name = self.safe_file_name(script_name) script_path = os.path.join('output', 'python', 'scripts', f'{script_name}.py') if os.path.exists(script_path): if not click.confirm(f'A script alread exists at \'{script_path}\'\nWould you like to replace it', abort=True): continue with open(path, 'r') as f: with open(script_path, 'w') as g: g.write(f.read()) print(f'Script written to \'{script_path}\'\nIt will be available for future use as \'{script_name}\'') break else: print(f'{record}\n\nWritten to {path}') def run_script(self, script_name: Optional[str]=None): script_paths = glob.glob(os.path.join('output', 'python', 'scripts', '*.py')) if not script_paths: print('No scripts found in \'output/python/scripts/\'') return script_names = {os.path.splitext(os.path.basename(p))[0]: p for p in script_paths} if script_name is None and self.interactive: default_script = self._last_script_name if self._last_script_name in script_names.keys() else None script_name = click.prompt('Enter a script to execute', type=click.Choice(sorted(script_names.keys())), default=default_script) if not script_name: return self._last_script_name = script_name with open(script_names[script_name], 'r') as f: script = f.read() self.run_code(code=script, file_path=script_names[script_name], description=f'from \'{script_names[script_name]}\'') def run_code(self, code: str, file_path: str, description: str, confirm: Optional[bool]=True): if confirm: message_style = Format().cyan() prompt = CustomStyled(text=f'Script...\n{"–" * 9}\n', style=message_style) + CodeStyled(text=code) + CustomStyled(text=f'{"–" * 9}\n...Script\n', style=message_style) + f'Run this script ({description})' if not click.confirm(prompt.styled, default=True): return compiled = compile(code, file_path, 'exec') exec(compiled, self.locals, self.locals) print(f'Ran script ({description})') def debug(self): pdb.set_trace() def present_title(self, title: str=''): title = Format().cyan()(f'\n{title}\n{"–" * len(title)}\n') if title else '' print(title) def present_log(self, log: pd.DataFrame): self.present_title(title='Flight Log') index_style = Format().gray() maneuver_style = Format().bold() attempt_style = Format().blue() error_style = Format().red().bold() result_style = Format().green().bold() for index, row in log.iterrows(): mission = f'{row.mission}.' if row.mission else '' print(f'{index_style(str(index))} {mission}{maneuver_style(row.maneuver)}') if row.error: print(error_style(f' = {row.option} – {row.error}')) elif row.result: print(result_style(f' = {row.option} : {row.result}')) else: print(attempt_style(f' = {row.option}')) print(f'{len(log)} actions logged') def date_file_name(self) -> str: return datetime.now().strftime('%Y-%m-%d_%H_%M_%S') def safe_file_name(self, name: str) -> str: return re.sub(r'[^a-zA-Z0-9]', '_', name) def frame_file_name(self) -> str: log = self.locals['log'] if 'log' in self.locals else
pd.DataFrame()
pandas.DataFrame
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_difference(self): # diff rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=5) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=3) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = rng4 rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex( ['2000-01-01 09:01', '2000-01-01 09:05'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:03'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=3) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('2006-01-01', freq='A', periods=2) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7), ]: result_union = rng.difference(other) tm.assert_index_equal(result_union, expected) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_comp_nat(self): left = pd.PeriodIndex([pd.Period('2011-01-01'), pd.NaT, pd.Period('2011-01-03')]) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)), freq='H') exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00', '2011-01-01 16:00', '2011-01-01 15:00', '2011-01-01 14:00', '2011-01-01 13:00', '2011-01-01 12:00', '2011-01-01 11:00', '2011-01-01 10:00', '2011-01-01 09:00'], freq='H') expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.period_range('2011-01-01 09:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], freq='H') exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'], freq='H') expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], freq='H') expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) # freq will not be reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_order_compat(self): def _check_freq(index, expected_index): if isinstance(index, PeriodIndex): self.assertEqual(index.freq, expected_index.freq) pidx = PeriodIndex(['2011', '2012', '2013'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2012, 2013], name='idx') for idx in [pidx, iidx]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, idx[::-1]) _check_freq(ordered, idx[::-1]) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) _check_freq(ordered, idx[::-1]) pidx = PeriodIndex(['2011', '2013', '2015', '2012', '2011'], name='pidx', freq='A') pexpected = PeriodIndex( ['2011', '2011', '2012', '2013', '2015'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2013, 2015, 2012, 2011], name='idx') iexpected = Index([2011, 2011, 2012, 2013, 2015], name='idx') for idx, expected in [(pidx, pexpected), (iidx, iexpected)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) pidx = PeriodIndex(['2011', '2013', 'NaT', '2011'], name='pidx', freq='D') result = pidx.sort_values() expected = PeriodIndex(['NaT', '2011', '2011', '2013'], name='pidx', freq='D') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') result = pidx.sort_values(ascending=False) expected = PeriodIndex( ['2013', '2011', '2011', 'NaT'], name='pidx', freq='D') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') def test_order(self): for freq in ['D', '2D', '4D']: idx = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq=freq, name='idx') ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq, freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) self.assertEqual(ordered.freq, freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq, freq) idx1 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], freq='D', name='idx1') exp1 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx1') idx2 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], freq='D', name='idx2') exp2 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx2') idx3 = PeriodIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], freq='D', name='idx3') exp3 = PeriodIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, 'D') ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertEqual(ordered.freq, 'D') ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertEqual(ordered.freq, 'D') ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertEqual(ordered.freq, 'D') def test_getitem(self): idx1 = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Period('2011-01-01', freq='D')) result = idx[-1] self.assertEqual(result, pd.Period('2011-01-31', freq='D')) result = idx[0:5] expected = pd.period_range('2011-01-01', '2011-01-05', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') result = idx[0:10:2] expected = pd.PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-07', '2011-01-09'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') result = idx[-20:-5:3] expected = pd.PeriodIndex(['2011-01-12', '2011-01-15', '2011-01-18', '2011-01-21', '2011-01-24'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') result = idx[4::-1] expected = PeriodIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') def test_take(self): # GH 10295 idx1 = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Period('2011-01-01', freq='D')) result = idx.take([5]) self.assertEqual(result, pd.Period('2011-01-06', freq='D')) result = idx.take([0, 1, 2]) expected = pd.period_range('2011-01-01', '2011-01-03', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') result = idx.take([7, 4, 1]) expected = pd.PeriodIndex(['2011-01-08', '2011-01-05', '2011-01-02'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') result = idx.take([3, 2, 5]) expected = PeriodIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') result = idx.take([-3, 2, 5]) expected = PeriodIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) self.assertEqual(result.freq, 'D') def test_nat_new(self): idx = pd.period_range('2011-01', freq='M', periods=5, name='x') result = idx._nat_new() exp = pd.PeriodIndex([pd.NaT] * 5, freq='M', name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.PeriodIndex([], name='xxx', freq='H') with tm.assertRaises(TypeError): # period shift doesn't accept freq idx.shift(1, freq='H') tm.assert_index_equal(idx.shift(0), idx) tm.assert_index_equal(idx.shift(3), idx) idx = pd.PeriodIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(0), idx) exp = pd.PeriodIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(3), exp) exp = pd.PeriodIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(-3), exp) def test_repeat(self): index = pd.period_range('2001-01-01', periods=2, freq='D') exp = pd.PeriodIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], freq='D') for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) index = pd.period_range('2001-01-01', periods=2, freq='2D') exp = pd.PeriodIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], freq='2D') for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) index = pd.PeriodIndex(['2001-01', 'NaT', '2003-01'], freq='M') exp = pd.PeriodIndex(['2001-01', '2001-01', '2001-01', 'NaT', 'NaT', 'NaT', '2003-01', '2003-01', '2003-01'], freq='M') for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) def test_nat(self): self.assertIs(pd.PeriodIndex._na_value, pd.NaT) self.assertIs(pd.PeriodIndex([], freq='M')._na_value, pd.NaT) idx = pd.PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.PeriodIndex(['2011-01-01', 'NaT'], freq='D') self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for freq in ['D', 'M']: idx = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'], freq=freq) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'], freq='H') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.PeriodIndex._simple_new(idx.asi8, freq='H')
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
pandas.util.testing.assert_numpy_array_equal
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]}) df.ix[[0, 2, ], 'b'] = [100, -100] expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df.ix[[1, 3], 'b'] = [100, -100] expected = DataFrame({'a': [0, 1, 2, 3], 'b': [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignement it will work with option_context('chained_assignment', None): df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df['b'].ix[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame(np.arange(16).reshape((4, 4)), columns=['a', 'b', 8, 'c'], index=['e', 7, 'f', 'g']) self.assertEqual(df.ix['e', 8], 2) self.assertEqual(df.loc['e', 8], 2) df.ix['e', 8] = 42 self.assertEqual(df.ix['e', 8], 42) self.assertEqual(df.loc['e', 8], 42) df.loc['e', 8] = 45 self.assertEqual(df.ix['e', 8], 45) self.assertEqual(df.loc['e', 8], 45) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) mask = (df.a % 2 == 0) self.assertRaises(ValueError, df.iloc.__getitem__, tuple([mask])) mask.index = lrange(len(mask)) self.assertRaises(NotImplementedError, df.iloc.__getitem__, tuple([mask])) # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2 ** locs reps = lmap(bin, nums) df = DataFrame({'locs': locs, 'nums': nums}, reps) expected = { (None, ''): '0b1100', (None, '.loc'): '0b1100', (None, '.iloc'): '0b1100', ('index', ''): '0b11', ('index', '.loc'): '0b11', ('index', '.iloc'): ('iLocation based boolean indexing ' 'cannot use an indexable as a mask'), ('locs', ''): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the indexed ' 'object do not match', ('locs', '.loc'): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the ' 'indexed object do not match', ('locs', '.iloc'): ('iLocation based boolean indexing on an ' 'integer type is not available'), } # UserWarnings from reindex of a boolean mask with warnings.catch_warnings(record=True): result = dict() for idx in [None, 'index', 'locs']: mask = (df.nums > 2).values if idx: mask = Series(mask, list(reversed(getattr(df, idx)))) for method in ['', '.loc', '.iloc']: try: if method: accessor = getattr(df, method[1:]) else: accessor = df ans = str(bin(accessor[mask]['nums'].sum())) except Exception as e: ans = str(e) key = tuple([idx, method]) r = expected.get(key) if r != ans: raise AssertionError( "[%s] does not match [%s], received [%s]" % (key, ans, r)) def test_ix_slicing_strings(self): # GH3836 data = {'Classification': ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'], 'Random': [1, 2, 3, 4, 5], 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']} df = DataFrame(data) x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF' ])] df.ix[x.index, 'X'] = df['Classification'] expected = DataFrame({'Classification': {0: 'SA EQUITY CFD', 1: 'bbb', 2: 'SA EQUITY', 3: 'SA SSF', 4: 'aaa'}, 'Random': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, 'X': {0: 'correct', 1: 'bbb', 2: 'correct', 3: 'correct', 4: 'aaa'}}) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_non_unique_loc(self): # GH3659 # non-unique indexer with loc slice # https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs # these are going to raise becuase the we are non monotonic df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)])) # monotonic are ok df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0) result = df.loc[1:] expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]}, index=[1, 1, 2, 3]) tm.assert_frame_equal(result, expected) result = df.loc[0:] tm.assert_frame_equal(result, df) result = df.loc[1:2] expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]}, index=[1, 1, 2]) tm.assert_frame_equal(result, expected) def test_loc_name(self): # GH 3880 df = DataFrame([[1, 1], [1, 1]]) df.index.name = 'index_name' result = df.iloc[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.ix[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.loc[[0, 1]].index.name self.assertEqual(result, 'index_name') def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({'A': [0.1] * 3000, 'B': [1] * 3000}) idx = np.array(lrange(30)) * 99 expected = df.iloc[idx] df3 = pd.concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({'A': [0.1] * 1000, 'B': [1] * 1000}) df2 = pd.concat([df2, 2 * df2, 3 * df2]) sidx = df2.index.to_series() expected = df2.iloc[idx[idx <= sidx.max()]] new_list = [] for r, s in expected.iterrows(): new_list.append(s) new_list.append(s * 2) new_list.append(s * 3) expected = DataFrame(new_list) expected = pd.concat([expected, DataFrame(index=idx[idx > sidx.max()]) ]) result = df2.loc[idx] tm.assert_frame_equal(result, expected, check_index_type=False) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) self.assertTrue(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] df = pd.DataFrame() self.assertFalse(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_non_unique_loc_memory_error(self): # GH 4280 # non_unique index with a large selection triggers a memory error columns = list('ABCDEFG') def gen_test(l, l2): return pd.concat([DataFrame(randn(l, len(columns)), index=lrange(l), columns=columns), DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns)]) def gen_expected(df, mask): l = len(mask) return pd.concat([df.take([0], convert=False), DataFrame(np.ones((l, len(columns))), index=[0] * l, columns=columns), df.take(mask[1:], convert=False)]) df = gen_test(900, 100) self.assertFalse(df.index.is_unique) mask = np.arange(100) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) df = gen_test(900000, 100000) self.assertFalse(df.index.is_unique) mask = np.arange(100000) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) self.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() def test_dups_loc(self): # GH4726 # dup indexing with iloc/loc df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]], columns=['a', 'a', 'a', 'a', 'a'], index=[1]) expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')], index=['a', 'a', 'a', 'a', 'a'], name=1) result = df.iloc[0] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. self.assertRaises(IndexError, f) def f(): s.iat[3] = 5. self.assertRaises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. self.assertRaises(IndexError, f) def f(): df.iat[4, 2] = 5. self.assertRaises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B':
Series([0, 2, 4])
pandas.core.api.Series
import numpy as np import pandas as pd import os import sys sys.path.append('/home/akagi/github/RIPS_kircheis/RIPS') import rect_grid import cable acsr = [ u'Bittern', u'Bluebird', u'Bluejay', u'Bobolink', u'Bunting', u'Canary', u'Cardinal', u'Chickadee', u'Chukar', u'Cochin', u'Condor', u'Coot', u'Curlew', u'Dipper', u'Dorking', u'Dotterel', u'Dove', u'Drake', u'Eagle', u'Egret', u'Falcon', u'Finch', u'Flamingo', u'Flicker', u'Grackle', u'Grosbeak', u'Grouse', u'Guinea', u'Hawk', u'Hen', u'Ibis', u'Kingbird', u'Kiwi', u'Lapwing', u'Lark', u'Leghorn', u'Linnet', u'Mallard', u'Martin', u'Merlin', u'Minorca', u'Oriole', u'Ortolan', u'Osprey', u'Parakeet', u'Partridge', u'Peacock', u'Pelican', u'Penguin', u'Petrel', u'Pheasant', u'Pigeon', u'Quail', u'Rail', u'Raven', u'Redwing', u'Robin', u'Rook', u'Ruddy', u'Sparate', u'Sparrow', u'Starling', u'Swan', u'Swanate', u'Swift', u'Tern', u'Turkey', u'Waxwing'] acss = [ u'Avocet', u'Bittern', u'Bluebird', u'Bluejay', u'Bobolink', u'Brant', u'Bullfinch', u'Bunting', u'Canary', u'Canvasback', u'Cardinal', u'Chukar', u'Condor', u'Cormorant', u'Corncrake', u'Cuckoo', u'Curlew', u'Dipper', u'Diver', u'Dove', u'Drake', u'Eagle', u'Egret', u'Falcon', u'Finch', u'Flamingo', u'Flicker', u'Gannet', u'Goldfinch', u'Grackle', u'Grosbeak', u'Hawk', u'Hen', u'Heron', u'Hornbill', u'Ibis', u'Joree', u'Junco', u'Kiwi', u'Lapwing', u'Lark', u'Linnet', u'Macaw', u'Mallard', u'Martin', u'Mockingbird', u'Nuthatch', u'Oriole', u'Ortolan', u'Ostrich', u'Oxbird', u'Parakeet', u'Parrot', u'Partridge', u'Peacock', u'Pheasant', u'Phoenix', u'Plover', u'Popinjay', u'Ptarmigan', u'Puffin', u'Rail', u'Ratite', u'Redbird', u'Redwing', u'Ringdove', u'Roadrunner', u'Rook', u'Ruddy', u'Sapsucker', u'Scaup', u'Scissortail', u'Scoter', u'Seahawk', u'Snowbird', u'Spoonbill', u'Squab', u'Starling', u'Stilt', u'Stork', u'Tailorbird', u'Teal', u'Tern', u'Thrasher', u'Tody', u'Toucan', u'Towhee', u'Trogon', u'Turacos', u'Turbit', u'Wagtail', u'Whooper', u'Widgeon', u'Woodcock'] aac = [ u'Arbutus', u'Aster', u'Bluebell', u'Bluebonnet', u'Canna', u'Carnation', u'Cockscomb', u'Columbine', u'Coreopsis', u'Cosmos', u'Cowslip', u'Daffodil', u'Dahlia', u'Daisy', u'Goldenrod', u'Goldentuft', u'Hawkweed', u'Hawthorn', u'Heuchera', u'Iris', u'Jessamine', u'Larkspur', u'Laurel', u'Lilac', u'Lupine', u'Magnolia', u'Marigold', u'Meadowsweet', u'Mistletoe', u'Narcissus', u'Nasturtium', u'Orchid', u'Oxlip', u'Pansy', u'Peachbell', u'Peony', u'Petunia', u'Phlox', u'Poppy', u'Rose', u'Sneezewort', u'Syringa', u'Trillium', u'Tulip', u'Valerian', u'Verbena', u'Violet', u'Zinnia'] # Had to remove wood duck because of title() function # ACSR # 230 #skylark = cable.cable('Skylark', 'acsr') acsr_df = pd.DataFrame() for k in acsr: cable_i = cable.cable(k, 'acsr') acsr_df[k] = np.asarray([cable_i.I(348, i, 0.61) for i in np.arange(273+0, 273+61)])/(cable_i.I(348, 298, 0.61)) acss_df = pd.DataFrame() for k in acss: cable_i = cable.cable(k, 'acss') acss_df[k] = np.asarray([cable_i.I(348, i, 0.61) for i in np.arange(273+0, 273+61)])/(cable_i.I(348, 298, 0.61)) aac_df = pd.DataFrame() for k in aac: cable_i = cable.cable(k, 'aac') aac_df[k] = np.asarray([cable_i.I(348, i, 0.61) for i in np.arange(273+0, 273+61)])/(cable_i.I(348, 298, 0.61)) fill_between(acsr_df.index.values, acsr_df.min(axis=1), acsr_df.max(axis=1), color='blue', label='ACSR', alpha=1) xlabel('Ambient temperature ($^\circ$C)') ylabel('Fraction of rated capacity') title('ACSR cable') clf() fill_between(acss_df.index.values, acss_df.min(axis=1), acss_df.max(axis=1), color='orange', label='ACSS', alpha=1) xlabel('Ambient temperature ($^\circ$C)') ylabel('Fraction of rated capacity') title('ACSS cable') clf() fill_between(aac_df.index.values, aac_df.min(axis=1), aac_df.max(axis=1), color='red', label='AAC', alpha=1) xlabel('Ambient temperature ($^\circ$C)') ylabel('Fraction of rated capacity') title('AAC cable') ylim(0.4, 1.3) clf() ##################### acsr_cat =
pd.concat([acsr_df.loc[50], cable_i.models['acsr'].T], axis=1)
pandas.concat
import csv import logging import json import math import random import re import time import urllib.request from pathlib import Path import sys import pandas as pd import get_edgar.common.my_csv as mc logger = logging.getLogger(__name__) EDGAR_PREFIX = "https://www.sec.gov/Archives/" SEC_PREFIX = "https://www.sec.gov" ## Download index # Generate the output csv paths for the sample year def dl_index(folder,start_year,end_year,form_types,prefix,ciks=None): """ Download index to csvs according to the start year & end year Arguments: folder {Path} -- [the Path for the folder to store index csvs] start_year {int} -- [the start year of the sample period] end_year {int} -- [the end year of the sample period] form_types {string} -- [all the form types need to download index] prefix {string} -- [prefix of the output index csv names] ciks {Path or tuple or set} -- [csv file containing ciks needed, if applicable] Returns: [list of Paths] -- [list of Paths for all the index csvs during the sample period] """ years = list(range(start_year, end_year+1)) if folder.exists() == False: folder.mkdir() cik_need = input_cik(ciks=ciks) index_csvs = [] for form_type in form_types: for year in years: index_csv = folder / f'index_{prefix}_{form_type}_{year}.csv' get_index_master(year,form_type,index_csv,cik_filter=cik_need) index_csvs.append(index_csv) return index_csvs def input_cik(ciks=None): if ciks is not None: if type(ciks) in (tuple,set): return ciks else: return mc.extract_obs(ciks,'CIK') else: return None # Generate index csv for each year def get_index_master(year, form_type, out_csv,cik_filter=None): """ Get index file for a form type during the specified years. year -> the year to download form_type -> the name of the form type required, case sensitive Output: csv file for required index """ if out_csv.exists() == False: urls = index_url(year) with open(out_csv,'w', newline='') as out: writer = csv.writer(out) labels = ['cik', 'conm', 'form_type', 'filing_date','txt_path', 'html_index'] writer.writerow(labels) for url in urls: try: master = urllib.request.urlopen(url).read() except urllib.error.HTTPError: logger.error(f'{url} does not exist') break lines = str(master, "latin-1").splitlines() for line in lines[11:]:# skip header, first 11 lines for master.idx row = append_html_index(line) if form_type_filter(row, form_type): if cik_filter is not None: if row[0] in cik_filter: writer.writerow(row) else: writer.writerow(row) logger.info(f"{year} {form_type} downloaded and wrote to csv") logger.info(f'{out_csv} created') else: logger.info(f'{out_csv} already exists') def index_url(year): """ Generate url of the index file for future downloading. year - > the year to download Returns: url link of the index file """ quarters = ['QTR1', 'QTR2', 'QTR3', 'QTR4'] return [f'https://www.sec.gov/Archives/edgar/full-index/{year}/{q}/master.idx' for q in quarters] def append_html_index(line): """ Separate a line in an index file and Generate link of the index webpage. line - > a line in an index file Returns: a list of chunks in a line of an index file, including the index webpage """ chunks = line.split("|") chunks[-1] = EDGAR_PREFIX + chunks[-1] chunks.append(chunks[-1].replace(".txt", "-index.html")) return chunks def form_type_filter(chunks, form_type): """ Find a specific form type in the index file. chunks - > a seprated line in an index file form_type - > the name of the form type required, case sensitive Returns: True if the line represents a form that fits form type required False if the line does not """ try: norm_type = re.compile(r'[^\w]') type_t = re.sub(norm_type,'',chunks[2].strip().lower()) type_m = re.sub(norm_type,'',form_type.lower()) if type_m == type_t: return True else: return False except: logger.error('form type need to be a string') return False def evt_filter(csv_index,evt_csv,evtdate,mperiods): """Keep filings for the specific period after a event Arguments: csv_index {Path} -- The Path for the csv file containing all filings evt_csv {Path} -- The Path for the csv file containing the event dates evtdate {str} -- The variable name of the event date mperiods {int} -- The number of months after the event dates Returns: Path -- The Path for the resulting csv file """ all_index = pd.read_csv(csv_index,parse_dates=['filing_date']) all_index['cik'] = all_index['cik'].apply(str) evt = pd.read_csv(evt_csv,parse_dates=[evtdate]) evt['post_evt'] = evt[evtdate] +
pd.DateOffset(months=mperiods)
pandas.DateOffset
import os import sdg import yaml import pandas as pd skip_values_in_columns = [ 'GeoCode', 'Group', ] skip_column_names = [ 'GeoCode', 'Group', 'Units' ] translations_should_include = {} translation_columns = {} data_pattern = os.path.join('data', '*-*.csv') data_input = sdg.inputs.InputCsvData(path_pattern=data_pattern) data_input.execute(None) for indicator in data_input.indicators: serieses = data_input.indicators[indicator].get_all_series() for series in serieses: disaggregations = series.get_disaggregations() for column in disaggregations: if column not in skip_column_names: translations_should_include[column] = True translation_columns[column] = column if column not in skip_values_in_columns: if disaggregations[column] and not
pd.isna(disaggregations[column])
pandas.isna
""" analyze.py - experiment analysis script""" import music_trees as mt from collections import OrderedDict import glob from pathlib import Path import random from itertools import combinations, permutations import pandas as pd import numpy as np import matplotlib.pyplot as plt from natsort import natsorted from scipy.stats import wilcoxon BASELINE_NAME = 'baseline' ANALYSES_DIR = mt.ROOT_DIR / 'analyses' ALL_COLORS = ["#ff595e", "#ffca3a", "#8ac926", "#1982c4", "#eaf6ff", "#6a4c93", "#ed6a5a", "#f4f1bb", "#9bc1bc", "#5d576b", "#9bc1bc", "#5d576b", ] random.shuffle(ALL_COLORS) def significance(df: pd.DataFrame, dv: str, iv: str, cond: str): """ returns a DataFrame with p values for each condition between independent variables """ # get all possible values for the IV and conditions all_trials = df[iv].unique() all_conds = list(natsorted(df[cond].unique())) pairs = list(permutations(all_trials, 2)) pvals = [] for co in all_conds: for pair in pairs: subset = df[df[cond] == co] s1, s2 = pair df1 = subset[subset[iv] == s1].copy() df2 = subset[subset[iv] == s2].copy() stat, p = wilcoxon(df1['value'].values.astype( np.float), df2['value'].values.astype(np.float)) pvals.append({ 'a': s1, 'b': s2, cond: co, 'p': p, 'stat': stat, 'significant?': p < 0.01 }) return pd.DataFrame(pvals) def bar_with_error(df: pd.DataFrame, dv: str, iv: str, cond: str, title: str = None, xlabel: str = None, ylabel: str = None) -> plt.figure: """ dv --> dependent variable iv --> independent variable cond --> conditions (groupings) """ plt.rcParams["figure.figsize"] = (7, 4) # get all possible values for the IV and conditions all_trials = list(natsorted(df[iv].unique())) all_conds = list(natsorted(df[cond].unique())) bar_width = 0.25 * 3 / len(all_trials) means = OrderedDict((tr, []) for tr in all_trials) stds = OrderedDict((tr, []) for tr in all_trials) for trial in all_trials: for c in all_conds: # get the list of all scores per episode values = df[(df[iv] == trial) & (df[cond] == c) ][dv].values.astype(np.float) means[trial].append(np.mean(values)) stds[trial].append(np.std(values)) # make a bar plot for each condition bp = np.arange(len(list(means.values())[0])) bar_pos = OrderedDict((tr, bp + i*bar_width) for i, tr in enumerate(all_trials)) for idx, tr in enumerate(all_trials): plt.bar(bar_pos[tr], means[tr], yerr=stds[tr], width=bar_width, capsize=12*bar_width, color=ALL_COLORS[idx], edgecolor='white', label=tr) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.xticks(ticks=[i + bar_width for i in range(len(all_conds))], labels=all_conds) plt.title(title) plt.legend() plt.tight_layout() fig = plt.gcf() plt.close() return fig def boxplot(df: pd.DataFrame, dv: str, iv: str, cond: str, title: str = None, xlabel: str = None, ylabel: str = None): import seaborn as sns df = df.sort_values(by=cond) sns.boxplot(data=df, x=cond, y=dv, hue=iv, palette="pastel") # sns.despine(offset=10, trim=True) plt.title(title) plt.ylabel(ylabel) plt.xlabel(xlabel) plt.tight_layout() fig = plt.gcf() plt.close() return fig def table(df: pd.DataFrame, dv: str, iv: str, cond: str, title: str = None, xlabel: str = None, ylabel: str = None): # get all possible values for the IV and conditions all_trials = list(natsorted(df[iv].unique())) all_conds = list(natsorted(df[cond].unique())) bar_width = 0.25 * 3 / len(all_trials) means = OrderedDict((tr, []) for tr in all_trials) stds = OrderedDict((tr, []) for tr in all_trials) mnstd = OrderedDict((tr, []) for tr in all_trials) for trial in all_trials: for c in all_conds: # get the list of all scores per episode values = df[(df[iv] == trial) & (df[cond] == c) ][dv].values.astype(np.float) means[trial].append(np.mean(values)) stds[trial].append(np.std(values)) mnstd[trial].append(f'{np.mean(values):.4f}±{np.std(values):.4f}') tbl =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Functions for importing mssql data. """ import pandas as pd import numpy as np from datetime import datetime from pdsql.util import create_engine, get_pk_stmt, compare_dfs try: from geopandas import GeoDataFrame from shapely.wkb import loads from pycrs import parse except ImportError: print('Install geopandas for reading geometery columns') def rd_sql(server, database, table=None, col_names=None, where_in=None, where_op='AND', geo_col=False, from_date=None, to_date=None, date_col=None, rename_cols=None, stmt=None, con=None): """ Function to import data from an MSSQL database. Parameters ---------- server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' col_names : list of str The column names that should be retrieved. e.g.: ['SiteID', 'BandNo', 'RecordNo'] where_in : dict A dictionary of strings to lists of strings.'. e.g.: {'SnapshotType': ['value1', 'value2']} where_op : str If where_in is a dictionary and there are more than one key, then the operator that connects the where statements must be either 'AND' or 'OR'. geo_col : bool Is there a geometry column in the table?. from_date : str The start date in the form '2010-01-01'. to_date : str The end date in the form '2010-01-01'. date_col : str The SQL table column that contains the dates. rename_cols: list of str List of strings to rename the resulting DataFrame column names. stmt : str Custom SQL statement to be directly passed to the database. This will ignore all prior arguments except server and database. con : SQLAlchemy connectable (engine/connection) or database string URI The sqlalchemy connection to be passed to pandas.read_sql Returns ------- DataFrame """ ## Create where statements if stmt is None: if table is None: raise ValueError('Must at least provide input for server, database, and table.') if col_names is not None: if isinstance(col_names, str): col_names = [col_names] col_names1 = ['[' + i.encode('ascii', 'ignore').decode() + ']' for i in col_names] col_stmt = ', '.join(col_names1) else: col_stmt = '*' where_lst, where_temp = sql_where_stmts(where_in=where_in, where_op=where_op, from_date=from_date, to_date=to_date, date_col=date_col) if isinstance(where_lst, list): stmt1 = "SELECT " + col_stmt + " FROM " + table + " where " + " and ".join(where_lst) else: stmt1 = "SELECT " + col_stmt + " FROM " + table elif isinstance(stmt, str): where_temp = {} stmt1 = stmt else: raise ValueError('stmt must either be an SQL string or None.') ## Create connection to database and execute sql statement if geo_col & (stmt is None): df = rd_sql_geo(server=server, database=database, table=table, col_stmt=col_stmt, where_lst=where_lst) if rename_cols is not None: rename_cols1 = rename_cols.copy() rename_cols1.extend(['geometry']) df.columns = rename_cols1 else: if con is None: engine = create_engine('mssql', server, database) with engine.begin() as conn: if where_temp: for key, value in where_temp.items(): df = pd.DataFrame(data=value, columns=[key.lower()]) temp_tab = '#temp_'+key.lower() df.to_sql(temp_tab, con=conn, if_exists='replace', index=False, chunksize=1000) df = pd.read_sql(stmt1, con=conn) else: if where_temp: for key, value in where_temp.items(): df = pd.DataFrame(data=value, columns=[key]) temp_tab = '#temp_'+key df.to_sql(temp_tab, con=con, if_exists='replace', index=False, chunksize=1000) df = pd.read_sql(stmt1, con=con) if rename_cols is not None: df.columns = rename_cols return df def rd_sql_ts(server, database, table, groupby_cols, date_col, values_cols, resample_code=None, period=1, fun='mean', val_round=3, where_in=None, where_op='AND', from_date=None, to_date=None, min_count=None, con=None): """ Function to specifically read and possibly aggregate time series data stored in MSSQL tables. Parameters ---------- server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' groupby_cols : str or list of str The columns in the SQL table to grouped and returned with the time series data. date_col : str The date column in the table. values_cols : str or list of str The column(s) of the value(s) that should be resampled. resample_code : str or None The Pandas time series resampling code. e.g. 'D' for day, 'W' for week, 'M' for month, etc. period : int The number of resampling periods. e.g. period = 2 and resample = 'D' would be to resample the values over a 2 day period. fun : str The resampling function. i.e. mean, sum, count, min, or max. No median yet... val_round : int The number of decimals to round the values. where_in : dict A dictionary of strings to lists of strings.'. e.g.: {'SnapshotType': ['value1', 'value2']} where_op : str If where_in is a dictionary and there are more than one key, then the operator that connects the where statements must be either 'AND' or 'OR'. from_date : str The start date in the form '2010-01-01'. to_date : str The end date in the form '2010-01-01'. min_count : int The minimum number of values required to return groupby_cols. Only works when groupby_cols and vlue_cols are str. con : SQLAlchemy connectable (engine/connection) or database string URI The sqlalchemy connection to be passed to pandas.read_sql Returns ------- DataFrame Pandas DataFrame with MultiIndex of groupby_cols and date_col """ ## Create where statement where_lst, where_temp = sql_where_stmts(where_in=where_in, where_op=where_op, from_date=from_date, to_date=to_date, date_col=date_col) ## Create ts statement and append earlier where statement if isinstance(groupby_cols, str): groupby_cols = [groupby_cols] col_names1 = ['[' + i.encode('ascii', 'ignore').decode() + ']' for i in groupby_cols] col_stmt = ', '.join(col_names1) ## Create sql stmt sql_stmt1 = sql_ts_agg_stmt(table, groupby_cols=groupby_cols, date_col=date_col, values_cols=values_cols, resample_code=resample_code, period=period, fun=fun, val_round=val_round, where_lst=where_lst) ## Create connection to database if con is None: con = create_engine('mssql', server, database) ## Make minimum count selection if (min_count is not None) & isinstance(min_count, int) & (len(groupby_cols) == 1): cols_count_str = ', '.join([groupby_cols[0], 'count(' + values_cols + ') as count']) if isinstance(where_lst, list): stmt1 = "SELECT " + cols_count_str + " FROM " + "(" + sql_stmt1 + ") as agg" + " GROUP BY " + col_stmt + " HAVING count(" + values_cols + ") >= " + str(min_count) else: stmt1 = "SELECT " + cols_count_str + " FROM " + table + " GROUP BY " + col_stmt + " HAVING count(" + values_cols + ") >= " + str(min_count) up_sites = pd.read_sql(stmt1, con)[groupby_cols[0]].tolist() up_sites = [str(i) for i in up_sites] if not up_sites: raise ValueError('min_count filtered out all sites.') where_in.update({groupby_cols[0]: up_sites}) where_lst, where_temp = sql_where_stmts(where_in, where_op=where_op, from_date=from_date, to_date=to_date, date_col=date_col) ## Create sql stmt sql_stmt1 = sql_ts_agg_stmt(table, groupby_cols=groupby_cols, date_col=date_col, values_cols=values_cols, resample_code=resample_code, period=period, fun=fun, val_round=val_round, where_lst=where_lst) ## Create connection to database and execute sql statement df = pd.read_sql(sql_stmt1, con) ## Check to see if any data was found if df.empty: raise ValueError('No data was found in the database for the parameters given.') ## set the index df[date_col] = pd.to_datetime(df[date_col]) groupby_cols.append(date_col) df1 = df.set_index(groupby_cols).sort_index() return df1 def to_mssql(df, server, database, table, index=False, dtype=None, schema=None): """ Function to append a DataFrame onto an existing mssql table. Parameters ---------- df : DataFrame DataFrame to be saved. The DataFrame column/index names must match those on the mssql table exactly. server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' index : bool Should the index be added as a column? dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be an SQLAlchemy type. Returns ------- None """ ### Prepare the engine engine = create_engine('mssql', server, database) ### Save to mssql table df.to_sql(name=table, con=engine, if_exists='append', chunksize=1000, index=index, dtype=dtype, schema=schema) def create_table(server, database, table, dtype_dict, primary_keys=None, foreign_keys=None, foreign_table=None, drop_table=False, con=None): """ Function to create a table in an mssql database. Parameters ---------- server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' dtype_dict : dict of str Dictionary of df columns to the associated sql data type. Examples below. primary_keys : str or list of str Index columns to define uniqueness in the data structure. foreign_keys : str or list of str Columns to link to another table in the same database. foreign_table: str The table in the same database with the identical foreign key(s). drop_table : bool If the table already exists, should it be dropped? Returns ------- None """ ### Make connection if con is None: engine = create_engine('mssql', server, database) con = engine.connect() ### Primary keys if isinstance(primary_keys, str): primary_keys = [primary_keys] if isinstance(primary_keys, list): pkey_stmt = ", Primary key (" + ", ".join(primary_keys) + ")" else: pkey_stmt = "" ### Foreign keys if isinstance(foreign_keys, str): foreign_keys = [foreign_keys] if isinstance(foreign_keys, list): fkey_stmt = ", Foreign key (" + ", ".join(foreign_keys) + ") " + "References " + foreign_table + "(" + ", ".join(foreign_keys) + ")" else: fkey_stmt = "" ### Initial create table statement d1 = [str(i) + ' ' + dtype_dict[i] for i in dtype_dict] d2 = ', '.join(d1) tab_create_stmt = "IF OBJECT_ID(" + str([str(table)])[1:-1] + ", 'U') IS NULL create table " + table + " (" + d2 + pkey_stmt + fkey_stmt + ")" trans = con.begin() try: ### Drop table option or check if drop_table: drop_stmt = "IF OBJECT_ID(" + str([str(table)])[1:-1] + ", 'U') IS NOT NULL DROP TABLE " + table con.execute(drop_stmt) else: check_tab_stmt = "IF OBJECT_ID(" + str([str(table)])[1:-1] + ", 'U') IS NOT NULL SELECT COLUMN_NAME, DATA_TYPE FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME=" + str([str(table)])[1:-1] # tab1 = read_sql(check_tab_stmt, conn) con.execute(check_tab_stmt) # list1 = [i for i in conn] # if list1: # print('Table already exists. Returning the table info.') # df = pd.DataFrame(list1, columns=['columns', 'dtype']) # conn.close() # return df ### Create table in database con.execute(tab_create_stmt) trans.commit() con.close() except Exception as err: trans.rollback() con.close() raise err def del_table_rows(server, database, table=None, pk_df=None, stmt=None): """ Function to selectively delete rows from an mssql table. Parameters ---------- server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str or None if stmt is a str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' pk_df : DataFrame A DataFrame of the primary keys of the table for the rows that should be removed. stmt : str SQL delete statement. Will override everything except server and database. Returns ------- None Notes ----- Using the pk_df is the only way to ensure that specific rows will be deleted from composite keys. The column data types and names of pk_df must match the equivelant columns in the SQL table. The procedure creates a temporary table from the pk_df then deletes the rows in the target table based on the temp table. Then finally deletes the temp table. """ ### Make the delete statement # del_where_list = sql_where_stmts(**kwargs) if isinstance(stmt, str): del_rows_stmt = stmt elif isinstance(pk_df, pd.DataFrame): temp_tab = '#temp_del_tab1' ### Check the primary keys pk_stmt = get_pk_stmt.format(db=database, table=table) pk = rd_sql(server, database, stmt=pk_stmt).name if pk.empty: raise ValueError('SQL table has no primary key. Please set one up.') if not np.isin(pk, pk_df.columns.tolist()).all(): raise ValueError('The primary keys in the SQL table does not match up with the pk_df') sel_t1 = "select * from " + temp_tab cols = pk_df.columns.tolist() tab_where = [table + '.' + i for i in cols] t1_where = [temp_tab + '.' + i for i in cols] where_list = [t1_where[i] + ' = ' + tab_where[i] for i in np.arange(len(cols))] where_stmt = " where " + " and ".join(where_list) exists_stmt = "(" + sel_t1 + where_stmt + ")" del_rows_stmt = "DELETE FROM " + table + " where exists " + exists_stmt # elif isinstance(del_where_list, list): # del_rows_stmt = "DELETE FROM " + table + " WHERE " + " AND ".join(del_where_list) else: raise ValueError('Please specify pk_df or stmt') ### Delete rows engine = create_engine('mssql', server, database) with engine.begin() as conn: if isinstance(pk_df, pd.DataFrame): pk_df.to_sql(name=temp_tab, con=conn, if_exists='replace', chunksize=1000) conn.execute(del_rows_stmt) def update_table_rows(df, server, database, table, on=None, index=False, append=True): """ Function to update rows from an mssql table. SQL table must have a primary key and the primary key must be in the input DataFrame. Parameters ---------- df : DataFrame DataFrame with data to be overwritten in SQL table. server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' on : None, str, or list of str The index by which the update should be applied on. If None, then it uses the existing primary key(s). index : bool Does the df have an index that corresponds to the SQL table primary keys? append : bool Should new sites be appended to the table? Returns ------- None """ ### Check the primary keys if on is None: pk_stmt = get_pk_stmt.format(db=database, table=table) pk = rd_sql(server, database, stmt=pk_stmt).name.tolist() if not pk: raise ValueError('SQL table has no primary key. Please set one up or assign "on" explicitly.') on = pk elif isinstance(on, str): on = [on] ## Check that "on" are in the tables df_bool = ~np.isin(on, df.columns).all() if df_bool: raise ValueError('"on" contains column names that are not in the df') ### Make the update statement temp_tab = '#temp_up1' on_tab = [table + '.' + i for i in on] on_temp = [temp_tab + '.' + i for i in on] cols = df.columns.tolist() val_cols = [i for i in cols if not i in on] tab_list = [table + '.' + i for i in val_cols] temp_list = [temp_tab + '.' + i for i in val_cols] temp_list2 = [temp_tab + '.' + i for i in cols] up_list = [tab_list[i] + ' = ' + temp_list[i] for i in np.arange(len(temp_list))] on_list = [on_tab[i] + ' = ' + on_temp[i] for i in np.arange(len(on))] # up_stmt = "update " + table + " set " + ", ".join(up_list) + " from " + table + " inner join " + temp_tab + " on " + " and ".join(on_list) if append: up_stmt = "merge " + table + " using " + temp_tab + " on (" + " and ".join(on_list) + ") when matched then update set " + ", ".join(up_list) + " WHEN NOT MATCHED BY TARGET THEN INSERT (" + ", ".join(cols) + ") values (" + ", ".join(temp_list2) + ");" else: up_stmt = "merge " + table + " using " + temp_tab + " on (" + " and ".join(on_list) + ") when matched then update set " + ", ".join(up_list) + ";" ### Run SQL code to update rows engine = create_engine('mssql', server, database) with engine.begin() as conn: print('Saving data to temp table...') df.to_sql(temp_tab, con=conn, if_exists='replace', index=index, chunksize=1000) print('Updating primary table...') conn.execute(up_stmt) def sql_where_stmts(where_in=None, where_op='AND', from_date=None, to_date=None, date_col=None): """ Function to take various input parameters and convert them to a list of where statements for SQL. Parameters ---------- where_in : str or dict Either a str with an associated where_val list or a dictionary of string keys to list values. If a str, it should represent the table column associated with the 'where' condition. where_in : dict A dictionary of strings to lists of strings.'. e.g.: {'SnapshotType': ['value1', 'value2']} where_op : str of either 'AND' or 'OR' The binding operator for the where conditions. from_date : str or None The start date in the form '2010-01-01'. to_date : str or None The end date in the form '2010-01-01'. date_col : str or None The SQL table column that contains the dates. Returns ------- list of str or None Returns a list of str where conditions to be passed to an SQL execution function. The function needs to bind it with " where " + " and ".join(where_lst) """ ### Where stmts where_stmt = [] temp_where = {} if isinstance(where_in, dict): where_in_bool = {k: len(where_in[k]) > 20000 for k in where_in} for key, value in where_in.items(): if not isinstance(value, list): raise ValueError('Values in the dict where_in must be lists.') if where_in_bool[key]: temp_where.update({key: value}) where_stmt.append("{key} IN (select {key} from {temp_tab})".format(key=key, temp_tab='#temp_'+key.lower())) else: where_stmt.append("{key} IN ({values})".format(key=key, values=str(value)[1:-1])) if isinstance(from_date, str): from_date1 = pd.to_datetime(from_date, errors='coerce') if isinstance(from_date1, pd.Timestamp): from_date2 = str(from_date1) where_from_date = date_col + " >= " + from_date2.join(['\'', '\'']) else: where_from_date = '' else: where_from_date = '' if isinstance(to_date, str): to_date1 =
pd.to_datetime(to_date, errors='coerce')
pandas.to_datetime
# -*- coding: utf-8 -*- __author__ = "gao" import pandas as pd from AmazingQuant.data_center.mongosconn import MongoConn from AmazingQuant.constant import DatabaseName, Period, RightsAdjustment import AmazingQuant.utils.data_transfer as data_transfer class GetData(object): def __init__(self): self.conn = MongoConn() def get_all_market_data(self, stock_code=[], field=[], start="", end="", period=Period.DAILY.value, rights_adjustment=RightsAdjustment.NONE.value): """ 复权因子和skip_pause在这做 :param stock_code: :param field: :param start: :param end: :param period: :param rights_adjustment: :return: 代码-n,字段-n,时间-n, return dataframe 行-代码-timetag(多层索引),列-字段 """ if period == Period.DAILY.value: db_name = DatabaseName.MARKET_DATA_DAILY.value end = data_transfer.date_str_to_int(end) values = [] colum = {"_id": 0, "timetag": 1} for i in field: colum[i] = 1 for stock in stock_code: self.conn.check_connected() stock_market_data = self.conn.select_colum(db_name=db_name, table=stock, value={"timetag": {"$lte": end}}, colum=colum) stock_market_data_list = list(stock_market_data) if stock_market_data_list: df = pd.DataFrame(stock_market_data_list) values.append(pd.DataFrame(df[field].values, index=df['timetag'], columns=field)) market_data = pd.concat(values, keys=stock_code) elif period == Period.ONE_MIN.value: db_name = DatabaseName.MARKET_DATA_ONE_MIN.value return market_data def get_market_data(self, market_data, stock_code=[], field=[], start="", end="", count=-1): """ 从dataframe解析数据成最终的数据格式,count都在在这里做 因为停牌或者其他原因取不到数据的,1 2 3 返回的是-1,其他返回的是pandas的空或者NaN,所以可以使用 >0判断是否取到值 :param market_data: :param stock_code: :param field: :param start: :param end: :param count: :return: """ if start != "": start = data_transfer.date_str_to_int(start) else: start = 0 if end != "": end = data_transfer.date_str_to_int(end) else: end = 0 # (1)代码-1,字段-1,时间-1, return float if len(stock_code) == 1 and len(field) == 1 and (start == end) and count == -1: try: return market_data[field[0]].ix[stock_code[0], end] # 停牌或者其他情情况取不到数据的返回-1 except: return -1 # (2)代码-n,字段-1,时间-1, return Series elif len(stock_code) > 1 and len(field) == 1 and (start == end) and count == -1: result_dict = {} for stock in stock_code: try: result_dict[stock] = market_data[field[0]].ix[stock, end] except: result_dict[stock] = -1 return pd.Series(result_dict) # (3)代码-1,字段-n,时间-1, return Series elif len(stock_code) == 1 and len(field) > 1 and (start == end) and count == -1: result_dict = {} for field_one in field: try: result_dict[field_one] = market_data[field_one].ix[stock_code[0], end] except: result_dict[field_one] = -1 return pd.Series(result_dict) # (4)代码-1,字段-1,时间-n, return Series elif len(stock_code) == 1 and len(field) == 1 and (start != end) and count == -1: try: series = market_data[field[0]].ix[stock_code[0]] except KeyError: return pd.Series() series = series[series.index >= start] series = series[series.index <= end] return series # (5)代码-n,字段-1,时间-n, return dataframe 行-timetag,列-代码 elif len(stock_code) > 1 and len(field) == 1 and (start != end) and count == -1: result_dict = {} for stock in stock_code: index = market_data.ix[stock].index index = index[index <= end] index = index[index >= start] result_dict[stock] = market_data[field[0]].ix[stock][index] return
pd.DataFrame(result_dict)
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_union(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = Int64Index(np.arange(10, 30, 2)) result = i1.union(i2) expected = Int64Index(np.arange(0, 30, 2)) self.assert_numpy_array_equal(result, expected) def test_union_with_DatetimeIndex(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = DatetimeIndex(start='2012-01-03 00:00:00', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_time(self): rng = pd.date_range('1/1/2000', freq='12min', periods=10) result = pd.Index(rng).time expected = [t.time() for t in rng] self.assertTrue((result == expected).all()) def test_date(self): rng = pd.date_range('1/1/2000', freq='12H', periods=10) result = pd.Index(rng).date expected = [t.date() for t in rng] self.assertTrue((result == expected).all()) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='dt') cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) assert_array_equal(cols.values, joined.values) def test_slice_keeps_name(self): # GH4226 st = pd.Timestamp('2013-07-01 00:00:00', tz='America/Los_Angeles') et = pd.Timestamp('2013-07-02 00:00:00', tz='America/Los_Angeles') dr = pd.date_range(st, et, freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = date_range('1/1/2000', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def assert_index_parameters(self, index): assert index.freq == '40960N' assert index.inferred_freq == '40960N' def test_ns_index(self): if _np_version_under1p7: raise nose.SkipTest nsamples = 400 ns = int(1e9 / 24414) dtstart = np.datetime64('2012-09-20T00:00:00') dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns') freq = ns * pd.datetools.Nano() index = pd.DatetimeIndex(dt, freq=freq, name='time') self.assert_index_parameters(index) new_index = pd.DatetimeIndex(start=index[0], end=index[-1], freq=index.freq) self.assert_index_parameters(new_index) def test_join_with_period_index(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:5, 0] joins = 'left', 'right', 'inner', 'outer' for join in joins: with tm.assertRaisesRegexp(ValueError, 'can only call with other ' 'PeriodIndex-ed objects'): df.columns.join(s.index, how=join) def test_factorize(self): idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # tz must be preserved idx1 = idx1.tz_localize('Asia/Tokyo') exp_idx = exp_idx.tz_localize('Asia/Tokyo') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01']) exp_arr = np.array([2, 2, 1, 0, 2, 0]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01']) arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestDatetime64(tm.TestCase): """ Also test support for datetime64[ns] in Series / DataFrame """ def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(rand(len(dti)), dti) def test_datetimeindex_accessors(self): dti = DatetimeIndex( freq='D', start=datetime(1998, 1, 1), periods=365) self.assertEqual(dti.year[0], 1998) self.assertEqual(dti.month[0], 1) self.assertEqual(dti.day[0], 1) self.assertEqual(dti.hour[0], 0) self.assertEqual(dti.minute[0], 0) self.assertEqual(dti.second[0], 0) self.assertEqual(dti.microsecond[0], 0) self.assertEqual(dti.dayofweek[0], 3) self.assertEqual(dti.dayofyear[0], 1) self.assertEqual(dti.dayofyear[120], 121) self.assertEqual(dti.weekofyear[0], 1) self.assertEqual(dti.weekofyear[120], 18) self.assertEqual(dti.quarter[0], 1) self.assertEqual(dti.quarter[120], 2) self.assertEqual(dti.is_month_start[0], True) self.assertEqual(dti.is_month_start[1], False) self.assertEqual(dti.is_month_start[31], True) self.assertEqual(dti.is_quarter_start[0], True) self.assertEqual(dti.is_quarter_start[90], True) self.assertEqual(dti.is_year_start[0], True) self.assertEqual(dti.is_year_start[364], False) self.assertEqual(dti.is_month_end[0], False) self.assertEqual(dti.is_month_end[30], True) self.assertEqual(dti.is_month_end[31], False) self.assertEqual(dti.is_month_end[364], True) self.assertEqual(dti.is_quarter_end[0], False) self.assertEqual(dti.is_quarter_end[30], False) self.assertEqual(dti.is_quarter_end[89], True) self.assertEqual(dti.is_quarter_end[364], True) self.assertEqual(dti.is_year_end[0], False) self.assertEqual(dti.is_year_end[364], True) self.assertEqual(len(dti.year), 365) self.assertEqual(len(dti.month), 365) self.assertEqual(len(dti.day), 365) self.assertEqual(len(dti.hour), 365) self.assertEqual(len(dti.minute), 365) self.assertEqual(len(dti.second), 365) self.assertEqual(len(dti.microsecond), 365) self.assertEqual(len(dti.dayofweek), 365) self.assertEqual(len(dti.dayofyear), 365) self.assertEqual(len(dti.weekofyear), 365) self.assertEqual(len(dti.quarter), 365) self.assertEqual(len(dti.is_month_start), 365) self.assertEqual(len(dti.is_month_end), 365) self.assertEqual(len(dti.is_quarter_start), 365) self.assertEqual(len(dti.is_quarter_end), 365) self.assertEqual(len(dti.is_year_start), 365) self.assertEqual(len(dti.is_year_end), 365) dti = DatetimeIndex( freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) self.assertEqual(sum(dti.is_quarter_start), 0) self.assertEqual(sum(dti.is_quarter_end), 4) self.assertEqual(sum(dti.is_year_start), 0) self.assertEqual(sum(dti.is_year_end), 1) # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, CBD requires np >= 1.7 if not _np_version_under1p7: bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) self.assertRaises(ValueError, lambda: dti.is_month_start) dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) self.assertEqual(dti.is_month_start[0], 1) tests = [ (Timestamp('2013-06-01', offset='M').is_month_start, 1), (Timestamp('2013-06-01', offset='BM').is_month_start, 0), (Timestamp('2013-06-03', offset='M').is_month_start, 0), (Timestamp('2013-06-03', offset='BM').is_month_start, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', offset='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', offset='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', offset='BQ').is_month_end, 0), (Timestamp('2013-06-30', offset='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQ').is_year_end, 0), (Timestamp('2013-06-28', offset='BQ').is_month_end, 1), (Timestamp('2013-06-28', offset='BQ').is_quarter_end, 1), (Timestamp('2013-06-28', offset='BQ').is_year_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_month_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_year_end, 0), (Timestamp('2013-06-28', offset='BQS-APR').is_month_end, 1), (Timestamp('2013-06-28', offset='BQS-APR').is_quarter_end, 1), (Timestamp('2013-03-29', offset='BQS-APR').is_year_end, 1), (Timestamp('2013-11-01', offset='AS-NOV').is_year_start, 1), (Timestamp('2013-10-31', offset='AS-NOV').is_year_end, 1)] for ts, value in tests: self.assertEqual(ts, value) def test_nanosecond_field(self): dti = DatetimeIndex(np.arange(10)) self.assert_numpy_array_equal(dti.nanosecond, np.arange(10)) def test_datetimeindex_diff(self): dti1 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=100) dti2 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=98) self.assertEqual(len(dti1.diff(dti2)), 2) def test_fancy_getitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(s[48], 48) self.assertEqual(s['1/2/2009'], 48) self.assertEqual(s['2009-1-2'], 48) self.assertEqual(s[datetime(2009, 1, 2)], 48) self.assertEqual(s[lib.Timestamp(datetime(2009, 1, 2))], 48) self.assertRaises(KeyError, s.__getitem__, '2009-1-3') assert_series_equal(s['3/6/2009':'2009-06-05'], s[datetime(2009, 3, 6):datetime(2009, 6, 5)]) def test_fancy_setitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 self.assertEqual(s[48], -1) s['1/2/2009'] = -2 self.assertEqual(s[48], -2) s['1/2/2009':'2009-06-05'] = -3 self.assertTrue((s[48:54] == -3).all()) def test_datetimeindex_constructor(self): arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04'] self.assertRaises(Exception, DatetimeIndex, arr) arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'] idx1 = DatetimeIndex(arr) arr = [datetime(2005, 1, 1), '1/2/2005', '1/3/2005', '2005-01-04'] idx2 = DatetimeIndex(arr) arr = [lib.Timestamp(datetime(2005, 1, 1)), '1/2/2005', '1/3/2005', '2005-01-04'] idx3 = DatetimeIndex(arr) arr = np.array(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'], dtype='O') idx4 = DatetimeIndex(arr) arr = to_datetime(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04']) idx5 = DatetimeIndex(arr) arr = to_datetime( ['1/1/2005', '1/2/2005', 'Jan 3, 2005', '2005-01-04']) idx6 = DatetimeIndex(arr) idx7 = DatetimeIndex(['12/05/2007', '25/01/2008'], dayfirst=True) idx8 = DatetimeIndex(['2007/05/12', '2008/01/25'], dayfirst=False, yearfirst=True) self.assertTrue(idx7.equals(idx8)) for other in [idx2, idx3, idx4, idx5, idx6]: self.assertTrue((idx1.values == other.values).all()) sdate = datetime(1999, 12, 25) edate = datetime(2000, 1, 1) idx = DatetimeIndex(start=sdate, freq='1B', periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[0], sdate + 0 * dt.bday) self.assertEqual(idx.freq, 'B') idx = DatetimeIndex(end=edate, freq=('D', 5), periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[-1], edate) self.assertEqual(idx.freq, '5D') idx1 = DatetimeIndex(start=sdate, end=edate, freq='W-SUN') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.Week(weekday=6)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='QS') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.QuarterBegin(startingMonth=1)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='BQ') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.BQuarterEnd(startingMonth=12)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) def test_dayfirst(self): # GH 5917 arr = ['10/02/2014', '11/02/2014', '12/02/2014'] expected = DatetimeIndex([datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)]) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True) idx4 = to_datetime(np.array(arr), dayfirst=True) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) self.assertTrue(expected.equals(idx1)) self.assertTrue(expected.equals(idx2)) self.assertTrue(expected.equals(idx3)) self.assertTrue(expected.equals(idx4)) self.assertTrue(expected.equals(idx5)) self.assertTrue(expected.equals(idx6)) def test_dti_snap(self): dti = DatetimeIndex(['1/1/2002', '1/2/2002', '1/3/2002', '1/4/2002', '1/5/2002', '1/6/2002', '1/7/2002'], freq='D') res = dti.snap(freq='W-MON') exp = date_range('12/31/2001', '1/7/2002', freq='w-mon') exp = exp.repeat([3, 4]) self.assertTrue((res == exp).all()) res = dti.snap(freq='B') exp = date_range('1/1/2002', '1/7/2002', freq='b') exp = exp.repeat([1, 1, 1, 2, 2]) self.assertTrue((res == exp).all()) def test_dti_reset_index_round_trip(self): dti = DatetimeIndex(start='1/1/2001', end='6/1/2001', freq='D') d1 = DataFrame({'v': np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() self.assertEqual(d2.dtypes[0], np.dtype('M8[ns]')) d3 = d2.set_index('index') assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=['Date', 'Value']) df = df.set_index('Date') self.assertEqual(df.index[0], stamp) self.assertEqual(df.reset_index()['Date'][0], stamp) def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range('2011/01/01', periods=6, freq='M', tz='US/Eastern') idx2 = date_range('2013', periods=6, freq='A', tz='Asia/Tokyo') df = df.set_index(idx1) self.assertTrue(df.index.equals(idx1)) df = df.reindex(idx2) self.assertTrue(df.index.equals(idx2)) def test_datetimeindex_union_join_empty(self): dti = DatetimeIndex(start='1/1/2001', end='2/1/2001', freq='D') empty = Index([]) result = dti.union(empty) tm.assert_isinstance(result, DatetimeIndex) self.assertIs(result, result) result = dti.join(empty) tm.assert_isinstance(result, DatetimeIndex) def test_series_set_value(self): # #1561 dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)] index = DatetimeIndex(dates) s = Series().set_value(dates[0], 1.) s2 = s.set_value(dates[1], np.nan) exp = Series([1., np.nan], index=index) assert_series_equal(s2, exp) # s = Series(index[:1], index[:1]) # s2 = s.set_value(dates[1], index[1]) # self.assertEqual(s2.values.dtype, 'M8[ns]') @slow def test_slice_locs_indexerror(self): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(lrange(100000), times) s.ix[datetime(1900, 1, 1):datetime(2100, 1, 1)] class TestSeriesDatetime64(tm.TestCase): def setUp(self): self.series = Series(date_range('1/1/2000', periods=10)) def test_auto_conversion(self): series = Series(list(date_range('1/1/2000', periods=10))) self.assertEqual(series.dtype, 'M8[ns]') def test_constructor_cant_cast_datetime64(self): self.assertRaises(TypeError, Series, date_range('1/1/2000', periods=10), dtype=float) def test_series_comparison_scalars(self): val = datetime(2000, 1, 4) result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) val = self.series[5] result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) def test_between(self): left, right = self.series[[2, 7]] result = self.series.between(left, right) expected = (self.series >= left) & (self.series <= right) assert_series_equal(result, expected) #---------------------------------------------------------------------- # NaT support def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') val = series[3] self.assertTrue(com.isnull(val)) series[2] = val self.assertTrue(com.isnull(series[2])) def test_set_none_nan(self): self.series[3] = None self.assertIs(self.series[3], NaT) self.series[3:5] = None self.assertIs(self.series[4], NaT) self.series[5] = np.nan self.assertIs(self.series[5], NaT) self.series[5:7] = np.nan self.assertIs(self.series[6], NaT) def test_intercept_astype_object(self): # this test no longer makes sense as series is by default already M8[ns] expected = self.series.astype('object') df = DataFrame({'a': self.series, 'b': np.random.randn(len(self.series))}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) df = DataFrame({'a': self.series, 'b': ['foo'] * len(self.series)}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) def test_union(self): rng1 = date_range('1/1/1999', '1/1/2012', freq='MS') s1 = Series(np.random.randn(len(rng1)), rng1) rng2 = date_range('1/1/1980', '12/1/2001', freq='MS') s2 = Series(np.random.randn(len(rng2)), rng2) df = DataFrame({'s1': s1, 's2': s2}) self.assertEqual(df.index.values.dtype, np.dtype('M8[ns]')) def test_intersection(self): rng = date_range('6/1/2000', '6/15/2000', freq='D') rng = rng.delete(5) rng2 = date_range('5/15/2000', '6/20/2000', freq='D') rng2 = DatetimeIndex(rng2.values) result = rng.intersection(rng2) self.assertTrue(result.equals(rng)) # empty same freq GH2129 rng = date_range('6/1/2000', '6/15/2000', freq='T') result = rng[0:0].intersection(rng) self.assertEqual(len(result), 0) result = rng.intersection(rng[0:0]) self.assertEqual(len(result), 0) def test_date_range_bms_bug(self): # #1645 rng = date_range('1/1/2000', periods=10, freq='BMS') ex_first = Timestamp('2000-01-03') self.assertEqual(rng[0], ex_first) def test_string_index_series_name_converted(self): # #1644 df = DataFrame(np.random.randn(10, 4), index=date_range('1/1/2000', periods=10)) result = df.ix['1/3/2000'] self.assertEqual(result.name, df.index[2]) result = df.T['1/3/2000'] self.assertEqual(result.name, df.index[2]) class TestTimestamp(tm.TestCase): def test_class_ops(self): _skip_if_no_pytz() import pytz def compare(x,y): self.assertEqual(int(Timestamp(x).value/1e9), int(Timestamp(y).value/1e9)) compare(Timestamp.now(),datetime.now()) compare(Timestamp.now('UTC'),datetime.now(pytz.timezone('UTC'))) compare(Timestamp.utcnow(),datetime.utcnow()) compare(Timestamp.today(),datetime.today()) def test_basics_nanos(self): val = np.int64(946684800000000000).view('M8[ns]') stamp = Timestamp(val.view('i8') + 500) self.assertEqual(stamp.year, 2000) self.assertEqual(stamp.month, 1) self.assertEqual(stamp.microsecond, 0) self.assertEqual(stamp.nanosecond, 500) def test_unit(self): def check(val,unit=None,h=1,s=1,us=0): stamp = Timestamp(val, unit=unit) self.assertEqual(stamp.year, 2000) self.assertEqual(stamp.month, 1) self.assertEqual(stamp.day, 1) self.assertEqual(stamp.hour, h) if unit != 'D': self.assertEqual(stamp.minute, 1) self.assertEqual(stamp.second, s) self.assertEqual(stamp.microsecond, us) else: self.assertEqual(stamp.minute, 0) self.assertEqual(stamp.second, 0) self.assertEqual(stamp.microsecond, 0) self.assertEqual(stamp.nanosecond, 0) ts = Timestamp('20000101 01:01:01') val = ts.value days = (ts - Timestamp('1970-01-01')).days check(val) check(val/long(1000),unit='us') check(val/long(1000000),unit='ms') check(val/long(1000000000),unit='s') check(days,unit='D',h=0) # using truediv, so these are like floats if compat.PY3: check((val+500000)/long(1000000000),unit='s',us=500) check((val+500000000)/long(1000000000),unit='s',us=500000) check((val+500000)/long(1000000),unit='ms',us=500) # get chopped in py2 else: check((val+500000)/long(1000000000),unit='s') check((val+500000000)/long(1000000000),unit='s') check((val+500000)/long(1000000),unit='ms') # ok check((val+500000)/long(1000),unit='us',us=500) check((val+500000000)/long(1000000),unit='ms',us=500000) # floats check(val/1000.0 + 5,unit='us',us=5) check(val/1000.0 + 5000,unit='us',us=5000) check(val/1000000.0 + 0.5,unit='ms',us=500) check(val/1000000.0 + 0.005,unit='ms',us=5) check(val/1000000000.0 + 0.5,unit='s',us=500000) check(days + 0.5,unit='D',h=12) # nan result = Timestamp(np.nan) self.assertIs(result, NaT) result = Timestamp(None) self.assertIs(result, NaT) result = Timestamp(iNaT) self.assertIs(result, NaT) result = Timestamp(NaT) self.assertIs(result, NaT) def test_comparison(self): # 5-18-2012 00:00:00.000 stamp = long(1337299200000000000) val = Timestamp(stamp) self.assertEqual(val, val) self.assertFalse(val != val) self.assertFalse(val < val) self.assertTrue(val <= val) self.assertFalse(val > val) self.assertTrue(val >= val) other = datetime(2012, 5, 18) self.assertEqual(val, other) self.assertFalse(val != other) self.assertFalse(val < other) self.assertTrue(val <= other) self.assertFalse(val > other) self.assertTrue(val >= other) other = Timestamp(stamp + 100) self.assertNotEqual(val, other) self.assertNotEqual(val, other) self.assertTrue(val < other) self.assertTrue(val <= other) self.assertTrue(other > val) self.assertTrue(other >= val) def test_cant_compare_tz_naive_w_aware(self): _skip_if_no_pytz() # #1404 a = Timestamp('3/12/2012') b = Timestamp('3/12/2012', tz='utc') self.assertRaises(Exception, a.__eq__, b) self.assertRaises(Exception, a.__ne__, b) self.assertRaises(Exception, a.__lt__, b) self.assertRaises(Exception, a.__gt__, b) self.assertRaises(Exception, b.__eq__, a) self.assertRaises(Exception, b.__ne__, a) self.assertRaises(Exception, b.__lt__, a) self.assertRaises(Exception, b.__gt__, a) if sys.version_info < (3, 3): self.assertRaises(Exception, a.__eq__, b.to_pydatetime()) self.assertRaises(Exception, a.to_pydatetime().__eq__, b) else: self.assertFalse(a == b.to_pydatetime()) self.assertFalse(a.to_pydatetime() == b) def test_delta_preserve_nanos(self): val = Timestamp(long(1337299200000000123)) result = val + timedelta(1) self.assertEqual(result.nanosecond, val.nanosecond) def test_frequency_misc(self): self.assertEqual(fmod.get_freq_group('T'), fmod.FreqGroup.FR_MIN) code, stride = fmod.get_freq_code(offsets.Hour()) self.assertEqual(code, fmod.FreqGroup.FR_HR) code, stride = fmod.get_freq_code((5, 'T')) self.assertEqual(code, fmod.FreqGroup.FR_MIN) self.assertEqual(stride, 5) offset = offsets.Hour() result = fmod.to_offset(offset) self.assertEqual(result, offset) result = fmod.to_offset((5, 'T')) expected = offsets.Minute(5) self.assertEqual(result, expected) self.assertRaises(ValueError, fmod.get_freq_code, (5, 'baz')) self.assertRaises(ValueError, fmod.to_offset, '100foo') self.assertRaises(ValueError, fmod.to_offset, ('', '')) result = fmod.get_standard_freq(offsets.Hour()) self.assertEqual(result, 'H') def test_hash_equivalent(self): d = {datetime(2011, 1, 1): 5} stamp = Timestamp(datetime(2011, 1, 1)) self.assertEqual(d[stamp], 5) def test_timestamp_compare_scalars(self): # case where ndim == 0 lhs = np.datetime64(datetime(2013, 12, 6)) rhs = Timestamp('now') nat = Timestamp('nat') ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) if pd._np_version_under1p7: # you have to convert to timestamp for this to work with numpy # scalars expected = left_f(Timestamp(lhs), rhs) # otherwise a TypeError is thrown if left not in ('eq', 'ne'): with tm.assertRaises(TypeError): left_f(lhs, rhs) else: expected = left_f(lhs, rhs) result = right_f(rhs, lhs) self.assertEqual(result, expected) expected = left_f(rhs, nat) result = right_f(nat, rhs) self.assertEqual(result, expected) def test_timestamp_compare_series(self): # make sure we can compare Timestamps on the right AND left hand side # GH4982 s = Series(date_range('20010101', periods=10), name='dates') s_nat = s.copy(deep=True) s[0] = pd.Timestamp('nat') s[3] = pd.Timestamp('nat') ops = {'lt': 'gt', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats expected = left_f(s, Timestamp('20010109')) result = right_f(Timestamp('20010109'), s) tm.assert_series_equal(result, expected) # nats expected = left_f(s, Timestamp('nat')) result = right_f(Timestamp('nat'), s) tm.assert_series_equal(result, expected) # compare to timestamp with series containing nats expected = left_f(s_nat, Timestamp('20010109')) result = right_f(Timestamp('20010109'), s_nat) tm.assert_series_equal(result, expected) # compare to nat with series containing nats expected = left_f(s_nat, Timestamp('nat')) result = right_f(Timestamp('nat'), s_nat) tm.assert_series_equal(result, expected) class TestSlicing(tm.TestCase): def test_slice_year(self): dti = DatetimeIndex(freq='B', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) result = s['2005'] expected = s[s.index.year == 2005] assert_series_equal(result, expected) df = DataFrame(np.random.rand(len(dti), 5), index=dti) result = df.ix['2005'] expected = df[df.index.year == 2005] assert_frame_equal(result, expected) rng = date_range('1/1/2000', '1/1/2010') result = rng.get_loc('2009') expected = slice(3288, 3653) self.assertEqual(result, expected) def test_slice_quarter(self): dti = DatetimeIndex(freq='D', start=datetime(2000, 6, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(len(s['2001Q1']), 90) df = DataFrame(np.random.rand(len(dti), 5), index=dti) self.assertEqual(len(df.ix['1Q01']), 90) def test_slice_month(self): dti = DatetimeIndex(freq='D', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(len(s['2005-11']), 30) df = DataFrame(np.random.rand(len(dti), 5), index=dti) self.assertEqual(len(df.ix['2005-11']), 30) assert_series_equal(s['2005-11'], s['11-2005']) def test_partial_slice(self): rng = DatetimeIndex(freq='D', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-05':'2006-02'] expected = s['20050501':'20060228']
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import os import shutil import time from copy import copy import pandas as pd import numpy as np from tqdm import tqdm from datetime import datetime from pathlib import Path from glob import glob import libs.dirs as dirs import libs.utils as utils import libs.dataset_utils as dutils # from libs.utils import * # from libs.dataset_utils import * def hyphenated_string_to_list(hyphenString): return hyphenString.split("-") class IndexManager: def __init__(self, path=dirs.index+"main_index.csv", destFolder='auto', verbose=True): self.path = Path(path) self.indexExists = False self.bkpFolderName = "index_backup" self.imagesDestFolder = destFolder self.verbose = verbose self.duplicates_count = 0 self.new_entries_count = 0 self.originalLen = 0 # Get date and time for index and folder name self.date = datetime.now() self.validate_path() def get_index_len(self): ''' Returns integer representing number of entries in index, or None, if index doesn't exists. ''' if self.indexExists: return self.index.shape[0] else: return None def get_video_path_list(self): ''' Returns list with unique videos in the dataset. ''' if self.indexExists: return list(dict.fromkeys(self.index['VideoPath'])) else: return [] def validate_path(self): if self.path.suffix == ".csv": # Check for csv files matching filename in self.path pathList = list(self.path.parent.glob("*"+str(self.path.stem).strip()+"*.csv")) if len(pathList) > 0: try: # Check if index DataFrame exists and is non-empty self.index =
pd.read_csv(pathList[0])
pandas.read_csv