prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import random from typing import Iterable, Dict, Any import pandas from IPython.display import display from duorat.datasets.spider import SpiderItem, SpiderDataset from duorat.asdl.lang.spider.spider import SpiderGrammar from duorat.utils.evaluation import load_from_lines def show_question(ex): print(ex.question) print(ex.query) def show_question_set(question_set, k=10): rng = random.Random(1) if k > len(question_set): k = len(question_set) for idx in rng.sample(list(range(len(question_set))), k=k): print(idx) show_question(question_set[idx]) print() def load_outputs( experiment_path: str, output_file: str, trial_ids: Iterable[int] = None ) -> Dict[int, Any]: if trial_ids is None: trial_ids = [int(trial_id) for trial_id in os.listdir(experiment_path)] all_outputs = {} for trial_id in trial_ids: path = f"{experiment_path}/{trial_id}/{output_file}" with open(path) as src: all_outputs[trial_id] = list(load_from_lines(list(src))) return all_outputs def evaluate_outputs( dataset: SpiderDataset, all_outputs: Dict[int, Any] ) -> pandas.DataFrame: columns = ("trial_id", "qid", "exact", "group_acc") metrics = SpiderDataset.Metrics(dataset) data = [] for trial_id, outputs in all_outputs.items(): assert len(outputs) == len(dataset) for qid, (example, predicted) in enumerate(zip(dataset, outputs)): r = metrics.evaluator.evaluate_one( example.spider_schema.db_id, example.orig["query"], predicted[0] ) data.append( (trial_id, qid, int(r["exact"]), int(r["partial"]["group"]["acc"])) ) return pandas.DataFrame(data, columns=columns) def compute_dataset_metadata( examples: Iterable[SpiderItem], grammar: SpiderGrammar ) -> pandas.DataFrame: all_metadata = [] for ex in examples: parse = grammar.parse_sql(ex.spider_sql) metadata = { "group_by": "group_by" in parse, "order_by": "order_by" in parse, "per": "per" in ex.question.split(), } metadata["num_tables"] = len(parse["from"]["table_units"]) # the number of where clauses is easier to infer from the original SPIDER SQL format metadata["num_where"] = (len(ex.spider_sql["where"]) + 1) // 2 metadata["db_id"] = ex.spider_schema.db_id def recurse(path, node): if node["_type"] == "sql": if path: metadata["nested"] = True if "select" in path: metadata["sql_in_select"] = True if "where" in path: metadata["sql_in_where"] = True elif "from" in path: metadata["sql_in_from"] = True elif "having" in path: metadata["sql_in_having"] = True elif "except" in path: metadata["except"] = True elif "intersect" in path: metadata["intersect"] = True elif "union" in path: metadata["union"] = True elif path: metadata["other_nested"] = True print(path) if node["_type"] == "Count" and "select" in path: metadata["count"] = True if node["_type"] == "Count" and "order_by" in path: metadata["count_in_order_by"] = True for key, child in node.items(): if isinstance(child, dict): recurse(path + [key], child) elif isinstance(child, list): for element in child: recurse(path + [key], element) recurse([], parse) all_metadata.append(metadata) return
pandas.DataFrame(all_metadata)
pandas.DataFrame
# coding: utf-8 # In[11]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # In[12]: #need to add city after finishing df_city = pd.read_csv("cityresults.dat", header=None) df_bayview = pd.read_csv("bayviewresults.dat", header=None) df_ingleside = pd.read_csv("Ingleside_results.dat", header=None) df_park = pd.read_csv("Park_results.dat", header=None) df_taraval = pd.read_csv("Taraval_results.dat", header=None) df_central =
pd.read_csv("Central_results.dat", header=None)
pandas.read_csv
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def mssql_url() -> str: conn = os.environ["MSSQL_URL"] return conn @pytest.mark.xfail def test_on_non_select(mssql_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" df = read_sql(mssql_url, query) def test_aggregation(mssql_url: str) -> None: query = ( "SELECT test_bool, SUM(test_float) as sum FROM test_table GROUP BY test_bool" ) df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "sum": pd.Series([10.9, 5.2, -10.0], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation(mssql_url: str) -> None: query = ( "SELECT test_bool, SUM(test_int) AS test_int FROM test_table GROUP BY test_bool" ) df = read_sql(mssql_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "test_int": pd.Series([4, 5, 1315], dtype="Int64"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_aggregation2(mssql_url: str) -> None: query = "select DISTINCT(test_bool) from test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation2(mssql_url: str) -> None: query = "select MAX(test_int) as max, MIN(test_int) as min from test_table" df = read_sql(mssql_url, query, partition_on="max", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "max": pd.Series([1314], dtype="Int64"), "min": pd.Series([0], dtype="Int64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_udf(mssql_url: str) -> None: query = ( "SELECT dbo.increment(test_int) AS test_int FROM test_table ORDER BY test_int" ) df = read_sql(mssql_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 3, 4, 5, 1315], dtype="Int64"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_manual_partition(mssql_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(mssql_url, query=queries) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_without_partition(mssql_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_without_partition(mssql_url: str) -> None: query = "SELECT top 3 * FROM test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_int": pd.Series([1, 2, 0], dtype="int64"), "test_nullint": pd.Series([3, None, 5], dtype="Int64"), "test_str": pd.Series(["str1", "str2", "a"], dtype="object"), "test_float": pd.Series([None, 2.2, 3.1], dtype="float64"), "test_bool": pd.Series([True, False, None], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_large_without_partition(mssql_url: str) -> None: query = "SELECT top 10 * FROM test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition(mssql_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_with_partition(mssql_url: str) -> None: query = "SELECT top 3 * FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(3), data={ "test_int": pd.Series([0, 1, 2], dtype="int64"), "test_nullint": pd.Series([5, 3, None], dtype="Int64"), "test_str": pd.Series(["a", "str1", "str2"], dtype="object"), "test_float": pd.Series([3.1, None, 2.20], dtype="float64"), "test_bool": pd.Series([None, True, False], dtype="boolean"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_limit_large_with_partition(mssql_url: str) -> None: query = "SELECT top 10 * FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_without_partition_range(mssql_url: str) -> None: query = "SELECT * FROM test_table where test_float > 3" df = read_sql( mssql_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( index=range(2), data={ "test_int": pd.Series([0, 4], dtype="int64"), "test_nullint": pd.Series([5, 9], dtype="Int64"), "test_str": pd.Series(["a", "c"], dtype="object"), "test_float": pd.Series([3.1, 7.8], dtype="float64"), "test_bool": pd.Series([None, None], dtype="boolean"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_and_selection(mssql_url: str) -> None: query = "SELECT * FROM test_table WHERE 1 = 3 OR 2 = 2" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [None, True, False, False, None, True], dtype="boolean" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_mssql_with_partition_and_projection(mssql_url: str) -> None: query = "SELECT test_int, test_float, test_str FROM test_table" df = read_sql( mssql_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="int64"), "test_float": pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True)
assert_frame_equal(df, expected, check_names=True)
pandas.testing.assert_frame_equal
# Packages # Basic packages import numpy as np from scipy import integrate, stats, spatial from scipy.special import expit, binom import pandas as pd import xlrd # help read excel files directly from source into pandas import copy import warnings # Building parameter/computation graph import inspect from collections import OrderedDict # OS/filesystem tools import time from datetime import datetime import random import string import os import shutil import sys import cloudpickle # Distributed computing tools import dask import distributed from dask.distributed import Client from dask.distributed import as_completed import itertools # State Dimensions # Health states (S, E and D are fixed to 1 dimension) nI_symp = 2 # number of sympyomatic infected states nI = 2+nI_symp # number of total infected states (disease stages), the +2 are Exposed and I_nonsymptomatic nR = 2 # number of recovery states (antibody development post-disease, IgM and IgG are two stages) nHS = 2+nI+nR # number of total health states, the +2: S, D are suspectible and dead # Age groups (risk groups) nAge = 9 # In accordance w Imperial #13 report (0-9, 10-19, ... 70-79, 80+) # Isolation states nIso = 4 # None/distancing, Case isolation, Hospitalised, Hospital staff # Testing states nTest = 4 # untested/negative, Virus positive, Antibody positive, Both positive stateTensor = np.ones((nAge, nHS, nIso, nTest)) # Population (data from Imperial #13 ages.csv/UK) agePopulationTotal = 1000.*np.array([8044.056,7642.473,8558.707,9295.024,8604.251,9173.465,7286.777,5830.635,3450.616]) #agePopulationTotal = 1000.*pd.read_csv("https://raw.githubusercontent.com/ImperialCollegeLondon/covid19model/master/data/ages.csv").iloc[3].values[2:] # Currently: let's work with england population only instead of full UK, as NHS England + CHESS data is much clearer than other regions agePopulationTotal *= 55.98/66.27 # (google england/uk population 2018, assuming age dist is similar) agePopulationRatio = agePopulationTotal/np.sum(agePopulationTotal) # Helper function to adjust average rates to age-aware rates def adjustRatesByAge_KeepAverageRate(rate, ageRelativeAdjustment, agePopulationRatio=agePopulationRatio, maxOutRate=10): """This is a helper function and wont be picked up as a model parameter!""" if rate == 0: return np.zeros_like(ageRelativeAdjustment) if rate >= maxOutRate: warnings.warn("covidTesting::adjustRatesByAge_KeepAverageRate Input rate {} > maxOutRate {}, returning input rates".format(rate, maxOutRate)) return rate*np.ones_like(ageRelativeAdjustment) out = np.zeros_like(ageRelativeAdjustment) out[0] = maxOutRate+1 # just to start the while loop below while np.sum(out>=maxOutRate)>0: corrFactor = np.sum(agePopulationRatio/(1+ageRelativeAdjustment)) out = rate * (1+ageRelativeAdjustment) * corrFactor if np.sum(out>=maxOutRate)>0: warnings.warn("covidTesting::adjustRatesByAge_KeepAverageRate Adjusted rate larger than {} encountered, reducing ageAdjustment variance by 10%".format(maxOutRate)) tmp_mean = np.mean(ageRelativeAdjustment) ageRelativeAdjustment = tmp_mean + np.sqrt(0.9)*(ageRelativeAdjustment-tmp_mean) return out # For calculations see data_cleaning_py.ipynb, calculations from NHS England dataset as per 05 Apr relativeDeathRisk_given_COVID_by_age = np.array([-0.99742186, -0.99728639, -0.98158438, -0.9830432 , -0.82983414, -0.84039294, 0.10768979, 0.38432409, 5.13754904]) #ageRelativeDiseaseSeverity = np.array([-0.8, -0.6, -0.3, -0.3, -0.1, 0.1, 0.35, 0.4, 0.5]) # FIXED (above) - this is a guess, find data and fix #ageRelativeRecoverySpeed = np.array([0.2]*5+[-0.1, -0.2, -0.3, -0.5]) # TODO - this is a guess, find data and fix ageRelativeRecoverySpeed = np.array([0.]*9) # For now we make it same for everyone, makes calculations easier # For calculations see data_cleaning_py.ipynb, calculations from NHS England dataset as per 05 Apr caseFatalityRatioHospital_given_COVID_by_age = np.array([0.00856164, 0.03768844, 0.02321319, 0.04282494, 0.07512237, 0.12550367, 0.167096 , 0.37953452, 0.45757006]) def trFunc_diseaseProgression( # Basic parameters to adhere to nonsymptomatic_ratio = 0.86, # number of days between measurable events infect_to_symptoms = 5., #symptom_to_death = 16., symptom_to_recovery = 10., # 20.5, #unrealiticly long for old people symptom_to_hospitalisation = 5.76, hospitalisation_to_recovery = 14.51, IgG_formation = 15., # Age related parameters # for now we'll assume that all hospitalised cases are known (overall 23% of hospitalised COVID patients die. 9% overall case fatality ratio) caseFatalityRatioHospital_given_COVID_by_age = caseFatalityRatioHospital_given_COVID_by_age, ageRelativeRecoverySpeed = ageRelativeRecoverySpeed, # Unknown rates to estimate nonsymp_to_recovery = 15., inverse_IS1_IS2 = 4., **kwargs ): # Now we have all the information to build the age-aware multistage SIR model transition matrix # The full transition tensor is a sparse map from the Age x HealthState x isolation state to HealthState, # and thus is a 4th order tensor itself, representing a linear mapping # from "number of people aged A in health state B and isolation state C to health state D. trTensor_diseaseProgression = np.zeros((nAge, nHS, nIso, nHS)) # Use basic parameters to regularise inputs E_IS1 = 1./infect_to_symptoms # Numbers nonsymptomatic is assumed to be 86% -> E->IN / E-IS1 = 0.86/0.14 E_IN = 0.86/0.14 * E_IS1 # Nonsymptomatic recovery IN_R1 = 1./nonsymp_to_recovery IS1_IS2 = 1./inverse_IS1_IS2 IS2_R1 = 1./(symptom_to_recovery-inverse_IS1_IS2) R1_R2 = 1./IgG_formation # Disease progression matrix # TODO - calibrate (together with transmissionInfectionStage) # rows: from-state, cols: to-state (non-symmetric!) # - this represent excess deaths only, doesn't contain baseline deaths! # Calculate all non-serious cases that do not end up in hospitals. # Note that we only have reliable death data from hospitals (NHS England), so we do not model people dieing outside hospitals diseaseProgBaseline = np.array([ # to: E, IN, IS1, IS2, R1, R2, D [ 0 , E_IN, E_IS1, 0, 0, 0, 0 ], # from E [ 0, 0, 0, 0, IN_R1, 0, 0 ], # from IN [ 0 , 0, 0, IS1_IS2, 0, 0, 0 ], # from IS1 [ 0 , 0, 0, 0, IS2_R1, 0, 0 ], # from IS2 [ 0 , 0, 0, 0, 0, R1_R2, 0 ], # from R1 [ 0 , 0, 0, 0, 0, 0, 0 ], # from R2 [ 0 , 0, 0, 0, 0, 0, 0 ] # from D ]) ageAdjusted_diseaseProgBaseline = copy.deepcopy(np.repeat(diseaseProgBaseline[np.newaxis],nAge,axis=0)) # Modify all death and R1 rates: for ii in range(ageAdjusted_diseaseProgBaseline.shape[1]): # Adjust death rate by age dependent disease severity ageAdjusted_diseaseProgBaseline[:,ii,-1] = adjustRatesByAge_KeepAverageRate( ageAdjusted_diseaseProgBaseline[0,ii,-1], ageRelativeAdjustment=relativeDeathRisk_given_COVID_by_age ) # Adjust recovery rate by age dependent recovery speed ageAdjusted_diseaseProgBaseline[:,ii,-3] = adjustRatesByAge_KeepAverageRate( ageAdjusted_diseaseProgBaseline[0,ii,-3], ageRelativeAdjustment=ageRelativeRecoverySpeed, agePopulationRatio=agePopulationRatio ) ageAdjusted_diseaseProgBaseline_Hospital = copy.deepcopy(ageAdjusted_diseaseProgBaseline) # Calculate hospitalisation based rates, for which we do have data. Hospitalisation can end up with deaths # Make sure that the ratio of recoveries in hospital honour the case fatality ratio appropriately # IS2 -> death ageAdjusted_diseaseProgBaseline_Hospital[:,3,-1] = ( # IS2 -> recovery ageAdjusted_diseaseProgBaseline_Hospital[:,3,-3] * ( # multiply by cfr / (1-cfr) to get correct rate towards death caseFatalityRatioHospital_given_COVID_by_age/( 1 - caseFatalityRatioHospital_given_COVID_by_age) ) ) # TODO - time to death might be incorrect overall without an extra delay state, especially for young people # Non-hospitalised disease progression for i1 in [0,1,3]: trTensor_diseaseProgression[:,1:,i1,1:] = ageAdjusted_diseaseProgBaseline # hospitalised disease progression trTensor_diseaseProgression[:,1:,2,1:] = ageAdjusted_diseaseProgBaseline_Hospital return trTensor_diseaseProgression # Larger data driver approaches, with age distribution, see data_cleaning_R.ipynb for details ageHospitalisationRateBaseline = pd.read_csv('../data/clean_hosp-epis-stat-admi-summ-rep-2015-16-rep_table_6.csv', sep=',').iloc[:,-1].values ageHospitalisationRecoveryRateBaseline = 1./pd.read_csv('../data/clean_10641_LoS_age_provider_suppressed.csv', sep=',').iloc[:,-1].values # Calculate initial hospitalisation (occupancy), that will be used to initialise the model initBaselineHospitalOccupancyEquilibriumAgeRatio = ageHospitalisationRateBaseline/(ageHospitalisationRateBaseline+ageHospitalisationRecoveryRateBaseline) # Take into account the NHS work-force in hospitals that for our purposes count as "hospitalised S" population, # also unaffected by quarantine measures ageNhsClinicalStaffPopulationRatio = pd.read_csv('../data/clean_nhsclinicalstaff.csv', sep=',').iloc[:,-1].values # Extra rate of hospitalisation due to COVID-19 infection stages # TODO - find / estimate data on this (unfortunately true rates are hard to get due to many unknown cases) # Symptom to hospitalisation is 5.76 days on average (Imperial #8) infToHospitalExtra = np.array([1e-4, 1e-3, 2e-2, 1e-2]) # We do know at least how age affects these risks: # For calculations see data_cleaning_py.ipynb, calculations from CHESS dataset as per 05 Apr relativeAdmissionRisk_given_COVID_by_age = np.array([-0.94886625, -0.96332087, -0.86528671, -0.79828999, -0.61535305, -0.35214767, 0.12567034, 0.85809052, 3.55950368]) riskOfAEAttandance_by_age = np.array([0.41261361, 0.31560648, 0.3843979 , 0.30475704, 0.26659415, 0.25203475, 0.24970244, 0.31549102, 0.65181376]) # Build the transition tensor from any non-hospitalised state to a hospitalised state # (being in home quarantine is assumed to affect only the infection probability [below], not the hospitalisation probability) # caseIsolationHospitalisationRateAdjustment = 1. # This function takes as input the number of people in given age and health state, and in any non-hospitalised state # and returns the number of people staying in the same age and health state, # but now hospitalised (the rest of people remain in whatever state they were in) def trFunc_HospitalAdmission( ageHospitalisationRateBaseline = ageHospitalisationRateBaseline, infToHospitalExtra = infToHospitalExtra, ageRelativeExtraAdmissionRiskToCovid = relativeAdmissionRisk_given_COVID_by_age * riskOfAEAttandance_by_age, **kwargs ): # This tensor will pointwise multiply an nAge x nHS slice of the stateTensor trTensor_HospitalAdmission = np.zeros((nAge, nHS)) ageAdjusted_infToHospitalExtra = copy.deepcopy(np.repeat(infToHospitalExtra[np.newaxis],nAge,axis=0)) for ii in range(ageAdjusted_infToHospitalExtra.shape[1]): # Adjust death rate by age dependent disease severity ageAdjusted_infToHospitalExtra[:,ii] = adjustRatesByAge_KeepAverageRate( infToHospitalExtra[ii], ageRelativeAdjustment=ageRelativeExtraAdmissionRiskToCovid ) # Add baseline hospitalisation to all non-dead states trTensor_HospitalAdmission[:,:-1] += np.expand_dims(ageHospitalisationRateBaseline,-1) # Add COVID-caused hospitalisation to all infected states (TODO: This is summation of rates for independent processes, should be correct, but check) trTensor_HospitalAdmission[:,1:(nI+1)] += ageAdjusted_infToHospitalExtra return trTensor_HospitalAdmission def trFunc_HospitalDischarge( ageHospitalisationRecoveryRateBaseline = ageHospitalisationRecoveryRateBaseline, dischargeDueToCovidRateMultiplier = 3., **kwargs ): trTensor_HospitalDischarge = np.zeros((nAge, nHS)) # Baseline discharges apply to all non-symptomatic patients (TODO: take into account testing state!) trTensor_HospitalDischarge[:, :3] += ageHospitalisationRecoveryRateBaseline[:,np.newaxis] # No discharges for COVID symptomatic people from the hospital until they recover # TODO - check with health experts if this is correct assumption; probably also depends on testing state trTensor_HospitalDischarge[:, 3:5] = 0. trTensor_HospitalDischarge[:, 5:7] = dischargeDueToCovidRateMultiplier * ageHospitalisationRecoveryRateBaseline[:,np.newaxis] return trTensor_HospitalDischarge ageSocialMixingBaseline = pd.read_csv('../data/socialcontactdata_UK_Mossong2008_social_contact_matrix.csv', sep=',').iloc[:,1:].values ageSocialMixingBaseline = (ageSocialMixingBaseline+ageSocialMixingBaseline.T)/2. ageSocialMixingDistancing = pd.read_csv('../data/socialcontactdata_UK_Mossong2008_social_contact_matrix_with_distancing.csv', sep=',').iloc[:,1:].values ageSocialMixingDistancing = (ageSocialMixingDistancing+ageSocialMixingDistancing.T)/2. ageSocialMixingIsolation = np.zeros_like(ageSocialMixingBaseline) elevatedMixingRatioInHospital = 3.0 withinHospitalSocialMixing = elevatedMixingRatioInHospital * np.sum(np.dot(agePopulationRatio, ageSocialMixingBaseline)) transmissionInfectionStage = np.array([0.001, 0.1, 0.6, 0.5]) def trFunc_newInfections_Complete( stateTensor, policySocialDistancing, # True / False, no default because it's important to know which one we use at any moment! policyImmunityPassports, # True / False, no default because it's important to know which one we use at any moment! ageSocialMixingBaseline = ageSocialMixingBaseline, ageSocialMixingDistancing = ageSocialMixingDistancing, ageSocialMixingIsolation = ageSocialMixingIsolation, withinHospitalSocialMixing = withinHospitalSocialMixing, transmissionInfectionStage = transmissionInfectionStage, **kwargs ): ageIsoContractionRate = np.zeros((nAge, nIso, nTest)) # Add non-hospital infections #-------------------------------- curNonIsolatedSocialMixing = ageSocialMixingDistancing if policySocialDistancing else ageSocialMixingBaseline # Add baseline interactions only between non-isolated people for k1 in [0,3]: for k2 in [0,3]: ageIsoContractionRate[:,k1,:] += np.expand_dims( np.matmul( curNonIsolatedSocialMixing, np.einsum('ijl,j->i', stateTensor[:,1:(nI+1),k2,:], transmissionInfectionStage) # all infected in non-isolation ), axis=1 ) if policyImmunityPassports: # If the immunity passports policy is on, everyone who tested antibody positive, can roam freely # Therefore replace the interactions between people with testingState = 2 with ageSocialMixingBaseline # we do this by using the distributive property of matrix multiplication, and adding extra interactions # "ageSocialMixingBaseline"-"curNonIsolatedSocialMixing" with each other (this is zero if no social distancing!) # TODO - this is a bit hacky?, but probably correct - double check though! for k1 in [0,3]: for k2 in [0,3]: ageIsoContractionRate[:,k1,2:] += np.matmul( ageSocialMixingBaseline-curNonIsolatedSocialMixing, np.einsum('ijk,j->ik', stateTensor[:,1:(nI+1),k2,2:], transmissionInfectionStage) # all infected in non-isolation ) # Add isolation interactions only between isolated and non-isolated people # non-isolated contracting it from isolated for k1 in [0,3]: ageIsoContractionRate[:,k1,:] += np.expand_dims( np.matmul( ageSocialMixingIsolation, np.einsum('ijl,j->i', stateTensor[:,1:(nI+1),1,:], transmissionInfectionStage) # all infected in isolation ), axis=1 ) # isolated contracting it from non-isolated for k1 in [0,3]: ageIsoContractionRate[:,1,:] += np.expand_dims( np.matmul( ageSocialMixingIsolation, np.einsum('ijl,j->i', stateTensor[:,1:(nI+1),k1,:], transmissionInfectionStage) # all infected in non-hospital, non-isolation ), axis = 1 ) # isolated cannot contracting it from another isolated # Add in-hospital infections (of hospitalised patients, and staff) #-------------------------------- # (TODO - within hospitals we probably want to take into effect the testing state; # tested people are better isolated and there's less mixing) ageIsoContractionRate[:,2:,:] += np.expand_dims( withinHospitalSocialMixing * np.einsum('ijkl,j->i', stateTensor[:,1:(nI+1),2:,:], transmissionInfectionStage), # all infected in hospital (sick or working) axis = (1,2)) return ageIsoContractionRate/np.sum(stateTensor) # Normalise the rate by total population def trFunc_travelInfectionRate_ageAdjusted( t, # Time (int, in days) within simulation travelMaxTime = 200, travelBaseRate = 5e-4, # How many people normally travel back to the country per day # TODO - get data travelDecline_mean = 15., travelDecline_slope = 1., travelInfection_peak = 1e-1, travelInfection_maxloc = 10., travelInfection_shape = 2., **kwargs ): tmpTime = np.arange(travelMaxTime) # nAge x T TODO get some realistic data on this travelAgeRateByTime = travelBaseRate * np.outer(agePopulationRatio, 1-expit((tmpTime-travelDecline_mean)/travelDecline_slope)) # 1 x T TODO get some realistic data on this, maybe make it age weighted travelContractionRateByTime = stats.gamma.pdf(tmpTime, a=travelInfection_shape, loc=0., scale=travelInfection_maxloc/(travelInfection_shape-1)) travelContractionRateByTime = travelInfection_peak*travelContractionRateByTime/np.max(travelContractionRateByTime) if t >= travelAgeRateByTime.shape[-1]: return np.zeros(travelAgeRateByTime.shape[0]) else: return travelAgeRateByTime[:,int(t)] * travelContractionRateByTime[int(t)] def inpFunc_testSpecifications( PCR_FNR_I1_to_R2 = np.array([ 0.9, 0.4, 0.15, 0.35, 0.5, 0.8]), PCR_FPR = 0.01, antigen_FNR_I1_to_R2 = np.array([ 0.95, 0.6, 0.35, 0.45, 0.6, 0.9]), antigen_FPR = 0.1, antibody_FNR_I1_to_R2 = np.array([0.99, 0.85, 0.8, 0.65, 0.3, 0.05]), antibody_FPR_S_to_I4 = np.array([0.05, 0.04, 0.03, 0.02, 0.01]) ): testSpecifications = pd.DataFrame( columns=["Name"],#, "Infection stage"],#, "Sensitivity", "Specificity"], data = ( ["PCR"] * nHS + ["Antigen"] * (nHS) + ["Antibody"] * (nHS)) ) testSpecifications['OutputTestState'] = [1]*nHS + [1]*nHS + [2]*nHS # what information state does a pos test transition you to. testSpecifications['TruePosHealthState'] = [np.arange(1,nI+1)]*nHS + [np.arange(1,nI+1)]*nHS + [np.arange(nI+1,nI+nR+1)]*nHS # what information state does a pos test transition you to. # In some health states some people are true negatives and some are true positives! (No, makes litte sense to use, just account for it in FPR? Only matters for test makers...) # testSpecifications['AmbiguousPosHealthState'] = [np.arange(nI+1, nI+nR+1)]*nHS + [np.arange(nI+1, nI+nR+1)]*nHS + [np.arange(1, nI+1)]*nHS # what information state does a pos test transition you to. testSpecifications['InputHealthState'] = list(np.tile(range(nHS),3)) # These numbers below are "defaults" illustrating the concept, but are modified by the inputs!!! testSpecifications['FalseNegativeRate'] = [ # ratio of positive (infected / immune) people missed by the test # For each health stage: # S -> I1 (asymp) -> I2 (mild symp) -> I3 (symp, sick) -> I4 (symp, less sick) -> R1 / R2 (IgM, IgG avail) -> D # PCR 0., 0.9, 0.4, 0.15, 0.35, 0.5, 0.8, 0., # Antigen 0., 0.95, 0.6, 0.35, 0.45, 0.6, 0.9, 0., # Antibody 0., 0.99, 0.85, 0.8, 0.65, 0.3, 0.05, 0. ] testSpecifications.loc[1:6,'FalseNegativeRate'] = PCR_FNR_I1_to_R2 testSpecifications.loc[9:14,'FalseNegativeRate'] = antigen_FNR_I1_to_R2 testSpecifications.loc[17:22,'FalseNegativeRate'] = antibody_FNR_I1_to_R2 testSpecifications['FalsePositiveRate'] = [ # ratio of negative (non-infected or not immune) people deemed positive by the test # PCR 0.01, 0.,0.,0.,0., 0.01, 0.01, 0., # Antigen 0.1, 0.,0.,0.,0., 0.1, 0.1, 0., # Antibody 0.05, 0.04, 0.03, 0.02, 0.01, 0., 0., 0. ] testSpecifications.loc[0,'FalsePositiveRate'] = PCR_FPR testSpecifications.loc[5:6,'FalsePositiveRate'] = PCR_FPR testSpecifications.loc[8,'FalsePositiveRate'] = antigen_FPR testSpecifications.loc[13:14,'FalsePositiveRate'] = antigen_FPR testSpecifications.loc[16:20,'FalsePositiveRate'] = antibody_FPR_S_to_I4 name = testSpecifications['Name'] truePosHealthState = testSpecifications['TruePosHealthState'] testSpecifications.drop(['Name', 'TruePosHealthState'], inplace=True, axis=1) testSpecifications = testSpecifications.to_numpy() name = name.to_numpy() truePosHealthState = truePosHealthState.to_numpy() return testSpecifications, name, truePosHealthState def trFunc_testCapacity( realTime, # time within simulation (day) # PCR capacity - initial testCapacity_pcr_phe_total = 1e4, testCapacity_pcr_phe_inflexday = pd.to_datetime("2020-03-25", format="%Y-%m-%d"), testCapacity_pcr_phe_inflexslope = 5., # PCR capacity - increased testCapacity_pcr_country_total = 1e5, testCapacity_pcr_country_inflexday = pd.to_datetime("2020-04-25", format="%Y-%m-%d"), testCapacity_pcr_country_inflexslope = 10, # Antibody / antigen capacity testCapacity_antibody_country_firstday = pd.to_datetime("2020-04-25", format="%Y-%m-%d"), testCapacity_antibody_country_total = 5e6, testCapacity_antibody_country_inflexday = pd.to_datetime("2020-05-20", format="%Y-%m-%d"), testCapacity_antibody_country_inflexslope = 20, testCapacity_antigenratio_country = 0.7, **kwargs ): # Returns a dictionary with test names and number available at day "t" outPCR = ( #phe phase testCapacity_pcr_phe_total * expit((realTime-testCapacity_pcr_phe_inflexday).days/testCapacity_pcr_phe_inflexslope) + #whole country phase testCapacity_pcr_country_total * expit((realTime-testCapacity_pcr_country_inflexday).days/testCapacity_pcr_country_inflexslope) ) if realTime<testCapacity_antibody_country_firstday: outAntiTotal = 0. else: outAntiTotal = ( testCapacity_antibody_country_total * expit((realTime-testCapacity_antibody_country_inflexday).days/testCapacity_antibody_country_inflexslope) ) return { "PCR": outPCR, "Antigen": outAntiTotal*testCapacity_antigenratio_country, "Antibody": outAntiTotal*(1-testCapacity_antigenratio_country) } # To test the function, in runtests.jl py_rTime = pd.to_datetime("2020-05-25", format="%Y-%m-%d") __trFunc_testCapacity = trFunc_testCapacity(py_rTime) # PARAMETER DICTIONARIES AND TABLES # ----------------------------------------------------------------------------------------- # Build the nested parameter/computation graph of a single function. def build_paramDict(cur_func): """ This function iterates through all inputs of a function, and saves the default argument names and values into a dictionary. If any of the default arguments are functions themselves, then recursively (depth-first) adds an extra field to the dictionary, named <funcName + "_params">, that contains its inputs and arguments. The output of this function can then be passed as a "kwargs" object to the highest level function, which will then pass the parameter values to the lower dictionary levels appropriately """ paramDict = OrderedDict() allArgs = inspect.getfullargspec(cur_func) # Check if there are any default parameters, if no, just return empty dict if allArgs.defaults is None: return paramDict for argname, argval in zip(allArgs.args[-len(allArgs.defaults):], allArgs.defaults): # Save the default argument paramDict[argname] = argval # If the default argument is a function, inspect it for further if callable(argval): # print(argname) paramDict[argname+"_params"] = build_paramDict(argval) return paramDict # Function that computes the right side of the non-lin model ODE def dydt_Complete(t, stateTensor_flattened, # Might be double the normal size (as first dimension) _withNewOnlyCopy, if debugReturnNewPerDay realStartDate = pd.to_datetime("2020-02-20", format="%Y-%m-%d"), # debug debugTransition = False, debugTimestep = False, debugReturnNewPerDay = True, # Now implemented by default into state iteration # Dimensions nAge=nAge, nHS=nHS, nI=nI, nR=nR, nIso=nIso, nTest=nTest, # Input functions and tensors # ---------------------------- # Health state updates trFunc_diseaseProgression = trFunc_diseaseProgression, trFunc_newInfections = trFunc_newInfections_Complete, # Initial incoming travel-based infections (before restrictions) trFunc_travelInfectionRate_ageAdjusted = trFunc_travelInfectionRate_ageAdjusted, # Hospitalisation and recovery trFunc_HospitalAdmission = trFunc_HospitalAdmission, trFunc_HospitalDischarge = trFunc_HospitalDischarge, # Policy changes (on social distancing for now) (TODO - possibly make more changes) tStartSocialDistancing = pd.to_datetime("2020-03-23", format="%Y-%m-%d"), tStopSocialDistancing = pd.to_datetime("2025-03-23", format="%Y-%m-%d"), tStartImmunityPassports = pd.to_datetime("2025-03-23", format="%Y-%m-%d"), tStopImmunityPassports = pd.to_datetime("2025-03-23", format="%Y-%m-%d"), tStartQuarantineCaseIsolation = pd.to_datetime("2025-03-23", format="%Y-%m-%d"), tStopQuarantineCaseIsolation =
pd.to_datetime("2025-03-23", format="%Y-%m-%d")
pandas.to_datetime
# -*- coding: utf-8 -*- import sys import os from pandas.io import pickle # import pandas as pd PROJECT_ID = "dots-stock" # @param {type:"string"} REGION = "us-central1" # @param {type:"string"} USER = "shkim01" # <---CHANGE THIS BUCKET_NAME = "gs://pipeline-dots-stock" # @param {type:"string"} PIPELINE_ROOT = f"{BUCKET_NAME}/pipeline_root/{USER}" from typing import NamedTuple from kfp import dsl from kfp.v2 import compiler from kfp.v2.dsl import (Artifact, Dataset, Input, Model, Output, Metrics, ClassificationMetrics, component) from kfp.v2.google.client import AIPlatformClient @component( # base_image='gcr.io/dots-stock/py38-pandas-cal', base_image="gcr.io/dots-stock/python-img-v5.2" ) def set_defaults()-> NamedTuple( 'Outputs', [ ('date_ref',str), ('n_days', int), ('period_extra', int) ]): import pandas as pd from trading_calendars import get_calendar today = pd.Timestamp.now('Asia/Seoul').strftime('%Y%m%d') today = '20210903' period_to_train = 20 period_extra = 100 n_days = period_to_train + period_extra cal_KRX = get_calendar('XKRX') def get_krx_on_dates_start_end(start, end): return [date.strftime('%Y%m%d') for date in pd.bdate_range(start=start, end=end, freq='C', holidays=cal_KRX.precomputed_holidays) ] print(f'today : {today}') dates_krx_on = get_krx_on_dates_start_end('20210104', today) if today in dates_krx_on : date_ref = today else : date_ref = dates_krx_on[-1] return (date_ref, n_days, period_extra) ############################## # get market info ############ ############################## @component( base_image="gcr.io/dots-stock/python-img-v5.2", ) def get_market_info( market_info_dataset: Output[Dataset], date_ref: str, n_days: int ): import pandas as pd import pickle from trading_calendars import get_calendar cal_KRX = get_calendar('XKRX') from sqlalchemy import create_engine import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) AWS_DB_ID = 'gb_master' AWS_DB_PWD = '<PASSWORD>' AWS_DB_ADDRESS = 'kwdb-daily.cf6e7v8fhede.ap-northeast-2.rds.amazonaws.com' AWS_DB_PORT = '3306' DB_DATABASE_NAME_daily_naver = 'daily_naver' db_daily_naver_con = create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}?charset=utf8' .format(AWS_DB_ID, AWS_DB_PWD, AWS_DB_ADDRESS, AWS_DB_PORT, DB_DATABASE_NAME_daily_naver), encoding='utf8', echo=False) def get_market_from_naver_aws(date_ref): ''' daily naver ์—์„œ db๊ฐ’ ๊ทธ๋Œ€๋กœ parsing ๋‚ด์šฉ ๋ฐ›์•„์˜ค๊ธฐ ''' with db_daily_naver_con.connect() as conn: table_name = f'{date_ref}_daily_allstock_naver' str_sql = f'select * from {table_name} order by ๋“ฑ๋ฝ๋ฅ  DESC' df = pd.read_sql_query(str_sql, conn) # self.get_db_daily_naver_con()) df = df.reset_index().rename(columns={'index':'์ˆœ์œ„_์ƒ์Šน๋ฅ ', 'N':'์ˆœ์œ„_์‹œ๊ฐ€์ด์•ก'}) df['์ˆœ์œ„_์ƒ์Šน๋ฅ '] = df.์ˆœ์œ„_์ƒ์Šน๋ฅ  + 1 return df def get_krx_on_dates_n_days_ago(date_ref, n_days): return [date.strftime('%Y%m%d') for date in pd.bdate_range( end=date_ref, freq='C', periods=n_days, holidays=cal_KRX.precomputed_holidays) ] def get_markets_aws(date_ref, n_days): dates_n_days_ago = get_krx_on_dates_n_days_ago(date_ref, n_days) df_market = pd.DataFrame() for date in dates_n_days_ago: df_ = get_market_from_naver_aws(date) logger.debug(f'date : {date} and df_.shape {df_.shape}' ) df_market = df_market.append(df_) return df_market df_market = get_markets_aws(date_ref=date_ref, n_days=n_days) df_market.to_pickle(market_info_dataset.path, protocol=4) ####################### # get bros ############ ####################### @component( base_image="gcr.io/dots-stock/python-img-v5.2" ) def get_bros( date_ref: str, n_days: int, bros_univ_dataset: Output[Dataset] ): import pandas as pd import pickle import pandas_gbq import networkx as nx from trading_calendars import get_calendar cal_KRX = get_calendar('XKRX') def get_krx_on_dates_n_days_ago(date_ref, n_days=20): return [date.strftime('%Y%m%d') for date in pd.bdate_range( end=date_ref, freq='C', periods=n_days, holidays=cal_KRX.precomputed_holidays) ] def get_corr_pairs_gbq(date_ref, period): date_ref_ = pd.Timestamp(date_ref).strftime('%Y-%m-%d') sql = f''' SELECT DISTINCT source, target, corr_value, period, date FROM `dots-stock.krx_dataset.corr_ohlc_part1` WHERE date = "{date_ref_}" AND period = {period} ORDER BY corr_value DESC LIMIT 1000''' PROJECT_ID = 'dots-stock' df = pandas_gbq.read_gbq(sql, project_id=PROJECT_ID) return df def find_bros(date_ref, period): '''clique over 3 nodes ''' df_edgelist = get_corr_pairs_gbq(date_ref, period) g = nx.from_pandas_edgelist(df_edgelist, edge_attr=True) bros_ = nx.find_cliques(g) bros_3 = [bros for bros in bros_ if len(bros) >=3] set_bros = set([i for l_i in bros_3 for i in l_i]) g_gang = g.subgraph(set_bros) df_gangs_edgelist = nx.to_pandas_edgelist(g_gang) return df_gangs_edgelist def find_gang(date_ref): df_gang = pd.DataFrame() for period in [20, 40, 60, 90, 120]: df_ = find_bros(date, period=period) df_gang = df_gang.append(df_) return df_gang # jobs dates = get_krx_on_dates_n_days_ago(date_ref=date_ref, n_days=n_days) df_bros = pd.DataFrame() for date in dates: df = find_gang(date_ref=date) df_bros = df_bros.append(df) df_bros.to_pickle(bros_univ_dataset.path, protocol=4) ############################### # get adj price############ ############################### @component( base_image="gcr.io/dots-stock/python-img-v5.2", ) def get_adj_prices( start_index :int, end_index : int, market_info_dataset: Input[Dataset], adj_price_dataset: Output[Dataset] ): # import json import FinanceDataReader as fdr from ae_module.ae_logger import ae_log import pandas as pd df_market = pd.read_pickle(market_info_dataset.path) date_ref = df_market.๋‚ ์งœ.max() date_start = '20210101' codes_stock = df_market[df_market.๋‚ ์งœ == date_ref].์ข…๋ชฉ์ฝ”๋“œ.to_list() def get_price_adj(code, start, end): return fdr.DataReader(code, start=start, end=end) def get_price(l_univ, date_start, date_end): df_price = pd.DataFrame() for code in l_univ : df_ = get_price_adj(code, date_start, date_end) print('size', df_.shape) df_['code'] = str(code) df_price = df_price.append(df_) return df_price codes = codes_stock[ start_index : end_index ] ae_log.debug(f'codes_stock {codes.__len__()}') df_adj_price = get_price(codes, date_start=date_start, date_end=date_ref) df_adj_price = df_adj_price.reset_index() print('df_adj_cols =>', df_adj_price.columns) df_adj_price.to_pickle(adj_price_dataset.path, protocol=4) ae_log.debug(df_adj_price.shape) ############################### # get full adj ############ ############################### @component( base_image="gcr.io/dots-stock/python-img-v5.2" # packages_to_install=['pandas'] ) def get_full_adj_prices( adj_price_dataset01: Input[Dataset], adj_price_dataset02: Input[Dataset], adj_price_dataset03: Input[Dataset], adj_price_dataset04: Input[Dataset], adj_price_dataset05: Input[Dataset], full_adj_prices_dataset: Output[Dataset] ): import pandas as pd df_adj_price_01 = pd.read_pickle(adj_price_dataset01.path) df_adj_price_02 = pd.read_pickle(adj_price_dataset02.path) df_adj_price_03 = pd.read_pickle(adj_price_dataset03.path) df_adj_price_04 = pd.read_pickle(adj_price_dataset04.path) df_adj_price_05 = pd.read_pickle(adj_price_dataset05.path) df_full_adj_prices = pd.concat([df_adj_price_01, df_adj_price_02, df_adj_price_03, df_adj_price_04, df_adj_price_05]) # df_full_adj_prices.to_csv(full_adj_prices_dataset.path) df_full_adj_prices.to_pickle(full_adj_prices_dataset.path, protocol=4) # with open(full_adj_prices_dataset.path, 'wb') as f: # pickle.dump(df_full_adj_prices, f) ############################### # get target ############ ############################### @component( base_image="gcr.io/dots-stock/python-img-v5.2", # base_image="amancevice/pandas:1.3.2-slim" ) def get_target( df_price_dataset: Input[Dataset], df_target_dataset: Output[Dataset] ): import pandas as pd import numpy as np def make_target(df): df_ = df.copy() df_.sort_values(by='date', inplace=True) df_['high_p1'] = df_.high.shift(-1) df_['high_p2'] = df_.high.shift(-2) df_['high_p3'] = df_.high.shift(-3) df_['close_p1'] = df_.close.shift(-1) df_['close_p2'] = df_.close.shift(-2) df_['close_p3'] = df_.close.shift(-3) df_['change_p1'] = (df_.close_p1 - df_.close) / df_.close df_['change_p2'] = (df_.close_p2 - df_.close) / df_.close df_['change_p3'] = (df_.close_p3 - df_.close) / df_.close df_['change_p1_over5'] = df_['change_p1'] > 0.05 df_['change_p2_over5'] = df_['change_p2'] > 0.05 df_['change_p3_over5'] = df_['change_p3'] > 0.05 df_['change_p1_over10'] = df_['change_p1'] > 0.1 df_['change_p2_over10'] = df_['change_p2'] > 0.1 df_['change_p3_over10'] = df_['change_p3'] > 0.1 df_['close_high_1'] = (df_.high_p1 - df_.close) / df_.close df_['close_high_2'] = (df_.high_p2 - df_.close) / df_.close df_['close_high_3'] = (df_.high_p3 - df_.close) / df_.close df_['close_high_1_over10'] = df_['close_high_1'] > 0.1 df_['close_high_2_over10'] = df_['close_high_2'] > 0.1 df_['close_high_3_over10'] = df_['close_high_3'] > 0.1 df_['close_high_1_over5'] = df_['close_high_1'] > 0.05 df_['close_high_2_over5'] = df_['close_high_2'] > 0.05 df_['close_high_3_over5'] = df_['close_high_3'] > 0.05 df_['target_over10'] = np.logical_or.reduce([ df_.close_high_1_over10, df_.close_high_2_over10, df_.close_high_3_over10]) df_['target_over5'] = np.logical_or.reduce([ df_.close_high_1_over5, df_.close_high_2_over5, df_.close_high_3_over5]) df_['target_close_over_10'] = np.logical_or.reduce([ df_.change_p1_over10, df_.change_p2_over10, df_.change_p3_over10]) df_['target_close_over_5'] = np.logical_or.reduce([ df_.change_p1_over5, df_.change_p2_over5, df_.change_p3_over5]) df_['target_mclass_close_over10_under5'] = \ np.where(df_['change_p1'] > 0.1, 1, np.where(df_['change_p1'] > -0.05, 0, -1)) df_['target_mclass_close_p2_over10_under5'] = \ np.where(df_['change_p2'] > 0.1, 1, np.where(df_['change_p2'] > -0.05, 0, -1)) df_['target_mclass_close_p3_over10_under5'] = \ np.where(df_['change_p3'] > 0.1, 1, np.where(df_['change_p3'] > -0.05, 0, -1)) df_.dropna(subset=['high_p3'], inplace=True) return df_ def get_target_df(df_price): df_price.reset_index(inplace=True) df_price.columns = df_price.columns.str.lower() df_target = df_price.groupby('code').apply(lambda df: make_target(df)) df_target = df_target.reset_index(drop=True) # df_target['date'] = df_target.date.str.replace('-', '') return df_target # df_price = pd.read_csv(df_price_dataset.path, index_col=0) df_price = pd.read_pickle(df_price_dataset.path) # with open(df_price_dataset.path, 'rb') as f: # df_price = pickle.load(f) print('df cols =>', df_price.columns) df_target = get_target_df(df_price=df_price) df_target.to_pickle(df_target_dataset.path, protocol=4) ############################### # get tech indicator ########## ############################### @component( # base_image="gcr.io/dots-stock/py38-pandas-cal", base_image="gcr.io/dots-stock/python-img-v5.2", packages_to_install=["stockstats", "scikit-learn"] ) def get_tech_indi( # date_ref: str, df_price_dataset: Input[Dataset], df_techini_dataset: Output[Dataset], ): from stockstats import StockDataFrame as Sdf # from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import maxabs_scale import pandas as pd import pickle class FeatureEngineer: """Provides methods for preprocessing the stock price data Attributes ---------- use_technical_indicator : boolean we technical indicator or not tech_indicator_list : list a list of technical indicator names (modified from config.py) use_turbulence : boolean use turbulence index or not user_defined_feature:boolean user user defined features or not Methods ------- preprocess_data() main method to do the feature engineering """ TECHNICAL_INDICATORS_LIST = ['macd', 'boll_ub', 'boll_lb', 'rsi_30', 'dx_30', 'close_30_sma', 'close_60_sma', # 'mfi', ] # PERIOD_MAX = 60, def __init__( self, use_technical_indicator=True, tech_indicator_list=TECHNICAL_INDICATORS_LIST, user_defined_feature=False, ): self.use_technical_indicator = use_technical_indicator self.tech_indicator_list = tech_indicator_list self.user_defined_feature = user_defined_feature def preprocess_data(self, df): """main method to do the feature engineering @:param config: source dataframe @:return: a DataMatrices object """ #clean data # df = self.clean_data(df) # add technical indicators using stockstats if self.use_technical_indicator == True: df = self.add_technical_indicator(df) print("Successfully added technical indicators") # add user defined feature if self.user_defined_feature == True: df = self.add_user_defined_feature(df) print("Successfully added user defined features") # fill the missing values at the beginning and the end df = df.fillna(method="bfill").fillna(method="ffill") return df def clean_data(self, data): """ clean the raw data deal with missing values reasons: stocks could be delisted, not incorporated at the time step :param data: (df) pandas dataframe :return: (df) pandas dataframe """ df = data.copy() df=df.sort_values(['date','tic'],ignore_index=True) ## df.index = df.date.factorize()[0] merged_closes = df.pivot_table(index = 'date',columns = 'tic', values = 'close') merged_closes = merged_closes.dropna(axis=1) tics = merged_closes.columns df = df[df.tic.isin(tics)] return df def add_technical_indicator(self, data): """ calculate technical indicators use stockstats package to add technical inidactors :param data: (df) pandas dataframe :return: (df) pandas dataframe """ df = data.copy() df = df.sort_values(by=['tic','date']) stock = Sdf.retype(df.copy()) unique_ticker = stock.tic.unique() for indicator in self.tech_indicator_list: indicator_df = pd.DataFrame() for i in range(len(unique_ticker)): try: temp_indicator = stock[stock.tic == unique_ticker[i]][indicator] temp_indicator = pd.DataFrame(temp_indicator) temp_indicator['tic'] = unique_ticker[i] temp_indicator['date'] = df[df.tic == unique_ticker[i]]['date'].to_list() indicator_df = indicator_df.append( temp_indicator, ignore_index=True ) except Exception as e: print(e) df = df.merge(indicator_df[['tic','date',indicator]],on=['tic','date'],how='left') df = df.sort_values(by=['date','tic']) return df def add_user_defined_feature(self, data): """ add user defined features :param data: (df) pandas dataframe :return: (df) pandas dataframe """ df = data.copy() df = df.sort_values(by=['tic','date']) df["daily_return"] = df.groupby('tic').close.pct_change(1) df['return_lag_1']=df.groupby('tic').close.pct_change(2) df['return_lag_2']=df.groupby('tic').close.pct_change(3) df['return_lag_3']=df.groupby('tic').close.pct_change(4) # bollinger band - relative df['bb_u_ratio'] = df.boll_ub / df.close # without groupby df['bb_l_ratio'] = df.boll_lb / df.close # don't need groupby # oh oc ol ratio df['oh_ratio'] = (df.high - df.open) / df.open df['oc_ratio'] = (df.close - df.open) / df.open df['ol_ratio'] = (df.low - df.open) / df.open # macd - relative df['max_scale_MACD'] = df.groupby('tic').macd.transform( lambda x: maxabs_scale(x)) # custom volume indicator def volume_change_wrt_10_max(df): return df.volume / df.volume.rolling(10).max() def volume_change_wrt_10_mean(df): return df.volume / df.volume.rolling(10).mean() df['volume_change_wrt_10max'] = ( df.groupby('tic') .apply(lambda df: volume_change_wrt_10_max(df)) .reset_index(drop=True) ) df['volume_change_wrt_10mean'] = ( df.groupby('tic') .apply(lambda df: volume_change_wrt_10_mean(df)) .reset_index(drop=True) ) # close ratio rolling min max def close_ratio_wrt_10_max(df): return df.close / df.close.rolling(10).max() def close_ratio_wrt_10_min(df): return df.close / df.close.rolling(10).min() df['close_ratio_wrt_10max'] = ( df.groupby('tic') .apply(lambda df: close_ratio_wrt_10_max(df)) .reset_index(drop=True) ) df['close_ratio_wrt_10min'] = ( df.groupby('tic') .apply(lambda df: close_ratio_wrt_10_min(df)) .reset_index(drop=True) ) return df df_price = pd.read_pickle(df_price_dataset.path) print('size =>', df_price.shape) print('cols =>', df_price.columns) df_price.columns = df_price.columns.str.lower() df_price.rename(columns={'code':'tic'}, inplace=True) fe = FeatureEngineer(user_defined_feature=True) df_process = fe.preprocess_data(df_price) df_process.rename(columns={'tic':'code'}, inplace=True) df_process.to_pickle(df_techini_dataset.path, protocol=4) ############################### # get full tech indi ########## ############################### @component( base_image="gcr.io/dots-stock/python-img-v5.2" # packages_to_install=['pandas'] ) def get_full_tech_indi( tech_indi_dataset01: Input[Dataset], tech_indi_dataset02: Input[Dataset], tech_indi_dataset03: Input[Dataset], tech_indi_dataset04: Input[Dataset], tech_indi_dataset05: Input[Dataset], full_tech_indi_dataset: Output[Dataset] ): import pandas as pd df_01 = pd.read_pickle(tech_indi_dataset01.path) df_02 = pd.read_pickle(tech_indi_dataset02.path) df_03 = pd.read_pickle(tech_indi_dataset03.path) df_04 = pd.read_pickle(tech_indi_dataset04.path) df_05 = pd.read_pickle(tech_indi_dataset05.path) df_full = pd.concat([df_01, df_02, df_03,df_04, df_05]) df_full.to_pickle(full_tech_indi_dataset.path, protocol=4) ######################################### # get feature ########################### ######################################### @component( base_image="gcr.io/dots-stock/python-img-v5.2", ) def get_features( market_info_dataset: Input[Dataset], bros_dataset: Input[Dataset], features_dataset: Output[Dataset] ): import pandas as pd import numpy as np from collections import Counter df_market = pd.read_pickle(market_info_dataset.path) # ๋“ฑ๋ฝ๋ฅ  -1 df_market = df_market.sort_values('๋‚ ์งœ') df_market['return_-1'] = df_market.groupby('์ข…๋ชฉ์ฝ”๋“œ').๋“ฑ๋ฝ๋ฅ .shift(1) #df_ed ๊ฐ€์ ธ์˜ค๊ธฐ df_ed =
pd.read_pickle(bros_dataset.path)
pandas.read_pickle
import pytest from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm @pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)]) def test_groupby_sample_balanced_groups_shape(n, frac): values = [1] * 10 + [2] * 10 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=n, frac=frac) values = [1] * 2 + [2] * 2 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=n, frac=frac) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_unbalanced_groups_shape(): values = [1] * 10 + [2] * 20 df = DataFrame({"a": values, "b": values}) result = df.groupby("a").sample(n=5) values = [1] * 5 + [2] * 5 expected = DataFrame({"a": values, "b": values}, index=result.index) tm.assert_frame_equal(result, expected) result = df.groupby("a")["b"].sample(n=5) expected = Series(values, name="b", index=result.index) tm.assert_series_equal(result, expected) def test_groupby_sample_index_value_spans_groups(): values = [1] * 3 + [2] * 3 df =
DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2])
pandas.DataFrame
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df["A"].values).sum() assert result.index.name is None result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(11, np.max)}) closure_good = grouped.agg({"high": agg_before(11, np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby("a").mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame( {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} ).set_index(["x", "y"]) assert not df.index.is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort).apply(DataFrame.drop_duplicates) expected = df tm.assert_frame_equal(expected, result) result = ( df.sort_index() .groupby(level=level, sort=sort) .apply(DataFrame.drop_duplicates) ) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # the wake of GH5375 df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) # ... and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) gb = df.groupby("a") result = gb.transform("mean") gb2 = df2.groupby("a") expected = gb2.transform("mean") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sort_column", ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], ) @pytest.mark.parametrize( "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] ) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( { "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], "ints": [8, 7, 4, 5, 2, 9, 1, 1], "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], } ) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): tm.assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_group_shift_with_null_key(): # This test is designed to replicate the segfault in issue #13813. n_rows = 1200 # Generate a moderately large dataframe with occasional missing # values in column `B`, and then group by [`A`, `B`]. This should # force `-1` in `labels` array of `g.grouper.group_info` exactly # at those places, where the group-by key is partially missing. df = DataFrame( [(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1) tm.assert_frame_equal(result, expected) def test_group_shift_with_fill_value(): # GH #24128 n_rows = 24 df = DataFrame( [(i % 12, i % 3, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1, fill_value=0)[["Z"]] tm.assert_frame_equal(result, expected) def test_group_shift_lose_timezone(): # GH 30134 now_dt =
pd.Timestamp.utcnow()
pandas.Timestamp.utcnow
import numpy as np import operator import pandas as pd import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import LinearSegmentedColormap import seaborn as sns import math from tkinter import * # Functions age_encode, race_encode, state_encode, and self_core_dict used to create the core dict. def age_encode(age): # Returns the utf-8 object of an arbitrary integer age input. if age < 1: return '1'.encode('utf-8') elif age < 5: return '1-4'.encode('utf-8') elif age < 10: return '5-9'.encode('utf-8') elif age < 15: return '10-14'.encode('utf-8') elif age < 20: return '15-19'.encode('utf-8') elif age < 25: return '20-24'.encode('utf-8') elif age < 30: return '25-29'.encode('utf-8') elif age < 35: return '30-34'.encode('utf-8') elif age < 40: return '35-39'.encode('utf-8') elif age < 45: return '40-44'.encode('utf-8') elif age < 50: return '45-49'.encode('utf-8') elif age < 55: return '50-54'.encode('utf-8') elif age < 60: return '55-59'.encode('utf-8') elif age < 65: return '60-64'.encode('utf-8') elif age < 70: return '65-69'.encode('utf-8') elif age < 75: return '70-74'.encode('utf-8') elif age < 80: return '75-79'.encode('utf-8') elif age < 85: return '80-84'.encode('utf-8') elif age < 90: return '85-89'.encode('utf-8') elif age < 95: return '90-94'.encode('utf-8') elif age < 100: return '95-99'.encode('utf-8') elif age >= 100: return '100+'.encode('utf-8') else: print('Insert age between 1-85+.') return def race_encode(race): # Insert full name string, return utf-8 object of race code. race_key = {'White': '2106-3'.encode('utf-8'), 'Asian or Pacific Islander': 'A-PI'.encode('utf-8'), 'Black or African American': '2054-5'.encode('utf-8'), 'American Indian or Alaska Native': '1002-5'.encode('utf-8')} if race not in race_key.keys(): raise KeyError("%s not present" %race) else: return race_key[race] def state_encode(state): state_dict = {'Alabama': 1, 'Alaska': 2, 'Arizona': 4, 'Arkansas': 5, 'California': 6, 'Colorado': 8, 'Connecticut': 9, 'Delaware': 10, 'District of Columbia': 11, 'Florida': 12, 'Georgia': 13, 'Hawaii': 15, 'Idaho': 16, 'Illinois': 17, 'Indiana': 18, 'Iowa': 19, 'Kansas': 20, 'Kentucky': 21, 'Louisiana': 22, 'Maine': 23, 'Maryland': 24, 'Massachusetts': 25, 'Michigan': 26, 'Minnesota': 27, 'Mississippi': 28, 'Missouri': 29, 'Montana': 30, 'Nebraska': 31, 'Nevada': 32, 'New Hampshire': 33, 'New Jersey': 34, 'New Mexico': 35, 'New York': 36, 'North Carolina': 37, 'North Dakota': 38, 'Ohio': 39, 'Oklahoma': 40, 'Oregon': 41, 'Pennsylvania': 42, 'Rhode Island': 44, 'South Carolina': 45, 'South Dakota': 46, 'Tennessee': 47, 'Texas': 48, 'Utah': 49, 'Vermont': 50, 'Virginia': 51, 'Washington': 53, 'West Virginia': 54, 'Wisconsin': 55, 'Wyoming': 56} if state not in state_dict.keys(): raise KeyError('%s not in states' % state) else: return state_dict[state] def hispanic_encode(hispanic): hispanic_key = {'Not Hispanic': '2186-2'.encode('utf-8'), 'Hispanic': '2135-2'.encode('utf-8'), 'Unspecific': 'NS'.encode('utf-8')} if hispanic not in hispanic_key.keys(): raise KeyError("%s not present" % hispanic) else: return hispanic_key[hispanic] def self_core_dict(age, race, gender, hispanic, state): # Produces a dictionary of the person's stats for numpy manipulation. tester = {} tester.update({'age': age_encode(age)}) tester.update({'race': race_encode(race)}) tester.update({'gender': gender.encode('utf-8')}) tester.update({'hispanic': hispanic_encode(hispanic)}) tester.update({'state': str(state_encode(state)).encode('utf-8')}) return tester # Functions age_range_encode, mortality_core_raw used to create the total mortality matrix for the core. def age_range_encode(age): #ages = ['<1', '1-4', '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', # '55-59', '60-64', '65-69', '70-74', '75-79', '80-84'] ages = ['1', '1-4', '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90-94', '95-99', '100+'] byte_ages = [x.encode('utf-8') for x in ages] return byte_ages[byte_ages.index(age):] def mortality_core_raw(person_dict, age_range): # Imports CDC mortality and 85~100+ population data. mortality_path = 'C:\\Users\Amy\Desktop\Research\data\\070617_113_causeofdeath_cancer.txt' mortality_data = np.genfromtxt(mortality_path, dtype=(object, object, object, object, object, object, object, '<i8', '<i8'), delimiter='\t', names=True) pop_85_path = 'C:\\Users\Amy\Desktop\Research\data\85to100_estimates_final.txt' pop_85_data = np.genfromtxt(pop_85_path, dtype=(object, object, object, object, object, '<i8'), delimiter='\t', names=True) pop_85_ages = ['85-89'.encode('utf-8'), '90-94'.encode('utf-8'), '95-99'.encode('utf-8'), '100+'.encode('utf-8')] total_deaths_path = 'C:\\Users\Amy\Desktop\Research\data\\total_deaths.txt' totald_data = np.genfromtxt(total_deaths_path, dtype=(object, object, object, object, object, '<i8', '<i8'), delimiter='\t', names=True) age_dict = {'85-89'.encode('utf-8'): 'A', '90-94'.encode('utf-8'): 'B', '95-99'.encode('utf-8'): 'C', '100+'.encode('utf-8'): 'D'} race_dict = {'2106-3'.encode('utf-8'): '1', '1002-5'.encode('utf-8'): '2', '2054-5'.encode('utf-8'): '3', 'A-PI'.encode('utf-8'): '4'} ethnicity_dict = {'2186-2'.encode('utf-8'): '0', '2135-2'.encode('utf-8'): '1'} population_dict = dict() for entry in pop_85_data: age = entry[0] state = entry[1] gender = entry[2] race = entry[3] eth = entry[4] population = entry[5] label = age_dict[age] + state.decode('utf-8') + gender.decode('utf-8') + race_dict[race] + ethnicity_dict[eth] population_dict.update({label: population}) for entry in mortality_data: age = entry[0] ethnicity = entry[2] if age in pop_85_ages and ethnicity != 'NS'.encode('utf-8'): race = entry[1] ethnicity = entry[2] state = entry[3] gender = entry[4] label = age_dict[age] + state.decode('utf-8') + gender.decode('utf-8') + race_dict[race] + ethnicity_dict[ ethnicity] entry[8] = population_dict[label] # Produces the set of the person for comparison to mortality entries. person_set = {person_dict['race'], person_dict['gender'], person_dict['hispanic'], person_dict['state']} # Produces the dictionary of all deaths associated with the core by age. total_deaths_all = {age: 0 for age in age_range} for entry in totald_data: age = entry[0] deaths = entry[5] population = entry[6] if person_set.issubset(set(entry)) and age in age_range: total_deaths_all.update({age: total_deaths_all[age] + deaths}) # Produces the list of sets of all mortalities associated with the core and total count of all deaths. mortalities = [] total_deaths_selected = {age: 0 for age in age_range} total_population_by_age = {age: 0 for age in age_range} for row in mortality_data: age = row[0] mortality_name = row[5] if person_set.issubset(set(row)) and age in age_range: mortality_code = row[6] deaths = row[7] population = row[8] rate = row[7] / row[8] * 100000 mortalities.append((age, mortality_name, mortality_code, deaths, population, rate)) total_deaths_selected.update({age: total_deaths_selected[age] + deaths}) total_population_by_age.update({age: population}) # Converts the result from list of sets to a matrix. mortality_matches = np.array([tuple(x) for x in mortalities], dtype='object, object, object, <i8, <i8, <i8') mortality_matches.reshape((len(mortality_matches), 1)) # Obtains list of unique mortalities. mortality_names = set([i[1] for i in mortality_matches]) print('There are', len(mortality_names), 'total unique mortalities.', '\n') if len(mortality_names) == 0: print('Congrats! Not enough of you are dying. Perhaps try another state.') return mortality_matches, mortality_names, total_deaths_selected, total_deaths_all, total_population_by_age # Function death_ramking used to create the top 12 mortality matrix. def death_ranking(matches, names, cutoff_num): scores = {name: 0 for name in names} # Filters through all raw mortality rows to create a death score for each mortality. for entry in matches: current_disease = entry[1] deaths = entry[3] scores.update({current_disease: scores[current_disease] + deaths}) sorted_scores = sorted(scores.items(), key=operator.itemgetter(1), reverse=True) # Returns top cutoff number mortality entries if there are >cutoff_num death scores listed. if len(sorted_scores) >= cutoff_num: # Top cutoff_num scores and mortality names obtained. trim_scores = sorted_scores[0:cutoff_num] names = [entry[0] for entry in trim_scores] # Finds which rows are not in the top cutoff_num mortalities and removes them. Returns the trimmed matrix. to_delete = [i for i in range(len(matches)) if matches[i][1] not in names] trimmed_matches = np.delete(matches, to_delete, axis=0) return trimmed_matches, names else: names = [entry[0] for entry in sorted_scores] return matches, names # Functions bar_chart, stacked_histogram, scatter_plot used for visualization. def age_bracket_avg(person_dict, ages): population_path = 'C:\\Users\Amy\Desktop\Research\data\\year_age_popestimate.txt' population_data = np.genfromtxt(population_path, dtype=('<i8', object, object, object, object, '<i8'), delimiter='\t', names=True) population_dict = {age: np.array([0, 0, 0, 0, 0]) for age in ages} person_set = {person_dict['race'], person_dict['gender'], person_dict['hispanic'], person_dict['state']} ages = ['1', '1-4', '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90-94', '95-99', '100+'] byte_ages = [x.encode('utf-8') for x in ages] age_min = (byte_ages.index(person_dict['age'])-1) * 5 for entry in population_data: current_age = entry[0] if person_set.issubset(entry) and current_age >= age_min: age = entry[0] age_bracket = byte_ages[age // 5 + 1] age_bracket_year = age % 5 population = entry[5] population_dict[age_bracket][age_bracket_year] = population for age, counts in population_dict.items(): tens = (byte_ages.index(age) - 1) // 2 * 10 + (byte_ages.index(age) - 1) % 2 * 5 dists = counts/sum(counts) avg = np.dot(dists, [0, 1, 2, 3, 4]) population_dict.update({age: round((tens + avg), 2)}) return population_dict def age_of_death(matches, names, total_deaths_all, age_avgs, just_mortalities): age_list = list(age_avgs.keys()) names_path = 'C:\\Users\Amy\Desktop\Research\data\\070617_113_listofdeaths.txt' names_data = np.genfromtxt(names_path, dtype=(object, object), delimiter='\t', names=True) names_dict = {row[0]: row[1] for row in names_data} if just_mortalities: mortality_counts = {name: {age: 0 for age in age_list} for name in names} mortality_results = {} for entry in matches: age = entry[0] name = entry[1] deaths = entry[3] mortality_counts[name].update({age: deaths}) for name, ages in mortality_counts.items(): counts = np.array(list(ages.values())) indices = list(range(len(list(ages.values())))) avg_index = math.ceil(np.dot(counts/sum(counts), indices)) mortality_results.update({names_dict[name]: age_avgs[age_list[avg_index]]}) print('Average age of death from these mortalities:') for key, val in mortality_results.items(): print(key.decode('utf-8'), ' - ', val, sep='') return mortality_results else: counts = np.array(list(total_deaths_all.values())) indices = list(range(len(list(total_deaths_all.values())))) avg_index = math.ceil(np.dot(counts/sum(counts), indices)) avg_age = age_avgs[age_list[avg_index]] print('Average age of death: ', avg_age, '\n', sep='') return avg_age def stacked_bar_chart(matches, names, total_deaths_all): # ABOUT: Takes top 12 mortality data and creates a stacked bar chart of them. # Creates the dictionary of mortality to death rate per 100,000. percentage = {name: 0 for name in names} for entry in matches: current_mortality = entry[1] if current_mortality in names: deaths = entry[3] percentage.update({current_mortality: (percentage[current_mortality] + deaths)}) names_path = 'C:\\Users\Amy\Desktop\Research\data\\070617_113_listofdeaths.txt' names_data = np.genfromtxt(names_path, dtype=(object, object), delimiter='\t', names=True) names_dict = {row[0]: row[1] for row in names_data} # Sums all the death rates then divides all individual rates by the sum to obtain each percentage of deaths. for disease, deaths in percentage.items(): percentage.update({disease: int(round(deaths/sum(total_deaths_all.values())*100))}) clean_percentage = {} for disease, deaths in percentage.items(): new_key = names_dict[disease].decode('utf-8') clean_percentage.update({new_key: deaths}) # Creates the stacked bar chart. df =
pd.Series(clean_percentage, name=' ')
pandas.Series
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Series(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = pd.unique(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.isin(1, 1)) pytest.raises(TypeError, lambda: algos.isin(1, [1])) pytest.raises(TypeError, lambda: algos.isin([1], 1)) def test_basic(self): result = algos.isin([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), Series([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), Series(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = pd.date_range('20130101', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = pd.timedelta_range('1 day', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = pd.date_range('20000101', periods=2000000, freq='s').values result = algos.isin(s, s[0:2]) expected = np.zeros(len(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Series(Categorical(1).from_codes(vals, cats)) St = Series(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.isin(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.isin(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_value_counts(self): np.random.seed(1234) from pandas.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert isinstance(factor, n) result = algos.value_counts(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True)) expected = Series([1, 1, 1, 1], index=index) tm.assert_series_equal(result.sort_index(), expected.sort_index()) def test_value_counts_bins(self): s = [1, 2, 3, 4] result = algos.value_counts(s, bins=1) expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_series_equal(result, expected) result = algos.value_counts(s, bins=2, sort=False) expected = Series([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_series_equal(result, expected) def test_value_counts_dtypes(self): result = algos.value_counts([1, 1.]) assert len(result) == 1 result = algos.value_counts([1, 1.], bins=1) assert len(result) == 1 result = algos.value_counts(Series([1, 1., '1'])) # object assert len(result) == 2 pytest.raises(TypeError, lambda s: algos.value_counts(s, bins=1), ['1', 1]) def test_value_counts_nat(self): td = Series([np.timedelta64(10000), pd.NaT], dtype='timedelta64[ns]') dt = pd.to_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.value_counts(s) vc_with_na = algos.value_counts(s, dropna=False) assert len(vc) == 1 assert len(vc_with_na) == 2 exp_dt = Series({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_series_equal(algos.value_counts(dt), exp_dt) # TODO same for (timedelta) def test_value_counts_datetime_outofbounds(self): # GH 13663 s = Series([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.value_counts() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Series([3, 2, 1], index=exp_index) tm.assert_series_equal(res, exp) # GH 12424 res = pd.to_datetime(Series(['2362-01-01', np.nan]), errors='ignore') exp = Series(['2362-01-01', np.nan], dtype=object) tm.assert_series_equal(res, exp) def test_categorical(self): s = Series(Categorical(list('aaabbc'))) result = s.value_counts() expected = Series([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.value_counts() expected.index = expected.index.as_ordered() tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Series(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_series_equal(result, expected, check_index_type=True) # out of order s = Series(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Series(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.value_counts() expected = Series([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_dropna(self): # https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328 tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=False), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=False), Series([2, 1, 1], index=[True, False, np.nan])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=False), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5., None]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Series([10.3, 5., 5., None]).value_counts(dropna=False) expected = Series([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_series_equal(result, expected) def test_value_counts_normalized(self): # GH12558 s = Series([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.astype(t) result = s_typed.value_counts(normalize=True, dropna=False) expected = Series([0.6, 0.2, 0.2], index=Series([np.nan, 2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) result = s_typed.value_counts(normalize=True, dropna=True) expected = Series([0.5, 0.5], index=Series([2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) def test_value_counts_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Series([1], index=[2**63]) result = algos.value_counts(arr) tm.assert_series_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Series([1, 1], index=[-1, 2**63]) result = algos.value_counts(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_series_equal(result, expected) class TestDuplicated(object): def test_duplicated_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='last') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='last') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('case', [ np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), pytest.param(np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), marks=pytest.mark.xfail(reason="Complex bug. GH 16399") ), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64), ]) def test_numeric_object_likes(self, case): exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_last = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_last res_first = algos.duplicated(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = algos.duplicated(case, keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false =
algos.duplicated(case, keep=False)
pandas.core.algorithms.duplicated
from xml.etree import ElementTree from ..windows import BaseWindow from ..utils.authorization import Authorization #from ..utils.resources import Resources from urllib.parse import urlparse from base64 import b16encode, b64encode from esppy.espapi.eventsources import EventSources import pandas as pd import esppy.espapi.tools as tools import esppy.espapi.codec as codec import threading import logging import esppy from esppy.websocket import createWebSocket import json import time import ssl import six import re import os class Connection(tools.Options): def __init__(self,esp,**kwargs): tools.Options.__init__(self,**kwargs) self._esp = esp url = urlparse(self._esp.session.conn_url) self._secure = False if url[0] == "https": self._secure = True s = url[1].split(":") self._host = s[0] if len(s) == 2: self._port = s[1] elif self._secure: self._port = 443 else: self._port = 80 self._path = url[2] self._websocket = None self._handshakeComplete = False self._headers = None self._authorization = None def start(self,readyCb = None): if (self.isConnected): return self.clear() url = self.getUrl() if (url == None): raise Exception("invalid url") headers = [] auth = Authorization.getInstance(self._esp.session) ws4py = (self.getOpt("websockets","") != "websocket_client") if auth.isEnabled: headers.append(("Authorization",auth.authorization)) ws = createWebSocket(url,self._esp.session,on_message=self.on_message,on_data=self.on_data,on_error=self.on_error,on_open=self.on_open,on_close=self.on_close,headers=headers,ws4py=ws4py) ws.connect() def stop(self): if (self.isConnected): self.clear() return(True) return(False) def restart(self): self.clear() self.start() def send(self,data): if self._websocket != None: self._websocket.send(str(data)) def sendBinary(self,o): if self._websocket != None: encoder = codec.JsonEncoder(o) self._websocket.sendBinary(encoder.data) def getUrl(self): return(None) def message(self,message): if (self.isHandshakeComplete): return name = "" value = None for i in range(0,len(message)): c = message[i] if (c == '\n'): if (len(name) == 0): break if (self._headers == None): self._headers = {} if (value != None): self._headers[name] = value.strip() else: self._headers[name] = "" name = "" value = None elif (value != None): value += c elif (c == ':'): value = "" else: name += c status = self.getHeader("status") if (status != None): value = int(status) if (value == 200): self._handshakeComplete = True self.handshakeComplete() if (tools.supports(self._delegate,"connected")): self._delegate.connected(self) elif (value == 401): if (self._authorization != None): self._websocket.send(self._authorization) elif (tools.supports(self._delegate,"authenticate")): scheme = self.getHeader("www-authenticate") self._delegate.authenticate(self,scheme) def close(self): pass def error(self): pass def closed(self): pass def on_open(self,ws): self._websocket = ws def on_close(self,ws,code,reason): self.clear() self.closed() def on_error(self,ws,error): self.clear() self.error() def on_message(self,ws,message): self.message(message) def on_data(self,ws,data): self.data(data) def setAuthorization(self,value): self._authorization = value if self.isConnected and self.isHandshakeComplete == False: self._websocket.send(self._authorization) def clear(self): if (self._websocket != None): self._websocket.close() self._websocket = None self._handshakeComplete = False self._headers = None def getHeader(self,name): value = None if (self._headers != None): if name in self._headers: value = self._headers[name] return(value) def getHost(self): return(self._host) def getPort(self): return(self._port) def getProtocol(self): if self._secure: return("wss") else: return("ws") def getHttpProtocol(self): if self._secure: return("https") else: return("http") def isSecure(self): return(self._secure) def handshakeComplete(self): pass @property def isConnected(self): return(self._websocket != None) @property def isHandshakeComplete(self): return(self._handshakeComplete) class ServerConnection(Connection): _windowClasses = { "source":"input", "filter":"transformation", "aggregate":"transformation", "compute":"transformation", "union":"transformation", "join":"transformation", "copy":"transformation", "functional":"transformation", "notification":"utility", "pattern":"utility", "counter":"utility", "geofence":"utility", "procedural":"utility", "model-supervisor":"analytics", "model-reader":"analytics", "train":"analytics", "calculate":"analytics", "score":"analytics", "text-context":"textanalytics", "text-category":"textanalytics", "text-sentiment":"textanalytics", "text-topic":"textanalytics" } def __init__(self,esp,delegate,**kwargs): Connection.__init__(self,esp,**kwargs) self._esp = esp self._delegates = [] if delegate != None: tools.addTo(self._delegates,delegate) self._delegate = delegate self._datasources = {} self._publishers = {} self._stats = Stats(self) self._log = Log(self) self._modelDelegates = {} self._urlPublishers = {} self._autoReconnect = True self._version = 6.2 def addDelegate(self,delegate): tools.addTo(self._delegates,delegate) if self.isHandshakeComplete and tools.supports(delegate,"ready"): delegate.ready(self) def removeDelegate(self,delegate): tools.removeFrom(self._delegates,delegate) def message(self,message): if self.getOpt("debug",False): logging.info(message) if self.isHandshakeComplete == False: Connection.message(self,message) return xml = None o = None for c in message: if c == '{' or c == '[': o = json.loads(str(message)) break elif c == '<': xml = ElementTree.fromstring(str(message)) break if o != None: self.processJson(o) elif xml != None: self.processXml(xml) def data(self,data): decoder = codec.JsonDecoder(data) if decoder.data != None: if self.getOpt("debug",False): logging.info(decoder.data) self.processJson(decoder.data) def processXml(self,xml): if xml.tag == "events" or xml.tag == "schema" or xml.tag == "info": datasource = None if "id" in xml.attrib: id = xml.get("id") if id in self._datasources: datasource = self._datasources[id] if datasource != None: if xml.tag == "events": datasource.eventsXml(xml) elif xml.tag == "schema": datasource.setSchemaFromXml(xml) elif xml.tag == "info": datasource.info(xml) elif xml.tag == "stats": self._stats.process(xml) elif xml.tag == "log": self._log.process(xml) elif (xml.tag == "model"): if "id" in xml.attrib: id = xml.get("id") if id in self._modelDelegates: delegate = self._modelDelegates[id] delegate.deliver(xml) del self._modelDelegates[id] elif (xml.tag == "url-publisher"): if "id" in xml.attrib: id = xml.get("id") if id in self._urlPublishers: publisher = self._urlPublishers[id] if "complete" in xml.attrib: complete = xml.get("complete") publisher["complete"] = (complete == "true") del self._urlPublishers[id] else: logging.info("GOT MSG: " + str(xml)) def processJson(self,json): if "events" in json: o = json["events"] if "@id" in o: id = o["@id"] if id in self._datasources: self._datasources[id].events(o) elif "info" in json: o = json["info"] if "@id" in o: id = o["@id"] if id in self._datasources: self._datasources[id].deliverInfo(o) elif "schema" in json: o = json["schema"] id = o["@id"] if id in self._datasources: self._datasources[id].setSchemaFromJson(o) elif id in self._publishers: self._publishers[id].setSchemaFromJson(o) def getUrl(self): url = "" url += self.getProtocol() url += "://" url += self.getHost() url += ":" url += str(self.getPort()) if self._path != None: url += self._path else: url += "/" url += "eventStreamProcessing/v1/connect" if self._esp.accessToken is not None: url += "?access_token=" + self._esp.accessToken return(url) def getEventCollection(self,path,**kwargs): ec = EventCollection(self,path,**kwargs) self._datasources[ec._id] = ec if self.isHandshakeComplete: ec.open() return(ec) def getEventStream(self,path,**kwargs): es = EventStream(self,path,**kwargs) self._datasources[es._id] = es if self.isHandshakeComplete: es.open() return(es) def getPublisher(self,path,**kwargs): publisher = Publisher(self,path,**kwargs) self._publishers[publisher._id] = publisher if self.isHandshakeComplete: publisher.open() return(publisher) def publishUrl(self,path,url,**kwargs): opts = tools.Options(**kwargs) blocksize = opts.getOpt("blocksize",1) wait = opts.getOpt("wait",False) id = tools.guid() json = {"url-publisher":{}} o = json["url-publisher"] o["id"] = id o["window"] = path o["url"] = url o["blocksize"] = blocksize publisher = {"complete":False} self._urlPublishers[id] = publisher self.send(json) if wait: while publisher["complete"] == False: time.sleep(1) def publishDataFrame(self,path,df,**kwargs): opts = tools.Options(**kwargs) size = opts.getOpt("size",100) blocksize = opts.getOpt("blocksize",1) id = tools.guid() json = {"publisher":{}} request = json["publisher"] request["id"] = id request["action"] = "set" request["window"] = path self.send(json) request["action"] = "publish" data = [] for index, row in df.iterrows(): o = {} for col in df.columns: o[col] = row[col] data.append(o) if len(data) == size: request["data"] = data self.send(json) data = [] if len(data) > 0: request["data"] = data self.send(request) request["data"] = None request["action"] = "delete" self.send(json) def publishList(self,path,l,**kwargs): opts = tools.Options(**kwargs) size = opts.getOpt("size",100) blocksize = opts.getOpt("blocksize",1) id = tools.guid() json = {"publisher":{}} request = json["publisher"] request["id"] = id request["action"] = "set" request["window"] = path self.send(json) request["action"] = "publish" data = [] for i in l: o = {} for key,value in i.items(): o[key] = i[key] data.append(o) if len(data) == size: request["data"] = data self.send(json) data = [] if len(data) > 0: request["data"] = data self.send(json) request["data"] = None request["action"] = "delete" self.send(json) def getStats(self): return(self._stats) def getLog(self): return(self._log) def loadModel(self,delegate): if tools.supports(delegate,"modelLoaded") == False: raise Exception("The model delegate must implement the modelLoaded method") id = tools.guid() self._modelDelegates[id] = ModelDelegate(self,delegate) json = {"model":{}} o = json["model"] o["id"] = id o["schema"] = True o["index"] = True o["xml"] = True self.send(json) def loadProjectFromFile(self,name,filename,**kwargs): with open(filename) as f: contents = f.read().encode("utf-8") data = b64encode(contents) json = {"project":{}} o = json["project"] o["id"] = tools.guid() o["name"] = name o["action"] = "load" opts = tools.Options(**kwargs) parms = {} for k,v in opts.items(): parms[k] = str(v) o["parms"] = parms o["data"] = data.decode("utf-8") self.send(json) def loadRouterFromFile(self,name,filename,**kwargs): with open(filename) as f: contents = f.read().encode("utf-8") data = b64encode(contents) json = {"router":{}} o = json["router"] o["id"] = tools.guid() o["name"] = name o["action"] = "load" opts = tools.Options(**kwargs) parms = {} for k,v in opts.items(): parms[k] = str(v) o["parms"] = parms o["data"] = data.decode("utf-8") self.send(json) def handshakeComplete(self): version = self.getHeader("version") if version == None: self.version = 6.2 else: self.version = version for c in self._datasources.values(): c.open() for p in self._publishers.values(): p.open() if len(self._log._delegates) > 0: self._log.start() if len(self._stats._delegates) > 0: self._stats.set() for delegate in self._delegates: if tools.supports(delegate,"connected"): delegate.connected(self) if tools.supports(delegate,"ready"): delegate.ready(self) def closed(self): for c in self._datasources.values(): c.clear() if tools.supports(self._delegate,"closed"): self._delegate.closed(self) if self._autoReconnect: thread = threading.Thread(target = self.reconnect) thread.daemon = True thread.start() def reconnect(self): while self.isConnected == False: #time.sleep(1) time.sleep(5) try: self.start() except: pass def createEventSources(self,delegate = None): return(EventSources(self,delegate)) @property def version(self): return(self._version) @version.setter def version(self,value): self._version = float(value) class Datasource(tools.Options): def __init__(self,connection,**kwargs): tools.Options.__init__(self,**kwargs) self._connection = connection self._id = tools.guid() self._fields = None self._keyFields = None self._schema = Schema() self._delegates = [] self._paused = False self._data = None def setSchemaFromXml(self,xml): self._schema.fromXml(xml) for d in self._delegates: if tools.supports(d,"schemaSet"): d.schemaSet(self) def setSchemaFromJson(self,json): self._schema.fromJson(json) for d in self._delegates: if tools.supports(d,"schemaSet"): d.schemaSet(self) def setFilter(self,value): self.setOpt("filter",value) self.set() def getFilter(self): return(self.getOpt("filter","")) def togglePlay(self): code = False if self._paused: self.play() code = True else: self.pause() return(code) def getFields(self): fields = None if self._schema != None: fields = self._schema.getFields() return(fields) def getKeyFields(self): fields = None if self._schema != None: fields = self._schema.getKeyFields() return(fields) def getKeyFieldNames(self): names = [] fields = self.getKeyFields() if fields != None: for f in fields: names.append(f["name"]) return(names) def getColumnFields(self): fields = None if self._schema != None: fields = self._schema.getColumnFields() return(fields) def getField(self,name): field = None if self._schema != None: field = self._schema.getField(name) return(field) def getKey(self,o): key = "" for f in self._schema._keyFields: name = f["name"] if (name in o) == False: break if len(key) > 0: key += "-" key += str(o[name]) return(key) def getData(self): return(self._data) def getList(self): if isinstance(self._data,dict): l = [] for k,v in self._data.items(): l.append(v) return(l) elif isinstance(self._data,list): return(self._data) def getValues(self,name): f = self._schema.getField(name) if f == None: return(None) values = [] if isinstance(self._data,dict): for key,value in self._data.items(): if name in value: if f["isNumber"]: values.append(float(value[name])) else: values.append(value[name]) elif f["isNumber"]: values.append(0.0) else: values.append("") elif isinstance(self._data,list): for value in self._data: if name in value: if f["isNumber"]: values.append(float(value[name])) else: values.append(value[name]) elif f["isNumber"]: values.append(0.0) else: values.append("") return(values) def getValuesBy(self,keys,names,delimiter = "."): keyFields = [] for s in keys: f = self._schema.getField(s) if f == None: raise Exception("field " + s + " not found") keyFields.append(f) timeKeys = False if len(keyFields) == 1: if keyFields[0]["isDate"]: timeKeys = True elif keyFields[0]["isTime"]: timeKeys = True valueFields = [] for s in names: f = self._schema.getField(s) if f == None: raise Exception("field " + s + " not found") valueFields.append(f) items = None if isinstance(self._data,dict): items = self._data.values() elif isinstance(self._data,list): items = self._data if items == None: raise Exception("invalid data") data = {} for o in items: key = "" for f in keyFields: name = f["name"] if name in o: if len(key) > 0: key += delimiter key += str(o[name]) if key in data: entry = data[key] else: entry = {} for f in valueFields: name = f["name"] entry[name] = 0.0 data[key] = entry for f in valueFields: if f["isNumber"]: name = f["name"] entry[name] += float(o[name]) keyValues = [] values = {} for f in valueFields: name = f["name"] values[name] = [] for k,v in data.items(): if timeKeys: dt =
pd.to_datetime(k,unit="us")
pandas.to_datetime
import numpy as np import pandas as pd import yaml from tqdm import tqdm import logging import math import random import argparse import collections import sys from pathlib import Path import os import copy import re from lib.constants import * from lib.TSP import TSP from lib.TSPObjective import TSPObjective from lib.pheromony_policies import AntSystem, ElitismAntSystem from lib.Ant import Ant from lib.SelectionPolicy import SelectionPolicy import lib.utils as utils class AntColony: def __init__(self, initial_pheromone, ants_rate, num_iterations, instance_name, eid, pheromony_policy, pheromony_kwargs, selection_policy_kwargs): self.initial_pheromone = initial_pheromone self.ants_rate = ants_rate self.num_iterations = num_iterations self.instance_name = instance_name self.eid = eid self.pheromony_policy = pheromony_policy self.pheromony_kwargs = pheromony_kwargs self.selection_policy_kwargs = selection_policy_kwargs def run(self, distances_suffix, solution_suffix): tsp = TSP() tsp.load(DIRS['INPUT']+self.instance_name, distances_suffix, solution_suffix) best_ant = None objective = TSPObjective(tsp) pheromones = np.ones(tsp.distances.shape,dtype=float)*self.initial_pheromone num_vertexes = len(tsp.distances) num_ants = int(self.ants_rate * num_vertexes) population = [None]*num_ants selection_policy = SelectionPolicy(costs=tsp.distances, pheromones=pheromones, **self.selection_policy_kwargs) pheromony_policy = eval(self.pheromony_policy)(**self.pheromony_kwargs) columns = ['#Generation','Best fitness global','Best fitness','Mean fitness', 'Median fitness', 'Worst fitness'] df = pd.DataFrame([],columns = columns) df = df.set_index(columns[0]) for i in range(num_ants): population[i] = Ant() # count = 0 logger = logging.getLogger('default') if logger.level <= logging.INFO: progress_bar = tqdm else: progress_bar = lambda x: x for i in progress_bar(range(1,self.num_iterations+1)): for ant in population: ant.set_start(int(random.uniform(0,num_vertexes-1))) # ant.set_start(count%num_vertexes) # count+=1 for ant in population: selection_policy.select_path(ant, num_vertexes, objective) pheromony_policy.update(population, pheromones) solution_values = [ant.solution_value for ant in population] best_local_ant = population[np.argmin(solution_values)] # for ant in population: # print(ant.solution) if best_ant == None or best_local_ant.solution_value < best_ant.solution_value: best_ant = copy.copy(best_local_ant) # print(best_ant.solution,best_ant.solution_value) # print(pheromones) df.loc[i] = [f'{best_ant.solution_value:.4f}',f'{np.min(solution_values):.4f}',f'{np.mean(solution_values):.4f}',f'{np.median(solution_values):.4f}',f'{np.max(solution_values):.4f}'] logger.info(f"\n{df}") self.save_results(df) def __str__(self): string="" for k, v in self.__dict__.items(): string+=f"{k} = {v}\n" return string # @staticmethod # def get_parameters_name(parameters): # return f"{DIRS['RESULTS']}"+utils.get_parameters_name(parameters_dirs=3)+".json" def get_name(self): name = f"{DIRS['RESULTS']}"+utils.get_parameters_name(self.__dict__,num_dirs=3)+".json" l = name.split('/') for i in range(2,len(l)): directory = '/'.join(l[:i]) logger = logging.getLogger('default') logger.debug(directory) Path(directory).mkdir(parents=True, exist_ok=True) return name def save_results(self, df): f = open(self.get_name(),'w') f.write(df.to_json(orient='records',lines=False)) f.close() def load_results(self): string = self.get_name() # string = re.sub(r'{',r'\{',string) # string = re.sub(r'}',r'\}',string) # print(string) return
pd.read_json(string)
pandas.read_json
import pandas as pd import pickle as pkl from glob import glob import numpy as np from sklearn.metrics import roc_auc_score, accuracy_score, recall_score, precision_score, f1_score import pandas as pd inner_fold = 5 label_file = "/mnt/data3/pnaylor/CellularHeatmaps/outputs/label_nature.csv" y_interest = "Residual" def get_options(): import argparse parser = argparse.ArgumentParser( description='Creating training on heatmaps') parser.add_argument('--labels', required=False, default="/Users/naylorpeter/tmp/predict_from_umap_cell/patients/multi_class.csv", metavar="str", type=str, help='path to label csv file') parser.add_argument('--y_interest', required=False, default="RCB_class", metavar="str", type=str, help='tag for the variable of interest in labels') parser.add_argument('--inner_fold', required=False, default=5, metavar="int", type=int, help='number of inner folds to perform') parser.add_argument('--filename', required=False, default="results.csv", metavar="str", type=str, help='file name for val and test') args = parser.parse_args() return args def main(): options = get_options() inner_fold = options.inner_fold label_file = options.labels y_interest = options.y_interest label = pd.read_csv(label_file, index_col="Biopsy")[y_interest] list_dic = [] for f in glob("*.pkl"): dic = pkl.load(open(f, 'rb')) validation_predictions = [dic["{}_validation_prob".format(i)].join(label) for i in range(inner_fold)] test_predictions = [dic["{}_test_prob".format(i)].join(label) for i in range(inner_fold)] auc_scores = [] auc_scores_t = [] for i in range(inner_fold): y_scores = validation_predictions[i][1] y_true = validation_predictions[i][y_interest] auc_scores.append(roc_auc_score(y_true, y_scores)) y_scores_t = test_predictions[i][1] y_true_t = test_predictions[i][y_interest] auc_scores_t.append(roc_auc_score(y_true_t, y_scores_t)) best_ind = np.argmax(auc_scores) auc_score_best_val = auc_scores[best_ind] auc_score_best_val_t = auc_scores_t[best_ind] validation_predictions =
pd.concat(validation_predictions, axis=0)
pandas.concat
from __future__ import print_function, absolute_import, unicode_literals, division import glob import itertools import json import os from collections import OrderedDict import pandas as pd import numpy as np # from amt.settings import PATH_visible_not_visible_actions_csv def robust_decode(bs): '''Takes a byte string as param and convert it into a unicode one. First tries UTF8, and fallback to Latin1 if it fails''' cr = None try: cr = bs.decode('utf8') except UnicodeDecodeError: cr = bs.decode('latin1') return cr def clean_action(action): # prepare translation table for removing punctuation if not action: return action action = robust_decode(action) if "my vegetables in water instead of oil" in action: action = "sauteing my vegetables in water instead of oil" list_words = action.split(' ') # remove tokens with numbers in them action = [word for word in list_words if word.isalpha()] action = ' '.join(action) list_words = action.split(' ') # remove I, you, she, he list_words = [word.lower() for word in list_words] action = [word for word in list_words if word not in ['you', 'just', 'i', 'I', 'she', 'he']] action = ' '.join(action) return action def clean_list_actions(list_actions): new_list_actions = [] for action in list_actions: new_list_actions.append(clean_action(action)) return new_list_actions def clean_actions_file(clean_visible, clean_not_visible, path_visible_not_visible_actions_csv): df = pd.read_csv(path_visible_not_visible_actions_csv) df.loc[df["Visible Actions"].isnull(), "Visible Actions"] = "" list_visible = df["Visible Actions"].values.tolist() if clean_visible: cleaned_list_visibile = clean_list_actions(list_visible) else: cleaned_list_visibile = list_visible df.loc[df["Not Visible Actions"].isnull(), "Not Visible Actions"] = "" list_not_visible = df["Not Visible Actions"].values.tolist() if clean_not_visible: cleaned_list_not_visibile = clean_list_actions(list_not_visible) else: cleaned_list_not_visibile = list_not_visible list_videos = df["Video_name"].values.tolist() # create new df dict = OrderedDict() dict['Video_name'] = list_videos dict['Visible Actions'] = cleaned_list_visibile dict['Not Visible Actions'] = cleaned_list_not_visibile df_cleaned = pd.DataFrame(dict) df_cleaned = df_cleaned.replace(np.nan, '', regex=True) path_new_file = "/".join(path_visible_not_visible_actions_csv.split("/")[:-1]) + "/new_clean_" + \ path_visible_not_visible_actions_csv.split("/")[-1] df_cleaned.to_csv(path_new_file, index=False) def clean_context_file(): path_context_csv = "/local/oignat/action_recognition_clean/data/Embeddings/context_embeddings.csv" df =
pd.read_csv(path_context_csv)
pandas.read_csv
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests for schemas.""" # pytype: skip-file from __future__ import absolute_import import typing import unittest import future.tests.base # pylint: disable=unused-import import numpy as np # patches unittest.testcase to be python3 compatible import pandas as pd from parameterized import parameterized from past.builtins import unicode import apache_beam as beam from apache_beam.coders import RowCoder from apache_beam.coders.typecoders import registry as coders_registry from apache_beam.dataframe import schemas from apache_beam.dataframe import transforms from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to Simple = typing.NamedTuple( 'Simple', [('name', unicode), ('id', int), ('height', float)]) coders_registry.register_coder(Simple, RowCoder) Animal = typing.NamedTuple( 'Animal', [('animal', unicode), ('max_speed', typing.Optional[float])]) coders_registry.register_coder(Animal, RowCoder) def matches_df(expected): def check_df_pcoll_equal(actual): actual = pd.concat(actual) sorted_actual = actual.sort_values(by=list(actual.columns)).reset_index( drop=True) sorted_expected = expected.sort_values( by=list(expected.columns)).reset_index(drop=True) if not sorted_actual.equals(sorted_expected): raise AssertionError( 'Dataframes not equal: \n\nActual:\n%s\n\nExpected:\n%s' % (sorted_actual, sorted_expected)) return check_df_pcoll_equal # Test data for all supported types that can be easily tested. # Excludes bytes because it's difficult to create a series and dataframe bytes # dtype. For example: # pd.Series([b'abc'], dtype=bytes).dtype != 'S' # pd.Series([b'abc'], dtype=bytes).astype(bytes).dtype == 'S' COLUMNS = [ ([375, 24, 0, 10, 16], np.int32, 'i32'), ([375, 24, 0, 10, 16], np.int64, 'i64'), ([375, 24, None, 10, 16], pd.Int32Dtype(), 'i32_nullable'), ([375, 24, None, 10, 16], pd.Int64Dtype(), 'i64_nullable'), ([375., 24., None, 10., 16.], np.float64, 'f64'), ([375., 24., None, 10., 16.], np.float32, 'f32'), ([True, False, True, True, False], np.bool, 'bool'), (['Falcon', 'Ostrich', None, 3.14, 0], np.object, 'any'), ([True, False, True, None, False], pd.BooleanDtype(), 'bool_nullable'), (['Falcon', 'Ostrich', None, 'Aardvark', 'Elephant'], pd.StringDtype(), 'strdtype'), ] # type: typing.List[typing.Tuple[typing.List[typing.Any], typing.Any, str]] NICE_TYPES_DF = pd.DataFrame(columns=[name for _, _, name in COLUMNS]) for arr, dtype, name in COLUMNS: NICE_TYPES_DF[name] = pd.Series(arr, dtype=dtype, name=name).astype(dtype) NICE_TYPES_PROXY = NICE_TYPES_DF[:0] SERIES_TESTS = [(pd.Series(arr, dtype=dtype, name=name), arr) for arr, dtype, name in COLUMNS] _TEST_ARRAYS = [ arr for arr, _, _ in COLUMNS ] # type: typing.List[typing.List[typing.Any]] DF_RESULT = list(zip(*_TEST_ARRAYS)) INDEX_DF_TESTS = [ (NICE_TYPES_DF.set_index([name for _, _, name in COLUMNS[:i]]), DF_RESULT) for i in range(1, len(COLUMNS) + 1) ] NOINDEX_DF_TESTS = [(NICE_TYPES_DF, DF_RESULT)] PD_VERSION = tuple(int(n) for n in pd.__version__.split('.')) class SchemasTest(unittest.TestCase): def test_simple_df(self): expected = pd.DataFrame({ 'name': list(unicode(i) for i in range(5)), 'id': list(range(5)), 'height': list(float(i) for i in range(5)) }, columns=['name', 'id', 'height']) with TestPipeline() as p: res = ( p | beam.Create([ Simple(name=unicode(i), id=i, height=float(i)) for i in range(5) ]) | schemas.BatchRowsAsDataFrame(min_batch_size=10, max_batch_size=10)) assert_that(res, matches_df(expected)) def test_generate_proxy(self): expected = pd.DataFrame({ 'animal': pd.Series(dtype=pd.StringDtype()), 'max_speed':
pd.Series(dtype=np.float64)
pandas.Series
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr =
SparseArray([np.nan, 1, 2, np.nan])
pandas.core.sparse.api.SparseArray
from datetime import timedelta,datetime from processor.processor import Processor as p import pandas as pd from tqdm import tqdm class Backtester(object): def __init__(self,strat): self.strat = strat def equity_timeseries_backtest(self,start_date,end_date,seats): trades = [] sim = self.strat.create_sim() sim = p.column_date_processing(sim) params = self.strat.trading_params blacklist = [] phase = "base" if not params["value"]: sim["delta"] = sim["delta"] * -1 for seat in tqdm(range(seats),desc="backtesting_seats"): date = start_date while date < end_date: try: if date.weekday() > 4: date = date + timedelta(days=1) else: phase = "blacklist" if len(blacklist) > 0: bl =
pd.DataFrame(blacklist)
pandas.DataFrame
from warnings import catch_warnings, simplefilter import numpy as np from numpy.random import randn import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna) from pandas.util import testing as tm @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") class TestMultiIndexSetItem(object): def test_setitem_multiindex(self): with catch_warnings(record=True): for index_fn in ('ix', 'loc'): def assert_equal(a, b): assert a == b def check(target, indexers, value, compare_fn, expected=None): fn = getattr(target, index_fn) fn.__setitem__(indexers, value) result = fn.__getitem__(indexers) if expected is None: expected = value compare_fn(result, expected) # GH7190 index = MultiIndex.from_product([np.arange(0, 100), np.arange(0, 80)], names=['time', 'firm']) t, n = 0, 2 df = DataFrame(np.nan, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=0, compare_fn=assert_equal) df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=1, compare_fn=assert_equal) df = DataFrame(columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=2, compare_fn=assert_equal) # gh-7218: assigning with 0-dim arrays df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=np.array(3), compare_fn=assert_equal, expected=3, ) # GH5206 df = DataFrame(np.arange(25).reshape(5, 5), columns='A,B,C,D,E'.split(','), dtype=float) df['F'] = 99 row_selection = df['A'] % 2 == 0 col_selection = ['B', 'C'] with catch_warnings(record=True): df.ix[row_selection, col_selection] = df['F'] output = DataFrame(99., index=[0, 2, 4], columns=['B', 'C']) with catch_warnings(record=True): tm.assert_frame_equal(df.ix[row_selection, col_selection], output) check(target=df, indexers=(row_selection, col_selection), value=df['F'], compare_fn=tm.assert_frame_equal, expected=output, ) # GH11372 idx = MultiIndex.from_product([ ['A', 'B', 'C'], date_range('2015-01-01', '2015-04-01', freq='MS')]) cols = MultiIndex.from_product([ ['foo', 'bar'], date_range('2016-01-01', '2016-02-01', freq='MS')]) df = DataFrame(np.random.random((12, 4)), index=idx, columns=cols) subidx = MultiIndex.from_tuples( [('A', Timestamp('2015-01-01')), ('A', Timestamp('2015-02-01'))]) subcols = MultiIndex.from_tuples( [('foo', Timestamp('2016-01-01')), ('foo', Timestamp('2016-02-01'))]) vals = DataFrame(np.random.random((2, 2)), index=subidx, columns=subcols) check(target=df, indexers=(subidx, subcols), value=vals, compare_fn=tm.assert_frame_equal, ) # set all columns vals = DataFrame( np.random.random((2, 4)), index=subidx, columns=cols) check(target=df, indexers=(subidx, slice(None, None, None)), value=vals, compare_fn=tm.assert_frame_equal, ) # identity copy = df.copy() check(target=df, indexers=(df.index, df.columns), value=df, compare_fn=tm.assert_frame_equal, expected=copy) def test_multiindex_setitem(self): # GH 3738 # setting with a multi-index right hand side arrays = [np.array(['bar', 'bar', 'baz', 'qux', 'qux', 'bar']), np.array(['one', 'two', 'one', 'one', 'two', 'one']), np.arange(0, 6, 1)] df_orig = DataFrame(np.random.randn(6, 3), index=arrays, columns=['A', 'B', 'C']).sort_index() expected = df_orig.loc[['bar']] * 2 df = df_orig.copy() df.loc[['bar']] *= 2 tm.assert_frame_equal(df.loc[['bar']], expected) # raise because these have differing levels with pytest.raises(TypeError): df.loc['bar'] *= 2 # from SO # http://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation df_orig = DataFrame.from_dict({'price': { ('DE', 'Coal', 'Stock'): 2, ('DE', 'Gas', 'Stock'): 4, ('DE', 'Elec', 'Demand'): 1, ('FR', 'Gas', 'Stock'): 5, ('FR', 'Solar', 'SupIm'): 0, ('FR', 'Wind', 'SupIm'): 0 }}) df_orig.index = MultiIndex.from_tuples(df_orig.index, names=['Sit', 'Com', 'Type']) expected = df_orig.copy() expected.iloc[[0, 2, 3]] *= 2 idx = pd.IndexSlice df = df_orig.copy() df.loc[idx[:, :, 'Stock'], :] *= 2 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[idx[:, :, 'Stock'], 'price'] *= 2 tm.assert_frame_equal(df, expected) def test_multiindex_assignment(self): # GH3777 part 2 # mixed dtype df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), columns=list('abc'), index=[[4, 4, 8], [8, 10, 12]]) df['d'] = np.nan arr = np.array([0., 1.]) with catch_warnings(record=True): df.ix[4, 'd'] = arr tm.assert_series_equal(df.ix[4, 'd'], Series(arr, index=[8, 10], name='d')) # single dtype df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), columns=list('abc'), index=[[4, 4, 8], [8, 10, 12]]) with catch_warnings(record=True): df.ix[4, 'c'] = arr exp = Series(arr, index=[8, 10], name='c', dtype='float64') tm.assert_series_equal(df.ix[4, 'c'], exp) # scalar ok with catch_warnings(record=True): df.ix[4, 'c'] = 10 exp = Series(10, index=[8, 10], name='c', dtype='float64') tm.assert_series_equal(df.ix[4, 'c'], exp) # invalid assignments with pytest.raises(ValueError): with catch_warnings(record=True): df.ix[4, 'c'] = [0, 1, 2, 3] with pytest.raises(ValueError): with catch_warnings(record=True): df.ix[4, 'c'] = [0] # groupby example NUM_ROWS = 100 NUM_COLS = 10 col_names = ['A' + num for num in map(str, np.arange(NUM_COLS).tolist())] index_cols = col_names[:5] df = DataFrame(np.random.randint(5, size=(NUM_ROWS, NUM_COLS)), dtype=np.int64, columns=col_names) df = df.set_index(index_cols).sort_index() grp = df.groupby(level=index_cols[:4]) df['new_col'] = np.nan f_index = np.arange(5) def f(name, df2): return Series(np.arange(df2.shape[0]), name=df2.index.values[0]).reindex(f_index) # TODO(wesm): unused? # new_df = pd.concat([f(name, df2) for name, df2 in grp], axis=1).T # we are actually operating on a copy here # but in this case, that's ok for name, df2 in grp: new_vals = np.arange(df2.shape[0]) with catch_warnings(record=True): df.ix[name, 'new_col'] = new_vals def test_series_setitem( self, multiindex_year_month_day_dataframe_random_data): ymd = multiindex_year_month_day_dataframe_random_data s = ymd['A'] s[2000, 3] = np.nan assert isna(s.values[42:65]).all() assert notna(s.values[:42]).all() assert notna(s.values[65:]).all() s[2000, 3, 10] = np.nan assert isna(s[49]) def test_frame_getitem_setitem_boolean( self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) tm.assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) with pytest.raises(TypeError, match='boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(codes=codes, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.loc[:, 'value'] tm.assert_series_equal(df['value'], result) with catch_warnings(record=True): simplefilter("ignore", DeprecationWarning) result = df.ix[:, 'value'] tm.assert_series_equal(df['value'], result) result = df.loc[df.index[1:3], 'value'] tm.assert_series_equal(df['value'][1:3], result) result = df.loc[:, :] tm.assert_frame_equal(df, result) result = df df.loc[:, 'value'] = 10 result['value'] = 10 tm.assert_frame_equal(df, result) df.loc[:, :] = 10
tm.assert_frame_equal(df, result)
pandas.util.testing.assert_frame_equal
############################################################################### # Building the Model # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.externals import joblib # import pickle # opening the databases train_df =
pd.read_csv('data/train_data_modified.csv')
pandas.read_csv
# <NAME> (Ausar Geophysical) # 2017/01/31 import numpy as np import scipy.signal import pandas as pd from sklearn import preprocessing, metrics from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.base import clone from matplotlib import pyplot as plt import scipy.optimize from scipy.optimize import lsq_linear import fastdtw from scipy.sparse import csr_matrix from scipy.sparse.linalg import lsqr from scipy.signal import medfilt, gaussian import xgboost as xgb from xgboost.sklearn import XGBClassifier, XGBRegressor eps = 1e-5 def load_data(): train_data = pd.read_csv('../facies_vectors.csv'); train_data = train_data[train_data['Well Name'] != 'Recruit F9'].reset_index(drop=True) validation_data = pd.read_csv('../validation_data_nofacies.csv') return
pd.concat([train_data, validation_data])
pandas.concat
import pandas as pd import numpy as np import time import datetime from keras.models import Sequential from keras.layers import Dense from keras.layers.core import Dropout from keras.utils import to_categorical from keras.regularizers import l2 from keras.models import load_model class CompleteCode: def __init__(self): pass def preprocess_data(self,csvfile): """Load csv file from the current directory Should provide the fullname of file. For example if test data is in file test.csv then argument should be passed as test.csv Returns: Pandas dataframe """ data =
pd.read_csv(csvfile)
pandas.read_csv
""" ๊ตญํ† ๊ตํ†ต๋ถ€ Open API molit(Ministry of Land, Infrastructure and Transport) 1. Transaction ํด๋ž˜์Šค: ๋ถ€๋™์‚ฐ ์‹ค๊ฑฐ๋ž˜๊ฐ€ ์กฐํšŒ - AptTrade: ์•„ํŒŒํŠธ๋งค๋งค ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ - AptTradeDetail: ์•„ํŒŒํŠธ๋งค๋งค ์‹ค๊ฑฐ๋ž˜ ์ƒ์„ธ ์ž๋ฃŒ ์กฐํšŒ - AptRent: ์•„ํŒŒํŠธ ์ „์›”์„ธ ์ž๋ฃŒ ์กฐํšŒ - AptOwnership: ์•„ํŒŒํŠธ ๋ถ„์–‘๊ถŒ์ „๋งค ์‹ ๊ณ  ์ž๋ฃŒ ์กฐํšŒ - OffiTrade: ์˜คํ”ผ์Šคํ…” ๋งค๋งค ์‹ ๊ณ  ์กฐํšŒ - OffiRent: ์˜คํ”ผ์Šคํ…” ์ „์›”์„ธ ์‹ ๊ณ  ์กฐํšŒ - RHTrade: ์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€ ๋งค๋งค ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ - RHRent: ์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€ ์ „์›”์„ธ ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ - DHTrade: ๋‹จ๋…/๋‹ค๊ฐ€๊ตฌ ๋งค๋งค ์‹ค๊ฑฐ๋ž˜ ์กฐํšŒ - DHRent: ๋‹จ๋…/๋‹ค๊ฐ€๊ตฌ ์ „์›”์„ธ ์ž๋ฃŒ ์กฐํšŒ - LandTrade: ํ† ์ง€ ๋งค๋งค ์‹ ๊ณ  ์กฐํšŒ - BizTrade: ์ƒ์—…์—…๋ฌด์šฉ ๋ถ€๋™์‚ฐ ๋งค๋งค ์‹ ๊ณ  ์ž๋ฃŒ ์กฐํšŒ 2. Building ํด๋ž˜์Šค: ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ์ •๋ณด ์„œ๋น„์Šค 01 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ๊ธฐ๋ณธ๊ฐœ์š” ์กฐํšŒ: getBrBasisOulnInfo 02 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ด๊ด„ํ‘œ์ œ๋ถ€ ์กฐํšŒ: getBrRecapTitleInfo 03 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ํ‘œ์ œ๋ถ€ ์กฐํšŒ: getBrTitleInfo 04 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ธต๋ณ„๊ฐœ์š” ์กฐํšŒ: getBrFlrOulnInfo 05 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ๋ถ€์†์ง€๋ฒˆ ์กฐํšŒ: getBrAtchJibunInfo 06 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ „์œ ๊ณต์šฉ๋ฉด์  ์กฐํšŒ: getBrExposPubuseAreaInfo 07 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์˜ค์ˆ˜์ •ํ™”์‹œ์„ค ์กฐํšŒ: getBrWclfInfo 08 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ฃผํƒ๊ฐ€๊ฒฉ ์กฐํšŒ: getBrHsprcInfo 09 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ „์œ ๋ถ€ ์กฐํšŒ: getBrExposInfo 10 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ ์กฐํšŒ: getBrJijiguInfo """ import datetime import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup class Transaction: """ ๋ถ€๋™์‚ฐ ์‹ค๊ฑฐ๋ž˜๊ฐ€ ์กฐํšŒ ํด๋ž˜์Šค """ def __init__(self, serviceKey): """ ๊ณต๊ณต ๋ฐ์ดํ„ฐ ํฌํ„ธ์—์„œ ๋ฐœ๊ธ‰๋ฐ›์€ Service Key๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค. """ # Open API ์„œ๋น„์Šค ํ‚ค ์ดˆ๊ธฐํ™” self.serviceKey = serviceKey # ServiceKey ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ self.urlAptTrade = ( "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?serviceKey=" + self.serviceKey) self.urlAptTradeDetail = ( "http://openapi.molit.go.kr/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTradeDev?serviceKey=" + self.serviceKey) self.urlAptRent = ( "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptRent?serviceKey=" + self.serviceKey) self.urlAptOwnership = ( "http://openapi.molit.go.kr/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcSilvTrade?serviceKey=" + self.serviceKey) self.urlOffiTrade = ( "http://openapi.molit.go.kr/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcOffiTrade?serviceKey=" + self.serviceKey) self.urlOffiRent = ( "http://openapi.molit.go.kr/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcOffiRent?serviceKey=" + self.serviceKey) self.urlRHTrade = ( "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcRHTrade?serviceKey=" + self.serviceKey) self.urlRHRent = ( "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcRHRent?serviceKey=" + self.serviceKey) self.urlDHTrade = ( "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcSHTrade?serviceKey=" + self.serviceKey) self.urlDHRent = ( "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcSHRent?serviceKey=" + self.serviceKey) self.urlLandTrade = ( "http://openapi.molit.go.kr/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcLandTrade?serviceKey=" + self.serviceKey) self.urlBizTrade = ( "http://openapi.molit.go.kr/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcNrgTrade?serviceKey=" + self.serviceKey) # Open API URL Dict urlDict = { "์•„ํŒŒํŠธ๋งค๋งค ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ": self.urlAptTrade, "์•„ํŒŒํŠธ๋งค๋งค ์‹ค๊ฑฐ๋ž˜ ์ƒ์„ธ ์ž๋ฃŒ ์กฐํšŒ": self.urlAptTradeDetail, "์•„ํŒŒํŠธ ์ „์›”์„ธ ์ž๋ฃŒ ์กฐํšŒ": self.urlAptRent, "์•„ํŒŒํŠธ ๋ถ„์–‘๊ถŒ์ „๋งค ์‹ ๊ณ  ์ž๋ฃŒ ์กฐํšŒ": self.urlAptOwnership, "์˜คํ”ผ์Šคํ…” ๋งค๋งค ์‹ ๊ณ  ์กฐํšŒ": self.urlOffiTrade, "์˜คํ”ผ์Šคํ…” ์ „์›”์„ธ ์‹ ๊ณ  ์กฐํšŒ": self.urlOffiRent, "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€ ๋งค๋งค ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ": self.urlRHTrade, "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€ ์ „์›”์„ธ ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ": self.urlRHRent, "๋‹จ๋…/๋‹ค๊ฐ€๊ตฌ ๋งค๋งค ์‹ค๊ฑฐ๋ž˜ ์กฐํšŒ": self.urlDHTrade, "๋‹จ๋…/๋‹ค๊ฐ€๊ตฌ ์ „์›”์„ธ ์ž๋ฃŒ ์กฐํšŒ": self.urlDHRent, "ํ† ์ง€ ๋งค๋งค ์‹ ๊ณ  ์กฐํšŒ": self.urlLandTrade, "์ƒ์—…์—…๋ฌด์šฉ ๋ถ€๋™์‚ฐ ๋งค๋งค ์‹ ๊ณ  ์ž๋ฃŒ ์กฐํšŒ": self.urlBizTrade, } # ์„œ๋น„์Šค ์ •์ƒ ์ž‘๋™ ์—ฌ๋ถ€ ํ™•์ธ for serviceName, url in urlDict.items(): result = requests.get(url, verify=False) xmlsoup = BeautifulSoup(result.text, "lxml-xml") te = xmlsoup.findAll("header") if te[0].find("resultCode").text == "00": print(f">>> {serviceName} ์„œ๋น„์Šค๊ฐ€ ์ •์ƒ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.") else: print(f">>> {serviceName} ์„œ๋น„์Šคํ‚ค ๋ฏธ๋“ฑ๋ก ์˜ค๋ฅ˜์ž…๋‹ˆ๋‹ค.") # ์ง€์—ญ ์ฝ”๋“œ ์ดˆ๊ธฐํ™” # ๋ฒ•์ •๋™ ์ฝ”๋“œ ์ถœ์ฒ˜ : https://code.go.kr path_code = "https://raw.githubusercontent.com/WooilJeong/PublicDataReader/f14e4de3410cc0f798a83ee5934070d651cbd67b/docs/%EB%B2%95%EC%A0%95%EB%8F%99%EC%BD%94%EB%93%9C%20%EC%A0%84%EC%B2%B4%EC%9E%90%EB%A3%8C.txt" code = pd.read_csv(path_code, encoding="cp949", sep="\t") code = code.loc[code["ํ์ง€์—ฌ๋ถ€"] == "์กด์žฌ"] code["๋ฒ•์ •๊ตฌ์ฝ”๋“œ"] = list(map(lambda a: str(a)[:5], list(code["๋ฒ•์ •๋™์ฝ”๋“œ"]))) self.code = code def CodeFinder(self, name): """ ๊ตญํ† ๊ตํ†ต๋ถ€ ์‹ค๊ฑฐ๋ž˜๊ฐ€ ์ •๋ณด ์˜คํ”ˆAPI๋Š” ๋ฒ•์ •๋™์ฝ”๋“œ 10์ž๋ฆฌ ์ค‘ ์•ž 5์ž๋ฆฌ์ธ ๊ตฌ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€์—ญ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. API์— ์‚ฌ์šฉํ•  ๊ตฌ ๋ณ„ ์ฝ”๋“œ๋ฅผ ์กฐํšŒํ•˜๋Š” ๋ฉ”์„œ๋“œ์ด๋ฉฐ, ๋ฌธ์ž์—ด ์ง€์—ญ ๋ช…์„ ์ž…๋ ฅ๋ฐ›๊ณ , ์กฐํšŒ ๊ฒฐ๊ณผ๋ฅผ Pandas DataFrameํ˜•์‹์œผ๋กœ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค. """ result = self.code[self.code["๋ฒ•์ •๋™๋ช…"].str.contains(name)][[ "๋ฒ•์ •๋™๋ช…", "๋ฒ•์ •๊ตฌ์ฝ”๋“œ" ]] result.index = range(len(result)) return result def DataCollector(self, service, LAWD_CD, start_date, end_date): """ ์„œ๋น„์Šค๋ณ„ ๊ธฐ๊ฐ„๋ณ„ ์กฐํšŒ ์ž…๋ ฅ: ์„œ๋น„์Šค๋ณ„ ์กฐํšŒ ๋ฉ”์„œ๋“œ, ์ง€์—ญ์ฝ”๋“œ, ์‹œ์ž‘์›”(YYYYmm), ์ข…๋ฃŒ์›”(YYYYmm) """ start_date = datetime.datetime.strptime(str(start_date), "%Y%m") start_date = datetime.datetime.strftime(start_date, "%Y-%m") end_date = datetime.datetime.strptime(str(end_date), "%Y%m") end_date = end_date + datetime.timedelta(days=31) end_date = datetime.datetime.strftime(end_date, "%Y-%m") ts = pd.date_range(start=start_date, end=end_date, freq="m") date_list = list(ts.strftime("%Y%m")) df = pd.DataFrame() df_sum = pd.DataFrame() for m in date_list: print(">>> LAWD_CD :", LAWD_CD, "DEAL_YMD :", m) DEAL_YMD = m df = service(LAWD_CD, DEAL_YMD) df_sum = pd.concat([df_sum, df]) df_sum.index = range(len(df_sum)) return df_sum def AptTrade(self, LAWD_CD, DEAL_YMD): """ 01 ์•„ํŒŒํŠธ๋งค๋งค ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlAptTrade + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ", "๋…„", "์›”", "์ผ", "๊ฑด์ถ•๋…„๋„", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์•„ํŒŒํŠธ, ์ง€๋ฒˆ, ๋…„, ์›”, ์ผ, ๊ฑด์ถ•๋…„๋„, ์ „์šฉ๋ฉด์ , ์ธต, ๊ฑฐ๋ž˜๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑด์ถ•๋…„๋„", "๊ฑฐ๋ž˜๊ธˆ์•ก" ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df["์•„ํŒŒํŠธ"] = df["์•„ํŒŒํŠธ"].str.strip() df.index = range(len(df)) # ํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def AptTradeDetail(self, LAWD_CD, DEAL_YMD): """ 02 ์•„ํŒŒํŠธ๋งค๋งค ์‹ค๊ฑฐ๋ž˜ ์ƒ์„ธ ์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlAptTradeDetail + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๊ฑฐ๋ž˜๊ธˆ์•ก", "๊ฑด์ถ•๋…„๋„", "๋…„", "๋„๋กœ๋ช…", "๋„๋กœ๋ช…๊ฑด๋ฌผ๋ณธ๋ฒˆํ˜ธ์ฝ”๋“œ", "๋„๋กœ๋ช…๊ฑด๋ฌผ๋ถ€๋ฒˆํ˜ธ์ฝ”๋“œ", "๋„๋กœ๋ช…์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "๋„๋กœ๋ช…์ผ๋ จ๋ฒˆํ˜ธ์ฝ”๋“œ", "๋„๋กœ๋ช…์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "๋„๋กœ๋ช…์ฝ”๋“œ", "๋ฒ•์ •๋™", "๋ฒ•์ •๋™๋ณธ๋ฒˆ์ฝ”๋“œ", "๋ฒ•์ •๋™๋ถ€๋ฒˆ์ฝ”๋“œ", "๋ฒ•์ •๋™์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "๋ฒ•์ •๋™์๋ฉด๋™์ฝ”๋“œ", "๋ฒ•์ •๋™์ง€๋ฒˆ์ฝ”๋“œ", "์•„ํŒŒํŠธ", "์›”", "์ผ", "์ „์šฉ๋ฉด์ ", "์ง€๋ฒˆ", "์ง€์—ญ์ฝ”๋“œ", "์ธต", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ ๊ฑฐ๋ž˜๊ธˆ์•ก, ๊ฑด์ถ•๋…„๋„, ๋…„, ๋„๋กœ๋ช…, ๋„๋กœ๋ช…๊ฑด๋ฌผ๋ณธ๋ฒˆํ˜ธ์ฝ”๋“œ, ๋„๋กœ๋ช…๊ฑด๋ฌผ๋ถ€๋ฒˆํ˜ธ์ฝ”๋“œ, ๋„๋กœ๋ช…์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋„๋กœ๋ช…์ผ๋ จ๋ฒˆํ˜ธ์ฝ”๋“œ, ๋„๋กœ๋ช…์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ, ๋„๋กœ๋ช…์ฝ”๋“œ, ๋ฒ•์ •๋™, ๋ฒ•์ •๋™๋ณธ๋ฒˆ์ฝ”๋“œ, ๋ฒ•์ •๋™๋ถ€๋ฒˆ์ฝ”๋“œ, ๋ฒ•์ •๋™์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์๋ฉด๋™์ฝ”๋“œ, ๋ฒ•์ •๋™์ง€๋ฒˆ์ฝ”๋“œ, ์•„ํŒŒํŠธ, ์›”, ์ผ, ์ „์šฉ๋ฉด์ , ์ง€๋ฒˆ, ์ง€์—ญ์ฝ”๋“œ, ์ธต, ]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑด์ถ•๋…„๋„", "๊ฑฐ๋ž˜๊ธˆ์•ก", "๋ฒ•์ •๋™๋ณธ๋ฒˆ์ฝ”๋“œ", "๋ฒ•์ •๋™๋ถ€๋ฒˆ์ฝ”๋“œ", "๋ฒ•์ •๋™์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "๋ฒ•์ •๋™์๋ฉด๋™์ฝ”๋“œ", "๋ฒ•์ •๋™์ง€๋ฒˆ์ฝ”๋“œ", "๋„๋กœ๋ช…", "๋„๋กœ๋ช…๊ฑด๋ฌผ๋ณธ๋ฒˆํ˜ธ์ฝ”๋“œ", "๋„๋กœ๋ช…๊ฑด๋ฌผ๋ถ€๋ฒˆํ˜ธ์ฝ”๋“œ", "๋„๋กœ๋ช…์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "๋„๋กœ๋ช…์ผ๋ จ๋ฒˆํ˜ธ์ฝ”๋“œ", "๋„๋กœ๋ช…์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "๋„๋กœ๋ช…์ฝ”๋“œ", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df["์•„ํŒŒํŠธ"] = df["์•„ํŒŒํŠธ"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ", "๋„๋กœ๋ช…"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def AptRent(self, LAWD_CD, DEAL_YMD): """ 03 ์•„ํŒŒํŠธ ์ „์›”์„ธ ์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlAptRent + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ", "๋…„", "์›”", "์ผ", "๊ฑด์ถ•๋…„๋„", "์ „์šฉ๋ฉด์ ", "์ธต", "๋ณด์ฆ๊ธˆ์•ก", "์›”์„ธ๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์•„ํŒŒํŠธ, ์ง€๋ฒˆ, ๋…„, ์›”, ์ผ, ๊ฑด์ถ•๋…„๋„, ์ „์šฉ๋ฉด์ , ์ธต, ๋ณด์ฆ๊ธˆ์•ก, ์›”์„ธ๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์•„ํŒŒํŠธ", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑด์ถ•๋…„๋„", "๋ณด์ฆ๊ธˆ์•ก", "์›”์„ธ๊ธˆ์•ก", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๋ณด์ฆ๊ธˆ์•ก"] = pd.to_numeric(df["๋ณด์ฆ๊ธˆ์•ก"].str.replace(",", "")) df["์›”์„ธ๊ธˆ์•ก"] = pd.to_numeric(df["์›”์„ธ๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์ง€๋ฒˆ", "์•„ํŒŒํŠธ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def AptOwnership(self, LAWD_CD, DEAL_YMD): """ 04 ์•„ํŒŒํŠธ ๋ถ„์–‘๊ถŒ์ „๋งค ์‹ ๊ณ  ์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlAptOwnership + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "๊ตฌ๋ถ„", "๋…„", "์›”", "์ผ", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์‹œ๊ตฐ๊ตฌ, ๋‹จ์ง€, ์ง€๋ฒˆ, ๊ตฌ๋ถ„, ๋…„, ์›”, ์ผ, ์ „์šฉ๋ฉด์ , ์ธต, ๊ฑฐ๋ž˜๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "๊ตฌ๋ถ„", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "๊ตฌ๋ถ„"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def OffiTrade(self, LAWD_CD, DEAL_YMD): """ 05 ์˜คํ”ผ์Šคํ…” ๋งค๋งค ์‹ ๊ณ  ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlOffiTrade + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "๋…„", "์›”", "์ผ", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์‹œ๊ตฐ๊ตฌ, ๋‹จ์ง€, ์ง€๋ฒˆ, ๋…„, ์›”, ์ผ, ์ „์šฉ๋ฉด์ , ์ธต, ๊ฑฐ๋ž˜๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก" ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def OffiRent(self, LAWD_CD, DEAL_YMD): """ 06 ์˜คํ”ผ์Šคํ…” ์ „์›”์„ธ ์‹ ๊ณ  ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlOffiRent + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "๋…„", "์›”", "์ผ", "์ „์šฉ๋ฉด์ ", "์ธต", "๋ณด์ฆ๊ธˆ", "์›”์„ธ", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์‹œ๊ตฐ๊ตฌ, ๋‹จ์ง€, ์ง€๋ฒˆ, ๋…„, ์›”, ์ผ, ์ „์šฉ๋ฉด์ , ์ธต, ๋ณด์ฆ๊ธˆ, ์›”์„ธ]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "์ธต", "๋ณด์ฆ๊ธˆ", "์›”์„ธ", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๋ณด์ฆ๊ธˆ"] = pd.to_numeric(df["๋ณด์ฆ๊ธˆ"].str.replace(",", "")) df["์›”์„ธ"] = pd.to_numeric(df["์›”์„ธ"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "๋‹จ์ง€", "์ง€๋ฒˆ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def RHTrade(self, LAWD_CD, DEAL_YMD): """ 07 ์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€ ๋งค๋งค ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlRHTrade + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€", "์ง€๋ฒˆ", "๋…„", "์›”", "์ผ", "์ „์šฉ๋ฉด์ ", "๊ฑด์ถ•๋…„๋„", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€, ์ง€๋ฒˆ, ๋…„, ์›”, ์ผ, ์ „์šฉ๋ฉด์ , ๊ฑด์ถ•๋…„๋„, ์ธต, ๊ฑฐ๋ž˜๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "๊ฑด์ถ•๋…„๋„", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€", "์ง€๋ฒˆ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def RHRent(self, LAWD_CD, DEAL_YMD): """ 08 ์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€ ์ „์›”์„ธ ์‹ค๊ฑฐ๋ž˜์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlRHRent + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€", "์ง€๋ฒˆ", "๋…„", "์›”", "์ผ", "์ „์šฉ๋ฉด์ ", "๊ฑด์ถ•๋…„๋„", "์ธต", "๋ณด์ฆ๊ธˆ์•ก", "์›”์„ธ๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ ๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€, ์ง€๋ฒˆ, ๋…„, ์›”, ์ผ, ์ „์šฉ๋ฉด์ , ๊ฑด์ถ•๋…„๋„, ์ธต, ๋ณด์ฆ๊ธˆ์•ก, ์›”์„ธ๊ธˆ์•ก ]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€", "์ง€๋ฒˆ", "์ „์šฉ๋ฉด์ ", "๊ฑด์ถ•๋…„๋„", "์ธต", "๋ณด์ฆ๊ธˆ์•ก", "์›”์„ธ๊ธˆ์•ก", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๋ณด์ฆ๊ธˆ์•ก"] = pd.to_numeric(df["๋ณด์ฆ๊ธˆ์•ก"].str.replace(",", "")) df["์›”์„ธ๊ธˆ์•ก"] = pd.to_numeric(df["์›”์„ธ๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์—ฐ๋ฆฝ๋‹ค์„ธ๋Œ€", "์ง€๋ฒˆ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def DHTrade(self, LAWD_CD, DEAL_YMD): """ 09 ๋‹จ๋…/๋‹ค๊ฐ€๊ตฌ ๋งค๋งค ์‹ค๊ฑฐ๋ž˜ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlDHTrade + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์ฃผํƒ์œ ํ˜•", "๋…„", "์›”", "์ผ", "๋Œ€์ง€๋ฉด์ ", "์—ฐ๋ฉด์ ", "๊ฑด์ถ•๋…„๋„", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์ฃผํƒ์œ ํ˜•, ๋…„, ์›”, ์ผ, ๋Œ€์ง€๋ฉด์ , ์—ฐ๋ฉด์ , ๊ฑด์ถ•๋…„๋„, ๊ฑฐ๋ž˜๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์ฃผํƒ์œ ํ˜•", "๋Œ€์ง€๋ฉด์ ", "์—ฐ๋ฉด์ ", "๊ฑด์ถ•๋…„๋„", "๊ฑฐ๋ž˜๊ธˆ์•ก" ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์ฃผํƒ์œ ํ˜•"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def DHRent(self, LAWD_CD, DEAL_YMD): """ 10 ๋‹จ๋…/๋‹ค๊ฐ€๊ตฌ ์ „์›”์„ธ ์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlDHRent + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = ["๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "๋…„", "์›”", "์ผ", "๊ณ„์•ฝ๋ฉด์ ", "๋ณด์ฆ๊ธˆ์•ก", "์›”์„ธ๊ธˆ์•ก"] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame([[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ๋…„, ์›”, ์ผ, ๊ณ„์•ฝ๋ฉด์ , ๋ณด์ฆ๊ธˆ์•ก, ์›”์„ธ๊ธˆ์•ก]], columns=variables) df = pd.concat([df, data]) # Set Columns colNames = ["์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "๊ณ„์•ฝ๋ฉด์ ", "๋ณด์ฆ๊ธˆ์•ก", "์›”์„ธ๊ธˆ์•ก"] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๋ณด์ฆ๊ธˆ์•ก"] = pd.to_numeric(df["๋ณด์ฆ๊ธˆ์•ก"].str.replace(",", "")) df["์›”์„ธ๊ธˆ์•ก"] = pd.to_numeric(df["์›”์„ธ๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def LandTrade(self, LAWD_CD, DEAL_YMD): """ 11 ํ† ์ง€ ๋งค๋งค ์‹ ๊ณ  ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlLandTrade + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๋ฒ•์ •๋™", "์ง€์—ญ์ฝ”๋“œ", "์‹œ๊ตฐ๊ตฌ", "์šฉ๋„์ง€์—ญ", "์ง€๋ชฉ", "๋…„", "์›”", "์ผ", "์ง€๋ถ„๊ฑฐ๋ž˜๊ตฌ๋ถ„", "๊ฑฐ๋ž˜๋ฉด์ ", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[๋ฒ•์ •๋™, ์ง€์—ญ์ฝ”๋“œ, ์‹œ๊ตฐ๊ตฌ, ์šฉ๋„์ง€์—ญ, ์ง€๋ชฉ, ๋…„, ์›”, ์ผ, ์ง€๋ถ„๊ฑฐ๋ž˜๊ตฌ๋ถ„, ๊ฑฐ๋ž˜๋ฉด์ , ๊ฑฐ๋ž˜๊ธˆ์•ก]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "์šฉ๋„์ง€์—ญ", "์ง€๋ชฉ", "์ง€๋ถ„๊ฑฐ๋ž˜๊ตฌ๋ถ„", "๊ฑฐ๋ž˜๋ฉด์ ", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop( ["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "์šฉ๋„์ง€์—ญ", "์ง€๋ชฉ", "์ง€๋ถ„๊ฑฐ๋ž˜๊ตฌ๋ถ„"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def BizTrade(self, LAWD_CD, DEAL_YMD): """ 12 ์ƒ์—…์—…๋ฌด์šฉ ๋ถ€๋™์‚ฐ ๋งค๋งค ์‹ ๊ณ  ์ž๋ฃŒ ์กฐํšŒ ์ž…๋ ฅ: ์ง€์—ญ์ฝ”๋“œ(๋ฒ•์ •๋™์ฝ”๋“œ 5์ž๋ฆฌ), ๊ณ„์•ฝ์›”(YYYYmm) """ # URL url_1 = self.urlBizTrade + "&LAWD_CD=" + str(LAWD_CD) url_2 = "&DEAL_YMD=" + str(DEAL_YMD) url_3 = "&numOfRows=99999" url = url_1 + url_2 + url_3 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "๊ฑฐ๋ž˜๊ธˆ์•ก", "๊ฑด๋ฌผ๋ฉด์ ", "๊ฑด๋ฌผ์ฃผ์šฉ๋„", "๊ฑด์ถ•๋…„๋„", "๊ตฌ๋ถ„", "๋…„", "์›”", "์ผ", "๋Œ€์ง€๋ฉด์ ", "๋ฒ•์ •๋™", "์‹œ๊ตฐ๊ตฌ", "์šฉ๋„์ง€์—ญ", "์œ ํ˜•", "์ง€์—ญ์ฝ”๋“œ", "์ธต", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ ๊ฑฐ๋ž˜๊ธˆ์•ก, ๊ฑด๋ฌผ๋ฉด์ , ๊ฑด๋ฌผ์ฃผ์šฉ๋„, ๊ฑด์ถ•๋…„๋„, ๊ตฌ๋ถ„, ๋…„, ์›”, ์ผ, ๋Œ€์ง€๋ฉด์ , ๋ฒ•์ •๋™, ์‹œ๊ตฐ๊ตฌ, ์šฉ๋„์ง€์—ญ, ์œ ํ˜•, ์ง€์—ญ์ฝ”๋“œ, ์ธต, ]], columns=variables, ) df = pd.concat([df, data]) # Set Columns colNames = [ "์ง€์—ญ์ฝ”๋“œ", "๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "์šฉ๋„์ง€์—ญ", "์œ ํ˜•", "๋Œ€์ง€๋ฉด์ ", "๊ตฌ๋ถ„", "๊ฑด๋ฌผ๋ฉด์ ", "๊ฑด๋ฌผ์ฃผ์šฉ๋„", "๊ฑด์ถ•๋…„๋„", "์ธต", "๊ฑฐ๋ž˜๊ธˆ์•ก", ] # Feature Engineering try: if len(df["๋…„"] != 0) & len(df["์›”"] != 0) & len(df["์ผ"] != 0): df["๊ฑฐ๋ž˜์ผ"] = df["๋…„"] + "-" + df["์›”"] + "-" + df["์ผ"] df["๊ฑฐ๋ž˜์ผ"] = pd.to_datetime(df["๊ฑฐ๋ž˜์ผ"]) df["๊ฑฐ๋ž˜๊ธˆ์•ก"] = pd.to_numeric(df["๊ฑฐ๋ž˜๊ธˆ์•ก"].str.replace(",", "")) except: df = pd.DataFrame(columns=colNames) print("์กฐํšŒํ•  ์ž๋ฃŒ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.") # Arange Columns df = df[colNames] df = df.sort_values(["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ"]) df["๋ฒ•์ •๋™"] = df["๋ฒ•์ •๋™"].str.strip() df.index = range(len(df)) # ์ˆซ์žํ˜• ๋ณ€ํ™˜ cols = df.columns.drop( ["๋ฒ•์ •๋™", "๊ฑฐ๋ž˜์ผ", "์‹œ๊ตฐ๊ตฌ", "์šฉ๋„์ง€์—ญ", "์œ ํ˜•", "๊ฑด๋ฌผ์ฃผ์šฉ๋„"]) df[cols] = df[cols].apply(pd.to_numeric, errors="coerce") return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) class Building: """ ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ์ •๋ณด ์„œ๋น„์Šค """ def __init__(self, serviceKey): """ ๊ณต๊ณต ๋ฐ์ดํ„ฐ ํฌํ„ธ์—์„œ ๋ฐœ๊ธ‰๋ฐ›์€ Service Key๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค. """ # Open API ์„œ๋น„์Šค ํ‚ค ์ดˆ๊ธฐํ™” self.serviceKey = serviceKey # ServiceKey ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ self.baseUrl = "http://apis.data.go.kr/1613000/BldRgstService_v2/" self.url_getBrBasisOulnInfo = (self.baseUrl + "getBrBasisOulnInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrRecapTitleInfo = (self.baseUrl + "getBrRecapTitleInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrTitleInfo = (self.baseUrl + "getBrTitleInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrFlrOulnInfo = (self.baseUrl + "getBrFlrOulnInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrAtchJibunInfo = (self.baseUrl + "getBrAtchJibunInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrExposPubuseAreaInfo = (self.baseUrl + "getBrExposPubuseAreaInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrWclfInfo = (self.baseUrl + "getBrWclfInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrHsprcInfo = (self.baseUrl + "getBrHsprcInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrExposInfo = (self.baseUrl + "getBrExposInfo" + f"?serviceKey={self.serviceKey}") self.url_getBrJijiguInfo = (self.baseUrl + "getBrJijiguInfo" + f"?serviceKey={self.serviceKey}") # Open API URL Dict urlDict = { "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ๊ธฐ๋ณธ๊ฐœ์š” ์กฐํšŒ": self.url_getBrBasisOulnInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ด๊ด„ํ‘œ์ œ๋ถ€ ์กฐํšŒ": self.url_getBrRecapTitleInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ํ‘œ์ œ๋ถ€ ์กฐํšŒ": self.url_getBrTitleInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ธต๋ณ„๊ฐœ์š” ์กฐํšŒ": self.url_getBrFlrOulnInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ๋ถ€์†์ง€๋ฒˆ ์กฐํšŒ": self.url_getBrAtchJibunInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ „์œ ๊ณต์šฉ๋ฉด์  ์กฐํšŒ": self.url_getBrExposPubuseAreaInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์˜ค์ˆ˜์ •ํ™”์‹œ์„ค ์กฐํšŒ": self.url_getBrWclfInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ฃผํƒ๊ฐ€๊ฒฉ ์กฐํšŒ": self.url_getBrHsprcInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ „์œ ๋ถ€ ์กฐํšŒ": self.url_getBrExposInfo, "๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ ์กฐํšŒ": self.url_getBrJijiguInfo, } # ์„œ๋น„์Šค ์ •์ƒ ์ž‘๋™ ์—ฌ๋ถ€ ํ™•์ธ for serviceName, url in urlDict.items(): result = requests.get(url, verify=False) xmlsoup = BeautifulSoup(result.text, "lxml-xml") te = xmlsoup.findAll("header") if te[0].find("resultCode").text == "00": print(f">>> {serviceName} ์„œ๋น„์Šค๊ฐ€ ์ •์ƒ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.") else: print(f">>> {serviceName} ์„œ๋น„์Šคํ‚ค ๋ฏธ๋“ฑ๋ก ์˜ค๋ฅ˜์ž…๋‹ˆ๋‹ค.") # ์ง€์—ญ ์ฝ”๋“œ ์ดˆ๊ธฐํ™” # ๋ฒ•์ •๋™ ์ฝ”๋“œ ์ถœ์ฒ˜ : https://code.go.kr path_code = "https://raw.githubusercontent.com/WooilJeong/PublicDataReader/f14e4de3410cc0f798a83ee5934070d651cbd67b/docs/%EB%B2%95%EC%A0%95%EB%8F%99%EC%BD%94%EB%93%9C%20%EC%A0%84%EC%B2%B4%EC%9E%90%EB%A3%8C.txt" code = pd.read_csv(path_code, encoding="cp949", sep="\t") code = code.loc[code["ํ์ง€์—ฌ๋ถ€"] == "์กด์žฌ"] code["๋ฒ•์ •๊ตฌ์ฝ”๋“œ"] = list(map(lambda a: str(a)[:5], list(code["๋ฒ•์ •๋™์ฝ”๋“œ"]))) self.code = code def CodeFinder(self, name): """ ๊ตญํ† ๊ตํ†ต๋ถ€ ์‹ค๊ฑฐ๋ž˜๊ฐ€ ์ •๋ณด ์˜คํ”ˆAPI๋Š” ๋ฒ•์ •๋™์ฝ”๋“œ 10์ž๋ฆฌ ์ค‘ ์•ž 5์ž๋ฆฌ์ธ ๊ตฌ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€์—ญ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. API์— ์‚ฌ์šฉํ•  ๊ตฌ ๋ณ„ ์ฝ”๋“œ๋ฅผ ์กฐํšŒํ•˜๋Š” ๋ฉ”์„œ๋“œ์ด๋ฉฐ, ๋ฌธ์ž์—ด ์ง€์—ญ ๋ช…์„ ์ž…๋ ฅ๋ฐ›๊ณ , ์กฐํšŒ ๊ฒฐ๊ณผ๋ฅผ Pandas DataFrameํ˜•์‹์œผ๋กœ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค. """ result = self.code[self.code["๋ฒ•์ •๋™๋ช…"].str.contains(name)][[ "๋ฒ•์ •๋™๋ช…", "๋ฒ•์ •๊ตฌ์ฝ”๋“œ" ]] result.index = range(len(result)) return result def ChangeCols(self, df, operationName): """ ์˜๋ฌธ ์ปฌ๋Ÿผ๋ช…์„ ๊ตญ๋ฌธ ์ปฌ๋Ÿผ๋ช…์œผ๋กœ ๋ณ€๊ฒฝ """ if operationName == "getBrBasisOulnInfo": self.colDict = { "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "bylotCnt": "์™ธํ•„์ง€์ˆ˜", "crtnDay": "์ƒ์„ฑ์ผ์ž", "guyukCd": "๊ตฌ์—ญ์ฝ”๋“œ", "guyukCdNm": "๊ตฌ์—ญ์ฝ”๋“œ๋ช…", "ji": "์ง€", "jiguCd": "์ง€๊ตฌ์ฝ”๋“œ", "jiguCdNm": "์ง€๊ตฌ์ฝ”๋“œ๋ช…", "jiyukCd": "์ง€์—ญ์ฝ”๋“œ", "jiyukCdNm": "์ง€์—ญ์ฝ”๋“œ๋ช…", "lot": "๋กœํŠธ", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "mgmUpBldrgstPk": "๊ด€๋ฆฌ์ƒ์œ„๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", } elif operationName == "getBrRecapTitleInfo": self.colDict = { "archArea": "๊ฑด์ถ•๋ฉด์ ", "atchBldArea": "๋ถ€์†๊ฑด์ถ•๋ฌผ๋ฉด์ ", "atchBldCnt": "๋ถ€์†๊ฑด์ถ•๋ฌผ์ˆ˜", "bcRat": "๊ฑดํ์œจ", "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "bylotCnt": "์™ธํ•„์ง€์ˆ˜", "crtnDay": "์ƒ์„ฑ์ผ์ž", "engrEpi": "EPI์ ์ˆ˜", "engrGrade": "์—๋„ˆ์ง€ํšจ์œจ๋“ฑ๊ธ‰", "engrRat": "์—๋„ˆ์ง€์ ˆ๊ฐ์œจ", "etcPurps": "๊ธฐํƒ€์šฉ๋„", "fmlyCnt": "๊ฐ€๊ตฌ์ˆ˜", "gnBldCert": "์นœํ™˜๊ฒฝ๊ฑด์ถ•๋ฌผ์ธ์ฆ์ ์ˆ˜", "gnBldGrade": "์นœํ™˜๊ฒฝ๊ฑด์ถ•๋ฌผ๋“ฑ๊ธ‰", "hhldCnt": "์„ธ๋Œ€์ˆ˜", "hoCnt": "ํ˜ธ์ˆ˜", "indrAutoArea": "์˜ฅ๋‚ด์ž์ฃผ์‹๋ฉด์ ", "indrAutoUtcnt": "์˜ฅ๋‚ด์ž์ฃผ์‹๋Œ€์ˆ˜", "indrMechArea": "์˜ฅ๋‚ด๊ธฐ๊ณ„์‹๋ฉด์ ", "indrMechUtcnt": "์˜ฅ๋‚ด๊ธฐ๊ณ„์‹๋Œ€์ˆ˜", "itgBldCert": "์ง€๋Šฅํ˜•๊ฑด์ถ•๋ฌผ์ธ์ฆ์ ์ˆ˜", "itgBldGrade": "์ง€๋Šฅํ˜•๊ฑด์ถ•๋ฌผ๋“ฑ๊ธ‰", "ji": "์ง€", "lot": "๋กœํŠธ", "mainBldCnt": "์ฃผ๊ฑด์ถ•๋ฌผ์ˆ˜", "mainPurpsCd": "์ฃผ์šฉ๋„์ฝ”๋“œ", "mainPurpsCdNm": "์ฃผ์šฉ๋„์ฝ”๋“œ๋ช…", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newOldRegstrGbCd": "์‹ ๊ตฌ๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "newOldRegstrGbCdNm": "์‹ ๊ตฌ๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "oudrAutoArea": "์˜ฅ์™ธ์ž์ฃผ์‹๋ฉด์ ", "oudrAutoUtcnt": "์˜ฅ์™ธ์ž์ฃผ์‹๋Œ€์ˆ˜", "oudrMechArea": "์˜ฅ์™ธ๊ธฐ๊ณ„์‹๋ฉด์ ", "oudrMechUtcnt": "์˜ฅ์™ธ๊ธฐ๊ณ„์‹๋Œ€์ˆ˜", "platArea": "๋Œ€์ง€๋ฉด์ ", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "pmsDay": "ํ—ˆ๊ฐ€์ผ", "pmsnoGbCd": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ตฌ๋ถ„์ฝ”๋“œ", "pmsnoGbCdNm": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "pmsnoKikCd": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ธฐ๊ด€์ฝ”๋“œ", "pmsnoKikCdNm": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ธฐ๊ด€์ฝ”๋“œ๋ช…", "pmsnoYear": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๋…„", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", "stcnsDay": "์ฐฉ๊ณต์ผ", "totArea": "์—ฐ๋ฉด์ ", "totPkngCnt": "์ด์ฃผ์ฐจ์ˆ˜", "useAprDay": "์‚ฌ์šฉ์Šน์ธ์ผ", "vlRat": "์šฉ์ ๋ฅ ", "vlRatEstmTotArea": "์šฉ์ ๋ฅ ์‚ฐ์ •์—ฐ๋ฉด์ ", } elif operationName == "getBrTitleInfo": self.colDict = { "archArea": "๊ฑด์ถ•๋ฉด์ ", "atchBldArea": "๋ถ€์†๊ฑด์ถ•๋ฌผ๋ฉด์ ", "atchBldCnt": "๋ถ€์†๊ฑด์ถ•๋ฌผ์ˆ˜", "bcRat": "๊ฑดํ์œจ", "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "bylotCnt": "์™ธํ•„์ง€์ˆ˜", "crtnDay": "์ƒ์„ฑ์ผ์ž", "dongNm": "๋™๋ช…์นญ", "emgenUseElvtCnt": "๋น„์ƒ์šฉ์Šน๊ฐ•๊ธฐ์ˆ˜", "engrEpi": "EPI์ ์ˆ˜", "engrGrade": "์—๋„ˆ์ง€ํšจ์œจ๋“ฑ๊ธ‰", "engrRat": "์—๋„ˆ์ง€์ ˆ๊ฐ์œจ", "etcPurps": "๊ธฐํƒ€์šฉ๋„", "etcRoof": "๊ธฐํƒ€์ง€๋ถ•", "etcStrct": "๊ธฐํƒ€๊ตฌ์กฐ", "fmlyCnt": "๊ฐ€๊ตฌ์ˆ˜", "gnBldCert": "์นœํ™˜๊ฒฝ๊ฑด์ถ•๋ฌผ์ธ์ฆ์ ์ˆ˜", "gnBldGrade": "์นœํ™˜๊ฒฝ๊ฑด์ถ•๋ฌผ๋“ฑ๊ธ‰", "grndFlrCnt": "์ง€์ƒ์ธต์ˆ˜", "heit": "๋†’์ด", "hhldCnt": "์„ธ๋Œ€์ˆ˜", "hoCnt": "ํ˜ธ์ˆ˜", "indrAutoArea": "์˜ฅ๋‚ด์ž์ฃผ์‹๋ฉด์ ", "indrAutoUtcnt": "์˜ฅ๋‚ด์ž์ฃผ์‹๋Œ€์ˆ˜", "indrMechArea": "์˜ฅ๋‚ด๊ธฐ๊ณ„์‹๋ฉด์ ", "indrMechUtcnt": "์˜ฅ๋‚ด๊ธฐ๊ณ„์‹๋Œ€์ˆ˜", "itgBldCert": "์ง€๋Šฅํ˜•๊ฑด์ถ•๋ฌผ์ธ์ฆ์ ์ˆ˜", "itgBldGrade": "์ง€๋Šฅํ˜•๊ฑด์ถ•๋ฌผ๋“ฑ๊ธ‰", "ji": "์ง€", "lot": "๋กœํŠธ", "mainAtchGbCd": "์ฃผ๋ถ€์†๊ตฌ๋ถ„์ฝ”๋“œ", "mainAtchGbCdNm": "์ฃผ๋ถ€์†๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "mainPurpsCd": "์ฃผ์šฉ๋„์ฝ”๋“œ", "mainPurpsCdNm": "์ฃผ์šฉ๋„์ฝ”๋“œ๋ช…", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "oudrAutoArea": "์˜ฅ์™ธ์ž์ฃผ์‹๋ฉด์ ", "oudrAutoUtcnt": "์˜ฅ์™ธ์ž์ฃผ์‹๋Œ€์ˆ˜", "oudrMechArea": "์˜ฅ์™ธ๊ธฐ๊ณ„์‹๋ฉด์ ", "oudrMechUtcnt": "์˜ฅ์™ธ๊ธฐ๊ณ„์‹๋Œ€์ˆ˜", "platArea": "๋Œ€์ง€๋ฉด์ ", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "pmsDay": "ํ—ˆ๊ฐ€์ผ", "pmsnoGbCd": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ตฌ๋ถ„์ฝ”๋“œ", "pmsnoGbCdNm": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "pmsnoKikCd": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ธฐ๊ด€์ฝ”๋“œ", "pmsnoKikCdNm": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๊ธฐ๊ด€์ฝ”๋“œ๋ช…", "pmsnoYear": "ํ—ˆ๊ฐ€๋ฒˆํ˜ธ๋…„", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rideUseElvtCnt": "์Šน์šฉ์Šน๊ฐ•๊ธฐ์ˆ˜", "rnum": "์ˆœ๋ฒˆ", "roofCd": "์ง€๋ถ•์ฝ”๋“œ", "roofCdNm": "์ง€๋ถ•์ฝ”๋“œ๋ช…", "rserthqkAblty": "๋‚ด์ง„ ๋Šฅ๋ ฅ", "rserthqkDsgnApplyYn": "๋‚ด์ง„ ์„ค๊ณ„ ์ ์šฉ ์—ฌ๋ถ€", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", "stcnsDay": "์ฐฉ๊ณต์ผ", "strctCd": "๊ตฌ์กฐ์ฝ”๋“œ", "strctCdNm": "๊ตฌ์กฐ์ฝ”๋“œ๋ช…", "totArea": "์—ฐ๋ฉด์ ", "totDongTotArea": "์ด๋™์—ฐ๋ฉด์ ", "ugrndFlrCnt": "์ง€ํ•˜์ธต์ˆ˜", "useAprDay": "์‚ฌ์šฉ์Šน์ธ์ผ", "vlRat": "์šฉ์ ๋ฅ ", "vlRatEstmTotArea": "์šฉ์ ๋ฅ ์‚ฐ์ •์—ฐ๋ฉด์ ", } elif operationName == "getBrFlrOulnInfo": self.colDict = colDict = { "area": "๋ฉด์ ", "areaExctYn": "๋ฉด์ ์ œ์™ธ์—ฌ๋ถ€", "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "crtnDay": "์ƒ์„ฑ์ผ์ž", "dongNm": "๋™๋ช…์นญ", "etcPurps": "๊ธฐํƒ€์šฉ๋„", "etcStrct": "๊ธฐํƒ€๊ตฌ์กฐ", "flrGbCd": "์ธต๊ตฌ๋ถ„์ฝ”๋“œ", "flrGbCdNm": "์ธต๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "flrNo": "์ธต๋ฒˆํ˜ธ", "flrNoNm": "์ธต๋ฒˆํ˜ธ๋ช…", "ji": "์ง€", "lot": "๋กœํŠธ", "mainAtchGbCd": "์ฃผ๋ถ€์†๊ตฌ๋ถ„์ฝ”๋“œ", "mainAtchGbCdNm": "์ฃผ๋ถ€์†๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "mainPurpsCd": "์ฃผ์šฉ๋„์ฝ”๋“œ", "mainPurpsCdNm": "์ฃผ์šฉ๋„์ฝ”๋“œ๋ช…", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", "strctCd": "๊ตฌ์กฐ์ฝ”๋“œ", "strctCdNm": "๊ตฌ์กฐ์ฝ”๋“œ๋ช…", } elif operationName == "getBrAtchJibunInfo": self.colDict = colDict = { "atchBjdongCd": "๋ถ€์†๋ฒ•์ •๋™์ฝ”๋“œ", "atchBlock": "๋ถ€์†๋ธ”๋ก", "atchBun": "๋ถ€์†๋ฒˆ", "atchEtcJibunNm": "๋ถ€์†๊ธฐํƒ€์ง€๋ฒˆ๋ช…", "atchJi": "๋ถ€์†์ง€", "atchLot": "๋ถ€์†๋กœํŠธ", "atchPlatGbCd": "๋ถ€์†๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "atchRegstrGbCd": "๋ถ€์†๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "atchRegstrGbCdNm": "๋ถ€์†๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "atchSigunguCd": "๋ถ€์†์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "atchSplotNm": "๋ถ€์†ํŠน์ˆ˜์ง€๋ช…", "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "crtnDay": "์ƒ์„ฑ์ผ์ž", "ji": "์ง€", "lot": "๋กœํŠธ", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", } elif operationName == "getBrExposPubuseAreaInfo": self.colDict = colDict = { "area": "๋ฉด์ ", "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "crtnDay": "์ƒ์„ฑ์ผ์ž", "dongNm": "๋™๋ช…์นญ", "etcPurps": "๊ธฐํƒ€์šฉ๋„", "etcStrct": "๊ธฐํƒ€๊ตฌ์กฐ", "exposPubuseGbCd": "์ „์œ ๊ณต์šฉ๊ตฌ๋ถ„์ฝ”๋“œ", "exposPubuseGbCdNm": "์ „์œ ๊ณต์šฉ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "flrGbCd": "์ธต๊ตฌ๋ถ„์ฝ”๋“œ", "flrGbCdNm": "์ธต๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "flrNo": "์ธต๋ฒˆํ˜ธ", "flrNoNm": "์ธต๋ฒˆํ˜ธ๋ช…", "hoNm": "ํ˜ธ๋ช…์นญ", "ji": "์ง€", "lot": "๋กœํŠธ", "mainAtchGbCd": "์ฃผ๋ถ€์†๊ตฌ๋ถ„์ฝ”๋“œ", "mainAtchGbCdNm": "์ฃผ๋ถ€์†๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "mainPurpsCd": "์ฃผ์šฉ๋„์ฝ”๋“œ", "mainPurpsCdNm": "์ฃผ์šฉ๋„์ฝ”๋“œ๋ช…", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", "strctCd": "๊ตฌ์กฐ์ฝ”๋“œ", "strctCdNm": "๊ตฌ์กฐ์ฝ”๋“œ๋ช…", } elif operationName == "getBrWclfInfo": self.colDict = colDict = { "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "capaLube": "์šฉ๋Ÿ‰(๋ฃจ๋ฒ )", "capaPsper": "์šฉ๋Ÿ‰(์ธ์šฉ)", "crtnDay": "์ƒ์„ฑ์ผ์ž", "etcMode": "๊ธฐํƒ€ํ˜•์‹", "ji": "์ง€", "lot": "๋กœํŠธ", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "modeCd": "ํ˜•์‹์ฝ”๋“œ", "modeCdNm": "ํ˜•์‹์ฝ”๋“œ๋ช…", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", "unitGbCd": "๋‹จ์œ„๊ตฌ๋ถ„์ฝ”๋“œ", "unitGbCdNm": "๋‹จ์œ„๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", } elif operationName == "getBrHsprcInfo": self.colDict = colDict = { "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "bylotCnt": "์™ธํ•„์ง€์ˆ˜", "crtnDay": "์ƒ์„ฑ์ผ์ž", "hsprc": "์ฃผํƒ๊ฐ€๊ฒฉ", "ji": "์ง€", "lot": "๋กœํŠธ", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", } elif operationName == "getBrExposInfo": self.colDict = colDict = { "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "bldNm": "๊ฑด๋ฌผ๋ช…", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "crtnDay": "์ƒ์„ฑ์ผ์ž", "dongNm": "๋™๋ช…์นญ", "flrGbCd": "์ธต๊ตฌ๋ถ„์ฝ”๋“œ", "flrGbCdNm": "์ธต๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "flrNo": "์ธต๋ฒˆํ˜ธ", "hoNm": "ํ˜ธ๋ช…์นญ", "ji": "์ง€", "lot": "๋กœํŠธ", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "naBjdongCd": "์ƒˆ์ฃผ์†Œ๋ฒ•์ •๋™์ฝ”๋“œ", "naMainBun": "์ƒˆ์ฃผ์†Œ๋ณธ๋ฒˆ", "naRoadCd": "์ƒˆ์ฃผ์†Œ๋„๋กœ์ฝ”๋“œ", "naSubBun": "์ƒˆ์ฃผ์†Œ๋ถ€๋ฒˆ", "naUgrndCd": "์ƒˆ์ฃผ์†Œ์ง€์ƒ์ง€ํ•˜์ฝ”๋“œ", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "regstrGbCd": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ", "regstrGbCdNm": "๋Œ€์žฅ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "regstrKindCd": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ", "regstrKindCdNm": "๋Œ€์žฅ์ข…๋ฅ˜์ฝ”๋“œ๋ช…", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", } elif operationName == "getBrJijiguInfo": self.colDict = colDict = { "bjdongCd": "๋ฒ•์ •๋™์ฝ”๋“œ", "block": "๋ธ”๋ก", "bun": "๋ฒˆ", "crtnDay": "์ƒ์„ฑ์ผ์ž", "etcJijigu": "๊ธฐํƒ€์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ", "ji": "์ง€", "jijiguCd": "์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ์ฝ”๋“œ", "jijiguCdNm": "์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ์ฝ”๋“œ๋ช…", "jijiguGbCd": "์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ๊ตฌ๋ถ„์ฝ”๋“œ", "jijiguGbCdNm": "์ง€์—ญ์ง€๊ตฌ๊ตฌ์—ญ๊ตฌ๋ถ„์ฝ”๋“œ๋ช…", "lot": "๋กœํŠธ", "mgmBldrgstPk": "๊ด€๋ฆฌ๊ฑด์ถ•๋ฌผ๋Œ€์žฅPK", "newPlatPlc": "๋„๋กœ๋ช…๋Œ€์ง€์œ„์น˜", "platGbCd": "๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ", "platPlc": "๋Œ€์ง€์œ„์น˜", "reprYn": "๋Œ€ํ‘œ์—ฌ๋ถ€", "rnum": "์ˆœ๋ฒˆ", "sigunguCd": "์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ", "splotNm": "ํŠน์ˆ˜์ง€๋ช…", } df = df.rename(columns=self.colDict) return df def getBrBasisOulnInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 01 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ๊ธฐ๋ณธ๊ฐœ์š” ์กฐํšŒ ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€ """ # URL url = f"{self.url_getBrBasisOulnInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "bjdongCd", "bldNm", "block", "bun", "bylotCnt", "crtnDay", "guyukCd", "guyukCdNm", "ji", "jiguCd", "jiguCdNm", "jiyukCd", "jiyukCdNm", "lot", "mgmBldrgstPk", "mgmUpBldrgstPk", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newPlatPlc", "platGbCd", "platPlc", "regstrGbCd", "regstrGbCdNm", "regstrKindCd", "regstrKindCdNm", "rnum", "sigunguCd", "splotNm", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ bjdongCd, bldNm, block, bun, bylotCnt, crtnDay, guyukCd, guyukCdNm, ji, jiguCd, jiguCdNm, jiyukCd, jiyukCdNm, lot, mgmBldrgstPk, mgmUpBldrgstPk, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newPlatPlc, platGbCd, platPlc, regstrGbCd, regstrGbCdNm, regstrKindCd, regstrKindCdNm, rnum, sigunguCd, splotNm, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrRecapTitleInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 02 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ด๊ด„ํ‘œ์ œ๋ถ€ ์กฐํšŒ ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ """ # URL url = f"{self.url_getBrRecapTitleInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "archArea", "atchBldArea", "atchBldCnt", "bcRat", "bjdongCd", "bldNm", "block", "bun", "bylotCnt", "crtnDay", "engrEpi", "engrGrade", "engrRat", "etcPurps", "fmlyCnt", "gnBldCert", "gnBldGrade", "hhldCnt", "hoCnt", "indrAutoArea", "indrAutoUtcnt", "indrMechArea", "indrMechUtcnt", "itgBldCert", "itgBldGrade", "ji", "lot", "mainBldCnt", "mainPurpsCd", "mainPurpsCdNm", "mgmBldrgstPk", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newOldRegstrGbCd", "newOldRegstrGbCdNm", "newPlatPlc", "oudrAutoArea", "oudrAutoUtcnt", "oudrMechArea", "oudrMechUtcnt", "platArea", "platGbCd", "platPlc", "pmsDay", "pmsnoGbCd", "pmsnoGbCdNm", "pmsnoKikCd", "pmsnoKikCdNm", "pmsnoYear", "regstrGbCd", "regstrGbCdNm", "regstrKindCd", "regstrKindCdNm", "rnum", "sigunguCd", "splotNm", "stcnsDay", "totArea", "totPkngCnt", "useAprDay", "vlRat", "vlRatEstmTotArea", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ archArea, atchBldArea, atchBldCnt, bcRat, bjdongCd, bldNm, block, bun, bylotCnt, crtnDay, engrEpi, engrGrade, engrRat, etcPurps, fmlyCnt, gnBldCert, gnBldGrade, hhldCnt, hoCnt, indrAutoArea, indrAutoUtcnt, indrMechArea, indrMechUtcnt, itgBldCert, itgBldGrade, ji, lot, mainBldCnt, mainPurpsCd, mainPurpsCdNm, mgmBldrgstPk, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newOldRegstrGbCd, newOldRegstrGbCdNm, newPlatPlc, oudrAutoArea, oudrAutoUtcnt, oudrMechArea, oudrMechUtcnt, platArea, platGbCd, platPlc, pmsDay, pmsnoGbCd, pmsnoGbCdNm, pmsnoKikCd, pmsnoKikCdNm, pmsnoYear, regstrGbCd, regstrGbCdNm, regstrKindCd, regstrKindCdNm, rnum, sigunguCd, splotNm, stcnsDay, totArea, totPkngCnt, useAprDay, vlRat, vlRatEstmTotArea, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrTitleInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 03 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ํ‘œ์ œ๋ถ€ ์กฐํšŒ: getBrTitleInfo ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ """ # URL url = f"{self.url_getBrTitleInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "archArea", "atchBldArea", "atchBldCnt", "bcRat", "bjdongCd", "bldNm", "block", "bun", "bylotCnt", "crtnDay", "dongNm", "emgenUseElvtCnt", "engrEpi", "engrGrade", "engrRat", "etcPurps", "etcRoof", "etcStrct", "fmlyCnt", "gnBldCert", "gnBldGrade", "grndFlrCnt", "heit", "hhldCnt", "hoCnt", "indrAutoArea", "indrAutoUtcnt", "indrMechArea", "indrMechUtcnt", "itgBldCert", "itgBldGrade", "ji", "lot", "mainAtchGbCd", "mainAtchGbCdNm", "mainPurpsCd", "mainPurpsCdNm", "mgmBldrgstPk", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newPlatPlc", "oudrAutoArea", "oudrAutoUtcnt", "oudrMechArea", "oudrMechUtcnt", "platArea", "platGbCd", "platPlc", "pmsDay", "pmsnoGbCd", "pmsnoGbCdNm", "pmsnoKikCd", "pmsnoKikCdNm", "pmsnoYear", "regstrGbCd", "regstrGbCdNm", "regstrKindCd", "regstrKindCdNm", "rideUseElvtCnt", "rnum", "roofCd", "roofCdNm", "rserthqkAblty", "rserthqkDsgnApplyYn", "sigunguCd", "splotNm", "stcnsDay", "strctCd", "strctCdNm", "totArea", "totDongTotArea", "ugrndFlrCnt", "useAprDay", "vlRat", "vlRatEstmTotArea", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ archArea, atchBldArea, atchBldCnt, bcRat, bjdongCd, bldNm, block, bun, bylotCnt, crtnDay, dongNm, emgenUseElvtCnt, engrEpi, engrGrade, engrRat, etcPurps, etcRoof, etcStrct, fmlyCnt, gnBldCert, gnBldGrade, grndFlrCnt, heit, hhldCnt, hoCnt, indrAutoArea, indrAutoUtcnt, indrMechArea, indrMechUtcnt, itgBldCert, itgBldGrade, ji, lot, mainAtchGbCd, mainAtchGbCdNm, mainPurpsCd, mainPurpsCdNm, mgmBldrgstPk, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newPlatPlc, oudrAutoArea, oudrAutoUtcnt, oudrMechArea, oudrMechUtcnt, platArea, platGbCd, platPlc, pmsDay, pmsnoGbCd, pmsnoGbCdNm, pmsnoKikCd, pmsnoKikCdNm, pmsnoYear, regstrGbCd, regstrGbCdNm, regstrKindCd, regstrKindCdNm, rideUseElvtCnt, rnum, roofCd, roofCdNm, rserthqkAblty, rserthqkDsgnApplyYn, sigunguCd, splotNm, stcnsDay, strctCd, strctCdNm, totArea, totDongTotArea, ugrndFlrCnt, useAprDay, vlRat, vlRatEstmTotArea, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrFlrOulnInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 04 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ธต๋ณ„๊ฐœ์š” ์กฐํšŒ ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ """ # URL url = f"{self.url_getBrFlrOulnInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "area", "areaExctYn", "bjdongCd", "bldNm", "block", "bun", "crtnDay", "dongNm", "etcPurps", "etcStrct", "flrGbCd", "flrGbCdNm", "flrNo", "flrNoNm", "ji", "lot", "mainAtchGbCd", "mainAtchGbCdNm", "mainPurpsCd", "mainPurpsCdNm", "mgmBldrgstPk", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newPlatPlc", "platGbCd", "platPlc", "rnum", "sigunguCd", "splotNm", "strctCd", "strctCdNm", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ area, areaExctYn, bjdongCd, bldNm, block, bun, crtnDay, dongNm, etcPurps, etcStrct, flrGbCd, flrGbCdNm, flrNo, flrNoNm, ji, lot, mainAtchGbCd, mainAtchGbCdNm, mainPurpsCd, mainPurpsCdNm, mgmBldrgstPk, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newPlatPlc, platGbCd, platPlc, rnum, sigunguCd, splotNm, strctCd, strctCdNm, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrAtchJibunInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 05 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ๋ถ€์†์ง€๋ฒˆ ์กฐํšŒ: getBrAtchJibunInfo ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ """ # URL url = f"{self.url_getBrAtchJibunInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "atchBjdongCd", "atchBlock", "atchBun", "atchEtcJibunNm", "atchJi", "atchLot", "atchPlatGbCd", "atchRegstrGbCd", "atchRegstrGbCdNm", "atchSigunguCd", "atchSplotNm", "bjdongCd", "bldNm", "block", "bun", "crtnDay", "ji", "lot", "mgmBldrgstPk", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newPlatPlc", "platGbCd", "platPlc", "regstrGbCd", "regstrGbCdNm", "regstrKindCd", "regstrKindCdNm", "rnum", "sigunguCd", "splotNm", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ atchBjdongCd, atchBlock, atchBun, atchEtcJibunNm, atchJi, atchLot, atchPlatGbCd, atchRegstrGbCd, atchRegstrGbCdNm, atchSigunguCd, atchSplotNm, bjdongCd, bldNm, block, bun, crtnDay, ji, lot, mgmBldrgstPk, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newPlatPlc, platGbCd, platPlc, regstrGbCd, regstrGbCdNm, regstrKindCd, regstrKindCdNm, rnum, sigunguCd, splotNm, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrExposPubuseAreaInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", dongNm_="", hoNm_="", ): """ 06 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ „์œ ๊ณต์šฉ๋ฉด์  ์กฐํšŒ: getBrExposPubuseAreaInfo ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ, ๋™๋ช…์นญ, ํ˜ธ๋ช…์นญ """ # URL url = f"{self.url_getBrExposPubuseAreaInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&dongNm={dongNm_}&hoNm={hoNm_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "area", "bjdongCd", "bldNm", "block", "bun", "crtnDay", "dongNm", "etcPurps", "etcStrct", "exposPubuseGbCd", "exposPubuseGbCdNm", "flrGbCd", "flrGbCdNm", "flrNo", "flrNoNm", "hoNm", "ji", "lot", "mainAtchGbCd", "mainAtchGbCdNm", "mainPurpsCd", "mainPurpsCdNm", "mgmBldrgstPk", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newPlatPlc", "platGbCd", "platPlc", "regstrGbCd", "regstrGbCdNm", "regstrKindCd", "regstrKindCdNm", "rnum", "sigunguCd", "splotNm", "strctCd", "strctCdNm", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ area, bjdongCd, bldNm, block, bun, crtnDay, dongNm, etcPurps, etcStrct, exposPubuseGbCd, exposPubuseGbCdNm, flrGbCd, flrGbCdNm, flrNo, flrNoNm, hoNm, ji, lot, mainAtchGbCd, mainAtchGbCdNm, mainPurpsCd, mainPurpsCdNm, mgmBldrgstPk, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newPlatPlc, platGbCd, platPlc, regstrGbCd, regstrGbCdNm, regstrKindCd, regstrKindCdNm, rnum, sigunguCd, splotNm, strctCd, strctCdNm, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrWclfInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 07 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์˜ค์ˆ˜์ •ํ™”์‹œ์„ค ์กฐํšŒ: getBrWclfInfo ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ """ # URL url = f"{self.url_getBrWclfInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = [ "bjdongCd", "bldNm", "block", "bun", "capaLube", "capaPsper", "crtnDay", "etcMode", "ji", "lot", "mgmBldrgstPk", "modeCd", "modeCdNm", "naBjdongCd", "naMainBun", "naRoadCd", "naSubBun", "naUgrndCd", "newPlatPlc", "platGbCd", "platPlc", "regstrGbCd", "regstrGbCdNm", "regstrKindCd", "regstrKindCdNm", "rnum", "sigunguCd", "splotNm", "unitGbCd", "unitGbCdNm", ] for t in te: for variable in variables: try: globals()[variable] = t.find(variable).text except: globals()[variable] = np.nan data = pd.DataFrame( [[ bjdongCd, bldNm, block, bun, capaLube, capaPsper, crtnDay, etcMode, ji, lot, mgmBldrgstPk, modeCd, modeCdNm, naBjdongCd, naMainBun, naRoadCd, naSubBun, naUgrndCd, newPlatPlc, platGbCd, platPlc, regstrGbCd, regstrGbCdNm, regstrKindCd, regstrKindCdNm, rnum, sigunguCd, splotNm, unitGbCd, unitGbCdNm, ]], columns=variables, ) df = pd.concat([df, data]) df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("header") # ์ •์ƒ ์š”์ฒญ์‹œ ์—๋Ÿฌ ๋ฐœ์ƒ -> Python ์ฝ”๋“œ ์—๋Ÿฌ if te[0].find("resultCode").text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API ์„œ๋น„์Šค ์ œ๊ณต์ฒ˜ ์˜ค๋ฅ˜ else: print(">>> Open API Error: {}".format(te[0].find["resultMsg"])) def getBrHsprcInfo( self, sigunguCd_, bjdongCd_, platGbCd_="", bun_="", ji_="", startDate_="", endDate_="", ): """ 08 ๊ฑด์ถ•๋ฌผ๋Œ€์žฅ ์ฃผํƒ๊ฐ€๊ฒฉ ์กฐํšŒ: getBrHsprcInfo ์ž…๋ ฅ: ์‹œ๊ตฐ๊ตฌ์ฝ”๋“œ, ๋ฒ•์ •๋™์ฝ”๋“œ, ๋Œ€์ง€๊ตฌ๋ถ„์ฝ”๋“œ, ๋ฒˆ, ์ง€, ๊ฒ€์ƒ‰์‹œ์ž‘์ผ, ๊ฒ€์ƒ‰์ข…๋ฃŒ์ผ """ # URL url = f"{self.url_getBrHsprcInfo}&sigunguCd={sigunguCd_}&bjdongCd={bjdongCd_}&platGbCd={platGbCd_}&bun={bun_}&ji={ji_}&startDate={startDate_}&endDate={endDate_}&numOfRows=99999" try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, "lxml-xml") # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df =
pd.DataFrame()
pandas.DataFrame
import gradio as gr import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.linear_model import SGDClassifier from sklearn.svm import SVC df =
pd.read_csv('https://raw.githubusercontent.com/toshihiroryuu/Machine_learning/master/ML_001_Heart_faliure/Dataset/heart_failure_clinical_records.csv')
pandas.read_csv
import pandas as pd import numpy as np import matplotlib as mpl #mpl.use('Agg') import matplotlib.pyplot as plt import os import seaborn as sns import matplotlib.dates as mdates import sys sys.path.append('../') from processing_helpers import * from load_paths import load_box_paths mpl.rcParams['pdf.fonttype'] = 42 def get_pop_by_age(adjust_for_chicago=True): """Population by age per covid region""" pop_df = pd.read_csv(os.path.join(datapath, "covid_IDPH/population/cc-est2019-agesex-17.csv")) pop_df = pop_df[pop_df['YEAR']==12] # corresponds to 2019 pop_df['AGE16BELOW_TOT'] = pop_df['POPESTIMATE'] - pop_df['AGE16PLUS_TOT'] pop_df['AGE65BELOW_TOT'] = pop_df['POPESTIMATE'] - pop_df['AGE65PLUS_TOT'] pop_df['16-64'] = pop_df['AGE65BELOW_TOT'] - pop_df['AGE16BELOW_TOT'] pop_df['65+'] = pop_df['AGE65PLUS_TOT'] pop_df['county'] = pop_df['CTYNAME'].str.replace(' County','') pop_df = pop_df[['county','POPESTIMATE','65+','16-64','MEDIAN_AGE_TOT','AGE16BELOW_TOT']] if adjust_for_chicago: chicago_pop = 2456274 chicago_perc_pop_below16 = 0.1758 # below 15 due to agebins.. chicago_perc_pop_16to65 = 0.70174 # estimated from https://www.chicagohealthatlas.org/indicators/total-population chicago_perc_pop_above65 = 0.1224 chicago_pop_below16 = int(round(chicago_pop * chicago_perc_pop_below16,0)) chicago_pop_16to65 = int(round(chicago_pop * chicago_perc_pop_16to65,0)) chicago_pop_above65 = int(round(chicago_pop * chicago_perc_pop_above65,0)) pop_df[pop_df['county'] == 'Cook'] chicago_df = {'county': ['Chicago'], 'POPESTIMATE': [chicago_pop], '65+': [chicago_pop_above65], '16-64': [chicago_pop_16to65], 'MEDIAN_AGE_TOT' : [-9],'AGE16BELOW_TOT':[chicago_pop_below16] } chicago_df = pd.DataFrame(data=chicago_df) cook_df = pop_df[pop_df['county'] == 'Cook'] cook_df['POPESTIMATE'] = cook_df['POPESTIMATE'] - chicago_pop cook_df['65+'] = cook_df['65+'] - chicago_pop_above65 cook_df['16-64'] = cook_df['16-64'] - chicago_pop_16to65 cook_df['AGE16BELOW_TOT'] = cook_df['AGE16BELOW_TOT'] - chicago_pop_below16 cook_chicago_df = cook_df.append(chicago_df) pop_df = pop_df[pop_df['county'] != 'Cook'] pop_df = pop_df.append(cook_chicago_df).reset_index() ### Chicgo (region 11 missing) pop_df = merge_county_covidregions(pop_df, key_x='county', add_pop=False) #pop_df.groupby(['covid_region'])[['MEDIAN_AGE_TOT']].agg([np.min, np.mean, np.max] ).reset_index() pop_df = pop_df.groupby(['covid_region'])[['POPESTIMATE','AGE16BELOW_TOT', '65+', '16-64']].agg(np.nansum).reset_index() pop_df_i = pd.melt(pop_df, id_vars=['covid_region'], value_vars=['65+', '16-64']) pop_df_i.rename(columns={"variable": "agegrp"}, inplace=True) pop_df_i.rename(columns={"value": "population"}, inplace=True) pop_df['16-64'] = pop_df['16-64'] / pop_df['POPESTIMATE'] pop_df['65+'] = pop_df['65+'] / pop_df['POPESTIMATE'] pop_df_ii = pd.melt(pop_df, id_vars=['covid_region'], value_vars=['65+', '16-64']) pop_df_ii.rename(columns={"variable": "agegrp"}, inplace=True) pop_df_ii.rename(columns={"value": "pop_perc"}, inplace=True) df =
pd.merge(pop_df_i, pop_df_ii)
pandas.merge
import pandas as pd from SALib.sample.radial.radial_sobol import sample from .settings import * # import project-specific settings # read in previous sample set for a single climate scenario # we use this as a template df = pd.read_csv(indir+'example_sample.csv', index_col=0) is_perturbed = (df != df.iloc[0]).any() perturbed_cols = df.loc[:, is_perturbed].columns constant_cols = df.loc[:, ~is_perturbed].columns cat_cols = df.select_dtypes('object').columns p_df = df.copy() for col in cat_cols: p_df[col] = p_df[col].astype('category') perturbed = p_df.loc[:, is_perturbed] for col in perturbed_cols: if col in cat_cols: perturbed[col] = perturbed[col].cat.codes bounds = list(zip(perturbed.min().tolist(), perturbed.max().tolist())) problem = { 'num_vars': len(perturbed_cols), 'names': perturbed_cols, 'bounds': bounds } # Create Saltelli samples # SALib expects purely numeric values so categoricals are transformed as such samples = sample(problem, 10, seed=101) # Create template rsobol_df = df.iloc[0][constant_cols].to_frame().T rsobol_df = pd.concat([rsobol_df]*len(samples), ignore_index=True) df_samples =
pd.DataFrame(data=samples, columns=perturbed_cols)
pandas.DataFrame
import numpy as np import pandas as pd from bokeh.plotting import figure from bokeh.models import Span, Range1d import random from math import pi def calculate_diff(b, m, stats_df, group_names, groups_dict, mean_or_med=0): """ calculate difference from reference group :param b: name of the population (bubble) :param m: name of the marker :param stats_df: dataframe with all measurements and marker values for every population :param group_names: names of patient groups :param groups_dict: dict with groups data :param mean_or_med: 0- mean, 1-median :return: dataframe with difference from reference group for every group """ diff_df = pd.DataFrame(index=list([tab.title for tab in group_names]), columns=['diff']) reference_level = 0 for g in groups_dict: measurements = g[1]['measurements'].tolist() if g[1]['patient'].values.tolist()[0] == 'healthy': if mean_or_med == 0: reference_level = np.mean(list([stats_df.loc[measurement, (b, m)] for measurement in measurements])) else: reference_level = np.median(list([stats_df.loc[measurement, (b, m)] for measurement in measurements])) break for idx, g in enumerate(groups_dict): measurements = g[1]['measurements'].tolist() if mean_or_med == 0: group_level = np.mean(list([stats_df.loc[measurement, (b, m)] for measurement in measurements])) else: group_level = np.median(list([stats_df.loc[measurement, (b, m)] for measurement in measurements])) diff_df.loc[group_names[idx].title, 'diff'] = group_level - reference_level return diff_df def generate_random_color(): return '#%02X%02X%02X' % (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) def diff_plot(df_diff=
pd.DataFrame()
pandas.DataFrame
""" Prepare training and testing datasets as CSV dictionaries Created on 11/26/2018 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store','dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 def tile_ids_in(slide, level, root_dir, label): ids = [] try: for id in os.listdir(root_dir): if '.png' in id: ids.append([slide, level, root_dir+'/'+id, label]) else: print('Skipping ID:', id) except FileNotFoundError: print('Ignore:', root_dir) return ids # Balance CPTAC and TCGA tiles in each class def balance(pdls, cls): balanced = pd.DataFrame(columns=['slide', 'level', 'path', 'label']) for i in range(cls): ref = pdls.loc[pdls['label'] == i] CPTAC = ref[~ref['slide'].str.contains("TCGA")] TCGA = ref[ref['slide'].str.contains("TCGA")] if CPTAC.shape[0] != 0 and TCGA.shape[0] != 0: ratio = (CPTAC.shape[0])/(TCGA.shape[0]) if ratio < 0.2: TCGA = TCGA.sample(int(5*CPTAC.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) elif ratio > 5: CPTAC = CPTAC.sample(int(5*TCGA.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) balanced = pd.concat([balanced, ref], sort=False) return balanced # Get all svs images with its label as one file; level is the tile resolution level def big_image_sum(pmd, path='../tiles/', ref_file='../Fusion_dummy_His_MUT_joined.csv'): if not os.path.isdir(path): os.mkdir(path) import Cutter Cutter.cut() allimg = image_ids_in(path) ref = pd.read_csv(ref_file, header=0) big_images = [] for level in range(4): level = str(level) if pmd == 'subtype': MSIimg = intersection(ref.loc[ref['subtype_MSI'] == 1]['name'].tolist(), allimg) EMimg = intersection(ref.loc[ref['subtype_Endometrioid'] == 1]['name'].tolist(), allimg) SLimg = intersection(ref.loc[ref['subtype_Serous-like'] == 1]['name'].tolist(), allimg) POLEimg = intersection(ref.loc[ref['subtype_POLE'] == 1]['name'].tolist(), allimg) for i in MSIimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 1]) for i in EMimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 2]) for i in SLimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 3]) for i in POLEimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 0]) elif pmd == 'histology': allimg = intersection(ref.loc[ref['histology_Mixed'] == 0]['name'].tolist(), allimg) EMimg = intersection(ref.loc[ref['histology_Endometrioid'] == 1]['name'].tolist(), allimg) Serousimg = intersection(ref.loc[ref['histology_Serous'] == 1]['name'].tolist(), allimg) for i in EMimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 0]) for i in Serousimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 1]) elif pmd in ['Endometrioid', 'MSI', 'Serous-like', 'POLE']: ref = ref.loc[ref['subtype_0NA'] == 0] ### special version # ref = ref.loc[ref['histology_Mixed'] == 0] # ref = ref.loc[ref['histology_Endometrioid'] == 1] ### special version negimg = intersection(ref.loc[ref['subtype_{}'.format(pmd)] == 0]['name'].tolist(), allimg) posimg = intersection(ref.loc[ref['subtype_{}'.format(pmd)] == 1]['name'].tolist(), allimg) for i in negimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 0]) for i in posimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 1]) elif pmd == 'MSIst': Himg = intersection(ref.loc[ref['MSIst_MSI-H'] == 1]['name'].tolist(), allimg) Simg = intersection(ref.loc[ref['MSIst_MSS'] == 1]['name'].tolist(), allimg) for i in Himg: big_images.append([i, level, path + "{}/level{}".format(i, level), 1]) for i in Simg: big_images.append([i, level, path + "{}/level{}".format(i, level), 0]) elif pmd in ['MSIst_MSI-H', 'MSIst_MSI-L', 'MSIst_MSS']: ref = ref.loc[ref['MSIst_0NA'] == 0] negimg = intersection(ref.loc[ref['subtype_{}'.format(pmd)] == 0]['name'].tolist(), allimg) posimg = intersection(ref.loc[ref['subtype_{}'.format(pmd)] == 1]['name'].tolist(), allimg) for i in negimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 0]) for i in posimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 1]) else: negimg = intersection(ref.loc[ref[pmd] == 0]['name'].tolist(), allimg) posimg = intersection(ref.loc[ref[pmd] == 1]['name'].tolist(), allimg) for i in negimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 0]) for i in posimg: big_images.append([i, level, path + "{}/level{}".format(i, level), 1]) datapd = pd.DataFrame(big_images, columns=['slide', 'level', 'path', 'label']) return datapd # TO KEEP SPLIT SAME AS BASELINES. seperate into training and testing; each type is the same separation # ratio on big images test and train csv files contain tiles' path. def set_sep_secondary(alll, path, cls, pmd, level=None, batchsize=64): if level: alll = alll[alll.level == level] if pmd == 'subtype': split = pd.read_csv('../split/ST.csv', header=0) elif pmd == 'histology': split = pd.read_csv('../split/his.csv', header=0) elif pmd == 'Serous-like': split = pd.read_csv('../split/CNVH.csv', header=0) elif pmd == 'Endometrioid': split = pd.read_csv('../split/CNVL.csv', header=0) else: split = pd.read_csv('../split/{}.csv'.format(pmd), header=0) train = split.loc[split['set'] == 'train']['slide'].tolist() validation = split.loc[split['set'] == 'validation']['slide'].tolist() test = split.loc[split['set'] == 'test']['slide'].tolist() trlist = [] telist = [] valist = [] subset = alll valist.append(subset[subset['slide'].isin(validation)]) telist.append(subset[subset['slide'].isin(test)]) trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles_list = [] train_tiles_list = [] validation_tiles_list = [] for idx, row in test.iterrows(): tile_ids = tile_ids_in(row['slide'], row['level'], row['path'], row['label']) test_tiles_list.extend(tile_ids) for idx, row in train.iterrows(): tile_ids = tile_ids_in(row['slide'], row['level'], row['path'], row['label']) train_tiles_list.extend(tile_ids) for idx, row in validation.iterrows(): tile_ids = tile_ids_in(row['slide'], row['level'], row['path'], row['label']) validation_tiles_list.extend(tile_ids) test_tiles = pd.DataFrame(test_tiles_list, columns=['slide', 'level', 'path', 'label']) train_tiles = pd.DataFrame(train_tiles_list, columns=['slide', 'level', 'path', 'label']) validation_tiles = pd.DataFrame(validation_tiles_list, columns=['slide', 'level', 'path', 'label']) train_tiles = balance(train_tiles, cls=cls) validation_tiles = balance(validation_tiles, cls=cls) # No shuffle on test set train_tiles = sku.shuffle(train_tiles) validation_tiles = sku.shuffle(validation_tiles) if train_tiles.shape[0] > int(batchsize * 80000 / 3): train_tiles = train_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate training set!') if validation_tiles.shape[0] > int(batchsize * 80000 / 30): validation_tiles = validation_tiles.sample(int(batchsize * 80000 / 30), replace=False) print('Truncate validation set!') if test_tiles.shape[0] > int(batchsize * 80000 / 3): test_tiles = test_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate test set!') test_tiles.to_csv(path + '/te_sample.csv', header=True, index=False) train_tiles.to_csv(path + '/tr_sample.csv', header=True, index=False) validation_tiles.to_csv(path + '/va_sample.csv', header=True, index=False) return train_tiles, test_tiles, validation_tiles # Training and validation on TCGA; Testing on CPTAC def set_sep_idp(alll, path, cls, level=None, cut=0.1, batchsize=64): trlist = [] telist = [] valist = [] if level: alll = alll[alll.level == level] TCGA = alll[alll['slide'].str.contains("TCGA")] CPTAC = alll[~alll['slide'].str.contains("TCGA")] for i in range(cls): subset = TCGA.loc[TCGA['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut)] valist.append(subset[subset['slide'].isin(validation)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) telist.append(CPTAC) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles_list = [] train_tiles_list = [] validation_tiles_list = [] for idx, row in test.iterrows(): tile_ids = tile_ids_in(row['slide'], row['level'], row['path'], row['label']) test_tiles_list.extend(tile_ids) for idx, row in train.iterrows(): tile_ids = tile_ids_in(row['slide'], row['level'], row['path'], row['label']) train_tiles_list.extend(tile_ids) for idx, row in validation.iterrows(): tile_ids = tile_ids_in(row['slide'], row['level'], row['path'], row['label']) validation_tiles_list.extend(tile_ids) test_tiles = pd.DataFrame(test_tiles_list, columns=['slide', 'level', 'path', 'label']) train_tiles = pd.DataFrame(train_tiles_list, columns=['slide', 'level', 'path', 'label']) validation_tiles =
pd.DataFrame(validation_tiles_list, columns=['slide', 'level', 'path', 'label'])
pandas.DataFrame
import pybitflyer2 as PBF import pandas as pd import datetime import calendar import time import pickle import traceback pbf = PBF.API() def main(): today = datetime.datetime.now() yesterday = today - datetime.timedelta(days = 1) #tday = today tday = yesterday start_time = datetime.datetime(tday.year, tday.month, tday.day, 0, 0) end_time = datetime.datetime(tday.year, tday.month, tday.day, 23, 59) df = None last_id = None while True: time.sleep(0.2) try: df0 = save_executions(last_id, product_code = "FX_BTC_JPY") except: print(traceback.format_exc()) continue last_id = df0.iloc[-1]["id"] time1 = datetime.datetime.fromtimestamp(df0["unixtime"].iloc[0]) # end time0 = datetime.datetime.fromtimestamp(df0["unixtime"].iloc[-1]) # start print(time0, time1, start_time, end_time) if df is not None: print(len(df)) else: print(0) if time0 > end_time: continue elif time1 < start_time: break if df is None: df = df0 else: df = pd.concat([df, df0], ignore_index=True) #quit() start = datetime.datetime.fromtimestamp(df0["unixtime"].iloc[-1]) end = datetime.datetime.fromtimestamp(df0["unixtime"].iloc[0]) fname = str(end).split()[0] + ".pkl" with open(fname, "wb") as f: pickle.dump(df, f) return def save_executions(last_id=None, product_code = "FX_BTC_JPY"): #show_board(pbf.board(product_code = "FX_BTC_JPY")) if last_id is None: data = pbf.executions(product_code = product_code, count = 500) else: data = pbf.executions(product_code = product_code, count = 500, before = last_id) df1 =
pd.DataFrame(data)
pandas.DataFrame
import os import pandas as pd PATH = 'C:\\Users\\jmedel\\Desktop\\CARDBOARD' URL_prefix = 'https://sustaynaianotations.blob.core.windows.net/sustaynmechanical/' filename_lst = os.listdir(PATH) df =
pd.DataFrame(columns=['image_url'])
pandas.DataFrame
import os from numpy.core.numeric import full import pandas as pd from feature_computation import Feature import json import librosa from collections import defaultdict import sys dataset_mode = sys.argv[1] print("Dataset mode: {}".format(dataset_mode)) # ***************** PATH CONFIGURATION ***************** # Configuration file with open('config.json') as config_file: config = json.load(config_file) # Import data if dataset_mode == 'train': csv_file, root_data, csv_features = config['csv_train_data'], config['root_train_data'], config['train_features'] elif dataset_mode == 'prediction': csv_file, root_data, csv_features = config['csv_prediction_data'], config['root_prediction_data'], config['prediction_features'] config['middle'] = True else: raise Exception("Input '{}' is not valid, the argument 'dataset_mode' can take only two values: 1) 'train' or 2) 'prediction'.".format(dataset_mode)) song_id_list = pd.read_csv(csv_file, index_col='song_id').index.values.tolist() # Getting list of filename songs # Update features equal to true allows udpating a csv of feature values already computed previously, otherwise an empty dictionary is initialized if config['update_features']: features =
pd.read_csv(csv_features, index_col='song_id')
pandas.read_csv
import os from cleverhans.attacks import FastGradientMethod from io import BytesIO import IPython.display import numpy as np import pandas as pd from PIL import Image from scipy.misc import imread from scipy.misc import imsave import tensorflow as tf from tensorflow.contrib.slim.nets import inception slim = tf.contrib.slim tensorflow_master = "" checkpoint_path = "../input/inception-v3/inception_v3.ckpt" input_dir = "../input/nips-2017-adversarial-learning-development-set/images/" max_epsilon = 16.0 image_width = 299 image_height = 299 batch_size = 16 eps = 2.0 * max_epsilon / 255.0 batch_shape = [batch_size, image_height, image_width, 3] num_classes = 1001 def load_images(input_dir, batch_shape): images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in sorted(tf.gfile.Glob(os.path.join(input_dir, '*.png'))): with tf.gfile.Open(filepath, "rb") as f: images[idx, :, :, :] = imread(f, mode='RGB').astype(np.float)*2.0/255.0 - 1.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images def show_image(a, fmt='png'): a = np.uint8((a+1.0)/2.0*255.0) f = BytesIO() Image.fromarray(a).save(f, fmt) IPython.display.display(IPython.display.Image(data=f.getvalue())) class InceptionModel(object): def __init__(self, num_classes): self.num_classes = num_classes self.built = False def __call__(self, x_input): """Constructs model and return probabilities for given input.""" reuse = True if self.built else None with slim.arg_scope(inception.inception_v3_arg_scope()): _, end_points = inception.inception_v3( x_input, num_classes=self.num_classes, is_training=False, reuse=reuse) self.built = True output = end_points['Predictions'] probs = output.op.inputs[0] return probs categories = pd.read_csv("../input/nips-2017-adversarial-learning-development-set/categories.csv") image_classes = pd.read_csv("../input/nips-2017-adversarial-learning-development-set/images.csv") image_iterator = load_images(input_dir, batch_shape) # get first batch of images filenames, images = next(image_iterator) image_metadata = pd.DataFrame({"ImageId": [f[:-4] for f in filenames]}).merge(image_classes, on="ImageId") true_classes = image_metadata["TrueLabel"].tolist() target_classes = true_labels = image_metadata["TargetClass"].tolist() true_classes_names = (
pd.DataFrame({"CategoryId": true_classes})
pandas.DataFrame
from typing import Tuple from argparse import Namespace as APNamespace, _SubParsersAction,ArgumentParser from train_help import * from pathlib import Path import os import platform import time import pandas as pd import numpy as np import global_vars as GLOBALS from ptflops import get_model_complexity_info import copy import torch #DARTS Model files from model import NetworkCIFAR as Network from model import NetworkImageNet as Network_ImageNet import genotypes from darts_scaling_algorithms import channel_size_adjust_algorithm as DARTS_algorithm from dartsplus_scaling_algorithms import channel_size_adjust_algorithm as DARTSPlus_algorithm from shutil import copyfile import re """ Contains training code for DARTS and DARTSPlus """ def update_network_DARTS(new_cell_list = None,new_sep_conv_list = None): if GLOBALS.CONFIG['network'] == 'DARTS': arch = "DARTS" elif GLOBALS.CONFIG['network'] == 'DARTSPlus': arch = "DARTS_PLUS_CIFAR100" genotype = eval("genotypes.%s" % arch) if GLOBALS.CONFIG["dataset"] == 'CIFAR10': fc_dim = 10 elif GLOBALS.CONFIG["dataset"] == 'CIFAR100': fc_dim = 100 elif GLOBALS.CONFIG["dataset"] == 'ImageNet': fc_dim = 1000 assert GLOBALS.CONFIG["num_cells"] == 7 or GLOBALS.CONFIG["num_cells"] == 14 or GLOBALS.CONFIG["num_cells"] == 20 if new_cell_list == None: if GLOBALS.CONFIG["num_cells"] == 20: if arch == "DARTS": new_cell_list = GLOBALS.DARTS_cell_list_20 else: new_cell_list = GLOBALS.DARTSPlus_cell_list_20 elif GLOBALS.CONFIG["num_cells"] == 14: if arch == "DARTS": new_cell_list = GLOBALS.DARTS_cell_list_14 else: new_cell_list = GLOBALS.DARTSPlus_cell_list_14 else: if arch == "DARTS": new_cell_list = GLOBALS.DARTS_cell_list_7 else: new_cell_list = GLOBALS.DARTSPlus_cell_list_7 if new_sep_conv_list == None: if GLOBALS.CONFIG["num_cells"] == 20: if arch == "DARTS": new_sep_conv_list = GLOBALS.DARTS_sep_conv_list_20 else: new_sep_conv_list = GLOBALS.DARTSPlus_sep_conv_list_20 elif GLOBALS.CONFIG["num_cells"] == 14: if arch == "DARTS": new_sep_conv_list = GLOBALS.DARTS_sep_conv_list_14 else: new_sep_conv_list = GLOBALS.DARTSPlus_sep_conv_list_14 else: if arch == "DARTS": new_sep_conv_list = GLOBALS.DARTS_sep_conv_list_7 else: new_sep_conv_list = GLOBALS.DARTSPlus_sep_conv_list_7 #The 10 is the number of classes in CIFAR10 if GLOBALS.CONFIG["dataset"] == 'CIFAR10' or GLOBALS.CONFIG["dataset"] == 'CIFAR100': new_network = Network(new_cell_list, new_sep_conv_list, fc_dim, GLOBALS.CONFIG["num_cells"], GLOBALS.CONFIG['auxiliary'], genotype, arch) elif GLOBALS.CONFIG["dataset"] == 'ImageNet': new_network = Network_ImageNet(new_cell_list, new_sep_conv_list, fc_dim, GLOBALS.CONFIG["num_cells"], GLOBALS.CONFIG['auxiliary'], genotype, arch) print("Cell List:", new_cell_list) print("Sep Conv List:", new_sep_conv_list) new_network.drop_path_prob = 0 # Need to update this return new_network def find_best_acc_epoch(df): test_accs = list() cols = [col for col in df if col.startswith('test_acc_epoch')] for col in cols: temp = float(df[col][0])*100 test_accs.append(temp) return np.array(test_accs).argmax() def create_full_data_file_DARTS(new_network,full_fresh_file,output_path_string_full_train): parameter_data = pd.DataFrame(columns=['Accuracy (%)','Training Loss','GMacs','GFlops','Parameter Count (M)']) #full_save_dfs=pd.read_excel(full_save_file) full_fresh_dfs=pd.read_excel(full_fresh_file) #final_epoch_save=full_save_dfs.columns[-1][(full_save_dfs.columns[-1].index('epoch_')+6):] final_epoch_fresh=full_fresh_dfs.columns[-1][(full_fresh_dfs.columns[-1].index('epoch_')+6):] #best acc best_epoch_fresh = find_best_acc_epoch(full_fresh_dfs) #full_save_accuracy = full_save_dfs['test_acc_epoch_'+str(final_epoch_save)][0]*100 full_fresh_accuracy = full_fresh_dfs['test_acc_epoch_'+str(best_epoch_fresh)][0]*100 #full_save_loss = full_save_dfs['train_loss_epoch_'+str(final_epoch_save)][0] full_fresh_loss = full_fresh_dfs['train_loss_epoch_'+str(best_epoch_fresh)][0] if GLOBALS.CONFIG['dataset'] == 'CIFAR10' or GLOBALS.CONFIG['dataset'] == 'CIFAR100': macs, params = get_model_complexity_info(new_network, (3,32,32), as_strings=False,print_per_layer_stat=False) elif GLOBALS.CONFIG['dataset'] == 'ImageNet': macs, params = get_model_complexity_info(new_network, (3, 224, 224), as_strings=False, print_per_layer_stat=False) #save_parameter_size_list = [full_save_accuracy,full_save_loss,int(macs)/1000000000,2*int(macs)/1000000000,int(params)/1000000] fresh_parameter_size_list = [full_fresh_accuracy,full_fresh_loss,int(macs)/1000000000,2*int(macs)/1000000000,int(params)/1000000] #parameter_data.loc[len(parameter_data)] = save_parameter_size_list parameter_data.loc[len(parameter_data)] = fresh_parameter_size_list if platform.system() == 'Windows': parameter_data.to_excel(output_path_string_full_train+'\\'+'adapted_parameters.xlsx') else: parameter_data.to_excel(output_path_string_full_train+'/'+'adapted_parameters.xlsx') # Copied from master output_file = 'default.xlsx' if platform.system() == 'Windows': performance_output_file = output_path_string_full_train + '\\' + 'performance.xlsx' auxilary_output_file = output_path_string_full_train + '\\' + 'auxilary.xlsx' else: performance_output_file = output_path_string_full_train + '/' + 'performance.xlsx' auxilary_output_file = output_path_string_full_train + '/' + 'auxilary.xlsx' writer_performance = pd.ExcelWriter(performance_output_file, engine='openpyxl') wb_per = writer_performance.book writer_auxilary = pd.ExcelWriter(auxilary_output_file, engine='openpyxl') wb_aux = writer_auxilary.book performance_data = {} auxilary_data = {} performance_data['Gmac'] = int(macs) / 1000000000 performance_data['GFlop'] = 2 * int(macs) / 1000000000 performance_data['parameter count (M)'] = int(params) / 1000000 num_layer = len(full_fresh_dfs['train_acc_epoch_' + str(0)]) layer_list = list(range(0, num_layer)) auxilary_data['layer_index'] = layer_list for i in range(int(final_epoch_fresh) + 1): performance_data['train_acc_epoch_' + str(i) + " (%)"] = [full_fresh_dfs['train_acc_epoch_' + str(i)][0] * 100] performance_data['train_loss_epoch_' + str(i)] = [full_fresh_dfs['train_loss_epoch_' + str(i)][0]] performance_data['test_acc_epoch_' + str(i) + " (%)"] = [full_fresh_dfs['test_acc_epoch_' + str(i)][0] * 100] performance_data['test_loss_epoch_' + str(i)] = [full_fresh_dfs['test_loss_epoch_' + str(i)][0]] auxilary_data['in_KG_epcho' + str(i)] = full_fresh_dfs['in_S_epoch_' + str(i)] auxilary_data['out_KG_epcho' + str(i)] = full_fresh_dfs['out_S_epoch_' + str(i)] auxilary_data['in_rank_epcho' + str(i)] = full_fresh_dfs['in_rank_epoch_' + str(i)] auxilary_data['out_rank_epcho' + str(i)] = full_fresh_dfs['out_rank_epoch_' + str(i)] auxilary_data['in_condition_epcho' + str(i)] = full_fresh_dfs['in_condition_epoch_' + str(i)] auxilary_data['out_condition_epcho' + str(i)] = full_fresh_dfs['out_condition_epoch_' + str(i)] df_per = pd.DataFrame(performance_data) df_per.to_excel(writer_performance, index=False) wb_per.save(performance_output_file) df_aux = pd.DataFrame(auxilary_data) df_aux.to_excel(writer_auxilary, index=False) wb_aux.save(auxilary_output_file) if platform.system == 'Windows': slash = '\\' else: slash = '/' #Hard coded path, copy into adas search folder # copyfile(GLOBALS.OUTPUT_PATH_STRING +slash+'..'+slash+'..'+slash+'.adas-checkpoint'+slash+'ckpt.pth', output_path_string_full_train + slash + 'ckpt.pth') return True def run_fresh_full_train_DARTS(epochs,output_path_fulltrain, cell_list = None, sep_conv_list = None): """ Perform model evaluation for DARTS/DARTS+ """ GLOBALS.FIRST_INIT = False #optimizer,scheduler=network_initialize(new_network,train_loader) parser = ArgumentParser(description=__doc__) get_args(parser) args = parser.parse_args() #Just to build directories. Settings get overwritten below """ if cell_list != None: print ("Full Train Cell Architecture:", cell_list) else: if GLOBALS.CONFIG["num_cells"] == 20: print ("Full Train Cell Architecture:", GLOBALS.cell_list_20) else: print ("Full Train Cell Architecture:", GLOBALS.cell_list_7) if sep_conv_list != None: print ("Full Train Sep Conv Architecture:", sep_conv_list) else: if GLOBALS.CONFIG["num_cells"] == 20: print("Full Train Cell Architecture:", GLOBALS.sep_conv_list_20) else: print("Full Train Cell Architecture:", GLOBALS.sep_conv_list_7) """ #Set all DARTS Hyperparamter to true for full train GLOBALS.CONFIG['drop_path'] = GLOBALS.CONFIG['drop_path_full'] GLOBALS.CONFIG['auxiliary'] = GLOBALS.CONFIG['auxiliary_full'] GLOBALS.CONFIG['cutout'] = GLOBALS.CONFIG['cutout_full'] GLOBALS.CONFIG['grad_clip'] = GLOBALS.CONFIG['grad_clip_full'] GLOBALS.CONFIG['mini_batch_size'] = GLOBALS.CONFIG['mini_batch_size_full'] GLOBALS.CONFIG['weight_decay'] = GLOBALS.CONFIG['weight_decay_full'] new_network = update_network_DARTS(cell_list, sep_conv_list) train_loader,test_loader,device,optimizer,scheduler, model = initialize(args, new_network,beta=GLOBALS.CONFIG['beta_full'],scheduler=GLOBALS.CONFIG['lr_scheduler_full'], load_config=False) GLOBALS.FULL_TRAIN = True GLOBALS.PERFORMANCE_STATISTICS = {} GLOBALS.FULL_TRAIN_MODE = 'fresh' # GLOBALS.EXCEL_PATH = '' run_epochs(0, model, epochs, train_loader, test_loader, device, optimizer, scheduler, output_path_fulltrain) #Initializing again to remove auxiliary head so it does not get added in param / GMAC count. print("Running initialize again to remove auxiliary head for param / gmac count") GLOBALS.CONFIG['auxiliary'] = False #initialize(args_true,beta= GLOBALS.CONFIG['beta_full'],new_cell_list=cell_list, new_sep_conv_list=sep_conv_list, scheduler="StepLR", load_config=False) new_network = update_network_DARTS(cell_list, sep_conv_list) return new_network def run_trials_DARTS(epochs,output_path_train): """ Perform Channel Search for DARTS/DARTS+ """ cell_list_average_slope, cell_list_prev_ops , cell_list_factor , sep_conv_list_average_slope, sep_conv_list_prev_ops , sep_conv_list_factor, cell_list_rank, sep_conv_list_rank = [],[],[],[],[],[],[],[] trial_dir = os.path.join(GLOBALS.OUTPUT_PATH_STRING, 'Trials') print (trial_dir) parameter_type=GLOBALS.CONFIG['parameter_type'] def initialize_dataframes_and_lists(): #[C0, C1, C2, C3] Sizes #Default 7 cells if GLOBALS.CONFIG["num_cells"] == 7: cell_list_columns = ['STEM', 'cell0', 'cell1', 'cell2', 'cell3', 'cell4', 'cell5', 'cell6'] sep_conv_list_columns = ['cell0', 'cell1', 'cell3', 'cell5', 'cell6'] if GLOBALS.CONFIG['network'] == 'DARTS': initial_cell_list = GLOBALS.DARTS_cell_list_7 initial_sep_conv_list = GLOBALS.DARTS_sep_conv_list_7 else: initial_cell_list = GLOBALS.DARTSPlus_cell_list_7 initial_sep_conv_list = GLOBALS.DARTSPlus_sep_conv_list_7 elif GLOBALS.CONFIG["num_cells"] == 14: cell_list_columns = ['STEM','cell0','cell1','cell2', 'cell3', 'cell4', 'cell5', 'cell6', 'cell7', \ 'cell8','cell9','cell10', 'cell11', 'cell12', 'cell13'] sep_conv_list_columns = ['cell0','cell1','cell2', 'cell3', 'cell5', 'cell6', 'cell7', \ 'cell8', 'cell10', 'cell11', 'cell12', 'cell13'] if GLOBALS.CONFIG['network'] == 'DARTS': initial_cell_list = GLOBALS.DARTS_cell_list_14 initial_sep_conv_list = GLOBALS.DARTS_sep_conv_list_14 else: initial_cell_list = GLOBALS.DARTSPlus_cell_list_14 initial_sep_conv_list = GLOBALS.DARTSPlus_sep_conv_list_14 #Config for 20 cells elif GLOBALS.CONFIG["num_cells"] == 20: cell_list_columns = ['STEM','cell0','cell1','cell2', 'cell3', 'cell4', 'cell5', 'cell6', 'cell7', \ 'cell8','cell9','cell10', 'cell11', 'cell12', 'cell13', 'cell14', 'cell15', \ 'cell16','cell17','cell18', 'cell19'] sep_conv_list_columns = ['cell0','cell1','cell2', 'cell3', 'cell4', 'cell5', 'cell7', \ 'cell8','cell9','cell10', 'cell11', 'cell12', 'cell14', 'cell15', \ 'cell16','cell17','cell18', 'cell19'] if GLOBALS.CONFIG['network'] == 'DARTS': initial_cell_list = GLOBALS.DARTS_cell_list_20 initial_sep_conv_list = GLOBALS.DARTS_sep_conv_list_20 else: initial_cell_list = GLOBALS.DARTSPlus_cell_list_20 initial_sep_conv_list = GLOBALS.DARTSPlus_sep_conv_list_20 cell_list_data = pd.DataFrame(columns=cell_list_columns) sep_conv_list_data = pd.DataFrame(columns=sep_conv_list_columns) #Final ranks used to calculate [C0, C1, C2, C3] Sizes for all 20 cells cell_rank_data =
pd.DataFrame(columns=cell_list_columns)
pandas.DataFrame
from pymongo import MongoClient import json import requests, zipfile, io, os, re import pandas as pd import geopandas, astral import time from astral.sun import sun METEO_FOLDER = r"C:/Users/48604/Documents/semestr5/PAG/pag2/Meteo/" ZAPIS_ZIP = METEO_FOLDER + r"Meteo_" url = "https://dane.imgw.pl/datastore/getfiledown/Arch/Telemetria/Meteo/2015/Meteo_2015-07.zip" connection = MongoClient("localhost", 27017) db = connection.local collection = db def get_data(url, pth): file = requests.get(url) zip = zipfile.ZipFile(io.BytesIO(file.content)) #download zip from IMGW archive url_end = url[-4:] #later checking if file ends with .zip or .ZIP pattern = "Meteo_(.*?)" + url_end substring = re.search(pattern, url).group(1) #pattern matching in order to name new dir properly path = pth + substring + "/" #path to dir with data from specified period if os.path.isdir(path) == 0: os.mkdir(path) zip.extractall(path) #creating dir if it doesnt exist and unpacking data return path path_data = get_data(url, ZAPIS_ZIP) path_parametry = METEO_FOLDER + "kody_parametr.csv" path_effacility = METEO_FOLDER + "effacility.geojson" path_powiaty = METEO_FOLDER + "powiaty/powiaty.shp" path_wojewodztwa = METEO_FOLDER + "woj/woj.shp" def read_parametry(path_parametr): parametr = pd.read_csv(path_parametr, sep=';', index_col=False, encoding='cp1250') #separator=';' - by default ',' #index_col=False - store all data as columns not indexes return parametr #function to read parameters from the path_parametr file def read_data(path_data): fields = ["KodSH", "ParametrSH", "Date", "Wartosc"] data = {} #column names; empty dictionary for data from separate csv files in folder for filename in os.listdir(path_data): #for every file in folder dataset_name = pd.read_csv(path_data + filename, sep=';', header=None, names=fields, index_col=False, low_memory=False, dtype={'KodSH': int, 'Wartosc': str}, parse_dates=['Date']) #applying value #separator=';' - by default ',' #no header by default #names=fields - column names #index_col=False - store all data as columns not indexes #low_memory=false - way to get rid of different datatypes in columns warning dataset_name["Wartosc"] = dataset_name["Wartosc"].str.replace(',','.').astype('float64') #replace ',' with '.' and convert string to float dataset_name["Date"] = dataset_name["Date"].dt.tz_localize("Europe/Warsaw") #setting "Data" column to datetime64[ns, Europe/Warsaw] from datetime64[ns] data[filename] = dataset_name return data #function to read data from the path_data file def read_effacility(path_effacility): path = open(path_effacility) effacility = geopandas.read_file(path) #read geojson effacility["geometry"] = effacility["geometry"].to_crs(epsg=4258) x = effacility["geometry"].x y = effacility["geometry"].y data = {"KodSH" : effacility["name"], "City" : effacility["name1"], "Lon" : x, "Lat" : y} effacility = pd.DataFrame(data) effacility["KodSH"] = effacility["KodSH"].astype('float64') #store KodSH as number not string return effacility def f_init_mean(data): init_mean = {} for key in data: init_mean[key] = data[key].groupby(["KodSH", data[key]["Date"].dt.date])["Wartosc"].mean() init_mean[key] = init_mean[key].to_frame() init_mean[key].drop(columns = ["Wartosc"], inplace=True) return init_mean def f_sun_info(init_mean, effacility): sun_info = {} for key in init_mean: init_mean[key] = init_mean[key].reset_index("Date") #Date as a non index value #init_mean[key] = init_mean[key].drop(["24h"], axis=1) sun_info[key] = pd.merge(init_mean[key], effacility, on = "KodSH", how = "left") astral_info = {} for key in sun_info: shp = sun_info[key].shape[0] Dawn = list(range(shp)) Dusk = list(range(shp)) for k in sun_info[key].index: City = astral.LocationInfo(sun_info[key]["City"][k],"Poland", "Europe/Warsaw", sun_info[key]["Lat"][k], sun_info[key]["Lon"][k]) Dawn[k] = (sun(City.observer, date=sun_info[key]["Date"][k], tzinfo=City.timezone))["dawn"] Dusk[k] = (sun(City.observer, date=sun_info[key]["Date"][k], tzinfo=City.timezone))["dusk"] data = {"KodSH" : sun_info[key]["KodSH"], "Dawn" : Dawn ,"Dusk" : Dusk} astral_info[key] = pd.DataFrame(data) sun_info[key] =
pd.merge(sun_info[key], astral_info[key], left_index=True, right_index=True)
pandas.merge
import numpy as np import pandas as pd import warnings from ecomplexity.calc_proximity import calc_discrete_proximity from ecomplexity.calc_proximity import calc_continuous_proximity from ecomplexity.ComplexityData import ComplexityData from ecomplexity.density import calc_density from ecomplexity.coicog import calc_coi_cog def reshape_output_to_data(cdata, t): """Reshape output ndarrays to df""" diversity = ( cdata.diversity_t[:, np.newaxis].repeat(cdata.mcp_t.shape[1], axis=1).ravel() ) ubiquity = ( cdata.ubiquity_t[np.newaxis, :].repeat(cdata.mcp_t.shape[0], axis=0).ravel() ) eci = cdata.eci_t[:, np.newaxis].repeat(cdata.mcp_t.shape[1], axis=1).ravel() pci = cdata.pci_t[np.newaxis, :].repeat(cdata.mcp_t.shape[0], axis=0).ravel() coi = cdata.coi_t[:, np.newaxis].repeat(cdata.mcp_t.shape[1], axis=1).ravel() out_dict = { "diversity": diversity, "ubiquity": ubiquity, "mcp": cdata.mcp_t.ravel(), "eci": eci, "pci": pci, "density": cdata.density_t.ravel(), "coi": coi, "cog": cdata.cog_t.ravel(), } if hasattr(cdata, "rpop_t"): out_dict["rca"] = cdata.rca_t.ravel() out_dict["rpop"] = cdata.rpop_t.ravel() elif hasattr(cdata, "rca_t"): out_dict["rca"] = cdata.rca_t.ravel() output = pd.DataFrame.from_dict(out_dict).reset_index(drop=True) cdata.data_t["time"] = t cdata.output_t = pd.concat([cdata.data_t.reset_index(), output], axis=1) cdata.output_list.append(cdata.output_t) return cdata def conform_to_original_data(cdata, data): """Reset column names and add dropped columns back""" cdata.output = cdata.output.rename(columns=cdata.cols_input) cdata.output = cdata.output.merge( data, how="outer", on=list(cdata.cols_input.values()) ) return cdata def calc_eci_pci(cdata): # Check if diversity or ubiquity is 0 or nan, can cause problems if ((cdata.diversity_t == 0).sum() > 0) | ((cdata.ubiquity_t == 0).sum() > 0): warnings.warn( f"In year {cdata.t}, diversity / ubiquity is 0 for some locs/prods" ) # Extract valid elements only cntry_mask = np.argwhere(cdata.diversity_t == 0).squeeze() prod_mask = np.argwhere(cdata.ubiquity_t == 0).squeeze() diversity_valid = cdata.diversity_t[cdata.diversity_t != 0] ubiquity_valid = cdata.ubiquity_t[cdata.ubiquity_t != 0] mcp_valid = cdata.mcp_t[cdata.diversity_t != 0, :][:, cdata.ubiquity_t != 0] # Calculate ECI and PCI eigenvectors mcp1 = mcp_valid / diversity_valid[:, np.newaxis] mcp2 = mcp_valid / ubiquity_valid[np.newaxis, :] # Make copy of transpose to ensure contiguous array for performance reasons mcp2_t = mcp2.T.copy() # These matrix multiplication lines are very slow Mcc = mcp1 @ mcp2_t Mpp = mcp2_t @ mcp1 try: # Calculate eigenvectors eigvals, eigvecs = np.linalg.eig(Mpp) eigvecs = np.real(eigvecs) # Get eigenvector corresponding to second largest eigenvalue eig_index = eigvals.argsort()[-2] kp = eigvecs[:, eig_index] kc = mcp1 @ kp # Adjust sign of ECI and PCI so it makes sense, as per book s1 = np.sign(np.corrcoef(diversity_valid, kc)[0, 1]) eci_t = s1 * kc pci_t = s1 * kp # Add back the deleted elements for x in cntry_mask: eci_t = np.insert(eci_t, x, np.nan) for x in prod_mask: pci_t = np.insert(pci_t, x, np.nan) except Exception as e: warnings.warn(f"Unable to calculate eigenvectors for year {cdata.t}") print(e) eci_t = np.empty(cdata.mcp_t.shape[0]) pci_t = np.empty(cdata.mcp_t.shape[1]) eci_t[:] = np.nan pci_t[:] = np.nan return (eci_t, pci_t) def ecomplexity( data, cols_input, presence_test="rca", val_errors_flag="coerce", rca_mcp_threshold=1, rpop_mcp_threshold=1, pop=None, continuous=False, asymmetric=False, verbose=True, ): """Complexity calculations through the ComplexityData class Args: data: pandas dataframe containing production / trade data. Including variables indicating time, location, product and value cols_input: dict of column names for time, location, product and value. Example: {'time':'year', 'loc':'origin', 'prod':'hs92', 'val':'export_val'} presence_test: str for test used for presence of industry in location. One of "rca" (default), "rpop", "both", or "manual". Determines which values are used for M_cp calculations. If "manual", M_cp is taken as given from the "value" column in data val_errors_flag: {'coerce','ignore','raise'}. Passed to pd.to_numeric *default* coerce. rca_mcp_threshold: numeric indicating RCA threshold beyond which mcp is 1. *default* 1. rpop_mcp_threshold: numeric indicating RPOP threshold beyond which mcp is 1. *default* 1. Only used if presence_test is not "rca". pop: pandas df, with time, location and corresponding population, in that order. Not required if presence_test is "rca" (default). continuous: Used to calculate product proximities, indicates whether to consider correlation of every product pair (True) or product co-occurrence (False). *default* False. asymmetric: Used to calculate product proximities, indicates whether to generate asymmetric proximity matrix (True) or symmetric (False). *default* False. verbose: Print year being processed Returns: Pandas dataframe containing the data with the following additional columns: - diversity: k_c,0 - ubiquity: k_p,0 - rca: Balassa's RCA - rpop: (available if presence_test!="rca") RPOP - mcp: MCP used for complexity calculations - eci: Economic complexity index - pci: Product complexity index - density: Density of the network around each product - coi: Complexity Outlook Index - cog: Complexity Outlook Gain """ cdata = ComplexityData(data, cols_input, val_errors_flag) cdata.output_list = [] # Iterate over time stamps for t in cdata.data.index.unique("time"): if verbose: print(t) # Rectangularize df cdata.create_full_df(t) # Check if Mcp is pre-computed if presence_test != "manual": cdata.calculate_rca() cdata.calculate_mcp( rca_mcp_threshold, rpop_mcp_threshold, presence_test, pop, t ) else: cdata.calculate_manual_mcp() # Calculate diversity and ubiquity cdata.diversity_t = np.nansum(cdata.mcp_t, axis=1) cdata.ubiquity_t = np.nansum(cdata.mcp_t, axis=0) # Calculate ECI and PCI cdata.eci_t, cdata.pci_t = calc_eci_pci(cdata) # Calculate proximity and density if continuous == False: prox_mat = calc_discrete_proximity( cdata.mcp_t, cdata.ubiquity_t, asymmetric ) cdata.density_t = calc_density(cdata.mcp_t, prox_mat) elif continuous == True and presence_test == "rpop": prox_mat = calc_continuous_proximity(cdata.rpop_t, cdata.ubiquity_t) cdata.density_t = calc_density(cdata.rpop_t, prox_mat) elif continuous == True and presence_test != "rpop": prox_mat = calc_continuous_proximity(cdata.rca_t, cdata.ubiquity_t) cdata.density_t = calc_density(cdata.rca_t, prox_mat) # Calculate COI and COG cdata.coi_t, cdata.cog_t = calc_coi_cog(cdata, prox_mat) # Normalize variables as per STATA package cdata.pci_t = (cdata.pci_t - cdata.eci_t.mean()) / cdata.eci_t.std() cdata.cog_t = cdata.cog_t / cdata.eci_t.std() cdata.eci_t = (cdata.eci_t - cdata.eci_t.mean()) / cdata.eci_t.std() cdata.coi_t = (cdata.coi_t - cdata.coi_t.mean()) / cdata.coi_t.std() # Reshape ndarrays to df cdata = reshape_output_to_data(cdata, t) cdata.output =
pd.concat(cdata.output_list)
pandas.concat
import Functions import pandas as pd import matplotlib.pyplot as plt def group_sentiment(dfSentiment): dfSentiment['datetime'] = pd.to_datetime(dfSentiment['created_utc'], unit='s') dfSentiment['date'] = pd.DatetimeIndex(dfSentiment['datetime']).date dfSentiment = dfSentiment[ ['created_utc', 'negative_comment', 'neutral_comment', 'positive_comment', 'datetime', 'date']] dfSentiment = dfSentiment.groupby(by=['date']).sum() return dfSentiment def cleaning(df): # Importing Bot user names bots = pd.read_csv(r'Data\Bots.csv', index_col=0, sep=';') # Removing bots from the data df = df[~df.author.isin(bots.bot_names)] # Removing any NA's df.dropna() # Cleaning the text data, fuld af pis i bunden der prรธver hvert enkelt fรธr de rรธg sammen, slet hvis du ikke er intra keeplist = "?.!,'_-" import re Adj_comment = pd.DataFrame( [re.sub(r'[\S]+\.(net|com|org|info|edu|gov|uk|de|ca|jp|fr|au|us|ru|ch|it|nel|se|no|es|mil)' r'[\S]*\s?|(/u/|u/)\S+|(/r/|r/)\S+|[\x00-\x1f\x7f-\xff]|[0-9]+|(&g|&l)\S+' r'|[^\s\w' + keeplist + ']', "", elem) for elem in df['body']], columns=['body']) df['body'] = Adj_comment['body'] return df period = ['2014', '2015_01', '2015_02', '2015_03', '2015_04', '2015_05', '2015_06', '2015_07', '2015_08', '2015_09', '2015_10', '2015_11', '2015_12', '2016_01', '2016_02', '2016_03', '2016_04', '2016_05', '2016_06', '2016_07', '2016_08', '2016_09', '2016_10', '2016_11', '2016_12', '2017_01', '2017_02', '2017_03', '2017_04', '2017_05', '2017_06', '2017_07', '2017_08', '2017_09', '2017_10', '2017_11', '2017_12', '2018_01', '2018_02', '2018_03', '2018_04', '2018_05', '2018_06', '2018_07', '2018_08', '2018_09', '2018_10', '2018_11', '2018_12', '2019_01', '2019_02', '2019_03', '2019_04', '2019_05', '2019_06', '2019_07', '2019_08', '2019_09'] dfAllData = pd.DataFrame() for sPeriod in period: query = r""" #standardSQL SELECT author, subreddit, created_utc, score, controversiality, body FROM `fh-bigquery.reddit_comments.{}` WHERE REGEXP_CONTAINS(body, r'(?i)\b Dash\b') """.format(sPeriod) dfData = Functions.collect_big_query(sQuery=query) print(sPeriod + ' Collected') print(sPeriod + ' cleaned') dfAllData = dfAllData.append(dfData) del dfData dfAllData.to_csv('Dash_sentiment.csv') coin_list = ['BCH', 'Cardona', 'dogecoin', 'EOS', 'ETH', 'LTC', 'XRP', 'Monero', 'BNB', 'IOTA', 'TEZOS'] dfSubRed = pd.DataFrame() for scoin in coin_list: dfTemp = pd.read_csv(scoin + '_sentiment.csv', index_col=0) dfTemp = dfTemp.dropna() dfSubRed = pd.concat([dfSubRed, pd.DataFrame(dfTemp.subreddit.value_counts()[:10].index), pd.DataFrame(dfTemp.subreddit.value_counts()[:10].values)], axis=1) # Removing disturbing subreddits: # EOS: EOS_list = ['ffxiv', 'photography', 'masseffect', 'whowouldwin', 'astrophotography', 'elementaryos'] dfTemp = pd.read_csv('EOS_sentiment.csv', index_col=0) dfTemp = dfTemp[~dfTemp['subreddit'].isin(EOS_list)] dfTemp.to_csv('EOS_R_Sentiment.csv') # Ripple: indianapolis XRP_list = ['indianapolis'] dfTemp = pd.read_csv('XRP_sentiment.csv', index_col=0) # 510558 dfTemp = dfTemp[~dfTemp['subreddit'].isin(XRP_list)] dfTemp.to_csv('XRP_R_Sentiment.csv') # BNB: SquaredCircle, dragonballfighterz, StreetFighter, step1, AirBnB BNB_list = ['SquaredCircle', 'dragonballfighterz', 'StreetFighter', 'step1', 'AirBnB'] dfTemp = pd.read_csv('BNB_R_Sentiment.csv', index_col=0) # 109630 dfTemp = dfTemp[~dfTemp['subreddit'].isin(BNB_list)] dfTemp.to_csv('BNB_R_Sentiment.csv') # New coin list coin_list_R = ['BCH', 'Cardona', 'dogecoin', 'EOS_R', 'ETH', 'LTC', 'XRP_R', 'Monero', 'BNB_R', 'IOTA', 'TEZOS'] # Removing NA's for scoin in coin_list_R: dfTemp = pd.read_csv(scoin + '_sentiment.csv', index_col=0) dfTemp = dfTemp.dropna() dfTemp.to_csv(scoin + 'NA_Sentiment.csv') coin_list_NA = ['BTC', 'BCHNA', 'CardonaNA', 'dogecoinNA', 'EOS_RNA', 'ETHNA', 'LTCNA', 'XRP_RNA', 'MoneroNA', 'BNB_RNA', 'IOTANA', 'TEZOSNA', ] for scoin in coin_list_NA: dfTemp = pd.read_csv(scoin + '_Sentiment.csv', index_col=0) dfTemp = cleaning(dfTemp) # dfAllData = Functions.language_filter(dfAllData, series='body', language_select='en') dfTemp = dfTemp.reset_index(drop=True) dfTemp = Functions.get_sentiment(dfTemp, series='body') dfTemp = group_sentiment(dfTemp) dfTemp.to_csv(scoin + '_Actual_Sentiment.csv') # Kรธr herfra ved start for at fรฅ fat i de nรธdvendige funktioner og dataframes import Functions import pandas as pd from datetime import datetime import matplotlib.pyplot as plt coin_list_NA = ['BTC', 'BCHNA', 'CardonaNA', 'dogecoinNA', 'EOS_RNA', 'ETHNA', 'LTCNA', 'XRP_RNA', 'MoneroNA', 'BNB_RNA', 'IOTANA', 'TEZOSNA', ] coin_list = ['BTC', 'BCH', 'Cardona', 'dogecoin', 'EOS', 'ETH', 'LTC', 'XRP', 'Monero', 'BNB', 'IOTA', 'TEZOS', ] dfAllCoins = pd.DataFrame() dfWMR = pd.read_csv('Data/' + coin_list[0] + '_marketdata.csv', sep=';', thousands=',', decimal='.') dfWMR['Date'] = pd.to_datetime(dfWMR['Date'], format='%b %d, %Y') dfWMR['Date'] = pd.DatetimeIndex(dfWMR['Date']).date dfWMR.index = dfWMR['Date'] dfWMR = dfWMR.sort_index() for column in dfWMR.columns: dfWMR = dfWMR.drop(columns=column) dfReturns = dfWMR dfMarketCap = dfWMR dfPositive = dfWMR dfNeutral = dfWMR dfNegative = dfWMR dfMOM3 = dfWMR dfMOM5 = dfWMR dfMOM7 = dfWMR dfMOM14 = dfWMR for i in range(0, len(coin_list)): dfMarket = pd.read_csv('Data/' + coin_list[i] + '_marketdata.csv', sep=';', thousands=',', decimal='.') dfMarket['Date'] = pd.to_datetime(dfMarket['Date'], format='%b %d, %Y') dfMarket['Date'] = pd.DatetimeIndex(dfMarket['Date']).date dfMarket.index = dfMarket['Date'] dfMarket = dfMarket.sort_index() dfMarket['Return'] = dfMarket['Close**'].pct_change() dfMarket = dfMarket[1:] dfMarket['Mom3'] = dfMarket.Return.rolling(3).sum() dfMarket['Mom5'] = dfMarket.Return.rolling(5).sum() dfMarket['Mom7'] = dfMarket.Return.rolling(7).sum() dfMarket['Mom14'] = dfMarket.Return.rolling(14).sum() dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Return'] dfReturns = dfReturns.merge(dfTemp, how='left', left_index=True, right_index=True) dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Mom3'] dfMOM3 = dfMOM3.merge(dfTemp, how='left', left_index=True, right_index=True) dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Mom5'] dfMOM5 = dfMOM5.merge(dfTemp, how='left', left_index=True, right_index=True) dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Mom7'] dfMOM7 = dfMOM7.merge(dfTemp, how='left', left_index=True, right_index=True) dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Mom14'] dfMOM14 = dfMOM14.merge(dfTemp, how='left', left_index=True, right_index=True) dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Market Cap'] dfMarketCap = dfMarketCap.merge(dfTemp, how='left', left_index=True, right_index=True) dfSentiment = pd.read_csv('Data/' + coin_list_NA[i] + '_Actual_Sentiment.csv', index_col=0, sep=',') if coin_list[i] == 'BTC': # dfSentiment = pd.read_csv('Data/' + coin_list_NA[i] + '_Actual_Sentiment.csv', index_col=0, sep=';') dfSentiment = pd.read_csv('Data/All_Merged.csv', index_col=0, sep=',') dfSentiment = dfSentiment[['positive_comment', 'neutral_comment', 'negative_comment']] dfSentiment['Date'] = dfSentiment.index dfSentiment['Date'] = pd.to_datetime(dfSentiment['Date']) dfSentiment.index =
pd.DatetimeIndex(dfSentiment['Date'])
pandas.DatetimeIndex
from datetime import datetime, timedelta import unittest from pandas.core.datetools import ( bday, BDay, BQuarterEnd, BMonthEnd, BYearEnd, MonthEnd, DateOffset, Week, YearBegin, YearEnd, Hour, Minute, Second, format, ole2datetime, to_datetime, normalize_date, getOffset, getOffsetName, inferTimeRule, hasOffsetName) from nose.tools import assert_raises #### ## Misc function tests #### def test_format(): actual = format(datetime(2008, 1, 15)) assert actual == '20080115' def test_ole2datetime(): actual = ole2datetime(60000) assert actual == datetime(2064, 4, 8) assert_raises(Exception, ole2datetime, 60) def test_to_datetime1(): actual = to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) actual = to_datetime('20080115') assert actual == datetime(2008, 1, 15) # unparseable s = 'Month 1, 1999' assert to_datetime(s) == s def test_normalize_date(): actual = normalize_date(datetime(2007, 10, 1, 1, 12, 5, 10)) assert actual == datetime(2007, 10, 1) ##### ### DateOffset Tests ##### class TestDateOffset(object): def setUp(self): self.d = datetime(2008, 1, 2) def test_repr(self): repr(DateOffset()) repr(DateOffset(2)) repr(2 * DateOffset()) repr(2 * DateOffset(months=2)) def test_mul(self): assert DateOffset(2) == 2 * DateOffset(1) assert DateOffset(2) == DateOffset(1) * 2 def test_constructor(self): assert((self.d + DateOffset(months=2)) == datetime(2008, 3, 2)) assert((self.d - DateOffset(months=2)) == datetime(2007, 11, 2)) assert((self.d + DateOffset(2)) == datetime(2008, 1, 4)) assert not DateOffset(2).isAnchored() assert DateOffset(1).isAnchored() d = datetime(2008, 1, 31) assert((d + DateOffset(months=1)) == datetime(2008, 2, 29)) def test_copy(self): assert(DateOffset(months=2).copy() == DateOffset(months=2)) class TestBusinessDay(unittest.TestCase): def setUp(self): self.d = datetime(2008, 1, 1) self.offset = BDay() self.offset2 = BDay(2) def test_repr(self): assert repr(self.offset) == '<1 BusinessDay>' assert repr(self.offset2) == '<2 BusinessDays>' expected = '<1 BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 1, 3)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + BDay(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10*self.offset, self.d + BDay(10)) def testMult2(self): self.assertEqual(self.d + (-5*BDay(-10)), self.d + BDay(50)) def testRollback1(self): self.assertEqual(BDay(10).rollback(self.d), self.d) def testRollback2(self): self.assertEqual(BDay(10).rollback(datetime(2008, 1, 5)), datetime(2008, 1, 4)) def testRollforward1(self): self.assertEqual(BDay(10).rollforward(self.d), self.d) def testRollforward2(self): self.assertEqual(BDay(10).rollforward(datetime(2008, 1, 5)), datetime(2008, 1, 7)) def test_onOffset(self): tests = [(BDay(), datetime(2008, 1, 1), True), (BDay(), datetime(2008, 1, 5), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): tests = [] tests.append((bday, {datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) tests.append((2*bday, {datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) tests.append((-bday, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) tests.append((-2*bday, {datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) tests.append((BDay(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_apply_corner(self): self.assertRaises(Exception, BDay().apply, BMonthEnd()) def assertOnOffset(offset, date, expected): actual = offset.onOffset(date) assert actual == expected class TestWeek(unittest.TestCase): def test_corner(self): self.assertRaises(Exception, Week, weekday=7) self.assertRaises(Exception, Week, weekday=-1) def test_isAnchored(self): self.assert_(Week(weekday=0).isAnchored()) self.assert_(not Week().isAnchored()) self.assert_(not Week(2, weekday=2).isAnchored()) self.assert_(not Week(2).isAnchored()) def test_offset(self): tests = [] tests.append((Week(), # not business week {datetime(2008, 1, 1): datetime(2008, 1, 8), datetime(2008, 1, 4): datetime(2008, 1, 11), datetime(2008, 1, 5): datetime(2008, 1, 12), datetime(2008, 1, 6): datetime(2008, 1, 13), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(weekday=0), # Mon {datetime(2007, 12, 31): datetime(2008, 1, 7), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(0, weekday=0), # n=0 -> roll forward. Mon {datetime(2007, 12, 31): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) tests.append((Week(-2, weekday=1), # n=0 -> roll forward. Mon {datetime(2010, 4, 6): datetime(2010, 3, 23), datetime(2010, 4, 8): datetime(2010, 3, 30), datetime(2010, 4, 5): datetime(2010, 3, 23)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(Week(weekday=0), datetime(2008, 1, 1), False), (Week(weekday=0), datetime(2008, 1, 2), False), (Week(weekday=0), datetime(2008, 1, 3), False), (Week(weekday=0), datetime(2008, 1, 4), False), (Week(weekday=0), datetime(2008, 1, 5), False), (Week(weekday=0), datetime(2008, 1, 6), False), (Week(weekday=0), datetime(2008, 1, 7), True), (Week(weekday=1), datetime(2008, 1, 1), True), (Week(weekday=1), datetime(2008, 1, 2), False), (Week(weekday=1), datetime(2008, 1, 3), False), (Week(weekday=1), datetime(2008, 1, 4), False), (Week(weekday=1), datetime(2008, 1, 5), False), (Week(weekday=1), datetime(2008, 1, 6), False), (Week(weekday=1), datetime(2008, 1, 7), False), (Week(weekday=2), datetime(2008, 1, 1), False), (Week(weekday=2), datetime(2008, 1, 2), True), (Week(weekday=2), datetime(2008, 1, 3), False), (Week(weekday=2), datetime(2008, 1, 4), False), (Week(weekday=2), datetime(2008, 1, 5), False), (Week(weekday=2), datetime(2008, 1, 6), False), (Week(weekday=2), datetime(2008, 1, 7), False), (Week(weekday=3), datetime(2008, 1, 1), False), (Week(weekday=3), datetime(2008, 1, 2), False), (Week(weekday=3), datetime(2008, 1, 3), True), (Week(weekday=3), datetime(2008, 1, 4), False), (Week(weekday=3), datetime(2008, 1, 5), False), (Week(weekday=3), datetime(2008, 1, 6), False), (Week(weekday=3), datetime(2008, 1, 7), False), (Week(weekday=4), datetime(2008, 1, 1), False), (Week(weekday=4), datetime(2008, 1, 2), False), (Week(weekday=4), datetime(2008, 1, 3), False), (Week(weekday=4), datetime(2008, 1, 4), True), (Week(weekday=4), datetime(2008, 1, 5), False), (Week(weekday=4), datetime(2008, 1, 6), False), (Week(weekday=4), datetime(2008, 1, 7), False), (Week(weekday=5), datetime(2008, 1, 1), False), (Week(weekday=5), datetime(2008, 1, 2), False), (Week(weekday=5), datetime(2008, 1, 3), False), (Week(weekday=5), datetime(2008, 1, 4), False), (Week(weekday=5), datetime(2008, 1, 5), True), (Week(weekday=5), datetime(2008, 1, 6), False), (Week(weekday=5), datetime(2008, 1, 7), False), (Week(weekday=6), datetime(2008, 1, 1), False), (Week(weekday=6), datetime(2008, 1, 2), False), (Week(weekday=6), datetime(2008, 1, 3), False), (Week(weekday=6), datetime(2008, 1, 4), False), (Week(weekday=6), datetime(2008, 1, 5), False), (Week(weekday=6), datetime(2008, 1, 6), True), (Week(weekday=6), datetime(2008, 1, 7), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBMonthEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((BMonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 29), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((BMonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 2, 28), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 29), datetime(2008, 6, 30): datetime(2008, 5, 30), datetime(2008, 12, 31): datetime(2008, 11, 28), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 12, 29), datetime(2007, 1, 1): datetime(2006, 12, 29)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(BMonthEnd(), datetime(2007, 12, 31), True), (BMonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestMonthEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((MonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((MonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 11, 30), datetime(2007, 1, 1): datetime(2006, 12, 31)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(
MonthEnd()
pandas.core.datetools.MonthEnd
import os; os.environ['OMP_NUM_THREADS'] = '3' from sklearn.ensemble import ExtraTreesRegressor import nltk nltk.data.path.append("/media/sayantan/Personal/nltk_data") from nltk.stem.snowball import RussianStemmer from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer as Tfidf from sklearn.metrics import mean_squared_log_error from sklearn.model_selection import KFold from sklearn.externals import joblib from scipy.sparse import hstack, csr_matrix import lightgbm as lgb from sklearn.metrics import mean_squared_error import pandas as pd import numpy as np import tensorflow as tf import gc from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler from sklearn import model_selection from sklearn.isotonic import IsotonicRegression from sklearn.linear_model import Ridge, Lasso, HuberRegressor, ElasticNet, BayesianRidge, LinearRegression train_x1 =
pd.read_feather('../train_imagetop_targetenc.pkl')
pandas.read_feather
from datetime import datetime import warnings import numpy as np import pytest from pandas.core.dtypes.generic import ABCDateOffset import pandas as pd from pandas import ( DatetimeIndex, Index, PeriodIndex, Series, Timestamp, bdate_range, date_range, ) from pandas.tests.test_base import Ops import pandas.util.testing as tm from pandas.tseries.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Series' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.format(op)): getattr(self.dt_series, op) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) index = pd.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = pd.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = pd.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "minute", "second", "millisecond", "microsecond", ], ): idx = pd.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_value_counts_unique(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = pd.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", pd.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [pd.NaT, "2011-01-03", "2011-01-05", "2011-01-02", pd.NaT], [pd.NaT, pd.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = index.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep="last") exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep="last") tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) @pytest.mark.parametrize( "freq", [ "A", "2A", "-2A", "Q", "-1Q", "M", "-1M", "D", "3D", "-3D", "W", "-1W", "H", "2H", "-2H", "T", "2T", "S", "-3S", ], ) def test_infer_freq(self, freq): # GH 11018 idx = pd.date_range("2011-01-01 09:00:00", freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat(self, tz_naive_fixture): tz = tz_naive_fixture assert pd.DatetimeIndex._na_value is pd.NaT assert pd.DatetimeIndex([])._na_value is pd.NaT idx = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(["2011-01-01", "NaT"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"]) assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert idx.astype(object).equals(idx) assert idx.astype(object).equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(pd.Series(idx)) idx2 = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"], tz="US/Pacific") assert not idx.equals(idx2) assert not idx.equals(idx2.copy()) assert not idx.equals(idx2.astype(object)) assert not idx.astype(object).equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(pd.Series(idx2)) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz="US/Pacific") tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.copy()) assert not idx.equals(idx3.astype(object)) assert not idx.astype(object).equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(pd.Series(idx3)) @pytest.mark.parametrize("values", [["20180101", "20180103", "20180105"], []]) @pytest.mark.parametrize("freq", ["2D", Day(2), "2B", BDay(2), "48H", Hour(48)]) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_freq_setter(self, values, freq, tz): # GH 20678 idx = DatetimeIndex(values, tz=tz) # can set to an offset, converting from string if necessary idx.freq = freq assert idx.freq == freq assert isinstance(idx.freq, ABCDateOffset) # can reset to None idx.freq = None assert idx.freq is None def test_freq_setter_errors(self): # GH 20678 idx = DatetimeIndex(["20180101", "20180103", "20180105"]) # setting with an incompatible freq msg = ( "Inferred frequency 2D from passed values does not conform to " "passed frequency 5D" ) with pytest.raises(ValueError, match=msg): idx.freq = "5D" # setting with non-freq string with pytest.raises(ValueError, match="Invalid frequency"): idx.freq = "foo" def test_offset_deprecated(self): # GH 20716 idx = pd.DatetimeIndex(["20180101", "20180102"]) # getter deprecated with tm.assert_produces_warning(FutureWarning): idx.offset # setter deprecated with tm.assert_produces_warning(FutureWarning): idx.offset = BDay() class TestBusinessDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_pickle_unpickle(self): unpickled = tm.round_trip_pickle(self.rng) assert unpickled.freq is not None def test_copy(self): cp = self.rng.copy() repr(cp) tm.assert_index_equal(cp, self.rng) def test_shift(self): shifted = self.rng.shift(5) assert shifted[0] == self.rng[5] assert shifted.freq == self.rng.freq shifted = self.rng.shift(-5) assert shifted[5] == self.rng[0] assert shifted.freq == self.rng.freq shifted = self.rng.shift(0) assert shifted[0] == self.rng[0] assert shifted.freq == self.rng.freq rng = date_range(START, END, freq=BMonthEnd()) shifted = rng.shift(1, freq=BDay()) assert shifted[0] == rng[0] + BDay() def test_equals(self): assert not self.rng.equals(list(self.rng)) def test_identical(self): t1 = self.rng.copy() t2 = self.rng.copy() assert t1.identical(t2) # name t1 = t1.rename("foo") assert t1.equals(t2) assert not t1.identical(t2) t2 = t2.rename("foo") assert t1.identical(t2) # freq t2v = Index(t2.values) assert t1.equals(t2v) assert not t1.identical(t2v) class TestCustomDatetimeIndex: def setup_method(self, method): self.rng =
bdate_range(START, END, freq="C")
pandas.bdate_range
# -*- coding: utf-8 -*- """Interface for flopy's implementation for MODFLOW.""" __all__ = ["MfSfrNetwork"] import pickle from itertools import combinations, zip_longest from textwrap import dedent import geopandas import numpy as np import pandas as pd from shapely import wkt from shapely.geometry import LineString, Point, Polygon, box from shapely.ops import linemerge from swn.core import SurfaceWaterNetwork from swn.spatial import compare_crs, get_sindex from swn.util import abbr_str try: import matplotlib except ImportError: matplotlib = False class MfSfrNetwork: """MODFLOW SFR network class. Attributes ---------- model : flopy.modflow.mf.Modflow Instance of a flopy MODFLOW model segments : geopandas.GeoDataFrame Copied from swn.segments, but with additional columns added segment_data : pandas.DataFrame Similar to structure in model.sfr.segment_data, but for one stress period. Transient data (where applicable) will show summary statistics. The index is 'nseg', ordered and starting from 1. An additional column 'segnum' is used to identify segments, and if defined, abstraction/diversion identifiers, where iupseg != 0. reaches : geopandas.GeoDataFrame Similar to structure in model.sfr.reach_data with index 'reachID', ordered and starting from 1. Contains geometry and other columns not used by flopy. Use get_reach_data() for use with flopy. diversions : geopandas.GeoDataFrame, pd.DataFrame or None Copied from swn.diversions, if set/defined. logger : logging.Logger Logger to show messages. """ def __init__(self, logger=None): """Initialise MfSfrNetwork. Parameters ---------- logger : logging.Logger, optional Logger to show messages. """ from swn.logger import get_logger, logging from importlib.util import find_spec if logger is None: self.logger = get_logger(self.__class__.__name__) elif isinstance(logger, logging.Logger): self.logger = logger else: raise ValueError( "expected 'logger' to be Logger; found " + str(type(logger))) self.logger.warning( "using legacy MfSfrNetwork; consider using SwnModflow") self.logger.info('creating new %s object', self.__class__.__name__) if not find_spec('flopy'): raise ImportError(self.__class__.__name__ + ' requires flopy') self.segments = None self.segment_data = None self.reaches = None self.diversions = None # all other properties added afterwards @classmethod def from_swn_flopy( cls, swn, model, ibound_action='freeze', reach_include_fraction=0.2, min_slope=1./1000, hyd_cond1=1., hyd_cond_out=None, thickness1=1., thickness_out=None, width1=10., width_out=None, roughch=0.024, abstraction={}, inflow={}, flow={}, runoff={}, etsw={}, pptsw={}): """Create a MODFLOW SFR structure from a surface water network. Parameters ---------- swn : swn.SurfaceWaterNetwork Instance of a SurfaceWaterNetwork. model : flopy.modflow.mf.Modflow Instance of a flopy MODFLOW model with DIS and BAS6 packages. ibound_action : str, optional Action to handle IBOUND: - ``freeze`` : Freeze IBOUND, but clip streams to fit bounds. - ``modify`` : Modify IBOUND to fit streams, where possible. reach_include_fraction : float or pandas.Series, optional Fraction of cell size used as a threshold distance to determine if reaches outside the active grid should be included to a cell. Based on the furthest distance of the line and cell geometries. Default 0.2 (e.g. for a 100 m grid cell, this is 20 m). min_slope : float or pandas.Series, optional Minimum downwards slope imposed on segments. If float, then this is a global value, otherwise it is per-segment with a Series. Default 1./1000 (or 0.001). hyd_cond1 : float or pandas.Series, optional Hydraulic conductivity of the streambed, as a global or per top of each segment. Used for either STRHC1 or HCOND1/HCOND2 outputs. Default 1. hyd_cond_out : None, float or pandas.Series, optional Similar to thickness1, but for the hydraulic conductivity of each segment outlet. If None (default), the same hyd_cond1 value for the top of the outlet segment is used for the bottom. thickness1 : float or pandas.Series, optional Thickness of the streambed, as a global or per top of each segment. Used for either STRTHICK or THICKM1/THICKM2 outputs. Default 1. thickness_out : None, float or pandas.Series, optional Similar to thickness1, but for the bottom of each segment outlet. If None (default), the same thickness1 value for the top of the outlet segment is used for the bottom. width1 : float or pandas.Series, optional Channel width, as a global or per top of each segment. Used for WIDTH1/WIDTH2 outputs. Default 10. width_out : None, float or pandas.Series, optional Similar to width1, but for the bottom of each segment outlet. If None (default), the same width1 value for the top of the outlet segment is used for the bottom. roughch : float or pandas.Series, optional Manning's roughness coefficient for the channel. If float, then this is a global value, otherwise it is per-segment with a Series. Default 0.024. abstraction : dict or pandas.DataFrame, optional See generate_segment_data for details. Default is {} (no abstraction from diversions). inflow : dict or pandas.DataFrame, optional See generate_segment_data for details. Default is {} (no outside inflow added to flow term). flow : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). runoff : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). etsw : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). pptsw : dict or pandas.DataFrame, optional See generate_segment_data. Default is {} (zero). logger : logging.Logger, optional Logger to show messages. """ obj = cls() import flopy if not isinstance(swn, SurfaceWaterNetwork): raise ValueError('swn must be a SurfaceWaterNetwork object') elif ibound_action not in ('freeze', 'modify'): raise ValueError('ibound_action must be one of freeze or modify') obj.model = model obj.segments = swn.segments.copy() # Make sure model CRS and segments CRS are the same (if defined) crs = None segments_crs = getattr(obj.segments.geometry, 'crs', None) modelgrid_crs = None modelgrid = obj.model.modelgrid epsg = modelgrid.epsg proj4_str = modelgrid.proj4 if epsg is not None: segments_crs, modelgrid_crs, same = compare_crs(segments_crs, epsg) else: segments_crs, modelgrid_crs, same = compare_crs(segments_crs, proj4_str) if (segments_crs is not None and modelgrid_crs is not None and not same): obj.logger.warning( 'CRS for segments and modelgrid are different: {0} vs. {1}' .format(segments_crs, modelgrid_crs)) crs = segments_crs or modelgrid_crs # Make sure their extents overlap minx, maxx, miny, maxy = modelgrid.extent model_bbox = box(minx, miny, maxx, maxy) rstats = obj.segments.bounds.describe() segments_bbox = box( rstats.loc['min', 'minx'], rstats.loc['min', 'miny'], rstats.loc['max', 'maxx'], rstats.loc['max', 'maxy']) if model_bbox.disjoint(segments_bbox): raise ValueError('modelgrid extent does not cover segments extent') # More careful check of overlap of lines with grid polygons obj.logger.debug('building model grid cell geometries') dis = obj.model.dis cols, rows = np.meshgrid(np.arange(dis.ncol), np.arange(dis.nrow)) ibound = obj.model.bas6.ibound[0].array.copy() ibound_modified = 0 grid_df = pd.DataFrame({'row': rows.flatten(), 'col': cols.flatten()}) grid_df.set_index(['row', 'col'], inplace=True) grid_df['ibound'] = ibound.flatten() if ibound_action == 'freeze' and (ibound == 0).any(): # Remove any inactive grid cells from analysis grid_df = grid_df.loc[grid_df['ibound'] != 0] # Determine grid cell size col_size = np.median(dis.delr.array) if dis.delr.array.min() != dis.delr.array.max(): obj.logger.warning( 'assuming constant column spacing %s', col_size) row_size = np.median(dis.delc.array) if dis.delc.array.min() != dis.delc.array.max(): obj.logger.warning( 'assuming constant row spacing %s', row_size) cell_size = (row_size + col_size) / 2.0 # Note: modelgrid.get_cell_vertices(row, col) is slow! xv = modelgrid.xvertices yv = modelgrid.yvertices r, c = [np.array(s[1]) for s in grid_df.reset_index()[['row', 'col']].iteritems()] cell_verts = zip( zip(xv[r, c], yv[r, c]), zip(xv[r, c + 1], yv[r, c + 1]), zip(xv[r + 1, c + 1], yv[r + 1, c + 1]), zip(xv[r + 1, c], yv[r + 1, c]) ) obj.grid_cells = grid_cells = geopandas.GeoDataFrame( grid_df, geometry=[Polygon(r) for r in cell_verts], crs=crs) obj.logger.debug('evaluating reach data on model grid') grid_sindex = get_sindex(grid_cells) reach_include = swn.segments_series(reach_include_fraction) * cell_size # Make an empty DataFrame for reaches obj.reaches = pd.DataFrame(columns=['geometry']) obj.reaches.insert(1, column='row', value=pd.Series(dtype=int)) obj.reaches.insert(2, column='col', value=pd.Series(dtype=int)) empty_reach_df = obj.reaches.copy() # take this before more added obj.reaches.insert( 1, column='segnum', value=pd.Series(dtype=obj.segments.index.dtype)) obj.reaches.insert(2, column='dist', value=pd.Series(dtype=float)) empty_reach_df.insert(3, column='length', value=pd.Series(dtype=float)) empty_reach_df.insert(4, column='moved', value=
pd.Series(dtype=bool)
pandas.Series
# -*- coding: utf-8 -*- """One line description. Authors: <NAME> - <EMAIL> Todo: * Docstring * Put all hyper to arguments """ import logging import os import time from pathlib import Path import click import numpy as np import pandas as pd import wandb from sklearn.model_selection import train_test_split from food_ke.entailment.augment import augment_df from food_ke.entailment.custom_typing import PathLike from food_ke.entailment.dataset import EntailmentDataset from food_ke.entailment.rank import rank_data_unlabelled from food_ke.entailment.train import load_data, load_model, train from food_ke.retraining.evaluate import evaluate from food_ke.retraining.export_annotations import export_annotations from food_ke.retraining.preprocess import preprocess logging.basicConfig( format="[%(filename)s:%(lineno)s - %(funcName)20s()] %(message)s", level=logging.DEBUG, ) def map_label_studio_id_to_data_litsense_id( data_litsense, premise, hypothesis ): row = data_litsense.loc[ (data_litsense["premise"] == premise) & (data_litsense["hypothesis"] == hypothesis) ] if len(row) > 1: print(row) raise Exception( "Premise and hypothesis pair is not a unique identifier for a " "task. Need to implement an id for litsense." ) if len(row) < 1: raise Exception( "There is data from LS that is not in the LitSense dataset." ) return row.index[0] def exclude_labelled_annotations( data_preprocessed_premises, data_preprocessed_hypotheses, data_litsense ): """ """ idx_exclusion = [] for premise, hypothesis in zip( data_preprocessed_premises, data_preprocessed_hypotheses ): idx_exclusion.append( map_label_studio_id_to_data_litsense_id( data_litsense, premise, hypothesis ) ) data_litsense_unlabelled = data_litsense.drop(idx_exclusion) logging.info( f"{len(idx_exclusion)} labelled samples removed LitSense dataset." ) return data_litsense_unlabelled def wandb_setup( model_name, adapter_name, epochs, learning_rate, batch_size, augmentation_strategies, num_samples_unaugmented, validate_every_steps, validate_every_examples, ): """ """ wandb.init( project="food_ke_entailment", entity="food_ke", config={ "model_name": model_name, "adapter_name": adapter_name, "epochs": epochs, "learning_rate": learning_rate, "batch_size": batch_size, "augmentation_strategies": augmentation_strategies, "num_samples_unaugmented": num_samples_unaugmented, "validate_every_steps": validate_every_steps, "validate_every_examples": validate_every_examples, }, ) def sort_by_rank_scores(data_ranked: pd.DataFrame) -> pd.DataFrame: """TODO: Move to rank.py""" confidence_scores = data_ranked["hypothesis_confidence"] confidence_scores_sorted = confidence_scores.sort_values( ascending=False ).to_frame() confidence_scores_sorted["rank"] = list(range(len(confidence_scores))) data_ranked[ "hypothesis_confidence_rank" ] = confidence_scores_sorted.sort_index()["rank"] uncertainty_scores = data_ranked["hypothesis_uncertainty"] uncertainty_scores_sorted = uncertainty_scores.sort_values( ascending=False ).to_frame() uncertainty_scores_sorted["rank"] = list(range(len(uncertainty_scores))) data_ranked[ "hypothesis_uncertainty_rank" ] = uncertainty_scores_sorted.sort_index()["rank"] ranks_overall = [] picked_metrics = np.random.choice( ["hypothesis_confidence_rank", "hypothesis_uncertainty_rank"], size=len(data_ranked), ) for i, picked_metric in enumerate(picked_metrics): ranks_overall.append(data_ranked.iloc[i][picked_metric]) data_ranked["hypothesis_total_rank"] = ranks_overall data_ranked["hypothesis_total_rank_calculated_by"] = picked_metrics data_ranked_sorted = data_ranked.sort_values( by=["hypothesis_novelty", "hypothesis_total_rank"], ascending=[False, True], ) return data_ranked_sorted def _make_output_directories( path_output: PathLike, path_output_dir: PathLike, path_evaluation_dir: PathLike, ): # Initialize repo. logging.info(f"Generating retraining directory {path_output}") if not os.path.exists(path_output_dir): os.mkdir(path_output_dir) os.mkdir(path_output) os.mkdir(path_evaluation_dir) def retrain( path_model_checkpoint: PathLike, path_adapter_checkpoint: PathLike, data: pd.DataFrame, class_distribution: dict, epochs=5, learning_rate=2e-5, batch_size=12, validate_every_steps=10, validate_every_examples=None, ): model, tokenizer, optimizer = load_model( model_name="roberta-base", tokenizer_name="roberta-base", adapter_name="AdapterHub/roberta-base-pf-scitail", optimizer_kwargs={"lr": learning_rate, "correct_bias": True}, ) idx_train, idx_val = train_test_split( data["orig_idx"].unique(), test_size=0.2, shuffle=True, random_state=42 ) # Validation should keep all classes having the same number. data_val = data[data["orig_idx"].isin(idx_val)].copy() data_val["row_id"] = data_val.index data_val_rus = load_data( data_val, class_distribution={ "entailment": 0.5, "neutral": 0.5, "contradiction": 0.0, }, ) data_train = data[data["orig_idx"].isin(idx_train)] data_train_augmented = augment_df( data_train, augs_per_food=5, augs_per_chemical=5 ).copy() data_train_augmented["row_id"] = data_train_augmented.index data_train_augmented_rus = load_data( data_train_augmented, class_distribution=class_distribution, ) dataset = EntailmentDataset( train_df=data_train_augmented_rus, val_df=data_val_rus, tokenizer=tokenizer, ) train_loader, val_loader = dataset.get_data_loaders(batch_size=batch_size) wandb_setup( model_name="roberta-base", adapter_name="AdapterHub/roberta-base-pf-scitail", epochs=epochs, learning_rate=learning_rate, batch_size=batch_size, augmentation_strategies="all", num_samples_unaugmented=len(idx_train), validate_every_steps=validate_every_steps, validate_every_examples=validate_every_examples, ) train( model, train_loader, val_loader, optimizer, epochs=epochs, flatten_neutral_contradicts=True, checkpoint_dir=path_model_checkpoint, adapter_dir=path_adapter_checkpoint, adapter_name="AdapterHub/roberta-base-pf-scitail", adapter_checkpoint_name="scitail", early_stopping=True, validate_every_steps=10, validate_every_examples=None, patience=10, stopping_threshold=1e-3, prediction_file=None, ) return ( data_train, data_train_augmented, data_train_augmented_rus, data_val, data_val_rus, ) @click.command() @click.option("--label-studio-project-id", type=int) @click.option( "--path-output-dir", type=str, default=os.path.join( os.path.abspath(os.path.dirname(__file__)), "..", "..", "data", "retraining_data", ), ) @click.option( "--path-data-all", type=str, default=os.path.join( os.path.abspath(os.path.dirname(__file__)), "..", "..", "data", "entailment_data", "data_litsense_no_dup.csv", ), ) @click.option( "--path-data-test", type=str, default=os.path.join( os.path.abspath(os.path.dirname(__file__)), "..", "..", "data", "entailment_data", "entailment_test.csv", ), ) @click.option("--path-previous-session-dir", type=str) @click.option("--ratio-entailment", type=float, default=0.5) @click.option("--ratio-neutral", type=float, default=0.5) @click.option("--ratio-contradiction", type=float, default=0.0) @click.option("--random-state", type=int, default=42) @click.option("--rank-confidence", type=bool, default=True) @click.option( "--rank-confidence-agg", type=click.Choice(["mean", "sum"]), default="sum" ) @click.option("--rank-novelty", type=bool, default=True) @click.option( "--rank-novelty-agg", type=click.Choice(["mean", "sum"]), default="sum" ) @click.option("--rank-completeness", type=bool, default=False) @click.option( "--rank-completeness-agg", type=click.Choice(["mean", "sum"]), default="sum", ) def main( label_studio_project_id: int, path_output_dir: PathLike, path_data_all: PathLike, path_data_test: PathLike, path_previous_session_dir: PathLike, ratio_entailment: float, ratio_neutral: float, ratio_contradiction: float, random_state: int, rank_confidence: bool, rank_confidence_agg: str, rank_novelty: bool, rank_novelty_agg: str, rank_completeness: bool, rank_completeness_agg: str, ): # Check data class distribution ratios. if ratio_entailment < 0 or ratio_neutral < 0 or ratio_contradiction < 0: raise ValueError("Ratios must be non-negative.") if ratio_entailment + ratio_neutral + ratio_contradiction != 1.0: raise ValueError("Ratios must sum to 1.") class_distribution = { "entailment": ratio_entailment, "neutral": ratio_neutral, "contradiction": ratio_contradiction, } # Initialize random state. np.random.seed(random_state) # Initialize retraining constants. time_str = time.strftime("%Y%m%d_%H%M%S") path_output = Path(path_output_dir) / time_str # Initialize path names for evaulation data. path_evaluation_dir = path_output / "evaluation" path_evaluation_train_with_pred = ( path_evaluation_dir / "train_aug_rus_with_pred.csv" ) path_evaluation_val_with_pred = ( path_evaluation_dir / "val_rus_with_pred.csv" ) path_evaluation_test_with_pred = path_evaluation_dir / "test_with_pred.csv" path_evaluation_train_result = ( path_evaluation_dir / "result_train_aug_rus.csv" ) path_evaluation_val_result = path_evaluation_dir / "result_val_rus.csv" path_evaluation_test_result = path_evaluation_dir / "result_test.csv" # Initialize path names for intermediate data for training the entailment # model. path_data_export = path_output / "export.csv" path_data_preprocessed = path_output / "preprocessed.csv" path_data_train = path_output / "train.csv" path_data_train_augmented = path_output / "train_aug.csv" path_data_train_augmented_rus = path_output / "train_aug_rus.csv" path_data_val = path_output / "val.csv" path_data_val_rus = path_output / "val_rus.csv" path_data_unlabelled = path_output / "data_unlabelled.csv" path_data_unlabelled_ranked = path_output / "data_unlabelled_ranked.csv" path_data_unlabelled_sorted = path_output / "data_unlabelled_sorted.csv" # Initialize path names for model checkpoints. path_model_checkpoint = path_output / "model_checkpoint" path_adapter_checkpoint = path_output / "adapter_checkpoint" _make_output_directories(path_output, path_output_dir, path_evaluation_dir) # Store exported data from the LabelStudio. data_raw = export_annotations( project_id=label_studio_project_id, export_type="CSV" ) if path_previous_session_dir is not None: data_raw_previous = pd.read_csv( os.path.join(path_previous_session_dir, "export.csv") ) data_raw = pd.concat( [data_raw, data_raw_previous], axis=0, ignore_index=True ) data_raw.to_csv(path_data_export, index=False) # Store preprocessed data. data_preprocessed = preprocess(data_raw=data_raw, flatten_error=False) data_preprocessed.to_csv(path_data_preprocessed, index=False) # Store all intermediate data during retraining. ( data_train, data_train_augmented, data_train_augmented_rus, data_val, data_val_rus, ) = retrain( path_model_checkpoint, path_adapter_checkpoint, data_preprocessed, class_distribution=class_distribution, ) # TODO: add hyperparameter input here data_train.to_csv(path_data_train, index=False) data_train_augmented.to_csv(path_data_train_augmented, index=False) data_train_augmented_rus.to_csv(path_data_train_augmented_rus, index=False) data_val.to_csv(path_data_val, index=False) data_val_rus.to_csv(path_data_val_rus, index=False) # Store ranking results of the next training cycle. data_litsense =
pd.read_csv(path_data_all)
pandas.read_csv
from sklearn.model_selection import train_test_split import os from functools import reduce import matplotlib.colors as mcolors import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split def read_data(filepath): preprocess_data(filepath) dateparse = lambda x:
pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S.%f')
pandas.datetime.strptime
# ndp d2 app for smoooth rdm... import streamlit as st import pandas as pd import numpy as np from st_aggrid import AgGrid import plotly.express as px from apis import pno_data from apis import mtk_rak_pno from apis import pno_hist # page setup st.set_page_config(page_title="NDP App d2", layout="wide") padding = 2 st.markdown(f""" <style> .reportview-container .main .block-container{{ padding-top: {padding}rem; padding-right: {padding}rem; padding-left: {padding}rem; padding-bottom: {padding}rem; }} </style> """, unsafe_allow_html=True) header = '<p style="font-family:sans-serif; color:grey; font-size: 12px;">\ NDP project app2 V0.94 "Carelian Beta"\ </p>' st.markdown(header, unsafe_allow_html=True) # plot size setup #px.defaults.width = 600 px.defaults.height = 600 # page title header_title = ''' **Naked Density Project** ''' st.subheader(header_title) header_text = ''' <p style="font-family:sans-serif; color:Dimgrey; font-size: 12px;"> Naked Density Projekti on <a href="https://research.aalto.fi/en/persons/teemu-jama" target="_blank">Te<NAME></a> vรคitรถskirjatutkimus Aalto-yliopistossa. Projektissa tutkitaan maankรคytรถn tehokkuuden vaikutuksia kestรคvรครคn kehitykseen data-analytiikan avulla. </p> ''' st.markdown(header_text, unsafe_allow_html=True) st.markdown("""---""") st.title("Data Paper #2") st.markdown("Koko Suomi datana") st.markdown("###") kuntakoodit = pd.read_csv('config/kunta_dict.csv', index_col=False, header=0).astype(str) kuntalista = kuntakoodit['kunta'].tolist() default_ix = kuntalista.index('Espoo') st.title(':point_down:') # kuntavalitsin valinta = st.selectbox('Valitse kunta ja taulukosta postinumeroalue', kuntalista, index=default_ix) # hae pno data.. taulukkodata = pno_data(valinta) # TABLE .. from st_aggrid.grid_options_builder import GridOptionsBuilder gb = GridOptionsBuilder.from_dataframe(taulukkodata) gb.configure_selection(selection_mode="single", use_checkbox=True) # (selection_mode="multiple", use_checkbox=True) gridOptions = gb.build() from st_aggrid.shared import GridUpdateMode data = AgGrid(taulukkodata, gridOptions=gridOptions, enable_enterprise_modules=False, allow_unsafe_jscode=True, update_mode=GridUpdateMode.SELECTION_CHANGED) selected_row = data["selected_rows"] pno_alue =
pd.DataFrame(selected_row)
pandas.DataFrame
# -*- coding: utf-8 -*- """Benchmark the speed for generating new datasets by remixing old ones.""" import itertools as itt import logging import os import time from datetime import datetime import click import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import torch from humanize import intword from tqdm import tqdm from pykeen.datasets import dataset_resolver, get_dataset from pykeen.triples.splitting import split from pykeen.utils import get_benchmark from pykeen.version import get_git_hash SPLITTING_DIRECTORY = get_benchmark('splitting') RESULTS_DIRECTORY = SPLITTING_DIRECTORY / 'results' os.makedirs(RESULTS_DIRECTORY, exist_ok=True) tsv_path = SPLITTING_DIRECTORY / 'split_benchmark.tsv' png_path = SPLITTING_DIRECTORY / 'split_benchmark.png' scatter_png_path = SPLITTING_DIRECTORY / 'split_benchmark_scatter.png' columns = [ 'hash', 'dataset', 'dataset_size', 'dataset_load_time', 'dataset_cat_time', 'method', 'ratio', 'replicate', 'split_time', 'training_size', 'testing_size', 'validation_size', ] def _log(s): tqdm.write(f'[{datetime.now().strftime("%H:%M:%S")}] {s}') @click.command() @click.option('-r', '--replicates', type=int, default=5, show_default=True) @click.option('-f', '--force', is_flag=True) def main(replicates: int, force: bool): import pykeen.triples.splitting pykeen.triples.splitting.logger.setLevel(logging.ERROR) import pykeen.triples.triples_factory pykeen.triples.triples_factory.logger.setLevel(logging.ERROR) import pykeen.utils pykeen.utils.logger.setLevel(logging.ERROR) git_hash = get_git_hash() methods = ['cleanup', 'coverage'] ratios = [0.8] click.echo(f'output directory: {SPLITTING_DIRECTORY.as_posix()}') rows = [] outer_it = tqdm(sorted(dataset_resolver.lookup_dict), desc='Dataset') for dataset in outer_it: dataset_path = RESULTS_DIRECTORY / f'{dataset}.tsv' if dataset_path.exists() and not force: _log(f'loading pre-calculated {dataset} from {dataset_path}') df = pd.read_csv(dataset_path, sep='\t') rows.extend(df.values) continue _log(f'loading {dataset}') t = time.time() dataset = get_dataset(dataset=dataset) dataset_name = dataset.__class__.__name__ ccl = [ dataset.training.mapped_triples, dataset.testing.mapped_triples, dataset.validation.mapped_triples, ] load_time = time.time() - t _log(f'done loading {dataset_name} after {load_time:.3f} seconds') _log(f'concatenating {dataset_name}') t = time.time() mapped_triples: torch.LongTensor = torch.cat(ccl, dim=0) concat_time = time.time() - t _log(f'done concatenating {dataset_name} after {concat_time:.3f} seconds') _log(f'deleting {dataset_name}') del dataset _log(f'done deleting {dataset_name}') dataset_rows = [] inner_it = itt.product(methods, ratios, range(1, 1 + replicates)) inner_it = tqdm( inner_it, total=len(methods) * len(ratios) * replicates, desc=f'{dataset_name} ({intword(mapped_triples.shape[0])})', ) for method, ratio, replicate in inner_it: t = time.time() results = split( mapped_triples, ratios=[ratio, (1 - ratio) / 2], method=method, random_state=replicate, ) split_time = time.time() - t dataset_rows.append(( git_hash, dataset_name, mapped_triples.shape[0], load_time, concat_time, method, ratio, replicate, split_time, results[0].shape[0], results[1].shape[0], results[2].shape[0], )) del results _log(f'writing to {dataset_path}')
pd.DataFrame(dataset_rows, columns=columns)
pandas.DataFrame
"""Console script for koapy.""" import os import locale import logging import click import koapy from koapy.utils.logging import set_verbosity CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) client_check_timeout = 3 def fail_with_usage(message=None): ctx = click.get_current_context() if message is not None: click.UsageError(message).show() click.echo() click.echo(ctx.get_help()) ctx.exit(1) @click.group(context_settings=CONTEXT_SETTINGS) @click.version_option(koapy.__version__, '-V', '--version') def cli(): pass @cli.command(context_settings=CONTEXT_SETTINGS, short_help='Start grpc server with tray application.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, default=5, help='Verbosity.') @click.option('--no-verbose', is_flag=True) @click.argument('args', nargs=-1) def serve(port, verbose, no_verbose, args): """ ARGS are passed to QApplication. """ app_args = [] if port: app_args += ['--port', port] if not no_verbose and verbose > 0: app_args.append('-' + 'v' * verbose) app_args += list(args) from koapy.pyqt5.KiwoomOpenApiTrayApplication import KiwoomOpenApiTrayApplication KiwoomOpenApiTrayApplication.main(app_args) @cli.command(context_settings=CONTEXT_SETTINGS, short_help='Ensure logged in when server is up.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def login(port, verbose): set_verbosity(verbose) from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout) as context: state = context.GetConnectState() if state == 0: click.echo('Logging in...') else: click.echo('Already logged in.') context.EnsureConnected() gubun = context.GetServerGubun() if gubun == '1': click.echo('Logged into Simulation server.') else: click.echo('Logged into Real server.') @cli.group(context_settings=CONTEXT_SETTINGS, short_help='Configure many things.') def config(): pass @config.command(context_settings=CONTEXT_SETTINGS, short_help='Configure auto login.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def autologin(port, verbose): set_verbosity(verbose) from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout) as context: context.EnsureConnected() context.ShowAccountWindow() @cli.group(context_settings=CONTEXT_SETTINGS, short_help='Update openapi metadata.') def update(): pass @update.command(context_settings=CONTEXT_SETTINGS, short_help='Update openapi TR metadata.') @click.option('-v', '--verbose', count=True, help='Verbosity.') def trdata(verbose): set_verbosity(verbose) from koapy.openapi.TrInfo import TrInfo TrInfo.dump_trinfo_by_code() @update.command(context_settings=CONTEXT_SETTINGS, short_help='Update openapi realtype metadata.') @click.option('-v', '--verbose', count=True, help='Verbosity.') def realdata(verbose): set_verbosity(verbose) from koapy.openapi.RealType import RealType RealType.dump_realtype_by_desc() @cli.group(context_settings=CONTEXT_SETTINGS, short_help='Get various types of data.') def get(): pass market_codes = [ '0', '10', '3', '8', '50', '4', '5', '6', '9', '30', 'all', ] @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get stock codes.') @click.option('-m', '--market', 'markets', metavar='MARKET', multiple=True, type=click.Choice(market_codes, case_sensitive=False), help='Stock market code to get. Can set multiple times.') @click.option('-n', '--name', metavar='NAME', help='Name of stock.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') def stockcode(markets, name, port): """ \b Possible market codes are: 0 : ์žฅ๋‚ด 10 : ์ฝ”์Šค๋‹ฅ 3 : ELW 8 : ETF 50 : KONEX 4 : ๋ฎค์ถ”์–ผํŽ€๋“œ 5 : ์‹ ์ฃผ์ธ์ˆ˜๊ถŒ 6 : ๋ฆฌ์ธ  9 : ํ•˜์ด์–ผํŽ€๋“œ 30 : K-OTC \b Possible market code aliases are: all: All possible market codes. """ if (markets, name) == (tuple(), None): fail_with_usage() from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout) as context: context.EnsureConnected() if name is not None and not markets: markets = ['0'] if 'all' in markets: markets = market_codes codes = set() for market in markets: codes = codes.union(set(context.GetCodeListByMarketAsList(market))) codes = sorted(list(codes)) if not name: for code in codes: click.echo(code) else: names = [context.GetMasterCodeName(code) for code in codes] codes_by_name = dict(zip(names, codes)) code = codes_by_name.get(name, None) if code: click.echo(code) else: click.echo('Cannot find code for given name.') @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get name for stock codes.') @click.option('-c', '--code', 'codes', metavar='CODE', multiple=True, help='Stock code to get. Can set multiple times.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') def stockname(codes, port): from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout) as context: context.EnsureConnected() def get_codes(): if codes: if '-' in codes: with click.open_file('-', 'r') as f: for code in f: yield code.strip() else: for code in codes: yield code else: while True: try: code = click.prompt('code', prompt_suffix=' >>> ') code = code.strip() if code == 'exit': break if code: yield code except EOFError: break for code in get_codes(): name = context.GetMasterCodeName(code) click.echo(name) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get basic information of stocks.') @click.option('-c', '--code', 'codes', metavar='CODE', multiple=True, help='Stock code to get. Can set multiple times.') @click.option('-m', '--market', 'markets', metavar='MARKET', multiple=True, type=click.Choice(market_codes, case_sensitive=False), help='Stock market code to get. Alternative to --code. Can set multiple times.') @click.option('-i', '--input', metavar='FILENAME', type=click.Path(), help='Text or excel file containing codes. Alternative to --code or --market.') @click.option('-o', '--output', metavar='FILENAME', type=click.Path(), help="Output filename. Optional for single code (prints to console).") @click.option('-f', '--format', metavar='FORMAT', type=click.Choice(['md', 'xlsx', 'json'], case_sensitive=False)) @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def stockinfo(codes, markets, input, output, format, port, verbose): # pylint: disable=redefined-builtin """ \b Possible market codes are: 0 : ์žฅ๋‚ด 10 : ์ฝ”์Šค๋‹ฅ 3 : ELW 8 : ETF 50 : KONEX 4 : ๋ฎค์ถ”์–ผํŽ€๋“œ 5 : ์‹ ์ฃผ์ธ์ˆ˜๊ถŒ 6 : ๋ฆฌ์ธ  9 : ํ•˜์ด์–ผํŽ€๋“œ 30 : K-OTC \b Possible market code aliases are: all: All possible market codes. """ if (codes, markets, input, output) == (tuple(), tuple(), None, None): fail_with_usage() set_verbosity(verbose) codes_from_input = False codes_len = len(codes) if codes_len == 0 and len(markets) == 0: if input is None: fail_with_usage('Cannot specify codes.') if not os.path.exists(input): fail_with_usage('Given input does not exist.') codes_from_input = True if os.path.isfile(input): if input.endswith('.xlsx'): import pandas as pd df = pd.read_excel(input, dtype=str) code_column = '์ข…๋ชฉ์ฝ”๋“œ' if code_column in df: codes = df[code_column] else: codes = df.iloc[0] codes_len = len(codes) elif input.endswith('.txt'): with open(input) as f: codes = [line.strip() for line in f] codes_len = len(codes) else: fail_with_usage('Unrecognized input type.') else: fail_with_usage('Unrecognized input type.') if output is None: if codes_len > 1 or codes_from_input: fail_with_usage('Output path is not specified.') if format is None: format = 'md' else: if format is None: format = 'xlsx' if format == 'xlsx': if not output.endswith('.xlsx'): output += '.xlsx' elif format == 'md': if not output.endswith('.md'): output += '.md' elif format == 'json': if not output.endswith('.json'): output += '.json' import pandas as pd from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose) as context: context.EnsureConnected() if not codes_from_input and codes_len == 1: df = context.GetStockInfoAsDataFrame(codes) if not output: if format == 'md': click.echo(df.iloc[0].to_markdown()) elif format == 'json': click.echo(df.iloc[0].to_json()) else: if format == 'xlsx': df.to_excel(output, index=False) elif format == 'json': with open(output, 'w') as f: click.echo(df.iloc[0].to_json(), file=f) elif codes_len > 0: df = context.GetStockInfoAsDataFrame(codes) df.to_excel(output, index=False) elif len(markets) > 0: if 'all' in markets: markets = market_codes if format == 'xlsx': with pd.ExcelWriter(output) as writer: # pylint: disable=abstract-class-instantiated for market in markets: codes = context.GetCodeListByMarketAsList(market) df = context.GetStockInfoAsDataFrame(codes) df.to_excel(writer, index=False, sheet_name=market) elif format == 'json': codes = set() for market in markets: codes = codes.union(set(context.GetCodeListByMarketAsList(market))) codes = sorted(list(codes)) with open(output, 'w', encoding='utf-8') as f: for code in codes: df = context.GetStockInfoAsDataFrame(code) click.echo(df.iloc[0].to_json(), file=f) else: fail_with_usage('Cannot specify codes.') @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get daily OHLCV of stocks.') @click.option('-c', '--code', 'codes', metavar='CODE', multiple=True, help='Stock code to get. Can set multiple times.') @click.option('-i', '--input', metavar='FILENAME', type=click.Path(), help='Text or excel file containing codes. Alternative to --codes option.') @click.option('-o', '--output', metavar='FOLDER|FILENAME', type=click.Path(), help='Output foldername or filename for single code. Files inside the folder would be named as CODE.xlsx. Defaults to current directory.') @click.option('-f', '--format', metavar='FORMAT', type=click.Choice(['xlsx', 'sqlite3'], case_sensitive=False), default='xlsx', help='Output format. (default: xlsx)') @click.option('-x', '--clean', is_flag=True, help='Remove untracked files.') @click.option('-s', '--start-date', metavar='YYYY-MM-DD', type=click.DateTime(formats=['%Y-%m-%d', '%Y%m%d']), help='Most recent date to get. Defaults to today or yesterday if market is open.') @click.option('-e', '--end-date', metavar='YYYY-MM-DD', type=click.DateTime(formats=['%Y-%m-%d', '%Y%m%d']), help='Stops if reached, not included (optional).') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def daily(codes, input, output, format, clean, start_date, end_date, port, verbose): # pylint: disable=redefined-builtin if (codes, input, output, start_date, end_date) == (tuple(), None, None, None, None): fail_with_usage() set_verbosity(verbose) codes_len = len(codes) extension = '.' + format if codes_len == 0: if input is None: fail_with_usage('Either code or input should be given.') if not os.path.exists(input): fail_with_usage('Given input does not exist.') if os.path.isfile(input): if input.endswith('.xlsx'): import pandas as pd df = pd.read_excel(input, dtype=str) code_column = '์ข…๋ชฉ์ฝ”๋“œ' if code_column in df: codes = df[code_column] else: codes = df.iloc[0] codes_len = len(codes) elif input.endswith('.txt'): with open(input) as f: codes = [line.strip() for line in f] codes_len = len(codes) else: fail_with_usage('Unrecognized input file type.') elif os.path.isdir(input): import re codes = [os.path.splitext(name)[0] for name in os.listdir(input) if name.endswith(extension)] codes = [code for code in codes if re.match(r'[0-9A-Z]+', code)] codes_len = len(codes) else: fail_with_usage('Unrecognized input type.') if output is None: output = '.' if os.path.exists(output): if os.path.isdir(output): output_is_folder = True else: output_is_folder = False else: if output.endswith('/') or output.endswith(os.path.sep) or codes_len > 1: output_is_folder = True else: output_is_folder = False if not output_is_folder: assert codes_len == 1 code = codes[0] base_output = os.path.basename(output) output = os.path.dirname(output) if not base_output.endswith(extension): base_output += extension final_output = os.path.join(output, base_output) def post_process(updater, codes, output, context): # pylint: disable=unused-argument os.replace(updater.get_filepath_for_code(code), final_output) else: def post_process(updater, codes, output, context): # pylint: disable=unused-argument pass import contextlib with contextlib.ExitStack() as stack: context = None if port is not None: from koapy import KiwoomOpenApiContext context = stack.enter_context(KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose)) context.EnsureConnected() from koapy.data.HistoricalStockPriceDataUpdater import HistoricalStockPriceDataUpdater updater = HistoricalStockPriceDataUpdater(codes, output, 'daily', 1, format, delete_remainings=clean, context=context) updater.update() post_process(updater, codes, output, context) minute_intervals = [ '1', '3', '5', '10', '15', '30', '45', '60', ] @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get minute OHLCV of stocks.') @click.option('-c', '--code', 'codes', metavar='CODE', multiple=True, help='Stock code to get. Can set multiple times.') @click.option('-t', '--interval', metavar='INTERVAL', type=click.Choice(minute_intervals, case_sensitive=False), help='Minute interval. Possible values are [%s]' % '|'.join(minute_intervals)) @click.option('-i', '--input', metavar='FILENAME', type=click.Path(), help='Text or excel file containing codes. Alternative to --codes option.') @click.option('-o', '--output', metavar='FOLDER|FILENAME', type=click.Path(), help='Output foldername or filename for single code. Files inside the folder would be named as CODE.xlsx. Defaults to current directory.') @click.option('-f', '--format', metavar='FORMAT', type=click.Choice(['xlsx', 'sqlite3'], case_sensitive=False), default='xlsx', help='Output format. (default: xlsx)') @click.option('-x', '--clean', is_flag=True, help='Remove untracked files.') @click.option('-s', '--start-date', metavar="YYYY-MM-DD['T'hh:mm:ss]", type=click.DateTime(formats=['%Y-%m-%d', '%Y%m%d', '%Y-%m-%dT%H:%M:%S', '%Y%m%d%H%M%S']), help='Most recent date to get. Defaults to today or yesterday if market is open.') @click.option('-e', '--end-date', metavar="YYYY-MM-DD['T'hh:mm:ss]", type=click.DateTime(formats=['%Y-%m-%d', '%Y%m%d', '%Y-%m-%dT%H:%M:%S', '%Y%m%d%H%M%S']), help='Stops if reached, not included (optional).') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def minute(codes, interval, input, output, format, clean, start_date, end_date, port, verbose): # pylint: disable=redefined-builtin if (codes, interval, input, output, start_date, end_date) == (tuple(), None, None, None, None, None): fail_with_usage() set_verbosity(verbose) if interval is None: fail_with_usage('Interval is not set.') codes_len = len(codes) extension = '.' + format if codes_len == 0: if input is None: fail_with_usage('Either code or input should be given.') if not os.path.exists(input): fail_with_usage('Given input does not exist.') if os.path.isfile(input): if input.endswith('.xlsx'): import pandas as pd df = pd.read_excel(input, dtype=str) code_column = '์ข…๋ชฉ์ฝ”๋“œ' if code_column in df: codes = df[code_column] else: codes = df.iloc[0] codes_len = len(codes) elif input.endswith('.txt'): with open(input) as f: codes = [line.strip() for line in f] codes_len = len(codes) else: fail_with_usage('Unrecognized input file type.') elif os.path.isdir(input): import re codes = [os.path.splitext(name)[0] for name in os.listdir(input) if name.endswith(extension)] codes = [code for code in codes if re.match(r'[0-9A-Z]+', code)] codes_len = len(codes) else: fail_with_usage('Unrecognized input type.') if output is None: output = '.' if os.path.exists(output): if os.path.isdir(output): output_is_folder = True else: output_is_folder = False else: if output.endswith('/') or output.endswith(os.path.sep) or codes_len > 1: output_is_folder = True else: output_is_folder = False if not output_is_folder: assert codes_len == 1 code = codes[0] base_output = os.path.basename(output) output = os.path.dirname(output) extension = '.' + format if not base_output.endswith(extension): base_output += extension final_output = os.path.join(output, base_output) def post_process(updater, codes, output, context): # pylint: disable=unused-argument os.replace(updater.get_filepath_for_code(code), final_output) else: def post_process(updater, codes, output, context): # pylint: disable=unused-argument pass import contextlib with contextlib.ExitStack() as stack: context = None if port is not None: from koapy import KiwoomOpenApiContext context = stack.enter_context(KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose)) context.EnsureConnected() from koapy.data.HistoricalStockPriceDataUpdater import HistoricalStockPriceDataUpdater updater = HistoricalStockPriceDataUpdater(codes, output, 'minute', interval, format, delete_remainings=clean, context=context) updater.update() post_process(updater, codes, output, context) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get TR info.') @click.option('-t', '--trcode', 'trcodes', metavar='TRCODE', multiple=True, help='TR code to get (like opt10001).') def trinfo(trcodes): from koapy.openapi.TrInfo import TrInfo def get_codes(): if trcodes: if '-' in trcodes: with click.open_file('-', 'r') as f: for code in f: yield code.strip() else: for code in trcodes: yield code else: while True: try: code = click.prompt('trcode', prompt_suffix=' >>> ') code = code.strip() if code == 'exit': break if code: yield code except EOFError: break for trcode in get_codes(): trinfo = TrInfo.get_trinfo_by_code(trcode) if trinfo is not None: click.echo('[%s] : [%s]' % (trinfo.tr_code.upper(), trinfo.name)) click.echo(' [INPUT]') for input in trinfo.inputs: click.echo(' %s' % input.name) if trinfo.single_outputs: click.echo(' [OUTPUT] [SINGLE DATA] : [%s]' % trinfo.single_outputs_name) for output in trinfo.single_outputs: click.echo(' %s' % output.name) if trinfo.multi_outputs: click.echo(' [OUTPUT] [MULTI DATA] : [%s]' % trinfo.multi_outputs_name) for output in trinfo.multi_outputs: click.echo(' %s' % output.name) else: click.echo('Given trcode is invalid') @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get real type info.') @click.option('-t', '--realtype', 'realtypes', metavar='REALTYPE', multiple=True, help='Real type name to get (like ์ฃผ์‹์‹œ์„ธ).') def realinfo(realtypes): from koapy.openapi.RealType import RealType def get_realtypes(): if realtypes: if '-' in realtypes: with click.open_file('-', 'r') as f: for realtype in f: yield realtype.strip() else: for realtype in realtypes: yield realtype else: while True: try: realtype = click.prompt('realtype', prompt_suffix=' >>> ') realtype = realtype.strip() if realtype == 'exit': break if realtype: yield realtype except EOFError: break for realtype in get_realtypes(): fids = RealType.get_fids_by_realtype(realtype) if fids: names = [RealType.Fid.get_name_by_fid(fid, str(fid)) for fid in fids] for fid, name in zip(fids, names): click.echo(' [%s] = %s' % (fid, name)) else: click.echo('Given realtype is invalid') @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get market holidays.') @click.option('-o', '--output', metavar='FILENAME', type=click.Path(), help='Output filename. (optional)') @click.option('-O', '--offline', is_flag=True, help='Do not use krx marketdata api. (default: false)') @click.option('-u', '--update', is_flag=True, help='Update local cache, download from krx marketdata api.') @click.option('-U', '--no-update', is_flag=True, help='Disable update.') @click.option('-v', '--verbose', count=True, help='Verbosity.') def holidays(output, offline, update, no_update, verbose): set_verbosity(verbose) if output is None: import pandas as pd if not offline: from koapy.utils.krx.marketdata.holiday import download_holidays_as_dict response = download_holidays_as_dict() else: def get_holidays(): import datetime from koapy.utils.krx.calendar.KrxHolidayCalendar import KrxHolidayCalendar today = datetime.datetime.today() calendar = KrxHolidayCalendar() start = datetime.datetime(today.year, 1, 1) end = datetime.datetime(today.year, 12, 31) holidays = calendar.holidays(start, end, return_name=True) return holidays def get_holidays_as_dict(): holidays = get_holidays() response = {'block1': [{ 'calnd_dd_dy': dt.strftime('%Y-%m-%d'), 'kr_dy_tp': dt.strftime('%a'), 'dy_tp_cd': dt.strftime('%a'), 'holdy_nm': name, } for dt, name in holidays.items() if dt.weekday() < 5]} return response response = get_holidays_as_dict() lang = locale.getdefaultlocale()[0] if lang == 'ko_KR': day_key = '<KEY>' columns = ['์ผ์ž ๋ฐ ์š”์ผ', '์š”์ผ๊ตฌ๋ถ„', '๋น„๊ณ '] else: day_key = '<KEY>' columns = ['date', 'day of week', 'comment'] data = [] for holiday in response['block1']: date = holiday['calnd_dd_dy'] day = holiday[day_key].strip() name = holiday['holdy_nm'] data.append([date, day, name]) df = pd.DataFrame.from_records(data, columns=columns) click.echo(df.to_markdown()) else: if not offline: from koapy.utils.krx.marketdata.holiday import download_holidays_as_excel if output and not output.endswith('.xls'): output += '.xls' download_holidays_as_excel(output) if update: logging.warning('Cannot update on file output.') else: fail_with_usage('Saving to file should come with offline option disabled.') @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get user information.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def userinfo(port, verbose): set_verbosity(verbose) import pandas as pd from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose) as context: context.EnsureConnected() result = {} result['๋ณด์œ ๊ณ„์ขŒ์ˆ˜'] = context.GetLoginInfo('ACCOUNT_CNT') account_numbers = context.GetLoginInfo('ACCLIST').rstrip(';').split(';') for i, accno in enumerate(account_numbers): result['๊ณ„์ขŒ๋ฒˆํ˜ธ (%d/%s)' % (i + 1, result['๋ณด์œ ๊ณ„์ขŒ์ˆ˜'])] = accno result['์‚ฌ์šฉ์ž ID'] = context.GetLoginInfo('USER_ID') result['์‚ฌ์šฉ์ž ๋ช…'] = context.GetLoginInfo('USER_NAME') result['ํ‚ค๋ณด๋“œ๋ณด์•ˆ ํ•ด์ง€ ์—ฌ๋ถ€'] = { '0': '์ •์ƒ', '1': 'ํ•ด์ง€', }.get(context.GetLoginInfo('KEY_BSECGB'), '์•Œ์ˆ˜์—†์Œ') result['๋ฐฉํ™”๋ฒฝ ์„ค์ • ์—ฌ๋ถ€'] = { '0': '๋ฏธ์„ค์ •', '1': '์„ค์ •', '2': 'ํ•ด์ง€', }.get(context.GetLoginInfo('FIREW_SECGB'), '์•Œ์ˆ˜์—†์Œ') result['์ ‘์†์„œ๋ฒ„ ๊ตฌ๋ถ„'] = { '1': '๋ชจ์˜ํˆฌ์ž', }.get(context.GetServerGubun(), '์‹ค์„œ๋ฒ„') click.echo(pd.Series(result).to_markdown()) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get account deposit.') @click.option('-a', '--account', metavar='ACCNO', help='Account number.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def deposit(account, port, verbose): set_verbosity(verbose) if account is None: logging.info('Account not given. Using first account available.') from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose) as context: context.EnsureConnected() if account is None: account = context.GetAccountList()[0] result = context.GetDepositInfo(account) click.echo(result.to_markdown()) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get account evaluation.') @click.option('-a', '--account', metavar='ACCNO', help='Account number.') @click.option('-d', '--include-delisted', is_flag=True, help='Include delisted.', default=True) @click.option('-D', '--exclude-delisted', is_flag=True, help='Exclude delisted.') @click.option('-e', '--for-each', is_flag=True, help='Show individual evaluation.', default=True) @click.option('-E', '--as-summary', is_flag=True, help='Show summarized evaluation.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def evaluation(account, include_delisted, exclude_delisted, for_each, as_summary, port, verbose): set_verbosity(verbose) if account is None: logging.info('Account not given. Using first account available.') if exclude_delisted: include_delisted = False if as_summary: for_each = False lookup_type = '1' elif for_each: lookup_type = '2' from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose) as context: context.EnsureConnected() if account is None: account = context.GetAccountList()[0] single, multi = context.GetAccountEvaluationStatusAsSeriesAndDataFrame(account, include_delisted) click.echo('[๊ณ„์ขŒํ‰๊ฐ€ํ˜„ํ™ฉ์š”์ฒญ] : [๊ณ„์ขŒํ‰๊ฐ€ํ˜„ํ™ฉ]') click.echo(single.to_markdown()) click.echo() click.echo('[๊ณ„์ขŒํ‰๊ฐ€ํ˜„ํ™ฉ์š”์ฒญ] : [์ข…๋ชฉ๋ณ„๊ณ„์ขŒํ‰๊ฐ€ํ˜„ํ™ฉ]') click.echo(multi.to_markdown()) click.echo() single, multi = context.GetAccountEvaluationBalanceAsSeriesAndDataFrame(account, lookup_type) click.echo('[๊ณ„์ขŒํ‰๊ฐ€์ž”๊ณ ๋‚ด์—ญ์š”์ฒญ] : [๊ณ„์ขŒํ‰๊ฐ€๊ฒฐ๊ณผ]') click.echo(single.to_markdown()) click.echo() click.echo('[๊ณ„์ขŒํ‰๊ฐ€์ž”๊ณ ๋‚ด์—ญ์š”์ฒญ] : [๊ณ„์ขŒํ‰๊ฐ€์ž”๊ณ ๊ฐœ๋ณ„ํ•ฉ์‚ฐ]') click.echo(multi.to_markdown()) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get order history of a date.') @click.option('-a', '--account', metavar='ACCNO', help='Account number.') @click.option('-d', '--date', metavar='DATE', help='Date to get.') @click.option('-r', '--reverse', is_flag=True) @click.option('-e', '--executed-only', is_flag=True) @click.option('-E', '--not-executed-only', is_flag=True) @click.option('-S', '--stock-only', is_flag=True) @click.option('-B', '--bond-only', is_flag=True) @click.option('-s', '--sell-only', is_flag=True) @click.option('-b', '--buy-only', is_flag=True) @click.option('-c', '--code', metavar='CODE', help='Stock code to get.') @click.option('-o', '--starting-order-no', metavar='ORDERNO', help='Starting order no.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def orders(account, date, reverse, executed_only, not_executed_only, stock_only, bond_only, sell_only, buy_only, code, starting_order_no, port, verbose): set_verbosity(verbose) if account is None: logging.info('Account not given. Using first account available.') from koapy import KiwoomOpenApiContext sort_type = '1' if reverse: sort_type = '2' if executed_only: sort_type = '3' if not_executed_only: sort_type = '4' asset_type = '0' if stock_only: asset_type = '1' if bond_only: asset_type = '2' order_type = '0' if sell_only: order_type = '1' if buy_only: order_type = '2' with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose) as context: context.EnsureConnected() if account is None: account = context.GetAccountList()[0] click.echo(context.GetOrderLogAsDataFrame3(account, date, sort_type, asset_type, order_type, code, starting_order_no).to_markdown()) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get OpenApi module installation path.') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def modulepath(port, verbose): set_verbosity(verbose) from koapy import KiwoomOpenApiContext with KiwoomOpenApiContext(port=port, client_check_timeout=client_check_timeout, verbosity=verbose) as context: click.echo(context.GetAPIModulePath()) @get.command(context_settings=CONTEXT_SETTINGS, short_help='Get error message for error code.') @click.option('-e', '--err-code', metavar='ERR', type=int, help='Error code to check.') @click.option('-v', '--verbose', count=True, help='Verbosity.') def errmsg(err_code, verbose): set_verbosity(verbose) from koapy.openapi.KiwoomOpenApiError import KiwoomOpenApiError err_msg = KiwoomOpenApiError.get_error_message_by_code(err_code) click.echo('[%d] %s' % (err_code, err_msg)) @cli.command(context_settings=CONTEXT_SETTINGS, short_help='Watch realtime data.') @click.option('-c', '--code', 'codes', metavar='CODE', multiple=True, help='Stock code to get. Can set multiple times.') @click.option('-i', '--input', metavar='FILENAME', type=click.Path(), help='Text or excel file containing codes. Alternative to --codes option.') @click.option('-f', '--fid', 'fids', metavar='FID', multiple=True, help='FID to get. Can set multiple times.') @click.option('-t', '--realtype', metavar='REALTYPE', help='Real type name. Alternative to --fid.') @click.option('-o', '--output', metavar='FILENAME', type=click.File('w', lazy=True), default='-', help='Output filename (optional).') @click.option('-f', '--format', metavar='FORMAT', type=click.Choice(['md', 'json'], case_sensitive=False), default='md') @click.option('-p', '--port', metavar='PORT', help='Port number of grpc server (optional).') @click.option('-v', '--verbose', count=True, help='Verbosity.') def watch(codes, input, fids, realtype, output, format, port, verbose): if (codes, fids, realtype) == (tuple(), tuple(), None): fail_with_usage() set_verbosity(verbose) codes_len = len(codes) if codes_len == 0: if input is None: fail_with_usage('Either code or input should be given.') if not os.path.exists(input): fail_with_usage('Given input does not exist.') if os.path.isfile(input): if input.endswith('.xlsx'): import pandas as pd df = pd.read_excel(input, dtype=str) code_column = '์ข…๋ชฉ์ฝ”๋“œ' if code_column in df: codes = df[code_column] else: codes = df.iloc[0] codes_len = len(codes) elif input.endswith('.txt'): with open(input) as f: codes = [line.strip() for line in f] codes_len = len(codes) else: fail_with_usage('Unrecognized input type.') else: fail_with_usage('Unrecognized input type.') if realtype is not None: from koapy.openapi.RealType import RealType fids_from_realtype = RealType.get_fids_by_realtype(realtype) fids = list(set(fids).union(set(fids_from_realtype))) if not codes: fail_with_usage('No codes to watch. Set --code or --input.') if not fids: fail_with_usage('Cannot infer fids to watch. Set either --fid or --realtype.') import datetime import pandas as pd from koapy import KiwoomOpenApiContext from koapy.openapi.RealType import RealType def parse_message(message): fids = event.single_data.names names = [RealType.Fid.get_name_by_fid(fid, str(fid)) for fid in fids] values = event.single_data.values dic = dict((name, value) for fid, name, value in zip(fids, names, values) if name != fid) series =
pd.Series(dic)
pandas.Series
import pandas as pd from sqlalchemy import create_engine from dbnd import log_metric, log_dataframe QUERY = "" DB_CONNECTION = "" def track_database(): engine = create_engine(DB_CONNECTION) log_metric("query executed", QUERY) with engine.connect() as connection: result = connection.execute(QUERY).keys() header = [row for row in result] result = connection.execute(QUERY) data = [row for row in result] df =
pd.DataFrame(data, columns=header)
pandas.DataFrame
## drive_path = 'c:/' import numpy as np import pandas as pd import os import sys import matplotlib.pyplot as plt from scipy.stats import ks_2samp from scipy.stats import anderson_ksamp from scipy.stats import kruskal from scipy.stats import variation from scipy import signal as sps import seaborn as sns import glob import re ## #This piece spits out all the peaks in one dataframe def getpeaks(date): '''Spits out all the peaks from imaging session session input as string ''' # This piece spits out all the peaks from one session in one dataframe peakdf = pd.DataFrame([]) os.chdir('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\HabituationFiles\\%s' % date) for filename in glob.glob('*dt.txt'): f = pd.read_csv(filename, nrows=175) df = f[[col for col in f.columns if 'G PMT' in col]] peak = [] for col in df.columns: a = df[col] firsta = 1; firstb = 24; # Figures out if there is a min or max and sees if it passes threshold (3SD) if np.absolute(min(a[26:80])) > np.absolute(max(a[26:80])) and np.absolute(min(a[26:80])) >= 3 * np.std( df[col][firsta:firstb]): b = min(a[26:80]) peak.append(b) elif np.absolute(max(a[26:80])) > np.absolute(min(a[26:80])) and np.absolute(max(a[26:80])) >= 3 * np.std( df[col][firsta:firstb]): b = max(a[26:80]) peak.append(b) else: b = 0 peak.append(b) peaks = pd.DataFrame(peak).T peaks.columns = df.columns peaks = pd.concat([pd.DataFrame({'Trial': [int(filename.split('dt')[0])]}), peaks], axis=1) peakdf = peakdf.append(peaks, ignore_index=True) peakdf.to_csv('%s_peaks.csv' % date, index=False) trials = pd.read_csv('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\Analysis\\Odor_Panel\\Odor_Trials.csv') filerow = trials.loc[trials['File'] == date] odortrials = {} for t in filerow.Odor.unique(): y = {t: [int(x) for x in filerow.loc[filerow['Odor'] == t][['T1', 'T2', 'T3', 'T4']].values.tolist()[0]]} odortrials.update(y) # Get average peak across all trials using peakdf dataframe meandf = pd.DataFrame([]) for key in odortrials: odor = odortrials[key] mean = [] for col in peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]]: mean.append(peakdf.loc[peakdf['Trial'].isin(odor)][col].mean()) mean = pd.DataFrame(mean).T mean.columns = peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]].columns meandf = meandf.append(mean) meandf = meandf.reset_index(drop=True) meandf.columns = [str(col) + '_' + date for col in meandf.columns] meandf = pd.concat([pd.DataFrame({'Odor': odortrials.keys()}), meandf], axis=1) meandf.to_csv('%s_mean.csv' % date, index=False) # Get proportion of successful trials successdf = pd.DataFrame([]) for key in odortrials: odor = odortrials[key] newdf = peakdf.loc[peakdf['Trial'].isin(odor)] s = [] for col in peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]]: s.append(np.divide((newdf.loc[:, col] != 0).sum(), float(len(newdf.loc[:, col])))) s = pd.DataFrame(s).T s.columns = peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]].columns successdf = successdf.append(s) successdf = successdf.reset_index(drop=True) successdf.columns = [str(col) + '_' + date for col in successdf.columns] successdf = pd.concat([pd.DataFrame({'Odor': odortrials.keys()}), successdf], axis=1) successdf.to_csv('%s_success.csv' % date, index=False) return 'Done' ## def getintegral(date): '''Compute integrals and integral means date: string, session ''' temp = pd.DataFrame([]) os.chdir('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\HabituationFiles\\%s' % date) # Pull the trials that correspond to specific date/odors trials = pd.read_csv('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\Analysis\\Odor_Panel\\Odor_Trials.csv') filerow = trials.loc[trials['File'] == date] odortrials = {} for t in filerow.Odor.unique(): y = {t: [int(x) for x in filerow.loc[filerow['Odor'] == t][['T1', 'T2', 'T3', 'T4']].values.tolist()[0]]} odortrials.update(y) # Get the frame rate for a specified date num = trials.File.unique().tolist().index('%s' % date) fr = trials.loc[trials['File'] == trials.File.unique().tolist()[num]]['FrameRate'].iloc[0] # Get the integral intdf =
pd.DataFrame([])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Mar 19 22:51:03 2018 @author: <NAME> """ import os import time import pdb import shutil import sys import argparse import logging import tempfile import multiprocessing as mp import platform import pytest import numpy as np import pandas as pd import sandy from sandy.settings import SandyError from sandy.formats import read_formatted_file, get_file_format from sandy.formats.endf6 import Endf6 from sandy.formats.utils import FySamples, XsCov from sandy import pfns from sandy.tools import is_valid_dir, is_valid_file from sandy import njoy __author__ = "<NAME>" __all__ = [ "SamplingManager", "sampling", ] def get_parser(): description = """Produce perturbed files containing sampled parameters that represent the information\nstored in the evaluated nuclear data covariances""" parser = argparse.ArgumentParser( prog="sandy", description=description, formatter_class=argparse.RawTextHelpFormatter, ) SamplingManager.add_file_argument(parser) SamplingManager.add_covfile_argument(parser) SamplingManager.add_mat_argument(parser) SamplingManager.add_mf_argument(parser) SamplingManager.add_mt_argument(parser) SamplingManager.add_processes_argument(parser) SamplingManager.add_samples_argument(parser) SamplingManager.add_version_argument(parser) return parser class SamplingManager(): """ Attributes ---------- file : `str` ENDF-6 or PENDF format file covfile : `str` ENDF-6 file containing covariances mat : `list` of `int` draw samples only from the selected MAT sections mf : `list` of `int` draw samples only from the selected MF sections mt : `list` of `int` draw samples only from the selected MT sections processes : `int` number of worker processes (default is 1) samples : `int` number of samples (default is 100) """ def __repr__(self): return self.__dict__.__repr__() def __init__(self, file): self.file = file @property def file(self): """ Examples -------- >>> with pytest.raises(Exception): sandy.SamplingManager("random_file") """ return self._file @file.setter def file(self, file): if not os.path.isfile(file): raise ValueError(f"File '{file}' does not exist") self._file = file @staticmethod def add_file_argument(parser): parser.add_argument( 'file', help="ENDF-6 or PENDF format file", ) @property def covfile(self): """ """ if hasattr(self, "_covfile"): return self._covfile else: return None @covfile.setter def covfile(self, covfile): if not covfile: self._covfile = None else: if not os.path.isfile(covfile): raise ValueError(f"File '{covfile}' does not exist") self._covfile = covfile @staticmethod def add_covfile_argument(parser): parser.add_argument( '--covfile', '-C', help="ENDF-6 file containing covariances", ) @property def mat(self): if hasattr(self, "_mat"): return self._mat else: return list(range(1, 10000)) @mat.setter def mat(self, mat): self._mat = np.array(mat).astype(int).tolist() @staticmethod def add_mat_argument(parser): parser.add_argument( '--mat', type=int, default=list(range(1, 10000)), action='store', nargs="+", metavar="{1,..,9999}", help="draw samples only from the selected MAT sections " "(default is keep all)", ) @property def mf(self): if hasattr(self, "_mf"): return self._mf else: return [31, 33, 34, 35] @mf.setter def mf(self, mf): self._mf = np.array(mf).astype(int).tolist() @staticmethod def add_mf_argument(parser): parser.add_argument( '--mf', type=int, default=[31, 33, 34, 35], action='store', nargs="+", metavar="{31,33,34,35}", help="draw samples only from the selected MF sections " "(default is keep all)", ) @property def mt(self): if hasattr(self, "_mt"): return self._mt else: return list(range(1, 1000)) @mt.setter def mt(self, mt): self._mt = np.array(mt).astype(int).tolist() @staticmethod def add_mt_argument(parser): parser.add_argument( '--mt', type=int, default=list(range(1, 1000)), action='store', nargs="+", metavar="{1,..,999}", help="draw samples only from the selected MT sections " "(default = keep all)", ) @property def processes(self): if hasattr(self, "_processes"): return 1 else: return self._processes @processes.setter def processes(self, processes): if platform.system() == "Windows": self._processes = 1 logging.info("Running on Windows does not allow parallel " "processing") else: self._processes = int(processes) @staticmethod def add_processes_argument(parser): parser.add_argument( '--processes', '-N', type=int, default=1, help="number of worker processes (default is 1)", ) @property def samples(self): if hasattr(self, "_samples"): return 100 else: return self._samples @samples.setter def samples(self, samples): self._samples = int(samples) @staticmethod def add_samples_argument(parser): parser.add_argument( '--samples', '-S', type=int, default=100, help="number of samples (default is 100)", ) @staticmethod def add_version_argument(parser): parser.add_argument( "--version", "-v", action='version', version=f'%(prog)s {sandy.__version__}', help="code version", ) @classmethod def from_cli(cls, iargs=None): """ Parse command line arguments for sampling option. Parameters ---------- iargs : `list` of `str`, optional, default is `None` list of strings to parse. The default is taken from `sys.argv`. Returns ------- `sandy.SamplingManager` object to draw samples from endf6 file Examples -------- >>> file = os.path.join(sandy.data.__path__[0], "h1.endf") >>> sm = sandy.SamplingManager.from_cli([file]) """ arguments, skip = get_parser().parse_known_args(args=iargs) sm = cls(arguments.file) for k, v in arguments._get_kwargs(): sm.__setattr__(k, v) return sm @classmethod def from_cli2(cls, iargs=None): """ Parse command line arguments for sampling option. Parameters ---------- iargs : `list` of `str`, optional, default is `None` list of strings to parse. The default is taken from `sys.argv`. Returns ------- `argparse.Namespace` namespace object containing processed given arguments and/or default options. """ description = """Produce perturbed files containing sampled parameters that represent the information\nstored in the evaluated nuclear data covariances""" parser = argparse.ArgumentParser( prog="sandy", description=description, formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument('--acer', default=False, action="store_true", help="for each perturbed file, produce ACE files\n" "(argument file must be in ENDF-6 format, not PENDF)\n(argument temperature is required)\n(default = False)") parser.add_argument('--cov33csv', type=lambda x: is_valid_file(parser, x), help="file containing xs/nubar covariances in csv " "format") parser.add_argument('--debug', default=False, action="store_true", help="turn on debug mode") parser.add_argument('--eig', type=int, default=10, metavar="N", help="print the first N eigenvalues of the evaluated covariance matrices\n(default = do not print)") parser.add_argument('--energy-sequence', '-E', type=int, metavar="EL", default=49, help=argparse.SUPPRESS) parser.add_argument('--errorr', default=False, action="store_true", help="run NJOY module ERRORR to produce covariance " "matrix for xs data (default = False)") parser.add_argument('--fission-yields', '-F', default=False, action="store_true", help="input <file> contains fission yields") parser.add_argument('--max-polynomial', '-P', type=int, help="Maximum order of Legendre polynomial coefficients considered for sampling (default = all)") parser.add_argument('--njoy', type=lambda x: is_valid_file(parser, x), default=None, help="NJOY executable " "(default search PATH, and env variable NJOY)") parser.add_argument('--outdir', '-D', metavar="DIR", default=os.getcwd(), type=lambda x: is_valid_dir(parser, x, mkdir=True), help="target directory where outputs are stored\n(default = current working directory)\nif it does not exist it will be created") parser.add_argument('--outname', '-O', type=str, help="basename for the output files " "(default is the the basename of <file>.)") parser.add_argument('--seed31', type=int, default=None, metavar="S31", help="seed for random sampling of MF31 covariance " "matrix (default = random)") parser.add_argument('--seed33', type=int, default=None, metavar="S33", help="seed for random sampling of MF33 covariance " "matrix (default = random)") parser.add_argument('--seed34', type=int, default=None, metavar="S34", help="seed for random sampling of MF34 covariance " "matrix (default = random)") parser.add_argument('--seed35', type=int, default=None, metavar="S35", help="seed for random sampling of MF35 covariance " "matrix (default = random)") parser.add_argument('--temperatures', '-T', default=[], type=float, action='store', nargs="+", metavar="T", help="for each perturbed file, produce ACE files at " "given temperatures") init = parser.parse_known_args(args=iargs)[0] if init.acer and not init.temperatures: parser.error("--acer requires --temperatures") if init.acer and sandy.formats.get_file_format(init.file) != "endf6": parser.error("--acer requires file in 'endf6' format") return init @property def tape(self): if not hasattr(self, "_tape"): self._tape = sandy.Endf6.from_file(self.file) return self._tape @tape.setter def tape(self, tape): self._tape = tape @property def covtape(self): if not self.covfile or self.covfile == self.file: self._covtape = self.tape if not hasattr(self, "_covtape"): self._covtape = sandy.Endf6.from_file(self.covfile) return self._covtape @covtape.setter def covtape(self, covtape): self._covtape = covtape def get_xs_samples(self): """ Draw samples using all covariance sections in the given tape. """ mf = 33 pertxs = None if mf in self.mf and mf in self.covtape.mf: covtape = self.covtape.filter_by( listmat=self.mat, listmf=[33], listmt=self.mt, ) xscov = sandy.XsCov.from_endf6(covtape) if not xscov.empty: pertxs = xscov.get_samples(self.samples)#, eig=init.eig, seed=init.seed33) return pertxs def _process_into_ace(ismp): global init outname = init.outname if init.outname else os.path.basename(init.file) smpfile = os.path.join(init.outdir, f'{outname}-{ismp}') print(ismp) kwargs = dict( purr=False, wdir=init.outdir, keep_pendf=False, pendftape=smpfile, tag=f"_{ismp}", temperatures=init.temperatures, err=0.005, addpath="", ) fmt = sandy.formats.get_file_format(smpfile) if fmt == "pendf": kwargs["pendftape"] = smpfile inp = init.file elif fmt == "endf6": inp = smpfile input, inputs, outputs = njoy.process(inp, **kwargs) def _sampling_mp(ismp, skip_title=False, skip_fend=False): global init, pnu, pxs, plpc, pchi, pfy, tape t0 = time.time() mat = tape.mat[0] newtape = Endf6(tape.copy()) extra_points = np.logspace(-5, 7, init.energy_sequence) if not pxs.empty: xs = newtape.get_xs() if not xs.empty: xspert = xs.perturb(pxs[ismp]) newtape = newtape.update_xs(xspert) if not pnu.empty: nubar = newtape.get_nubar() if not nubar.empty: nubarpert = nubar.perturb(pnu[ismp]) newtape = newtape.update_nubar(nubarpert) if not pchi.empty: # use new format tape for energy distribution endfnew = sandy.Endf6._from_old_format(newtape) edistr = sandy.Edistr.from_endf6(endfnew).add_points(extra_points) if not edistr.empty: edistrpert = edistr.perturb(pchi[ismp]) newtape = newtape.update_edistr(edistrpert) if not plpc.empty: lpc = newtape.get_lpc().add_points(extra_points) if not lpc.empty: lpcpert = lpc.perturb(plpc[ismp]) newtape = newtape.update_lpc(lpcpert) if not pfy.empty: fy = newtape.get_fy() if not fy.empty: fypert = fy.perturb(pfy[ismp]) newtape = newtape.update_fy(fypert) print("Created sample {} for MAT {} in {:.2f} sec".format(ismp, mat, time.time()-t0,)) descr = ["perturbed file No.{} created by SANDY".format(ismp)] return newtape.delete_cov().update_info(descr=descr).write_string(skip_title=skip_title, skip_fend=skip_fend) # def _sampling_fy_mp(ismp, skip_title=False, skip_fend=False): # global tape, PertFY, init # t0 = time.time() # mat = tape.mat[0] # newtape = Endf6(tape.copy()) # fy = newtape.get_fy() # fynew = fy.perturb(PertFy[ismp]) # newtape = newtape.update_fy(fynew) # print("Created sample {} for MAT {} in {:.2f} sec".format(ismp, mat, time.time()-t0,)) # descr = ["perturbed file No.{} created by SANDY".format(ismp)] # return newtape.delete_cov().update_info(descr=descr).write_string(skip_title=skip_title, skip_fend=skip_fend) def parse(iargs=None): """Parse command line arguments for sampling option. Parameters ---------- iargs : `list` of `str` list of strings to parse. The default is taken from `sys.argv`. Returns ------- `argparse.Namespace` namespace object containing processed given arguments and/or default options. """ description = "Produce perturbed files containing sampled parameters that " "represent the information\nstored in the evaluated nuclear " "data covariances" parser = argparse.ArgumentParser( prog="sandy", description=description, formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument('file', type=lambda x: is_valid_file(parser, x), help="ENDF-6 or PENDF format file") parser.add_argument('--acer', default=False, action="store_true", help="for each perturbed file, produce ACE files\n" "(argument file must be in ENDF-6 format, not PENDF)\n(argument temperature is required)\n(default = False)") parser.add_argument('--cov', '-C', type=lambda x: is_valid_file(parser, x), help="file containing covariances") parser.add_argument('--cov33csv', type=lambda x: is_valid_file(parser, x), help="file containing xs/nubar covariances in csv " "format") parser.add_argument('--debug', default=False, action="store_true", help="turn on debug mode") parser.add_argument('--eig', type=int, default=10, metavar="N", help="print the first N eigenvalues of the evaluated covariance matrices\n(default = do not print)") parser.add_argument('--energy-sequence', '-E', type=int, metavar="EL", default=49, help=argparse.SUPPRESS) parser.add_argument('--errorr', default=False, action="store_true", help="run NJOY module ERRORR to produce covariance " "matrix for xs data (default = False)") parser.add_argument('--fission-yields', '-F', default=False, action="store_true", help="input <file> contains fission yields") parser.add_argument('--mat', type=int, default=list(range(1, 10000)), action='store', nargs="+", metavar="{1,..,9999}", help="draw samples only from the selected MAT " "sections (default = keep all)") parser.add_argument('--max-polynomial', '-P', type=int, help="Maximum order of Legendre polynomial coefficients considered for sampling (default = all)") parser.add_argument('--mf', type=int, default=[31, 33, 34, 35], action='store', nargs="+", metavar="{31,33,34,35}", help="draw samples only from the selected MF sections " "(default = keep all)") parser.add_argument('--mt', type=int, default=list(range(1, 1000)), action='store', nargs="+", metavar="{1,..,999}", help="draw samples only from the selected MT sections " "(default = keep all)") parser.add_argument('--njoy', type=lambda x: is_valid_file(parser, x), default=None, help="NJOY executable " "(default search PATH, and env variable NJOY)") parser.add_argument('--outdir', '-D', metavar="DIR", default=os.getcwd(), type=lambda x: is_valid_dir(parser, x, mkdir=True), help="target directory where outputs are stored\n(default = current working directory)\nif it does not exist it will be created") parser.add_argument('--outname', '-O', type=str, help="basename for the output files " "(default is the the basename of <file>.)") parser.add_argument('--processes', '-N', type=int, default=1, help="number of worker processes (default = 1)") parser.add_argument('--samples', '-S', type=int, default=200, help="number of samples (default = 200)") parser.add_argument('--seed31', type=int, default=None, metavar="S31", help="seed for random sampling of MF31 covariance " "matrix (default = random)") parser.add_argument('--seed33', type=int, default=None, metavar="S33", help="seed for random sampling of MF33 covariance " "matrix (default = random)") parser.add_argument('--seed34', type=int, default=None, metavar="S34", help="seed for random sampling of MF34 covariance " "matrix (default = random)") parser.add_argument('--seed35', type=int, default=None, metavar="S35", help="seed for random sampling of MF35 covariance " "matrix (default = random)") parser.add_argument('--temperatures', '-T', default=[], type=float, action='store', nargs="+", metavar="T", help="for each perturbed file, produce ACE files at " "given temperatures") parser.add_argument("--version", "-v", action='version', version='%(prog)s {}'.format(sandy.__version__), help="SANDY's version.") init = parser.parse_known_args(args=iargs)[0] if init.acer and not init.temperatures: parser.error("--acer requires --temperatures") if init.acer and sandy.formats.get_file_format(init.file) != "endf6": parser.error("--acer requires file in 'endf6' format") return init def extract_samples(ftape, covtape): """ Draw samples using all covariance sections in the given tape. """ global init # EXTRACT FY PERTURBATIONS FROM COV FILE PertFy = pd.DataFrame() if 8 in covtape.mf and 454 in ftape.mt: fy = ftape.get_fy(listmat=init.mat, listmt=init.mt) if not fy.empty: index = fy.index.to_frame(index=False) dfperts = [] for mat,dfmat in index.groupby("MAT"): for mt,dfmt in dfmat.groupby("MT"): for e,dfe in dfmt.groupby("E"): fycov = fy.get_cov(mat, mt, e) pert = fycov.get_samples(init.samples, eig=0) dfperts.append(pert) PertFy = FySamples(
pd.concat(dfperts)
pandas.concat
import argparse import datetime import logging import os import pickle from random import Random import numpy as np import pandas as pd from dltranz.data_preprocessing.util import pd_hist logger = logging.getLogger(__name__) def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=os.path.abspath) parser.add_argument('--trx_files', nargs='+') parser.add_argument('--target_files', nargs='*', default=[]) parser.add_argument('--print_dataset_info', action='store_true', default=True) parser.add_argument('--col_client_id', type=str) parser.add_argument('--cols_event_time', nargs='+') parser.add_argument('--cols_category', nargs='*', default=[]) parser.add_argument('--cols_log_norm', nargs='*', default=[]) parser.add_argument('--col_target', required=False, type=str) parser.add_argument('--test_size', type=float, default=0.1) parser.add_argument('--salt', type=int, default=42) parser.add_argument('--output_train_path', type=os.path.abspath) parser.add_argument('--output_test_path', type=os.path.abspath) parser.add_argument('--output_test_ids_path', type=os.path.abspath) parser.add_argument('--log_file', type=os.path.abspath) args = parser.parse_args(args) logger.info('Parsed args:\n' + '\n'.join([f' {k:15}: {v}' for k, v in vars(args).items()])) return args def load_source_data(data_path, trx_files): data = [] for file in trx_files: file_path = os.path.join(data_path, file) df = pd.read_csv(file_path) data.append(df) logger.info(f'Loaded {len(df)} rows from "{file_path}"') data = pd.concat(data, axis=0) logger.info(f'Loaded {len(data)} rows in total') return data def encode_col(col): col = col.astype(str) return col.map({k: i + 1 for i, k in enumerate(col.value_counts().index)}) def trx_to_features(df_data, print_dataset_info, col_client_id, cols_event_time, cols_category, cols_log_norm): def copy_time(rec): rec['event_time'] = rec['feature_arrays']['event_time'] del rec['feature_arrays']['event_time'] return rec def _td_default(df, cols_event_time): df_event_time = df[cols_event_time].drop_duplicates() df_event_time = df_event_time.sort_values(cols_event_time) df_event_time['event_time'] = np.arange(len(df_event_time)) df =
pd.merge(df, df_event_time, on=cols_event_time)
pandas.merge
import pandas as pd import numpy as np import pickle import json def save_arguments(path="", args=None): print(vars(args)) if args!=None: file = open("{}/arguments.json".format(path), "w", encoding="utf8") json.dump(vars(args), file, indent=4, sort_keys=True) file.close() def load_arguments(path=""): file = open("{}arguments.json".format(path), "rb") return json.load(file) def save_results(env_name, seeds, rewards, update_steps, path=""): if type(env_name) == list: env_name = " ".join(env_name) rewards = np.array([np.array(r) for r in rewards]).T seeds = ["Seed: {}".format(seed) for seed in seeds] data =
pd.DataFrame(rewards, columns=seeds)
pandas.DataFrame
import numpy as np import pandas as pd import xarray as xr import copy import warnings try: from plotly import graph_objs as go plotly_installed = True except: plotly_installed = False # warnings.warn("PLOTLY not installed so interactive plots are not available. This may result in unexpected funtionality") global_3d_mapper = np.repeat(0, 256 * 4).reshape(256, -1) global_3d_mapper[ord('T'), :] = np.array([0, 0, 0, 1]) global_3d_mapper[ord('C'), :] = np.array([0, 1, 0, 0]) global_3d_mapper[ord('A'), :] = np.array([1, 0, 0, 0]) global_3d_mapper[ord('G'), :] = np.array([0, 0, 1, 0]) def compare_sequence_matrices(seq_arr1, seq_arr2, flip=False, treat_as_match=[], ignore_characters=[], return_num_bases=False): """ This will "align" seq_arr1 to seq_arr2. It will calculate which positions in each sequence defined by seq_arr1 matches each position in each sequence defined by seq_arr2 seq_arr1 = NxP matrix where N = # of sequences represented in seq_arr1 and P represents each base pair position/the length of the string seq_arr2 = MxP matrix where M = # of sequences represented in seq_arr1 and P represents each base pair position/the length of the string This operation will return a NxPxM boolean matrix where each position represents whether the base pair in sequence N and the base pair in sequence M represented at position P match In other words, if bool_arr = compare_sequence_matrices(A, B) then the total hamming distance between the second and third sequence in matrices A and B respective can be found as >>> bool_arr.sum(axis=1)[1][2] Args: seq_arr1 (np.array): MxP matrix of sequences represented as array of numbers seq_arr2 (np.array): NxP matrix of sequences represented as array of numbers flip (bool): If False then "true" means that letters are equal at specified positoin, If True then return positions that are NOT equal to one another treat_as_match (list of chars): Treat any positions that have any of these letters in either matricies as True ignore_characters (list of chars): Ignore positions that have letters in either matricies at specified positions .. warning:: datatype When ignore character is defined, the array is passed back as a np.float dtype because it must accomodate np.nan return_num_bases (False): If true then it will return a second parameter that defines the number of non nan values between alignments Returns: NxPxM array of boolean values """ assert seq_arr1.shape[1] == seq_arr2.shape[1], 'Matrices do not match!' # use np.int8 because it ends upbeing faster seq_arr1 = seq_arr1.view(np.uint8) seq_arr2 = seq_arr2.view(np.uint8) # this will return true of pos X in seqA and seqB are equal diff_arr = (seq_arr1[..., np.newaxis].view(np.uint8) == seq_arr2.T[np.newaxis, ...]) # print(diff_arr.shape) if treat_as_match: # treat any of these letters at any positions as true regardles of whether they match in respective pairwise sequences if not isinstance(treat_as_match, list): treat_as_match = [treat_as_match] treat_as_match = [ord(let) for let in treat_as_match] # now we have to ignore characters that are equal to specific values # return True for any positions that is equal to "treat_as_true" ignore_pos = ((seq_arr1 == treat_as_match[0])[..., np.newaxis]) | ((seq_arr2 == treat_as_match[0])[..., np.newaxis].T) for chr_p in treat_as_match[1:]: ignore_pos = ignore_pos | ((seq_arr1 == chr_p)[..., np.newaxis]) | ((seq_arr2 == chr_p)[..., np.newaxis].T) # now adjust boolean results to ignore any positions == treat_as_true diff_arr = (diff_arr | ignore_pos) # if flip is False else (diffs | ignore_pos) if flip is False: diff_arr = diff_arr # (~(~diffarr)) else: diff_arr = ~diff_arr # (~diffarr) # print(diff_arr.shape) if ignore_characters: # do not treat these characters as true OR false if not isinstance(ignore_characters, list): ignore_characters = [ignore_characters] ignore_characters = [ord(let) for let in ignore_characters] # now we have to ignore characters that are equal to specific values ignore_pos = (seq_arr1 == ignore_characters[0])[..., np.newaxis] | ((seq_arr2 == ignore_characters[0])[..., np.newaxis].T) for chr_p in ignore_characters[1:]: ignore_pos = ignore_pos | ((seq_arr1 == chr_p)[..., np.newaxis]) | ((seq_arr2 == chr_p)[..., np.newaxis]).T diff_arr = diff_arr.astype(np.float) diff_arr[ignore_pos] = np.nan diff_arr = diff_arr if return_num_bases: num_bases = np.apply_along_axis( arr=diff_arr, axis=1, func1d=lambda x: len(x[~np.isnan(x)]) ) return diff_arr, num_bases else: return diff_arr def numpy_value_counts_bin_count(arr, weights=None): """ Use the 'bin count' function in numpy to calculate the unique values in every column of a dataframe clocked at about 3-4x faster than pandas_value_counts (df.apply(pd.value_counts)) Args: arr (dataframe, or np array): Should represent rows as sequences and columns as positions. All values should be int weights (np array): Should be a list of weights to place on each """ if not isinstance(arr, np.ndarray): raise Exception('The provided parameter for arr is not a dataframe or numpy array') if len(arr.shape) == 1: # its a ONE D array, lets make it two D arr = arr.reshape(-1, 1) arr = arr.view(np.uint8) # returns an array of length equal to the the max value in array + 1. each element represents number of times an integer appeared in array. bins = [ np.bincount(arr[:, x], weights=weights) for x in range(arr.shape[1]) ] indices = [np.nonzero(x)[0] for x in bins] # only look at non zero bins series = [
pd.Series(y[x], index=x)
pandas.Series
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import operator from collections import OrderedDict from datetime import datetime from itertools import chain import warnings import numpy as np from pandas import (notna, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.apply import frame_apply from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.conftest import _get_cython_table_params from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): with warnings.catch_warnings(record=True): x = [] self.empty.apply(x.append, axis=1, result_type='reduce') def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self): with tm.assert_produces_warning(FutureWarning): self.frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self): # scalars result = self.frame.apply(np.mean, result_type='broadcast') expected = DataFrame([self.frame.mean()], index=self.frame.index) tm.assert_frame_equal(result, expected) result = self.frame.apply(np.mean, axis=1, result_type='broadcast') m = self.frame.mean(axis=1) expected = DataFrame({c: m for c in self.frame.columns}) tm.assert_frame_equal(result, expected) # lists result = self.frame.apply( lambda x: list(range(len(self.frame.columns))), axis=1, result_type='broadcast') m = list(range(len(self.frame.columns))) expected = DataFrame([m] * len(self.frame.index), dtype='float64', index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(result, expected) result = self.frame.apply(lambda x: list(range(len(self.frame.index))), result_type='broadcast') m = list(range(len(self.frame.index))) expected = DataFrame({c: m for c in self.frame.columns}, dtype='float64', index=self.frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self): df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = frame_apply(self.mixed_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(self.frame.columns)) for t in self.frame.itertuples()) expected.index = self.frame.index assert_series_equal(result, expected) def test_apply_multi_index(self): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, result_type='reduce') reduce_false = df.apply(fn, result_type='expand') reduce_none = df.apply(fn) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, self.frame * 2) self.frame.applymap(type) # gh-465: function returning tuples result = self.frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # gh-2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # see gh-2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # see gh-8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box_timestamps(self): # #2689, #2627 ser = pd.Series(date_range('1/1/2000', periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! pd.DataFrame(ser).applymap(func) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) res = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) exp = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(res, exp) def test_frame_apply_dont_convert_datetime64(self): from pandas.tseries.offsets import BDay df = DataFrame({'x1': [datetime(1996, 1, 1)]}) df = df.applymap(lambda x: x + BDay()) df = df.applymap(lambda x: x + BDay()) assert df.x1.dtype == 'M8[ns]' def test_apply_non_numpy_dtype(self): # See gh-12244 df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df) def test_apply_dup_names_multi_agg(self): # GH 21063 df = pd.DataFrame([[0, 1], [2, 3]], columns=['a', 'a']) expected = pd.DataFrame([[0, 1]], columns=['a', 'a'], index=['min']) result = df.agg(['min']) tm.assert_frame_equal(result, expected) class TestInferOutputShape(object): # the user has supplied an opaque UDF where # they are transforming the input that requires # us to infer the output def test_infer_row_shape(self): # gh-17437 # if row shape is changing, infer it df = pd.DataFrame(np.random.rand(10, 2)) result = df.apply(np.fft.fft, axis=0) assert result.shape == (10, 2) result = df.apply(np.fft.rfft, axis=0) assert result.shape == (6, 2) def test_with_dictlike_columns(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) expected = Series([{'s': 3} for t in df.itertuples()]) assert_series_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) assert_series_equal(result, expected) # compose a series result = (df['a'] + df['b']).apply(lambda x: {'s': x}) expected = Series([{'s': 3}, {'s': 3}]) assert_series_equal(result, expected) # gh-18775 df = DataFrame() df["author"] = ["X", "Y", "Z"] df["publisher"] = ["BBC", "NBC", "N24"] df["date"] = pd.to_datetime(['17-10-2010 07:15:30', '13-05-2011 08:20:35', '15-01-2013 09:09:09']) result = df.apply(lambda x: {}, axis=1) expected = Series([{}, {}, {}]) assert_series_equal(result, expected) def test_with_dictlike_columns_with_infer(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') expected = DataFrame({'s': [3, 3]}) assert_frame_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') assert_frame_equal(result, expected) def test_with_listlike_columns(self): # gh-17348 df = DataFrame({'a': Series(np.random.randn(4)), 'b': ['a', 'list', 'of', 'words'], 'ts': date_range('2016-10-01', periods=4, freq='H')}) result = df[['a', 'b']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'b']].itertuples()]) assert_series_equal(result, expected) result = df[['a', 'ts']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'ts']].itertuples()]) assert_series_equal(result, expected) # gh-18919 df = DataFrame({'x': Series([['a', 'b'], ['q']]), 'y': Series([['z'], ['q', 't']])}) df.index = MultiIndex.from_tuples([('i0', 'j0'), ('i1', 'j1')]) result = df.apply( lambda row: [el for el in row['x'] if el in row['y']], axis=1) expected = Series([[], ['q']], index=df.index) assert_series_equal(result, expected) def test_infer_output_shape_columns(self): # gh-18573 df = DataFrame({'number': [1., 2.], 'string': ['foo', 'bar'], 'datetime': [pd.Timestamp('2017-11-29 03:30:00'), pd.Timestamp('2017-11-29 03:45:00')]}) result = df.apply(lambda row: (row.number, row.string), axis=1) expected = Series([(t.number, t.string) for t in df.itertuples()]) assert_series_equal(result, expected) def test_infer_output_shape_listlike_columns(self): # gh-16353 df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) # gh-17970 df = DataFrame({"a": [1, 2, 3]}, index=list('abc')) result = df.apply(lambda row: np.ones(1), axis=1) expected = Series([np.ones(1) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) result = df.apply(lambda row: np.ones(2), axis=1) expected = Series([np.ones(2) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) # gh-17892 df = pd.DataFrame({'a': [pd.Timestamp('2010-02-01'), pd.Timestamp('2010-02-04'), pd.Timestamp('2010-02-05'), pd.Timestamp('2010-02-06')], 'b': [9, 5, 4, 3], 'c': [5, 3, 4, 2], 'd': [1, 2, 3, 4]}) def fun(x): return (1, 2) result = df.apply(fun, axis=1) expected = Series([(1, 2) for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_coerce_for_shapes(self): # we want column names to NOT be propagated # just because the shape matches the input shape df = DataFrame(np.random.randn(4, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_names(self): # if a Series is returned, we should use the resulting index names df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: Series([1, 2, 3], index=['test', 'other', 'cols']), axis=1) expected = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other', 'cols']) assert_frame_equal(result, expected) result = df.apply( lambda x: pd.Series([1, 2], index=['test', 'other']), axis=1) expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other']) assert_frame_equal(result, expected) def test_result_type(self): # result_type should be consistent no matter which # path we take in the code df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand') expected = df.copy() expected.columns = [0, 1, 2] assert_frame_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1, result_type='expand') expected = df[['A', 'B']].copy() expected.columns = [0, 1] assert_frame_equal(result, expected) # broadcast result result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) # series result result = df.apply(lambda x: Series([1, 2, 3], index=x.index), axis=1) expected = df.copy() assert_frame_equal(result, expected) # series result with other index columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1) expected = df.copy() expected.columns = columns assert_frame_equal(result, expected) @pytest.mark.parametrize("result_type", ['foo', 1]) def test_result_type_error(self, result_type): # allowed result_type df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) with pytest.raises(ValueError): df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type) @pytest.mark.parametrize( "box", [lambda x: list(x), lambda x: tuple(x), lambda x: np.array(x, dtype='int64')], ids=['list', 'tuple', 'array']) def test_consistency_for_boxed(self, box): # passing an array or list should not affect the output shape df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: box([1, 2]), axis=1) expected = Series([box([1, 2]) for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: box([1, 2]), axis=1, result_type='expand') expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1) assert_frame_equal(result, expected) def zip_frames(frames, axis=1): """ take a list of frames, zip them together under the assumption that these all have the first frames' index/columns. Returns ------- new_frame : DataFrame """ if axis == 1: columns = frames[0].columns zipped = [f.loc[:, c] for c in columns for f in frames] return pd.concat(zipped, axis=1) else: index = frames[0].index zipped = [f.loc[i, :] for i in index for f in frames] return pd.DataFrame(zipped) class TestDataFrameAggregate(TestData): def test_agg_transform(self, axis): other_axis = 1 if axis in {0, 'index'} else 0 with np.errstate(all='ignore'): f_abs = np.abs(self.frame) f_sqrt = np.sqrt(self.frame) # ufunc result = self.frame.transform(np.sqrt, axis=axis) expected = f_sqrt.copy() assert_frame_equal(result, expected) result = self.frame.apply(np.sqrt, axis=axis) assert_frame_equal(result, expected) result = self.frame.transform(np.sqrt, axis=axis) assert_frame_equal(result, expected) # list-like result = self.frame.apply([np.sqrt], axis=axis) expected = f_sqrt.copy() if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['sqrt']]) else: expected.index = pd.MultiIndex.from_product( [self.frame.index, ['sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.sqrt], axis=axis) assert_frame_equal(result, expected) # multiple items in list # these are in the order as if we are applying both # functions per series and then concatting result = self.frame.apply([np.abs, np.sqrt], axis=axis) expected = zip_frames([f_abs, f_sqrt], axis=other_axis) if axis in {0, 'index'}: expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['absolute', 'sqrt']]) else: expected.index = pd.MultiIndex.from_product( [self.frame.index, ['absolute', 'sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.abs, 'sqrt'], axis=axis) assert_frame_equal(result, expected) def test_transform_and_agg_err(self, axis): # cannot both transform and agg def f(): self.frame.transform(['max', 'min'], axis=axis) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.agg(['max', 'sqrt'], axis=axis) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.transform(['max', 'sqrt'], axis=axis) pytest.raises(ValueError, f) df = pd.DataFrame({'A': range(5), 'B': 5}) def f(): with np.errstate(all='ignore'): df.agg({'A': ['abs', 'sum'], 'B': ['mean', 'max']}, axis=axis) @pytest.mark.parametrize('method', [ 'abs', 'shift', 'pct_change', 'cumsum', 'rank', ]) def test_transform_method_name(self, method): # https://github.com/pandas-dev/pandas/issues/19760 df = pd.DataFrame({"A": [-1, 2]}) result = df.transform(method) expected = operator.methodcaller(method)(df) tm.assert_frame_equal(result, expected) def test_demo(self): # demonstration tests df = pd.DataFrame({'A': range(5), 'B': 5}) result = df.agg(['min', 'max']) expected = DataFrame({'A': [0, 4], 'B': [5, 5]}, columns=['A', 'B'], index=['min', 'max']) tm.assert_frame_equal(result, expected) result = df.agg({'A': ['min', 'max'], 'B': ['sum', 'max']}) expected = DataFrame({'A': [4.0, 0.0, np.nan], 'B': [5.0, np.nan, 25.0]}, columns=['A', 'B'], index=['max', 'min', 'sum']) tm.assert_frame_equal(result.reindex_like(expected), expected) def test_agg_multiple_mixed_no_warning(self): # https://github.com/pandas-dev/pandas/issues/20909 mdf = pd.DataFrame({'A': [1, 2, 3], 'B': [1., 2., 3.], 'C': ['foo', 'bar', 'baz'], 'D': pd.date_range('20130101', periods=3)}) expected = pd.DataFrame({"A": [1, 6], 'B': [1.0, 6.0], "C": ['bar', 'foobarbaz'], "D": [pd.Timestamp('2013-01-01'), pd.NaT]}, index=['min', 'sum']) # sorted index with tm.assert_produces_warning(None): result = mdf.agg(['min', 'sum']) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(None): result = mdf[['D', 'C', 'B', 'A']].agg(['sum', 'min']) # For backwards compatibility, the result's index is # still sorted by function name, so it's ['min', 'sum'] # not ['sum', 'min']. expected = expected[['D', 'C', 'B', 'A']] tm.assert_frame_equal(result, expected) def test_agg_dict_nested_renaming_depr(self): df = pd.DataFrame({'A': range(5), 'B': 5}) # nested renaming with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df.agg({'A': {'foo': 'min'}, 'B': {'bar': 'max'}}) def test_agg_reduce(self, axis): other_axis = 1 if axis in {0, 'index'} else 0 name1, name2 = self.frame.axes[other_axis].unique()[:2].sort_values() # all reducers expected = pd.concat([self.frame.mean(axis=axis), self.frame.max(axis=axis), self.frame.sum(axis=axis), ], axis=1) expected.columns = ['mean', 'max', 'sum'] expected = expected.T if axis in {0, 'index'} else expected result = self.frame.agg(['mean', 'max', 'sum'], axis=axis)
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# utils.py """ Utils ----- Utility functions for the whole project. """ import collections from copy import deepcopy import logging.config import os from pathlib import Path from typing import List, Optional, Tuple import numpy as np import pandas as pd from pandas.tseries import offsets from soam.constants import DS_COL logger = logging.getLogger(__name__) def range_datetime( datetime_start, datetime_end, hourly_offset: bool = False, timeskip=None, as_datetime: bool = False, ): # TODO: review datetime_start, datetime_end, are datetimes? # TODO: timeskip is Tick? """ Build datetime generator over successive time steps. Parameters ---------- datetime_start: datetime Start datetime. datetime_end: datetime End datetime. hourly_offset: boolean Wheteher to offset hourly. False by default. timeskip: Tick An instance of fast-forwarding a substantial amount of time. as_datetime: boolean Whether the object type should be datetime. False by default. """ if timeskip is None: timeskip = offsets.Day(1) if not hourly_offset else offsets.Hour(1) if not isinstance(datetime_start, pd.Timestamp): datetime_start =
pd.Timestamp(datetime_start)
pandas.Timestamp
# -*- coding: utf-8 -*- """ Xarray Stacked Images Writer. Create 3D datasets, allows setting spatial and temporal subset (images and time series) """ #TODO. File locking as option for multiple processes? # todo: Add Point data results manager (for ismn based results) import xarray as xr import numpy as np import pandas as pd from datetime import datetime import warnings import matplotlib.pyplot as plt import os from io_utils.utils import safe_arange from pygeogrids.grids import BasicGrid, CellGrid, lonlat2cell import copy from io_utils.write.utils import minmax def to_reg_cell_grid(grid, cellsize=5.): """ Create RegularCellGrid from BasicGrid or CellGrid Parameters ---------- grid : CellGrid or BasicGrid Input grid to convert cellsize : float, optional (default: 5.) Cell size of the CellGrid to create. Returns ------- grid : RegularCellGrid A regularly gridded CellGrid """ if isinstance(grid, RegularCellGrid) and (grid.cellsize == cellsize): return grid return RegularCellGrid(grid.arrlon, grid.arrlat, cellsize, gpis=grid.gpis, subset=grid.subset, shape=grid.shape) class Point(object): """ Helper class to combine lon and lat in one Point """ def __init__(self, lon, lat): if lat > 90. or lat <-90: raise IOError('{} is out of valid bounds (+-90) for Latitude'.format(lat)) if lon > 180. or lon <-180: raise IOError('{} is out of valid bounds (+-180) for Longitude'.format(lon)) self.__lon, self.__lat = lon, lat self.__loc = (lon, lat) def __str__(self): return 'Lon: {}, Lat: {}'.format(self.lon, self.lat) @property def lon(self): return self.__lon @property def lat(self): return self.__lat @property def loc(self): return (self.lon, self.lat) class RegularCellGrid(CellGrid): # Special for of a Cell Grid that has equal spacing between grid points def __init__(self, lon, lat, cellsize=5., gpis=None, geodatum='WGS84', subset=None, setup_kdTree=False, **kwargs): self.cellsize = cellsize cells = lonlat2cell(lon, lat, cellsize=cellsize) super(RegularCellGrid, self).__init__(lon, lat, cells, gpis, geodatum, subset=subset, setup_kdTree=setup_kdTree, **kwargs) self.dx, self.dy = self._grid_space() def _grid_space(self): # find the resolution of the grid and check if it is regular along x and y lons, lats = self.get_grid_points()[1], self.get_grid_points()[2] diff_x = np.around(np.diff(sorted(np.unique(lons))), 10) diff_y = np.around(np.diff(sorted(np.unique(lats))), 10) dx = np.max(diff_x) assert np.min(diff_x) == dx dy = np.max(diff_y) assert np.min(diff_y) == dy assert np.all(diff_x == dx) assert np.all(diff_y == dy) return dx, dy class RegularArea(object): """ Helper class to combine lons and lats that span an Area """ def __init__(self, llc, urc, grid): """ Create an regularly gridded 2d Area. Parameters ---------- llc : Point Lower left corner point of the Area urc : Point Upper right corner point of the Area grid : BasicGrid or CellGrid An independent grid that the area is a subset of. """ self.grid = to_reg_cell_grid(grid) self.llc = llc self.urc = urc self.subset = self._subset_from_corners() def _subset(self, llc, urc): ind = np.where((self.grid.activearrlon >= llc.lon) & (self.grid.activearrlon <= urc.lon) & (self.grid.activearrlat >= llc.lat) & (self.grid.activearrlat <= urc.lat)) gpis = self.grid.activegpis[ind] lons = self.grid.activearrlon[ind] lats = self.grid.activearrlat[ind] return gpis, lons, lats def _subset_from_corners(self): self._assert_corners() gpis, lons, lats = self._subset(self.llc, self.urc) subset = self.grid.subgrid_from_gpis(gpis) subset.shape = (np.unique(lats).size, np.unique(lons).size) return subset def _assert_corners(self): # check if the corner points are also in the grid assert self.llc.lon in self.grid.get_grid_points()[1] assert self.llc.lat in self.grid.get_grid_points()[2] def as_slice(self, d=False): """ Create a lon and lat slice of the Area. Parameters --------- d : bool, optional (default: False) Include step size in slice Returns ------- lon_slice : slice Slice across the area lat_slice : slice Slice across the area """ return slice(self.llc.lon, self.urc.lon, self.grid.dx if d else None), \ slice(self.llc.lat, self.urc.lat, self.grid.dy if d else None) class NcRegGridStack(object): """ Store netcdf cubes with xarray and dask """ def __init__(self, dx=0.25, dy=0.25, z=None, z_name='z', llc=Point(-179.875, -89.875), urc=Point(179.875, 89.875), indexed=True, zlib=True, fill_value=9999.): """ Parameters ---------- dx : float, optional (default: 0.25) Regular spacing in x/lon direction dy : float, optional (default: 0.25) Regular spacing in y/lat direction z : np.array Z Values, e.g. Timestamps (z dimension of cube) z_name : str, optional (default: time) Name of the z dimension (e.g. time or depth) llc : Point, optional (default: Point(-179.875, -89.875)) Lower left corner point of the dataset area. urc : Point, optional (default: Point(179.875, 89.875)) Upper right corner point of the dataset area. indexed : bool, optional (default: True) Add a 2d variable of unique index to each point of the dataset. zlib : bool, optional (default: True) Compress data when writing to netcdf fill_value : float, optional (default: 9999.) Fill value nans are replaced with """ if z is None: z = [None] self.zlib = zlib self.z_name = z_name self.fill_value = fill_value self.llc, self.urc = llc, urc lons, lats = self._coords(dx, dy) self.shape = (z.size, lats.size, lons.size) gpis = self._gpis('ll') # origin is in the lower left self.ds = xr.Dataset( data_vars={'gpi': (['lat', 'lon'], gpis)} if indexed else None, coords={'lon': lons, 'lat': lats, self.z_name: z}) self.grid = to_reg_cell_grid(self._grid(gpis), 5.) @property def subset(self): return (self.llc, self.urc) def _grid(self, gpis): # create a pygeogrids object lons, lats = np.meshgrid(self.ds.lon.values, np.flipud(self.ds.lat.values)) lons, lats = lons.flatten(), lats.flatten() grid = BasicGrid(lons, lats, gpis=gpis.flatten()).to_cell_grid(5.) return grid def _gpis(self, origin='ll'): """ Parameters --------- origin : str, optional (Default: 'll') String indication where gpi=0 is. ll = lower left, ur=upper right, lr = lower right, ul = upper left Returns --------- gpis : np.ndarray Array of GPIs """ origins = ['ll', 'lr', 'ul', 'ur'] if origin not in origins: raise NotImplementedError( "Origin {} not implemented. Choose one of: {}" .format(origin, ','.join(origins))) n = self.shape[1] * self.shape[2] gpis = np.arange(n).reshape(self.shape[1], self.shape[2]) if origin[0] == 'l': gpis = np.flipud(gpis) if origin[1] == 'r': gpis = np.fliplr(gpis) return gpis def _coords(self, dx, dy): """ Build coord range with chosen resolution over dataset area """ lons = safe_arange(self.llc.lon, self.urc.lon+dx, dx) lats = safe_arange(self.llc.lat, self.urc.lat+dy, dy) self.dx, self.dy = dx, dy return lons, lats def _add_empty_3d(self, name): # add a empty variable with z dimension of the passed name #print('Add empty 3D variable {}'.format(name)) self.ds[name] = \ xr.DataArray(np.full(self.shape, self.fill_value), dims=[self.z_name, 'lat', 'lon'], coords=[self.ds[self.z_name], self.ds.lat, self.ds.lon]) def _write_img(self, data, **kwargs): """ Write area to dataset. Parameters ---------- data : xr.Dataset, 2d arrays to write, keys are variable names """ for var in list(data.data_vars.keys()): if var not in self.ds.variables: self._add_empty_3d(var) self.ds[var].loc[dict(**kwargs)] = data[var] def _write_ser(self, data, **kwargs): """ Write (time) series of multiple variables in data frame """ for var in data.keys(): if var not in self.ds.variables: self._add_empty_3d(var) assert data[var].size == self.ds[self.z_name].size dat = data[var] dat[np.isnan(dat)] = self.fill_value self.ds[var].loc[dict(**kwargs)] = dat def _write_pt(self, data, **kwargs): # takes arrays of lon, lat, z and data dict of arrays for var in data.keys(): if var not in self.ds.variables: self._add_empty_3d(var) dat = data[var] dat[np.isnan(dat)] = self.fill_value self.ds[var].loc[dict(**kwargs)] = dat def store_stack(self, filename=None, global_attrs=None, dtypes=np.float32): """ Write down xarray cute to netcdf file Parameters ---------- filename : str Path to the stack file to write global_attrs : dict, optional (default: None) Global attributes dtypes : np.float32 Data types of results, affects compression. """ if global_attrs is None: global_attrs = {} self.ds = self.ds.assign_attrs(global_attrs) try: if self.zlib: encoding = {} for var in self.ds.variables: if var not in ['lat', 'lon', self.z_name]: encoding[var] = {'complevel': 9, 'zlib': True, 'dtype': dtypes, '_FillValue': self.fill_value} else: encoding = None self.ds.to_netcdf(filename, engine='netcdf4', encoding=encoding) except: # todo: specifiy exception warnings.warn('Compression failed, store uncompressed results.') self.ds.to_netcdf(filename, engine='netcdf4') self.ds.close() def store_files(self, path, filename_templ='file_{}.nc', dtypes=np.float32): """ filename_templ : {} is replaced by the z indicator (strftime(z) if z is a date time). """ # todo: add option to append to existing file (memory dump) # todo: integrate with the other function if self.zlib: encoding = {} for var in self.ds.variables: if var not in ['lat', 'lon', self.z_name]: encoding[var] = {'complevel': 9, 'zlib': True, 'dtype': dtypes, '_FillValue': self.fill_value} else: encoding = None datetime_obs = [np.datetime64, datetime] for z in self.ds[self.z_name]: if any([isinstance(z.values, dt) for dt in datetime_obs]): pydatetime=
pd.to_datetime(z.values)
pandas.to_datetime
import pandas as pd import dateutil import datetime class api_IEX: """A class to work with the IEX API @ api.iextrading.com """ baseURL = "https://api.iextrading.com/1.0/stock/" dfResponse = "nothing queried" def __init__(self, ticker): self.symbol=ticker self.baseURL = self.baseURL + ticker def testAPI(self): """ Basic test function to check if the API is working""" apiPath = self.baseURL + "/delayed-quote" self.dfResponse =
pd.read_json(apiPath, typ='series')
pandas.read_json
import sys from typing import List, Tuple import numpy as np import pandas as pd def get_valid_gene_info( genes: List[str], release=102, species='homo sapiens' ) -> Tuple[List[str], List[int], List[int], List[int]]: """Returns gene locations for all genes in ensembl release 93 --S Markson 3 June 2020 Parameters ---------- genes : A list of genes genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes : List[str] : genes: List[str] : Returns ------- """ from pyensembl import EnsemblRelease assembly = EnsemblRelease(release, species=species) gene_names = [] gene_contigs = [] gene_starts = [] gene_ends = [] for gene in np.intersect1d(genes, [ gene.gene_name for gene in assembly.genes() if gene.contig.isnumeric() or gene.contig == 'X' ]): # Toss genes not in hg38 release 93 gene_info = assembly.genes_by_name(gene) gene_info = gene_info[0] gene_names.append(gene) gene_contigs.append(gene_info.contig) gene_starts.append(gene_info.start) gene_ends.append(gene_info.end) return gene_names, gene_contigs, gene_starts, gene_ends def seurat_to_loom(seuratrds, patient_id_column, celltype_column, complexity_column, loomfile): """ Parameters ---------- seuratrds : patient_id_column : celltype_column : complexity_column : loomfile : Returns ------- """ import rpy2.robjects as robjects from scipy import sparse from rpy2.robjects import pandas2ri import loompy robjects.r(''' library(Seurat) seurat2rawandmeta <- function(seuratrds) { seuratobj <- readRDS(seuratrds) return(list(genes=rownames(seuratobj@data), metadata=<EMAIL>, data=as.data.frame(summary(seuratobj@data)))) } ''') seurat_grab = robjects.r['seurat2rawandmeta'](seuratrds) genes = pd.DataFrame(np.array(seurat_grab.rx2('genes'))) genes.columns = ['gene'] metadata = pandas2ri.rpy2py_dataframe(seurat_grab.rx2('metadata')) if patient_id_column != 'patient_ID': metadata['patient_ID'] = metadata[patient_id_column] metadata.drop(patient_id_column, inplace=True) if celltype_column != 'cell_type': metadata['cell_type'] = metadata[celltype_column] metadata.drop(celltype_column, inplace=True) if complexity_column != 'complexity': metadata['complexity'] = metadata[complexity_column] metadata.drop(complexity_column, inplace=True) data_df = pandas2ri.rpy2py_dataframe(seurat_grab.rx2('data')) sparsedata = sparse.coo_matrix( (data_df['x'], (data_df['i'] - 1, data_df['j'] - 1))).tocsc() sparsedata.resize((genes.shape[0], metadata.shape[0])) loompy.create(loomfile, sparsedata, genes.to_dict("list"), metadata.to_dict("list")) def intify(df_init): """ Parameters ---------- df_init : Returns ------- """ import binascii df = df_init.copy() for col in df.columns: if col.endswith('_ad'): raise Exception( "Don't append you column names with _ad! -- Samuel") df[col] = df[col].apply( lambda x: int(binascii.hexlify(x.encode()), 16)) while np.sum(df.max() > sys.maxsize) > 0: for col in df.columns: if df[col].max() > sys.maxsize: df[col + '_ad'] = df[col] // sys.maxsize df[col] = df[col] % sys.maxsize return df.astype(np.int64) def deintify(df_init): """ Parameters ---------- df_init : Returns ------- """ import binascii df = df_init.copy() while np.sum([x.endswith('_ad') for x in df.columns]) > 0: for col in df.columns: if col.endswith('_ad') and col + '_ad' not in df.columns: df[col[0:-3]] = df[col[0:-3]].astype(object) df[col] = df[col].astype(object) df[col[0:-3]] = df[col[0:-3]] + sys.maxsize * df[col] df.drop(col, axis=1, inplace=True) for col in df.columns: try: df[col] = df[col].apply( lambda x: binascii.unhexlify(hex(x)[2::].encode()).decode()) except: print(df[col].apply( lambda x: binascii.unhexlify(hex(x)[2::].encode()).decode())) raise Exception("whoops") return df def recover_meta(db, do_deint=False): """ Parameters ---------- db : do_deint : (Default value = False) Returns ------- """ colmeta = None for key in db.ca.keys(): if colmeta is None: colmeta = pd.DataFrame(db.ca[key]) colmeta.columns = [key] else: colmeta[key] = db.ca[key] if do_deint: colmeta = deintify(colmeta.astype(np.int64)) rowmeta = None for key in db.ra.keys(): if rowmeta is None: rowmeta = pd.DataFrame(db.ra[key]) rowmeta.columns = [key] else: rowmeta[key] = db.ra[key] if do_deint: rowmeta = deintify(rowmeta.astype(np.int64)) return rowmeta, colmeta def we_can_pickle_it(thing, thingname: str): """ Parameters ---------- thing : thingname : str : thingname : str : thingname : str : thingname : str : thingname: str : Returns ------- """ import pickle with open(thingname, 'wb') as f: pickle.dump(thing, f, pickle.HIGHEST_PROTOCOL) def we_can_unpickle_it(thingname: str): """ Parameters ---------- thingname : str : thingname : str : thingname : str : thingname : str : thingname: str : Returns ------- """ import pickle with open(thingname, 'rb') as f: thing = pickle.load(f) return thing def get_alpha_concave_hull_polygon(xcoords, ycoords, alpha=0.1, buffer=1): """Much credit to https://thehumangeo.wordpress.com/2014/05/12/drawing-boundaries-in-python/ Parameters ---------- xcoords : ycoords : alpha : (Default value = 0.1) buffer : (Default value = 1) Returns ------- """ from shapely.ops import cascaded_union, polygonize import shapely.geometry as geometry from scipy.spatial import Delaunay import numpy as np import math def alpha_shape(points, alpha): """Compute the alpha shape (concave hull) of a set of points. Parameters ---------- points : Iterable container of points. alpha : alpha value to influence the gooeyness of the border. Smaller numbers don't fall inward as much as larger numbers. Too large, and you lose everything! Returns ------- """ if len(points) < 4: # When you have a triangle, there is no sense # in computing an alpha shape. return geometry.MultiPoint(list(points)).convex_hull def add_edge(edges, edge_points, coords, i, j): """Add a line between the i-th and j-th points, if not in the list already Parameters ---------- edges : edge_points : coords : i : j : Returns ------- """ if (i, j) in edges or (j, i) in edges: # already added return edges.add((i, j)) edge_points.append(coords[[i, j]]) coords = np.array([point.coords[0] for point in points]) tri = Delaunay(coords) edges = set() edge_points = [] # loop over triangles: # ia, ib, ic = indices of corner points of the # triangle for ia, ib, ic in tri.vertices: pa = coords[ia] pb = coords[ib] pc = coords[ic] # Lengths of sides of triangle a = math.sqrt((pa[0] - pb[0])**2 + (pa[1] - pb[1])**2) b = math.sqrt((pb[0] - pc[0])**2 + (pb[1] - pc[1])**2) c = math.sqrt((pc[0] - pa[0])**2 + (pc[1] - pa[1])**2) # Semiperimeter of triangle s = (a + b + c) / 2.0 # Area of triangle by Heron's formula area = math.sqrt(s * (s - a) * (s - b) * (s - c)) circum_r = a * b * c / (4.0 * area) # Here's the radius filter. #print circum_r if circum_r < 1.0 / alpha: add_edge(edges, edge_points, coords, ia, ib) add_edge(edges, edge_points, coords, ib, ic) add_edge(edges, edge_points, coords, ic, ia) m = geometry.MultiLineString(edge_points) triangles = list(polygonize(m)) return cascaded_union(triangles), edge_points points = [] for x, y in zip(xcoords, ycoords): points.append(geometry.shape({'type': 'Point', 'coordinates': [x, y]})) concave_hull, edge_points = alpha_shape(points, alpha=alpha) return concave_hull.buffer(buffer) def get_outlier_removal_mask(xcoords, ycoords, nth_neighbor=10, quantile=.9): """ Parameters ---------- xcoords : ycoords : nth_neighbor : (Default value = 10) quantile : (Default value = .9) Returns ------- """ from scipy.spatial.distance import pdist, squareform D = squareform(pdist(np.vstack((xcoords, ycoords)).T)) distances = D[np.argsort(D, axis=0)[nth_neighbor - 1, :], 0] return distances <= np.quantile(distances, quantile) def cohensd(g1, g2): """ Returns Cohen's D for the effect size of group 1 values (g1) over group 2 values (g2). Parameters ---------- g1 : group 1 values (list or numpy vector) g2 : group 2 values (list or numpy vector) Returns ------- (mean(g1) - mean(g2) )/s, where s is the pooled standard deviation of the two groups with Bessel's correction """ n1 = len(g1) n2 = len(g2) s1 = np.std(g1, ddof=1) s2 = np.std(g2, ddof=1) s = np.sqrt(((n1 - 1) * s1 * s1 + (n2 - 1) * s2 * s2) / (n1 + n2 - 2)) return (np.mean(g1) - np.mean(g2)) / s def phi_coefficient(contingency_table): """ Returns the phi-coefficient for a contingency table. Paramenters ----------- contingency_table : contingency table, identical in format to scipy.stats.fisher_exact Returns ------- phi coefficient """ table1 = contingency_table[0] table2 = contingency_table[1] table = np.vstack([table1, table2]) phitop = (table1[0] * table2[1] - table1[1] * table2[0]) phibottom = np.sqrt((table2[1]+table2[0])*\ (table1[1]+table1[0])*\ (table1[0]+table2[0])*\ (table2[1]+table1[1])) phi = phitop / phibottom return phi def get_igraph_from_adjacency(adjacency, directed=None): """This is taken from scanpy._utils.__init__.py as of 12 August 2021 Get igraph graph from adjacency matrix.""" import igraph as ig sources, targets = adjacency.nonzero() weights = adjacency[sources, targets] if isinstance(weights, np.matrix): weights = weights.A1 g = ig.Graph(directed=directed) g.add_vertices(adjacency.shape[0]) # this adds adjacency.shape[0] vertices g.add_edges(list(zip(sources, targets))) try: g.es['weight'] = weights except KeyError: pass if g.vcount() != adjacency.shape[0]: logg.warning(f'The constructed graph has only {g.vcount()} nodes. ' 'Your adjacency matrix contained redundant nodes.') return g def convert_10x_h5(path_10x_h5, output_file, labelkey=None, label='', genes_as_ca=[], gene_whitelist=None, output_type='loom'): import cellranger.matrix as cr_matrix import loompy output_type = output_file.split('.')[-1] if output_type not in ['loom', 'pkl']: raise Exception( "output_file must be have suffix loom or pkl, denoting an output type of loom of pickle respectively" ) filtered_feature_bc_matrix = cr_matrix.CountMatrix.load_h5_file( path_10x_h5) id2feature = { val: key for key, val in filtered_feature_bc_matrix.feature_ids_map.items() } features = [ id2feature[x].decode("utf-8") for x in range(filtered_feature_bc_matrix.features_dim) ] features_common_names = filtered_feature_bc_matrix.feature_ref.get_feature_names( ) barcodes = filtered_feature_bc_matrix.bcs.astype(str) ca = {'cellname': barcodes} if labelkey is not None: ca[labelkey] = [label] * len(barcodes) m = filtered_feature_bc_matrix.m if gene_whitelist is not None: if len(gene_whitelist) > 0: mask = np.isin(features, gene_whitelist) m = m[mask, :] features = list(np.array(features)[mask]) features_common_names = list(np.array(features_common_names)[mask]) if type(genes_as_ca) == str: genes_as_ca = [genes_as_ca] else: genes_as_ca = list(genes_as_ca) if len(genes_as_ca) > 0: mask = np.isin(features, genes_as_ca) if len(genes_as_ca) != mask.sum(): raise Exception( "Improper mapping of row attributes; perhaps gene of interest not in loom.ra[\'gene\']?" ) for gene in genes_as_ca: submask = np.array(features) == gene if np.sum(submask) > 1: raise Exception("Two or more features with this name") elif np.sum(submask) == 0: raise Exception("No features with this name") ca[gene] = list(m[submask, :].toarray()[0]) m = m[~mask, :] features = list(np.array(features)[~mask]) features_common_names = list(np.array(features_common_names)[~mask]) ra = {'gene': features, 'gene_common_name': features_common_names} if output_type == 'loom': loompy.create(output_file, m, ra, ca) if output_type == 'pkl': if gene_whitelist is None: raise Exception( "pkl output intended only for saving a small subsetted geneset of interest. Please select a whitelist before saving as dataframe pkl." ) mask = np.isin(features, gene_whitelist) features = np.array(features)[mask] features_common_names = np.array(features_common_names)[mask] df = pd.DataFrame(m[mask, :].toarray()) df.index = features if labelkey is not None: df.columns = [labelkey + '_' + x for x in barcodes] else: df.columns = barcodes df.to_pickle(output_file) def create_split_exon_gtf(input_gtf, output_gtf, gene): gtf = pd.read_table(input_gtf, header=None, comment='#') gtf.columns = [ 'seqname', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame', 'attribute' ] gtf = gtf[gtf['feature'] == 'exon'] if type(gene) == str: mask = gtf['attribute'].apply( lambda x: 'gene_name "{}"'.format(gene) in x) elif type(gene) in [list, tuple, np.array]: mask = np.array([False] * len(gtf)) for g in gene: mask = mask | gtf['attribute'].apply( lambda x: 'gene_name "{}"'.format(g) in x) gtf_unchanged = gtf[~mask] gtf_changed = gtf[mask] def append_exon_number_to_id_and_name(attribute): exon_number = attribute.split('exon_number')[1].split(';')[0].split( '\"')[-2] old_gene_id_str = 'gene_id' + attribute.split('gene_id')[1].split( ';')[0] new_gene_id_str = '\"'.join( old_gene_id_str.split('\"')[0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_gene_id_str, new_gene_id_str) old_gene_name_str = 'gene_name' + attribute.split( 'gene_name')[1].split(';')[0] new_gene_name_str = '\"'.join( old_gene_name_str.split('\"')[0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_gene_name_str, new_gene_name_str) old_transcript_id_str = 'transcript_id' + attribute.split( 'transcript_id')[1].split(';')[0] new_transcript_id_str = '\"'.join( old_transcript_id_str.split('\"') [0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_transcript_id_str, new_transcript_id_str) old_transcript_name_str = 'transcript_name' + attribute.split( 'transcript_name')[1].split(';')[0] new_transcript_name_str = '\"'.join( old_transcript_name_str.split('\"') [0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_transcript_name_str, new_transcript_name_str) if 'ccds_id' in attribute: old_ccds_id_str = 'ccds_id' + attribute.split('ccds_id')[1].split( ';')[0] new_ccds_id_str = '\"'.join(old_ccds_id_str.split('\"') [0:-1]) + '-exon' + exon_number + '\"' attribute = attribute.replace(old_ccds_id_str, new_ccds_id_str) return attribute gtf_changed['attribute'] = gtf_changed['attribute'].apply( append_exon_number_to_id_and_name) gtf = pd.concat([gtf_changed, gtf_unchanged]) gtf.to_csv(output_gtf, sep='\t', index=False, header=None) def get_umap_from_matrix(X, random_state=17, verbose=True, min_dist=0.001, n_neighbors=20, metric='correlation'): import umap reducer = umap.UMAP(random_state=random_state, verbose=verbose, min_dist=min_dist, n_neighbors=n_neighbors, metric=metric) return reducer.fit_transform(X) def convert_h5ad(h5ad, output_loom, convert_obsm=True, convert_varm=True, convert_uns=True, convert_layers=True): import scanpy import loompy h5ad = scanpy.read_h5ad(h5ad) ra = {'gene': np.array(h5ad.var.index)} for col in h5ad.var.columns: if col == 'gene': raise Exception( "var column of h5ad is \"gene\". This conflicts with panopticon loom format. You must rename before converting." ) else: ra[col] = np.array(h5ad.var[col].values) ca = {'cellname': np.array(h5ad.obs.index)} for col in h5ad.obs.columns: if col == 'cellname': raise Exception( "obs column of h5ad is \"cellname\". This conflicts with panopticon loom format. You must rename before converting." ) else: ca[col] = np.array(h5ad.obs[col].values) if convert_obsm: for obsm_key in h5ad.obsm.keys(): for i in range(h5ad.obsm[obsm_key].shape[1]): ca_key = "{}_{}".format( obsm_key, i + 1) # one added so that these are 1-indexed by default if ca_key in ca.keys(): raise Exception( "key\"{}\" already present as column attribute key. Please rename to avoid." ) else: ca[ca_key] = h5ad.obsm[obsm_key][:, i] if convert_varm: for varm_key in h5ad.varm.keys(): for i in range(h5ad.varm[varm_key].shape[1]): ra_key = "{}_{}".format( varm_key, i + 1) # one added so that these are 1-indexed by default if ra_key in ra.keys(): raise Exception( "key\"{}\" already present as row attribute key. Please rename to avoid." ) else: ra[ra_key] = h5ad.varm[varm_key][:, i] loompy.create(output_loom, h5ad.X.T, ra, ca) if convert_uns: loom = loompy.connect(output_loom) for uns_key in h5ad.uns.keys(): loom.attrs[uns_key] = h5ad.uns[uns_key] loom.close() if convert_layers: loom = loompy.connect(output_loom) for layer_key in h5ad.layers.keys(): loom.layers[layer_key] = h5ad.layers[key].T loom.close() def get_UMI_curve_from_10x_h5(path_10x_h5, save_to_file=None): import cellranger.matrix as cr_matrix import matplotlib.pyplot as plt bc_matrix = cr_matrix.CountMatrix.load_h5_file(path_10x_h5) fig, ax = plt.subplots(figsize=(5, 5)) ax.plot(np.sort(bc_matrix.get_counts_per_bc())[::-1]) ax.set_title('UMI counts per barcode, sorted') ax.set_ylabel('UMI counts') ax.set_xlabel('cell rank, UMI counts (most to fewest)') ax.set_xscale('log') ax.set_yscale('log') if save_to_file is None: plt.show() else: plt.savefig(save_to_file) plt.cla() def get_dsb_normalization(cell_antibody_counts, empty_droplet_antibody_counts, use_isotype_control=True, denoise_counts=True, isotype_control_name_vec=None, define_pseudocount=False, pseudocount_use=10, quantile_clipping=False, quantile_clip=[0.001, 0.9995], return_stats=False): import rpy2.robjects as robjects import rpy2.robjects.numpy2ri if isotype_control_name_vec is None: isotype_control_name_vec = robjects.r("NULL") if (pseudocount_use != 10) and (not define_pseudocount): raise Exception( "\"define_pseudocount\" must be set to True to use pseudocount_use" ) rpy2.robjects.numpy2ri.activate() robjects.r(''' library(mclust) library(dsb) dsb <- function(cells, empty, use.isotype.control=TRUE, denoise.counts=TRUE, isotype.control.name.vec = NULL, define.pseudocount = FALSE, pseudocount.use = 10, quantile.clipping = FALSE, quantile.clip = c(0.001, 0.9995), return.stats = FALSE){ DSBNormalizeProtein(cells, empty, use.isotype.control=use.isotype.control, isotype.control.name.vec = isotype.control.name.vec, denoise.counts=denoise.counts, define.pseudocount = define.pseudocount, pseudocount.use = pseudocount.use, quantile.clipping = quantile.clipping, quantile.clip = quantile.clip, return.stats = return.stats) } ''') dsb = robjects.r['dsb'] return dsb(cell_antibody_counts, empty_droplet_antibody_counts, use_isotype_control=use_isotype_control, denoise_counts=denoise_counts, isotype_control_name_vec=isotype_control_name_vec, define_pseudocount=define_pseudocount, pseudocount_use=pseudocount_use, quantile_clipping=quantile_clipping, quantile_clip=quantile_clip, return_stats=return_stats) def get_cellphonedb_compatible_counts_and_meta(loom, layername, celltype_ca, gene_ra='gene', cellname_ca='cellname', return_df=False, output_prefix=None, mouse_to_human=False): if output_prefix is None and not return_df: raise Exception( "either output_prefix must be specified, or return_df must be True" ) counts = pd.DataFrame(loom[layername][:, :]) counts.columns = loom.ca[cellname_ca] #counts.insert(0, 'Gene', np.array([x.upper() for x in loom.ra[gene_ra]])) genes = loom.ra[gene_ra] if mouse_to_human: from pybiomart import Server server = Server(host="http://www.ensembl.org") mouse_dataset = (server.marts['ENSEMBL_MART_ENSEMBL']. datasets['mmusculus_gene_ensembl']) mouse_data = mouse_dataset.query( attributes=['ensembl_gene_id', 'external_gene_name']) mouse_data['Gene upper'] = mouse_data['Gene name'].apply( lambda x: str(x).upper()) human_dataset = (server.marts['ENSEMBL_MART_ENSEMBL']. datasets['hsapiens_gene_ensembl']) human_data = human_dataset.query( attributes=['ensembl_gene_id', 'external_gene_name']) conversion_dict = pd.merge( mouse_data, human_data, left_on='Gene upper', right_on='Gene name').set_index( 'Gene stable ID_x')['Gene stable ID_y'].to_dict() convertible_mask = np.array( [x in conversion_dict.keys() for x in genes]) genes = [ conversion_dict[x] if x in conversion_dict.keys() else np.nan for x in genes ] counts.insert(0, 'Gene', genes) if mouse_to_human: counts = counts.iloc[convertible_mask, :] counts = counts.groupby('Gene').first().reset_index() meta = pd.DataFrame(loom.ca[cellname_ca]) meta.columns = ['Cell'] meta['cell_type'] = loom.ca[celltype_ca] if output_prefix is not None: counts.to_csv(output_prefix + '_counts.txt', sep='\t', index=False) meta.to_csv(output_prefix + '_meta.txt', sep='\t', index=False) command = 'cellphonedb method statistical_analysis {0}_meta.txt {0}_counts.txt'.format( output_prefix) print("Run cellphonedb on command line with \"{}\"".format(command)) elif return_df: return meta, counts def create_gsea_txt_and_cls(loom, layername, output_prefix, phenotypes, cellmask=None, gene_ra='gene', cellname_ca='cellname'): import os if cellmask is None: cellmask = np.array([True] * loom.shape[1]) if type(phenotypes) == str: phenotypes = loom.ca[phenotypes] if len(phenotypes) != cellmask.sum(): raise Exception( "length of phenotypes vector must be equal to number of samples (cells)" ) txt = pd.DataFrame(loom.ra[gene_ra]) txt.columns = ['NAME'] txt['DESCRIPTION'] = 'na' #txt = pd.concat([txt,pd.DataFrame(loom[layername][:,cellmask])],axis=1) #txt.columns = ['NAME','DESCRIPTION'] + list(loom.ca[cellname_ca][cellmask]) #txt.to_csv(output_prefix+'.txt',index=False,sep='\t') total = cellmask.sum() nphenotypes = len(np.unique(phenotypes)) outcls = output_prefix + '.cls' if os.path.exists(outcls): os.system("rm {}".format(outcls)) #raise Exception("cls file already present--cannot overwrite") line1 = "{} {} 1".format(total, nphenotypes) line2 = '# ' + ' '.join(np.unique(phenotypes)) phenotype2index = { phenotype: i for i, phenotype in enumerate(np.unique(phenotypes)) } #print(phenotype2index) #print([phenotype2index[x] for x in phenotypes]) line3 = ' '.join([str(phenotype2index[x]) for x in phenotypes]) for line in [line1, line2, line3]: os.system('echo \"{}\">>{}'.format(line, outcls)) def get_cross_column_attribute_heatmap(loom, ca1, ca2, normalization_axis=None): #if type(normalization_axis) == list: # outdfs = [] # for axis in normalization_axis: # outdfs.append(get_cross_column_attribute_heatmap(loom, ca1, ca2, normalization_axis=axis)) # return outdfs df =
pd.DataFrame(loom.ca[ca1], copy=True)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import boto3 from tqdm import tqdm import yaml from ._01_ETL import Boba_ETL as etl from ._02_Preprocessing import Boba_Preprocessing as pp from ._03_Modeling import Boba_Modeling as m class BobaModeling(etl,pp,m): def __init__(self, year, position_group): self.s3_client = boto3.client('s3') self.bucket = "boba-voglewede" self.year = year self.information_cols = ['Season','Name','playerID','position','Team','Age'] self.position_group = position_group if self.position_group=='hitters': self.per_metric = 'PA' self.counting_stats = ['HR','R','RBI','WAR','SB','CS'] self.rate_stats = ['AVG','OBP','SLG','BABIP','BB%','K%','wOBA'] self.model_targets = self.rate_stats + [c+'_per_'+self.per_metric for c in self.counting_stats] self.pt_metric = 'PA' elif self.position_group=='SP': self.per_metric = 'GS' self.counting_stats = ['ShO','CG','W','WAR'] self.rate_stats = ['ERA','BB_per_9','K_per_9','OBP','SLG'] self.model_targets = self.rate_stats + [c+'_per_'+self.per_metric for c in self.counting_stats] self.pt_metric = 'IP' elif self.position_group=='RP': self.per_metric = 'G' self.counting_stats = ['SV','HLD','WAR'] self.rate_stats = ['ERA','BB_per_9','K_per_9','OBP','SLG'] self.model_targets = self.rate_stats + [c+'_per_'+self.per_metric for c in self.counting_stats] self.pt_metric = 'IP' else: pass def __repr__(self): return "This is the way" def scrape_raw_season_data(self, source, start_year,end_year, writeS3=False): seasons = list(np.arange(start_year,end_year+1)) statcast_seasons = list(np.arange(2015,end_year+1)) data_group = 'hitters' if self.position_group == 'hitters' else 'pitchers' if data_group == 'hitters': print("gather data for {} through {} seasonal hitting data".format(start_year,end_year)) for i in tqdm(seasons): etl.FG_hitters_season(self,season=i,writeS3=writeS3) print("Fangraphs scrape completed") for i in tqdm(statcast_seasons): etl.statcast_hitters_season(self,season=i,writeS3=writeS3) print("Statcast scrape completed") elif data_group == 'pitchers': print("gather data for {} through {} seasonal pitching data".format(start_year,end_year)) for i in tqdm(seasons): etl.FG_pitchers_season(self,season=i,writeS3=writeS3) print("Fangraphs scrape completed") for i in tqdm(statcast_seasons): etl.statcast_pitchers_season(self,season=i,writeS3=writeS3) print("Statcast scrape completed") else: pass def prepare_source_masters(self, writeS3 = False): data_group = 'hitters' if self.position_group == 'hitters' else 'pitchers' if data_group == 'hitters': etl.gather_source_masters(self,position_group=self.position_group, source = 'fangraphs', writeS3 = False) etl.gather_source_masters(self,position_group=self.position_group, source = 'statcast', writeS3 = False) elif data_group == 'pitchers': etl.gather_source_masters(self,position_group=self.position_group, source = 'fangraphs', writeS3 = False) etl.gather_source_masters(self,position_group=self.position_group, source = 'statcast', writeS3 = False) else: pass def create_master_data(self,start_year=2014): self.start_year = start_year with open(r'boba/recipes/preprocessing_parameters.yaml') as file: yaml_data = yaml.load(file, Loader=yaml.FullLoader) self.pt_min = yaml_data['parameters'][self.position_group]['pt_min'] self.pt_keep_thres = yaml_data['parameters'][self.position_group]['pt_keep_thres'] self.pt_drop = yaml_data['parameters'][self.position_group]['pt_drop'] fg_df,statcast_df,id_map,fantrax = etl.load_raw_dataframes(self) master_df = pp.join_tables(self,fg_df,statcast_df,id_map,fantrax) master_df = pp.preliminary_col_reduction(self,master_df) master_df = pp.feature_engineering(self,master_df) master_df = pp.drop_out_of_position(self,master_df = master_df) master_df = pp.limit_years(self,start_year=start_year,master_df=master_df) master_df = pp.make_targets(self,master_df=master_df) master_df = pp.organize_training_columns(self,master_df=master_df) master_df = master_df.reset_index(drop = True) master_df.to_csv('data/processed/'+self.position_group+'/master_df.csv',index=True) modeling_df = pp.remove_injured(self,master_df=master_df) modeling_df = pp.remove_missing(self,modeling_df=modeling_df) modeling_df.to_csv('data/processed/'+self.position_group+'/modeling_df.csv',index=True) pp.run_corr_analysis(self,modeling_df) return master_df, modeling_df def modeling_pipeline(self, target, knn = 5,test_size = .3, max_evals = 100, seed = 8,verbose=False, split_method='timeseries'): modeling_df = pd.read_csv('data/processed/'+self.position_group+'/modeling_df.csv',index_col=0) self.seed = seed self.knn = knn model_df = m.isolate_relevant_columns(self,modeling_df = modeling_df,target = target) self.X_train, self.X_test, self.y_train, self.y_test = m.evaluation_split(self,model_df=model_df,target=target,test_size=test_size,method=split_method) self.X_train_prod, self.X_test_prod, self.y_train_prod, self.y_test_prod = m.production_split(self,model_df=model_df,target=target,test_size=test_size,method=split_method) self.X_train, self.X_test = m.preprocessing_pipeline(self, X_train = self.X_train, X_test = self.X_test, target = target, prod=False) self.model_eval = m.build_model(self,X_train=self.X_train, X_test=self.X_test,y_train=self.y_train, y_test=self.y_test,target=target,prod=False,max_evals=max_evals,verbose=verbose) self.X_train_prod, self.X_test_prod = m.preprocessing_pipeline(self, X_train = self.X_train_prod, X_test = self.X_test_prod, target = target, prod=True) self.model_prod = m.build_model(self,X_train=self.X_train, X_test=self.X_test,y_train=self.y_train, y_test=self.y_test,target=target,prod=True,max_evals=max_evals,verbose=verbose) def prod_scoring_pipeline(self): try: os.remove('data/projections/'+self.position_group+'_'+str(self.year)+'_raw.csv') except: pass fg_df,statcast_df,id_map,fantrax = etl.load_raw_dataframes(self) pp.create_scoring_data(self,fg_df,statcast_df,id_map,fantrax) for target in tqdm(self.model_targets): m.generate_prod_predictions(self, target=target) scored_df = pd.read_csv('data/projections/'+self.position_group+'_'+str(self.year)+'_raw.csv',index_col=0) # scored_df = scored_df.drop(['Name_zips'],axis=1,errors='ignore') scored_df = self.clean_projections(scored_df) scored_df.to_csv('data/projections/'+self.position_group+'_'+str(self.year)+'_raw.csv') return scored_df def clean_projections(self,scored_df): systems = ['Boba','zips','stmr','atc','bat'] if self.position_group == 'hitters': for i in tqdm(systems): scored_df['NetSB_'+i] = scored_df['SB_'+i] - scored_df['CS_'+i] elif self.position_group == 'SP': for i in tqdm(systems): scored_df['QS_'+i] = ((scored_df['IP_zips']/(12*6.15)-0.11*scored_df['ERA_'+i]))*scored_df['GS_zips'] # scored_df['QS_'+i] = (scored_df['GS_zips']*(.465-(scored_df['ERA_'+i]*.0872381))+(scored_df['IP_zips']/scored_df['GS_zips'])*.0746775) scored_df['QSCGSHO_'+i] = scored_df['QS_'+i]+scored_df['CG_Boba']+scored_df['ShO_Boba'] scored_df['OPS_Boba'] = scored_df['SLG_Boba']+scored_df['OBP_Boba'] elif self.position_group == 'RP': scored_df['SVHLD_Boba'] = scored_df['SV_Boba']+scored_df['HLD_Boba'] scored_df['SVHLD_atc'] = scored_df['SV_atc']+scored_df['HLD_Boba'] scored_df['SVHLD_stmr'] = scored_df['SV_stmr']+scored_df['HLD_Boba'] scored_df['SVHLD_bat'] = np.nan scored_df['SVHLD_zips'] = np.nan scored_df['OPS_Boba'] = scored_df['SLG_Boba']+scored_df['OBP_Boba'] else: pass return scored_df class BobaProjections(BobaModeling): def __init__(self, year, remove_list): self.remove_list = remove_list self.b_H = BobaModeling(year=year,position_group='hitters') self.b_SP = BobaModeling(year=year,position_group='SP') self.b_RP = BobaModeling(year=year,position_group='RP') self.proj_H = pd.read_csv('data/projections/hitters_2020_raw.csv',index_col=0) self.proj_SP = pd.read_csv('data/projections/SP_2020_raw.csv',index_col=0) self.proj_RP = pd.read_csv('data/projections/RP_2020_raw.csv',index_col=0) self.stat_cat_H_default = ['OBP','SLG','HR','R','RBI','NetSB'] self.stat_cat_P_default = ['ERA','OPS','K_per_9','BB_per_9','QSCGSHO','SVHLD'] self.display_cols_H = self.stat_cat_H_default + ['OPS_H','BB%_Boba','K%_Boba'] self.display_cols_P = self.stat_cat_P_default.copy() def remove_injured_and_optouts(self, df, position_group): if position_group == 'hitters': for i in self.remove_list: if i in list(df['Name']): df.loc[df['Name'] == i, 'PA_zips'] = 0 df.loc[df['Name'] == i, 'HR'] = 0 df.loc[df['Name'] == i, 'RBI'] = 0 df.loc[df['Name'] == i, 'R'] = 0 elif position_group == 'pitchers': for i in self.remove_list: if i in list(df['Name']): df.loc[df['Name'] == i, 'IP_zips'] = 0 df.loc[df['Name'] == i, 'GS_zips'] = 0 df.loc[df['Name'] == i, 'QSCGSHO'] = 0 df.loc[df['Name'] == i, 'G_zips'] = 0 df.loc[df['Name'] == i, 'SVHLD'] = 0 df.loc[df['Name'] == i, 'K_per_9'] = 0 df.loc[df['Name'] == i, 'ERA'] = 5 else: pass return df def create_league(self, stat_categories_H, stat_categories_P, n_teams=12, catcher=1, first=1, second=1, third=1, ss=1, outfield=3, utility=2, off_bench = 5, startingP = 7, reliefP = 6): self.stat_categories_H = stat_categories_H self.stat_categories_P = stat_categories_P self.n_teams = n_teams self.tot_catcher = n_teams*catcher self.tot_first = n_teams*first self.tot_second = n_teams*second self.tot_third = n_teams*third self.tot_ss = n_teams*ss self.tot_outfield = n_teams*outfield self.tot_utility = n_teams*utility self.tot_off_bench = n_teams*off_bench self.total_offense = self.tot_catcher + self.tot_first + self.tot_second + self.tot_third + self.tot_ss + self.tot_outfield + self.tot_utility self.tot_startingP = n_teams*startingP self.tot_reliefP = n_teams*reliefP self.total_roster = self.total_offense + self.tot_startingP + self.tot_reliefP def set_model_weights(self, trust= True, weights=None): if trust: self.w_H_Boba = .8 self.w_H_zips = .05 self.w_H_stmr = .05 self.w_H_atc = .05 self.w_H_bat = .05 self.w_SP_Boba = .8 self.w_SP_zips = .05 self.w_SP_stmr = .05 self.w_SP_atc = .05 self.w_SP_bat = .05 self.w_RP_Boba = .8 self.w_RP_zips = .05 self.w_RP_stmr = .05 self.w_RP_atc = .05 self.w_RP_bat = .05 else: self.w_H_Boba = weights['hitters']['Boba'] self.w_H_zips = weights['hitters']['zips'] self.w_H_stmr = weights['hitters']['steamer'] self.w_H_atc = weights['hitters']['atc'] self.w_H_bat = weights['hitters']['bat'] self.w_SP_Boba = weights['SP']['Boba'] self.w_SP_zips = weights['SP']['zips'] self.w_SP_stmr = weights['SP']['steamer'] self.w_SP_atc = weights['SP']['atc'] self.w_SP_bat = weights['SP']['bat'] self.w_RP_Boba = weights['RP']['Boba'] self.w_RP_zips = weights['RP']['zips'] self.w_RP_stmr = weights['RP']['steamer'] self.w_RP_atc = weights['RP']['atc'] self.w_RP_bat = weights['RP']['bat'] def set_custom_parameters(self, value_NetSB = True, versatility_premium = 0, utility_discount = 0, adjust_PA = False, adjust_PA_exceptC = False): self.value_NetSB = value_NetSB self.versatility_premium = versatility_premium self.utility_discount = utility_discount if adjust_PA: self.PA_adj = 630 else: self.PA_adj = 0 if adjust_PA_exceptC: self.PA_adj_nonC = 630 else: self.PA_adj_nonC = 0 def generate_projections(self): print("TBD") def system_comparison(self): print("TBD") def compile_hitters(self): fantrax = pd.read_csv('data/utils/fantrax.csv') fantrax = fantrax[['Player','Position','ADP']] id_map = self.load_ID_map() join_df =
pd.merge(id_map,fantrax, how='left',left_on='FANTRAXNAME', right_on='Player' )
pandas.merge
import os import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm import json # import sys # sys.path.insert(0, './data') # sys.path.insert(0, './utils') # sys.path.insert(0, './common') import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) from utils.visualization import * from utils.skeleton import Skeleton from common.mmm import parse_motions from common.transforms3dbatch import * from common.quaternion import * from renderUtils import quat2xyz from model.model import Integrator import torch import pickle as pkl import scipy.ndimage.filters as filters import pdb ## permute joints to make it a DAG def permute(parents, root=0, new_parent=-1, new_joints=[], new_parents=[]): new_joints.append(root) new_parents.append(new_parent) new_parent = len(new_joints) - 1 for idx, p in enumerate(parents): if p == root: permute(parents, root=idx, new_parent=new_parent, new_joints=new_joints, new_parents=new_parents) return new_joints, new_parents def softmax(x, **kw): softness = kw.pop('softness', 1.0) maxi, mini = np.max(x, **kw), np.min(x, **kw) return maxi + np.log(softness + np.exp(mini - maxi)) def softmin(x, **kw): return -softmax(-x, **kw) class RawData(): def __init__(self): pass def _get_f(self): raise NotImplementedError def _get_df(self): raise NotImplementedError def preProcess(self): raise NotImplementedError def get_skeletonNpermutation(self): raise NotImplementedError @property def quat_columns(self): ## quaternion columns quat_columns = ['root_tx', 'root_ty', 'root_tz'] for joint in self.skel.joints: quat_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['rw', 'rx', 'ry', 'rz']] return quat_columns @property def fke_columns(self): ## forward kinematics columns fke_columns = [] for joint in self.skel.joints: fke_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['tx', 'ty', 'tz']] return fke_columns @property def pose_columns(self): pose_columns = [] for joint in self.skel.joints: pose_columns += ['{}_{}'.format(joint, col_suffix) for col_suffix in ['rx', 'ry', 'rz']] return pose_columns @property def rifke_columns(self): ## Save Rotation invariant fke (rifke) rifke_columns = self.fke_columns + ['root_Vx', 'root_Vz', 'root_Ry', 'feet_l1', 'feet_l2', 'feet_r1', 'feet_r2'] return rifke_columns @property def rifke_dict(self): raise NotImplementedError def output_columns(self, feats_kind): if feats_kind in {'euler'}: return self.pose_columns elif feats_kind in {'quaternion'}: return self.quat_columns elif feats_kind in {'fke'}: return self.fke_columns elif feats_kind in {'rifke'}: return self.rifke_columns def mat2csv(self, data, filename, columns): pd.DataFrame(data=data, columns=columns).to_csv(filename) def quat2fke(self, df_quat, filename_fke, filename_rifke): '''Save Forward Kinematics''' df_fke = pd.DataFrame(data=np.zeros((df_quat.shape[0], len(self.fke_columns))), columns=self.fke_columns) ## copying translation as is df_fke[['root_tx', 'root_ty', 'root_tz']] = df_quat.loc[:, ['root_tx', 'root_ty', 'root_tz']].copy() xyz_data = quat2xyz(df_quat, self.skel) df_fke.loc[:, self.fke_columns] = xyz_data.reshape(-1, np.prod(xyz_data.shape[1:])) #filename_fke = dir_name / Path(row[feats_kind]).relative_to(Path(path2data)/'subjects').with_suffix('.fke') os.makedirs(filename_fke.parent, exist_ok=True) df_fke.to_csv(filename_fke.as_posix()) '''Save Rotation Invariant Forward Kinematics''' df_rifke = pd.DataFrame(data=np.zeros((df_quat.shape[0]-1, len(self.rifke_columns))), columns=self.rifke_columns) rifke_data = self.fke2rifke(xyz_data.copy()) df_rifke[self.rifke_columns] = rifke_data[..., 3:] #filename_rifke = dir_name / Path(row[feats_kind]).relative_to(Path(path2data)/'subjects').with_suffix('.rifke') os.makedirs(filename_rifke.parent, exist_ok=True) df_rifke.to_csv(filename_rifke.as_posix()) ''' Convert rifke to fke to get comparable ground truths ''' new_df_fke = pd.DataFrame(data=self.rifke2fke(df_rifke[self.rifke_columns].values, filename_rifke).reshape(-1, len(self.fke_columns)), columns=self.fke_columns) new_fke_dir = filename_fke.parent/'new_fke' os.makedirs(new_fke_dir, exist_ok=True) new_df_fke.to_csv((new_fke_dir/filename_fke.name).as_posix()) return xyz_data ## fke to rotation invariant fke (Holden et. al.) def fke2rifke(self, positions): """ Put on Floor """ #fid_l, fid_r = np.array([5,6]), np.array([10,11]) fid_l, fid_r = self.rifke_dict['fid_l'], self.rifke_dict['fid_r'] foot_heights = np.minimum(positions[:,fid_l,1], positions[:,fid_r,1]).min(axis=1) floor_height = softmin(foot_heights, softness=0.5, axis=0) positions[:,:,1] -= floor_height """ Add Reference Joint """ trajectory_filterwidth = 3 reference = positions[:,0] * np.array([1,0,1]) reference = filters.gaussian_filter1d(reference, trajectory_filterwidth, axis=0, mode='nearest') positions = np.concatenate([reference[:,np.newaxis], positions], axis=1) """ Get Foot Contacts """ velfactor, heightfactor = np.array([0.05,0.05]), np.array([3.0, 2.0]) feet_l_x = (positions[1:,fid_l,0] - positions[:-1,fid_l,0])**2 feet_l_y = (positions[1:,fid_l,1] - positions[:-1,fid_l,1])**2 feet_l_z = (positions[1:,fid_l,2] - positions[:-1,fid_l,2])**2 feet_l_h = positions[:-1,fid_l,1] feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) feet_r_x = (positions[1:,fid_r,0] - positions[:-1,fid_r,0])**2 feet_r_y = (positions[1:,fid_r,1] - positions[:-1,fid_r,1])**2 feet_r_z = (positions[1:,fid_r,2] - positions[:-1,fid_r,2])**2 feet_r_h = positions[:-1,fid_r,1] feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) """ Get Root Velocity """ velocity = (positions[1:,0:1] - positions[:-1,0:1]).copy() """ Remove Translation """ positions[:,:,0] = positions[:,:,0] - positions[:,0:1,0] positions[:,:,2] = positions[:,:,2] - positions[:,0:1,2] """ Get Forward Direction """ #sdr_l, sdr_r, hip_l, hip_r = 19, 26, 3, 8 sdr_l, sdr_r, hip_l, hip_r = self.rifke_dict['sdr_l'], self.rifke_dict['sdr_r'], self.rifke_dict['hip_l'], self.rifke_dict['hip_r'] across1 = positions[:,hip_l] - positions[:,hip_r] across0 = positions[:,sdr_l] - positions[:,sdr_r] across = across0 + across1 across = across / np.sqrt((across**2).sum(axis=-1))[...,np.newaxis] direction_filterwidth = 20 forward = np.cross(across, np.array([[0,1,0]])) forward = filters.gaussian_filter1d(forward, direction_filterwidth, axis=0, mode='nearest') forward = forward / np.sqrt((forward**2).sum(axis=-1))[...,np.newaxis] """ Remove Y Rotation """ target = np.array([[0,0,1]]).repeat(len(forward), axis=0) rotation = qbetween_np(forward, target)[:, np.newaxis] positions = qrot_np(np.repeat(rotation, positions.shape[1], axis=1), positions) """ Get Root Rotation """ velocity = qrot_np(rotation[1:], np.repeat(velocity, rotation.shape[1], axis=1)) rvelocity = self.get_rvelocity(rotation, forward='z', plane='xz') """ Add Velocity, RVelocity, Foot Contacts to vector """ positions = positions[:-1] positions = positions.reshape(len(positions), -1) positions = np.concatenate([positions, velocity[:,:,0]], axis=-1) positions = np.concatenate([positions, velocity[:,:,2]], axis=-1) positions = np.concatenate([positions, rvelocity], axis=-1) positions = np.concatenate([positions, feet_l, feet_r], axis=-1) return positions def get_rvelocity(self, rotation, forward='z', plane='xz'): ## TODO - might need a reversal of inputs for qmul_np qs = qmul_np(rotation[1:], qinv_np(rotation[:-1])) ds = np.zeros(qs.shape[:-1] + (3,)) ds[...,'xyz'.index(forward)] = 1.0 ds = qrot_np(qs, ds) ys = ds[...,'xyz'.index(plane[0])] xs = ds[...,'xyz'.index(plane[1])] return np.arctan2(ys, xs) def rifke2fke(self, positions, filename=None): root_ry = torch.from_numpy(positions[..., -5]).unsqueeze(0).unsqueeze(0).float() pos = positions[..., :-7].reshape(positions.shape[0], -1, 3) pos[..., 0, [0,2]] = 0 ''' Get Y Rotations ''' integrator = Integrator(1, root_ry.shape[-1]) root_ry = integrator(root_ry).squeeze(0).squeeze(0).numpy() rotations = np.stack([np.cos(root_ry/2), np.zeros_like(root_ry), np.sin(root_ry/2), np.zeros_like(root_ry)], axis=-1).astype(np.float) rotations = np.expand_dims(rotations, axis=1) ''' Rotate positions by adding Y rotations ''' pos = qrot_np(np.repeat(qinv_np(rotations), pos.shape[1], axis=1), pos) ''' Rotate XZ velocity vector ''' root_v = positions[..., -7:-5] root_v = np.stack([root_v[..., 0], np.zeros_like(root_v[..., 0]), root_v[..., 1]], axis=-1) try: root_v = qrot_np(qinv_np(rotations.squeeze(1)), root_v) except: pdb.set_trace() root_v = torch.from_numpy(root_v.transpose(1,0)).unsqueeze(0).float() ''' Get Root Positions from Root Velocities''' integrator = Integrator(3, root_v.shape[-1]) root_t = integrator(root_v).squeeze(0).transpose(1, 0).numpy() ''' Add translations back to all the joints ''' pos[..., :, 0] += root_t[..., 0:1] pos[..., :, 2] += root_t[..., 2:3] return pos class KITMocap(RawData): def __init__(self, path2data, preProcess_flag=False): super(KITMocap, self).__init__() ## load skeleton self._SKELPATH = 'dataProcessing/KITMocap/skeleton.p' self._MMMSKELPATH = 'skeleton/mmm.xml' self._MMMSAMPLEPATH = 'dataProcessing/KITMocap/00001_mmm.xml' os.makedirs(Path(self._SKELPATH).parent, exist_ok=True) ## get the skeleton and permutation self.skel, self.permutation, self.new_joints = self.get_skeletonNpermutation() ## save skeleton pkl.dump(self.skel, open(self._SKELPATH, 'wb')) if preProcess_flag: self.preProcess(path2data) ## Reading data data = [] for tup in os.walk(path2data): for filename in tup[2]: if Path(filename).suffix == '.xml': annotpath = Path(tup[0])/(filename.split('_')[0] + '_annotations.json') annot = json.load(open(annotpath, 'r')) quatpath = filename.split('_')[0] + '_quat.csv' fkepath = filename.split('_')[0] + '_quat.fke' rifkepath = filename.split('_')[0] + '_quat.rifke' if annot: for description in annot: data.append([(Path(tup[0])/filename).as_posix(), description, (Path(tup[0])/quatpath).as_posix(), (Path(tup[0])/fkepath).as_posix(), (Path(tup[0])/rifkepath).as_posix()]) else: data.append([(Path(tup[0])/filename).as_posix(), '', (Path(tup[0])/quatpath).as_posix(), (Path(tup[0])/fkepath).as_posix(), (Path(tup[0])/rifkepath).as_posix()]) self.df =
pd.DataFrame(data=data, columns=['euler', 'descriptions', 'quaternion', 'fke', 'rifke'])
pandas.DataFrame
import os import pandas as pd INDEXES = ["deaths", "confirmed", "hospitalized", "intensive care", "intubated", "released"] def read_inputs(): text = input("Insert data to append as: [date: MM/DD/YY], [deaths], [confirmed], [hospitalized], [intensive care], " "[intubated], [released]\n") data_list = text.split(" ") if len(data_list) != 7: raise ValueError("Missing input values.") new_data_series = pd.Series(index=INDEXES, data=data_list[1:]) new_data_series.rename(data_list[0], inplace=True) new_data_series= new_data_series.astype('int') return new_data_series def append_data(new_data_series): base_path = "../data" filepath_overall = os.path.join(base_path, "time_series_19-covid-all.csv") filepath_confirmed = os.path.join(base_path, "time_series_19-covid-Confirmed.csv") filepath_deaths = os.path.join(base_path, "time_series_19-covid-Deaths.csv") filepath_hospitalized = os.path.join(base_path, "time_series_19-covid-Hospitalized.csv") filepath_icu = os.path.join(base_path, "time_series_19-covid-ICU.csv") filepath_intubated = os.path.join(base_path, "time_series_19-covid-Intubated.csv") filepath_released = os.path.join(base_path, "time_series_19-covid-Released.csv") df_overall =
pd.read_csv(filepath_overall)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 """ make_herbarium_2022_catalog_df.py """ # # Description: # # Created On: Sunday Feb 27th, 2022 # Created By: <NAME> # ### Key constants # DATASETS_ROOT = "/media/data_cifs/projects/prj_fossils/data/processed_data/leavesdb-v1_1/images" # EXTANT_ROOT = "/media/data_cifs/projects/prj_fossils/data/processed_data/leavesdb-v1_1/images/Extant_Leaves/original/full/jpg" # GENERAL_ROOT = "/media/data_cifs/projects/prj_fossils/data/processed_data/leavesdb-v1_1/images/Fossil/General_Fossil/original/full/jpg" # FLORISSANT_ROOT = "/media/data_cifs/projects/prj_fossils/data/processed_data/leavesdb-v1_1/images/Fossil/Florissant_Fossil/original/full/jpg" # with open(os.path.join(HERBARIUM_ROOT, "train_metadata.json")) as fp: # train_data = json.load(fp) # with open(os.path.join(HERBARIUM_ROOT, "test_metadata.json")) as fp: # test_data = json.load(fp) # for k,v in train_data.items(): # print(k, f"| Total:{len(v)}") # print("First:", v[0]) # print("Last:", v[-1]) # print("="*15+"\n") # assert len(train_data["annotations"]) == len(train_data["images"]) import argparse import os import sys from typing import * import json import pandas as pd from pathlib import Path import seaborn as sns import matplotlib.pyplot as plt from rich import print as pp # HERBARIUM_ROOT_DEFAULT = "/media/data_cifs/projects/prj_fossils/data/raw_data/herbarium-2022-fgvc9_resize" # from dotenv import load_dotenv # load_dotenv() import imutils from imutils.big.split_catalog_utils import TRAIN_KEY, VAL_KEY, TEST_KEY HERBARIUM_ROOT_DEFAULT = os.environ["HERBARIUM_ROOT_DEFAULT"] CATALOG_DIR = os.environ["CATALOG_DIR"] SPLITS_DIR = os.environ["SPLITS_DIR"] def optimize_dtypes_train(df: pd.DataFrame) -> pd.DataFrame: """ Convert column dtypes to optimal type for herbarium train metadata df. """ # Reduce total df size by optimizing dtypes per column cat_cols = ['genus_id', 'institution_id', 'category_id', 'scientificName', 'family', 'genus', 'species','Species', 'collectionCode', 'license', 'authors'] if "y" in df.columns: cat_cols.append("y") str_cols = ['image_id', 'file_name', 'path'] col_dtypes = {c:"category" for c in cat_cols if c in df.columns} col_dtypes.update({c:"string" for c in str_cols}) # df = df.convert_dtypes() df = df.astype(col_dtypes) return df def optimize_dtypes_test(df: pd.DataFrame) -> pd.DataFrame: """ Convert column dtypes to optimal type for herbarium test metadata df. """ dtypes_test = {'image_id':"string", 'file_name':"string", 'license':"category", 'path':"string"} dtypes_test= {col:dtype for col, dtype in dtypes_test.items() if col in df.columns} # Reduce total df size by optimizing dtypes per column df = df.astype(dtypes_test) return df def read_train_df_from_csv(train_path, nrows: Optional[int]=None, index_col: int=0 ) -> pd.DataFrame: df = pd.read_csv(train_path, index_col=index_col, nrows=nrows) df = optimize_dtypes_train(df) return df def read_test_df_from_csv(test_path, nrows: Optional[int]=None, index_col: int=0 ) -> pd.DataFrame: df = pd.read_csv(test_path, index_col=index_col, nrows=nrows) df = optimize_dtypes_test(df) return df def read_all_from_csv(root_dir: str=None, source_csv_paths: Optional[List[str]]=None, subset_read_funcs: Union[Callable, Dict[str, Callable]]={ TRAIN_KEY: read_train_df_from_csv, TEST_KEY: read_test_df_from_csv }, return_dict: bool=False, **kwargs) -> Tuple[pd.DataFrame]: """ Read the train_metadata.csv and test_metadata.csv files from `root_dir` Note: This is prior to any train-val splits. """ if source_csv_paths is not None: train_path, test_path = sorted(source_csv_paths)[::-1] else: train_path = Path(root_dir, "train_metadata.csv") test_path = Path(root_dir, "test_metadata.csv") if isinstance(subset_read_funcs, Callable): train_df = subset_read_funcs(train_path) test_df = subset_read_funcs(test_path) else: train_df = subset_read_funcs[TRAIN_KEY](train_path) test_df = subset_read_funcs[TEST_KEY](test_path) # train_df = read_train_df_from_csv(train_path) # test_df = read_test_df_from_csv(test_path) if return_dict: return { TRAIN_KEY: train_df, TEST_KEY: test_df } return train_df, test_df # read_train_df_from_csv, # read_test_df_from_csv ################################### ################################### class HerbariumMetadata: TRAIN_KEYS = ['annotations', 'images', 'categories', 'genera', 'institutions', 'distances', 'license'] TEST_KEYS = ['image_id', 'file_name', 'license'] def __init__(self, herbarium_root: str=HERBARIUM_ROOT_DEFAULT): self.herbarium_root = herbarium_root def get_train_df(self) -> pd.DataFrame: metadata_path = Path(self.herbarium_root, "train_metadata.json") with open(os.path.join(metadata_path)) as fp: train_data = json.load(fp) assert all([k in train_data.keys() for k in self.TRAIN_KEYS]) train_annotations = pd.DataFrame(train_data['annotations']) train_categories = pd.DataFrame(train_data['categories']).set_index("category_id") train_genera = pd.DataFrame(train_data['genera']).set_index("genus_id") train_institutions =
pd.DataFrame(train_data['institutions'])
pandas.DataFrame
#!/usr/bin/env python3 import glob import math import sqlite3 import sys from itertools import product import logzero import pandas as pd from logzero import logger from statsmodels.tsa.arima.model import ARIMA from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.tsa.statespace.varmax import VARMAX sys.path.append("../../sql") import queries pd.set_option("plotting.backend", "plotly") def get_db_connection(db_path, db_filename): conn = sqlite3.connect(db_path + db_filename) logger.info(f"Connection made: {conn}") return conn def get_db_zipcodes(conn): cursor = conn.cursor() cursor.execute(queries.select_distinct_zips) zipcodes = cursor.fetchall() zipcodes = [z[0] for z in zipcodes] logger.info(f"Distinct zip codes: {zipcodes}") return zipcodes def get_column_names(conn, table_name): cursor = conn.cursor() cursor.execute(queries.select_column_names, {"table_name": table_name}) names = cursor.fetchall() names = [name[0] for name in names] logger.info(f"Column Names: {names}") return names def get_locale_data(conn, zipcode): cursor = conn.cursor() cursor.execute(queries.select_locale_data, {"zipcode": zipcode}) query_data = cursor.fetchone() locale_data = [qd for qd in query_data] logger.info(f"Locale data: {locale_data}") return locale_data def get_db_files(db_path="./"): db_files = [ file.split("/")[-1] for file in glob.glob(db_path + "*.db") if file.split("/")[-1] != "geo_zipcodes.db" ] return tuple(sorted(db_files)) def get_irr_data(conn, zipcode): params = {"zipcode": zipcode} df = pd.read_sql( queries.select_nsr_rows, conn, params=params, index_col="date_time", parse_dates=["date_time"], ) df.sort_index(axis=0, inplace=True) return df def get_plots_layout(num_columns=1, num_items=1): # row, column dimension calculation return {"rows": (math.ceil(num_items / num_columns)), "columns": num_columns} def get_data_decomps(df, period=12): decomps = {} cols = df.columns.tolist() for col in cols: decomps.update({col: seasonal_decompose(df[col], model="additive", period=period)}) return decomps def get_train_test(df, test_len_yrs=1): # columns = df.columns.tolist() # forecast_on_idx = 1 # sarima_series = df[columns[forecast_on_idx]] months = 12 total_len = len(df) test_len = months * test_len_yrs train_len = total_len - test_len train = df.iloc[:train_len] # [columns[forecast_on_idx]] test = df.iloc[train_len:] # [columns[forecast_on_idx]] return train, val def get_forecast(): forecast = ts_tools.sarima_model( sarima_train, *best_order, s=12, num_fc=119, forecast=True, ) return forecast #-----------------------------------------------------------------------------# def gen_arima_params(p_rng=(0, 0), d_rng=(0, 0), q_rng=(0, 0), debug=False): """ input: 3 2-tuples of inclusive value ranges Boolean for debug printing functionality: produce a cartesian product of the inputs output: list of 3-tuple products """ p = range(p_rng[0], p_rng[1] + 1) d = range(d_rng[0], d_rng[1] + 1) q = range(q_rng[0], q_rng[1] + 1) # Create a list with all possible combination of parameters parameters = product(p, d, q) parameters_list = list(parameters) order_list = [] for params in parameters_list: params = list(params) params = tuple(params) order_list.append(params) if debug: print(f"ARIMA Order list length: {len(order_list)}") print(f"ARIMA Order list\n {order_list[:3]}") return order_list def ARIMA_optimizer(series, arima_order, debug=False): """ input: Pandas data series with pd.datetime index list of 3-tuples representing ARIMA orders (p, d, q) Boolean for debug printing functionality: model each (p, d, q) sequence, store AIC return: pandas dataframe listing all (p, d, q) AIC pairs, ordered best to worst """ results = [] for order in arima_order: try: model = ARIMA( series, order=order, ).fit() except: if debug: print("exception occured") continue aic = model.aic results.append([order, model.aic]) result_df = pd.DataFrame(results) result_df.columns = ["(p, d, q)", "AIC"] result_df = result_df.sort_values(by="AIC", ascending=True).reset_index(drop=True) return result_df def arima_model(series, p=0, d=0, q=0, num_fc=1, summary=False, forecast=False): """ input: Pandas Series with pd.datetime index. Integers: ARIMA parameters p, d, q Integer: number of forecast periods Boolean: summary print Bookean: True return forecast, False return model functionality: perform an ARIMA forecast of the Series time-series return: forecast data or model """ model = ARIMA( series, order=(p, d, p), enforce_stationarity=True, # trend="n", ).fit() if summary: print(model.summary()) if forecast: start = len(series) end = start + num_fc forecast = model.predict(start=start, end=end) return forecast return model def gen_sarima_params( p_rng=(0, 0), d_rng=(0, 0), q_rng=(0, 0), P_rng=(0, 0), D_rng=(0, 0), Q_rng=(0, 0), debug=False, ): """ input: 3 3-tuples of inclusive value ranges Boolean for debug printing functionality: produce a cartesian product of the inputs output: list of 3-tuple products """ p = range(p_rng[0], p_rng[1] + 1) d = range(d_rng[0], d_rng[1] + 1) q = range(q_rng[0], q_rng[1] + 1) P = range(P_rng[0], P_rng[1] + 1) D = range(D_rng[0], D_rng[1] + 1) Q = range(Q_rng[0], Q_rng[1] + 1) # Create a list with all possible combination of parameters parameters = product(p, d, q, P, D, Q) parameters_list = list(parameters) order_list = [] for params in parameters_list: params = list(params) params = tuple(params) order_list.append(params) if debug: print(f"SARIMA Order list length: {len(order_list)}") print(f"SARIMA Order list\n {order_list[:3]}") return order_list def SARIMA_optimizer(series, sarima_order, s=0, debug=False): """ input: Pandas data series with pd.datetime index list of 6-tuples representing ARIMA orders (p, d, q, P, D, Q) Boolean for debug printing functionality: model each (p, d, q) sequence, store AIC return: pandas dataframe listing all (p, d, q, P, D, Q) AIC pairs, ordered best to worst """ results = [] for order in sarima_order: if debug: print(order) try: model = ARIMA( series, order=(order[0], order[1], order[2]), seasonal_order=(order[3], order[4], order[5], s), enforce_stationarity=True, # trend="c", ).fit() except: if debug: print("exception occured") continue aic = model.aic results.append([order, model.aic]) result_df =
pd.DataFrame(results)
pandas.DataFrame
# https://www.kaggle.com/shivank856/gtsrb-cnn-98-test-accuracy import PIL import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from PIL import Image from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import Adam from sklearn.metrics import accuracy_score np.random.seed(42) from matplotlib import style style.use('fivethirtyeight') data_dir = '../Kagle_trye/archive' train_path = '../Kagle_trye/archive/Train' test_path = '../Kagle_trye/archive' # Resizing the images to 30x30x3 IMG_HEIGHT = 30 IMG_WIDTH = 30 channels = 3 NUM_CATEGORIES = len(os.listdir(train_path)) print(NUM_CATEGORIES) classes = { 0:'Speed limit (20km/h)', 1:'Speed limit (30km/h)', 2:'Speed limit (50km/h)', 3:'Speed limit (60km/h)', 4:'Speed limit (70km/h)', 5:'Speed limit (80km/h)', 6:'End of speed limit (80km/h)', 7:'Speed limit (100km/h)', 8:'Speed limit (120km/h)', 9:'No passing', 10:'No passing veh over 3.5 tons', 11:'Right-of-way at intersection', 12:'Priority road', 13:'Yield', 14:'Stop', 15:'No vehicles', 16:'Veh > 3.5 tons prohibited', 17:'No entry', 18:'General caution', 19:'Dangerous curve left', 20:'Dangerous curve right', 21:'Double curve', 22:'Bumpy road', 23:'Slippery road', 24:'Road narrows on the right', 25:'Road work', 26:'Traffic signals', 27:'Pedestrians', 28:'Children crossing', 29:'Bicycles crossing', 30:'Beware of ice/snow', 31:'Wild animals crossing', 32:'End speed + passing limits', 33:'Turn right ahead', 34:'Turn left ahead', 35:'Ahead only', 36:'Go straight or right', 37:'Go straight or left', 38:'Keep right', 39:'Keep left', 40:'Roundabout mandatory', 41:'End of no passing', 42:'End no passing veh > 3.5 tons' } folders = os.listdir(train_path) train_number = [] class_num = [] for folder in folders: train_files = os.listdir(train_path + '/' + folder) train_number.append(len(train_files)) class_num.append(classes[int(folder)]) # Sorting the dataset on the basis of number of images in each class zipped_lists = zip(train_number, class_num) sorted_pairs = sorted(zipped_lists) tuples = zip(*sorted_pairs) train_number, class_num = [list(tuple) for tuple in tuples] # Plotting the number of images in each class plt.figure(figsize=(21, 10)) plt.bar(class_num, train_number) plt.xticks(class_num, rotation='vertical') plt.show() import random from matplotlib.image import imread test = pd.read_csv(data_dir + '/Test.csv') imgs = test["Path"].values plt.figure(figsize=(25,25)) for i in range(1,26): plt.subplot(5,5,i) random_img_path = data_dir + '/' + random.choice(imgs) rand_img = imread(random_img_path) plt.imshow(rand_img) plt.grid(b=None) plt.xlabel(rand_img.shape[1], fontsize = 20)#width of image plt.ylabel(rand_img.shape[0], fontsize = 20)#height of image plt.show() image_data = [] image_labels = [] for i in range(NUM_CATEGORIES): path = data_dir + '/Train/' + str(i) images = os.listdir(path) for img in images: try: # image = cv2.imread(path + '/' + img) # image_fromarray = Image.fromarray(image, 'RGB') # resize_image = image_fromarray.resize((IMG_HEIGHT, IMG_WIDTH)) img = PIL.Image.open(path + '/' + img) resize_image = img.resize((IMG_HEIGHT, IMG_WIDTH)) image_data.append(np.array(resize_image)) image_labels.append(i) except: print("Error in " + img) # Changing the list to numpy array image_data = np.array(image_data) image_labels = np.array(image_labels) shuffle_indexes = np.arange(image_data.shape[0]) np.random.shuffle(shuffle_indexes) image_data = image_data[shuffle_indexes] image_labels = image_labels[shuffle_indexes] X_train, X_val, y_train, y_val = train_test_split(image_data, image_labels, test_size=0.3, random_state=42, shuffle=True) X_train = X_train/255 X_val = X_val/255 print("X_train.shape", X_train.shape) print("X_valid.shape", X_val.shape) print("y_train.shape", y_train.shape) print("y_valid.shape", y_val.shape) print(image_data.shape, image_labels.shape) y_train = keras.utils.to_categorical(y_train, NUM_CATEGORIES) y_val = keras.utils.to_categorical(y_val, NUM_CATEGORIES) print(y_train.shape) print(y_val.shape) model = keras.models.Sequential([ keras.layers.Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, channels)), keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu'), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.BatchNormalization(axis=-1), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), keras.layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu'), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.BatchNormalization(axis=-1), keras.layers.Flatten(), keras.layers.Dense(512, activation='relu'), keras.layers.BatchNormalization(), keras.layers.Dropout(rate=0.5), keras.layers.Dense(43, activation='softmax') ]) aug = ImageDataGenerator( rotation_range=10, zoom_range=0.15, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.15, horizontal_flip=False, vertical_flip=False, fill_mode="nearest") history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_val, y_val)) model.save("KagleModel300EPIL.h5") pd.DataFrame(history.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) plt.show() test =
pd.read_csv(data_dir + '/Test.csv')
pandas.read_csv
import pandas as pd from cellphonedb.src.core.methods import cpdb_statistical_analysis_helper from cellphonedb.src.core.core_logger import core_logger from cellphonedb.src.core.models.interaction import interaction_filter def call(meta: pd.DataFrame, counts: pd.DataFrame, interactions: pd.DataFrame, iterations: int = 1000, threshold: float = 0.1, threads: int = 4, debug_seed: int = -1, result_precision: int = 3 ) -> (pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame): core_logger.info( '[Cluster Statistical Analysis Simple] ' 'Threshold:{} Iterations:{} Debug-seed:{} Threads:{} Precision:{}'.format(threshold, iterations, debug_seed, threads, result_precision)) if debug_seed >= 0: pd.np.random.seed(debug_seed) core_logger.warning('Debug random seed enabled. Setted to {}'.format(debug_seed)) interactions_filtered, counts_filtered = prefilters(counts, interactions) if interactions_filtered.empty or counts_filtered.empty: return pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
pd.DataFrame()
pandas.DataFrame
# Mar21, 2022 ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # August 3, 2021 clean # FINAL github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Count # of windows with enough reads for complete/impute def coverage(methbin,complete,w): count=0 tot = 0 meth=methbin.iloc[:,methbin.columns!='Qname'] if len(meth.columns)>=w: for i in range(len(meth.columns)-w+1): # extract a window temp = meth.iloc[:,i:i+w].copy() #print(temp) tot = tot+1 if (enough_reads(window=temp,complete=complete,w=w)): count=count+1 #toprint=temp.notnull().sum(axis=1)>=w #print(toprint.sum()) #print(count) #print(tot) return count/tot*100 else: return 0 # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=2**w else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 return temp.sum()>=2**(w-2) and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def getcomplete(window,w): temp=np.isnan(window).sum(axis=1)==0 mat=window[np.where(temp)[0],:] #temp=window.notnull().sum(axis=1)>=w #mat=window.iloc[np.where(temp)[0],:] #else: # temp=mat.notnull().sum(axis=1)>=w-1 return mat def PattoDis(mat,dist=1): s=mat.shape[0] dis=np.zeros((s,s)) for i in range(s): for j in range(s): if j<i: if dist==1: d=Ham_d(mat.iloc[i,],mat.iloc[j,]) else: d=WDK_d(mat.iloc[i,],mat.iloc[j,]) dis[i,j]=dis[j,i]=d return dis def Ham_d(pat1,pat2): return (pat1!=pat2).sum() def WDK_d(pat1,pat2): d=0 w=pat1.shape[0] for i in range(w): # k-1 for j in range(w-i): # starting pos s=(w-i-1)*(1-np.all(pat1[j:j+i+1]==pat2[j:j+i+1])) d+=s return d # input a window of w CGs and output a list of proportions with starting genomic location and genomic distance across def window_summ(pat,start,dis,chrom): m=np.shape(pat)[0] d=np.shape(pat)[1] all_pos=np.zeros((2**d,d)) for i in range(d): all_pos[:,i]=np.linspace(0,2**d-1,2**d)%(2**(i+1))//(2**i) #print(all_pos) prob=np.zeros((2**d,1)) #print(prob) for i in range(2**d): count = 0 for j in range(m): if (all_pos[i,:]==pat.iloc[j,:]).sum()==d: count += 1 #print(count) prob[i]=count if d==3: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'dis':dis}) if d==4: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'dis':dis}) if d==5: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'dis':dis}) if d==6: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'p33':prob[32],'p34':prob[33],'p35':prob[34],\ 'p36':prob[35],'p37':prob[36],'p38':prob[37],'p39':prob[38],'p40':prob[39],\ 'p41':prob[40],'p42':prob[41],'p43':prob[42],'p44':prob[43],'p45':prob[44],\ 'p46':prob[45],'p47':prob[46],'p48':prob[47],'p49':prob[48],'p50':prob[49],\ 'p51':prob[50],'p52':prob[51],'p53':prob[52],'p54':prob[53],'p55':prob[54],\ 'p56':prob[55],'p57':prob[56],'p58':prob[57],'p59':prob[58],'p60':prob[59],\ 'p61':prob[60],'p62':prob[61],'p63':prob[62],'p64':prob[63],'dis':dis}) return out def MeHperwindow(pat,start,dis,chrom,D,w,optional,MeH=2,dist=1,strand='f'): count=np.zeros((2**w,1)) m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if MeH==1: # Abundance based score=(((count/m)**2).sum(axis=0))**(-1) elif MeH==2: # PWS based interaction=np.multiply.outer(count/m,count/m).reshape((2**w,2**w)) Q=sum(sum(D*interaction)) #print("Q =",Q) if Q==0: score=0 else: score=(sum(sum(D*(interaction**2)))/(Q**2))**(-0.5) elif MeH==3: #Phylogeny based count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if dist==1 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(0.5,16)),np.repeat(0.25,6)),[0.5]),np.repeat(0.25,6)) #phylotree=np.repeat(0,1).append(np.repeat(0.5,16)).append(np.repeat(0.25,6)).append(0.5).append(np.repeat(0.25,6)) countn=np.zeros(30) #count<-rep(0,29) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[4]+countn[7] countn[18]=countn[9]+countn[12] countn[19]=countn[1]+countn[2] countn[20]=countn[3]+countn[6] countn[21]=countn[17]+countn[18] countn[22]=countn[19]+countn[20] countn[23]=countn[21]+countn[22] countn[24]=countn[5]+countn[8] countn[25]=countn[10]+countn[13] countn[26]=countn[24]+countn[25] countn[27]=countn[23]+countn[26] countn[28]=countn[11]+countn[14] countn[29]=countn[27]+countn[28] #Q=sum(sum(phylotree*count)) if dist==2 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(3,16)),np.repeat(1.5,6)),[3.2,0.8]),np.repeat(2,3),np.repeat(1.5,2)) #phylotree=c(rep(3,16),rep(1.5,6),3.2,0.8,rep(2,3),1.5,1.5) countn=np.zeros(30) #print(count) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[1]+countn[2] countn[18]=countn[5]+countn[8] countn[19]=countn[3]+countn[6] countn[20]=countn[10]+countn[13] countn[21]=countn[4]+countn[7] countn[22]=countn[11]+countn[14] countn[23]=countn[17]+countn[18] countn[24]=countn[21]+countn[22] countn[25]=countn[19]+countn[20] countn[26]=countn[23]+countn[24] countn[27]=countn[25]+countn[26] countn[28]=countn[9]+countn[12] countn[29]=countn[27]+countn[28] #Q=sum(phylotree*count) if dist==2 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(1.5,8)),np.repeat(0.75,3)),np.repeat(1.5,0.75)) #phylotree=np.array(0).append(np.repeat(1.5,8)).append(np.repeat(0.75,3)).append(1.5,0.75) #phylotree=c(rep(1.5,8),rep(0.75,3),1.5,0.75) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #Q=sum(phylotree*count) if dist==1 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(0.5,8)),np.repeat(0.25,3)),[0.5,0.25]) #phylotree=np.array(0).append(np.repeat(0.5,8)).append(np.repeat(0.25,3)).append(0.5,0.25) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #print("count = ",count) #print("phylotree = ",phylotree) Q=sum(phylotree*countn) score=sum(phylotree*((countn/Q)**2))**(-1) elif MeH==4: #Entropy score=0 for i in count: if i>0: score-=(i/m)*np.log2(i/m)/w elif MeH==5: #Epipoly score=1-((count/m)**2).sum(axis=0) if optional: if MeH!=3: count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if w==3: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==4: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==5: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==6: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out, opt else: out=pd.DataFrame({'chrom':chrom,'pos':start,'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) return window def CGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") # load reference genome fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # initialise data frame for output ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','strand','depth']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True # all methylation patterns for Methylation heterogeneity evaluation all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) # distance matrix, also for Methylation heterogeneity evaluation D=PattoDis(pd.DataFrame(all_pos),dist=dist) # 1:Hamming distance, 2: WDK start=datetime.datetime.now() # vector for saving methylation statuses before imputation MU=np.zeros((2,w)) # screen bamfile by column for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['G'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['C'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() # Impute and estimate, if there are 2w-1 columns if never and aggreC.shape[1] == (2*w): # C/G to 1, rest to 0, N to NA never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC meth = methbin.copy() # remove read ID meth = meth.drop('Qname',axis=1) # back up for imputation if imp: methtemp = meth.copy() # imputation by sliding window of 1 C for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # save methylation statuses before imputation # check if eligible for imputation, impute if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values # overwrite imputed window meth = methtemp.copy() # Evaluate methylation level and methylation heterogeneity and append to result for i in range(0,w,1): # w windows window = meth.iloc[:,range(i,i+w)].values # check if enough complete patterns for evaluating MeH if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) # if need to output methylation patterns if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) # evaluate and output MeH else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) # remove 1 column aggreC = aggreC.drop(meth.columns[0:1],axis=1) # drop rows with no values aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # Reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): #for i in range(0,meth.shape[1]-w+1,1): #if i>w-2 and i<2*w: window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CG' print("Done CG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) #samfile.close() def CHHgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance start=datetime.datetime.now() MU=np.zeros((2,w)) for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHH %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # forward if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)!='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)!='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 =
pd.DataFrame(data=d)
pandas.DataFrame
import os import numpy as np import json import requests try: import modin.pandas as pd except ImportError: import pandas as pd import galaxy_utilities as gu from tqdm import tqdm import make_cutouts as mkct from astropy.wcs import WCS, FITSFixedWarning import warnings warnings.simplefilter('ignore', FITSFixedWarning) # we'll be dividing by NaN a lot (regions of zero pixel coverage) warnings.simplefilter('ignore', RuntimeWarning) loc = os.path.abspath(os.path.dirname(__file__)) sid_list = np.loadtxt(os.path.join(loc, 'subject-id-list.csv'), dtype='u8') def get_data(subject_id): diff_data = gu.get_diff_data(subject_id) # generate a cutout and sigma image frame_data = mkct.get_frame_data(subject_id) frame_data.to_pickle('frame_data/{}.pickle'.format(subject_id)) try: stacked_image, sigma_image = mkct.generate_new_cutout( subject_id, frame_data=frame_data ) except ValueError as e: print('Error on:', subject_id, e) print('Frame cutouts were not the same shape') return None # scale the image and std to match that used in modelling im_scaled = stacked_image / diff_data['multiplier'] sd_scaled = sigma_image / diff_data['multiplier'] # we may need to correct for rotation for some subjects r = requests.get(json.loads(gu.subjects.loc[subject_id].locations)['0']) rotation_correction = 0 if r.ok: subject_data = json.loads(r.text) zoo_mask = np.array(subject_data['mask']) zoo_gal = np.ma.masked_array(subject_data['imageData'], zoo_mask) montaged_cutout = mkct.get_montaged_cutout(subject_id).data montaged_mask = gu.get_diff_data(subject_id)['mask'] montaged_gal = np.ma.masked_array(montaged_cutout, montaged_mask) loss = np.inf for k in (0, 3): d = montaged_gal / montaged_gal.max() - np.rot90(zoo_gal, k=k) m = np.logical_xor(montaged_mask, np.rot90(zoo_gal.mask, k=k)) loss_ = np.nansum(np.abs(d)) / d.size + np.sum(m) if loss_ < loss: rotation_correction = 2 * np.pi * k / 4 loss = loss_ else: # assume rotation is zero on failure rotation_correction = 0 # get the WCS objects so we can transform models back into the original # projection montage_wcs = mkct.get_montaged_cutout(subject_id).wcs original_wcs = frame_data.iloc[0].wcs return dict( psf=gu.get_psf(subject_id), pixel_mask=~im_scaled.mask, galaxy_data=im_scaled, montage_wcs=montage_wcs, original_wcs=original_wcs, multiplier=diff_data['multiplier'], sigma_image=sd_scaled, width=diff_data['width'], size_diff=diff_data['width'] / diff_data['imageWidth'], rotation_correction=rotation_correction, ) tqdm.pandas(desc='Making DataFrame') df =
pd.Series(sid_list, index=sid_list)
pandas.Series
import numpy as np import pandas as pd import numba from vtools.functions.filter import cosine_lanczos def get_smoothed_resampled(df, cutoff_period='2H', resample_period='1T', interpolate_method='pchip'): """Resample the dataframe (indexed by time) to the regular period of resample_period using the interpolate method Furthermore the cosine lanczos filter is used with a cutoff_period to smooth the signal to remove high frequency noise Args: df (DataFrame): A single column dataframe indexed by datetime cutoff_period (str, optional): cutoff period for cosine lanczos filter. Defaults to '2H'. resample_period (str, optional): Resample to regular period. Defaults to '1T'. interpolate_method (str, optional): interpolation for resampling. Defaults to 'pchip'. Returns: DataFrame: smoothed and resampled dataframe indexed by datetime """ dfb = df.resample(resample_period).fillna(method='backfill') df = df.resample(resample_period).interpolate(method=interpolate_method) df[dfb.iloc[:, 0].isna()] = np.nan return cosine_lanczos(df, cutoff_period) @numba.jit(nopython=True) def lmax(arr): '''Local maximum: Returns value only when centered on maximum ''' idx = np.argmax(arr) if idx == len(arr)/2: return arr[idx] else: return np.NaN @numba.jit(nopython=True) def lmin(arr): '''Local minimum: Returns value only when centered on minimum ''' idx = np.argmin(arr) if idx == len(arr)/2: return arr[idx] else: return np.NaN def periods_per_window(moving_window_size: str, period_str: str) -> int: """Number of period size in moving window Args: moving_window_size (str): moving window size as a string e.g 7H for 7 hour period_str (str): period as str e.g. 1T for 1 min Returns: int: number of periods in the moving window rounded to an integer """ return int(pd.Timedelta(moving_window_size)/pd.to_timedelta(pd.tseries.frequencies.to_offset(period_str))) def tidal_highs(df, moving_window_size='7H'): """Tidal highs (could be upto two highs in a 25 hr period) Args: df (DataFrame): a time series with a regular frequency moving_window_size (str, optional): moving window size to look for highs within. Defaults to '7H'. Returns: DataFrame: an irregular time series with highs at resolution of df.index """ period_str = df.index.freqstr periods = periods_per_window(moving_window_size, period_str) dfmax = df.rolling(moving_window_size, min_periods=periods).apply(lmax, raw=True) dfmax = dfmax.shift(periods=-(periods//2-1)) dfmax = dfmax.dropna() dfmax.columns = ['max'] return dfmax def tidal_lows(df, moving_window_size='7H'): """Tidal lows (could be upto two lows in a 25 hr period) Args: df (DataFrame): a time series with a regular frequency moving_window_size (str, optional): moving window size to look for lows within. Defaults to '7H'. Returns: DataFrame: an irregular time series with lows at resolution of df.index """ period_str = df.index.freqstr periods = periods_per_window(moving_window_size, period_str) dfmin = df.rolling(moving_window_size, min_periods=periods).apply(lmin, raw=True) dfmin = dfmin.shift(periods=-(periods//2-1)) dfmin = dfmin.dropna() dfmin.columns = ['min'] return dfmin def get_tidal_hl(df, cutoff_period='2H', resample_period='1T', interpolate_method='pchip', moving_window_size='7H'): """Get Tidal highs and lows Args: df (DataFrame): A single column dataframe indexed by datetime cutoff_period (str, optional): cutoff period for cosine lanczos filter. Defaults to '2H'. resample_period (str, optional): Resample to regular period. Defaults to '1T'. interpolate_method (str, optional): interpolation for resampling. Defaults to 'pchip'. moving_window_size (str, optional): moving window size to look for lows within. Defaults to '7H'. Returns: tuple of DataFrame: Tidal high and tidal low time series """ dfs = get_smoothed_resampled(df, cutoff_period, resample_period, interpolate_method) return tidal_highs(dfs), tidal_lows(dfs) get_tidal_hl_rolling = get_tidal_hl # for older refs. #FIXME def get_tidal_amplitude(dfh, dfl): """Tidal amplitude given tidal highs and lows Args: dfh (DataFrame): Tidal highs time series dfl (DataFrame): Tidal lows time series Returns: DataFrame: Amplitude timeseries, at the times of the low following the high being used for amplitude calculation """ dfamp = pd.concat([dfh, dfl], axis=1) dfamp = dfamp[['min']].dropna().join(dfamp[['max']].ffill()) return pd.DataFrame(dfamp['max']-dfamp['min'], columns=['amplitude']) def get_value_diff(df, percent_diff=False): ''' Get the difference of values of each element in the dataframe The times in the dataframe may or may not coincide as this is a slice of irregularly sampled time series On any error, the returned value is np.nan ''' try: arr = [df[c].dropna() for c in df.columns] if percent_diff: value_diff = 100.0 * (arr[0].values[0]-arr[1].values[0])/arr[1].values[0] else: value_diff = arr[0].values[0]-arr[1].values[0] return value_diff except: return np.nan def get_tidal_amplitude_diff(dfamp1, dfamp2, percent_diff=False): """Get the difference of values within +/- 4H of values in the two amplitude arrays Args: dfamp1 (DataFrame): Amplitude time series dfamp2 (DataFrame): Amplitude time series percent_diff (bool, optional): If true do percent diff. Defaults to False. Returns: DataFrame: Difference dfamp1-dfamp2 or % Difference (dfamp1-dfamp2)/dfamp2*100 for values within +/- 4H of each other """ dfamp = pd.concat([dfamp1, dfamp2], axis=1).dropna(how='all') dfamp.columns = ['2', '1'] tdelta = '4H' sliceamp = [slice(t-pd.to_timedelta(tdelta), t+pd.to_timedelta(tdelta)) for t in dfamp.index] ampdiff = [get_value_diff(dfamp[sl], percent_diff) for sl in sliceamp] return pd.DataFrame(ampdiff, index=dfamp.index) def get_index_diff(df): ''' Get the difference of index values of each element in the dataframe The times in the dataframe may or may not coincide The difference is in Timedelta and is converted to minutes On any error, the returned value is np.nan ''' try: arr = [df[c].dropna() for c in df.columns] tidal_phase_diff = (arr[0].index[0]-arr[1].index[0]).total_seconds()/60. return tidal_phase_diff except: return np.nan def get_tidal_phase_diff(dfh2, dfl2, dfh1, dfl1): """Calculates the phase difference between df2 and df1 tidal highs and lows Scans +/- 4 hours in df1 to get the highs and lows in that windows for df2 to get the tidal highs and lows at the times of df1 Args: dfh2 (DataFrame): Timeseries of tidal highs dfl2 (DataFrame): Timeseries of tidal lows dfh1 (DataFrame): Timeseries of tidal highs dfl1 (DataFRame): Timeseries of tidal lows Returns: DataFrame: Phase difference (dfh2-dfh1) and (dfl2-dfl1) in minutes """ ''' ''' tdelta = '4H' sliceh1 = [slice(t-pd.to_timedelta(tdelta), t+pd.to_timedelta(tdelta)) for t in dfh1.index] slicel1 = [slice(t-pd.to_timedelta(tdelta), t+
pd.to_timedelta(tdelta)
pandas.to_timedelta
# coding=utf-8 # Copyright 2018-2020 EVA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np from eva.expression.abstract_expression import AbstractExpression, \ ExpressionType, \ ExpressionReturnType from eva.models.storage.batch import Batch class ComparisonExpression(AbstractExpression): def __init__(self, exp_type: ExpressionType, left: AbstractExpression, right: AbstractExpression): children = [] if left is not None: children.append(left) if right is not None: children.append(right) super().__init__(exp_type, rtype=ExpressionReturnType.BOOLEAN, children=children) def evaluate(self, *args, **kwargs): # cast in to numpy array lvalues = self.get_child(0).evaluate(*args, **kwargs).frames.values rvalues = self.get_child(1).evaluate(*args, **kwargs).frames.values if len(lvalues) != len(rvalues): if len(lvalues) == 1: lvalues = np.repeat(lvalues, len(rvalues), axis=0) elif len(rvalues) == 1: rvalues = np.repeat(rvalues, len(lvalues), axis=0) else: raise Exception( "Left and Right batch does not have equal elements") if self.etype == ExpressionType.COMPARE_EQUAL: return Batch(pd.DataFrame(lvalues == rvalues)) elif self.etype == ExpressionType.COMPARE_GREATER: return Batch(pd.DataFrame(lvalues > rvalues)) elif self.etype == ExpressionType.COMPARE_LESSER: return Batch(pd.DataFrame(lvalues < rvalues)) elif self.etype == ExpressionType.COMPARE_GEQ: return Batch(pd.DataFrame(lvalues >= rvalues)) elif self.etype == ExpressionType.COMPARE_LEQ: return Batch(pd.DataFrame(lvalues <= rvalues)) elif self.etype == ExpressionType.COMPARE_NEQ: return Batch(
pd.DataFrame(lvalues != rvalues)
pandas.DataFrame
""" Description : This file implements the Drain algorithm for log parsing Author : LogPAI team License : MIT """ import hashlib import os import re import pandas as pd from datetime import datetime from typing import List from .log_signature import calc_signature # ไธ€ไธชๅถๅญ่Š‚็‚นๅฐฑๆ˜ฏไธ€ไธชLogCluster class LogCluster: def __init__(self, template_token_list: List[str], log_id_list: List[int]): self.template_token_list = template_token_list self.log_id_list = log_id_list self.template_id = None # ๆ ‘่Š‚็‚น class Node: def __init__(self, childD=None, depth=0, digitOrToken=None): self.childD = {} if childD is None else childD self.depth = depth self.digitOrToken = digitOrToken self.template_count = 0 def get_template(seq1, seq2): assert len(seq1) == len(seq2) res = [] for t1, t2 in zip(seq1, seq2): if t1 == t2: res.append(t1) else: res.append('<*>') return res class LogParser: def __init__(self, log_format, indir='./', outdir='./result/', depth=4, st=0.4, maxChild=100, rex=None, keep_para=True): """ Attributes ---------- rex : regular expressions used in preprocessing (step1) path : the input path stores the input log file name depth : depth of all leaf nodes st : similarity threshold maxChild : max number of children of an internal node log_name : the name of the input file containing raw log messages save_path : the output path stores the file containing structured logs """ self.path = indir self.depth = depth - 2 self.st = st self.maxChild = maxChild self.log_name = None self.save_path = outdir self.df_log = None self.log_format = log_format self.rex = [] if rex is None else rex self.keep_para = keep_para def tree_search(self, root, token_list): seq_len = len(token_list) # ้•ฟๅบฆๅฑ‚๏ผŒๅˆคๆ–ญ้•ฟๅบฆ if seq_len not in root.childD: return 0, None len_node = root.childD[seq_len] # ้•ฟๅบฆๅฑ‚็š„่Š‚็‚น depth = 1 for token in token_list: if depth >= self.depth or depth > seq_len: break if token in len_node.childD: len_node = len_node.childD[token] elif '<*>' in len_node.childD: len_node = len_node.childD['<*>'] else: return 0, None depth += 1 return self.fastMatch(len_node.childD, token_list) def addSeqToPrefixTree(self, rn, logClust): def has_number(s): return any(char.isdigit() for char in s) logClust.template_id = rn.template_count # ๆจกๆฟid็ญ‰ไบŽๅบๅท rn.template_count += 1 # ่ฟ™ไธชๆ นไธŠ็š„ๆจกๆฟๆ€ปๆ•ฐๅŠ ไธ€ seqLen = len(logClust.template_token_list) if seqLen not in rn.childD: firtLayerNode = Node(depth=1, digitOrToken=seqLen) rn.childD[seqLen] = firtLayerNode else: firtLayerNode = rn.childD[seqLen] parentn = firtLayerNode currentDepth = 1 # ๅชๆœ‰ไธ€ไธชtokenๆ—ถ๏ผŒ็ป“ๆžœๆ˜ฏไธๅฏน็š„ for token in logClust.template_token_list: # Add current log cluster to the leaf node if currentDepth >= self.depth or currentDepth > seqLen: # if len(parentn.childD) == 0: # parentn.childD = [logClust] # else: # parentn.childD.append(logClust) break # If token not matched in this layer of existing tree. if token not in parentn.childD: if not has_number(token): if '<*>' in parentn.childD: if len(parentn.childD) < self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrToken=token) parentn.childD[token] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] else: if len(parentn.childD) + 1 < self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrToken=token) parentn.childD[token] = newNode parentn = newNode elif len(parentn.childD) + 1 == self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrToken='<*>') parentn.childD['<*>'] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] else: if '<*>' not in parentn.childD: newNode = Node(depth=currentDepth + 1, digitOrToken='<*>') parentn.childD['<*>'] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] # If the token is matched else: parentn = parentn.childD[token] currentDepth += 1 # ๆทปๅŠ ๅˆฐ logClusterList if len(parentn.childD) == 0: parentn.childD = [logClust] else: parentn.childD.append(logClust) # seq1 is template def seqDist(self, seq1, seq2): assert len(seq1) == len(seq2) simTokens = 0 numOfPar = 0 for token1, token2 in zip(seq1, seq2): if token1 == '<*>': numOfPar += 1 continue if token1 == token2: simTokens += 1 retVal = float(simTokens) / len(seq1) return retVal, numOfPar def fastMatch(self, logClustL, seq): retLogClust = None maxSim = -1 maxNumOfPara = -1 maxClust = None maxIdx = -1 # ๅŒน้…็š„็ฐ‡ๅฏนๅบ”็š„็ดขๅผ• for i, logClust in enumerate(logClustL): curSim, curNumOfPara = self.seqDist(logClust.template_token_list, seq) if curSim > maxSim or (curSim == maxSim and curNumOfPara > maxNumOfPara): maxSim = curSim maxNumOfPara = curNumOfPara maxClust = logClust maxIdx = i if maxSim < self.st: return len(logClustL), None else: return maxIdx, maxClust # if maxSim >= self.st: # retLogClust = maxClust # return retLogClust # ่พ“ๅ‡บ่‡ชๅฎšไน‰็ป“ๆžœ def outputEventId(self, event_id_list): if not os.path.exists(self.save_path): os.makedirs(self.save_path) self.df_log['EventId'] = event_id_list self.df_log.to_csv(os.path.join(self.save_path, self.log_name + '_structured.csv'), index=False) def outputResult(self, logClustL): if not os.path.exists(self.save_path): os.makedirs(self.save_path) log_templates = [0] * self.df_log.shape[0] log_templateids = [0] * self.df_log.shape[0] df_events = [] for logClust in logClustL: template_str = ' '.join(logClust.template_token_list) occurrence = len(logClust.log_id_list) # template_id = hashlib.md5(template_str.encode('utf-8')).hexdigest()[0:8] template_id = logClust.template_id for log_id in logClust.log_id_list: log_id -= 1 log_templates[log_id] = template_str log_templateids[log_id] = template_id df_events.append([template_id, template_str, occurrence]) # df_event = pd.DataFrame(df_events, columns=['EventId', 'EventTemplate', 'Occurrences']) self.df_log['EventId'] = log_templateids self.df_log['EventTemplate'] = log_templates if self.keep_para: self.df_log["ParameterList"] = self.df_log.apply(self.get_parameter_list, axis=1) self.df_log.to_csv(os.path.join(self.save_path, self.log_name + '_structured.csv'), index=False) occ_dict = dict(self.df_log['EventTemplate'].value_counts()) df_event =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat May 9 19:30:38 2020 @author: aletu """ import numpy as np import pandas as pd import random import datetime def generateWarehouseData(num_SKUs = 100, nodecode = 1, idwh = ['LOGICAL_WH1', 'LOGICAL_WH2', 'FAKE'], whsubarea = ['AREA 1'], num_corsie = 5, num_campate = 66, num_livelli = 5, alt_livello = 1200, largh_campate = 800, largh_corsia = 4000, num_movements=1000, num_ordercode = 800, average_time_between_movements = 1/24, #days first_day = datetime.datetime(year=2020, month=1, day = 2), ): #% CLASS SKU class SKU(): def __init__(self,itemcode): self.ITEMCODE=itemcode self.DESCRIPTION = f"PRODOTTO_{itemcode}" self.VOLUME = np.random.uniform(0.1,100) #volume in dm3 self.WEIGHT = np.random.uniform(0.1,10) #weigth in Kg #% CLASS STORAGE LOCATION class STORAGE_LOCATION(): def __init__(self,nodecode, idwh, whsubarea, idlocation, loccodex, loccodey, loccodez, rack, bay, level): self.NODECODE = nodecode self.IDWH = idwh self.WHSUBAREA = whsubarea self.IDLOCATION=idlocation self.LOCCODEX = loccodex self.LOCCODEY = loccodey self.LOCCODEZ = loccodez self.RACK = rack self.BAY = bay self.LEVEL = level # % CLASS MOVEMENTS class MOVEMENTS(): def __init__(self, itemcode,volume,weight, nodecode, idwh, whsubarea, idlocation,rack, bay, level, loccodex, loccodey, loccodez, ordercode, quantity, timestamp, inout, ordertype): self.ITEMCODE=itemcode self.NODECODE = nodecode self.IDWH = idwh self.WHSUBAREA = whsubarea self.IDLOCATION=idlocation self.RACK=rack self.BAY=bay self.LEVEL=level self.LOCCODEX = loccodex self.LOCCODEY = loccodey self.LOCCODEZ = loccodez self.ORDERCODE = ordercode self.PICKINGLIST = ordercode self.QUANTITY = quantity self.VOLUME = volume*quantity self.WEIGHT = weight*quantity self.TIMESTAMP_IN = timestamp self.INOUT = inout self.ORDERTYPE = ordertype # % CLASS INVENTORY class INVENTORY(): def __init__(self,itemcode,nodecode, idwh, idlocation,quantity, timestamp): self.NODECODE = nodecode self.IDWH=idwh self.ITEMCODE=itemcode self.IDLOCATION = idlocation self.QUANTITY = quantity self.TIMESTAMP = timestamp #% CREATE SKUS dict_SKUs={} itemcodes=np.arange(0,num_SKUs) for itemcode in itemcodes: dict_SKUs[itemcode] = SKU(itemcode) # % CREATE WH LAYOUT dict_locations ={} idlocation=0 for corsia in range(0, num_corsie): for campata in range(0, num_campate): for livello in range(0,num_livelli): idlocation=idlocation+1 #create a new location index #save parameters NODECODE = nodecode IDWH = random.choice(idwh) WHSUBAREA = random.choice(whsubarea) IDLOCATION = idlocation LOCCODEX = corsia*largh_corsia LOCCODEY = campata*largh_campate LOCCODEZ = livello*alt_livello #create storage location dict_locations[idlocation] = STORAGE_LOCATION(NODECODE, IDWH, WHSUBAREA, IDLOCATION, LOCCODEX, LOCCODEY, LOCCODEZ, corsia, campata, livello) # %% CREATE MOVEMENTS dict_movements={} num_creati = 0 ordercodes = np.arange(0,num_ordercode) while num_creati < num_movements: num_creati = num_creati+1 #random select sku sku = random.choice(dict_SKUs) itemcode = sku.ITEMCODE volume = sku.VOLUME weight = sku.WEIGHT #random select storage location loc_key = random.choice(list(dict_locations.keys())) loc = dict_locations[loc_key] nodecode = loc.NODECODE idwh = loc.IDWH whsubarea=loc.WHSUBAREA idlocation=loc.IDLOCATION loccodex = loc.LOCCODEX loccodey = loc.LOCCODEY loccodez = loc.LOCCODEZ rack = loc.RACK bay=loc.BAY level = loc.LEVEL #generates movements data ordercode = random.choice(ordercodes) quantity = np.random.lognormal(mean=2,sigma=1) wait = np.random.exponential(average_time_between_movements) if num_creati==1: timestamp = first_day + datetime.timedelta(wait) else: timestamp = dict_movements[num_creati-1].TIMESTAMP_IN + datetime.timedelta(wait) inout = random.choice(['+','-',' ']) ordertype = random.choice(['PICKING','PUTAWAY',' OTHER ']) dict_movements[num_creati] = MOVEMENTS(itemcode,volume,weight , nodecode, idwh, whsubarea, idlocation,rack, bay, level, loccodex, loccodey, loccodez, ordercode, quantity, timestamp, inout, ordertype) # %% CREATE INVENTORY dict_inventory = {} for itemcode in dict_SKUs: #sku = dict_SKUs[itemcode] loc_key = random.choice(list(dict_locations.keys())) loc = dict_locations[loc_key] nodecode=loc.NODECODE idwh=loc.IDWH idlocation=loc.IDLOCATION quantity = np.random.lognormal(mean=2,sigma=1) dict_inventory[itemcode] = INVENTORY(itemcode,nodecode, idwh, idlocation,quantity, first_day) # %% SAVE LOCATIONS AND EXPORT D_locations =
pd.DataFrame()
pandas.DataFrame
import os, datetime, pymongo, configparser import pandas as pd from bson import json_util global_config = None global_client = None global_stocklist = None def getConfig(root_path): global global_config if global_config is None: #print("initial Config...") global_config = configparser.ConfigParser() global_config.read(root_path + "/" + "config.ini") return global_config def getClient(): global global_client from pymongo import MongoClient if global_client is None: #print("initial DB Client...") global_client = MongoClient('localhost', 27017) return global_client def getCollection(database, collection): client = getClient() db = client[database] return db[collection] def getStockList(root_path, database, sheet): global global_stocklist if global_stocklist is None: #print("initial Stock List...") global_stocklist = queryStockList(root_path, database, sheet) return global_stocklist def setStockList(df): global global_stocklist df.set_index('symbol', inplace=True) global_stocklist = df return global_stocklist def readFromCollection(collection, queryString=None): if queryString is None: result = collection.find() else: result = collection.find(queryString) df = pd.DataFrame(list(result)) if df.empty == False: del df['_id'] return df def writeToCollection(collection, df, id = None): jsonStrings = df.to_json(orient='records') bsonStrings = json_util.loads(jsonStrings) for string in bsonStrings: if id is not None: id_string = ''.join([string[item] for item in id]) string['_id'] = id_string collection.save(string) def readFromCollectionExtend(collection, queryString=None): if queryString is None: result = collection.find() else: result = collection.find_one(queryString) if result is None: return pd.DataFrame(), {} return
pd.read_json(result['data'], orient='records')
pandas.read_json
#!/home/admin/anaconda3/envs/TF/bin/ python3.5 # -*- coding: utf-8 -*- ''' Created on 2018ๅนด6ๆœˆ11ๆ—ฅ @author: <NAME> Jiangxi university of finance and economics ''' from pandas import DataFrame from pandas import concat import pandas as pd time_ser_process=pd.read_csv('pricedetails_plus.csv')#ๅ‡†ๅค‡่ฟ›่กŒๆ—ถ้—ดๅบๅˆ—ๅค„็† time_ser_process=time_ser_process.dropna(axis=0) print(time_ser_process['citys']) time_ser_process.to_csv('pricedetails_plus_1.csv') def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):#ๆ—ถ้—ดๅบๅˆ—ๅ‡ฝๆ•ฐ """ Frame a time series as a supervised learning dataset. Arguments: data: Sequence of observations as a list or NumPy array. n_in: Number of lag observations as input (X). n_out: Number of observations as output (y). dropnan: Boolean whether or not to drop rows with NaN values. Returns: Pandas DataFrame of series framed for supervised learning. """ n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg =
concat(cols, axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[1]: # pip install factor_analyzer # In[2]: #All the header files required for the code import numpy as np import pandas as pd from factor_analyzer import FactorAnalyzer import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn import metrics import random # In[3]: #Importing both the file using pandas data1 = pd.read_csv('movies data.csv') data2 = pd.read_csv('ratings data.csv') # In[4]: #Deleting unnecessary columns data1 = data1.drop('Unnamed: 0',axis = 1) data2 = data2.drop(['Unnamed: 0','Timestamp'],axis = 1) # In[5]: data1.head() # In[6]: data2.head() # In[7]: #Merging both the dataframes data = pd.merge(data2 , data1 , how='outer', on='MovieID') # In[8]: data.head() # In[9]: # Data Processing # Converting Genres into different columns # Here we just create columns and put there initial value as 0 x = data.Genres a = list() for i in x: abc = i a.append(abc.split('|')) a =
pd.DataFrame(a)
pandas.DataFrame
# Filename: reference.py """ Data provided for free by IEX (https://iextrading.com/developer/). See https://iextrading.com/api-exhibit-a/ for more information. """ from iex.base import _Base, IEXAPIError import pandas as pd class Reference(_Base): """https://iextrading.com/developer/docs/#reference-data""" _ENDPOINT = '/ref-data/' def get_symbols(self): """https://api.iextrading.com/1.0/ref-data/symbols""" payload = 'symbols' data = self._get_json(self._ENDPOINT, payload) symbols = pd.DataFrame(data) return(symbols) def get_corporate_actions(self, date=None, sample=False): """https://iextrading.com/developer/docs/#iex-corporate-actions""" if date is not None: payload = ''.join(['daily-list/corporate-actions/', date]) elif sample is True: payload = 'daily-list/corporate-actions/sample' else: payload = 'daily-list/corporate-actions' data = self._get_json(self._ENDPOINT, payload) corporate_actions = pd.DataFrame(data) return(corporate_actions) def get_dividends(self, date=None, sample=False): """https://iextrading.com/developer/docs/#iex-dividends""" if date is not None: payload = ''.join(['daily-list/dividends/', date]) elif sample is True: payload = 'daily-list/dividends/sample' else: payload = 'daily-list/dividends' data = self._get_json(self._ENDPOINT, payload) dividends =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import os import sys import tensorflow as tf import json import joblib import time from tensorflow import keras from keras import optimizers from datetime import datetime,timedelta from sklearn.preprocessing import MinMaxScaler from datetime import datetime pd.set_option('display.max_columns', None) #--------------------------------------- # variables #--------------------------------------- start = time.time() DATASET_NUM = 7 MODEL_NUM = 10 # path PATH_BASE = './' PATH_MODEL = PATH_BASE + '/model/' PATH_RESULT = PATH_BASE + '/result/' # power capacity power_nm_list = ['onm1_h','onm2_h','onm3_h','onm4_h'] capacity_list = [89.7, 96.6, 90, 46.2] RSRS_ID = 0 POWER_NM = power_nm_list[RSRS_ID] CAPACITY = capacity_list[RSRS_ID] print("POWER_NM:{}, CAPACITY:{}".format(POWER_NM,CAPACITY)) # timesteps SHIFT_DAYS = 7 PRED_STEPS = 24 dataX_STEPS = SHIFT_DAYS*PRED_STEPS #--------------------------------------- # functions #--------------------------------------- # ์ด์ƒ์น˜ nan ์ฒ˜๋ฆฌ def power_anomal(x) : if x > CAPACITY : return np.nan return x def sensor_anomal(x) : if x < -900 : return np.nan return x # load sol omn def load_power(POWER_NM): df_power = pd.read_csv(PATH_BASE + '/df_power.csv',index_col=0) df_power['POWER']=df_power['POWER'].apply(power_anomal).apply(lambda x:x) df_power.sort_values(by=['DATE'], axis=0) df_power = df_power.set_index(
pd.DatetimeIndex(df_power['DATE'])
pandas.DatetimeIndex
""" This notebook plots DFT results for thermoelectric properties of several candidate materials identified via random forest regression and portfolio-like risk management. See src/notsbooks/screen/random_forest.py for details. """ # %% import pandas as pd from matplotlib import pyplot as plt from thermo.utils import ROOT DIR = ROOT + "/results/screen/dft/" # %% # convert excel file into usable format zT_el_greedy_gurobi = pd.read_excel(DIR + "zT_el_greedy&gurobi.xlsx").dropna() zT_el_greedy_gurobi.columns = range(len(zT_el_greedy_gurobi.columns)) # %% # Get mask to distinguish string values in column 0. m1 =
pd.to_numeric(zT_el_greedy_gurobi[0], errors="coerce")
pandas.to_numeric
# from google.colab import drive # drive.mount('/content/drive') # !pip install shap # !pip install pyitlib # import os # os.path.abspath(os.getcwd()) # os.chdir('/content/drive/My Drive/Protein project') # os.path.abspath(os.getcwd()) #!/usr/bin/env python #-*- coding:utf-8 -*- """ Created on Mar 1, 2020 @author: <NAME> """ import warnings warnings.filterwarnings("ignore") from __future__ import division ###for float operation from collections import Counter import numpy as np from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score ##tp / (tp + fn) from sklearn.metrics import precision_score #tp / (tp + fp) from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import KFold, StratifiedKFold #from pyitlib import discrete_random_variable as drv import time import timeit import networkx as nx import matplotlib.pyplot as plt import pandas as pd from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_X_y, check_array, check_is_fitted ### Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) #from sklearn.utils.multiclass import unique_labels, not necessary, can be replaced by array(list(set())) # class PUgenerator: """ Generate PU data from fully labeled data set. Labelling assumption: SCAR, i.e, e(x) = P(s=1|y=1,x) = p(s=1|y=1) = c Scenarios: case_control or single-training """ def __init__(self): pass def fit(self,X,y, case_control = True, n_L = None,n_U = None, c = None,n_T = None, random_state = 42, pos_label = '1'): """ Implementation of a fitting function. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) or (n_samples, n_outputs) The target values (class labels in classification, real numbers in regression). n_L : Scalar Number of labeled examples, for case_control = T n_U : Scalar Number of Unlabeled examples, for case_control = T random_state : Scalar set seed for Pu data generation pos_label : default is '1'. make other labels be '0'. case_control : Bool Case control scenario or single training data scenario c : scalar P(s=1|y=1), only needed when case_control = F n_T : scalar Sample size of single training dataset, for case_control = F Returns ------- self """ # print("just arrived in the fit function--",id(X)) X,y = check_X_y(X,y) y = y.astype(str) # f(x) = alpha f+(x) + (1-alpha) f-(x), true population data = np.concatenate((X, y.reshape(-1,1)), axis=1) np.random.seed(random_state*3) # set seed for random np.random.shuffle(data) # save memory space than permutation, since no copy needed # print("after check_X_y --",id(X)) n,p = X.shape # f+(x) X_1_true = data[data[:,-1] == pos_label ,0:p] # case control scenario if case_control: # sample labeled positive from f+(x) np.random.seed(random_state) # set seed for np.random row_inx_L = np.random.choice(X_1_true.shape[0], n_L,replace=True) X_labeled = X_1_true[row_inx_L,:] # sample unlabeled X from f(x) np.random.seed(random_state*2) row_inx_U = np.random.choice(n, n_U,replace=True) # set seed for np.random X_Unlabeled = data[row_inx_U,0:p] y_Unlabeled = data[row_inx_U,-1] y_Unlabeled = np.where(y_Unlabeled == pos_label,'1','0') self.X_1abeled_ , self.X_Unlabeled_, self.prevalence_ ,self.X_true_, self.X_1_true_, self.p_, self.y_Unlabeled_ = X_labeled,X_Unlabeled, X_1_true.shape[0]/n, X, X_1_true, p, y_Unlabeled else: # sample single training data. np.random.seed(random_state*2) row_inx_Total = np.random.choice(n, n_T,replace=True) # set seed for np.random data_T = data[row_inx_Total,:] # data_T is single training set data_T_P = data_T[data_T[:,-1] == pos_label ,:] data_T_N = data_T[data_T[:,-1] != pos_label ,:] # sample positive labeled. np.random.seed(random_state) # set seed for np.random row_inx_L = np.random.choice(data_T_P.shape[0],int(data_T_P.shape[0]*c) ,replace=False) data_T_P_L = data_T_P[row_inx_L,:] data_T_P_U = data_T_P[list(set(range(data_T_P.shape[0])).difference(row_inx_L) ) ] # Unlabeled = data_T_P_U + data_T_N data_T_U = np.concatenate((data_T_P_U,data_T_N), axis = 0) X_Unlabeled = data_T_U[:,0:p] y_Unlabeled = data_T_U[:,-1] y_Unlabeled = np.where(y_Unlabeled == pos_label,'1','0') self.X_1abeled_, self.X_Unlabeled_, self.X_T_, self.prevalence_, self.X_true_, self.X_1_true_,self.p_, self.y_Unlabeled_ = data_T_P_L[:,0:p], X_Unlabeled, data_T[:,0:p], X_1_true.shape[0]/n, X ,X_1_true, p, y_Unlabeled # X_T_ self.case_control_ = case_control return self def value_count(self): # x_labeled vs x_1_true, # x_T or x_Unlabeled vs X_true_ X_L = pd.DataFrame(self.X_1abeled_) # fl(x) X_1_true =
pd.DataFrame(self.X_1_true_)
pandas.DataFrame
from io import StringIO import subprocess import pandas as pd import os # Time columns in job records # If we exclude PENDING jobs (that we do in slurm_raw_processing), all time columns should have a time stamp, # except RUNNING jobs that do not have the 'End' stamp. time_columns = ['Eligible','Submit','Start','End'] # Define what constitutes a duplicate job duplicate_job_def = ['JobID','Submit','Start'] def sacct_jobs(account_query, d_from, d_to='', debugging=False, serialize_frame='', slurm_names=False): """Ingest job record information from slurm via sacct and return DataFrame. Parameters ------- account_query: str String query to be sent to sacct via -A flag. d_from: date str Beginning of the query period, e.g. '2019-04-01T00:00:00 debugging: boolean, optional Boolean for reporting progress to stdout. Default False. sacct_file: str, optional Loads a raw query from file. If empty, query is rerun. Defaults to the empty string. serialize_frame: str, optional Pickle the resulting DataFrame. If empty, pickling is skipped. Defaults to the empty string. slurm_names: str, optional Keep slurm's sacct column names instead of shorthands. Defaults to False. Returns ------- DataFrame Returns a standard pandas DataFrame, or an empty dataframe if no jobs are found. """ raw_frame = _get_slurm_records(pd.to_datetime(d_from)) out_frame = _slurm_raw_processing(raw_frame, slurm_names) # Legacy/consistency check: # Protect end time for jobs that are still currently running out_frame['end'] = out_frame['end'].replace({pd.NaT: pd.to_datetime(d_to)}) # return _slurm_consistency_check(out_frame) if debugging else out_frame # TODO: consisder swapping this to a better format if serialize_frame != '': out_frame.to_pickle(serialize_frame, protocol=4) return out_frame def _get_slurm_records(arg, ssh_client=None): '''Retrieve records either via SSH or from a file.''' sacct_format = 'Account,AllocCPUS,AllocNodes,AllocTRES,AssocID,Cluster,CPUTimeRAW,'\ 'CPUTime,DerivedExitCode,ElapsedRaw,Elapsed,Eligible,End,ExitCode,Flags,GID,Group,'\ 'JobID,JobIDRaw,NCPUS,NNodes,NodeList,Priority,Partition,QOS,QOSRAW,Reason,ReqCPUS,'\ 'ReqMem,ReqNodes,ReqTRES,Reserved,ResvCPURAW,ResvCPU,Start,State,Submit,Suspended,'\ 'SystemCPU,TimelimitRaw,Timelimit,TotalCPU,UID,User,UserCPU,WorkDir' sacct_command = 'TZ=UTC sacct' sacct_options = f'--duplicates --allusers --allocations --parsable2 --delimiter=";" --format={sacct_format}' if isinstance(arg, str): # Read a SLURM dump from a file source = arg command = None if not os.path.isfile(source): print('The seed file does not exist. Quitting.') return pd.DataFrame() elif isinstance(arg, list) and arg: # Get specific jobs command = f'{sacct_command} {sacct_options} --jobs {",".join(arg)}' elif isinstance(arg, pd.Timestamp): # Get a list of jobs in a date range # Note that --start selects jobs in ANY state after the specified time. # This is not the same as filtering by 'Start' afterwards. command = f'{sacct_command} {sacct_options} --start {arg:%Y-%m-%dT%H:%M} --end Now\n' else: print('Unexpected input parameter to get_slurm_records().') return pd.DataFrame() if command: process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) stdout, stderr = process.communicate() source = stdout.decode('UTF-8') try: records = pd.read_csv(StringIO(source), sep=';', dtype='str', on_bad_lines='skip') except e: # TODO: Fix this to be less heavy handed return pd.DataFrame() return
pd.DataFrame()
pandas.DataFrame
from __future__ import division import os, gc, copy, json import pandas as pd import numpy as np import ipywidgets as widgets from IPython.display import display, clear_output import matplotlib as mpl import matplotlib.pyplot as plt#, mpld3 import seaborn as sns import warnings #mpld3 hack # class NumpyEncoder(json.JSONEncoder): # def default(self, obj): # import numpy as np # if isinstance(obj, np.ndarray): # return obj.tolist() # return json.JSONEncoder.default(self, obj) # from mpld3 import _display # _display.NumpyEncoder = NumpyEncoder filled_markers = ('o', 'X', 's', 'P', 'D', '^', '8', 'p', '*', 'h', 'H', '>', 'd', '<', 'v', 'd', 'o', 'X', 's', 'P', 'D', '^', '8', 'p', '*', 'h', 'H', '>', 'd', '<', 'v', 'd') class Plotter(object): def __init__(self): self.data =
pd.DataFrame()
pandas.DataFrame
# Copyright 2021, <NAME>. # # Developed as a thesis project at the TORSEC research group of the Polytechnic of Turin (Italy) under the supervision # of professor <NAME> and engineer <NAME> and with the support of engineer <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import configparser # implements a basic configuration language for Python programs import json # json encoder and decoder import os # provides a portable way of using operating system dependent functionality import sys # system-specific parameters and functions import tempfile # used to create temporary files and directories import time # provides various time-related functions from copy import deepcopy # creates a new object and recursively copies the original object elements import baker # easy, powerful access to Python functions from the command line import mlflow # open source platform for managing the end-to-end machine learning lifecycle import numpy as np # the fundamental package for scientific computing with Python import pandas as pd # pandas is a flexible and easy to use open source data analysis and manipulation tool import psutil # used for retrieving information on running processes and system utilization import torch # tensor library like NumPy, with strong GPU support from logzero import logger # robust and effective logging for Python from nets.Contrastive_Model_net import Net from nets.generators.fresh_generators import get_generator from utils.ranking_metrics import (mean_reciprocal_rank, mean_average_precision, max_reciprocal_rank, min_reciprocal_rank, max_average_precision, min_average_precision) # get config file path model_dir = os.path.dirname(os.path.abspath(__file__)) src_dir = os.path.dirname(model_dir) config_filepath = os.path.join(src_dir, 'config.ini') # instantiate config parser and read config file config = configparser.ConfigParser() config.read(config_filepath) # get variables from config file device = config['general']['device'] N_SAMPLES = int(config['sorel20mDataset']['test_n_samples']) try: # try getting layer sizes from config file layer_sizes = json.loads(config['mtje']['layer_sizes']) except json.JSONDecodeError: # if the option is not present in the config file set layer sizes to None layer_sizes = None # instantiate run additional parameters dict setting values got from config file run_additional_params = { 'layer_sizes': layer_sizes, 'dropout_p': float(config['mtje']['dropout_p']), 'activation_function': config['mtje']['activation_function'], 'normalization_function': config['mtje']['normalization_function'], 'optimizer': config['contrastiveLearning']['optimizer'], 'lr': float(config['contrastiveLearning']['lr']), 'momentum': float(config['contrastiveLearning']['momentum']), 'weight_decay': float(config['contrastiveLearning']['weight_decay']), 'hard': int(config['contrastiveLearning']['hard']), 'margin': float(config['contrastiveLearning']['margin']), 'squared': int(config['contrastiveLearning']['squared']) } def compute_ranking_scores(rank_per_query): # list of ranks computed by the model evaluation procedure """ Compute ranking scores (MRR and MAP) and a bunch of interesting ranks to save to file from a list of ranks. Args: rank_per_query: List of ranks computed by the model evaluation procedure Returns: ranking scores (in a dict) and a dict of interesting ranks to save to file. """ # compute binarized (0/1) relevance scores rs = [np.asarray([i == rank['ground_truth_label'] for i in rank['rank_labels']], dtype=np.dtype(int)) for rank in rank_per_query] # compute and log MRR and MAP scores ranking_scores = {'MRR': mean_reciprocal_rank(rs), 'MAP': mean_average_precision(rs)} # compute a bunch of indexes for interesting queries to save in csv files as examples max_rr, max_rr_idx = max_reciprocal_rank(rs) min_rr, min_rr_idx = min_reciprocal_rank(rs) max_ap, max_ap_idx = max_average_precision(rs) min_ap, min_ap_idx = min_average_precision(rs) # save indexes (and values) just computed to a dict queries_indexes = { 'max_rr': {'value': max_rr, 'index': max_rr_idx}, 'min_rr': {'value': min_rr, 'index': min_rr_idx}, 'max_ap': {'value': max_ap, 'index': max_ap_idx}, 'min_ap': {'value': min_ap, 'index': min_ap_idx} } # get interesting queries ranks_to_save = { key: { 'value': scores['value'], 'rank': rank_per_query[scores['index']] } for key, scores in queries_indexes.items() } # return computed scores and interesting queries return ranking_scores, ranks_to_save def normalize_results(labels, predictions): """ Normalize results to make them easier to be saved to file. Args: labels: Array-like (tensor or numpy array) object containing the ground truth labels predictions: Array-like (tensor or numpy array) object containing the model predictions Returns: Dictionary containing the normalized labels and predictions tensors. """ # initialize the result value dict detaching and copying the labels tensor rv = { 'label': Net.detach_and_copy_array(labels) } # for each prediction in the 'predictions' dict for k, v in predictions.items(): # save into the return value dict the current model prediction tensor after having detached and copied it rv['{}-NN_pred'.format(k)] = Net.detach_and_copy_array(v) # return 'return value' return rv @baker.command def evaluate_network(fresh_ds_path, # path of the directory where to find the fresh dataset (containing .dat files) checkpoint_path, # path to the model checkpoint to load training_run=0, # training run identifier train_split_proportion=7, # train subsplit proportion value valid_split_proportion=1, # validation subsplit proportion value test_split_proportion=2, # test subsplit proportion value batch_size=250, # how many samples per batch to load rank_size=20, # size (number of samples) of the ranking to produce knn_k_min=1, # minimum value of k to use when applying the k-nn algorithm knn_k_max=11, # maximum value of k to use when applying the k-nn algorithm # if provided, seed random number generation with this value (default: None, no seeding) random_seed=None, # how many worker (threads) the dataloader uses (default: 0 -> use multiprocessing.cpu_count()) workers=0): """ Evaluate the model on both the family prediction task and on the family ranking task. Args: fresh_ds_path: Path of the directory where to find the fresh dataset (containing .dat files) checkpoint_path: Path to the model checkpoint to load training_run: Training run identifier (default: 0) train_split_proportion: Train subsplit proportion value (default: 7) valid_split_proportion: Validation subsplit proportion value (default: 1) test_split_proportion: Test subsplit proportion value (default: 2) batch_size: How many samples per batch to load (default: 250) rank_size: Size (number of samples) of the ranking to produce (default: 20) knn_k_min: Minimum value of k to use when applying the k-nn algorithm (default: 1) knn_k_max: Maximum value of k to use when applying the k-nn algorithm (default: 11) random_seed: If provided, seed random number generation with this value (default: None, no seeding) workers: How many worker (threads) the dataloader uses (default: 0 -> use multiprocessing.cpu_count()) """ # start mlflow run with mlflow.start_run() as mlrun: # if the split proportions are not as expected raise ValueError if train_split_proportion <= 0 or valid_split_proportion <= 0 or test_split_proportion <= 0: raise ValueError('train, valid and test split proportions must be positive integers.') # the rank size must be smaller (or at most equal) to the selected batch size if rank_size > batch_size: raise ValueError('rank size should be smaller or equal to the batch size.') # generate the dataset split proportions (list) dataset_split_proportions = [train_split_proportion, valid_split_proportion, test_split_proportion] # if workers has a value (it is not None) then convert it to int if it is > 0, otherwise set it to None workers = workers if workers is None else int(workers) if int(workers) > 0 else None if random_seed is not None: # if a seed was provided logger.info(f"Setting random seed to {int(random_seed)}.") # set the seed for generating random numbers torch.manual_seed(int(random_seed)) logger.info('...instantiating siamese network for contrastive evaluation run n. {}'.format(training_run)) # create fresh dataset generators train_generator, _, test_generator = get_generator(ds_root=fresh_ds_path, splits=dataset_split_proportions, batch_size=batch_size, return_shas=True, num_workers=workers, shuffle=True) # shuffle samples # get label to signature function from the test dataset (used to convert numerical labels to family names) label_to_sig = test_generator.dataset.label_to_sig # get total number of families n_families = test_generator.dataset.n_families # create contrastive (siamese) mtjeNet model model = Net(feature_dimension=2381, embedding_dimension=32, layer_sizes=run_additional_params['layer_sizes'], dropout_p=run_additional_params['dropout_p'], activation_function=run_additional_params['activation_function'], normalization_function=run_additional_params['normalization_function']) # load model checkpoint model.load_state_dict(torch.load(checkpoint_path)) # allocate model to selected device (CPU or GPU) model.to(device) logger.info('Evaluating contrastive learning model..') # set model into evaluation mode model.eval() # get number of steps per epoch (# of total batches) from test generator test_steps_per_epoch = len(test_generator) # get number of steps per epoch (# of total batches) from train generator train_steps_per_epoch = len(train_generator) # create temporary directory with tempfile.TemporaryDirectory() as tempdir: # compute result file path filename = os.path.join(tempdir, 'results.csv') # create and open the results file in write mode with open(filename, 'w') as f: first_batch = True ranks = [] # set current epoch start time start_time = time.time() # for all mini-batches of samples of the test generator for i, (query_shas, query_features, query_labels) in enumerate(test_generator): # get the query samples shas query_shas = np.asarray(query_shas) # transfer query features and labels to selected device query_features = deepcopy(query_features).to(device) query_labels = deepcopy(query_labels.long()).to(device) with torch.no_grad(): # disable gradient calculation # perform a forward pass through the network to get the query samples embeddings query_pe_embeddings = model(query_features) # initialize top samples arrays with null value top_shas = None top_labels = None top_distances = None predictions = {} # for all mini-batches of data from the train generator for j, (anchor_shas, anchor_features, anchor_labels) in enumerate(train_generator): # get the anchor samples shas anchor_shas = np.asarray(anchor_shas) # transfer anchor features to selected device anchor_features = anchor_features.to(device) with torch.no_grad(): # disable gradient calculation # perform a forward pass through the network to get the anchor embeddings anchor_pe_embeddings = model(anchor_features) # compute euclidean distances between query and anchor samples distances = torch.cdist(query_pe_embeddings, anchor_pe_embeddings, p=2.0) # if top distances is none if top_distances is None: # assign to top distances the current computed distances top_distances = distances # compute array of indices which sort the distances in ascending order indices = top_distances.argsort(dim=1) # obtain the shas of the first 'rank_size' most similar query samples # (based on the computed indices) top_shas = np.concatenate([np.expand_dims( np.repeat(np.expand_dims(anchor_shas, axis=0), query_shas.shape[0], axis=0)[x, y], axis=0) for x, row in enumerate(indices[:, :rank_size]) for y in row]).reshape(-1, rank_size) # obtain the labels of the first 'rank_size' most similar query samples # (based on the computed indices) top_labels = torch.cat([anchor_labels.repeat(query_labels.shape[0], 1)[x, y].unsqueeze(0) for x, row in enumerate(indices[:, :rank_size]) for y in row]).view(-1, rank_size) # obtain the distances of the first 'rank_size' most similar query samples to the current # anchor (based on the computed indices) top_distances = torch.cat([top_distances[x, y].unsqueeze(0) for x, row in enumerate(indices[:, :rank_size]) for y in row]).view(-1, rank_size) else: # concatenate the current shas to the top shas array top_shas = np.concatenate((top_shas, np.repeat(np.expand_dims(anchor_shas, axis=0), top_shas.shape[0], axis=0)), axis=1) # concatenate the current labels to the top labels tensor top_labels = torch.cat((top_labels, anchor_labels.repeat(top_labels.size()[0], 1)), dim=1) # concatenate the current distances to the top distances tensor top_distances = torch.cat((top_distances, distances), dim=1) # compute array of indices which sort the distances in ascending order indices = top_distances.argsort(dim=1) # obtain the labels of the first 'rank_size' most similar query samples # (based on the computed indices) top_shas = np.concatenate([np.expand_dims(top_shas[x, y], axis=0) for x, row in enumerate(indices[:, :rank_size]) for y in row]).reshape(-1, rank_size) # obtain the labels of the first 'rank_size' most similar query samples # (based on the computed indices) top_labels = torch.cat([top_labels[x, y].unsqueeze(0) for x, row in enumerate(indices[:, :rank_size]) for y in row]).view(-1, rank_size) # obtain the distances of the first 'rank_size' most similar query samples to the current # anchor (based on the computed indices) top_distances = torch.cat([top_distances[x, y].unsqueeze(0) for x, row in enumerate(indices[:, :rank_size]) for y in row]).view(-1, rank_size) # for all query samples for k, s in enumerate(query_shas): # save ranking ranks.append({ 'query_sha': s, 'ground_truth_label': int(query_labels[k].item()), 'ground_truth_family': label_to_sig(int(query_labels[k].item())), 'rank_shas': top_shas[k].tolist(), 'rank_labels': [int(lab.item()) for lab in top_labels[k]], 'rank_families': [label_to_sig(int(lab.item())) for lab in top_labels[k]] }) # for all odd values of k from knn_k_min to knn_k_max (included) for k in range(knn_k_min if knn_k_min % 2 else knn_k_min + 1, knn_k_max + 1, 2): # get the first k labels from the top labels tensor knn_labels = top_labels[:, :k] # get the first k distances from the top distances tensor and raise them to the power of -2 knn_weights = torch.pow(top_distances[:, :k], -2) # initialize per family-scores to 0 knn_scores = torch.zeros((knn_labels.shape[0], n_families)).to(device) # for all top k labels for idx, labs in enumerate(knn_labels): # compute the per-family sum of distance weights knn_scores[idx].index_add_(0, torch.tensor([int(lab.item()) for lab in labs]).to(device), knn_weights[idx]) # save as prediction the family with the maximum score predictions[str(k)] = torch.argmax(knn_scores, dim=1) # compute current epoch elapsed time (in seconds) elapsed_time = time.time() - start_time # write on standard out the elapsed time, predicted total epoch completion time, current mean speed # and main memory usage sys.stdout.write('\r Contrastive learning evaluation: {}/{} '.format(i + 1, test_steps_per_epoch) + '[{}/{}, {:6.3f}it/s, RAM used: {:4.1f}%] ' .format(time.strftime("%H:%M:%S", time.gmtime(elapsed_time)), # show elapsed time time.strftime("%H:%M:%S", # predict total epoch completion time time.gmtime(test_steps_per_epoch * elapsed_time / (i + 1))), (i + 1) / elapsed_time, # compute current mean speed (it/s) psutil.virtual_memory().percent)) # get percentage of main memory used # flush standard output sys.stdout.flush() # normalize the results results = normalize_results(query_labels, predictions) # store results into a pandas dataframe (indexed by the sha265 keys) and then save it as csv into # file f (inserting the header only if this is the first batch in the loop)
pd.DataFrame(results, index=query_shas)
pandas.DataFrame
import os import re import copy import json import tqdm import pprint import sklearn import pandas as pd from sklearn.model_selection import train_test_split for lib in ["emoji", "fasttext", "google_trans_new"]: try: exec(f"import {lib}") except ImportError: os.system(f"pip install {lib}") from google_trans_new import google_translator DATASET_PATH = "raw_data/Development Data/dev_data_article.xlsx" TRANSLATED_PATH = "/raw_data/Translated Data/" PROCESSED_PATH = "raw_data/Processed Data" TRANSLATE = False STATS_PATH = "stats.json" TRANSLATOR = google_translator() dataset = pd.read_excel(DATASET_PATH) trans_dataset = copy.deepcopy(dataset).to_dict("records") articles = list(dataset['Text']) headlines = list(dataset['Headline']) def lower(text): return text.lower() def remove_urls(text): return text def remove_punctuation(text): result = "" for letter in text: if letter not in '''".',:`;''': result += letter return result def identity(text): return text VALID_FILTERS = {"lower":lower, "remove_punctuation":remove_punctuation} class ProcessText: @classmethod def Sequential(cls, filts): obj = cls() obj.filts = [] # c.valid_filts = VALID_FILTERS for filt in filts: obj.filts.append(obj.valid_filts.get(filt, identity)) return obj def __init__(self): self.filts = [] self.valid_filts = VALID_FILTERS def add(self, filt): self.filts.append(filt) def run(self, text): for filt in self.filts: text = filt(text) return text text_processor = ProcessText.Sequential(["strip", "remove_urls", "remove_punctuation"]) stats = {"total_lines":0, "total_headlines":0, "max_lines":0, "min_lines":100000, "avg_lines":0, "max_line_len":0, "min_line_len":100000, "avg_line_len":0, "en_lines":0, "hi_lines":0, "eh_lines":0, "max_headline_len":0, "min_headline_len":100000, "avg_headline_len":0, "en_headlines":0, "hi_headlines":0, "eh_headlines":0} try: open('/home/atharva/lid.176.bin', "rb") except FileNotFoundError: os.system("wget -O /home/atharva/lid.176.bin https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin") PRETRAINED_MODEL_PATH = '/home/atharva/lid.176.bin' model = fasttext.load_model(PRETRAINED_MODEL_PATH) def translate(text): return TRANSLATOR.translate(text, lang_tgt='en').strip() if True: total_lines = 0 total_words = 0 for j,article in enumerate(tqdm.tqdm(articles)): article_lines = 0 proc_article = '' for i,para in enumerate(article.split("\n")): for line in para.split("."): line = line.strip().strip("\n") if line != "": article_lines += 1 proc_article += text_processor.run(line) + ' . ' num_words = len(line.split()) lang = model.predict([line])[0][0][0].split("__")[-1] if lang == 'hi': stats["hi_lines"] += 1 if TRANSLATE: line = translate(line) elif lang == 'en': stats["en_lines"] += 1 else: stats["eh_lines"] += 1 if TRANSLATE: line = translate(line) total_words += num_words stats["max_line_len"] = max(num_words, stats["max_line_len"]) stats["min_line_len"] = min(num_words, stats["min_line_len"]) total_lines += article_lines stats["max_lines"] = max(article_lines, stats["max_lines"]) stats["min_lines"] = min(article_lines, stats["min_lines"]) proc_article = proc_article.strip().strip("\n") articles[j] = proc_article.replace("\n", "") stats["total_lines"] = total_lines stats["avg_line_len"] = total_words/total_lines stats["avg_lines"] = total_lines/len(articles) total_headlines = 0 total_headline_words = 0 for i,headline in enumerate(tqdm.tqdm(headlines)): headlines[i] = text_processor.run(headline) lang = model.predict([line])[0][0][0].split("__")[-1] num_words = len(headlines[i].split()) total_headline_words += num_words total_headlines += 1 if lang == "en": stats["en_headlines"] += 1 elif lang == "hi": if TRANSLATE: headlines[i] = translate(headlines[i]) stats["hi_headlines"] += 1 else: if TRANSLATE: headlines[i] = translate(headlines[i]) stats["eh_headlines"] += 1 stats["max_headline_len"] = max(stats["max_headline_len"], num_words) stats["min_headline_len"] = min(stats["min_headline_len"], num_words) stats["total_headlines"] = total_headlines stats["avg_headline_len"] = total_headline_words/total_headlines pprint.pprint(stats) json.dump(stats, open(STATS_PATH, "w")) proc = [] for headline, article in zip(headlines, articles): proc.append({"text":article, "summary":headline}) train, test = train_test_split(proc, test_size=0.1) test = pd.DataFrame(test) train =
pd.DataFrame(train)
pandas.DataFrame
import os import sys import matplotlib import matplotlib.pyplot as plt import pandas as pd from joblib import Memory matplotlib.use('TkAgg') # Auto-detect terminal width. pd.options.display.width = None pd.options.display.max_rows = 1000 pd.options.display.max_colwidth = 200 # Initialize a persistent memcache. mem_hist = Memory(cachedir='./.cached_plot_hist', verbose=0) mem_sim = Memory(cachedir='./.cached_plot_sim', verbose=0) PRINT_BASELINE = True PRINT_DELTA_ONLY = True BETWEEN_START = pd.to_datetime('09:30').time() BETWEEN_END =
pd.to_datetime('09:30:00.000001')
pandas.to_datetime
# # Copyright 2019 <NAME> <<EMAIL>> # # This file is part of Salus # (see https://github.com/SymbioticLab/Salus). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, print_function, division from builtins import input import parse_log as pl import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import os from importlib import reload reload(pl) #%% def choose(prompt, choices=None, default=0): """Prompt the user to make a choice. Args: prompt: The prompt to show choices: Iterable of tuples of choices. Each tuple represents a choice, and is in the form (one letter, help, value) or (one letter, help). If value is missing, it defaults to the letter. The default choices are [('y', 'yes', True), ('n', 'no', False)] default: the index of the default choice. Defaults to 0 Returns: the associated value of the choice the user has made. """ # Handle default arguments if choices is None: choices = [('y', 'yes', True), ('n', 'no', False)] # validate arguments if not choices: raise ValueError('Empty choices') if default < 0 or default >= len(choices): raise IndexError(f'Default index should be within [0, {len(choices)}), got: {default}') def parse_choice(ch): if len(ch) == 2: return ch[0].lower(), ch[1], ch[0] elif len(ch) == 3: return ch[0].lower(), ch[1], ch[2] else: raise ValueError(f'Invalid choice in choices: {tuple}') choices = [parse_choice(c) for c in choices] # form choices string choices_str = '/'.join(ch[0] if idx != default else ch[0].upper() for idx, ch in enumerate(choices)) prompt = f'{prompt} [{choices_str}]: ' def_resp = choices[default][0] while True: resp = input(prompt) if not resp: resp = def_resp resp = resp.lower() for ch, _, value in choices: if resp == ch: return value # Invalid input, print help print(f'Invalid response: {resp}') print('Accepted responses are:') for ch, h, _ in choices: print(f'{ch} - {h}') def confirm(prompt, default=False, yes_choice='y', no_choice='n'): """Prompt for user's confirmation on some operation. Returns: True if the user confirmed, False otherwise. """ return choose(prompt, choices=[(yes_choice, 'yes', True), (no_choice, 'no', False)], default=0 if default else 1) def select_steps(df): # count unique numbers counts = df.groupby('step').agg({c: 'nunique' for c in ['kernel', 'op']}).reset_index() ss = counts.query('step > 10 & kernel > 10 & op > 200') # so the step list is if len(ss) > 1: # drop first iteration return ss.step.astype(int).tolist()[1:] else: slist = [] # nothing we can find programmatically, let the user decide for _, s, ker, op in counts.itertuples(): if confirm('Step {} has {} tasks, with {} kernels, select?'.format(s, op, ker)): slist.append(s) return slist def only_step(steps, idx): ss = steps.step.sort_values().unique().tolist() if idx >= len(ss): idx = len(ss) - 1 return steps[steps.step == ss[idx]] def only_steps(steps, idxs): ss = steps.step.sort_values().unique().tolist() return steps[steps.step.isin([ss[idx] for idx in idxs])] def unify_names(*dfs): # make sure names map to same idx names = pd.concat([df.name for df in dfs]).unique() ndf = pd.DataFrame({'name': names}) ndf.index.rename('nameid', inplace=True) ndf = ndf.reset_index() res = [df.drop('nameid', axis=1, errors='ignore').merge(ndf) for df in dfs] if len(res) == 1: return res[0] else: return res # # First load log from tensorflow # tf_events = ['task_ready', 'task_start', 'task_done'] def load_tf(path): logs = pl.load_file(path) df = pd.DataFrame(l.__dict__ for l in logs) df = df[df.type.isin(tf_events)].drop(['level','loc', 'entry_type'], axis=1) # make sure step is int df['step'] = df.step.astype(int) ss = select_steps(df) step25 = df[df.step.isin(ss)] # discard some internal or async op: _SOURCE, _Recv, _Send ignored = ['_Recv', '_Send'] step25 = step25[~step25.kernel.isin(ignored)] step25 = step25[step25.op != '_SOURCE'] steptf = step25.pivot_table(values='timestamp', index=['step', 'op', 'kernel'], columns='type', aggfunc='first').reset_index() # add a name column def name(row): return '{}[{}]'.format(row['op'], row['kernel']) steptf['name'] = steptf.apply(name, axis=1).values # reorder steptf = steptf[['step', 'name', 'op', 'kernel'] + tf_events] return steptf.sort_values(by=tf_events).reset_index(drop=True) # # Second load log from salus # salus_events = [ 'queued', # entering queue 'inspected', # submitted by scheduler 'prealloced', # preallocated 'running', # start running in thread pool 'afterDevCtx', # get devctx 'afterPrepInput', # after prepare input 'afterCompute', # after op->Compute 'afterClearInput', # after clear input 'afterPropOut', # after prop output #'failed', # failed 'done', # finally ] def load_salus(path, filter_step=True): logs = pl.load_file(path) df = pd.DataFrame(l.__dict__ for l in logs) df = df[df.type == 'optracing_evt'] df = df.drop(['entry_type','level','loc', 'thread', 'type'], axis=1) # make sure step is int df['step'] = df.step.astype(int) if filter_step: ss = select_steps(df) step25 = df[df.step.isin(ss)] else: step25 = df # discard some internal or async op: _SOURCE, _Recv, _Send ignored = ['_Recv', '_Send'] step25 = step25[~step25.kernel.isin(ignored)] step25 = step25[step25.op != '_SOURCE'] # discard unneeded event step25 = step25[step25.evt != 'scheduled'] # convert evt values to columns step = step25.pivot_table(values='timestamp', index=['step', 'op', 'kernel', 'sess'], columns='evt', aggfunc='last').reset_index() # add a name column def name(row): return '{}[{}]'.format(row['op'], row['kernel']) step['name'] = step.apply(name, axis=1).values # reorder step = step[['sess', 'step', 'name', 'op', 'kernel'] + salus_events] # sort return step.sort_values(by=salus_events).reset_index(drop=True) # # Draw hlines # def draw_lines(ax, step, checkpoints, colors=['g', 'y', 'r'], offset=None, labels=None, set_y=True, sort=False): """ step is a pd.DataFrame contains a: timestamp, op, kernel, task_ready, task_start, task_done """ # sort first if sort: step = unify_names(step.sort_values(by=checkpoints)) # columns as unix timestamp in us columns = [step[c].astype(np.int64) // 10**3 for c in checkpoints] # with offset subtracted if offset is None: offset = np.min([np.min(col) for col in columns]) columns = [col - offset for col in columns] if labels is None: labels = [''] * len(colors) for st, ed, c, l in zip(columns, columns[1:], colors, labels): ax.hlines(y=step.nameid, xmin=st, xmax=ed, color=c, label=l) # put name on yaxis if set_y: ax.set_yticks(step.nameid) ax.set_yticklabels(step.name) return ax, offset def draw_lines2(ax, step, checkpoints, colors=['g', 'y', 'r'], offset=None, labels=None, set_y=True, sort=False): """ step is a pd.DataFrame contains a: timestamp, op, kernel, task_ready, task_start, task_done """ # sort first if sort: step = unify_names(step.sort_values(by=checkpoints)) # with offset subtracted if offset is None: offset = step[checkpoints].min().min() columns = [step[col] - offset for col in checkpoints] if labels is None: labels = [''] * len(colors) for st, ed, c, l in zip(columns, columns[1:], colors, labels): ax.hlines(y=step.nameid, xmin=st, xmax=ed, color=c, label=l) # put name on yaxis if set_y: ax.set_yticks(step.nameid) ax.set_yticklabels(step.name) return ax, offset def draw_tf(ax, df, **kwargs): draw_lines(ax, df, tf_events, colors=['g', 'r'], **kwargs) def draw_salus(ax, df, **kwargs): return draw_lines2(ax, df, [e for e in salus_events if e != 'failed'], colors=plt.rcParams['axes.prop_cycle'].by_key()['color'], labels=['Queuing', 'Prealloc', 'TPWait', 'DevCtx', 'PrepInput', 'Compute', 'ClrInput', 'PropOut', 'Misc'], **kwargs) sns.set_style("dark") #plt.ioff() #%% def main def main(): #%% # # Set paths # model = 'alexnet_25' logdir = 'logs/optracing/' outputdir = '/home/peifeng/desktop/' figsize = (40, 70) set_y = True #%% #logdir = 'logs/optracing/' #outputdir = '/home/peifeng/sync/M.S.Study/Research/salus/groupmeeting/20180403/weekend' #figsize = None #set_y = False #%% Load data steptf = load_tf(os.path.join(logdir, 'tf/{}.tf.10iter.0.output'.format(model))) stepsalus = load_salus(os.path.join(logdir, 'salus/1/perf.output')) twosess = load_salus(os.path.join(logdir, 'salus/2/perf.output')) steptf = unify_names(steptf) stepsalus = unify_names(stepsalus) twosess = unify_names(twosess) #%% # # Running one # fig, axs = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=figsize) draw_lines(axs[0], steptf, tf_events, colors=['g', 'r'], set_y=set_y) axs[0].set_title('alexnet_25 on TF') # load a few iters draw_lines(axs[1], stepsalus, salus_events, colors=plt.rcParams['axes.prop_cycle'].by_key()['color'], labels=['Queuing', 'Prealloc', 'TPWait', 'DevCtx', 'PrepInput', 'Compute', 'ClrInput', 'PropOut', 'Misc'], set_y=set_y) axs[1].legend() axs[1].set_title('alexnet_25 on Salus') axs[1].set_xlabel('Normalized time (us)') fig.tight_layout() fig.savefig(os.path.join(outputdir, 'tfsalus.pdf'), dpi=300) plt.close(fig) #%% # # Running one with matching iter # #fig, axs = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=figsize) fig, axs = plt.subplots(nrows=2, ncols=1, sharex=True) draw_lines(axs[0], only_step(steptf, 6), tf_events, colors=['g', 'r'], set_y=set_y) axs[0].set_title('alexnet_25 on TensorFlow') # use second normal iter draw_lines(axs[1], only_step(stepsalus, 10), salus_events, colors=plt.rcParams['axes.prop_cycle'].by_key()['color'], labels=['Queuing', 'Prealloc', 'TPWait', 'DevCtx', 'PrepInput', 'Compute', 'ClrInput', 'PropOut', 'Misc'], set_y=set_y, sort=True) axs[1].legend(loc='lower right', bbox_to_anchor=(1,1.5), ncol=2) axs[1].set_title('alexnet_25 on Salus') axs[1].set_xlabel('Normalized time (us)') axs[1].set_ylabel('Tasks') axs[1].set_xlim(0, 40000) fig.tight_layout() fig.savefig(os.path.join(outputdir, 'tfsalus-later.pdf'), dpi=300) #plt.close(fig) #%% # # Running two # def split_sess(twosess): sessA, sessB = twosess.sess.unique() alexA = twosess[twosess.sess == sessA] alexB = twosess[twosess.sess == sessB] return alexA, alexB, sessA, sessB fig, axs = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=figsize) alexA, alexB, sessA, sessB = split_sess(twosess) offset=None _, offset = draw_lines(axs[0], alexA, salus_events, colors=plt.rcParams['axes.prop_cycle'].by_key()['color'], labels=['Queuing', 'Prealloc', 'TPWait', 'DevCtx', 'PrepInput', 'Compute', 'ClrInput', 'PropOut', 'Misc'], offset=offset, set_y=set_y) _, offset = draw_lines(axs[1], alexB, salus_events, colors=plt.rcParams['axes.prop_cycle'].by_key()['color'], labels=['Queuing', 'Prealloc', 'TPWait', 'DevCtx', 'PrepInput', 'Compute', 'ClrInput', 'PropOut', 'Misc'], offset=offset, set_y=set_y) axs[0].set_title('alexnet_25 on Salus (Instance A: {})'.format(sessA)) axs[1].set_title('alexnet_25 on Salus (Instance B: {})'.format(sessB)) axs[1].set_xlabel('Normalized time (us)') fig.tight_layout() fig.savefig(os.path.join(outputdir, 'salusab.pdf'), dpi=300) plt.close(fig) #%% CDF of task length def cdf(X, ax=None, **kws): if ax is None: _, ax = plt.subplots() n = np.arange(1,len(X)+1) / np.float(len(X)) Xs = np.sort(X) ax.step(Xs, n, **kws) ax.set_ylim(0, 1) return ax import os logdir = 'logs/osdi18/cc/exp18' model = 'alexnet_25' steptf = load_tf(os.path.join(logdir, 'tf/{}.tf.10iter.0.output'.format(model))) stepsalus = load_salus(os.path.join(logdir, 'salus/1/perf.output')) steptf = unify_names(steptf) stepsalus = unify_names(stepsalus) tflength = steptf[tf_events[-1]] - steptf[tf_events[0]] saluslength = stepsalus[salus_events[-1]] - stepsalus[salus_events[0]] tflength = tflength /
pd.Timedelta(microseconds=1)
pandas.Timedelta
""" Misc tools for implementing data structures """ import re import collections import numbers from datetime import datetime, timedelta from functools import partial import numpy as np import pandas as pd import pandas.algos as algos import pandas.lib as lib import pandas.tslib as tslib from pandas import compat from pandas.compat import (long, zip, map, string_types, iteritems) from pandas.types import api as gt from pandas.types.api import * # noqa from pandas.core.config import get_option class PandasError(Exception): pass class PerformanceWarning(Warning): pass class SettingWithCopyError(ValueError): pass class SettingWithCopyWarning(Warning): pass class AmbiguousIndexError(PandasError, KeyError): pass class UnsupportedFunctionCall(ValueError): pass class AbstractMethodError(NotImplementedError): """Raise this error instead of NotImplementedError for abstract methods while keeping compatibility with Python 2 and Python 3. """ def __init__(self, class_instance): self.class_instance = class_instance def __str__(self): return ("This method must be defined in the concrete class of %s" % self.class_instance.__class__.__name__) _POSSIBLY_CAST_DTYPES = set([np.dtype(t).name for t in ['O', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64']]) _NS_DTYPE = np.dtype('M8[ns]') _TD_DTYPE = np.dtype('m8[ns]') _INT64_DTYPE = np.dtype(np.int64) _DATELIKE_DTYPES = set([np.dtype(t) for t in ['M8[ns]', '<M8[ns]', '>M8[ns]', 'm8[ns]', '<m8[ns]', '>m8[ns]']]) _int8_max = np.iinfo(np.int8).max _int16_max = np.iinfo(np.int16).max _int32_max = np.iinfo(np.int32).max _int64_max = np.iinfo(np.int64).max def isnull(obj): """Detect missing values (NaN in numeric arrays, None/NaN in object arrays) Parameters ---------- arr : ndarray or object value Object to check for null-ness Returns ------- isnulled : array-like of bool or bool Array or bool indicating whether an object is null or if an array is given which of the element is null. See also -------- pandas.notnull: boolean inverse of pandas.isnull """ return _isnull(obj) def _isnull_new(obj): if lib.isscalar(obj): return lib.checknull(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, pd.MultiIndex): raise NotImplementedError("isnull is not defined for MultiIndex") elif isinstance(obj, (gt.ABCSeries, np.ndarray, pd.Index)): return _isnull_ndarraylike(obj) elif isinstance(obj, gt.ABCGeneric): return obj._constructor(obj._data.isnull(func=isnull)) elif isinstance(obj, list) or hasattr(obj, '__array__'): return _isnull_ndarraylike(np.asarray(obj)) else: return obj is None def _isnull_old(obj): """Detect missing values. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean """ if lib.isscalar(obj): return
lib.checknull_old(obj)
pandas.lib.checknull_old
#j Import Dependencies import requests import pandas as pd import matplot.lib.pyplot as plt import hvplot.panda import plotly.express as px from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans ## Create a dataframe ### Import csv data and use Pandas to create a dataframe that consists ONLY of crypto being traded data_path = open(".Resources/crypto_data.csv") df = pd.read_csv(data_path, index_col=0) active_crypto_df = df[df.IsTrading.eq(True)] df_crypto.shape ### Alter dataframe to remove cryptos with working algo; remove is trading column; Remove rows with Null value; Remove cryptos that have no mining; Remove N/As; pd.isna(active_crypto_df['Algorithm']) # Remove anything that doesn't have algos active_crypto_df = active_crypto_df(['IsTrading'], axis = 1) # Removing IsTrading column active_crypto_df = active_crypto_df.dropna(how='any', axis=0) # Dropping rows with null values active_crypto_df = active_crypto_df[active_crypto_df.TotalCoinsMined > 0] # Removing rows of crypto that have less than 0 mined coins active_crypto_df = active_crypto_df[active_crypto_df!='N/A'] ### Move CoinName column into its own DF and then drop the CoinName column from the Primary DF Cryptocurrency_DF = active_crypto_df.filter(['CoinName'], axis=1) active_crypto_df = active_crypto_df.drop(['CoinName'], axis=1) ### Create dummy values for text features, drop Algo and ProofType Column, and Standardize the data foo_crypto = pd.get_dummies(active_crypto_df['Algorithm']) foo_dummy = pd.get_dummies(active_crypto_df['ProofType']) foo_combined = pd.concat([crypto, dummy], axis=1) df = active_crypto_df.merge(combined, left_index=True, right_index=True) df = df.drop(['Algorithm', 'ProofType'], axis=1) scale_df = StandardScaler().fit_transform(df) ## Clean data for PCA ### Reduce Dimensions for better Fitted Data pca = PCA(n_components=3) PCA_data = pca.fit_transform(df_scaled) PCA_df =
pd.DataFrame(data=PCA_data, columns=['PC1', 'PC2', 'PC3'], index=Cryptocurrency_DF.index)
pandas.DataFrame
import numpy as np import pandas as pd import joblib, os class dataset_creator(): def __init__(self, project, data, njobs=1): self.data = data self.dates_ts = self.check_dates(data.index) self.project_name= project['_id'] self.static_data = project['static_data'] self.path_nwp_project = self.static_data['pathnwp'] self.areas = self.static_data['areas'] self.nwp_model = self.static_data['NWP_model'] self.njobs = njobs if self.static_data['type'] == 'pv': self.variables = ['Cloud', 'Flux', 'Temperature'] elif self.static_data['type'] == 'wind': self.variables = ['WS', 'WD'] else: self.variables = [] def check_dates(self, dates): start_date = pd.to_datetime(dates[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(dates[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) return dates def stack_2d(self, X, sample): if len(sample.shape)==3: if X.shape[0] == 0: X = sample elif len(X.shape) == 3: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :, :])) elif len(sample.shape)==2: if X.shape[0] == 0: X = sample elif len(X.shape) == 2: X = np.stack((X, sample)) else: X = np.vstack((X, sample[np.newaxis, :, :])) return X def get_3d_dataset(self): X = np.array([]) data_var = dict() for var in self.variables: if var in {'WS', 'Flux'}: data_var[var+'_prev'] = X data_var[var] = X data_var[var+'_next'] = X else: data_var[var] = X data_var['dates'] = X for t in self.dates_ts: nwps = joblib.load( os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle')) pdates = pd.date_range(t + pd.DateOffset(hours=25), t +
pd.DateOffset(hours=48)
pandas.DateOffset
import matplotlib.pyplot as plt import numpy as np import pandas as pd from scheduler.GOBI import GOBIScheduler plt.style.use(['science']) plt.rcParams["text.usetex"] = False class Stats(): def __init__(self, Environment, WorkloadModel, Datacenter, Scheduler): self.env = Environment self.env.stats = self self.workload = WorkloadModel self.datacenter = Datacenter self.scheduler = Scheduler self.simulated_scheduler = GOBIScheduler('energy_latency_'+str(self.datacenter.num_hosts)) self.simulated_scheduler.env = self.env self.initStats() def initStats(self): self.hostinfo = [] self.workloadinfo = [] self.activecontainerinfo = [] self.allcontainerinfo = [] self.metrics = [] self.schedulerinfo = [] def saveHostInfo(self): hostinfo = dict() hostinfo['interval'] = self.env.interval hostinfo['cpu'] = [host.getCPU() for host in self.env.hostlist] hostinfo['numcontainers'] = [len(self.env.getContainersOfHost(i)) for i,host in enumerate(self.env.hostlist)] hostinfo['power'] = [host.getPower() for host in self.env.hostlist] hostinfo['baseips'] = [host.getBaseIPS() for host in self.env.hostlist] hostinfo['ipsavailable'] = [host.getIPSAvailable() for host in self.env.hostlist] hostinfo['ipscap'] = [host.ipsCap for host in self.env.hostlist] hostinfo['apparentips'] = [host.getApparentIPS() for host in self.env.hostlist] hostinfo['ram'] = [host.getCurrentRAM() for host in self.env.hostlist] hostinfo['ramavailable'] = [host.getRAMAvailable() for host in self.env.hostlist] hostinfo['disk'] = [host.getCurrentDisk() for host in self.env.hostlist] hostinfo['diskavailable'] = [host.getDiskAvailable() for host in self.env.hostlist] self.hostinfo.append(hostinfo) def saveWorkloadInfo(self, deployed, migrations): workloadinfo = dict() workloadinfo['interval'] = self.env.interval workloadinfo['totalcontainers'] = len(self.workload.createdContainers) if self.workloadinfo: workloadinfo['newcontainers'] = workloadinfo['totalcontainers'] - self.workloadinfo[-1]['totalcontainers'] else: workloadinfo['newcontainers'] = workloadinfo['totalcontainers'] workloadinfo['deployed'] = len(deployed) workloadinfo['migrations'] = len(migrations) workloadinfo['inqueue'] = len(self.workload.getUndeployedContainers()) self.workloadinfo.append(workloadinfo) def saveContainerInfo(self): containerinfo = dict() containerinfo['interval'] = self.env.interval containerinfo['activecontainers'] = self.env.getNumActiveContainers() containerinfo['ips'] = [(c.getBaseIPS() if c else 0) for c in self.env.containerlist] containerinfo['apparentips'] = [(c.getApparentIPS() if c else 0) for c in self.env.containerlist] containerinfo['ram'] = [(c.getRAM() if c else 0) for c in self.env.containerlist] containerinfo['disk'] = [(c.getDisk() if c else 0) for c in self.env.containerlist] containerinfo['creationids'] = [(c.creationID if c else -1) for c in self.env.containerlist] containerinfo['hostalloc'] = [(c.getHostID() if c else -1) for c in self.env.containerlist] containerinfo['active'] = [(c.active if c else False) for c in self.env.containerlist] self.activecontainerinfo.append(containerinfo) def saveAllContainerInfo(self): containerinfo = dict() allCreatedContainers = [self.env.getContainerByCID(cid) for cid in list(np.where(self.workload.deployedContainers)[0])] containerinfo['interval'] = self.env.interval if self.datacenter.__class__.__name__ == 'Datacenter': containerinfo['application'] = [self.env.getContainerByCID(cid).application for cid in list(np.where(self.workload.deployedContainers)[0])] containerinfo['ips'] = [(c.getBaseIPS() if c.active else 0) for c in allCreatedContainers] containerinfo['create'] = [(c.createAt) for c in allCreatedContainers] containerinfo['start'] = [(c.startAt) for c in allCreatedContainers] containerinfo['destroy'] = [(c.destroyAt) for c in allCreatedContainers] containerinfo['apparentips'] = [(c.getApparentIPS() if c.active else 0) for c in allCreatedContainers] containerinfo['ram'] = [(c.getRAM() if c.active else 0) for c in allCreatedContainers] containerinfo['disk'] = [(c.getDisk() if c.active else 0) for c in allCreatedContainers] containerinfo['hostalloc'] = [(c.getHostID() if c.active else -1) for c in allCreatedContainers] containerinfo['active'] = [(c.active) for c in allCreatedContainers] self.allcontainerinfo.append(containerinfo) def saveMetrics(self, destroyed, migrations): metrics = dict() metrics['interval'] = self.env.interval metrics['numdestroyed'] = len(destroyed) metrics['nummigrations'] = len(migrations) metrics['energy'] = [host.getPower()*self.env.intervaltime for host in self.env.hostlist] metrics['energytotalinterval'] = np.sum(metrics['energy']) metrics['energypercontainerinterval'] = np.sum(metrics['energy'])/self.env.getNumActiveContainers() metrics['responsetime'] = [c.totalExecTime + c.totalMigrationTime for c in destroyed] metrics['avgresponsetime'] = np.average(metrics['responsetime']) if len(destroyed) > 0 else 0 metrics['migrationtime'] = [c.totalMigrationTime for c in destroyed] metrics['avgmigrationtime'] = np.average(metrics['migrationtime']) if len(destroyed) > 0 else 0 metrics['slaviolations'] = len(np.where([c.destroyAt > c.sla for c in destroyed])) metrics['slaviolationspercentage'] = metrics['slaviolations'] * 100.0 / len(destroyed) if len(destroyed) > 0 else 0 metrics['waittime'] = [c.startAt - c.createAt for c in destroyed] metrics['energytotalinterval_pred'], metrics['avgresponsetime_pred'] = self.runSimulationGOBI() self.metrics.append(metrics) def saveSchedulerInfo(self, selectedcontainers, decision, schedulingtime): schedulerinfo = dict() schedulerinfo['interval'] = self.env.interval schedulerinfo['selection'] = selectedcontainers schedulerinfo['decision'] = decision schedulerinfo['schedule'] = [(c.id, c.getHostID()) if c else (None, None) for c in self.env.containerlist] schedulerinfo['schedulingtime'] = schedulingtime if self.datacenter.__class__.__name__ == 'Datacenter': schedulerinfo['migrationTime'] = self.env.intervalAllocTimings[-1] self.schedulerinfo.append(schedulerinfo) def saveStats(self, deployed, migrations, destroyed, selectedcontainers, decision, schedulingtime): self.saveHostInfo() self.saveWorkloadInfo(deployed, migrations) self.saveContainerInfo() self.saveAllContainerInfo() self.saveMetrics(destroyed, migrations) self.saveSchedulerInfo(selectedcontainers, decision, schedulingtime) def runSimpleSimulation(self, decision): host_alloc = []; container_alloc = [-1] * len(self.env.hostlist) for i in range(len(self.env.hostlist)): host_alloc.append([]) for c in self.env.containerlist: if c and c.getHostID() != -1: host_alloc[c.getHostID()].append(c.id) container_alloc[c.id] = c.getHostID() decision = self.simulated_scheduler.filter_placement(decision) for cid, hid in decision: if self.env.getPlacementPossible(cid, hid) and container_alloc[cid] != -1: host_alloc[container_alloc[cid]].remove(cid) host_alloc[hid].append(cid) energytotalinterval_pred = 0 for hid, cids in enumerate(host_alloc): ips = 0 for cid in cids: ips += self.env.containerlist[cid].getApparentIPS() energytotalinterval_pred += self.env.hostlist[hid].getPowerFromIPS(ips) return energytotalinterval_pred*self.env.intervaltime, max(0, np.mean([metric_d['avgresponsetime'] for metric_d in self.metrics[-5:]])) def runSimulationGOBI(self): host_alloc = []; container_alloc = [-1] * len(self.env.hostlist) for i in range(len(self.env.hostlist)): host_alloc.append([]) for c in self.env.containerlist: if c and c.getHostID() != -1: host_alloc[c.getHostID()].append(c.id) container_alloc[c.id] = c.getHostID() selected = self.simulated_scheduler.selection() decision = self.simulated_scheduler.filter_placement(self.simulated_scheduler.placement(selected)) for cid, hid in decision: if self.env.getPlacementPossible(cid, hid) and container_alloc[cid] != -1: host_alloc[container_alloc[cid]].remove(cid) host_alloc[hid].append(cid) energytotalinterval_pred = 0 for hid, cids in enumerate(host_alloc): ips = 0 for cid in cids: ips += self.env.containerlist[cid].getApparentIPS() energytotalinterval_pred += self.env.hostlist[hid].getPowerFromIPS(ips) return energytotalinterval_pred*self.env.intervaltime, max(0, np.mean([metric_d['avgresponsetime'] for metric_d in self.metrics[-5:]])) ######################################################################################################## def generateGraphsWithInterval(self, dirname, listinfo, obj, metric, metric2=None): fig, axes = plt.subplots(len(listinfo[0][metric]), 1, sharex=True, figsize=(4, 0.5*len(listinfo[0][metric]))) title = obj + '_' + metric + '_with_interval' totalIntervals = len(listinfo) x = list(range(totalIntervals)) metric_with_interval = []; metric2_with_interval = [] ylimit = 0; ylimit2 = 0 for hostID in range(len(listinfo[0][metric])): metric_with_interval.append([listinfo[interval][metric][hostID] for interval in range(totalIntervals)]) ylimit = max(ylimit, max(metric_with_interval[-1])) if metric2: metric2_with_interval.append([listinfo[interval][metric2][hostID] for interval in range(totalIntervals)]) ylimit2 = max(ylimit2, max(metric2_with_interval[-1])) for hostID in range(len(listinfo[0][metric])): axes[hostID].set_ylim(0, max(ylimit, ylimit2)) axes[hostID].plot(x, metric_with_interval[hostID]) if metric2: axes[hostID].plot(x, metric2_with_interval[hostID]) axes[hostID].set_ylabel(obj[0].capitalize()+" "+str(hostID)) axes[hostID].grid(b=True, which='both', color='#eeeeee', linestyle='-') plt.tight_layout(pad=0) plt.savefig(dirname + '/' + title + '.pdf') def generateMetricsWithInterval(self, dirname): fig, axes = plt.subplots(9, 1, sharex=True, figsize=(4, 5)) x = list(range(len(self.metrics))) res = {} for i,metric in enumerate(['numdestroyed', 'nummigrations', 'energytotalinterval', 'avgresponsetime',\ 'avgmigrationtime', 'slaviolations', 'slaviolationspercentage', 'waittime', 'energypercontainerinterval']): metric_with_interval = [self.metrics[i][metric] for i in range(len(self.metrics))] if metric != 'waittime' else \ [sum(self.metrics[i][metric]) for i in range(len(self.metrics))] axes[i].plot(x, metric_with_interval) axes[i].set_ylabel(metric, fontsize=5) axes[i].grid(b=True, which='both', color='#eeeeee', linestyle='-') res[metric] = sum(metric_with_interval) print("Summation ", metric, " = ", res[metric]) print('Average energy (sum energy interval / sum numdestroyed) = ', res['energytotalinterval']/res['numdestroyed']) plt.tight_layout(pad=0) plt.savefig(dirname + '/' + 'Metrics' + '.pdf') def generateWorkloadWithInterval(self, dirname): fig, axes = plt.subplots(5, 1, sharex=True, figsize=(4, 5)) x = list(range(len(self.workloadinfo))) for i, metric in enumerate(['totalcontainers', 'newcontainers', 'deployed', 'migrations', 'inqueue']): metric_with_interval = [self.workloadinfo[i][metric] for i in range(len(self.workloadinfo))] axes[i].plot(x, metric_with_interval) axes[i].set_ylabel(metric) axes[i].grid(b=True, which='both', color='#eeeeee', linestyle='-') plt.tight_layout(pad=0) plt.savefig(dirname + '/' + 'Workload' + '.pdf') ######################################################################################################## def generateCompleteDataset(self, dirname, data, name): title = name + '_with_interval' metric_with_interval = [] headers = list(data[0].keys()) for datum in data: metric_with_interval.append([datum[value] for value in datum.keys()]) df = pd.DataFrame(metric_with_interval, columns=headers) df.to_csv(dirname + '/' + title + '.csv', index=False) def generateDatasetWithInterval(self, dirname, metric, objfunc, metric2=None, objfunc2=None): title = metric + '_' + (metric2 + '_' if metric2 else "") + (objfunc + '_' if objfunc else "") + (objfunc2 + '_' if objfunc2 else "") + 'with_interval' totalIntervals = len(self.hostinfo) metric_with_interval = []; metric2_with_interval = [] # metric1 is of host and metric2 is of containers host_alloc_with_interval = []; objfunc2_with_interval = [] objfunc_with_interval = [] for interval in range(totalIntervals-1): metric_with_interval.append([self.hostinfo[interval][metric][hostID] for hostID in range(len(self.hostinfo[0][metric]))]) host_alloc_with_interval.append([self.activecontainerinfo[interval]['hostalloc'][cID] for cID in range(len(self.activecontainerinfo[0]['hostalloc']))]) objfunc_with_interval.append(self.metrics[interval+1][objfunc]) if metric2: metric2_with_interval.append(self.activecontainerinfo[interval][metric2]) if objfunc2: objfunc2_with_interval.append(self.metrics[interval+1][objfunc2]) df = pd.DataFrame(metric_with_interval) if metric2: df = pd.concat([df, pd.DataFrame(metric2_with_interval)], axis=1) df = pd.concat([df, pd.DataFrame(host_alloc_with_interval)], axis=1) df = pd.concat([df, pd.DataFrame(objfunc_with_interval)], axis=1) if objfunc2: df = pd.concat([df, pd.DataFrame(objfunc2_with_interval)], axis=1) df.to_csv(dirname + '/' + title + '.csv' , header=False, index=False) def generateDatasetWithInterval2(self, dirname, metric, metric2, metric3, metric4, objfunc, objfunc2): title = metric + '_' + metric2 + '_' + metric3 + '_' + metric4 + '_' +objfunc + '_' + objfunc2 + '_' + 'with_interval' totalIntervals = len(self.hostinfo) metric_with_interval = []; metric2_with_interval = [] metric3_with_interval = []; metric4_with_interval = [] host_alloc_with_interval = []; objfunc2_with_interval = [] objfunc_with_interval = [] for interval in range(totalIntervals-1): metric_with_interval.append([self.hostinfo[interval][metric][hostID] for hostID in range(len(self.hostinfo[0][metric]))]) host_alloc_with_interval.append([self.activecontainerinfo[interval]['hostalloc'][cID] for cID in range(len(self.activecontainerinfo[0]['hostalloc']))]) objfunc_with_interval.append(self.metrics[interval+1][objfunc]) metric2_with_interval.append(self.activecontainerinfo[interval][metric2]) metric3_with_interval.append(self.metrics[interval][metric3]) metric4_with_interval.append(self.metrics[interval][metric4]) objfunc2_with_interval.append(self.metrics[interval+1][objfunc2]) df =
pd.DataFrame(metric_with_interval)
pandas.DataFrame
import spacy import json import numpy as np import itertools import multiprocessing as mp from pandas import pandas from collections import Counter from keras.preprocessing.text import Tokenizer from keras.utils import Sequence from keras.preprocessing.sequence import pad_sequences from utils import preprocess from utils import parse_content_line dataset_path = [ "dataset/computers/train/computers_train_xlarge.json", "dataset/computers/test/computers_gs.json", ] cores = mp.cpu_count() preprocess_method = "nltk" attrs = ["title"] attributes = [attr + "_left" for attr in attrs] + [attr + "_right" for attr in attrs] print("* LOADING DATASET") dataset = [] for path in dataset_path: with open(path, "r") as f: for line in f: dataset.append(parse_content_line(line, attributes, label=False)) dataset = np.concatenate(dataset, axis=0).astype(object) print("* DONE") sentences = list(itertools.chain(*dataset)) cores = mp.cpu_count() # Count the number of cores in a computer print("* PREPROCESS") # Preprocess text if preprocess_method == "spacy": # Load spacy for tokenizing text nlp = spacy.load("en_core_web_sm", disable=["ner", "parser"]) txt = [ preprocess(doc, method=preprocess_method) for doc in nlp.pipe(sentences, batch_size=5000, n_threads=cores) ] elif preprocess_method == "nltk": with mp.Pool(processes=cores) as pool: for attr in range(len(attributes)): txt = pool.map(preprocess, sentences) print("* DONE") # Remove duplicates cleaned_sentences =
pandas.DataFrame({"sentences": txt})
pandas.pandas.DataFrame
""" Classes that represent a collection of points/structures that will define a labelmap or similar for image analysis purposes. Currently the parent object is GeometryTopologyData, that can contain objects of type Point and/or BoundingBox. The structure of the object is defined in the GeometryTopologyData.xsd schema. Created on Apr 6, 2015 @author: <NAME> """ import xml.etree.ElementTree as et import os import platform import time import numpy as np import warnings class GeometryTopologyData(object): # Coordinate System Constants UNKNOWN = 0 IJK = 1 RAS = 2 LPS = 3 def __init__(self): self.coordinate_system = self.UNKNOWN self.lps_to_ijk_transformation_matrix = None # Transformation matrix to go from LPS to IJK (in the shape of a 4x4 list) self.__lps_to_ijk_transformation_matrix_array__ = None # Same matrix in a numpy array self.origin = None # Volume origin self.spacing = None # Volume spacing self.dimensions = None # Volume Dimensions self.points = [] # List of Point objects self.bounding_boxes = [] # List of BoundingBox objects self.__seed_id__ = 1 # Seed. The structures added with "add_point", etc. will have an id = seed_id + 1 self.__print_separator__ = " " # Each level of the xml will be "tabulated" this number of spaces @property def seed_id(self): return self.__seed_id__ @seed_id.setter def seed_id(self, value): warnings.warn("This property should not be set manually. Use with caution") self.__seed_id__ = value @property def lps_to_ijk_transformation_matrix_array(self): """ LPS_IJK transformation matrix in a numpy format """ if self.lps_to_ijk_transformation_matrix is None: return None if self.__lps_to_ijk_transformation_matrix_array__ is None: self.__lps_to_ijk_transformation_matrix_array__ = np.array(self.lps_to_ijk_transformation_matrix, dtype=np.float) return self.__lps_to_ijk_transformation_matrix_array__ def __str__(self): """ Print a nicely formatted XML with the current content of the object """ return self.to_xml() def add_point(self, point, fill_auto_fields=True, timestamp=None): """ Add a new Point to the structure :param point: Point object :param fill_auto_fields: fill automatically UserName, MachineName, etc. :param timestamp: optional timestamp to be set in the object """ self.points.append(point) if fill_auto_fields: self.fill_auto_fields(point) if timestamp: point.timestamp = timestamp def add_bounding_box(self, bounding_box, fill_auto_fields=True, timestamp=None): """ Add a new BoundingBox to the structure :param bounding_box: BoundingBox object :param fill_auto_fields: fill automatically UserName, MachineName, etc. :param timestamp: optional timestamp to be set in the object """ self.bounding_boxes.append(bounding_box) if fill_auto_fields: self.fill_auto_fields(bounding_box) if timestamp: bounding_box.timestamp = timestamp def fill_auto_fields(self, structure): """ Fill "auto" fields like timestamp, username, etc, unless there is already a specified value The id will be the current seed_id @param structure: object whose fields will be filled """ if structure.__id__ == 0: # Use the current seed to set the structure id structure.__id__ = self.__seed_id__ # Update the seed self.__seed_id__ += 1 if not structure.timestamp: structure.timestamp = GeometryTopologyData.get_timestamp() if not structure.user_name: structure.user_name = os.path.split(os.path.expanduser('~'))[-1] if not structure.machine_name: structure.machine_name = platform.node() def update_seed(self): """ Update the seed_id field to the maximum id found + 1 """ id = 0 for p in self.points: id = max(id, p.id) for bb in self.bounding_boxes: id = max(id, bb.id) self.__seed_id__ = id + 1 @staticmethod def get_timestamp(): """ Get a timestamp of the current date in the preferred format @return: """ return time.strftime('%Y-%m-%d %H:%M:%S') def to_xml(self): """ Generate the XML string representation of this object. It doesn't use any special python module by default to keep compatibility with Slicer Returns: XML string representation of the object """ header = '<?xml version="1.0" encoding="UTF-8"?>\r\n' output = header + "<GeometryTopologyData>\r\n" output += ("{0}<CoordinateSystem>{1}</CoordinateSystem>\r\n".format(self.__print_separator__, self.__coordinate_system_to_str__(self.coordinate_system))) if self.lps_to_ijk_transformation_matrix is not None: output += self.__write_transformation_matrix__(self.lps_to_ijk_transformation_matrix) if self.spacing is not None: output += "{0}<Spacing>\r\n{1}{0}</Spacing>\r\n".format(self.__print_separator__, GeometryTopologyData.to_xml_vector( self.spacing, separator=self.__print_separator__, level=2) ) if self.origin is not None: output += "{0}<Origin>\r\n{1}{0}</Origin>\r\n".format(self.__print_separator__, GeometryTopologyData.to_xml_vector( self.origin, separator=self.__print_separator__, level=2) ) if self.dimensions is not None: output += "{0}<Dimensions>\r\n{1}{0}</Dimensions>\r\n".format(self.__print_separator__, GeometryTopologyData.to_xml_vector( self.dimensions, separator=self.__print_separator__, level=2) ) # Concatenate points (sort first) self.points.sort(key=lambda p: p.__id__) points = "".join([i.to_xml() for i in self.points]) # Concatenate bounding boxes bounding_boxes = "".join([i.to_xml() for i in self.bounding_boxes]) # Final result s = output + points + bounding_boxes + "</GeometryTopologyData>\r\n" return s def to_xml_file(self, xml_file_path): """ Save this object to an xml file Args: xml_file_path: file path pretty_print: write the xml in a nice format (requires lxml) """ s = self.to_xml() with open(xml_file_path, "w+b") as f: f.write(s) @staticmethod def from_xml_file(xml_file_path): """ Get a GeometryTopologyObject from a file @param xml_file_path: file path @return: GeometryTopologyData object """ with open(xml_file_path, 'r+b') as f: xml = f.read() return GeometryTopologyData.from_xml(xml) @staticmethod def from_xml(xml): """ Build a GeometryTopologyData object from a xml string. All the coordinates will be float. remark: Use the ElementTree instead of lxml module to be compatible with Slicer :param xml: xml string :return: new GeometryTopologyData object """ root = et.fromstring(xml) geometry_topology = GeometryTopologyData() # NumDimensions. DEPRECATED # node = root.find("NumDimensions") # if node is not None: # geometry_topology.__num_dimensions__ = int(node.text) # Coordinate System node = root.find("CoordinateSystem") if node is not None: geometry_topology.coordinate_system = geometry_topology.__coordinate_system_from_str__(node.text) geometry_topology.lps_to_ijk_transformation_matrix = geometry_topology.__read_transformation_matrix__(root) node = root.find("Spacing") if node is not None: val = [] for node_val in node.findall("value"): val.append(float(node_val.text)) geometry_topology.spacing = np.array(val) node = root.find("Origin") if node is not None: val = [] for node_val in node.findall("value"): val.append(float(node_val.text)) geometry_topology.origin = np.array(val) node = root.find("Dimensions") if node is not None: val = [] for node_val in node.findall("value"): val.append(float(node_val.text)) geometry_topology.dimensions = np.array(val) # Points for xml_point_node in root.findall("Point"): point = Point.from_xml_node(xml_point_node) geometry_topology.add_point(point, fill_auto_fields=False) # BoundingBoxes for xml_bb_node in root.findall("BoundingBox"): bb = BoundingBox.from_xml_node(xml_bb_node) geometry_topology.add_bounding_box(BoundingBox.from_xml_node(xml_bb_node), fill_auto_fields=False) # Set the new seed so that every point (or bounding box) added with "add_point" has a bigger id geometry_topology.update_seed() return geometry_topology def get_hashtable(self): """ Return a "hashtable" that will be a dictionary of hash:structure for every point or bounding box present in the structure """ hash = {} for p in self.points: hash[p.get_hash()] = p for bb in self.bounding_boxes: hash[bb.get_hash()] = bb return hash def convert_coordinates_to_array(self, type_=np.float32): """ Convert the coordinates of all the Points/Bounding_Boxes to numpy arrays of the specific type (default: float32) Args: type_: type for the conversion (default: float32) """ for p in self.points: p.convert_to_array(type_) for bb in self.bounding_boxes: bb.convert_to_array(type_) def coordinate_system_str(self): """ Return the coordinate system in text ("LPS", "RAS", "IJK", "UNKNOWN") Returns: string """ if self.coordinate_system == self.IJK: return "IJK" if self.coordinate_system == self.RAS: return "RAS" if self.coordinate_system == self.LPS: return "LPS" return "UNKNOWN" def export_to_dataframe(self): """ Export this instance info to a Pandas dataframe. Note that this method requires some imports that will fail in 3D Slicer! :return: Pandas dataframe with all the points/bounding boxes info """ import pandas as pd from cip_python.common import ChestConventions if len(self.points) > 0 and len(self.bounding_boxes) > 0: raise NotImplementedError("This function can be used only for points or bounding boxes. This object contains both") columns = ['chest_type_id', 'chest_type_name', 'chest_region_id', 'chest_region_name', 'feature_type_id', 'feature_type_name', 'description', 'timestamp', 'user_name', 'machine_name', 'coordinate_system', 'lps_to_ijk_transformation_matrix', 'spacing', 'origin', 'dimensions' ] if len(self.points) > 0: # Export points columns = ['c1', 'c2', 'c3'] + columns df = pd.DataFrame(columns=columns) for s in self.points: df.loc[s.id] = [s.coordinate[0], s.coordinate[1], s.coordinate[2], s.chest_type, ChestConventions.GetChestTypeName(s.chest_type), s.chest_region, ChestConventions.GetChestRegionName(s.chest_region), s.feature_type, ChestConventions.GetImageFeatureName(s.feature_type), s.description, s.timestamp, s.user_name, s.machine_name, # Common properties self.coordinate_system_str(), self.lps_to_ijk_transformation_matrix_array, self.spacing, self.origin, self.dimensions] elif len(self.points) > 0: # Export bounding boxes columns = ['start1', 'start2', 'start3', 'size1', 'size2', 'size3'] + columns df =
pd.DataFrame(columns=columns)
pandas.DataFrame
import numpy as np import pandas as pd from munch import Munch from plaster.run.priors import ParamsAndPriors, Prior, Priors from plaster.tools.aaseq.aaseq import aa_str_to_list from plaster.tools.schema import check from plaster.tools.schema.schema import Schema as s from plaster.tools.utils import utils from plaster.tools.c_common import c_common_tools class SimV2Params(ParamsAndPriors): channel__priors__columns = ( "ch_i", "channel_name", "bg_mu", "bg_sigma", "dye_name", "gain_mu", "gain_sigma", "index", "p_bleach", "row_k_sigma", ) dye__label__priors__columns = ( "channel_name", "dye_name", "aa", "label_name", "ptm_only", "p_non_fluorescent", "ch_i", "bg_mu", "bg_sigma", "gain_mu", "gain_sigma", "row_k_sigma", "p_bleach", ) defaults = Munch( n_pres=1, n_mocks=0, n_edmans=1, dyes=[], labels=[], allow_edman_cterm=False, enable_ptm_labels=False, use_lognormal_model=False, is_survey=False, n_samples_train=5000, n_samples_test=1000, ) schema = s( s.is_kws_r( priors_desc=Priors.priors_desc_schema, n_pres=s.is_int(bounds=(0, None)), n_mocks=s.is_int(bounds=(0, None)), n_edmans=s.is_int(bounds=(0, None)), n_samples_train=s.is_int(bounds=(1, None)), n_samples_test=s.is_int(bounds=(1, None)), dyes=s.is_list( elems=s.is_kws_r(dye_name=s.is_str(), channel_name=s.is_str(),) ), labels=s.is_list( elems=s.is_kws_r( aa=s.is_str(), dye_name=s.is_str(), label_name=s.is_str(), ptm_only=s.is_bool(required=False, noneable=True), ) ), channels=s.is_dict(required=False), allow_edman_cterm=s.is_bool(required=False, noneable=True), enable_ptm_labels=s.is_bool(required=False, noneable=True), use_lognormal_model=s.is_bool(), is_survey=s.is_bool(), ) ) def __init__(self, **kwargs): # _skip_setup_dfs is True in fixture mode super().__init__(source="SimV2Params", **kwargs) self._setup_dfs() def validate(self): super().validate() all_dye_names = list(set([d.dye_name for d in self.dyes])) # No duplicate dye names self._validate( len(all_dye_names) == len(self.dyes), "The dye list contains a duplicate" ) # No duplicate labels self._validate( len(list(set(utils.listi(self.labels, "aa")))) == len(self.labels), "There is a duplicate label in the label_set", ) # All labels have a legit dye name [ self._validate( label.dye_name in all_dye_names, f"Label {label.label_name} does not have a valid matching dye_name", ) for label in self.labels ] # Channel mappings mentioned_channels = {dye.channel_name: False for dye in self.dyes} if "channels" in self: # Validate that channel mapping is complete for channel_name, ch_i in self.channels.items(): self._validate( channel_name in mentioned_channels, f"Channel name '{channel_name}' was not found in dyes", ) mentioned_channels[channel_name] = True self._validate( all([mentioned for _, mentioned in mentioned_channels.items()]), "Not all channels in dyes were enumerated in channels", ) else: # No channel mapping: assign them self["channels"] = { ch_name: i for i, ch_name in enumerate(sorted(mentioned_channels.keys())) } @property def n_cycles(self): return self.n_pres + self.n_mocks + self.n_edmans def channel_names(self): return [ ch_name for ch_name, _ in sorted(self.channels.items(), key=lambda item: item[1]) ] def ch_i_by_name(self): return self.channels @property def n_channels(self): # if self.is_photobleaching_run: # return 1 return len(self.channels) @property def n_channels_and_cycles(self): return self.n_channels, self.n_cycles def _setup_dfs(self): """ Assemble all of the priors into several dataframes indexed differently. (Call after validate) * self.channel__priors: ch_i, ch_name, bg_mu, bg_sigma, gain_mu, gain_sigma, row_k_sigma, p_bleach --> Note, does NOT have p_non_fluorescent because this is a dye property * self.dye__label__priors: aa, label_name, dye_name, ch_i, ch_name, bg_mu, bg_sigma, gain_mu, gain_sigma, row_k_sigma, p_bleach p_non_fluorescent, """ # if self.is_photobleaching_run: # # Not sure what these should be yet # # self._ch_by_aa = {} # # self._channel__priors = pd.DataFrame(columns=self.channel__priors__columns) # # self._dye__label__priors = pd.DataFrame(columns=self.dye__label__priors__columns) # self.dyes = [Munch(dye_name="zero", channel_name="zero")] # self.channels = Munch(zero=0) # self.labels = [ # dict(aa=".", dye_name="zero", label_name="zero", ptm_only=False) # ] labels_df = pd.DataFrame(self.labels) # labels_df: (aa, dye_name, label_name, ptm_only) # assert len(labels_df) > 0 dyes_df =
pd.DataFrame(self.dyes)
pandas.DataFrame
"""Utilities for read counting operations. """ import warnings from collections import defaultdict from collections import Counter from collections import OrderedDict from functools import reduce import os import subprocess import sys import numpy as np import pandas as pd import pybedtools import pysam import six import h5py from tqdm import tqdm from .genome import _get_sizes from .genome import _get_bed from .genome import __GENOMES_DB__ from .helpers import merge_intervals from .helpers import mkdir_p from .helpers import complementary_strand from .wig import WigReader from .interval import Interval from .parallel import ParallelExecutor from joblib import delayed from .infer_protocol import infer_protocol from .helpers import read_bed_as_intervaltree from .helpers import is_read_uniq_mapping, create_bam_index from . import __version__ class OrderedCounter(Counter, OrderedDict): "Counter that remembers the order elements are first encountered" def __repr__(self): return "%s(%r)" % (self.__class__.__name__, OrderedDict(self)) def __reduce__(self): return self.__class__, (OrderedDict(self),) def _get_gene_strand(refseq, chrom, mapped_start, mapped_end): """Lookup a particular location on chromosome to determine its strand Parameters ---------- refseq: string or intervaltree refseq genes.bed file loaded as """ if isinstance(refseq, six.string_types): refseq = read_bed_as_intervaltree(refseq) gene_strand = list(set(refseq[chrom].find(mapped_start, mapped_end))) if len(gene_strand) > 1: return "ambiguous" if len(gene_strand) == 0: # Try searching upstream 30 and downstream 30 nt gene_strand = list(set(refseq[chrom].find(mapped_start - 30, mapped_end - 30))) if len(gene_strand) == 0: # Downstream gene_strand = list( set(refseq[chrom].find(mapped_start + 30, mapped_end + 30)) ) if len(gene_strand) == 0: return "not_found" if len(gene_strand) > 1: return "ambiguous" return gene_strand[0] if len(gene_strand) > 1: return "ambiguous" return gene_strand[0] return gene_strand[0] def gene_coverage(gene_group, bw, offset_5p=0, offset_3p=0): """Get gene coverage. Parameters ---------- gene_group: DataFrame gene group from bed file bw: str Path to bigwig to fetch the scores from offset_5p: int (positive) Number of bases to count upstream (5') offset_3p: int (positive) Number of bases to count downstream (3') Returns ------- coverage_combined: series Series with index as position and value as coverage gene_offset_5p: Gene wise 5 prime offset This might be different from `offset_5p` in cases where `offset_5p` leads to a negative coordinate gene_offset_3p: Gene wise 3 prime offset This might be different from `offset_3p` in cases where `offset_3p` leads to position beyond chromsome length """ if offset_5p < 0 or offset_3p < 0: raise RuntimeError("Offsets must be non-negative") sys.exit(1) if not isinstance(bw, WigReader): bw = WigReader(bw) chromosome_lengths = bw.chromosomes if len(gene_group["strand"].unique()) != 1: raise RuntimeError("Multiple strands?: {}".format(gene_group)) if len(gene_group["chrom"].unique()) != 1: raise RuntimeError("Chrom not unique for: {}".format(gene_group)) strand = gene_group["strand"].unique()[0] intervals = list( zip( gene_group["chrom"], gene_group["start"], gene_group["end"], gene_group["strand"], ) ) intervals = [Interval(i[0], i[1], i[2], i[3]) for i in intervals] intervals_combined, gene_offset_5p, gene_offset_3p = merge_intervals( intervals, chromosome_lengths, offset_5p, offset_3p ) coverages = bw.query(intervals_combined) if len(coverages) == 0: return (pd.Series([]), 0, 0) coverages_combined = [] for cov in coverages: coverages_combined += list(cov) # if it is located on negative strand # reverse the values since we no longer # want to track the individual position # but just an indexed version if strand == "-": coverages_combined.reverse() coverages_combined = np.array(coverages_combined).flatten() coverages_combined = pd.Series( coverages_combined, index=np.arange(-gene_offset_5p, len(coverages_combined) - gene_offset_5p), ) return (coverages_combined, gene_offset_5p, gene_offset_3p) def export_gene_coverages(bed, bw, saveto, offset_5p=0, offset_3p=0): """Export all gene coverages. Parameters ---------- bed: str Path to CDS or 5'UTR or 3'UTR bed bw: str Path to bigwig to fetch the scores from saveto: str Path to write output tsv file offset_5p: int (positive) Number of bases to count upstream (5') offset_3p: int (positive) Number of bases to count downstream (3') Returns ------- gene_profiles: file with the following format: gene1\t5poffset1\t3poffset1\tcnt1_1 cnt1_2 cnt1_3 ...\n gene2\t5poffset2\t3poffset2\tcnt2_1 cnt2_2 cnt2_3 ...\n """ if bed.lower().split("_")[0] in __GENOMES_DB__: splitted = bed.lower().split("_") if len(splitted) == 2: genome, region_type = splitted elif len(splitted) == 3: genome = splitted[0] region_type = ("_").join(splitted[1:]) bed = _get_bed(region_type, genome) bed_df = pybedtools.BedTool(bed).sort().to_dataframe() bed_df["chrom"] = bed_df["chrom"].astype(str) bed_df["name"] = bed_df["name"].astype(str) bed_grouped = bed_df.groupby("name") if not isinstance(bw, WigReader): bw = WigReader(bw) to_write = "gene_name\toffset_5p\toffset_3p\tcoverage\ttotal\n" for gene_name, gene_group in tqdm(bed_grouped): coverage, gene_offset_5p, gene_offset_3p = gene_coverage( gene_group, bw, offset_5p, offset_3p ) coverage = coverage.fillna(0) coverage = coverage.astype(int) coverage = coverage.tolist() to_write += "{}\t{}\t{}\t{}\t{}\n".format( gene_name, int(gene_offset_5p), int(gene_offset_3p), coverage, np.sum(coverage), ) mkdir_p(os.path.dirname(saveto)) with open(saveto, "w") as outfile: outfile.write(to_write) def _multiprocess_gene_coverage(data): """Process gene_c overage given a bigwig and a genegroup. WigReader is not pickleable when passed as an argument so we use strings as input for the bigwig Parameters ---------- data: tuple gene_gorup, bigwig, offset_5p, offset_3p, max_positions, orientation Returns ------- norm_cov: Series normalized coverage """ gene_group, bw, offset_5p, offset_3p, max_positions, orientation = data bw = WigReader(bw) coverage, gene_offset_5p, gene_offset_3p = gene_coverage( gene_group, bw, offset_5p, offset_3p ) coverage = coverage.fillna(0) if orientation == "5prime": if max_positions is not None and len(coverage.index) > 0: # min_index will correspond to the gene_offset_5p in general min_index = min(coverage.index.tolist()) max_index = max(coverage.index.tolist()) assert ( min_index == -gene_offset_5p ), "min_index and gene_offset_5p are not same| min_index: {} | gene_offset_5p: {}".format( min_index, -gene_offset_5p ) coverage = coverage[np.arange(min_index, min(max_index, max_positions))] elif orientation == "3prime": # We now want to be tracking things from the end position # we can do this since gene_coverage() takes care of the strand # so a 3prime is always the tail of the array # note that if gene_offset_5p >0, in this case, it is almost never used # since we restrict ourselves to max_positions, which itself is almost # always < 1000 if max_positions is not None and len(coverage.index) > 0: max_index = max(coverage.index.tolist()) min_index = min(coverage.index.tolist()) assert ( min_index == -gene_offset_5p ), "min_index and gene_offset_5p are not same| min_index: {} | gene_offset_5p: {}".format( min_index, -gene_offset_5p ) # max_index is the maximum we can go to the right # our stop codon will be located gene_offset_3p upstream of this index # Let's reindex our series so that we set coverage = coverage.reindex(np.arange(-max_index, -min_index, 1)) coverage = coverage[np.arange(-max_positions, gene_offset_3p)] else: raise ValueError("{} orientation not supported".format(orientation)) assert ( coverage is not None ), "coverage is none | max_index={} | min_index={}| gene_offset_3p={} | gene_offset_5p={}".format( max_index, min_index, gene_offset_3p, gene_offset_5p ) coverage_mean = coverage.mean() norm_cov = coverage / coverage_mean norm_cov = norm_cov.fillna(0) bw.close() return norm_cov def export_metagene_coverage( bed, bw, max_positions=None, saveto=None, offset_5p=0, offset_3p=0, orientation="5prime", n_jobs=16, ): """Export metagene coverage. Parameters ---------- bed: str Path to CDS or 5'UTR or 3'UTR bed bw: str Path to bigwig to fetch the scores from max_positions: int Number of positions to consider while calculating the normalized coverage Higher values lead to slower implementation saveto: str Path to write output tsv file offset_5p: int (positive) Number of bases to count upstream (5') offset_3p: int (positive) Number of bases to count downstream (3') orientation: string ['5prime', '3prime'] indicating the end of read being tracked n_jobs: int Number of paralle threads to open Better to do on a multi-cpu machine, but also works decently on a single core machine Returns ------- metagene_coverage: series Metagene coverage """ if max_positions is None: warnings.warn( "The max_positions is not specified, it could" "take long time to calculate metagene coverage" ) if max_positions is not None and max_positions <= 0: raise RuntimeError("The max_positions must be positive") sys.exit(1) if bed.lower().split("_")[0] in __GENOMES_DB__: splitted = bed.lower().split("_") if len(splitted) == 2: genome, region_type = splitted elif len(splitted) == 3: genome = splitted[0] region_type = ("_").join(splitted[1:]) bed = _get_bed(region_type, genome) bed_df = pybedtools.BedTool(bed).sort().to_dataframe() bed_df["chrom"] = bed_df["chrom"].astype(str) bed_df["name"] = bed_df["name"].astype(str) bed_grouped = bed_df.groupby("name") if not isinstance(bw, WigReader): bw = WigReader(bw) position_counter = Counter() metagene_coverage = pd.Series() data = [ (gene_group, bw.wig_location, offset_5p, offset_3p, max_positions, orientation) for gene_name, gene_group in bed_grouped ] aprun = ParallelExecutor(n_jobs=n_jobs) total = len(bed_grouped.groups) all_coverages = aprun(total=total)( delayed(_multiprocess_gene_coverage)(d) for d in data ) for norm_cov in all_coverages: metagene_coverage = metagene_coverage.add(norm_cov, fill_value=0) position_counter += Counter(norm_cov.index.tolist()) if len(position_counter) != len(metagene_coverage): raise RuntimeError("Gene normalized counter mismatch") sys.exit(1) position_counter = pd.Series(position_counter) metagene_coverage = metagene_coverage.div(position_counter) if len(metagene_coverage.index) == 0: # If nothing is found in the bigwig, return zeros metagene_coverage = pd.Series( [0] * (max_positions + offset_5p), index=np.arange(-offset_5p, max_positions), ) if saveto: mkdir_p(os.path.dirname(saveto)) to_write = pd.DataFrame( {"position": metagene_coverage.index, "count": metagene_coverage.values} ) to_write = to_write[["position", "count"]] to_write.to_csv(saveto, sep=str("\t"), index=False) return metagene_coverage def export_read_counts(gene_coverages, saveto, keep_offsets=True): """export read counts from gene coverages file. Parameters ---------- gene_coverages: string Path to gene coverages.tsv saveto: str Path to save output tsv gene_name\tcount\tlength keep_offsets: bool whether to keep the 5' and 3' offsets in gene coverages default is False """ if ".gz" in gene_coverages: gene_coverages_df = pd.read_table(gene_coverages, compression="gzip") else: gene_coverages_df = pd.read_table(gene_coverages) gene_coverages_zipped = list( zip( gene_coverages_df["gene_name"], gene_coverages_df["offset_5p"], gene_coverages_df["offset_3p"], gene_coverages_df["coverage"], ) ) to_write = "gene_name\tcount\tlength\n" for gene_name, offset_5p, offset_3p, cov in gene_coverages_zipped: coverage = eval(cov) coverage = pd.Series( np.array(coverage), index=np.arange(-offset_5p, len(coverage) - offset_5p) ) coverage = coverage.fillna(0) max_index = max(coverage.index.tolist()) if not keep_offsets: coverage = coverage[np.arange(0, max_index - offset_3p)] count = coverage.sum() length = len(coverage.tolist()) to_write += "{}\t{}\t{}\n".format(gene_name, int(count), int(length)) mkdir_p(os.path.dirname(saveto)) with open(saveto, "w") as output: output.write(to_write) def merge_gene_coverages(gene_coverages, max_positions=None, saveto=None): """merge gene coverages to generate metagene coverage. Parameters ---------- gene_coverages: string Path to gene coverages.tsv max_positions: int Number of positions to consider while calculating the normalized coverage saveto: str Path to save output tsv Returns ------- metagene_coverage : Series Metagene coverage """ if ".gz" in gene_coverages: gene_coverages_df =
pd.read_table(gene_coverages, compression="gzip")
pandas.read_table
""" WSP Cleaning: Takes a csv file from WSP's collision analysis tool and returns a new csv file in a format that can be merged with Weather Underground data, ultimately being used in a visualization tool """ import numpy as np import pandas as pd from IPython.core.interactiveshell import InteractiveShell from pyproj import Proj, transform InteractiveShell.ast_node_interactivity = "all" def convert_stateplane_to_latlon(state_x, state_y, proj_in=2286, proj_out=4326): """ This funtion takes the state plane coordinates used by the state patrol and converts them to latitudes and longitudes to be plotted on a map :param state_x: float x state plane coordinate (corresponding with longitude) :param state_y: float y state plane coordinate (corresponding with latitude) :proj_in: int value to convert state plane coordinate to lat/lon :proj_out: int value to convert state plane coordinate to lat/lon """ inProj = Proj(init='epsg:' + str(proj_in), preserve_units=True) outProj = Proj(init='epsg:' + str(proj_out)) lon, lat = transform(inProj, outProj, state_x, state_y) return lat, lon def column_conversion(input_data, old_column, dictionary, record): """ Converts values in columns to descriptions using dictionaries provided by WSP collision analysis tool :param input_data: dataframe the dataframe to be read and have column changed :param old_column: string reads old column value :param dictionary: dictionary reads the appropriate dictionary to assign new value :param record: int (loop parameter) the record number being changed (processed in loop) """ if not np.isnan(input_data[old_column][record]): new_value = dictionary[input_data[old_column][record]] return new_value else: pass def clean_wsp_collision_data(input_csv_filepath): """ Takes raw input csv downloaded from WSP's collision analysis tool and converts it into a cleaned dataframe :param input csv: string filepath location of file to be cleaned """ # read in raw data from WSP's collision analysis tool print('\nreading csv file...') df = pd.read_csv(input_csv_filepath, sep=',', low_memory=False) # drop any collision records with no state plane coordinates print('dropping records with no state plane coordinates...') df = df.drop(df[np.isnan(df.Colli_Dtl_Info_State_Plane_X)].index) df = df.drop(df[np.isnan(df.Colli_Dtl_Info_State_Plane_Y)].index) df = df.reset_index(drop=True) # convert state plane coordinates to latitudes and longitudes print('converting state plane coordinates/' 'dropping records not in range...') x = np.array(df.Colli_Dtl_Info_State_Plane_X) y = np.array(df.Colli_Dtl_Info_State_Plane_Y) x_new, y_new = convert_stateplane_to_latlon(x, y) df = df.rename(columns={'Colli_Dtl_Info_State_Plane_X': 'lat', 'Colli_Dtl_Info_State_Plane_Y': 'lon'}) df['lat'] =
pd.DataFrame(x_new)
pandas.DataFrame
"""Scraper for https://projects.fivethirtyeight.com/soccer-predictions.""" import itertools import json from pathlib import Path from typing import Callable, Dict, List, Optional, Union import pandas as pd from ._common import BaseRequestsReader, make_game_id, standardize_colnames from ._config import DATA_DIR, NOCACHE, NOSTORE, TEAMNAME_REPLACEMENTS FIVETHIRTYEIGHT_DATA_DIR = DATA_DIR / "FiveThirtyEight" FIVETHIRTYEIGHT_API = "https://projects.fivethirtyeight.com/soccer-predictions" class FiveThirtyEight(BaseRequestsReader): """Provides pd.DataFrames from fivethirtyeight's "Club Soccer Predictions" project. Data will be downloaded as necessary and cached locally in ``~/soccerdata/data/FiveThirtyEight``. Original project and background info: https://projects.fivethirtyeight.com/soccer-predictions/ and https://fivethirtyeight.com/features/how-our-club-soccer-projections-work/ Parameters ---------- leagues : string or iterable, optional IDs of Leagues to include. seasons : string, int or list, optional Seasons to include. Supports multiple formats. Examples: '16-17'; 2016; '2016-17'; [14, 15, 16] proxy : 'tor' or or dict or list(dict) or callable, optional Use a proxy to hide your IP address. Valid options are: - "tor": Uses the Tor network. Tor should be running in the background on port 9050. - dict: A dictionary with the proxy to use. The dict should be a mapping of supported protocols to proxy addresses. For example:: { 'http': 'http://10.10.1.10:3128', 'https': 'http://10.10.1.10:1080', } - list(dict): A list of proxies to choose from. A different proxy will be selected from this list after failed requests, allowing rotating proxies. - callable: A function that returns a valid proxy. This function will be called after failed requests, allowing rotating proxies. no_cache : bool If True, will not use cached data. no_store : bool If True, will not store downloaded data. data_dir : Path Path to directory where data will be cached. """ def __init__( self, leagues: Optional[Union[str, List[str]]] = None, seasons: Optional[Union[str, int, List]] = None, proxy: Optional[ Union[str, Dict[str, str], List[Dict[str, str]], Callable[[], Dict[str, str]]] ] = None, no_cache: bool = NOCACHE, no_store: bool = NOSTORE, data_dir: Path = FIVETHIRTYEIGHT_DATA_DIR, ): """Initialize a new FiveThirtyEight reader.""" super().__init__( leagues=leagues, proxy=proxy, no_cache=no_cache, no_store=no_store, data_dir=data_dir ) self.seasons = seasons # type: ignore self._data = {} url = f"{FIVETHIRTYEIGHT_API}/data.json" filepath = self.data_dir / "latest.json" reader = self.get(url, filepath) for k, v in json.load(reader).items(): self._data[k] = v def read_leagues(self) -> pd.DataFrame: """Retrieve the selected leagues from the datasource. Returns ------- pd.DataFrame """ df = ( pd.DataFrame.from_dict(self._data["leagues"]) .rename(columns={"slug": "league", "id": "league_id"}) .pipe(self._translate_league) .pipe(standardize_colnames) .drop(columns=["overview_column", "custom_template", "skip_cols"]) .set_index("league") .loc[self._selected_leagues.keys()] .sort_index() ) return df def read_games(self) -> pd.DataFrame: """Retrieve all games for the selected leagues. Returns ------- pd.DataFrame """ col_rename = { "adj_score1": "adj_score_home", "adj_score2": "adj_score_away", "chances1": "chances_home", "chances2": "chances_away", "datetime": "date", "moves1": "moves_home", "moves2": "moves_away", "prob1": "prob_home", "prob2": "prob_away", "probtie": "prob_tie", "score1": "score_home", "score2": "score_away", "team1": "home_team", "team1_code": "home_code", "team1_id": "home_id", "team1_sdr_id": "home_sdr_id", "team2": "away_team", "team2_code": "away_code", "team2_id": "away_id", "team2_sdr_id": "away_sdr_id", } filemask = "matches_{}_{}.csv" urlmask = FIVETHIRTYEIGHT_API + "/forecasts/20{}_{}_matches.json" data = [] for lkey, skey in itertools.product(self._selected_leagues.values(), self.seasons): filepath = self.data_dir / filemask.format(lkey, skey) url = urlmask.format(skey[:2], lkey) reader = self.get(url, filepath) data.extend([{"league": lkey, "season": skey, **d} for d in json.load(reader)]) df = (
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
import pandas as pd import os from datetime import date import logging from tqdm import tqdm # logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt='%Y-%m-%d %H:%M:%S') def getTrialStats(today:date): os.chdir(os.path.realpath('../')) diseasesDf = pd.read_csv(f'nciMainDiseases{today}.csv') sitesToTrialsDf = pd.read_csv(f'nciSites{today}.csv') # sitesDiseaseCountDf = pd.DataFrame(columns=['orgName', 'nciThesaurusConceptId', 'disease', 'count']) sitesDiseaseCount = [] for row in tqdm(sitesToTrialsDf[['orgName', 'nciId']].itertuples(), total=len(sitesToTrialsDf.index)): #removing the Other Cancer, Other Neoplasm, and Other Disease entries relevantDiseasesDf = diseasesDf[(diseasesDf['nciId'] == row.nciId) & (~diseasesDf['nciThesaurusConceptId'].isin(['C2991', 'C3262', 'C2916']))] relevantDiseasesDf = relevantDiseasesDf[relevantDiseasesDf['isLeadDisease'] == 1] for id in relevantDiseasesDf['nciThesaurusConceptId'].unique(): rowDict = { 'orgName': row.orgName, 'nciThesaurusConceptId': id, 'disease': relevantDiseasesDf[relevantDiseasesDf['nciThesaurusConceptId'] == id]['name'].iloc[0], # 'count': len(relevantDiseasesDf[relevantDiseasesDf['nciThesaurusConceptId'] == id].index) } sitesDiseaseCount.append(rowDict) sitesDiseaseCountDf =
pd.DataFrame.from_records(sitesDiseaseCount)
pandas.DataFrame.from_records
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_split(any_string_dtype): values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.split("_") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) # more than one char values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype) result = values.str.split("__") tm.assert_series_equal(result, exp) result = values.str.split("__", expand=False) tm.assert_series_equal(result, exp) # regex split values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype) result = values.str.split("[,_]") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) def test_split_object_mixed(): mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0]) result = mixed.str.split("_") exp = Series( [ ["a", "b", "c"], np.nan, ["d", "e", "f"], np.nan, np.nan, np.nan, np.nan, np.nan, ] ) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split("_", expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) @pytest.mark.parametrize("method", ["split", "rsplit"]) def test_split_n(any_string_dtype, method): s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype) expected = Series([["a", "b"], pd.NA, ["b", "c"]]) result = getattr(s.str, method)(" ", n=None) tm.assert_series_equal(result, expected) result = getattr(s.str, method)(" ", n=0) tm.assert_series_equal(result, expected) def test_rsplit(any_string_dtype): values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.rsplit("_") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
tm.assert_series_equal(result, exp)
pandas._testing.assert_series_equal
import requests,json,os,re,argparse import pandas as pd from time import sleep parser=argparse.ArgumentParser() parser.add_argument('-i','--input_file', required=True, help='Input csv file with user name and orcid id') parser.add_argument('-o','--output_xml', required=True, help='Output xml file') args=parser.parse_args() input_file=args.input_file output_xml=args.output_xml def get_pmc_data(orcid_id,cursor=''): ''' A method for fetching pmc data :param orcid_id: An orcid id :param cursor: A cursor string, default empty string ''' try: data=list() url_str='https://www.ebi.ac.uk/europepmc/webservices/rest/search?query=AUTHORID:{0}&format=json&sort_date:y%20BDESC&cursorMark={1}'.format(orcid_id,cursor) response=requests.get(url_str) if response.ok: json_data=json.loads(response.content.decode('utf-8')) data=json_data['resultList']['result'] #print(json_data) if 'nextCursorMark' in json_data: if cursor !=json_data['nextCursorMark']: cursor=json_data['nextCursorMark'] else: cursor='' return data,cursor except: raise def add_pmc_link(series): ''' A method for adding pubmed link to the data table :param series: A data series with 'pmid' (pubmed id) ''' try: pmid=series['pmid'] series['link']='https://www.ncbi.nlm.nih.gov/pubmed/{0}'.format(pmid) return series except: raise def get_pmc_data_for_user(user,orcid_id): ''' A method for fetching all publication info for a user :param user: A user name :param orcid_id: An orcid id for PMC lookup :returns: A dataframe containing list of publications ''' try: all_data=list() cursor='' while True: data,cursor=get_pmc_data(orcid_id=orcid_id,cursor=cursor) if len(data)>0 or cursor !='': all_data.extend(data) sleep(10) else: break all_data=pd.DataFrame(all_data) all_data['user']=user all_data=all_data.apply(lambda x: add_pmc_link(series=x), axis=1) return all_data except: raise def get_publication_list(input_file): ''' A method for fetching publication list and writing it to an output csv file :param input_file: An input csv file containing 'name' and 'orcid' column returns: A pandas dataframe containing publication info of all the users ''' try: final_data=
pd.DataFrame()
pandas.DataFrame
import argparse import collections import pandas import numpy as np import os import gym from keras.layers import Activation, Dense, Flatten from keras.models import Sequential from keras.optimizers import Adam import tensorflow as tf from rl.agents import SARSAAgent from rl.core import Processor from rl.policy import BoltzmannQPolicy from noise_estimator import * from utils import * parser = argparse.ArgumentParser() parser.add_argument('--error_positive', type=float, default=0.2, help='Error positive rate [default: 0.2]') parser.add_argument('--error_negative', type=float, default=0.0, help='Error negative rate [default: 0.0]') parser.add_argument('--log_dir', default='logs', help='Log dir [default: logs]') parser.add_argument('--reward', default='normal', help='reward choice: normal/noisy/surrogate [default: normal]') parser.add_argument('--smooth', type=str2bool, default=False, help='Add smoothing to rewards [default: False]') FLAGS = parser.parse_args() ERR_P = FLAGS.error_positive ERR_N = FLAGS.error_negative REWARD = FLAGS.reward SMOOTH = FLAGS.smooth if REWARD == "normal": LOG_DIR = os.path.join(FLAGS.log_dir, "sarsa_cartpole") else: LOG_DIR = os.path.join(os.path.join(FLAGS.log_dir, "sarsa_cartpole"), str(ERR_P)) ENV_NAME = 'CartPole-v0' if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) os.system('cp sarsa_cartpole.py %s' % (LOG_DIR)) # bkp of train procedure print ('cp sarsa_cartpole.py %s' % (LOG_DIR)) LOG_FOUT = open(os.path.join(LOG_DIR, 'setting.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def build_state(features): return int("".join(map(lambda feature: str(int(feature)), features))) def to_bin(value, bins): return np.digitize(x=[value], bins=bins)[0] def train(): # Get the environment and extract the number of actions. env = gym.make(ENV_NAME) np.random.seed(123) env.seed(123) nb_actions = env.action_space.n config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) from keras import backend as K K.set_session(sess) # Next, we build a very simple model. model = Sequential() model.add(Flatten(input_shape=(1,) + env.observation_space.shape)) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(nb_actions)) model.add(Activation('linear')) print(model.summary()) # SARSA does not require a memory. policy = BoltzmannQPolicy() # processor_noisy = CartpoleSurrogateProcessor(e_= ERR_N, e=ERR_P, surrogate=False) # processor_surrogate = CartpoleSurrogateProcessor(e_= ERR_N, e=ERR_P, surrogate=True) if not SMOOTH: processor_noisy = CartpoleProcessor(e_= ERR_N, e=ERR_P, smooth=False, surrogate=False) processor_surrogate = CartpoleProcessor(e_= ERR_N, e=ERR_P, smooth=False, surrogate=True) else: processor_noisy = CartpoleProcessor(e_= ERR_N, e=ERR_P, smooth=True, surrogate=False) processor_surrogate = CartpoleProcessor(e_= ERR_N, e=ERR_P, smooth=True, surrogate=True) if REWARD == "normal": sarsa_normal = SARSAAgent(model=model, nb_actions=nb_actions, nb_steps_warmup=10, policy=policy) sarsa_normal.compile(Adam(lr=1e-3), metrics=['mae']) history_normal = sarsa_normal.fit(env, nb_steps=50000, visualize=False, verbose=2) sarsa_normal.save_weights(os.path.join(LOG_DIR, 'sarsa_normal_{}_weights.h5f'.format(ENV_NAME)), overwrite=True) sarsa_normal.test(env, nb_episodes=10, visualize=False, verbose=2)
pandas.DataFrame(history_normal.history)
pandas.DataFrame
#!/usr/bin/env python import pandas as pd pd.set_option('display.max_rows', 15500) pd.set_option('display.max_columns', 55500) pd.set_option('display.width', 551000) data = pd.read_csv("crimemar14.csv") data.head() newdata = data["Datetime"].str.split("@", n = 1, expand = True) data["date"] = newdata[0] data["time"] = newdata[1] data.head() data["time"]=
pd.to_datetime(data["time"],format=' %I:%M %p' )
pandas.to_datetime
import decimal import numpy as np from numpy import iinfo import pytest import pandas as pd from pandas import to_numeric from pandas.util import testing as tm class TestToNumeric(object): def test_empty(self): # see gh-16302 s = pd.Series([], dtype=object) res = to_numeric(s) expected = pd.Series([], dtype=np.int64) tm.assert_series_equal(res, expected) # Original issue example res = to_numeric(s, errors='coerce', downcast='integer') expected = pd.Series([], dtype=np.int8) tm.assert_series_equal(res, expected) def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) msg = 'Unable to parse string "apple" at position 2' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) s = pd.Series(['orange', 1, -3.14, 'apple']) msg = 'Unable to parse string "orange" at position 0' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) msg = 'Unable to parse string "apple" at position 2' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) # GH 14827 df = pd.DataFrame(dict( a=[1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), '0.1'], b=[1.0, 2.0, 3.0, 4.0], )) expected = pd.DataFrame(dict( a=[1.2, 3.14, np.inf, 0.1], b=[1.0, 2.0, 3.0, 4.0], )) # Test to_numeric over one column df_copy = df.copy() df_copy['a'] = df_copy['a'].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) # Test to_numeric over multiple columns df_copy = df.copy() df_copy[['a', 'b']] = df_copy[['a', 'b']].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) def test_numeric_lists_and_arrays(self): # Test to_numeric with embedded lists and arrays df = pd.DataFrame(dict( a=[[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 1.6, 0.1], )) tm.assert_frame_equal(df, expected) df = pd.DataFrame(dict( a=[np.array([decimal.Decimal(3.14), 1.0]), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 0.1], )) tm.assert_frame_equal(df, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) @pytest.mark.parametrize("errors", [None, "ignore", "raise", "coerce"]) def test_type_check(self, errors): # see gh-11776 df = pd.DataFrame({"a": [1, -3.14, 7], "b": ["4", "5", "6"]}) kwargs = dict(errors=errors) if errors is not None else dict() error_ctx = pytest.raises(TypeError, match="1-d array") with error_ctx: to_numeric(df, **kwargs) def test_scalar(self): assert pd.to_numeric(1) == 1 assert pd.to_numeric(1.1) == 1.1 assert pd.to_numeric('1') == 1 assert pd.to_numeric('1.1') == 1.1 with pytest.raises(ValueError): to_numeric('XX', errors='raise') assert to_numeric('XX', errors='ignore') == 'XX' assert np.isnan(to_numeric('XX', errors='coerce')) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) def test_datetime_like(self, tz_naive_fixture): idx = pd.date_range("20130101", periods=3, tz=tz_naive_fixture, name="xxx") res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name="xxx")) res = pd.to_numeric(pd.Series(idx, name="xxx")) tm.assert_series_equal(res, pd.Series(idx.asi8, name="xxx")) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_timedelta(self): idx = pd.timedelta_range('1 days', periods=3, freq='D', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_period(self): idx = pd.period_range('2011-01', periods=3, freq='M', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) # TODO: enable when we can support native PeriodDtype # res = pd.to_numeric(pd.Series(idx, name='xxx')) # tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) def test_non_hashable(self): # Test for Bug #13324 s = pd.Series([[10.0, 2], 1.0, 'apple']) res = pd.to_numeric(s, errors='coerce') tm.assert_series_equal(res, pd.Series([np.nan, 1.0, np.nan])) res = pd.to_numeric(s, errors='ignore') tm.assert_series_equal(res, pd.Series([[10.0, 2], 1.0, 'apple'])) with pytest.raises(TypeError, match="Invalid object type"): pd.to_numeric(s) @pytest.mark.parametrize("data", [ ["1", 2, 3], [1, 2, 3], np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]") ]) def test_downcast_basic(self, data): # see gh-13352 invalid_downcast = "unsigned-integer" msg = "invalid downcasting method provided" with pytest.raises(ValueError, match=msg): pd.to_numeric(data, downcast=invalid_downcast) expected = np.array([1, 2, 3], dtype=np.int64) # Basic function tests. res = pd.to_numeric(data) tm.assert_numpy_array_equal(res, expected) res = pd.to_numeric(data, downcast=None) tm.assert_numpy_array_equal(res, expected) # Basic dtype support. smallest_uint_dtype = np.dtype(np.typecodes["UnsignedInteger"][0]) # Support below np.float32 is rare and far between. float_32_char = np.dtype(np.float32).char smallest_float_dtype = float_32_char expected = np.array([1, 2, 3], dtype=smallest_uint_dtype) res = pd.to_numeric(data, downcast="unsigned") tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_float_dtype) res = pd.to_numeric(data, downcast="float") tm.assert_numpy_array_equal(res, expected) @pytest.mark.parametrize("signed_downcast", ["integer", "signed"]) @pytest.mark.parametrize("data", [ ["1", 2, 3], [1, 2, 3], np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]") ]) def test_signed_downcast(self, data, signed_downcast): # see gh-13352 smallest_int_dtype = np.dtype(np.typecodes["Integer"][0]) expected = np.array([1, 2, 3], dtype=smallest_int_dtype) res = pd.to_numeric(data, downcast=signed_downcast) tm.assert_numpy_array_equal(res, expected) def test_ignore_downcast_invalid_data(self): # If we can't successfully cast the given # data to a numeric dtype, do not bother # with the downcast parameter. data = ["foo", 2, 3] expected = np.array(data, dtype=object) res = pd.to_numeric(data, errors="ignore", downcast="unsigned") tm.assert_numpy_array_equal(res, expected) def test_ignore_downcast_neg_to_unsigned(self): # Cannot cast to an unsigned integer # because we have a negative number. data = ["-1", 2, 3] expected = np.array([-1, 2, 3], dtype=np.int64) res = pd.to_numeric(data, downcast="unsigned") tm.assert_numpy_array_equal(res, expected) @pytest.mark.parametrize("downcast", ["integer", "signed", "unsigned"]) @pytest.mark.parametrize("data,expected", [ (["1.1", 2, 3], np.array([1.1, 2, 3], dtype=np.float64)), ([10000.0, 20000, 3000, 40000.36, 50000, 50000.00], np.array([10000.0, 20000, 3000, 40000.36, 50000, 50000.00], dtype=np.float64)) ]) def test_ignore_downcast_cannot_convert_float( self, data, expected, downcast): # Cannot cast to an integer (signed or unsigned) # because we have a float number. res =
pd.to_numeric(data, downcast=downcast)
pandas.to_numeric
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n,
pd.Period('2011-01', freq='D')
pandas.Period
import xenaPython as xena import pandas as pd GENES = ['FOXM1', 'TP53'] def get_codes(host, dataset, fields, data): "get codes for enumerations" codes = xena.field_codes(host, dataset, fields) codes_idx = dict([(x['name'], x['code'].split('\t')) for x in codes if x['code'] is not None]) for i in range(len(fields)): if fields[i] in codes_idx: data[i] = [None if v == 'NaN' else codes_idx[fields[i]][int(v)] for v in data[i]] return data def get_fields(host, dataset, samples, fields): "get field values, column names in the spreadsheet" data = xena.dataset_fetch(host, dataset, samples, fields) return data def get_fields_and_codes(host, dataset, samples, fields): "get fields and resolve NA in the value" return get_codes(host, dataset, fields, get_fields( host, dataset, samples, fields)) # dictionary with all hub links xena.PUBLIC_HUBS # pancanAtlas cohort cohort = 'TCGA PanCanAtlas' host = xena.PUBLIC_HUBS['pancanAtlasHub'] # get expression for GENES expression_dataset = 'EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena' samples = xena.dataset_samples(host, expression_dataset, None) samples[0: 10] expression = get_fields_and_codes(host, expression_dataset, samples, GENES) # list of lists. expression_by_gene = dict(zip(GENES, expression)) # index by gene. [expression_by_gene.keys(), GENES[0], expression_by_gene[GENES[0]][0:10]] # note that missing data is returned as 'NaN'. One might want to remap this to None or NaN, depending on the later analysis tools. # get disease type and survival columns survival_dataset = 'Survival_SupplementalTable_S1_20171025_xena_sp' fields = ['cancer type abbreviation', 'OS', 'OS.time'] values = get_fields_and_codes(host, survival_dataset, samples, fields) # list of lists phenotypes = dict(zip(fields, values)) # index by phenotype # show all unique variable in the list phenotypes['cancer type abbreviation'] phenotype_index = set(phenotypes['cancer type abbreviation']) print(phenotype_index) # get sample type. TCGA includes a few "normal" tissue samples. These normals are of # limited value because there are few of them, and they are not entirely normal, being # taken from disease tissue, outside of the visible tumor. It's often best to omit them. sampletype_dataset = 'TCGA_phenotype_denseDataOnlyDownload.tsv' fields = ['sample_type'] values = get_fields_and_codes(host, sampletype_dataset, samples, fields) set(values[0]) ## has to use ['None'] to list all cohorts within the hub ## all_cohorts(host, exclude) xena.all_cohorts(hub, ['None']) cohort = 'https://pancanatlas.xenahubs.net' xena.cohort_summary(hub, ['None']) # count datasets per cohort ## Dataset metadata for datasets in the given cohorts xena.dataset_list(hub, ['TCGA Pan-Cancer (PANCAN)']) ## use dataset ID in Xena website dataset = 'EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena' gene = ["VEGFA"] ## samples = xena.dataset_samples(hub, dataset, None) samples = xena.dataset_samples(hub, dataset, 10) ## get expression for gene expression = xena.dataset_gene_probes_values(hub, dataset, samples, gene) expression_by_gene = dict([(g['gene'], g['scores'][0]) for g in expression]) [expression_by_gene.keys(), gene[0], expression_by_gene[gene[0]][0:10]] ## retrieve sample type value ## NOTE: different hub hub = 'https://pancanatlas.xenahubs.net' dataset = 'TCGA_phenotype_denseDataOnlyDownload.tsv' fields = ['_primary_disease', 'sample_type'] # _sample_type will identify normals. # _primary_disease will identify cancer study group values = get_fields_and_codes(hub, dataset, samples, fields) # list of lists phenotypes = dict(zip(fields, values)) # index by phenotype phenotypes['_primary_disease'][0:10] toil_summary = { 'samples': samples, 'expression': expression_by_gene, 'phenotypes': phenotypes } # list of field (probes) and probeMap, # a probeMap is used to map a gene location to a set # of probes (all RNA-seq counts at a given genomic location) xena.dataset_field(hub, dataset) # Exon counts in gene, and probe genomic positions, for given samples lst = xena.dataset_gene_probes_values(hub, dataset, samples, gene) # create a Pandas dataframe from probes_value list data1 = pd.DataFrame(lst[0]) data2 =
pd.DataFrame(lst[1])
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from numpy import nan import numpy as np from pandas import compat from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameConvertTo(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_to_dict(self): test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } recons_data = DataFrame(test_data).to_dict() for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k][k2]) recons_data = DataFrame(test_data).to_dict("l") for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k][int(k2) - 1]) recons_data = DataFrame(test_data).to_dict("s") for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k][k2]) recons_data = DataFrame(test_data).to_dict("sp") expected_split = {'columns': ['A', 'B'], 'index': ['1', '2', '3'], 'data': [[1.0, '1'], [2.0, '2'], [nan, '3']]} tm.assert_dict_equal(recons_data, expected_split) recons_data = DataFrame(test_data).to_dict("r") expected_records = [{'A': 1.0, 'B': '1'}, {'A': 2.0, 'B': '2'}, {'A': nan, 'B': '3'}] tm.assertIsInstance(recons_data, list) self.assertEqual(len(recons_data), 3) for l, r in zip(recons_data, expected_records): tm.assert_dict_equal(l, r) # GH10844 recons_data = DataFrame(test_data).to_dict("i") for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k2][k]) def test_to_dict_timestamp(self): # GH11247 # split/records producing np.datetime64 rather than Timestamps # on datetime64[ns] dtypes only tsmp = Timestamp('20130101') test_data = DataFrame({'A': [tsmp, tsmp], 'B': [tsmp, tsmp]}) test_data_mixed = DataFrame({'A': [tsmp, tsmp], 'B': [1, 2]}) expected_records = [{'A': tsmp, 'B': tsmp}, {'A': tsmp, 'B': tsmp}] expected_records_mixed = [{'A': tsmp, 'B': 1}, {'A': tsmp, 'B': 2}] self.assertEqual(test_data.to_dict(orient='records'), expected_records) self.assertEqual(test_data_mixed.to_dict(orient='records'), expected_records_mixed) expected_series = { 'A': Series([tsmp, tsmp], name='A'), 'B': Series([tsmp, tsmp], name='B'), } expected_series_mixed = { 'A': Series([tsmp, tsmp], name='A'), 'B': Series([1, 2], name='B'), } tm.assert_dict_equal(test_data.to_dict(orient='series'), expected_series) tm.assert_dict_equal(test_data_mixed.to_dict(orient='series'), expected_series_mixed) expected_split = { 'index': [0, 1], 'data': [[tsmp, tsmp], [tsmp, tsmp]], 'columns': ['A', 'B'] } expected_split_mixed = { 'index': [0, 1], 'data': [[tsmp, 1], [tsmp, 2]], 'columns': ['A', 'B'] } tm.assert_dict_equal(test_data.to_dict(orient='split'), expected_split) tm.assert_dict_equal(test_data_mixed.to_dict(orient='split'), expected_split_mixed) def test_to_dict_invalid_orient(self): df = DataFrame({'A': [0, 1]}) self.assertRaises(ValueError, df.to_dict, orient='xinvalid') def test_to_records_dt64(self): df = DataFrame([["one", "two", "three"], ["four", "five", "six"]], index=date_range("2012-01-01", "2012-01-02")) self.assertEqual(df.to_records()['index'][0], df.index[0]) rs = df.to_records(convert_datetime64=False) self.assertEqual(rs['index'][0], df.index.values[0]) def test_to_records_with_multindex(self): # GH3189 index = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] data = np.zeros((8, 4)) df = DataFrame(data, index=index) r = df.to_records(index=True)['level_0'] self.assertTrue('bar' in r) self.assertTrue('one' not in r) def test_to_records_with_Mapping_type(self): import email from email.parser import Parser import collections collections.Mapping.register(email.message.Message) headers = Parser().parsestr('From: <<EMAIL>>\n' 'To: <<EMAIL>>\n' 'Subject: Test message\n' '\n' 'Body would go here\n') frame =
DataFrame.from_records([headers])
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from mabwiser.mab import MAB, LearningPolicy, NeighborhoodPolicy from tests.test_base import BaseTest class MABTest(BaseTest): ################################################# # Test context free predict() method ################################################ def test_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) ################################################# # Test context free predict_expectation() method ################################################ def test_exp_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_context_history_series(self): contexts = pd.DataFrame({'column1': [1, 2, 3], 'column2': [2, 3, 1]}) for lp in BaseTest.para_lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(mab._imp.arm_to_model[0].beta.shape[0], 1) for cp in BaseTest.nps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) for cp in BaseTest.cps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) def test_context_series(self): contexts = pd.DataFrame({'column1': [1, 2, 3, 3, 2, 1], 'column2': [2, 3, 1, 1, 2, 3]}) for lp in BaseTest.para_lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(mab._imp.arm_to_model[0].beta.shape[0], 1) for cp in BaseTest.nps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) for cp in BaseTest.cps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) ################################################# # Test contextual predict() method ################################################ def test_context_arm_list_int(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_arm_list_str(self): for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, -2, 2, 3, 11], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, -5, 2, 3, 10], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, -2, 4, 3, 9], [20, 19, 18, 17, 16], [1, 2, 1, 1, 3], [17, 18, 17, 19, 18]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_decision_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_reward_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_decision_reward_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=
pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3])
pandas.Series